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Abstract: In many applications, interest focuses on assessing relationships between covariates and
the extremes of the distribution of a continuous response. For example, in climate studies, a usual
approach to assess climate change has been based on the analysis of annual maximum data. Using
the generalized extreme value (GEV) distribution, we can model trends in the annual maximum
temperature using the high number of available atmospheric covariates. However, there is typically
uncertainty in which of the many candidate covariates should be included. Bayesian methods for
variable selection are very useful to identify important covariates. However, such methods are
currently very limited for moderately high dimensional variable selection in GEV regression. We
propose a Bayesian method for variable selection based on a stochastic search variable selection
(SSVS) algorithm proposed for posterior computation. The method is applied to the selection of
atmospheric covariates in annual maximum temperature series in three Spanish stations.

Keywords: climate change; extreme value analysis; Markov chain Monte Carlo; non-stationary;
stochastic search variable selection
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1. Introduction

Many studies have shown that climate change not only yields an increase in mean
temperature but also in extreme weather conditions; see Rahmstorf and Coumou [1],
the IPCC report, [2] and references therein. However, the effect of climate change in
temperature is not the same in the mean as in the extreme quantiles of the distribution [3,4].
Extreme temperatures, although rare by definition, can have large impacts on economy,
ecosystems, and human health [5,6]. These impacts are larger than those provoked by
changes in the mean [7,8].

The aim of this work is to develop a new Bayesian variable selection method in the
generalized extreme value (GEV) modeling framework to study extreme events. This
methodology must be able to identify automatically promising subsets of important covari-
ates from a large set of potential covariates. The main ideas of the methodology are based
on embedding a Bayesian stochastic search variable selection (SSVS) method within the
GEV model specification for the data. We implement an adaptive Metropolis-within-Gibbs
Markov chain Monte Carlo (MCMC) algorithm to obtain posterior samples from the model
parameters. The usefulness of the proposed method is shown in an application to the
analysis of extremes in three Spanish series of daily maximum temperature as a function of
atmospheric covariates.

Statistical analysis of extremes is intrinsically difficult, since they occur with a lower
frequency than events around the central part of the distribution. The branch of statistics
called extreme value analysis (EVA) aims to propose specific asymptotic distributions
for this type of observations. The most common approaches in EVA are the threshold
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exceedance models, where extreme events are defined as those that exceed some high
threshold and block maxima analysis. The latter, that will be used in this work, consid-
ers the maximum of the process over n time units of observation, and then models the
block maxima. A fundamental result of this theory for independent and identically dis-
tributed (i.i.d.) random variables is that if there is a non-trivial limiting distribution for
normalized maxima of n of these random variables, then the limit as n goes to infinity is a
GEV distribution.

It is common to assume that annual maximum temperatures follow a stationary GEV
distribution [9,10]. However, to study the effects of global warming, one should consider
models that allow capturing the evolution of maximum temperatures over time, such as
non-stationary GEV models. A common technique to consider a non-stationary behavior
in a parametric model is to regress the parameters on known covariates. In this way, and
using temporal trends or influential time-varying covariates, one can model how annual
maximum temperatures are changing over time. In this framework, Gao and Zheng [11]
analyze the relationship between annual maximum temperature in Chinese stations and
climate indices of wide spatial effect as Arctic Oscillation. The advantages of non-stationary
models versus stationary models are shown in several works [12,13] and in the comparative
analysis of models for annual maximum temperatures [14].

Many approaches have been proposed for parameter estimation in GEV models; e.g.,
techniques based on versions of probability plots, moment-based estimators, estimation
based on order statistics, and likelihood-based methods [15]. A potential issue with using
likelihood methods for the GEV concerns the regularity conditions that are needed to
guarantee the usual asymptotic properties of maximum likelihood estimators. Those
conditions do not hold in the GEV model because the end-points of the GEV distribution
are functions of the parameters and, consequently, the standard asymptotic likelihood
properties are not automatically applicable [16]. Other estimation methods are penalized
maximum likelihood [17], as well as several Bayesian approaches [8,18,19]. Friederichs
and Thorarinsdottir [20] compare different GEV estimation methods such as maximum
likelihood estimation, optimum score estimation with the continuous ranked probability
score, and Bayesian estimation. They found that the Bayesian approach yields the highest
overall prediction skills.

One of the most important research lines in climate change studies is to obtain projec-
tions under different climate change scenarios of the atmospheric covariates with a strong
impact on human activity, such as precipitation [21] or temperature extremes [22]. Earth
system models (ESMs) provide projections of temperature under different scenarios, but
they have two main limitations. First, they work at a large spatial scale, so that physical
or statistical downscaling methods are needed to obtain temperature projections at local
scale [23]. Second, daily temperature projections for current climate scenarios show a good
reproduction of temperature in the central part of its distribution, but it is not adequate in
extreme values. Therefore, specific statistical downscaling procedures for daily temperature
extremes at a local scale have to be used, both when extremes are defined as excesses over
threshold [24,25] or as maximum values [26,27].

Statistical downscaling methods for extreme temperature should include atmospheric
time-varying covariates that capture the non-stationary behavior of extremes due to the
effect of climate change. The number of potential covariates is high, because ESMs pro-
vide information, in surface and different pressure levels, about temperature, humidity,
geopotential, and other variables. In addition, a high collinearity is found in the potential
large scale predictors [28]. Our set of potential covariates is formed by all the atmospheric
variables available from CMIP6 climate models, with the only restriction being that they
have to adequately represent the observed climate [29,30].

In this context, interest focuses on selecting the atmospheric covariates among the high
dimensional set of potential variables that could be included in a statistical downscaling
model for annual maximum temperatures. A wide variety of selection procedures based
on the comparison of all 2k possible submodels has been proposed in terms of the value
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of a goodness-of-fit or error measure, such as AIC, BIC, or Mallows’s Cp. However, if k is
large, the computational burden of these procedures is too high, especially if estimation
is carried out in a Bayesian framework. To mitigate the computational costs, heuristic
methods such as stepwise procedures are usually applied to select a smaller number of
potential variables. The covariate selection problem appears in many regression-type
models [31], but most of them focus on normal regression models and maximum likelihood
estimation. Bayesian methods for variable selection can be very useful to find a subset
of potential explanatory variables to be included in a final model, given a large set of
k potential covariates. However, some caution must be taken because the usual model
selection by Bayes factor is known to be sensitive to hyperparameter choice in hierarchical
models [32]. In this general framework, George and McCulloch [33] proposed the Bayesian
SSVS method to reduce the number of promising models for further consideration. The
idea is to embed the regression setup in a Bayesian hierarchical normal mixture model that
avoids the calculation of the posterior probabilities of all 2k subsets. Efforts are made to
develop software implementing selection tools, e.g., the R packages spikeSlabGAM [34]
and gamselBayes [35] use SSVS, but they do not incorporate GEV regression. Yu et al. [36]
develop Bayesian methods for variable selection with a simple and efficient SSVS algorithm
in quantile regression. There are some covariate selection methods for GEV parametric
models using a Bayesian estimation approach. Friederichs and Thorarinsdottir [20] perform
a variable selection procedure using a method based on a reversible jump MCMC algorithm.
El Adlouni and Ouarda [37] develop a birth–death MCMC procedure to carry out both
parameter estimation and Bayesian model selection.

As an alternative to the above, we propose a Bayesian SSVS method for variable
selection in GEV regression models. This method is particularly useful in the development
of downscaling methods for maximum temperatures. Thus, we provide a modeling ap-
proach that allows us not only to identify atmospheric variables that have an influence on
annual maximum temperatures, but also a statistical downscaling approach to generate
projections of the annual maximum temperature under different climate change scenar-
ios. The Bayesian hierarchical model can be used to simulate series of annual maximum
temperature. This simulation tool could be used, e.g., to study and make inference on
different types of features of these series such as the occurrence and magnitude of its
record events [38,39], in the observed period and future climate scenarios, using the ESM
projections of the covariates.

Finally, note that it is essential to handle uncertainty based on the available evi-
dence [40] and accounting for the substantial uncertainty that occurs in the variable se-
lection process is needed [36]. Bayesian approaches provide a convenient paradigm for
accommodating uncertainty in model selection [41]. Prior distributions are expressions
of the prior knowledge and uncertainty about the distribution of the parameters. Bayes’
theorem combines these priors with the model and data to obtain the posterior distribution,
which summarizes updated knowledge and uncertainty about the parameters. Briefly,
SSVS specifies a prior distribution with binary inclusion indicators in the covariates. Sub-
sequently, using MCMC algorithms, it samples thousands of regression models in order
to characterize the model uncertainty regarding both the covariate set and the regression
parameters by implementing local changes to a single covariate at a time. In this way, SSVS
is a standard way of handling model uncertainty problems [42].

The remainder of the paper is organized as follows. Section 2 describes temperature
data and atmospheric covariates. It also describes the proposed GEV regression SSVS
(GEV-SSVS) algorithm. Section 3 presents a simulation study and the results of applying
the GEV-SSVS approach to three Spanish temperature series. Main conclusions and future
work are summarized in Section 4. The method proposed in this paper is available in
the R package GEVSSVS through GitHub at https://github.com/JorgeCastilloMateo/
GEVSSVS (accessed on 10 December 2022).

https://github.com/JorgeCastilloMateo/GEVSSVS
https://github.com/JorgeCastilloMateo/GEVSSVS
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2. Materials and Methods
2.1. Materials

Three Spanish series of daily maximum temperature obtained from the European
Climate Assessment & Dataset (ECA&D) [43] are analyzed. The series correspond to
Barcelona (Fabra Observatory), Madrid (Retiro), and Zaragoza (Airport); their location
within the Iberian Peninsula is shown in Figure 1. They have different orography and
represent different climates. Barcelona is located in the northeastern part of the Mediter-
ranean coast at the Iberian Peninsula, with a maritime Mediterranean climate. July and
August are the warmest months, with average temperatures around 28 and 22 ◦C during
the day and night, respectively. Madrid lies in the center of the Iberian Peninsula on the
southern Central Plateau, at 657 m a.s.l. It has a Mediterranean climate with continental and
semi-arid influences. Summers are hot, dry, and sunny. July is the warmest month, with
average temperatures during the day around 33 ◦C, and daily maxima commonly climbing
over 35 ◦C. Zaragoza lies at 243 m a.s.l. in the northeast of the Iberian Peninsula, in the
rather arid depression formed by the Ebro Valley. It has a Mediterranean semi-arid climate.
The summer lasts from early June to early September, with an average daily maximum
temperature over 28 ◦C. The hottest month of the year in Zaragoza is July.

Figure 1. Location of the temperature series in the Iberian Peninsula.

The three series are recorded up to 2021, but they have different lengths: Barcelona
starts in 1914, Madrid at 1920, and Zaragoza at 1951. No missing or suspect values are
observed in Barcelona, 145 missing and 5 suspect values are observed in Madrid, and
3 missing values in Zaragoza. However, none of these values occur in the summer period,
where the annual maximum is observed; consequently, the three series of annual maximum
temperatures do not have any missing value.

The set of potential covariates to be included in the model are selected from the
atmospheric variables from reanalysis ERA-20C from the European Centre for Medium-
Range Weather Forecasts (ECMWF) [44]. In this work, we consider temperature (◦K),
specific humidity (kg/kg,) and geopotential (m2s−2) at 850, 700, 500, and 300 hPa pressure
levels. The monthly mean of these variables is available in a grid 1◦ × 1◦ covering the
Iberian Peninsula. Then, we consider 48 potential covariates, which correspond to the
monthly mean in July (the hottest month in the three study series) of the 12 variables in the
four points of the spatial grid surrounding the station under study. The 12 variables above
are denoted by t, q and z, respectively; a suffix specifying the level; e.g., q.500 denotes the
specific humidity at 500 hPa. Since the series of the covariates are available from 1900 to
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2010, all the analyses below consider the series from the starting year of the temperature
series up to 2010.

We will also consider the temperature (◦K) at 2 m over ground level, denoted by t2m.
This covariate explains much of the variability of the series, but it is not well reproduced
by the ESM in the current climate scenario; consequently, it is not suitable to be used in
models to generate projections. By this reason, it is used as an illustration in a preliminary
model but not in the final model. The R package ecmwfr [45] was used to download the
data from the ECMWF (accessed on 1 April 2022).

2.2. Methods

This section proposes a modeling approach for non-stationary annual maximum
temperatures based on the GEV distribution, and presents the Bayesian variable selection
method. The basic structure of GEV-SSVS modeling and algorithm are illustrated in
Figure 2 and its components are described in detail below. On the left, the process selection
workflow shows the steps from the database and pre-selection to the final selected model.
The right part of the figure outlines the MCMC algorithm that is developed to fit the
GEV-SSVS models.

Output: Final GEV model with selected covariates

Choose hyperpriors and 
hyperparameters

(𝑝𝑝0, 𝑐𝑐0, 𝜏𝜏0)

Scale covariates to have zero
mean and unit variance

Promising GEV models: Identify
the most frequent models in the

posterior samples of 𝜸𝜸

Final GEV model: Fit the
promising GEV models and 
identify the model with the

lowest DIC

Algorithm (Adaptive Metropolis-within-Gibbs for GEV-SSVS):

Let
• 𝜽𝜽 = (𝛽𝛽0, 𝑙𝑙𝑙𝑙𝑙𝑙 𝜎𝜎, 𝜉𝜉 ,𝜷𝜷)T be a vector of parameters, 
• 𝑓𝑓 𝜽𝜽 = 𝒀𝒀 | 𝜽𝜽 𝜽𝜽 | 𝜸𝜸(𝑏𝑏) be the target density, 
• 𝑞𝑞𝑏𝑏 𝜽𝜽 = 𝑁𝑁 𝜽𝜽 𝜽𝜽(𝑏𝑏),𝜮𝜮(𝑏𝑏)) be the proposed density. 

Repeat the following for 𝑏𝑏 = 0,1, … ,𝐵𝐵.

1. Set 𝜽𝜽(𝑏𝑏+1) = 𝑀𝑀𝑀𝑀(𝑓𝑓, 𝑞𝑞𝑏𝑏 ,𝜽𝜽 𝑏𝑏 ,𝜮𝜮(𝑏𝑏)) with 𝑀𝑀𝑀𝑀 a Metropolis-Hastings step.

2. Update from 𝜮𝜮(𝑏𝑏) to 𝜮𝜮(𝑏𝑏+1), the variance-covariance matrix of 𝑞𝑞𝑏𝑏 .

3. Sample 𝜸𝜸(𝑏𝑏+1) from 𝛾𝛾𝑖𝑖 ⋯ ] for 𝑖𝑖 = 1, … , 𝑘𝑘.

MCMC algorithm to obtain
posterior samples from 𝜸𝜸

Input: 
Response 𝒀𝒀, 𝑘𝑘 covariates, 

initial values (𝜽𝜽 0 ,𝜮𝜮 0 ,𝜸𝜸(0))

Figure 2. The framework of the GEV-SSVS method. Left: outline of the workflow. Right: outline of
the iterative MCMC algorithm to obtain posterior samples of the model parameters.

2.2.1. Modeling Annual Maximum Temperature

The aim of this work is to model annual maximum temperature: to characterize the
statistical behavior of the random variables that represent the maximum of a process over
n time units of observation,

Mn = max{Z1, . . . , Zn},

where Z1, . . . , Zn is a sequence of random variables. In our case since n is the number of
observations in a year, Mn corresponds to the annual maximum.
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The distribution of Mn is difficult to obtain in a general case. However, EVA provides
useful asymptotic results to characterize the GEV distribution as its limit. We remind that
the GEV(µ, σ, ξ) cumulative distribution function is defined as

G(z) =

exp
{
−
[
1 + ξ

z−µ
σ

]−1/ξ

+

}
, if ξ 6= 0,

exp
{
− exp

[
− z−µ

σ

]}
, if ξ = 0,

(1)

where x+ = max{0, x}, the scale parameter is σ > 0, and the location and shape parameters
are−∞ < µ, ξ < ∞, respectively. This distribution contains three distributions as particular
cases: the heavy-tailed Fréchet distribution is obtained with ξ > 0, the upper bounded
Weibull distribution with ξ < 0, and the Gumbel distribution with ξ = 0.

Under quite general conditions, for Z1, . . . , Zn i.i.d. random variables, if there exist
two sequences an > 0 and bn such that the following limit converges to a non-degenerate
distribution function G(z),

lim
n→∞

P
(

Mn − bn

an
≤ z
)
= G(z),

then G(z) is a GEV distribution [46]. With this result, the GEV distribution is the only
possible limit of a linear normalization of the maximum of a sequence of i.i.d. random
variables. This justifies the use of the GEV distribution for modeling the distribution of
maxima of long sequences. Clearly, when the distribution of the normalized Mn can be
approximated by a GEV distribution, the maximum Mn itself can also be approximated by
a different member of the same family and, in any case, the parameters have to be estimated
from the data.

Note that the previous result assumes an underlying process of i.i.d. random variables.
However, in a certain sense and subject to specified limitations, the GEV model is still
applicable under short-term temporal dependence, as is often the case with meteorological
data [47].

Modeling Non-Stationarity

In most environmental processes, and temperature in particular, stationarity is not a
reasonable assumption due to the existence of seasonal effects and trends linked to climate
change or other effects. In a non-stationary time process, the behavior of the variables
changes systematically over time, and it cannot be modeled by a sequence of i.i.d. variables.
This departure from the assumption of the GEV characterization as a limit distribution of
maxima does not allow to guarantee the validity of the approximation. There is no general
theory for characterizing the distribution of maxima in non-stationary processes. Results
are available for very specific forms of non-stationarity, but often they are not useful for
describing the non-stationary behavior of real processes. However, it is usually the use of
the GEV model as a basic template that is enhanced by statistical modeling, as suggested
by Coles [15].

To sum up, in a non-stationary framework, there are asymptotic arguments that
support the use of the GEV distribution for modeling the maximum in any year, but the
existence of a trend or the influence of a time-varying covariate in the process makes a
model which assumes a constant distribution through time unsuitable. Then, a reason-
able approach to model Y, the series of variables Yt that represent the annual maximum
temperature in year t, is to assume that they are independent variables with distribution

Yt | µt, σ, ξ ∼ GEV(µt, σ, ξ), t = 1, . . . , T, (2)

with µt = h(xt, β0, β), where h is a specified function, xt is a vector of covariates at time
t, β0 is an intercept, β is a vector of parameters, and T is the length of the series. Similar
time-varying structures can be considered also in σ and ξ, the scale and shape parameters.
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In most real applications, it is assumed that the variations through time in the process
can be captured just by modeling the location parameter µ as a time-varying function.
However, this assumption should be checked.

The next step in the modeling process is to specify the function h. Given a set of
time-varying covariates x>t = (xt1, . . . , xtk), we consider the following function

µt = β0 + x>t β, t = 1, . . . , T, (3)

where β0 is the intercept, and β = (β1, . . . , βk)
> are the regression coefficients. Note that

the vector of time-varying covariates may include variables such as a linear or polynomial
trend across years. The stationary model, where the distribution of annual temperature
maxima is constant over time, is a special case of this non-stationary model with β = 0.

2.2.2. Bayesian Variable Selection, Model Fitting, and Prediction

The proposed model is estimated in a Bayesian framework. Although Bayesian esti-
mation of GEV parameters has been studied for a long time, selecting an appropriate model
becomes an important issue when there is a large number of potential covariates. Since
the basic principle is parsimony (that is, to obtain the simplest model that fits adequately
the data) we have to assess the strength of evidence of a more complex model structure.
However, if k covariates are available, computation of the posterior probabilities of the
2k possible subsets of covariates is computationally expensive and methods that provide
some preliminary selection will be clearly helpful.

Our aim is to provide a method to select subsets of promising covariates for further
study in a parametric GEV model. We propose to combine the GEV model with the SSVS
algorithm, adapted to the case of selecting the regression coefficients of the linear predictor
that defines one parameter of a GEV distribution. The underlying idea of the SSVS method
is to identify as sets of promising covariates those with higher posterior probability. To that
end, it uses MCMC to indirectly sample from the multinomial posterior distribution on
the set of possible subsets and identify the higher probability sets by their more frequent
appearance in the MCMC iterations.

Bayesian Variable Selection

To implement the SSVS method, the entire regression setup is embedded in a hier-
archical Bayes normal mixture model, where latent variables are used to identify subset
choices. More precisely, we introduce the latent variables γ = (γ1, . . . , γk)

> to represent
the normal mixture by

βi | γi ∼ (1− γi)N(0, τ2
i ) + γi N(0, c2

i τ2
i ), i = 1, . . . , k,

where each γi is a binary variable that can take values 0 or 1 with P(γi = 1) = pi. In this
way,

βi ∼
{

N(0, τ2
i ) if γi = 0,

N(0, c2
i τ2

i ) if γi = 1.

This means that setting a small τi > 0, if γi = 0, then βi could be safely estimated
by zero. In addition, setting a large ci > 1, if γi = 1, a non-zero estimate of βi should be
included in the model. Specific choices of τi and ci for this purpose are given below. In this
setup, pi may be thought of as the prior probability that βi will require a non-zero estimate,
and consequently that the ith covariate should be included in the model. Summarily, the
posterior distribution of the vector [γ | Y ] will give higher probabilities to the model with
the most promising covariates.

To complete the model, the values of ci and τi are specified, following [48]. The
approach is based on considering δi > 0, the intersection point of the densities of N(0, τ2

i )
and N(0, c2

i τ2
i ). Note that |βi| ≤ δi corresponds to the region where N(0, τ2

i ) < N(0, c2
i τ2

i ),
and |βi| > δi corresponds to the region where N(0, τ2

i ) 4 N(0, c2
i τ2

i ), where < and 4
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denote density dominance. Large posterior probability of γ under [γ | Y ] suggests that
|βi| ≤ δi for γi = 0, and |βi| > δi for γi = 1. Thus, ci and τi should be selected so that if
|βi| ≤ δi it would be preferable to set βi = 0 and exclude the ith covariate from the model.
Once δi has been selected, choosing ci between 10 and 100 is recommended to achieve an
effective separation between both densities. For a given ci and δi, the implicit value of τi is
then obtained as

τi =
[
2 log(ci)c2

i /(c2
i − 1)

]−1/2
δi.

Note that δi could be defined considering that it expresses a cut-off value to define
below it an effect close to zero and therefore negligible. This value can be based on a
previous exploratory analysis or comparing results on a grid of values.

Prior Specification and Model Fitting

For homogeneity and simplicity we consider common values of p0 ≡ pi, c0 ≡ ci,
τ0 ≡ τi, and δ0 ≡ δi (i = 1, . . . , k) across covariates. The number of covariates included
in the final model will be sensitive to the value of p0. Consequently, p0 can be fixed
considering previous knowledge or analyses about the number of covariates in a final
model. For our data we expect the final model to use no more than four or five covariates,
so we set the probabilities of covariate inclusion to p0 = 1/10. A more general approach
could estimate p0 from the data, and in this case a mathematically convenient prior would
be p0 ∼ Beta(a0, b0).

It is appropriate to assign the intercept a diffuse prior β0 ∼ N(0, 102), and analogously
for the scale parameter log σ ∼ N(0, 2). As suggested in the literature, we specify a
weakly informative prior for the shape parameter ξ ∼ N(0, 1). Here, weakly informative
means that the prior has a middling amount of certainty, being neither too diffuse nor
too restrictive, because it is generally difficult to estimate ξ from the data. The posterior
inference is not very sensitive to these prior distributions.

Before fitting the model, it is convenient to scale the covariates by mean and variance.
We implement a sensitivity analysis to understand the effect of c0 and δ0 in the final model.
Based on preliminary analyses fitting different models with different parameters, we set
c0 = 100 and an intersection point δ0 = 0.15, or equivalently τ0 = 0.05. Note that δ0
defines the intersection point between the normal distributions that express the significant
or insignificant effect of the scaled covariate.

Using this hierarchical model, MCMC methods are used to obtain samples from the
joint posterior distribution. The sampling algorithm is an adaptive Metropolis-within-
Gibbs version. The binary variables are sampled from their full conditional distribution
one-by-one from

[γi | · · · ] ∼ Ber

(
pi N(βi | 0, c2

i τ2
i )

pi N(βi | 0, c2
i τ2

i ) + (1− pi)N(βi | 0, τ2
i )

)
,

and the remaining parameters are sampled simultaneously using an adaptive Metropolis
algorithm [49] with multivariate normal proposals with an adaptive variance–covariance
matrix. Additional details on the algorithm are given in Figure 2.

Final Model

As previously explained, the SSVS method can be used to reduce the set of possible
models for further consideration, but in order to make inference or prediction on the
annual maximum temperature, a final step has to be implemented. We opt for selecting
the best model among those provided by the GEV-SSVS method applying a standard
model selection criterion. First, we identify the most likely models according to the
posterior distribution of the vector γ, and then we select the model with the lowest deviance
information criterion (DIC) [50]. To fit these reduced models we simply set pi = 1 and
give a diffuse prior to the coefficients associated with the covariates by setting ciτi = 10.
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Once this final model is selected, the vector of parameters of the model is reduced to
θ = (β0, σ, ξ, β∗)> where β∗ is the vector of the coefficients of the covariates in the final
selected model.

Following Gelman et al. [50], the DIC is a hierarchical modeling generalization of
the Akaike information criterion (AIC), particularly useful in Bayesian model selection
problems. It is defined as

DIC = −2 log[Y | θ̂Bayes] + 2pDIC,

where θ = (β0, σ, ξ, β∗)>, θ̂Bayes is the posterior mean E(θ | Y), and

pDIC = 2
(
log[Y | θ̂Bayes]− E(log[Y | θ])

)
.

The idea is that models with smaller DIC should be preferred to models with larger
DIC. Models are penalized both by the value of −2 log[Y | θ̂Bayes], which favors a good fit,
but also by the effective number of parameters pDIC.

Prediction and Inference

The final fitted Bayesian model can be used to obtain the posterior predictive dis-
tribution of the annual maximum temperature for a given vector of covariates, denoted
by [Yrep

t | Y], just integrating over the posterior distribution of parameters obtained from
model fitting,

[Yrep
t | Y] =

∫
[Yrep

t | θ][θ | Y]dθ.

Samples of annual maximum temperatures with this posterior predictive distribution
can be easily obtained from posterior samples of the parameters. As previously stated,
the possibility of implementing this type of prediction to obtain replicates of the annual
maximum series provides an important tool to make inference on different types of features
of these series, for example record events. Using the simulated series, one can estimate not
only any measure of interest but also the uncertainty of that estimation.

One of the most useful measures in the analysis of climate extremes is the return
level zp. Following Coles [15], this can be easily obtained from the inverse of the GEV
distribution function as zp = G−1(1− p) with G in (1). The return level zp is the value that
is exceeded with probability p, and it is associated with a return period of 1/p time units.

3. Results

This section presents a simulation study to assess the performance of the proposed
algorithm. Then, an exploratory analysis of daily temperatures is performed and GEV
models with a time-trend are fitted in each station to evaluate the change in the location
and scale parameters. Second, a simple example of using the GEV-SSVS method to select
a model for Barcelona based on surface temperature only is shown. Third, the proposed
Bayesian variable selection method is applied to select a GEV model for projection. Finally,
the selected model is validated, we show that the data do not deviate from the fitted
distribution and that the model adequately captures the observed behavior. The main
results are shown in detail for Barcelona and we refer the reader to the Appendix for the
details of Madrid and Zaragoza.

3.1. Simulation Study

We propose a series of simulation experiments to assess the performance of the
proposed GEV-SSVS algorithm. We focus on the case in which data Y are drawn from (2)
with µt in (3) and the length of the series is T = 100. We set β0 = 30 as a close reference to
the temperature data. We study three values for the shape parameter ξ = −0.3, 0, 0.2, i.e.,
one for each distribution contained in the GEV. We set the variance of the data to 1 in all
cases, leading to σ = 1.01, 0.78, 0.55, respectively. We consider two number of covariates
k = 10, 50 and a vector of coefficients β = (1, 1, 0, . . . , 0, 1, 1)>, i.e., all zeros except the
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first two and last two covariates. Finally, we study the performance of the algorithm with
independent covariates and dependent covariates as follows.

For the independent covariates we independently generate for each covariate 100 in-
dependent standard normal data. Now we scale the covariates to have zero mean and unit
variance before generating the Y’s. The dependent covariates are generated with a similar
dependence to Yu et al. [36]. This involves the generation of k independent covariates as
above. Then, we independently generate 100 additional standard normal data Z and add
2Z to each covariate. This results in a correlation between covariates of around 0.8. Now
we scale the covariates to have zero mean and unit variance.

Each model is simulated 50 times and the results are summarized in Table 1. If k = 10
then p0 = 0.5 and if k = 50 then p0 = 0.1; the other parameters are left by default. The
results show that for all models the true model is the most frequent in samples of γ at least
88% of the time, and is almost always among the promising models. Although the results
seem similar between independent and dependent covariates, there is unsurprisingly an
overall better performance with independent covariates than with dependent covariates.

Table 1. Summary from the 50 simulations with data generated from the 12 models in the three
first columns. The first position is the proportion of simulations where the true model is the most
frequent in γ. The 1st–10th position is the same but is within the 10 most frequent models, i.e.,
promising models. x̄ and q1/2 frequency are the mean and median across simulations of the frequency
of appearance of the true model in γ.

ξ k 1st Position 1st–10th Position x̄ Frequency q1/2 Frequency

Independent

−0.3 10 1.00 1.00 0.69 0.71
0 10 0.98 1.00 0.74 0.76

0.2 10 1.00 1.00 0.84 0.86
−0.3 50 0.92 1.00 0.61 0.67

0 50 0.92 1.00 0.68 0.72
0.2 50 1.00 1.00 0.82 0.84

Dependent

−0.3 10 0.88 1.00 0.41 0.42
0 10 0.88 0.98 0.50 0.54

0.2 10 0.94 1.00 0.63 0.70
−0.3 50 0.90 1.00 0.51 0.54

0 50 0.92 1.00 0.57 0.62
0.2 50 0.98 1.00 0.64 0.68

3.2. Exploratory Data Analysis
3.2.1. Descriptive Analysis

This section shows a descriptive analysis of means, standard deviations, and linear
trends in different versions of the temperature data introduced in Section 2.1. In particular,
Table 2 shows some of these measurements for some subsets of the daily maximum temper-
ature data from 1914, 1920, and 1951 up to year 2010 in Barcelona, Madrid, and Zaragoza.
It considers daily maximum temperatures using all days in the year; using days in June,
July and August (JJA); using days in July; or using the annual maximum temperature.

Table 2. Left: mean x̄ and standard deviation sx of daily maximum temperatures in JJA and July. Right:
linear trend ( ◦C/decade) in daily series, daily series of JJA, and annual maximum temperatures.

JJA July Daily JJA max
Station x̄ sx x̄ sx Linear Trend

Barcelona 26.6 3.6 27.5 3.1 0.21 0.22 0.20
Madrid 29.5 4.3 31.0 3.5 0.13 0.18 0.16
Zaragoza 30.3 4.5 31.6 4.1 0.31 0.51 0.39
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The daily maximum temperatures in JJA in Barcelona, Madrid. and Zaragoza are 26.6,
29.5 and 30.3 ◦C, respectively. The corresponding standard deviation is around 4 ◦C in the
three series. The mean in July is between 1 and 1.5 ◦C higher and the standard deviation
around 0.5 ◦C lower than in the three months JJA. To explore the evolution over time of
temperature, we estimate the linear trend using ordinary least squares in three series of
temperature: daily, daily in JJA and annual maximum. The trend in JJA ranges from 0.18
in Madrid to 0.51 ◦C/decade in Zaragoza. The trend in annual maximum temperature
is lower in the three locations. The trend in the daily series using all days in the year is
much lower in Madrid and Zaragoza than in the other two series. This different behavior
confirms the need of a specific analysis to study the effect of climate change in temperature
extremes. Figure 3 shows the evolution across years of the annual maximum temperature
series. An increase of the level is clearly observed in the three series. This increase leads to
a high number of observed records in the series.
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Figure 3. Annual maximum temperature series and their records. (a) Barcelona (1914–2021).
(b) Madrid (1920–2021). (c) Zaragoza (1951–2021).

3.2.2. GEV Regression including Time-Trends

In order to analyze the need of a non-stationary GEV distribution to model the annual
maximum temperature series, different models, including constant and time-varying
location and scale parameters, are fitted. The estimation is carried out using a Bayesian
approach and the R package extRemes [51] with the priors by default. These models could
be fitted, except for the trend in scale, using the function available in GEVSSVS by setting
pi = 1. In fact, we find that our sampling algorithm mixes better and is more than 15 times
faster when fitting these models for the same number of iterations. This difference increases
with the number of covariates. However, we use extRemes in this section to make a fair
comparison between the models that are not stationary in location and scale and to compare
the results of this usual approach with our subsequent proposal. Note that we do not use
the DIC provided by extRemes, we implement the expression explained above.

Table 3 summarizes the DIC of five GEV models: the first considers constant parame-
ters µ and σ; the second includes a linear trend in location and a constant scale parameter;
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the third is the same but with a quadratic trend in location; the fourth a linear trend in
the scale parameter, log σt = φ0 + φ1t and a constant location parameter, and the fifth
a quadratic trend in scale. The lowest DIC is achieved by the model including a linear
trend in location. The model with constant parameters and the model with a linear trend
in scale yield a similar fit. According to these results, there is no evidence to include a
time-varying scale parameter in the model. However, the decrease of DIC between the
stationary GEV model and the models with a time-varying location suggests the need of
including a time-varying location parameter. More details can be found in Table A1 of
Appendix A, where the posterior distribution of the model parameters is summarized.

Table 3. DIC of GEV models including constant and time-varying location and scale parameters.

Model Barcelona Madrid Zaragoza

i.i.d. 410 331 246
Linear trend in location 400 324 238
Quadratic trend in location 407 329 244
Linear trend in scale 411 331 243
Quadratic trend in scale 413 337 252

3.3. Modeling Annual Maximum Temperature
3.3.1. An Illustration of GEV-SSVS

In order to make clear the way of working with the variable selection method, we
present the steps of its application in a simple example, the modeling of the annual max-
imum temperatures in Barcelona, but considering only a set of four potential covariates.
The considered variables are the 2 m surface temperature t2m in the four points that define
the spatial grid where Barcelona is located (see Figure 1).

A preliminary step before applying the SSVS method in each dataset is to determine
the values of pi, ci, and τi. The selected values here are pi = 1/2, and the other parameters
remain as in Section 2.2.2. Note that the value of pi is related with the prior proportion of
covariates we expect to keep in the model.

Table 4 summarizes the results of the application of the GEV-SSVS algorithm. The
first column shows the four covariates, and the following ones the three models with a
frequency higher than 5% in the MCMC samples. The rows below show the frequency
and DIC of the models fitted for those covariates. The model with highest frequency
corresponds to the model with variable t2m in the SE point of the considered grid. Indeed,
this is the model with the lowest DIC from all the 24 possible models. These results lead to
select as final model the GEV distribution with location parameter including the covariate
t2m in the SE point.

Table 4. Values of γ with a frequency higher than 5% in the MCMC. Bottom: frequency of appearance
and DIC. Barcelona (1914–2010).

Variable Values of γ

t2m 2E–41N 0 1 1
t2m 3E–41N 1 0 1
t2m 2E–42N 0 0 0
t2m 3E–42N 0 0 0

Frequency (%) 38 20 15
DIC 376 378 378

A summary of the posterior distribution of the model parameters for the selected
model can be found in Table A2 of Appendix A.
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3.3.2. GEV-SSVS with Atmospheric Covariates

Statistical downscaling methods that use ESM variables as input information to project
require the use of variables that are adequately reproduced at the considered temporal
and spatial scale. This condition prevents the use in our model of surface temperature
as input variables, since they are in general badly reproduced at a daily and local scale.
However, variables measured at a given elevation are less influenced by the relief of the
area, better reproduced by ESM and, consequently, they can be used more safely as input.
In addition, we should take into account that information on atmospheric conditions
(not only in the considered location, but also in an area around it) may provide useful
information to model annual maximum temperature. Thus, for a temperature series in
a given location, we will consider the 4 × 3 × 4 = 48 variables corresponding to the
four grid points around the location, three variables (temperature, specific humidity, and
geopotential) and four pressure levels (850, 700, 500, and 300 hPa). All covariates are scaled
in mean and variance for the implementation of the algorithm. It is also noteworthy that
there is a high correlation between the same variable measured at the four points of the grid
and also between the different variables measured at the same point. This high correlation
causes different covariates to produce a similar goodness of fit, returning very similar
frequencies of appearance in the selection algorithm. For this reason we suggest to run
several chains (we run 5) until consistent results are obtained between them, and then
compare the best returned models by means of their DIC.

The final model for Barcelona, according to the GEV-SVSS approach described in
Section 2.2.2, includes the variable t.850 at 2E–41N and 3E–42N, that is, two temperatures
at 850 hPa pressure level at the SW and NE points. The posterior mean and credible
interval (CI) of the model parameters are summarized in Table 5. Both covariates have a
very high correlation of 0.98, but both are significant, with the posterior mean of the SW
point coefficient being negative while that of the NE is positive, with the latter being of
greater magnitude. This means that the annual maximum increases with the increase in
temperature t.850 at the NE point located in the interior of Iberian Peninsula, while it is
regulated by the same variable at the SW point located in the Mediterranean Sea. The 95%
CI of the shape parameter ξ contains zero, consequently the posterior distribution could be
considered a Gumbel distribution. The model is satisfactorily validated according to usual
diagnostic plots, see Figure A1 in Appendix B.

As a product of the fitted model, the left plot in Figure 4 shows the posterior mean
of the 10 and 20 year return values obtained from the model, together with the observed
annual maximum temperature as a reference. As the observed series, the posterior mean of
the return values shows a non-monotonous increasing evolution. The right plot in Figure 4
shows the posterior probability of the annual maximum temperature being higher than 36,
37, and 38 ◦C. This signal also shows a non-monotonous increasing evolution, specially
from 1980 onwards.

Table 5. Posterior mean and 95% CI of the final GEV model parameters according to the GEV-SSVS
selection. Barcelona (1914–2010).

DIC = 383 Mean CI

β0 32.73 (32.40, 33.07)
t.850 2E–41N −1.74 (−3.36,−0.02)
t.850 3E–42N 2.55 (0.84, 4.17)
σ 1.51 (1.28, 1.77)
ξ −0.05 (−0.18, 0.10)
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Figure 4. Left: posterior mean of 10 and 20 year return values by year. Right: posterior probability
of the annual maximum temperature being higher than 36, 37, and 38 ◦C by year according to the
final GEV model. Barcelona (1914–2010).

The final model for Madrid is very similar to the model for Barcelona; both have two
temperatures at 850 hPa t.850 as covariates. The summary of the model parameters are in
Table A3 of Appendix B; the main difference is that ξ is significantly negative, indicating a
Weibull distribution. Diagnostic plots are satisfactory, as shown in Figure A2 of Appendix B.

The final model for Zaragoza is different from the others. It includes the covariates
q.850 1W–42N and z.300 0E–41N, that is, the specific humidity at 850 hPa in the NW point
and the geopotential at 300 hPa in the SE point. The summary of the model parameters
are in Table A4 of Appendix B. The two covariates are not significantly correlated. The
posterior mean value of the geopotential coefficient is positive, while that of humidity is
negative. This means that a situation with low humidity at 850 hPa and high geopotential
at 300 hPa height, features associated to a persistent anticyclone situation over the North
Atlantic, increases the risk of high annual maximum temperature. The obtained shape
parameter is compatible with a Weibull distribution. Diagnostic plots in Figure A3 in
Appendix B are satisfactory and show a good fit.

All the models include information from different grid points, even if this information
is highly correlated and comes from the same type of measurement. This confirms the
convenience of considering as possible covariates at least the variables corresponding to
the four points of the spatial grid where the station is located.

It is noteworthy that the models obtained from applying the GEV-SSVS approach
clearly improve the DIC of the models fitted in Section 3.2.2 with a polynomial trend in
time in the location parameter. This is, a DIC of 383 vs. 400, 315 vs. 324, and 222 vs. 238 in
Barcelona, Madrid, and Zaragoza, respectively.

4. Conclusions and Future Work

This work proposes a new Bayesian approach for variable selection in a GEV regres-
sion framework. The approach consists of two steps: the first one is a GEV-SSVS method
and aims to identify the sets of covariates that lead to the models with the highest posterior
probabilities. In some cases, for example with sets of highly correlated variables, the previ-
ous approach may yield a large number of models with similar probabilities. Consequently,
a second step to select the best model is implemented by applying a standard model selec-
tion criterion, the DIC. In cases of serious problems of multicollinearity, it is convenient
to implement the GEV-SSVS approach by simulating a high number of iterations using
several chains, and to check that the results are similar in all of them.

The suggested GEV-SSVS is implemented in the R package GEVSSVS, available at
https://github.com/JorgeCastilloMateo/GEVSSVS (accessed on 10 December 2022). This
package also allows the fit of a wide range of GEV models, including non-linear terms
and interactions in the location parameter. The sampling algorithm implemented in the

https://github.com/JorgeCastilloMateo/GEVSSVS
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functions in GEVSSVS mixes better and is much faster than the Bayesian algorithms used
in the package extRemes. These differences increase with the number of covariates.

The proposed method is used to select the best atmospheric covariates to model the
annual maximum temperature in three Spanish locations with different climatic conditions.
The variable selection method is applied to a set of 48 potentially influential atmospheric
covariates, which are highly correlated. In the three series, the approach leads to parsimo-
nious models including two covariates and provides a clear interpretation of the predictor
effects. The selected covariates correspond to different points in the grid surrounding the
location where the series is measured, and at least one of the predictors corresponds to a
850 hPa pressure level.

A difficulty associated to variable selection in GEV regression appears in finding
the subset that maximizes the likelihood, as is also the case for generalized linear and
non-linear models where the full conditional densities cannot be obtained directly; the
resulting mixture posterior may be difficult to sample using standard MCMC methods due
to multimodality. Future work will consider specific MCMC algorithms that automatically
tune the parameters of a family of mixture proposal distributions during simulation [52].
This approach is necessary to implement the variable selection method when a high number
of potential covariates is available. Another research line is to generalize the procedure to a
spatio-temporal framework. In that case the selection method should aim to select the set
of relevant covariates that could be different in each location.

From a climate point of view, an interesting application will be the use of the proposed
approach to select and fit models that can be used to downscale the outputs of ESM under
climate change scenarios. In particular, the fitted model in this work could be used to
obtain downscaled projections of annual maximum temperatures for the next 50 years.
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Appendix A. Preliminary Models

Table A1 shows the posterior mean and 95% CI of the models described in Section 3.2.2.
And Table A2 shows the same for the model selected in Section 3.3.1.

http://www.ecad.eu
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Table A1. Posterior mean and 95% CI of the GEV models including constant parameters and linear
time-trends in location or scale.

Barcelona Madrid Zaragoza
Mean CI Mean CI Mean CI

i.i
.d

. µ 32.67 (32.21, 33.13) 36.22 (35.81, 36.61) 38.30 (37.70, 38.87)
σ 1.80 (1.51, 2.17) 1.53 (1.28, 1.83) 1.83 (1.48, 2.32)
ξ −0.10 (−0.23, 0.07) −0.32 (−0.45,−0.18) −0.25 (−0.41,−0.08)

t–
lo

ca
ti

on β0 31.49 (30.60, 32.39) 35.52 (34.84, 36.18) 37.15 (36.14, 38.14)
β1 0.02 (0.01, 0.04) 0.02 (0.00, 0.03) 0.04 (0.01, 0.07)
σ 1.63 (1.34, 1.99) 1.48 (1.25, 1.78) 1.73 (1.41, 2.17)
ξ −0.03 (−0.21, 0.18) −0.34 (−0.49,−0.19) −0.28 (−0.45,−0.11)

t–
sc

al
e µ 32.71 (32.26, 33.17) 36.20 (35.81, 36.57) 38.18 (37.60, 38.76)

φ0 0.68 (0.36, 1.05) 0.30 (0.02, 0.63) 0.32 (−0.05, 0.74)
φ1 0.00 (−0.01, 0.00) 0.00 (0.00, 0.01) 0.01 (0.00, 0.02)
ξ −0.05 (−0.24, 0.17) −0.36 (−0.51,−0.20) −0.30 (−0.46,−0.12)

Table A2. Posterior mean and 95% CI of the GEV model parameters according to the GEV-SSVS
selection between the 2 m surface temperature t2m variables. Barcelona (1914–2010).

DIC = 376 Mean CI

β0 32.79 (32.46, 33.13)
t2m 3E–41N 1.01 (0.69, 1.33)
σ 1.50 (1.28, 1.77)
ξ −0.10 (−0.22, 0.05)

Appendix B. Results of the GEV Models According to the GEV-SSVS Selection

Figures A1, A2 and A3 show the usual diagnostic plots for the final GEV models
according to the GEV-SSVS selection in Barcelona, Madrid and Zaragoza, respectively.
Summaries for the posterior distribution of the model parameters in the final models for
the last two stations are shown in Tables A3 and A4.

Table A3. Posterior mean and 95% CI of the final GEV model parameters according to the GEV-SSVS
selection. Madrid (1920–2010).

DIC = 315 Mean CI

β0 36.30 (35.97, 36.62)
t.850 4W–40N 2.13 (0.80, 3.34)
t.850 4W–41N −1.64 (−2.76,−0.35)
σ 1.44 (1.22, 1.72)
ξ −0.39 (−0.55,−0.24)

Table A4. Posterior mean and 95% CI of the final GEV model parameters according to the GEV-SSVS
selection. Zaragoza (1951–2010).

DIC = 222 Mean CI

β0 38.34 (37.95, 38.73)
q.850 1W–42N −0.55 (−0.93,−0.17)
z.300 0E–41N 0.92 (0.54, 1.29)
σ 1.38 (1.13, 1.70)
ξ −0.13 (−0.29, 0.04)
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Figure A1. Diagnostic plots of the final GEV model parameters according to the GEV-SSVS selection.
Barcelona (1914–2010).
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Figure A2. Diagnostic plots of the final GEV model parameters according to the GEV-SSVS selection.
Madrid (1920–2010).
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