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Abstract: Wearable technology is playing an increasing role in the development of user-centric
applications. In the field of sports, this technology is being used to implement solutions that improve
athletes’ performance, reduce the risk of injury, or control fatigue, for example. Emotions are involved
in most of these solutions, but unfortunately, they are not monitored in real-time or used as a decision
element that helps to increase the quality of training sessions, nor are they used to guarantee the
health of athletes. In this paper, we present a wearable and a set of machine learning models that
are able to deduce runners’ emotions during their training. The solution is based on the analysis
of runners’ electrodermal activity, a physiological parameter widely used in the field of emotion
recognition. As part of the DJ-Running project, we have used these emotions to increase runners’
motivation through music. It has required integrating the wearable and the models into the DJ-
Running mobile application, which interacts with the technological infrastructure of the project to
select and play the most suitable songs at each instant of the training.

Keywords: emotion recognition; wearable devices; machine learning; running; music recommendation

1. Introduction

In recent years, due to advances in the progressive miniaturisation of sensor technolo-
gies, wearables have become interesting devices in different disciplines, such as health [1]
or entertainment [2,3]. However, they have become essential in the practice of many
sports [4,5]. Among the wide variety of devices, smart watches, wristbands, and bracelets
stand out. They allow measuring the physical activity, behaviour and performance of ath-
letes, monitoring and collecting information about several aspects of the activity (measure
movement-based parameters such as distance, velocity, foot strike, acceleration), and cap-
turing physiological signals, such as heart rate, temperature, oxygenation, blood pressure
or electrodermal conductivity [4].

The use of wearables in the field of sports mainly focuses on tracking, analysis and
improvement of performance, reducing injuries or controlling fatigue. These solutions
usually obtain information about the health parameters of athletes [6] or detect postural
or physical problems in the performance of the activity [7,8]. However, to achieve these
issues, most of the commercial devices only capture and provide tracking information
and performance measurements that are processed later and downloaded and analysed
by the athletes or their coaches. They are not used to give feedback in real-time since
data are processed offline [6] and visualised by the user when the activity is over in order
to understand how the training evolved, what problems arose during that practice, what
she/he felt in some specific moments, and how that could affect their performance. It
has been demonstrated that emotions have a significant impact on our daily lives, on our
work, studies, choices or our ability to learn or make decisions. Emotions also affect our
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health [2] and are a very important aspect in sports performance [9]. Athletes can use dif-
ferent strategies to regulate their emotions and therefore improve their performance [10].
For several years now, there have been many works that have studied and proved that
emotional factors are fundamental to athletes’ training, performance and competition
achievements [11,12]. Despite these studies, the emotional states of the athletes have
been measured in a very limited way, usually analysing the behaviour after performing
the activity and through self-assessment questionnaires about their mood [13], which
they use to fill in before and after the activity [7]. There is very little research about the
emotional states felt by the athletes during the practice of the activity, in real-time and in
the wild.

One of the most common methods for automatically recognising emotions is based on
capturing physiological signals [14] since these data allow us to reflect the real emotional
state of a person in an objective manner, [4] and it is impossible to mask or suppress
biosignals representing effects [15]. Among the many physiological signals that provide
information about human emotions, the most useful for emotion recognition that can be
measured by sensors are: temperature, electrodermal activity, heart rate, blood volume
pulse, muscle electrical activity, respiration, and brain electrical activity [14]. The use of
these signals to detect and predict emotions using artificial intelligence algorithms is now
widely used. However, since measures for expressing emotional states have limitations as
subjective indicators, different emotional representations have been proposed, highlighting
the following two models: categorical models, in which emotions are divided into discrete
categories, such as happy, sad, etc., and dimensional models, in which categories are based
on arousal and valence dimensional spaces [16].

In the sports field, wearables technologies are the devices most widely used for
detecting emotions because of their ability to obtain data continuously, in real-time and
in a non-invasive or intrusive way [6]. Despite the proven importance of emotions in
sports performance, and the widespread use of wearables in sports, very few studies
have analysed athletes’ emotions in real-time. Usually, these studies use wearables to
detect physiological signals for future analysis, offline, but they do not give feedback to
the athletes about their emotions during the course of the activity. This is the case of the
works of Azhar [17] and Havlucu [18], who use different commercial wearable devices
to capture physiological signals that allow to predict the psychological states of tennis
players based on coach observations and machine learning algorithms. Bi et al. [19] also
used commercial wearables but to recognise the emotional state of long-distance runners
during a race in order to create affective maps that are shared with the spectators. The
works of Dupre are focused on the use of wearables for modelling emotional patterns in
athletes during physical activities [20] and for analysing the relationship between their
emotions and their performance when performing zipline activities [21]. There are also
many works that use wearables and consider athletes’ emotions to detect stress [22],
pain [23] or fatigue perception [4,24].

However, in order to improve athletes’ performance, tackle their boredom or reduce
their fatigue and extenuation, it is very important to detect emotions and try to change them
during the development of the activity. Among the different ways to motivate athletes,
music is one of the most used. For many years now, it has been shown that the effects
of music are highly correlated with emotions. Neuroscientific studies have empirically
demonstrated that music has the potential to alter mood as it is able to activate the emotional
structures of the brain, and these emotions provoke physiological alterations that act on
the central nervous system [25,26]. Due to this fact, music has been applied in many
types of therapies to regulate emotions [27] to reduce anxiety, stress or depression [28],
improve mental health and wellbeing [28], memory [29], and motivation [30]. In many
works, music is used to induce or alter emotions in users [31,32], while in other works,
the emotional perception of users while listening to music is analysed [33,34]. As in the
case of physiological sensors, the same emotional models are used for emotion recognition
in music: categorical and dimensional models [35].
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Different benefits of music listening for athletes have also been demonstrated, such as
control of arousal, reduced perceived effort, and improved performance, among others [36–38].
Of all sports, the use of music has become very popular in running due to the fact that it covers
everything from novices to professionals [39,40]. Running with music can help to increase the
runner’s motivation, making hard training sessions much more pleasant as well as making
the runner feel less alone. These effects are of special interest for long-distance runners and
also for people with a sedentary lifestyle who wish to start running [41]. For several years
now, there have been works that use wearables to detect different physiological data in order
to study the influence of music on motivation to exercise [42–44] or to improve the runners’
performance [37,45]. Even though, in many cases, the authors talk about detecting emotions,
they do not deduce the emotions that the user feels from the physiological signals, in part
because the commercial wearables are too expensive. Instead, they use them to capture data
such as heart rate to relate it with the rhythm of the music in order to generate an acceleration,
maintain a certain speed, achieve a specific step cadence or attain a flow [36].

As part of the DJ-Running project, we developed a service-based system for improv-
ing the motivation and performance of long-distance runners through Spotify music [46].
The system selected and played music according to the runner’s emotions, the character-
istics of the training session, and the environment in which she/he was training. From
a technological point of view, the solution consisted mainly of three software systems.
Firstly, a music emotion recognition system was used, called RIADA [47], which deter-
mined the emotions that the listeners feel when listen to a song. This system processed
the catalogue of Spotify songs and created a set of labels that describe the emotional
effects each song provokes to the listeners. Secondly, an emotion-based music recom-
mender was used, which interpreted the runners’ context to determine the songs to be
played during the training session [46,48]. These recommendations considered affective
criteria based on the emotions produced by the songs (and described by the RIADA
labels) and the emotions felt by the runners. Finally, a mobile application was used that
interacted with the recommender to play the recommended songs. The innovation of
the DJ-Running system resides in the possibility of adapting the music to the emotions
that the runner is feeling at each instant, her/his emotional changes and the geographic
characteristics of the environment in which she/he is running. This disruptive factor
requires recognising and interpreting the runner’s emotions in real-time, for example,
using wearable technology. In [49], we sketched the earlier ideas regarding the design of
a wearable that could provide the required support for this type of emotion recognition.

In this paper, we focus on the final development of a prototype of wearable that is
easily worn by long-distance runners, and the artificial intelligence models programmed
to recognise emotions from the data acquired by the sensors integrated into the wearable.
Our wristband prototype allows monitoring runners’ physiological activity during training
sessions in real-time. In particular, we are interested in monitoring the runners’ certain
skin responses. These physiological responses have been widely used in the problem of
recognising emotions [50–52]. Then, different machine learning algorithms were evaluated
and compared between them to build a recognition system from the signals obtained by
the wearable. The best recognition model is selected to be integrated into the DJ-Running
mobile application in order to support the process of recommending music based on the
runner’s emotions. The main contributions of the recognition system presented in this
paper with respect to the existing approaches are:

• The wearable has been developed using low-cost sensors and electronic components
that are easy to find on the market. This fact and its simple design make the device
easily replicable.

• The runner’s ergonomics have been studied in order to design a wristband that is
comfortable and convenient for sports use. In this design, the placement of the sensors
ensures that their measures are reliable during the physical activity.

• The wearable’s hardware acquires measurements from the sensors in real-time
and allows access to the raw data (through a USB connector or the Bluetooth
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communication network). Most of the existing devices are sold in conjunction with
software applications that provide access to processed information but not to the
raw sensor data (for example, Empatica E4 [53], the most popular wearable in the
field of the affective computing); other commercial products allow access to raw
data but are not intended to be used by a user on the move, such as GSR Loger [54],
Plux [55] or Shimmer [56].

• A procedure for processing the raw wearable data in order to characterise the runner’s
physiological response during the physical training is defined and programmed. This
characterisation is then used to deduce the runner’s emotions by applying artificial
intelligence techniques.

• The wearable and emotion recognition models are integrated to provide a prototype
of product intended to develop affective mobile applications. The result allows the
recognition of emotions in real-time, even when the user is in motion, as an alternative
to the more commonly used methods based on self-assessment questionnaires.

• The solution has been tested in the context of the DJ-Running project to adjust the
music recommendations to the runner’s real-time emotions.

This paper is organised as follows. Section 2 describes the design of the wearable
for runners. Section 3 presents the process of building the machine learning models
used for recognising runners’ emotions. It includes the filtering of data obtained through
the wearable, the representation of emotions, the extraction and selection of features,
and the application of different recognition strategies based on machine learning techniques.
The integration of the resulting models into the DJ-Running mobile application is then
described in Section 4. Finally, some conclusions and future work are detailed in Section 5.

2. Description of The Wearable

The design of the wearable must be lightweight and not hinder the athletes when
performing physical exercise. For this reason, it has been built as a bracelet, as shown
in Figure 1. The bracelet is made of a textile wrist support with Velcro straps for easy
placement and an inner box that incorporates the electronic components of the device.

Figure 1. Bracelet prototype and its hardware components

Figure 2 depicts the main components of the designed hardware. The bracelet inte-
grates a Galvanic Skin Response (GSR) sensor for measuring the electrodermal conductivity
of the skin. GSR data reflect emotional arousal and are usually used in the recognition of
emotions based on physiological wearables [57]. The GSR sensor is located in the inside
part of the wrist. This location is validated as useful for measuring GSR data [58]. Internally,
the sensor consists of two nickel contacts and an instrumentation amplifier that provides an
analogue signal, which is read by the integrated ADC converter of the wearable’s micropro-
cessor. The microprocessor is also able to send the monitored data to a mobile application
through a Bluetooth Low Energy (BLE) protocol.
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Figure 2. Hardware components integrated into the bracelet.

We have selected the Bluno Beetle BLE board with an ATMega328P@16Mhz micropro-
cessor and Bluetooth capability integrated into the board with the TI CC2540 chip. This
microprocessor board is one of the smallest Arduino BLE boards on the market. It has four
analogue input pins, four digital pins and one I2C port. The transmission distance of the
Bluetooth communication is 30 m (50 m in an open field). This module is compatible with
the standard Arduino IDE program to upload codes without any extra libraries or drivers.

A battery-operated system is mandatory for a wearable system such as the developed
bracelet. In this case, we have selected a rechargeable LiPo battery with 500 mAh/3.7 V
capacity. We have included an electronic board based on the TP4056 charger. This board
is a complete constant-current/constant-voltage linear charger module with a protection
circuit. The module has two LEDs, red and green, to show charging in progress or charge
termination, respectively.

The information obtained is stored in RAW format and provides the resistance data
obtained from the sensor and a timestamp that allows for identifying the events in the
emotion detection experiments.

3. Machine Learning Models for the Recognition of Emotions

This section begins by introducing the existing models for representing emotions.
One of them has been selected for building the recognition models that deduce runners’
emotions from their physiological data. The process of building involves the creation of an
affective dataset, the extraction and selection of features and the performing of machine
learning models.

3.1. Representation of Emotions

Firstly, it is necessary to introduce the models for representing users’ emotions. As it
was previously mentioned in Section 1, two different types of models have been widely
used in the field of affective computing: categorical and dimensional models. This work
is based on the Russell’s circumplex model [59], one of the most popular dimensional
models. It represents affective states over a two-dimensional space that is defined by
the valence (X-axis) and arousal (Y-axis) dimensions. The valence represents the intrinsic
pleasure/displeasure (positive/negative) of an event, object or situation, and the arousal
represents the perceived intensity of a feeling from very calming to highly exciting or
agitating. The combination of these two dimensions (valence/arousal) determines four
different quadrants: the aggressive (negative/positive), the happy (positive/positive), the sad
(negative/negative) and the relaxed (positive/negative) quadrant. Then, each emotion is
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mapped to a point in the two-dimensional space and, therefore, is also located in one of the
mentioned quadrants.

3.2. Creation of a Physiological Dataset

Once a model for representing emotions is selected, the following step consists of
creating the physiological dataset that will be used to build the recognition models. This
dataset must contain information that helps us to understand which is the runners’ physio-
logical response to an emotional stimulus. In the context of the DJ-Running project, the
music is used as a stimulus to provoke emotional changes that have a positive effect on
the runners. Therefore, music, emotions and wearable technology have been combined in
order to create the necessary dataset.

An experiment has been made to determine the physiological response of the users
when listening to songs that provoke certain emotions of interest. These responses are mon-
itored through the wearable and used for creating the dataset. The method, the instruments
and participants involved in the experiment, and the obtained results are described in the
following paragraphs.

Methodology: The experiment was conducted in a room without noise disturbances in
which the participant is lying on a stretcher in a state of rest. It consists of playing a set of
songs that provoke different emotions and monitoring the listener’s physiological response
through the wearable previously described. The physiological data acquired through the
wearable during the playing of the songs are stored in the internal memory of the device.
Those data can be downloaded via a USB port once the experiment is finished.

Equipment: Four instruments were used during the experiment: the wearable for
recording the listener’s physiological response, an affective playlist that contains the
songs to be played, an MP4 player for playing those songs, and a pair of headphones
for listening to them. The playlist programmed consists of nine songs, two belonging
to each of Russell’s emotional quadrants (specifically, to the Happy, Sad, Aggressive and
Relaxed quadrants) and another extra song used at the beginning of the experiment to
relax the listener. Pauses of 15 seconds have been introduced between consecutive songs
to avoid the emotional response of two different songs potentially overlapping. The total
duration of the playlist is approximately 41 minutes.

Participants: The total number of participants in the experiment was 32. All of them
were men between 25 and 45 years old. They were randomly chosen from a register
of athletes and participated in the experiment on a voluntary basis. The participants
have a healthy lifestyle and regularly practise sports (an average of five hours a week).
Before starting the experiment, they declared that their mood was usual (none were
occasionally stressed or nervous, for example) and that none of them suffered from
emotional disorders that could have an influence on the results. Results: The wearable
generates a physiological data file for each session. It contains the listener’s response to
the nine songs, specifically, the data acquired from the EDA sensor. Therefore, the raw
result of the experiment was 32 files of physiological data (one for each listener). Nev-
ertheless, a validation procedure was applied to discard those files in which the data
acquired through the wearable contained errors or were incomplete (specifically, 7 files
were discarded). Once that procedure was concluded, each of the 25 valid files was split
into several pieces, so each one stores the data recorded during the playing of a specific
song. In particular, we were interested in obtaining eight data files, two relating to happy
songs, two to sad songs, and so on for the rest of Russell’s emotional quadrants (the
song used at the beginning of the experiment for relaxing the listener was discarded). In
addition, an emotional label was assigned to each of these files for characterising the
emotion induced in the listener through the corresponding song (thus, the Happy, Sad,
Aggressive and Relaxed labels were used). After completing this process, the experiment’s
target dataset was created from the 200 files of EDA data obtained (50 files per emotional
quadrant). These files and their labels are the samples that will be then used to create
the recognition models based on machine learning techniques.
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3.3. Sensor Signal Processing and Feature Extraction

Figure 3 shows the process of extracting the features that will be used for building the
emotion recognition models from the files of physiological data. Similar processes have
been applied in other proposals that work with this type of sensor data [60–64]

Figure 3. Stages involved in the feature extraction from the files of sensor data.

The process of feature extraction is applied individually to each data file resulting
from the experiment previously described. At the beginning of the process, the GSR to EDA
translation step converts the measurements acquired by the GSR sensor to electrodermal
activity values (EDA). Both measures serve to reflect emotional arousal, but GSR measures
the skin electrical resistance in ohms and EDA the conductivity in siemens. This conversion
has a twofold purpose. On the one hand, it allows the calculation of features based on the
analysis of the EDA signal peaks. These features have been widely used in the problem
of emotion recognition. On the other hand, given the existence of commercial wearables
integrating an EDA sensor (for example, the Empatica E4 wristband [53]), an emotion
recognition system based on those values could be highly reusable and able to work with
physiological data from different devices.

Then, the downsampling of EDA data is applied to reduce the sample rate of the
signal, two samples per second, without loss of information. This reduction facilitates
the subsequent processing of the signal. The following step, called artefact detection,
consists of removing the noise of the output EDA signal. It applies a median filter,
a noise reduction technique usually used in signal filtering, to improve the quality of
the data.

Some features can be directly extracted from the filtered signal, while others require
the analysis of the signal’s context. In [52], these features are named statistical features and
event-related features, respectively. As part of the process, a set of statistical features are
calculated from the result of the artefact detection. These features are listed and explained in
Table 1. On the other hand, the Phasic components extraction step is responsible for analysing
the signal’s context in order to extract the event-related features. It consists of calculating
the tonic and phasic components of the signal. Intuitively, the tonic component represents
the conductivity level of an individual in a context (the slow changes in the signal), whereas
the phasic corresponds with the individual’s responses to a specific stimulus (the fast
changes). The phasic component is derived from the tonic and is used to detect relevant
changes (peaks and offsets) from a physiological point of view. As was proposed in [65],
these changes must have a slope of ±0.01 microsiemens per second and a duration of 3 s.
These parameters could vary according to the individual or to the activity that she/he is
doing but are considered adequate in the general case. Once the changes are calculated,
these are processed for calculating the event-related features of interest. These are shown
in the bottom part of Table 1.
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Table 1. Description of the features used in the recognition.

Statistical Features
Acronym Definition

Mean EDA mean for each sample
Median EDA median for each sample

Std EDA standard deviation for each sample
Max EDA maximum for each sample
Min EDA minimum for each sample

Kurtosis Determines whether the tails of the given EDA signal contain extreme values
Skewness Determines the asymmetry of the EDA signal from the point of view of a distribution

AUC Area under the curve of the EDA signal per second
PSD Power of Spectral Density for EDA signal median

Event-related features
Acronym Definition
MeanPA Mean in seconds of all peaks’ amplitudes
MaxPA Max in seconds of all peaks’ amplitudes

MeanOA Mean in seconds of all offsets’ amplitude
MaxOA Max in seconds of all offsets’ amplitude

PPS Number of peaks in a time window divided by the duration of the window in seconds
OPS Number of offsets in a time window divided by the duration of the window in seconds

Finally, these features have been normalised in order to make their scales of values
uniform. This normalisation is necessary for the application of certain machine learning
algorithms, for example, for algorithms that use distance measures such as k-nearest
neighbours. We used the Scikit MinMaxScaler tool [66] to transform the features’ scales,
with 0 being the minimum value and 1, the maximum value of each one.

3.4. Selection of Features

As part of the work, different classification models have been built in order to deter-
mine the best option for recognising the runner’s emotions. These models will deduce the
emotions (the model’s output) from the physiological data acquired through the device that
the runner wears (the model’s input). The following two models have been considered:

• Option 1: A multiclass classification model that assigns the input sample to exactly one
of Russell’s emotional quadrants (a 4-class model). The output is a vector composed of
four pairs of values (a logical value and a real value), with each pair representing the
probability that the emotions felt by the athlete are located in the corresponding quad-
rant. For example, the output ((true, false, false, false), (0.84, 0.18, 0.12, 0.06)) represents
a happy emotion with a 0.84 probability. The sad, aggressive and relaxed probabili-
ties (0.18, 0.12 and 0.06, respectively) are lower than the classification threshold, and
therefore, the input is also classified as not sad, not angry and not relaxed.

• Option 2: Four binary classification models, one per each Russell quadrant, predict
whether (or not) the emotion that the runner feels at a particular moment in time be-
longs to the corresponding quadrant. Therefore, the output of each of these classifiers
is a pair of values (a logical value and a real value). For example, in the case of the
Happy classifier, the result (false, 0.2) represents that the user is not feeling an emotion
located in the happy quadrant (similar to the rest of the models).

Before building these models, it is necessary to identify the features that will be
involved in that process. In option 2, in which more than one model will be created, the fea-
tures are analysed from the perspective of each particular model; that is, we are supposing
that a feature may be significant for recognising the output of a classifier but irrelevant
to others.

Certain statistical tests frequently used in machine learning have been used for evalu-
ating and interpreting the relevance of the features. In particular, we have selected three
different statistical tests for evaluating the degree of features’ relevance in each of the classi-
fication options: the Chi square, ANOVA F-value and Mutual information tests. These tests
are usually applied jointly to solve classification problems because they find the features
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“most related” to the model’s output from different points of view [52]. Regardless of the
interpretation of “most related”, each test orders the features from most to least relevant,
and then the corresponding results are combined, applying a voting strategy.

Table 2 shows the result for each classification option after applying that multi-test
approach based on voting. The first column presents the features, ordered from most to
least relevant, involved in the building of the multiclass model (4-Class) described in op-
tion 1. The rest of the columns with the Happy/Sad/Aggressive/Relaxed models of option
2. The results provide evidence that the usefulness of the features varies according to
the classifier to be built. As part of this building process, a feature selection method will
be applied to reduce the set of available attributes and create more accurate classifiers.

Table 2. Features (explained in Table 1) in order of highest to lowest relevance.

Option 1 Option 2
4-Class Happy Sad Aggressive Relaxed
MaxOA MeanPA PSD PPS MeanPA

Kurtosis MaxPA MaxOA Kurtosis MaxPA

MaxPA Max Kurtosis MaxOA PPS

PPS PPS Skewness MeanOA MaxOA

MeanPA MaxOA MeanPA OPS Max

Max OPS MaxPA PSD Std

PSD Skewness AUC Std Skewness

MeanOA Kurtosis Median Mean Median

Skewness MeanOA Max MaxPA PSD

Std Std MeanOA Median Mean

OPS PSD PPS Min MeanOA

Median AUC Min MeanPA OPS

Mean Mean Mean Max AUC

AUC Min OPS AUC Kurtosis

Min Median Std Skewness Min

3.5. Building of the Recognition Models

The goal is now to build the described classification models and compare their perfor-
mance in order to select the best approach for the recognition of emotions. Five types of
machine learning algorithms have been considered: K-nearest neighbours (KNN), random
forest (RF), multi-layer perceptron (MLP), linear support vector classifier (LSVC) and gradient
boosting (GB). Some of these algorithms have been previously used with good results in the
recognition of emotions [60,62,67]. Nevertheless, we have also considered the possibility
that the use of a unique algorithm is not the best option for building the different classifica-
tion models. Therefore, the best machine learning algorithm for each particular model is
also studied.

Before comparing the different algorithms, the candidate models have been trained
by applying different permutations of features and different configurations of hyperpa-
rameters in order to find the best option from a classification point of view. The eval-
uation of configurations has been carried out by using the randomised search algorithm
provided by Scikit Learn [68] and the training by performing a Repeated 5-fold cross-
validation. The use of this validation approach is especially important when the models
are built from small-sized datasets, as in this case, because it avoids making the test with
poorly representative samples. The repeated cross-validation reduces the overfitting er-
ror derived from working with these small-sized datasets and improves the performance
of the models.



Sensors 2023, 23, 1608 10 of 16

Table 3 shows the results obtained for the different classification options (4-Class
and Happy/Sad/Aggressive/Relaxed, respectively). For each of them, the five machine
learning algorithms have been applied in order to build the corresponding recognition
model (second column of the table). These models have been configured with the optimal
input of features (third column of the table) and hyperparameters. Then, four of the
classification metrics usually used in the evaluation of models have been calculated for
the different solutions: Accuracy, F1, Precision and Recall (from the fourth to the seventh
column). We are especially interested in analysing the F1-score results, which are calculated
from the precision and recall metrics. The F1-score provides a reliable measure when
the dataset used for the creation of models is unbalanced, as in this case. The dataset
used in this work contains 25% of positive samples (the emotion to be recognised) and
75% of negative samples (the rest of the emotions), and therefore, the accuracy score
could provide an over-optimistic estimation of the classifier ability on the majority class.
Finally, after analysing the classification metrics, the best machine learning model has been
highlighted in green colour.

Table 3. Machine learning models for each classification approach (the best model is highlighted in
green color).

Option 1 Model Nº Features Accuracy F1 Precision Recall
4-Class KNN 10 0.288 0.277 0.283 0.288

RF 5 0.291 0.288 0.293 0.290
MLP 12 0.295 0.284 0.296 0.295

LSVC 12 0.303 0.279 0.282 0.303

GB 5 0.273 0.262 0.273 0.273
Option 2 Model Nº Features Accuracy F1 Precision Recall
Happy KNN 5 0.683 0.569 0.584 0.556

RF 5 0.728 0.641 0.673 0.612
MLP 8 0.604 0.525 0.523 0.529

LSVC 8 0.634 0.602 0.607 0.598

GB 5 0.681 0.584 0.578 0.592
Sad KNN 10 0.698 0.612 0.609 0.616

RF 12 0.712 0.560 0.573 0.548

MLP 15 0.621 0.494 0.498 0.491

LSVC 8 0.604 0.555 0.533 0.579

GB 12 0.643 0.514 0.516 0.513
Aggressive KNN 15 0.704 0.558 0.578 0.541

RF 5 0.728 0.654 0.684 0.628
MLP 15 0.659 0.563 0.567 0.561

LSVC 10 0.485 0.510 0.509 0.512

GB 5 0.698 0.588 0.608 0.571
Relaxed KNN 5 0.709 0.639 0.638 0.641

RF 5 0.719 0.617 0.634 0.601

MLP 12 0.640 0.531 0.534 0.529

LSVC 5 0.554 0.565 0.573 0.558

GB 8 0.704 0.615 0.628 0.603
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In the case of the multiclass classification model (4-Class, Option 1), the F1-score
results of the five models that were built are very poor. The random forest model stands
out slightly from the others, with an F1-score of 0.288, but in general, the results are very
similar (these seem to be correlated with the number of classes to be recognised by the
models). Therefore, the recognition capacity of these models is lower than desirable for
determining the user’s emotions.

In the case of option 2, the use of a different machine learning algorithm for recog-
nising the emotions belonging to each Russell quadrant seems to be a good option; more
specifically, the k-nearest neighbours models have been selected for the recognition of the Sad
and Relaxed quadrants and the random forest models for the Happy and Aggressive quadrants.
The F1-score of the selected models has a value between 0.61 and 0.65. The results of this
second option improve those obtained in the 4-Class approach. Although these results can
seem low with respect to what is desirable in the machine learning problems, they are simi-
lar to the results obtained in other emotion recognition proposals based on physiological
data [60,62].

4. DJ-Running: An Emotion-Based Application for Recommending Music

The goal of the DJ-Running project is to increase runners’ motivation through Spotify
music. The wearable and the machine learning models presented in the previous sections
are used to determine runners’ emotions during their training sessions. These emotions are
then analysed to select the songs to be played at each moment.

Figure 4 shows a high-level overview of the technological components involved
in the final solution. As is shown on the left side of the figure, the runner’s equipment
consists of the wearable and a mobile application that plays the recommended songs during
the training session. The wearable monitors the runner’s physiological parameters and
sends them periodically to the application through a Bluetooth connection. The application
internally processes these sensor data to deduce the runner’s emotions, determines the
songs to be played according to those emotions and connects with the Spotify streaming
service to play them.

The application is composed of four software modules: the communication com-
ponent, the data processing component, the emotion-based decision-maker system and the
emotion-based music recommender. The two first components are responsible for managing
the wireless communication with the wearable, receiving the sensor data and filtering
those data before storing them in a local repository. The filtering is based on the process
described in Figure 3 and aims to extract the corresponding features (statistical and
event-related features) from the received data. The other two modules are responsible
for recognising the runner’s emotions and for playing motivating music based on those
emotions, respectively. The technical details of these two systems are described in the
following paragraphs.

The emotion-based decision-maker system integrates the four binary classification
models described in Section 3. These models determine the emotion that the runner is
probably feeling at a specific time interval (each 30 seconds) from the wearable data.
For example, the output ((true, false, false, false), (0.71, 0.03, 0.13, 0.33))) represents that the
runner feels happy with a probability of 0.71. The sad, aggressive and relaxed probabilities
(0.03, 0.13 and 0.33, respectively) are lower than the classification threshold, and therefore,
the runner’s feeling is classified as not sad, not aggressive and not relaxed. The sequence
of emotions that is recognised during the training session allows the system to define
the runner’s mood and the emotional changes that she/he suffers during that time. That
affective information is then used to determine the emotion to be induced in the runner
through the music. For example, when the runner is stressed, the system should decide
that the songs to be played should be relaxing. Then, once she/he is relaxed, the system
will suggest that the songs should be motivating in order to produce a positive effect in
the runner’s mood. These emotion-based decisions are made by a rule-based engine. It
integrates a set of rules that were defined in collaboration with runners as part of the
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DJ-Running project. A complete description of the method used to determine these rules
can be found in [46].

Figure 4. Technological components involved in the DJ-Running system.

The emotion-based music recommender determines the specific songs to be played by the
mobile application from the emotion suggested by the decision maker. The recommender
requires a database of songs that have been previously labelled from an emotional per-
spective. In this work, this database has been created (and periodically updated) from the
services available in the RIADA infrastructure [47]. RIADA offers a repository of affective
labels that determine the emotion that each Spotify song will probably produce in the
listener (more than 50 million songs have been labelled).

The right side of Figure 4 provides an overview of the RIADA components that were
involved in the creation of labels. These labels are also based on Russell’s affective model
and were determined from songs’ metadata and audio features. A music data retrieval
system interacts with the service-oriented platform of Spotify in order to access its catalogue
of songs and the metadata and audio features of these songs. Then, a music emotion
recognition system automatically determines the emotion produced by each song from its
audio features. These emotions are translated to labels that are stored in the database of
the RIADA infrastructure. The music emotion recognition is based on machine learning
techniques and has been programmed to support large-scale annotation processes, as was
detailed in [47]. Finally, the infrastructure publishes an API that allows applications to
access its database of labelled songs.

The core of the emotion-based music recommender is a nearest neighbours algorithm that
works on the local database of labels to find the candidate songs to be played. The recom-
mender creates a search space from the songs’ audio features and emotional labels contained
into the database. Each point of the space corresponds with a concrete song. When a new
recommendation request is received, the recommender translates the input emotion (the
emotion to be produced by the runner) to a search point in the space. This translation is
calculated by applying regression models based on the songs’ audio features and the effects
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that some of these features can produce in the listeners from an emotional point of view.
Then, the neighbourhood algorithm is applied to find a set of candidate songs (songs close
to the search point). These candidates are subsequently filtered to discard similar songs
or to remove songs that do not fit the runner’s preferences. These preferences are defined
by the application’s user during the installation process and include basically the music
genres, styles and decades of interest.

5. Conclusions and Future Work

In this paper, a prototype of a product to recognise mobile users’ emotions in real-
time has been presented. It consists of a complete result of engineering that combines
people, wearables, machine learning techniques, mobile computing and service-based
solutions. The solution has been designed to be easily integrated into mobile applica-
tions where the affective component of the users plays a relevant role. The emotion
recognition based on self-assessment questionnaires has some disadvantages: users are
not always able to express how they feel, it can be tedious for users, or it is not applica-
ble for certain types of problems (for example, when users are in continuous motion).
For these reasons, the real-time recognition emerges as a very interesting alternative. In
addition, the possibility of having access to the raw sensor data allows programming
other knowledge models based on physiological data or data mining solutions that help
to understand users’ affective behaviour.

From a technical perspective, the solution consists of a wearable and a set of recognition
models. The wearable is a prototype specially designed for runners, with simple hardware
and low production cost compared to commercial devices. The emotion recognition models
are based on machine learning algorithms. Different features have been extracted from
the EDA sensor data and evaluated in order to determine their relevance in the process
of emotion recognition. Then, two different classification approaches were evaluated: a
multiclass classification model versus four binary classification models. The results of the
first approach have not been as good as expected after considering different permutations
of features and different configurations of hyperparameters. The second approach turned
out to be a better option when the random forest and K-nearest neighbours algorithms were
combined for deducing emotions.

The proposed solution has been integrated into the DJ-Running mobile application
in order to test its applicability to a real problem. In this case, emotions were used to
regulate the runners’ mood through the music depending on the physical activity they are
performing and the environment in which they are training.

As future work, on the one hand, we are particularly interested in using the results
of this research to achieve a solution closer to a product in the medium term. It requires,
first of all, refining the wearable hardware to reduce its size and integrating new sensors
that are useful to improve the recognition of emotions. In addition, the data of these
sensors will have to be processed to obtain new features that allow building more
accurate recognition models. On the other hand, we would like to reuse the results for
other application domains, for example, health, wellness or entertainment. In these
domains, emotions and data from other smart devices (for example, installed in the
home or worn by the user) will be likely combined to extract knowledge to help create
new user-centric experiences.

Author Contributions: Software, J.G.d.Q.; Investigation, S.B., J.R.B. and P.Á. All authors have read
and agreed to the published version of the manuscript.

Funding: This research has been supported by the PDC2021-121072-C22, TED2021-130374B-C22 and
RTI2018-096986-B-C31 projects, granted by the Spanish Ministerio de Economía y Competitividad,
and the DisCo-T21-20R and Affective-Lab-T60-20R projects, granted by the Aragonese Government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2023, 23, 1608 14 of 16

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vijayan, V.; Connolly, J.P.; Condell, J.; McKelvey, N.; Gardiner, P. Review of wearable devices and data collection considerations

for connected health. Sensors 2021, 21, 5589. [CrossRef] [PubMed]
2. Wang, H. Research on the Application of Wireless Wearable Sensing Devices in Interactive Music. J. Sensors 2021, 2021, 7608867 .

[CrossRef]
3. Olson, J.; Redkar, S. A survey of wearable sensor networks in health and entertainment. MOJ Appl. Bionics Biomech 2018,

2, 280–287. [CrossRef]
4. Seshadri, D.R.; Li, R.T.; Voos, J.E.; Rowbottom, J.R.; Alfes, C.M.; Zorman, C.A.; Drummond, C.K. Wearable sensors for monitoring

the physiological and biochemical profile of the athlete. NPJ Digit. Med. 2019, 2, 72. [CrossRef]
5. Liu, L.; Zhang, X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. Micromachines

2022, 13, 1356. [CrossRef]
6. Nithya, N.; Nallavan, G. Role of Wearables in Sports based on Activity recognition and biometric parameters: A Survey. In

Proceedings of the 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS), Coimbatore, India,
25–27 March 2021; pp. 1700–1705.

7. Mencarini, E.; Rapp, A.; Tirabeni, L.; Zancanaro, M. Designing wearable systems for sports: A review of trends and opportunities
in human–computer interaction. IEEE Trans. Hum.-Mach. Syst. 2019, 49, 314–325. [CrossRef]

8. Duarte, M.B.; da Costa Moraes, A.A.; Ferreira, E.V.; da Silva Almeida, G.C.; Cabral, A.d.S.; de Athayde Costa e Silva, A.;
Garcez, D.R.; da Silva Souza, G.; Callegari, B. Wearable Inertial Sensor Approach for Postural Adjustment Assessments during
Predictable Perturbations in Sport. Sensors 2022, 22, 8272. [CrossRef]

9. McCarthy, P.J. Positive emotion in sport performance: Current status and future directions. Int. Rev. Sport Exerc. Psychol. 2011,
4, 50–69. [CrossRef]

10. Lane, A.M.; Devonport, T.J.; Friesen, A.P.; Beedie, C.J.; Fullerton, C.L.; Stanley, D.M. How should I regulate my emotions if I want
to run faster? Eur. J. Sport Sci. 2016, 16, 465–472. [CrossRef]

11. Lazarus, R.S. How emotions influence performance in competitive sports. Sport Psychol. 2000, 14, 229–252. [CrossRef]
12. Wagstaff, C.R.; Tamminen, K.A. Emotions. Stress, Well-Being, and Performance in Sport; Routledge, Taylor and Francis Group:

London, UK, 2021; pp. 97–112.
13. Prapavessis, H. The POMS and sports performance: A review. J. Appl. Sport Psychol. 2000, 12, 34–48. [CrossRef]
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