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Abstract: Invasive alien plants are transforming the landscapes, threatening the most vulnerable
elements of local biodiversity across the globe. The monitoring of invasive species is paramount for
minimizing the impact on biodiversity. In this study, we aim to discriminate and identify the spatial
extent of Acacia dealbata Link from other species using RGB-NIR Sentinel-2 data based on phenological
spectral peak differences. Time series were processed using the Earth Engine platform and random
forest importance was used to select the most suitable Sentinel-2 derived metrics. Thereafter, a
random forest machine learning algorithm was trained to discriminate between A. dealbata and native
species. A flowering period was detected in March and metrics based on the spectral difference
between blooming and the pre flowering (January) or post flowering (May) months were highly
suitable for A. dealbata discrimination. The best-fitted classification model shows an overall accuracy
of 94%, including six Sentinel-2 derived metrics. We find that 55% of A. dealbata presences were widely
widespread in patches replacing Pinus pinaster Ait. stands. This invasive alien species also creates
continuous monospecific stands representing 33% of the presences. This approach demonstrates
its value for detecting and mapping A. dealbata based on RGB-NIR bands and phenological peak
differences between blooming and pre or post flowering months providing suitable information for
an early detection of invasive species to improve sustainable forest management.

Keywords: invasive alien plants; remote sensing; phenology; machine learning

1. Introduction

Invasive alien plants (IAPs) currently constitute a major threat to biodiversity at
a global scale [1]. IAPs are characterized by their rapid proliferation modifying native
ecosystems [2,3] and degrading habitat quality [4]. Most of the species of the genus Acacia
(wattles) are native from Australia, but there are also species native from Africa, Asia, and
America [5]. In Europe, Acacia spp. is not naturally spread in the North, but there are at
least eight Australian wattles which are naturalized and have become potential IAPs in the
Southern countries [5]. Among these, one of the most widespread is silver wattle (Acacia
dealbata Link) because it is very frugal and capable of re-growth after fires, replacing native
vegetation due to its shadow effect and allelopathic compounds [5,6].

In Spain, A. dealbata is included in the Spanish Catalog of IAPs [7], being especially
widespread in the northwestern region of Galicia [6,7]. The expansion of the genus Acacia
in Spain (mainly Acacia dealbata and Acacia melanoxylon R.Br.) has been considerable during
the last four decades with an increase of roughly 32.5 million trees in Galicia from 1987 to

Remote Sens. 2023, 15, 722. https://doi.org/10.3390/rs15030722 https://www.mdpi.com/journal/remotesensing

https://doi.org/10.3390/rs15030722
https://doi.org/10.3390/rs15030722
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com
https://orcid.org/0000-0001-7825-7824
https://orcid.org/0000-0001-6808-1263
https://orcid.org/0000-0002-4844-1759
https://doi.org/10.3390/rs15030722
https://www.mdpi.com/journal/remotesensing
https://www.mdpi.com/article/10.3390/rs15030722?type=check_update&version=1


Remote Sens. 2023, 15, 722 2 of 12

2009, according to the Spanish National Forest Inventory (NFI). This is the equivalent of
an increase in Acacia spp. tree biomass from 10,000 Mg to 1,350,000 Mg [8,9] in 22 years.
The genus reported a total of 1789 ha of A. dealbata pure stands being present in 1.5% of
plots from Galician NFI-4, representing 2.4% of the total forest area in 2009 [10]. Due to
the invasive nature of A. dealbata, it is paramount to continuously detect the presence of
IAPs to keep it under control and minimize its expansion, effect, and impact on biodiver-
sity [11], soil [12,13] and fire regimes [14], promoting early engagement and monitoring
strategies [15].

One of the most important tools to manage and detect IAPs early is mapping their
spatial distribution. Traditionally, IAP monitoring has been carried out by means of field
sampling using global positioning systems (GPSs) or combined with photointerpretation
and digitization of aerial photographs, which are costly and labor-intensive [16]. In Spain,
the cartographic basis of NFI is the Spanish Forest Map (SFM) [17], which provides a
1:25,000 mapping of forest species, including IAPs, approximately every 10 years. The
SFM of 2004–2007 is the most updated version in Galicia. Therefore, the current time lap
between traditional surveys, which currently exceeds 15 years for our particular study area,
is not practical for IAP monitoring purposes [18], which has moved in recent years to their
use in conjunction with remote sensing information for IAP mapping [19].

Beyond the traditional field inventories or the use of aerial photographs [20], the
remote sensing and machine learning approaches from digital imagery can support au-
tomated species identification [21–23] allowing for IAP monitoring at higher spatial and
temporal resolutions for large areas [24,25]. The emergence of platforms such as Google
Earth Engine (GEE: http://earthengine.google.com; [26]) together with the availability of
freely accessible data from multispectral sensors, as Sentinel-2 from the Copernicus Earth
observation program led by the European Commission (EC) [27], have profoundly im-
proved the preprocessing and analyzing time for a near-continuous monitoring of species
distribution. IAP monitoring has been an objective widely addressed with remote sens-
ing [28]. Among the multiple multispectral sources of information are Landsat [28–30],
Pléiades [31,32], Worldview [33–36], Ikonos [37,38], and Sentinel [39–42]. Particularly, multi-
spectral and hyperspectral data have been used to discriminate Acacia species in Hawaiian
rainforests [19], in Mediterranean Dune Ecosystems [43,44], and in South Africa [40]. The
combination of multispectral, hyperspectral, and synthetic aperture radar was tested by [45]
to identify Acacia mearnsii and Pinus patula IAPs in montane evergreen grasslands. Further-
more, high resolution satellites, as for example RapidEye, have been used to identify Acacia
and other IAPs in montane grasslands [46] and arid regions [47]. The increasing use of
unmanned aerial vehicles (UAVs) has been also used to map, with higher spatial resolution,
species of the genus Acacia on savannas ecosystems [48] or in Portugal [15]. Though the
use of remote sensing-derived information for the flowering period is a common approach
to differentiate the species pattern [49–53], and has been also used to map Acacia in South
Africa [40], little is known about the use of phenological periods within a year that experi-
ences previous or later blooming, which may help improve IAP detection. In this sense, the
spectral difference between phenology periods within a year, resembling for example the
well-known spectral differences linked to pre and post hazard events (e.g., forest harvest or
fires) requires further research in a Mediterranean context for IAP continuous monitoring.

We assume that A. dealbata in Galicia has phenological differences with respect to
other species from mid-January to mid-March due to the characteristic yellow flowers
(Figure 1) [5]. We hypothesize that the spectral differences between peak flowering periods,
characterized by an increased concentration in canopy pigments, nutrients, and water con-
tent, to pre- or post-flowering periods, will be useful to discriminate A. dealbata from other
species. The overall objective of the present study was to discriminate A. dealbata stands
from other species using Sentinel-2 time series. Furthermore, the following secondary aims
are addressed: (i) determine which months or periods of the year (i.e., pre or post flowering
periods), together with the peak flowering period are most critical for classifying A. dealbata;
(ii) test the effectiveness of RGB-NIR spectral bands and normalized difference-derived
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indices to classify A. dealbata presence; (iii) map the presence of A. dealbata within the
study area.
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Figure 1. Pictures of A. dealbata in Galicia (NW Spain) at different phenological stages. Images
(A,B) were taken after blooming period and (C,D) were taken when the species is in bloom.

2. Materials and Methods
2.1. Study Area

The area of interest (AOI) of our study corresponds to the municipality of Arnoia
(Figure 2). Arnoia has a surface of 20.69 km2 located within the valley of the river Miño,
in the West of the province of Ourense (Spain). Forests are dominated by Pinus pinaster
Ait. (70.6%), Quercus robur L. (11.2%), and Quercus suber L. (4.4%) stands according to
Spanish Forest Map (SFM) 2018. A. dealbata has been widely expanded during the last
years [6,17] representing 10.4% of the forests stands. The climate is influenced by the river
Miño, classified as Mediterranean oceanic (Csb) according to Köppen–Geiger [54]. In this
area, the average annual temperature is 14.5 ◦C and the total annual precipitation reaches
817 mm [6].

2.2. Field Data Collection

The ground-truth data were acquired in 120 field plots in 2018 (Figure 2). The sampling
was designed based on the Spanish Forest Map (SFM). A. dealbata stands as well as local
knowledge from stands not included within the SFM, but with the presence of the species,
were considered to locate 48 field plots that served as presences. We collected 72 absences
over the different forest types or non-forested areas present in the study area. To perform
this procedure, we considered stand property as well as road and path accessibility which
were verified to avoid inaccessible areas. Furthermore, field plots were located at a distance
greater than 30 m to stand borders considering the spatial resolution of Sentinel-2 images.
A Trimble GEO 7X Global Positioning System was used to locate the centroid of the plots
where the presence or absence of A. dealbata was identified within a 15 m radius.
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where other species have been detected. 
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Figure 2. Localization of study area and field plots with presences and absences of Acacia dealbata.
(A) Partial map of Europe where Spain is located, (B) partial map of Spain where Galicia is located,
and (C) partial map of Galicia where Arnoia (study area) is located. The filled dots show the ground-
truth points where A. dealbata has been detected, while the hole dots show the ground-truth data
where other species have been detected.

2.3. Sentinel-2 Data Image Collection and Processing

Sentinel-2 mission belongs to the Copernicus Earth observation program led by the
European Commission (EC). The mission includes a constellation of 2 satellites, Sentinel-
2A, launched in June 2015, and Sentinel-2B, launched in June 2017, which together have a
frequency of 5 days. Sentinel image processing was performed using the GEE platform [26].
Concretely, we used the GEE application programming interface (API) through JavaScript
and GEE-based operators. The atmospherically calibrated and corrected surface reflectance
at the bottom of atmosphere “Level-2A” product was selected. Thereafter, a cloud and
cirrus mask, based on the Sentinel 2 bitmask quality band, was applied for images with
less than 20% cloudiness. The bitmask quality band has a spatial resolution of 60 m and
enables cloud and cirrus selection in bits 10 and 11, respectively. A monthly median
composite image was created containing cloud-free images from 2018 to 2021, resulting
in a total of 208 scenes. The blue (B), green (G), red (R), and near infrared (NIR) 10 m
spatial resolution bands were selected. Then, six indices were computed based on the
relation among normalized differences (NDs) [55] to all pair combinations of R-G-B-NIR
bands, including the Normalized Difference Vegetation Index (NDVI) (Equations (1)–(6)).
These indices have been widely used to measure moisture content [56], indicate vegetation
health [57,58], and distinguish natural features from human-made objects [59]. The Sentinel-
2 processing source code is available at https://github.com/ddomingoLiDAR/Acacia_
detection (accessed on 24 January 2023) or https://github.com/CambiumRG (accessed on
24 January 2023).

ND between Red and Green (RG) =
Red − Green
Red + Green

(1)

ND between Green and Blue (GB) =
Green − Blue
Green + Blue

(2)

https://github.com/ddomingoLiDAR/Acacia_detection
https://github.com/ddomingoLiDAR/Acacia_detection
https://github.com/CambiumRG
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ND between Blue and Red (BR) =
Blue − Red
Blue + Red

(3)

NDVI =
NIR − Red
NIR + Red

(4)

ND between NIR and Green (NIRG) =
NIR − Green
NIR + Green

(5)

ND between NIR and Blue (NIRB) =
NIR − Blue
NIR + Blue

(6)

where Blue refers to band 2, Green is band 3, Red refers to band 4, and NIR is band 8 from
Sentinel-2 A/B MSI.

2.4. Identification of Optimal Time for Distinguishing A. dealbata

The peak flowering period is considered a highly sensitive period to determine the
presence of Acacia spp. based on spectral information [40], although the identification
of further spectral phenological peaks may help in distinguishing A. dealbata from other
species. The identification of optimal time for distinguishing A. dealbata in northeast
Spain was based on the identification of spectral peaks between months. Firstly, we
analyzed the monthly spectral values based on graphics and determined the peak spectral
values (maximum and minimum values) from bands R, G, B, and NIR and the six derived
RGB-NIR indices (see Section 2.3) to determine the peak flowering period for the study
area. Furthermore, we analyzed the spectral difference from blooming to previous or
posterior periods to determine the pre flowering and post flowering months (see Figure 3
as an example). Consequently, we computed the spectral differences between the pre
flowering period and blooming, and blooming with respect to the post flowering period.
The computed monthly difference indices were named as the following examples for the
NDVI index: ∆ pre-NDVI and ∆ NDVI-post (Equations (7) and (8)). Accordingly, we
used the same equation formulation for the RGB and NIR bands and the remaining five
indices (RG, GB, BR, NIRG, and NIRB). Overall, we computed nine metrics for each of
the three periods (i.e., pre flowering, blooming, post flowering) resulting in a total of
27 Sentinel-2 derived metrics which were subsequently included as suitable metrics for the
classification analysis (see Section 2.5).

∆ preNDVI = NDVI pre flowering − NDVI blooming (7)

∆ NDVIpost = NDVI blooming − NDVI post flowering (8)

2.5. Classification of A. dealbata Presence, Model Validation, and Mapping

The classification and mapping of A. dealbata presence was carried out using a three-
step methodological approach: (i) selection of Sentinel2 metrics using random forest
importance; (ii) training and validation of random forest classifier for year 2018; (iii) map
IAP presence for 2018 and up to 2022 by temporally transferring the random forest model.
Random forest (RF) is an ensemble learning method based on decision trees.

The selection of Sentinel2 metrics for A. dealbata presence classification was performed
based on random forest importance for the year 2018, matching with field data acquisition
time. Random forest importance was computed based on the Gini index, which makes it
possible to measure each feature contribution. The Sentinel2 metrics with higher impor-
tance, which constitute the best subsets, were subsequently used for model computation.
The classification of A. dealbata presence was carried out using the RF algorithm. In order
to test the performance of RF, we performed a random sampling of 75% for testing (i.e.,
90 samples) and 25% for validation purposes (i.e., 30 samples) including the presence
of A. dealbata (1) vs. absence (0). The performance of RF was parametrized by applying
between 1 and 3000 trees to growth (ntrees) and between 1 and 3 metrics in each node
(mtry) in accordance with Rodrigues et al. [60] and Domingo et al. [61]. The model was
computed using the “smileRandomForest” function within the GEE platform. The training
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of the model was carried out interactively adding one Sentinel-2 metric at a time, from the
ones with higher random forest importance values, and modifying the tuning parameters
(mtry and ntrees) comparing the overall accuracy between them to generate parsimonious
models. The models were validated using the testing sample that includes 25% of the
total sample for both the tuning phase and for the selection of the final model. The val-
idation was executed 10 times to increase the robustness of the results [62] and average
performance values were computed. The classification overall accuracy, confusion matrices,
user’s and producer’s accuracy were evaluated to compare and, subsequently, determine
the best classification model [63]. Subsequently, the most accurate model was selected
for wall-to-wall A. dealbata mapping in 2018 and temporally transferred using the same
Sentinel-2 metrics up to 2022.

3. Results
3.1. Determining Critical Periods to Classify A. dealbata

The graphical and statistical analysis based on the maximum and minimum spectral
values during a year shows that the spectral peak corresponding to the blooming period oc-
curs between the first and third week of March (Figure 3). The selection of the pre and post
flowering period was determined using the ND indices that showed in all the cases a peak.
A relative peak was seen in the case of NIRB, NIRG, or NDVI, while GB and RG showed
the maximum ND along a year and BR the minimum spectral ND. Particularly the ND
between BR and the ND between RG were the ones showing the highest relative changes.
Accordingly, the pre-flowering period was determined two months before blooming, in
January, while the post flowering period in May was determined two months after bloom-
ing. The pre and post flowering periods were determined considering that BR and RG
values returned to the baseline trend. Consequently, we computed the spectral differences
between January and March (∆ pre-Index), and between March and May (∆ Index-post) in
accordance with Equations (7) and (8) (see Section 2.4), which were subsequently included
as suitable metrics for the classification analysis together with the blooming ones (i.e.,
27 metrics).
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Figure 3. Average monthly ND values for the analyzed Sentinel-2 time-series (2018–2022). Abbrevia-
tions: BR refers to the normalized difference (ND) between blue and red; GB is the ND between green
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and Blue; NIRG is the ND between NIR and green; and RG refers to the ND between red and green.

3.2. Classification of A. dealbata Presence

The selection of Sentinel-2 metrics based on random forest importance determined
that pre flowering and post flowering-derived metrics were the most explanatory met-
rics for A. dealbata presence. Based on the explanatory power of the metrics, the best
classification model for the year 2018 included six Sentinel-2 metrics: the NIR band for
March during blooming, three metrics based on the difference between blooming and
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pre flowering period (∆ pre-NDVI, ∆ pre-BR, and ∆ pre-RG), and two metrics resulting
from the spectral differences between blooming and post flowering period (∆ BR-post and
∆ RG-post). In particular, the highest importance values were reached by ∆ pre-RG and
∆ pre-NDVI (Figure 4), while the lowest importance was the NIR band for the blooming
period with a value of 10.73. The yearly classification models show an average accuracy of
0.94 and a kappa value of 0.86 after validation. The highest RF model accuracy was reached
with 500 trees and two metrics in each node parametrization. We found some confusion
mainly between A. dealbata and cropland areas or some shrubland areas, which may occur
eventually linked to Ulex europaeus L. spring blooming.
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Figure 4. Metric importance from the best random forest model that includes six Sentinel-2 metrics.

3.3. Mapping of A. dealbata Presence

Figure 5 shows the presence of A. dealbata within the study area. In 2018, the presence
of A. dealbata represented 17.5% of the total forested area (1593 ha), while we observed
a reduction in presence of this specie over the five analyzed years reaching 11.5% of the
forested area in 2022 based on the transferred model results. The presence of A. dealbata is
spread in the Arnoia area, although the majority of the presences (roughly 55%) are located
within areas categorized by the Spanish Forest Map as Pinus pinaster located in the east,
west, and south. The northeast part of the study area as well as the central part represents
roughly 33% of the presences, which are located within areas that previously were defined
as Acacia forest stands by the Spanish Forest Map.
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4. Discussion

The detection and mapping of IAPs provide essential information to support mon-
itoring and preventive actions by forest managers. Continuous monitoring is especially
relevant due to the frugality and fire regrowth ability of Acacia to replace native vege-
tation [5,6], especially considering that the Northwest of mainland Spain is a fire-prone
region [64]. IAPs could generate a partial or total modification of forest composition or
even forest structure, threatening local biodiversity [1]. This study shows the usefulness of
phenological peak spectral differences based on RGB-NIR Sentinel-2 bands for a continuous
detection and mapping of A. dealbata in northwest Spain.

The analysis of Sentinel-2-time series revealed that the optimal time to distinguish
A. dealbata from other co-occurring species was based on the spectral differences between
the blooming period and two previous or posterior months. The blooming period was
detected between the first and third week of March, in accordance with Lorenzo et al. [1]
who established that the flowering period in Galicia, northwest Spain, was between January
and March with a flower longevity from 10 to 22 days. Our results confirm that the peak
flowering period was optimal for A. dealbata discrimination based on vegetation indices
in agreement with Masemola et al. [40]. Furthermore, we found that the senescence of
deciduous vegetation during winter (January) as well as the beginning of the growing
season (May) were relevant for A. dealbata distinction as established by Masemola et al. [40]
and Cho et al. [65], respectively. However, our results reveal that higher discrimination
was reached by computing the spectral difference between phenological periods based
on RGB-NIR indices rather than the indices themselves for a specific phenological period,
resembling the well-known ∆NBR index performance for fire detection [66].

Several indices for different transition phenological peaks as well as sensors or classifi-
cation methods have been analyzed to discriminate Acacia spp. from co-occurring native
species. Our binary classification reached similar accuracy to previous works that used
Sentinel-2 data [40,45,46] and that integrated SWIR bands. Similar results were found by
Große- Stoltenberg et al. [43] by using hyperspectral indices with an 86% accuracy. The use
of RGB and NIR bands seems to outperform the exclusive use of RGB bands [48], though
better accuracies were reached by Arasumani et al. [46] when using AVIRIS-NG with a 98%
accuracy or Gonçalves et al. [15] when using CNN methods. All in all, the combination of
RGB-NIR from Sentinel-2 and indices based on phenological spectral differences constitute
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a suitable approach to detect A. dealbata in northwest Spain, which has profoundly spread
in recent decades [10].

Our results show that A. dealbata stands are widely distributed within the study area
of Arnoia. The generalized spatial distribution facilitates the spread of the Acacia species
which have non-long distance dispersal adaptation [11,67,68]. Moreover, the fragmentation
and mixing with other species, especially Pinus pinaster, complicates the control of invasion
for forest managers. The coverage of A. dealbata within the study area represented 17.5%
in 2018, in accordance with Vazquez [6] which determined a coverage of 5.7–33.8% in a
study carried out in 2003 in three 1 × 1 km study areas in the same valley using aerial
photointerpretation and field work validation in 2007. Even the Arnoia area is a widely
widespread area of Acacia dealbata, as Hernandez et al. [67] pointed out that the specie
was present in 1.5% of the plots from Galician NFI-4 [10], representing 2.4% of the total
forest area. In Spain, the Spanish Forest Map (SFM) and the National Forest Inventory
(NFI) are very valuable and useful tools for forest managers, but due to their cost, they
are not updated as often as we foresters would like. Both data sources provide large-scale
information for the planning of forest resources. The SFM is based on field data from
the National Forest Inventory updated with a 10-year periodicity at a scale of 1:25,000.
Thus, the periodicity and spatial scale used in SFM and NFI are too low to continuously
monitor the spatial distribution and expansion of the different invasive species, and in
particular A. dealbata in Galicia. This is especially important because previous studies
suggested that these species have not yet reached their potential expansion area in the
Iberian Peninsula [11,67,69]. The use of freely available remote sensing data sources as
Sentinel-2 images which can provide relevant information with an enough frequency and
resolution are suitable to create yearly distribution maps. These can be complemented with
SFM and NFI ground-truth, which could be useful to validate remote sensing products,
especially in the years close to publication.

Despite the fact that the available data for the analyzed period were appropriate to
detect A. dealbata in our study area, the flowering period coincides with the time of the year
when clouds and fog are most likely to be found in areas of northwest mainland Spain,
which can eventually limit the accuracy of the detection. However, the use of all-time series
images and the short revisiting time of Sentinel-2 (A and B) minimizes their effects. The
ground-truth points selected for the analysis were only of pure A. dealbata stands, resulting
in the detection of pure stands for a specific date. Therefore, the presence of acacias in a
lower stratum or in mixed stands has not been considered in this work. The present study
shows the utility of Sentinel-2-derived phenological difference information to classify and
map Acacia dealbata. Future research should focus on the identification of other Acacia spp.
or further IAPs as well as the validation of temporally transferred models. In this sense, this
approach is applicable for larger regions due to open data availability to create continuous
monitoring tools that can serve as effective control tools for forest managers. The approach
is transferable to the use of UAV with an RGB-NIR sensor, which provides higher spatial
resolution and can be optimal for ad hoc monitoring. Furthermore, the use of structural
information derived from either UAV using structure from motion, LiDAR, or RADAR
may provide useful information in areas with a mix of forests and agricultural land uses
which may be subject to misclassification errors.

5. Conclusions

This study assesses the usefulness of phenological spectral differences based on RGB-
NIR Sentinel-2 data to detect and map the invasive alien plant (IAP) A. dealbata from other
species in northwest Spain. The random forest method produced the most accurate classifi-
cation of A. dealbata presence, providing an overall accuracy of 0.94 after validation. A total
of five out of six Sentinel-2-derived metrics included in the model were related to spec-
tral differences between blooming (March) and pre flowering (January) or post flowering
months (May). The metrics with the highest importance for A. dealbata discrimination were
∆ pre-RG and ∆ pre-NDVI, together with ∆ BR-post. The presence of A. dealbata is widely
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widespread within the study area and its proliferation modifies, in particular, Pinus pinaster
stands, generating patches that represent 55% of the presences of this IAP. Furthermore,
this IAP also creates continuous monospecific stands representing 33% of the presences.
This analysis demonstrated the value of the proposed approach to regularly detect and
map A. dealbata by using RGB-NIR spectral information and phenological peak differences,
providing suitable data for IAP forest management.
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