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Abstract

Several emerging non-volatile (NV) memory technologies are rising as interesting alterna-

tives to build the Last-Level Cache (LLC). Their advantages, compared to SRAM memory,

are higher density and lower static power, but write operations wear out the bitcells to the

point of eventually losing their storage capacity. In this context, this paper presents a novel

LLC organization designed to extend the lifetime of the NV data array and a procedure to

forecast in detail the capacity and performance of such an NV-LLC over its lifetime. From a

methodological point of view, although different approaches are used in the literature to ana-

lyze the degradation of an NV-LLC, none of them allows to study in detail its temporal evolu-

tion. In this sense, this work proposes a forecasting procedure that combines detailed

simulation and prediction, allowing an accurate analysis of the impact of different cache con-

trol policies and mechanisms (replacement, wear-leveling, compression, etc.) on the tempo-

ral evolution of the indices of interest, such as the effective capacity of the NV-LLC or the

system IPC. We also introduce L2C2, a LLC design intended for implementation in NV mem-

ory technology that combines fault tolerance, compression, and internal write wear leveling

for the first time. Compression is not used to store more blocks and increase the hit rate, but

to reduce the write rate and increase the lifetime during which the cache supports near-peak

performance. In addition, to support byte loss without performance drop, L2C2 inherently

allows N redundant bytes to be added to each cache entry. Thus, L2C2+N, the endurance-

scaled version of L2C2, allows balancing the cost of redundant capacity with the benefit of

longer lifetime. For instance, as a use case, we have implemented the L2C2 cache with STT-

RAM technology. It has affordable hardware overheads compared to that of a baseline NV-

LLC without compression in terms of area, latency and energy consumption, and increases

up to 6-37 times the time in which 50% of the effective capacity is degraded, depending on

the variability in the manufacturing process. Compared to L2C2, L2C2+6 which adds 6 bytes

of redundant capacity per entry, that means 9.1% of storage overhead, can increase up to

1.4-4.3 times the time in which the system gets its initial peak performance degraded.
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1 Introduction, motivation and contributions

The goal of the cache subsystem in a shared memory multiprocessor is to reduce the number

of main memory accesses. Specifically, the shared last-level cache (LLC) filters requests from

the lower-level caches turning slow main memory accesses into fast LLC hits, saving main

memory bandwidth, power, and increasing system performance. However, the number of

cores/threads integrated on a chip grows faster than the bandwidth with main memory. There-

fore, it is necessary to improve the hit ratio of the LLC by increasing not only total size but also

size per core/thread. Most LLCs are implemented with 6T-SRAM cells, a technology that does

not scale well in terms of density and static power [1].

In the short to medium term, non-volatile memory (NVM) technologies rise as an alterna-

tive to SRAMs due to their higher density and lower static power. Among these technologies

we can mention phase change (PCM) [2–4], magnetic tunnel junction (STT-RAM) [1, 5–8], or

resistive (ReRAM) [9, 10].

However, write operations on most NVMs cause noticeable wear on their bitcells, making

their lifetime much shorter than that of SRAMs. The simplest way to deal with an uncorrect-

able fault in a bitcell is to disable the memory region to which it belongs, with a size that

depends on the context: a whole memory page, a cache frame or a byte. From now on, we will

use the term cache frame to designate the set of physical bitcells of the data array holding a

cache block, compressed or not.

In this paper we present two contributions to the design and evaluation of NV-LLCs made

up with memory bitcells that wear out with writes. First, L2C2, a new fault-tolerant last-level

cache organization intended for NV technologies that relies on byte disabling and data com-

pression to increase lifetime while keeping performance. The design called L2C2+N is the

endurance-scaled version of L2C2 with no more than adding N spare bytes. Second, we intro-

duce a procedure to forecast the time evolution of effective capacity and performance, suitable

for modeling either frame disabling or byte disabling with compression.

1.1 L2C2: Last-level compressed-contents NV cache

It is inherent to NVM technologies that writes deteriorate the memory bitcells. This is why NV

cache designs have mechanisms to 1) decrease the number of writes, 2) spread out the writes

(wear-leveling), avoiding wearing hot spots, and 3) tolerate both transient and permanent

faults. Thus, many new proposals for NV-LLC organizations focus on mechanisms to decrease

and/or balance the number of writes, seeking to increase the lifetime and at the same time, if

possible, counteract the high energy and latency cost of writes.

Write reduction. It has been proposed, for example, to reduce the number of inserted

cache blocks using some kind of filtering [11–13], or collaborating with the private levels [6].

Other techniques to reduce writes are closely tied to particular bitcell designs, supporting e.g.,

read-before-write [4], or early-write-termination [14, 15]. It is also worth mentioning the pro-

posals for hybrid SRAM/NVM LLCs, which stand out for their great potential to reduce writes,

in exchange for a more complex design that seeks to send as many write requests as possible to

the SRAM part without losing performance or increasing power consumption [12, 16, 17].

Wear-leveling mechanisms. They focus on evenly distributing write operations throughout

all the NV-LLC dimensions: cache sets, ways within sets, and bytes within frames [4, 18–20].

These works seek to slow down write wear by avoiding the formation of hot spots, but unlike

L2C2, none of them consider how to prolong service in the presence of faulty bit cells, nor do

they seek to achieve as gradual a loss of performance as possible.

Fault-tolerant mechanisms. Any memory structure is subject to experience a bitcell failure

during its operation, either transient or permanent. For example, STT-RAM bit cells, in
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addition to being able to fail permanently due to write wear, they can also fail transiently in a

number of different ways. From least to most important these transient failures in STT-RAM

memories are: retention failure, where the stored value changes without any read or write oper-

ation; write failure, in which a write operation does not change properly the written value; and

read disturbance error, where a read operation switches the value originally stored, leaving a

wrong value [21]. In NV-LLCs these transient errors can occur in both the tag and data arrays.

Several specific techniques have been proposed to mitigate transient errors [22–24]. These

techniques are orthogonal to our proposal since they deal with healthy bit cells. They could

therefore be integrated into L2C2, which seeks, in a complementary way, to maintain the pop-

ulation of healthy bit cells as large as possible and for as long as possible.

To avoid a system crash, regardless of the transient or permanent nature of the error, a ded-

icated hardware must detect the error and correct it. To achieve this, fault-tolerant caches

must protect each tag and cache frame with a mechanism that handles an error correction

code (ECC), capable of detecting at least two errors and correcting one (SEC-DED), and often

capable of coping with double-error correction and triple-error detection (DEC-TED). For

example, Wu et al. to mitigate read disturbance errors in STT-RAM LLCs, propose to dynami-

cally switch between SEC-DED to DEC-TED, and vice-versa, according to a temperature

threshold for individual cache banks [25]. As a result, the devoted ECC code storage changes

according to thermal stress.

Redundancy can be included in the error correction code itself, allowing to correct N errors

instead of just one [26]. However, the overhead required by such ECCs increases rapidly with

N, to the point of making it impractical.

Besides, if permanent errors accumulate in several bitcells of the same frame, in the end no

solution based on ECC codes is scalable, since after a certain number of errors it will not be

possible to recover the correct value. The simplest solution is frame disabling, already present

in commercial processors long time ago [27, 28]. It consists of disabling the entire cache frame

as soon as the error detection limit is reached, since one more permanent error could not be

processed. In contrast, L2C2 relies on a finer control of the disable granularity, allowing the

disabling of individual bytes in each frame and therefore, together with block compression,

allows to increase the cache lifetime.

Alternatively, redundancy can be added outside the ECC mechanism by noting perma-

nently failed bitcells and correcting their value [29–31]. For example, Schechter et al., in the

context of main memory proposes the Error-Correcting Pointers (ECP) mechanism that stores

for each faulty bitcell its frame position and the value it should store, e.g. a nine-bit pointer for

a 64-byte memory frame and a one-bit data, respectively [29]. The extra storage cost limits this

approach to a moderate number of faulty cells. In fact, the authors evaluate the mechanism for

up to N = 6 defective bitcells (ECP-6).

Other work proposes to take advantage of memory frames with defects without having to

disable them entirely. For example, Ipek et al. proposes the Dynamically Replicated Memory

(DRM) technique to store a memory page in two partially faulty page frames [32]. Or, with a

higher complexity, Jadidi et al. advocate the use of compression to harden main memory [33].

They assume a PCM memory with ECP-6 protection for each 64-byte frame. Their mechanism

allows storing a compressed block in a degraded frame, as long as there is a contiguous chunk

within the frame, called compression window, of size greater than or equal to the compressed

block, and with no more than 6 bitcell faults. This allows a memory frame to be used even if it

has more than 6 faults, as long as they are outside the compression window. In summary, this

proposal increases memory lifetime by three aggregate effects: it has a repair mechanism, it

decreases the write rate by the same amount as the compression rate achieved, and it does not

create write hot spots because it has an intra-frame write leveling mechanism. However,
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although its ideas are inspiring, this proposal has been developed to collaborate with OS paging

system and its direct transfer to cache memory hardware is not straightforward at all.

Finally, the possibility of storing compressed blocks in NV-LLCs has hardly been explored

and anyway it has never been proposed to extend lifetime. For example, Choi et al. explores an

adaptation of the DCC compression scheme proposed for SRAM caches [34], but applying it

to embedded NVM caches [35]. Just as with the DCC scheme for conventional caches, the aim

is to increase the effective capacity by allowing the total number of compressed blocks stored

in a cache set to exceed the nominal associativity. Using a set dueling mechanism, they dynam-

ically adjust the activation/deactivation of compression to balance the miss rate vs. write rate

tradeoff, concluding that their proposal increases energy efficiency, but decreases lifetime by

8% with respect to a cache without compression.

Mittal proposes a technique called SHIELD that uses compression to mitigate the effects of

Read Disturbance Error (RDE) in STT-RAM [36]. The approach is to process misses by insert-

ing two identical copies of the same compressed block in the target cache frame. For this pur-

pose, SHIELD uses, like L2C2, a BDI compression scheme [37]. The first read leaves one of the

two copies unusable by the RDE, but a second copy is still intact for a second service. In this

way, often, cache block reads do not require a restore (write-after-read), costly in energy and

cache bank occupation [38].

Data compression has also been proposed in the context of caches operating at near-thresh-

old voltage. Ferrerón et al. propose the Concertina cache, which provides each frame with a bit

vector or a few pointers identifying the bytes that fault when the supply voltage drops [39].

These metadata are calculated once, by scanning the cache when entering in low-voltage

mode, and do not change as long as the supply voltage remains constant. Before inserting a

new block, a simple null subblock compression mechanism searches in LRU order for the exis-

tence of a frame with enough live bytes. Concertina does not need or seek to level write wear,

nor requires a high-coverage compression mechanism, but part of its design will be useful for

the operation of L2C2.

Contributions. L2C2 is the first NV-LLC capable of tolerating byte faults in NVM bitcells.

It uses data block compression and intra-frame write leveling to extend the lifetime of

degraded frames. In contrast to current alternatives, it is able to maintain high performance

for a longer time, or in other words, for a given time of use it achieves higher performance,

and it does so at a reasonable hardware cost. Moreover, its design is inherently scalable in

terms of lifetime: simply adding N additional spare bytes to each frame, without modifying the

design ideas, results in L2C2+N, the endurance-scaled version of L2C2, which is able to sup-

port the nominal capacity for longer.

On the one hand, the design of L2C2 carefully considers previous concepts of non-volatile

main memory management and SRAM caches, namely:

• Support for byte disabling [39], by incorporating the necessary metadata to identify non-

operational bytes. Besides, a SECDED mechanism is incorporated with the ability to trigger

an Operating System routine that disables a byte by modifying such metadata.

• BDI compression [37]. This data compression mechanism is selected because it provides

high coverage and a good compression ratio. These two characteristics allow, simulta-

neously, to reduce the number of bitcells written (more duration) and to increase the possi-

bilities of saving the block in frames of reduced size (more performance). In addition, its

hardware implementation has low decompression latency.

• LRU-Fit replacement algorithm [39]. After appropriate experimentation, this option is

selected. LRU-Fit is a locality-aware replacement algorithm, which selects the LRU victim
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cache frame among all those that are large enough to allocate the incoming compressed

block (Fit).

On the other hand, L2C2 incorporates two original enhancements, which are crucial to

maintain high performance for a longer time, namely:

• Intra-frame wear-leveling and compressed block rearrangement within the frame. We pro-

pose a new mechanism that achieves three key objectives: (a) wear out the live bytes of each

frame evenly as the rest is failing, (b) upon inserting a compressed block into L2C2, rear-

range the byte layout of the compressed block to write the appropriate subset of live bytes of

the frame, and (c) the same but in the reverse direction, i.e., in case of an L2C2 hit, recon-

struct the original layout of a compressed block, which is scattered in a partially broken

frame, to supply it to the decompressor. Using VLSI synthesis, that circuitry has been shown

to be feasible in terms of area, latency and power consumption.

• Because the above mechanism is scalable, it is possible to add an arbitrary number of N

redundant bytes to each frame, privately and without any change in the design. L2C2+N, the

version of L2C2 with redundancy, thus has frames with 64+N data bytes that cooperate in

storing compressed blocks from the beginning, extending the cache lifetime in proportion to

the built-in N degree of redundancy.

1.2 Forecasting the capacity and performance evolution of NV-LLCs

Previous work on aging and degradation of NV-LLCs often highlights the difficulty of accu-

rately modeling aging in NV memory and its effects on performance. In the absence of a stan-

dard procedure, practical solutions have been proposed, designed to assess specific aspects of

one or another mechanism.

A first group of papers related to the evaluation of reliability improvement in NV main

memory or cache, focuses exclusively on measuring either the reduction in the number of

writes or their variability [18, 40, 41]. For instance, Wang et al. compare wear-leveling mecha-

nisms in NV-LLCs by calculating the elapsed time from startup to the first bitcell fault [18].

Such cache lifetime is computed by dividing the maximum number of writes supported by a

bitcell by the number of writes per unit time (write rate) on the cache line that accumulates the

most writes. The procedure consists of a single cycle-accurate simulation to record write vari-

ability, followed by an aging prediction that assumes such variability to be constant throughout

the life of the cache. This procedure is simple, fast and allows the production of performance

metrics such as the number of instructions per cycle (IPC), but does not consider the

manufacturing variability in bitcell endurance. More importantly, it also does not allow to cal-

culate the time evolution of the capacity or performance in degraded mode of operation, in

which cache frames are progressively lost.

A second group of works, focused on extending the main memory lifetime, already incor-

porate process variability, modeling bitcell endurance by means of a normal probability distri-

bution [29–33].

Ipek et al. [32] and Seong et al. [30] assume that writes are spread evenly across the main

memory. Their quality metric is the number of writes the memory can receive until the first

unrecoverable fault occurs on any of its pages [30] or until the memory loses all its capacity

(each page is deactivated when it reaches its write limit) [32]. They do not relate the number of

writes to the time elapsed, and therefore do not need to simulate any application. Yoon et al.

propose the same quality metric [31], but assume that the page write rate is constant, thus

expressing memory lifetime in elapsed time, rather than number of writes.
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Schechter et al. [29] and Jadidi et al. [33] simulate a workload on a system whose main

memory has no faulty cells. The former to obtain frequency of writes and the latter to obtain

traces of memory accesses. Schechter et al. evenly distribute the number of writes among all

live pages and calculate the bitcell that will fail first [29]. When the number of faulty cells in a

page reaches a threshold, the page is deactivated and its writes are distributed evenly among

the remaining live pages. Jadidi et al. use the trace of writes to main memory to accumulate the

number of writes to each bitcell, deactivating them when they reach their maximum number

[33]. The simulation is repeated several times, until the memory loses half of its capacity. They

measure the lifetime by counting the number of times the trace is reinjected. Now, from the

execution time of the detailed simulation that produced the trace they can calculate a lifespan

in terms of elapsed time, but always assuming that performance does not vary with memory

degradation.

In summary, to date no procedure capable of accurately estimating the simultaneous degra-

dation of capacity and performance over time has been proposed.

1.3 Forecasting workload behavior in cloud data centers: A seemingly

similar problem

Before focusing on how to forecast capacity degradation in NV-LLCs, let’s consider a problem

that is also related to the interaction between workload and hardware, to assess whether its

solutions are applicable. The problem is very relevant today and consists of forecasting the

demand for resources, e.g. CPU, memory, network and storage, and their power consumption

in data centers offering cloud computing services [42, 43].

The objective is to manage in advance the virtual machines (VMs) and/or physical

resources needed to elastically adapt supply to demand, complying with the quality of service

(QoS) parameters specified in the service level agreements (SLAs) made with customers [42,

43]. It is usually assumed that the forecasting procedure receives as input the time series of

past events and its outcome will feed a management system capable of automatically com-

manding resource management in advance. Among other activities, such resource manage-

ment consists of mapping tasks to VMs and VMs to physical servers. This requires making

decisions such as adding or removing VMs, or forcing the live migration of a VM to a different

server. It is also necessary to provision the hardware resources of VMs (e.g. number of CPUs,

amount of memory and storage required, and communication bandwidth) or decide whether

to consolidate several VMs on one server, possibly by physically shutting down part of the

servers previously dedicated to those VMs.

Forecasting future demand in cloud data centers is an open problem. It is being approached

in the literature from many points of view, both in the workload specification and in the fore-

casting model itself. In the following, we will review some representative recent work to illus-

trate this variety of approaches [44–48].

Regarding the specification of the workload, i.e. how to reproduce the history of resource

allocation, usage and release when assigning tasks to VMs, two approaches stand out. The first

one consists of describing a synthetic workload, either in a static form [44], or from estimated

resource life-cycle probabilities [47]. The second, more widespread, considers time series

recorded in real data centers annotated with the relevant events [45, 46, 48].

As for the forecasting model, there are numerous approaches. Most, but not all, are based

on machine learning (ML), although no definitive winner is emerging at the moment. For

example:

• Bouaouda et al. compare two algorithms taken from the area of operational research to esti-

mate the energy consumed by a cloud data center, namely Ant-Colony Optimization, a
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population-based metaheuristics, and First Fit Decreasing, an algorithm to solve the Bin

Packing problem [44]. The relevant workload events are generated by Cloudsim, a federated

cloud data center simulator [49].

• Li investigates how to obtain the maximum benefit, i.e., the best performance/cost ratio, by

managing the provision of resources based on the analytical solution of a multi-variable opti-

mization problem [47]. A synthetic workload, defined by probability distributions (task

arrival rates, task execution times, waiting times, etc.), is assumed to be executed by multiple

computing clusters, consisting of heterogeneous servers of varying speed deployed in a fed-

erated cloud environment. Each computer cluster is modeled as an M/M/m queuing system.

Two energy cost models are assumed according to the dynamic consumption in idle state. In

addition, a benefit/cost model is proposed that considers service revenues, energy expenses

and infrastructure amortization charges.

• Finally, we review a selection of recent works based on ML to predict workload behavior [46,

48], including also its energy consumption [45]. All proposals forecast future behavior based

on time series (called traces) obtained from real data centers of providers such as Alibaba,

Bitbrains or Google. Khan et al. consider several typical ML algorithms such as linear regres-

sion, Bayessian Ridge Regression, Automatic Relevance Determination Regression, elastic

nets, and finally, a deep learning (DL) approach, the Gated Recurrent Unit, a particular class

of recurrent neural networks (RNNs) that proved to be the best [45]. Leka et al. propose to

handle the time series by chaining two neural networks, first a one-dimensional convolu-

tional neural network (1D-CNN), which is very suitable for extracting features that relate

VMs to each other, and then a Long Short-Term Memory (LSTM) Network, another partic-

ular class of RNN, to perform the temporal processing of the extracted features and make the

forecast [46]; however, the success of the proposal is assessed by comparing it only with

CNN or LSTM working separately. Lastly, Patel et al. propose a similar idea in which the

1D-CNN network consists of three parallel dilated 1D layers with different dilation rates

(1D-pCNN) to learn CPU load variations at different scales [48]; in addition, the LSTM layer

that learns temporal dependencies is fed not only with the patterns recognized by the 1D-

pCNN, but also with the original CPU utilization values present in the input time series.

Unlike the previous work, Patel et al. compare the forecast errors with a much larger number

of alternatives, but only in the area of DL networks.

However, an observation common to the previous referenced work, and to most of the liter-

ature on workload and energy forecasting, is the absence of cross-comparisons between com-

plex and simple models [50]. For example, simple statistical methods are rarely used as a

baseline for forecasting, making it difficult to quantify the advantage provided by the very

expensive methods that rely on complex DL models.

Regarding our purpose of predicting the progressive degradation of the NV-LLC present in

a multicore chip of a computing server, we can make several observations. 1) The specification

of the problem is very different, in our case there are no time series of degradation events,

because NV-LLCs are a pre-industrial product and, if they exist, such traces have not been

made public. 2) Related to the above, it is not possible to quantify the goodness of the solution

with the typical error metrics that compare reality and predicted value, i.e. the RMSE, root-

mean-square error. The validation of our model will have to be done in another way, see Sec-

tion 6.1. 3) The forecasting behavior in data centers is based on reproducing a resource

demand that does not follow any known law, while the degradation of NVM bitcells is gov-

erned by write reiteration and its Gaussian behavior is well accepted, see next subsection. 4)

The modeled hardware in a data center is assumed to be functional and fault-free, there is still
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no work that incorporates the detection, diagnosis and repair/replacement life cycle of servers,

storage or routers into the forecast; on the contrary, in our case, the main assumption is the

existence of a performance-critical component, the NV-LLC, whose capacity, and with it the

system performance, will progressively decrease.

Therefore, we can conclude that despite the variety of procedures for forecasting the behav-

ior of cloud data centers, it is not possible to adapt them to our problem, whether they are sta-

tistical, operational research or deep learning methods.

1.4 NV-LLC memory wear out: Quantifying the problem

The essence of the problem is as follows. Memory cells age with writes. And as memory

degrades performance and write rates also change. But its detailed simulation, cycle by cycle,

requires a time that would far exceed the lifetime of the system under study.

Focusing on the cache, on the one hand its degradation leads to an increase in the miss rate,

which results in a loss of performance which in turn results in a decrease of the cache write

rate. On the other hand, if a certain cache set degrades more than others, it is not correct to

equally distribute the write rate of the whole cache in the new associativity configuration. Let’s

quantify how the write rate per frame may change as the NV-LLC degrades. Fig 1 shows the

average write rate per frame in a 16MB, 16-way frame-disabling NV-LLC at various aging

stages (see Section 5 for the simulated system details). Each bar depicts the average write rate

of all frames belonging to a given group of sets, namely the sets with A live frames in a

degraded NV-LLC with 90%, 75% and 50% effective capacity, respectively.

At 90% capacity, all sets have between 16 and 7 live frames. However, when the capacity is

reduced to 75%, more degraded sets appear, which only have between 6 and 1 live frames.

Regardless of the capacity, as A decreases, the write rate per frame increases noticeably. This

increase in write rate has two causes: i) the miss rate increases in the sets with fewer live frames

and therefore those sets experience a higher write rate, and ii) the write rate per set will be

spread over fewer live frames. On the other hand, when considering the reduction in capacity

from 75% to 50%, a decrease in the write rate per frame is observed for any value of A, which is

due to a noticeable decrease in system performance.

Fig 1. Average write rate per frame in sets with A live frames as a function of capacity (90%, 75%, and 50%).

https://doi.org/10.1371/journal.pone.0278346.g001
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Furthermore, this non-uniform degradation may affect differently the threads sharing the

NV-LLC, selectively reducing the IPC of some of them and changing the pattern of writes in

the entire cache. The existence of compression further complicates the modeling, as the data

set referenced by each thread may have different compression capabilities that will wear cache

bytes unevenly. In short, a single simulation cannot capture the complexity of all these

interactions.

Contributions. Accurately addressing this feedback between degradation and performance

loss over the lifetime of the NV-LLC is the second problem we tackle in this work. We intro-

duce a forecasting procedure to estimate the evolution over time of any metric of interest

linked to the LLC (effective capacity, miss rate, IPC, etc.), from the time it starts operating

until its storage capacity is exhausted.

Forecasting relies on a sequence of epochs that sample the lifetime of the cache. Each epoch

starts with a performance simulation and ends with an aging prediction. The performance sim-
ulation is carried out with cycle detail on a snapshot of the cache at a particular aging stage and

obtains performance metrics (miss rate, IPC, etc.) and in particular, all the write rate statistics

needed to feed the aging prediction. The aging prediction removes from operation the bytes or

frames that die, according to the bitcell endurance model, the cache organization and the write

rate statistics received. At the end of each aging prediction phase, a new cache snapshot is gen-

erated, with lower capacity than the previous one.

Thus, performance and capacity forecasting considers the interaction between the workload

and the non-uniform degradation of the NV-LLC in its multiple dimensions (bank, set, way,

byte). It can be applied to a wide range of NV main memory or cache designs, although in this

paper we have focused on L2C2 and related alternatives, considering replacement and opera-

tion with compressed blocks and degraded frames under different redundancy schemes. Of

course, performance or capacity forecasts are useful for research purposes, but also can be an

industry tool to estimate the life cycle of an NV memory and provide customers with a clear

commitment to lifespan and performance. The code is available so that anyone can use it for

research purposes in the following link: https://gitlab.com/uz-gaz/l2c2-forecasting.

The rest of the paper is organised as follows. Section 2 lays the groundwork for NV-LLCs.

Section 3 describes L2C2, a byte-level fault-tolerant cache capable of handling compressed

blocks, showing the storage overhead, the detailed design of the block read and write hardware,

and the latency penalty incurred in the block read service. In Section 4, the forecasting proce-

dure is conducted on systems with frame disabling and byte disabling with compression. In

Section 6 we demonstrate the validity of the forecasting procedure. Section 7 evaluates the deg-

radation of L2C2 over time and compares it to various NV-LLC configurations. Finally, Sec-

tion 8 concludes this study.

2 Background

This section briefly reviews the background regarding the bitcell resilience model, data com-

pression in the context of NV technologies, with emphasis on BDI compression, and finally,

the addition of redundant capacity. The reader familiar with these concepts can skip this sec-

tion without loss of continuity.

2.1 Bitcell endurance model

Writing 0 or 1 to an NVM bitcell requires to invest some energy for a time period to alter the

value of a physical property in one of the bitcell circuit materials, whose structure, compo-

nents, dimensions and interface are critical to the proper functionality of the memory [3, 7,

51]. Write operations, besides being more costly in time and energy than read operations,
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eventually degrade bitcells, which render to lose its storage capacity. In this context, the bitcell

endurance is defined as the number of writes the bitcell will withstand before it breaks down

and loses its storage capability. For example, in the case of STT-RAM bitcells the wear pro-

duced by the cumulative effect of writes eventually leads to what is called time-dependent

dielectric breakdown (TDDB). TDDB is the short-circuit of the thin dielectric layer (MgO)

that isolates the two ferromagnetic electrodes (CoFeB): once the dielectric breakdown occurs

the change is irreversible and the bitcell behaves as a small fixed-value resistor; it is no longer

possible to distinguish between the parallel and antiparallel spin states, whose respective resis-

tances are designed to be sufficiently different to encode a bit reliably [8].

The write endurance of each bitcell can be modeled as an independent random variable fol-

lowing a Gaussian distribution of mean μ = 10k writes and coefficient of variation cv ¼ s

m
, usu-

ally between 0.2 and 0.3 [19, 29–32, 52]. The coefficient of variation reflects the variability in

the manufacturing process. The endurance figures are different for each technology and

depend on the manufacturer and the target market. For instance, STT-RAM endurance is sub-

ject to some design parameters tradeoffs such as retention time, area, power efficiency and

read/write latency [53, 54]. It is therefore not surprising to find in the literature STT-RAM

endurance values from 106 for embedded systems or IoT applications [53, 55–57] up to 1012

for general purpose microprocessors [18, 19, 58].

2.2 Data compression

Data compression reduces the block size. This is beneficial in the NVM context because it

allows fewer bits to be written and consequently extends the lifetime of the main memory or

cache [33, 35, 40, 41], or can be used to decrease the RDE rate [36]. Yet, compression has

another benefit in the context of a byte-level fault tolerant NV cache such as L2C2: it allows

cache frames with dead bytes to hold blocks if compression is high enough [33, 39]. Any com-

pression mechanism that achieves wide coverage even at the cost of a moderate compression

ratio can be useful, so that a large percentage of blocks, once compressed, can be stored in

degraded cache frames. On the other hand, the decompression latency must be very low in

terms of processor cycles, since decompression is on the critical path of the block service and

may affect system performance.

The chosen mechanism is Base-Delta Immediate (BDI), as it achieves high coverage, fast

decompression (1 cycle) and a substantial compression ratio [37]. BDI is based on value local-

ity, i.e. on the similarity between the values stored within a block. It assumes that a 64-byte

block is a set of fixed-size values, either 8 8-byte values, 16 4-byte values, or 32 2-byte values. It

determines whether the values can be represented more compactly as a Base value and a series

of arithmetic differences (Deltas) with respect to that base.

A block can be compressed with several Base + Delta combinations which are computed in

parallel. An example with 14 BDI Compression Encodings (CE) is shown in Table 1, along

with the size values for the Base, Delta and the total compressed size. Thus, the compression

mechanism chooses for each block the compression encoding (Base + Delta combination) that

achieves the highest compression ratio.

2.3 Addition of redundant capacity

The reliability of the NV-LLC can be improved by adding redundant capacity. This can be

done by using classical error detection and correction (ECC) codes or more sophisticated tech-

niques [25, 29–32]. The maximum number of bit errors that can be detected and corrected is

limited by the available area and energy budget. For instance, Schechter et al. propose ECP, an
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ECC mechanism that encodes the location of defective bitcells and assigns healthy ones to

replace them [29].

However, in order to further increase reliability, a substantial portion of the redundant

capacity could be dedicated to the replacement or expansion of the rated cache capacity stated

in the commercial specification. Both alternatives will be evaluated later in this paper.

3 Last-level compressed-contents NV cache

This section describes the basic organization of L2C2, also showing the adaptation of BDI

compression, metadata layout, the details of block rearrangement and replacement, and how

to add redundant capacity.

3.1 Basic organization

3.1.1 Content management between the private L1/L2 levels and the shared L2C2.

Non-inclusive hierarchies have shown to be specially useful to avoid superfluous block inser-

tions in the LLC [12]. Therefore, a non-inclusive organization is used to minimize writes in

L2C2, see Fig 2. A block enters L2C2 by effect of a replacement in L2, provided that the block

was not already in L2C2. In case of a write miss in L1 and L2, and a hit in L2C2, the corre-

sponding block is brought to L1/L2 and invalidated in L2C2. Note that in this case, leaving the

block in L2C2 does not make sense, because it will eventually have to be written back to L2C2

when it is evicted from L2.

Table 1. BDI compression encodings and their sizes, in Bytes.

Name Base Delta Size Name Base Delta Size

All Zeros 0 0 0 B2Δ1 2 1 37

Rep. V(8) 8 0 8 B8Δ4 8 4 37

B8Δ1 8 1 16 �B8Δ5 8 5 44

B4Δ1 4 1 21 �B4Δ3 4 3 51

B8Δ2 8 2 23 �B8Δ6 8 6 51

B8Δ3 8 3 30 �B8Δ7 8 7 58

B4Δ2 4 2 36 Uncomp. - - 64

https://doi.org/10.1371/journal.pone.0278346.t001

Fig 2. Block flow diagram of non-inclusive model.

https://doi.org/10.1371/journal.pone.0278346.g002
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To select the victim block, L2C2 takes into account the recency order according to the fol-

lowing rules: 1) inserted blocks are placed in an LRU list at the MRU position (lowest replace-

ment priority), 2) a read hit in L2C2 places the block to the MRU position, and 3) replacement

of a clean block in the private caches is communicated to L2C2; in case such a block is present,

it is also placed at the MRU position.

However, if the LRU cache frame does not have sufficient capacity for the incoming com-

pressed block, it cannot be used as a victim. Then there are two possibilities, either to search in

order from least to most recent for the first frame with sufficient capacity (LRU-Fit policy) or

to choose the frame with the smallest possible capacity, and if there are several with the same

capacity, the LRU one (LRU-Best-Fit policy). Ferrerón et al. test both alternatives and choose

LRU-Fit for its better performance [39], but since in their context writes do not produce degra-

dation, the LRU-Best-Fit policy could be advantageous for the L2C2 design. LRU-Best-Fit

avoids writes on the highest capacity frames, and therefore poorly compressible blocks would

see their residency opportunities increase. Therefore, in Section 7.4 the two policies will be

confronted.

3.1.2 Bitcell fault detection. Memory cells lose their retention capacity after a certain

number of writes. It is therefore essential to handle these permanent faults without losing

information. We assume a SECDED mechanism, able to correct a single-bit error and detect

up to two. We assume that this ECC mechanism, upon detecting and correcting a single bit

fault, triggers an Operating System exception, notifying the identity of the faulty byte [31].

Then, in order to prevent a second (uncorrectable) error from arising within the same region,

the exception routine will disable the appropriate region, a whole frame using frame disabling,

or a byte in L2C2. Note that ECC support is already present in many current cache designs;

AMD Zen SRAM LLCs, for instance, provide DECTED [59].

3.1.3 Wear-leveling mechanism. Writing compressed blocks in a frame is a new source

of imbalance in the wear of the cells acting within the frame itself. As we will quantify, if, for

example, compressed blocks are always stored from the beginning of the frame, the first bytes

of the frame will receive more writes than the last ones.

Therefore, an intra-frame wear-leveling mechanism is needed to evenly distribute the writes

within the frame. We assume a global counter modulo the cache frame size [33]. Blocks are

stored in the frames starting from the byte indicated by this global counter and using the

frame as a circular buffer. Each time the value of the counter is changed, the entire cache must

be flushed, but since this must be done every few days or weeks, the impact on performance is

negligible. The details and the extension of the mechanism to degraded frames can be found in

Section 3.4.3.

3.2 BDI adaptation

Pekhimenko et al. focus their application on achieving a large average compression ratio and

therefore dispense with compression encodings with small compression ratios [37], those

marked with an � in Table 1. However, L2C2 incorporates them, because in this way frames

with few defective bytes will be able to store low compression blocks and thus performance

increases noticeably [39].

To quantify the importance of such low compression blocks, Fig 3 shows a classification of

all blocks written in L2C2 according to the achieved BDI compression ratio for the SPEC CPU

2006 and 2017 applications used in this work. On average, 22% of the blocks written are

uncompressible (Unc), 29% have low compression ratio (LCR) (compressed block size > 37)

and 49% have high compression ratio (HCR) (compressed block size� 37). For instance, if all
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frames in an L2C2 cache have a faulty byte, and the compression mechanism does not use the

low-compression ratio encodings, the chance to store 29% of the blocks would be lost.

3.3 L2C2 metadata

The tag array undergoes the most write requests as it must keep the coherence and replace-

ment states up to date. Should these bit cells fail, the entire data frame should be deactivated.

Therefore, we assume the tag array is built with SRAM technology, free of wear by writing.

Our proposal only adds a 4-bit field to store the frame capacity to each tag array entry. This

frame capacity is represented in terms of the largest compression encoding the frame can allo-

cate (see Fig 4).

The data array is built using NVM technology. Each frame must have a capacity of 66 bytes:

64 data bytes plus one or two metadata bytes: up to 11 ECC bits and 4 bits representing the

compression encoding (CE) of the data block. In addition, a fault bitmap is needed next to the

data array to identify faulty bytes. This fault bitmap requires 66 bits for each frame. During the

life of the frame this bitmap will experience at most 66 write requests, so it can also be imple-

mented with NVM technology.

3.4 Block processing: Replacement and rearrangement

3.4.1 L2C2 miss, block writing. Fig 5 shows the components involved in the processing

of a block B to be written in L2C2, from compression to rearrangement. In Figs 5 and 6 the

shaded boxes represent what is new and/or has been modified to the Concertina proposal [39].

Fig 3. Block classification regarding its compression ratio for the selected SPEC CPU 2006 and 2017 applications.

https://doi.org/10.1371/journal.pone.0278346.g003

Fig 4. Layout of a frame entry in the SRAM tag and NVM data arrays.

https://doi.org/10.1371/journal.pone.0278346.g004
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First, the BDI compression units receive the block B (64 B) [① Compression]. The result of

each compression unit is a) whether the block is compressible or not and, if so, b) the com-

pressed block. As a result, the compressed block with the highest compression ratio (CB, 0–64

B) is selected and the corresponding compression encoding (CE, 4 b) is reported.

Next, the ECC bits corresponding to CB are calculated [② ECC]. The ECC mechanism

selected in particular is orthogonal to our proposal. As mentioned above, we assume SECDED

protection, which means an overhead between 2 and 11 bits encoded in a field of one to two

bytes. We call ECB the concatenation of CB and SECDED bits, whose length ranges from 1 to

66 bytes. The length of this ECB determines the minimum capacity a cache frame must have to

accommodate the block.

The replacement logic selects the victim block among the frames with the required mini-

mum capacity [③ Replacement]. For this, the replacement logic considers the CE of the

incoming block B along with the capacities and LRU order of the frames still alive in the

involved cache set.

Every frame has an associated fault bitmap that points out the faulty bytes (66 b). This fault

bitmap information is initialized to ‘1’s indicating that all bytes in a frame are non-defective.

In addition, the byte number from which to start writing the frame is reported by the Global

Counter (GC, values 0–65). According to the GC and CE values and the fault bitmap,

the block is rearranged for selective writing (RECB, 1–66 bytes) under a write mask (66 b) [④
Block rearrangement]. The next subsection 3) details the rearrangement logic (ECB or RECB

Block rearrangement for L2C2 write or read, respectively).

3.4.2 L2C2 hit, block reading. Similarly, but in the opposite order, Fig 6 summarises the

read flow of an L2C2 block. First, the block is rearranged using as input RECB, the fault bitmap

and the GC value. Then, the ECC of ECB is checked, and from CB and CE the uncompressed

block B is obtained and forwarded to L2/L1 [③Decompression].

3.4.3 Rearrangement logic. The rearrangement logic is composed of two elements: Index

Calculation and Crossbar. The index calculation determines the mapping from ECB bytes to

Fig 5. Flow of writing a block in L2C2 and components involved.

https://doi.org/10.1371/journal.pone.0278346.g005
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RECB bytes (L2C2 write) or conversely, from RECB bytes to ECB bytes (L2C2 read). The

crossbar moves bytes from the input ports to the output ports.

Fig 7 shows an example of rearranging an ECB from the fault bitmap (FM) and the GC and

CE values. When writing a frame into L2C2, RECB is an ECB rearrangement consisting of a

right rotation starting from the GC value and skipping the faulty bytes. Afterwards, the write is

selectively performed on the bytes indicated by the computed write mask.

Algorithm 1 describes the index calculation for writing N-byte frames. It takes as inputs the

fault bitmap (FM) corresponding to the destination frame and the values of the global counter

(GC) and compression encoding (CE). The outputs are the write mask and the index vector I

[N = frame size] that controls the output ports of the crossbar. For example, I [7] = 1 means

that byte 1 of ECB will appear in the output port 7 of the crossbar, see Fig 7.

The first for loop (line 2) calculates indexes without considering the global counter value.

That is, assuming that ECB is to be rearranged starting with the byte zero of the destination

frame. Note that the calculation of each iteration uses the result of the previous one. This

implies using N adders in series. Alternatively, our implementation uses a tree of adders,

which reduces the computation time to that of log2 (N) adders in series. Each adder uses log2

(N) bits at most.

The two next loops (lines 5 and 6) adjust indexes considering the global counter value.

Now, the iterations within each loop are independent and can be calculated in parallel, so the

calculation time of the two iterations is that corresponding to two adders in series.

Finally, the last loop (line 7) calculates the write mask. This loop can be synthesized with an

array of 64 7-bit comparators. These comparators act on the calculated indexes and their oper-

ation can overlap with the crossbar traversal.

Algorithm 1: ECB! RECB Index Calculation
Input:
FM: N-bit vector fault bitmap
GC: global counter

Fig 6. Flow of reading a block in L2C2 and components involved.

https://doi.org/10.1371/journal.pone.0278346.g006
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size: ECB size, computed from CE
0 � GC, size � N − 1

Output:
I[N]: N crossbar output port indexes
WM[N]: write mask N-bit vector

1 I[0] = 0
2 for i = 1; i<N; i++ do I[i] = I[i-1] + FM[i-1];
3 T = I[N-1] + FM[N-1];
4 GCI = I[GC];
5 for i = 0; i<N; i++ do I[i] = I[i] − GCI;
6 for i = 0; i<GC; i++ do I[i] = I[i] + T;
7 for i = 0; i<N; i++ do
8 if I[i] < size && FM[i] == 1 then
9 WM[i] = 1
10 else
11 WM[i] = 0

The index vector is calculated when writing and reading in the same way. In the write cir-

cuit, the crossbar is an array of multiplexers governed directly by the index vector. In the read

circuit, the crossbar acts as right-aligner and is more complex. Our implementation assumes

NxN comparators of log2 (N) bits and N output multiplexers of N bytes to 1 byte with decoded

control. The decoded control of the multiplexer that produces the byte i is generated by N

comparators between the value i and the N elements of the index vector.

VLSI implementation. To put the costs and delays of the rearrangement logic into context,

we select an L2C2 built with 22nm STT-RAM technology, the largest scale of integration avail-

able in the NVsim tool [60]. Table 2 shows area, latency and power of the SRAM tag array and

the STT-RAM data array, which make up the 4MB cache banks used in the experimental

section.

Fig 7. Example of ECB rearranging to write a 9-byte frame.

https://doi.org/10.1371/journal.pone.0278346.g007
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Both ECB and RECB rearrangement logic are outside the L2C2 core, but the latter is located

in the critical path of block delivery to L1/L2. In order to quantify their physical features both

have been specified, simulated and laid out with the Synopsys Design Compiler R-2020.09-SP2

and Synopsys IC Compiler R-2020.09-SP2. Due to the lack of a 22nm library, we used the

SAED16nm FinFET Low-Vt technology in worst case condition (typical-typical, 125 ºC and

0.8 volts). These tools allowed us to estimate post-layout costs in terms of area, latency and

power consumption. The dynamic power values were calculated from the cache activity factors

measured during the workload simulations. The latency of the RECB! ECB logic (0.38 ns)

plus the delay and setup times of the input and output registers, respectively, can be estimated

at about two cycles at 3.5 GHz. That is, rearranging and decompression increases the L2C2

load-use latency, with respect to a frame-disabling cache, from 30 to 32 cycles, a 6.7%.

In summary, looking at the figures as a whole, the overhead seems to be affordable on all

metrics. Regarding storage costs, Table 6 also provides a comparison between all the evaluated

cache candidates.

3.5 L2C2+N: Adding redundant capacity to L2C2

Providing L2C2 with a few spare bytes in each frame could be very convenient since it would

allow to continue working without loss of performance after the failure of several bytes of each

cache frame.

The design presented so far allows to add N spare bytes in a very straightforward way: just

increase each frame from 66 to 66+N bytes in the data array, and also increase the bitmaps

from 66 to 66+N bits. In addition, the rearrangement logic has to be extended to handle 66+N

byte blocks, and the Global Counter has to count modulo 66+N. Without further changes, the

wear-leveling logic will take care of distributing the writes among the 66+N bytes available. A

frame will only start to impose performance constraints when its effective capacity falls below

66 bytes.

4 Forecasting procedure

This section describes a procedure to forecast the capacity and performance evolution of an

NV-LLC through time, from its initial, fully operational condition, until its complete exhaus-

tion. Without loss of generality the procedure assumes byte granularity, but extending it to

other sizes is straightforward. The maximum number of writes supported by bitcells is mod-

elled by a normal distribution.

Forecast is driven by a detailed, cycle-by-cycle simulation of a workload that can be multi-

programmed, parallel, or a mix of both execution modes. In this paper we opted for a multi-

programmed workload, but the other alternatives can be simulated in exactly the same way.

The forecasting procedure determines the live byte configuration in discrete steps of capac-

ity loss, which we call epochs. An epoch starts with a detailed Simulation phase, where perfor-

mance and write rate measurements are extracted, and continues with a Prediction phase

Table 2. Hardware cost comparison.

SRAM Tag Array 22 nm STT-RAM Data Array 22 nm ECB!RECB 16 nm RECB!ECB16 nm

Area (mm2) 0.116 0.74 0.021 0.025

Latency (ns) 0.28 2.41 0.33 0.38

Dynamic read power (mW) 0.17 6.87 - 0.49

Dynamic write power (mW) 0.16 18.64 0.61 -

Static P (mW) 109 338 0.53 0.7

https://doi.org/10.1371/journal.pone.0278346.t002
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where each byte that fails is disabled and the remaining number of writes of those that are still

live is updated.

To the best of our knowledge, this is the first NV-LLC capacity and performance forecasting

procedure proposed so far.

4.1 Data structures supporting the forecasting procedure

For each byte of the data array it is necessary to keep track of two key attributes, namely the

number of per-byte Remaining Writes and the experienced per-byte Write Rate. These attri-

butes are represented in two data structures, called maps and abbreviated as RWmap and WR
map, respectively.

RW map. Each entry of RWmap holds the number of remaining writes rwijk of byte Bijk
(set i, way j, byte k), see Fig 8A. RWmap is initialised according to the statistical endurance

model of the memory technology used, as in [19, 29–32, 52].

Once the RWmap is initialized, it would be sufficient to simulate the NV-LLC with the

desired workload and update the map on each write, subtracting in all the live bytes of the

frame being written. When any byte of the cache reaches its maximum number of writes (rwijk
= 0), the corresponding cache region is disabled, the whole frame with frame disabling or the

single byte with byte disabling. Then, the simulation would continue with the degraded

system.

The simulation should be detailed, cycle-accurate, so that the progressive degradation is

reflected in the miss rate and write rate of the remaining healthy regions. However, this naive

approach is not feasible, since at detailed simulation speed only a few milliseconds of forecast

could be attained.

WR map. An alternative approach, which is nearly as accurate, but with lower simulation

cost is the following. After a suitable simulation time we write down in a WRmap, the write

rate per byte wrijk, see Fig 8B. On the assumption that these per-byte write rates remain con-

stant as long as no further byte is disabled, we can compute the predicted lifetime (PLT) of each

Fig 8. Per-byte Remaining Writes (A) and Write Rate (B) maps.

https://doi.org/10.1371/journal.pone.0278346.g008
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byte Bijk as:

PLTðBijkÞ ¼
rwijk

wrijk

We can use PLT to predict the next byte that becomes faulty.

4.2 Basis of the forecasting procedure

The lifetime of an NV-LLC can be forecast using the procedure outlined with black lines in

Fig 9.

The RWmap is first initialized taking samples from a normal statistical distribution of the

maximum number of writes a bitcell can endure. Forecast then proceeds through successive

epochs which consist of a Simulation phase followed by a Prediction phase.

The Simulation phase requires the development of a microarchitectural LLC model that

allows to dynamically configure a different associativity in each set and, if applicable, a

Fig 9. Forecasting procedure diagram. Basic procedure in black, approximations in blue.

https://doi.org/10.1371/journal.pone.0278346.g009
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different number of bytes per frame. So, the simulation will consider the cache regions that are

still alive, according to the RWmap, run the workload for a suitable number of cycles, compute

the write rates in each live byte, and finally update the WRmap.

The Prediction phase combines the values of both maps to calculate PLT(Bijk), selecting

the byte with the lowest remaining lifetime, T = min(PLT(Bijk)). The prediction consists of

advancing the forecasted lifetime by exactly that value T. To do so, it is sufficient to subtract

from the number of remaining writes in each byte of the cache, the number of writes that

would have occurred in that byte in a time T (8 ijk : rwijk = rwijk − T � wrijk). In this way the

next simulation will be performed with the corresponding region disabled, cache frame or

byte, so that the behavior of the LLC will take into account the degradation experienced in

the data array.

Forecast advances through single-prediction epochs until all bytes in the cache are disabled.

Each epoch adds the variable time T to the NV-LLC lifetime, which depends on the initial RW
map and the write rate variation. Although the Prediction phase is computationally very light,

this alternative approach still requires as many simulations as there are bytes in the cache, and

it is also not affordable considering the runtime required for a detailed simulation.

To decrease the number of simulations we propose an approximate procedure that extends

the forecast duration within each epoch. This approximate forecasting procedure acts as fol-

lows. In each epoch, the simulation phase does not change: it receives an RWmap and obtains

the corresponding WRmap. However, the prediction phase has an extension of K consecutive

predictions, corresponding to the failure of K bytes. After every prediction step the RWmap is

updated; see① in Fig 9.

The challenge now is that, as bytes die during the multiple-prediction epoch, the values of

the WRmap may not reflect the effect of the progressive degradation of the NV-LLC during

the epoch.

When a cache byte dies there may be a tiny decrease in hit rate and system performance,

which may result in tiny changes of the byte write rate across all cache frames. Our model does

not take this reduction into account during the Prediction phase within each epoch. However,

if we focus on a shrinking cache set, i.e. one in which a byte has just been disabled, the new

write rate in the frames of that set can increase significantly. This effect is evident with frame

disabling, see Fig 1, but occurs equally with byte disabling. Consequently, to increase the

epoch extension without introducing significant error, a model is needed to approximate new

write rates as bytes fail during prediction.

Without loss of generality, a uniform distribution of writes among cache sets is assumed in

this paper; see Section 6.3 for a more general discussion. Accordingly, the write rate on the

bytes of a cache set whose health state has just degraded after a prediction step can be com-

puted by the average write rate of all the bytes belonging to the sets that were already in that

degraded health state during the simulation. As will be seen below, the health state of a cache

set is defined differently for frame- and byte-disabling caches.

4.3 Approximate forecasting procedure for frame disabling

In frame disabling, all bytes in a frame receive the same write rate, and it matches the write

rate in the frame. Therefore, the WRmap stores information at frame granularity.

Under the assumption of a uniform distribution of references across sets, for NV-LLCs

with frame disabling, the health state of a set can be defined simply as its A number of live

frames, with A between one and the initial associativity.

At the end of a Simulation phase, wr_avg(A), the average write rate per byte in sets with A
live frames, is computed from the WRmap; see② in Fig 9. Thus, during the Prediction phase
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the write rate applied to the bytes of a frame changes as the health state of its set changes. That

is, while a set has A live frames, the prediction calculations age its bytes with wr_avg(A), but

when one of them dies, the aging will be performed with wr_avg(A − 1).

Note that in the Prediction phase, after disabling a certain number of frames, sets with a

value of A not yet simulated may appear. For instance, let us focus on the black distribution

of write rates per frame we showed in Fig 1. It corresponds to the Simulation phase of an

epoch that starts with 90% effective capacity. In that epoch, the Prediction phase handles

sets with 7 or more live frames. But before reaching K predictions a byte belonging to a set

with A = 7 may die, appearing a new health state, that of the sets with A = 6 for which there

are no available write rate data yet. To cope with these cases, we can stop the prediction,

thus ending the epoch prematurely and starting a new simulation. Alternatively, to keep

low the number of simulations, we can continue the prediction, also allowing some more

error and apply the previous value wr_avg(7). In this work, we will adopt this second

approach.

4.4 Approximate forecasting procedure for byte disabling and compression

Unlike frame disabling, in a cache with byte disabling and compression, such as L2C2, a write

to a frame does not always imply a write to all the bytes of the frame and therefore the write

rate to the bytes of a frame is lower than the write rate to the frame. The wear-leveling mecha-

nism ensures an even distribution of writes among the live bytes of a frame. Consequently,

during prediction, we can assume that the write rate on all live bytes of a frame is equal, and is

calculated as the average of the write rates on all of them.

Moreover, a fault in one or more bytes of a L2C2 frame does not preclude storing blocks, as

long as their compressed size is appropriate. Now the health state of its sets is more diverse

than in frame disabling: at any given time there are not only alive and dead frames, but frames

with a very diverse range of effective capacities.

The number of faulty bytes in a frame limits the compression encodings it can accommo-

date. A frame with a certain effective capacity is associated with a compression class (CC) if it

can accommodate compressed blocks of size CC or smaller. For example, a frame with 3 defec-

tive bytes has an effective capacity of 61 bytes, which accommodates blocks of any compression

encoding except those of size 64 bytes (see Table 1 in page 4) and thus it is associated with

CC = 58.

In this context, the prediction of write rate per byte is more complex. For example, think of

a set that has only one frame of CC = 64. All non-compressible blocks will end up in that single

frame, which can become a hot spot for writes within the set. But, in another cache set with a

majority of frames with CC = 64, the write rate of the set will be distributed in a substantially

equal way among frames.

With this, our Prediction phase will assume that the write rate a byte receives depends on

the CC of its frame as well as on the CCs of the rest of the frames in the same cache set. There-

fore, now the health state of a set is abstracted as a 12-tuple �A. It aggregates the compression

classes to which each frame belongs to. For instance, a set with tuple �A ¼
ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 15Þ has one frame with CC = 58 and 15 frames with CC = 64.

Thus, during prediction, the aging write rate to consider for the bytes of a given frame Fij
will depend on its compression class CC and the health state (tuple �A) of the set that contains

Fij : wravgð�A;CCÞ.
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More specifically,

wravgð�A;CCÞ ¼ averageðwrijkÞ

8 ij jiÞFij 2 set with tuple �A

iiÞFij 2 compression class CC

Each time a byte is disabled in a frame Fij, CC of the frame and �A of the set are recomputed.

Thereafter, wrij, the aging write rate of Fij with compression class CC, is approximated by

wravgð�A;CCÞ; see③ in Fig 9.

As in frame disabling, as faults are predicted in succession, sets with a tuple value �A not yet

simulated may appear. For instance, suppose a set with the same 12-tuple as before: one frame

associated with CC = 58, and 15 frames associated with CC = 64:

�A1 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 1; 15Þ:

Suppose a byte of one of the fifteen frames with CC = 64 fails during the Prediction phase.

Now the tuple modeling the set becomes:

�A2 ¼ ð0; 0; 0; 0; 0; 0; 0; 0; 0; 0; 2; 14Þ:

But if in the epoch Simulation no �A2 tuple was tracked, the values of wravgð�A2; � Þ are

unknown. As in frame disabling, in this work we chose to continue the prediction, tolerating

some more error and using for that set the previous values of wravgð�A1; � Þ as an approxima-

tion of wravgð�A2; � Þ.

5 Methodology

Details of the multicore system modeled for the cycle-by-cycle simulation phase of each epoch

are shown in Table 3. It consists of 4 cores, each with two private cache levels L1 and L2, split

into instructions and data. In addition, there is a third cache level (L2C2) which is shared,

non-inclusive and distributed in four banks among the cores. The coherence protocol is direc-

tory-based MOESI, and the interconnection network is a crossbar connecting the L2 private

levels, the banks of the LLC and the directory. The main memory controller is located next to

the directory.

Table 3. System specification.

Cores 4, ARMv8, out-of-order (up to 8 inst/cycle), 3.5 GHz.

Coherence Protocol MOESI, directory distributed among LLC banks.

64 B data blocks in all levels.

L1 Private, 32 KB D, 32 KB I, 4 ways, LRU.

3-cycles load-use delay. Fetch on write miss.

L2 Private, L1-inclusive, 128 KB D, 128 KB I, 16 ways, LRU.

11-cycles load-use delay. Fetch on write miss.

STT-RAM NV-LLC Shared, non-inclusive, 4 banks, 4MB/bank, 16 ways, LRU.

Load-use delay: 30-cycles frame disabling; 32-cycles L2C2.

Frames protected by SECDED.

Baseline endurance: mean 1011 wr., cv = 0.2, 0.25, and 0.3.

Main Memory 1 memory controller, DDR4.

1 channel, 8GB/channel (1200 MHz)

NoC Crossbar between L2C2 banks and L2s. 32 B flits.

https://doi.org/10.1371/journal.pone.0278346.t003

PLOS ONE L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime

PLOS ONE | https://doi.org/10.1371/journal.pone.0278346 February 7, 2023 22 / 36

https://doi.org/10.1371/journal.pone.0278346.t003
https://doi.org/10.1371/journal.pone.0278346


We use Gem5 [61] along with the Ruby memory subsystem and Garnet interconnection

network. In addition, we use NVSim for the L2C2 latency estimations [60]. The workload con-

sists of 10 mixes randomly built by SPEC CPU 2006 and 2017 benchmarks [62, 63], leaving

aside applications with very little activity on the LLC [64]. Fast-forwarding is performed for

the first two billion instructions and then 200M cycles are simulated in detail. Table 4 shows

the applications that make up each mix along with the LLC MPKI of the mix, computed by

dividing total cache misses by total number of instructions executed by all applications in the

mix. Besides, the top ten memory intensive applications, in terms of accesses per kilo instruc-

tion, APKI, are superscripted.

The 10 mixes are run in the simulation phase of each epoch to obtain the WRmap for that

epoch. The write rate in each byte of the cache is calculated as the average obtained for the 10

mixes.

6 Forecasting validation, cost, and specific situations

To validate the forecasting procedure, it would be necessary to contrast its projections with

data from the operation of real NVM caches as they age with a known workload. But unfortu-

nately, there is no such information in the public literature. Therefore, in this section we pro-

vide tests of the correctness of the assumed hypotheses as a function of the number of epochs

employed, evaluating the tradeoff between accuracy and time spent in the forecasting proce-

dure. Finally, we outline alternatives for situations in which some underlying assumptions are

not met.

6.1 Validation

As discussed in Sections 4.3 and 4.4, the main source of forecast inaccuracy lies in the Predic-

tion phase, where it is necessary to approximate the write rate of health states that have not yet

appeared in the Simulation phase. Of course, using epochs of small extension implies low

approximation and can improve the quality of the forecast, but at the same time it increases

computational cost.

To explore this tradeoff between quality and cost, several experiments have been per-

formed, using epochs of different extension in each experiment, which predict a certain cache

degradation. Specifically, we predict how much time elapses until 50% of the cache, T50C,

degrades. A 50% capacity degradation is a common case study [29, 31, 33], and in our

Table 4. Selected SPEC 2006 and SPEC 2017 applications, with suffixes 06 and 17, respectively and their MPKI.

Superscript indicating top-10 memory intensive applications.

mix Applications MPKI

#1 zeusmp06 gobmk06 dealII06 bzip2067 1.4

#2 hmmer06 bzip2067 wrf06 roms179 2.6

#3 zeusmp06 cactuBSSN171 hmmer06 soplex06 6.1

#4 omnetpp06 astar06 milc06 libquantum064 4.9

#5 xalancbmk0610 leslie3d063 bwaves176 mcf178 10.4

#6 lbm175 xz17 GemsFDTD062 wrf06 6.6

#7 cactuBSSN171 dealII06 libquantum064 xalancbmk0610 7.3

#8 gobmk06 milc06 mcf178 lbm175 6.0

#9 xz17 astar06 bwaves176 soplex06 3.5

#10 GemsFDTD062 omnetpp06 roms179 leslie3d063 10.6

https://doi.org/10.1371/journal.pone.0278346.t004
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experiments we will also focus on it, but any other percentage, including 100%, corresponding

to total degradation, could also be used.

A different number of epochs of constant extension is used in each experiment. The epoch

extension is the number k of consecutive predictions disabling frames or bytes, depending on

the cache model, and is calculated by simply dividing 50% of the cache size, measured in

frames or bytes, by the number of epochs.

The Y-axes in Fig 10A and 10B shows T50C as a function of the number of epochs for frame

disabling and L2C2, respectively; built with bitcells of different manufacturing variabilities.

As can be seen, the forecast of T50C converges as the number of epochs increases for all coef-

ficients of variation. Using a number of epochs greater than or equal to 8 and 16, T50C varies

less than 0.8 and 1.1% for frame disabling (k = 16384 frames) and L2C2 (k = 524288 bytes),

respectively.

Previous works performs a single simulation from a fully operational NV memory to obtain

the write rate data [29, 30, 32, 33]. From this data, they compute the time at which a bitcell

dies, and then recalculate the write rate analytically. In this sense, this methodology is similar

to ours when a single epoch is used. But, as Fig 10 shows, in both cases but specially for com-

pression, using a single epoch incurs in a non-negligible error.

Finally, in order to prove that different RWmaps do not lead to inconsistent results, five dif-

ferent random seeds have been used. The seeds are used to initialize different RWmaps for the

three values of cv and forecast is performed for all of them. Again, the convergence metric is

T50C in a 16-epoch forecast of an L2C2. The standard deviation of the different forecasted

times is below 2% of the arithmetic mean.

6.2 Computational cost

In the following we provide the computational cost of the most expensive procedure, the one

related to the forecasting of a byte-disabling LLC, together with actual time measurements.

The computational cost of the Simulation phase comes from the execution of the gem5 sim-

ulator. It depends on the number of mixes, M, used as workload and the number of cycles, Cy,

simulated for each mix. Thus, using the same input parameters the simulation cost does not

depend on the number of epochs.

The computational cost of the Prediction phase is proportional to the epoch extension, K,

and to the size of the cache in bytes, C. Indeed, on the one hand, the cost is proportional to the

number K of bytes to be disabled, i.e., the epoch extension. On the other hand, it is also pro-

portional to the size of the cache in bytes, C, since to predict the death of a byte it is necessary

to scan the entire cache to find the byte Bijk whose PLT(Bijk) is the minimum.

Thus, to forecast the evolution of an L2C2 until it loses a given fraction f of its number of

bytes C, E ¼ f C
K epochs are needed. Putting all together, the total forecasting cost of a fraction f

of capacity C, with E epochs, M mixes and Cy cycles is:

Forecasting costðf ;C; E;M;CyÞ ¼ E � costðSimþ PredÞ ¼

f1 f �
C
K
�M � Cy

� �

þ f2 f �
C
K
� K � C

� �

¼ f1ðE �M � CyÞ þ f2ðf � C2Þ
ð1Þ

where functions f1() and f2() depend on the details of the server hardware carrying out the fore-

casting. In summary, the computational cost of the forecasting procedure is linear with the

number of epochs and quadratic with the size of the cache. However, as we will see from the

experimental data, the value of f2() is much smaller than that of f1().

Table 5 shows the maximum elapsed times, broken down into Simulation and Prediction

phases, for a prediction reaching up to 50% degradation of L2C2 capacity, i.e. f = 0.5. These
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figures were obtained on a 2GHz AMD EPYC 7662 multi-core server with 100GB of main

memory. As it can be seen, the cost of a Simulation phase does not depend on the number of

epochs, while the cost of a Prediction phase decreases as the number of epochs increases. As a

result, the computational cost of the forecasting procedure grows linearly with the number of

epochs.

On the other hand, as it was shown in Fig 10, after a certain number of epochs the forecast-

ing error is negligible. Given this trade-off, all the forecasts presented below are made with

E = 16 epochs, a good balance between error and cost.

6.3 Specific situations

In all the experiments performed in this work, the forecasting procedure assumes a uniform

distribution of writes among sets. This condition is met in most systems either because the

workload is diverse over time and produces an even distribution, or because the cache incor-

porates good wear-leveling mechanisms among sets, or both.

However, in some scenarios it may be important to take non-uniformity into account. As

an example, we can think of an embedded system that always runs the same applications. Here

the distribution of accesses to the cache sets may well be non-uniform, encouraging the design

and comparison of mechanisms to even out the wear between sets.

Certainly, the forecasting procedure could also be applied in this context, although the

model that approximates the new write rates during the Prediction phase would have to be

modified. In particular, the new model could no longer use the average write rate of all frames

belonging to sets with a given health state. An alternative could be to obtain the approximation

from the distribution of write rates of those frames. We think such specialized forecast is

entirely feasible, but it is beyond the scope of this paper.

Fig 10. Forecasted T50C (in years) as a function of the number of epochs for frame disabling (A) and L2C2 (B) caches. Three coefficients of variation

are employed: cv = 0.2, 0.25, and 0.3.

https://doi.org/10.1371/journal.pone.0278346.g010

Table 5. Maximum elapsed times vs. # epochs to forecast L2C2 from start to 50% capacity.

#epochs One Simulation phase, minutes. One Prediction phase, minutes. Total forecast, days.

16 210 38 2.8

32 210 21 5.1

64 210 11 9.8

https://doi.org/10.1371/journal.pone.0278346.t005
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7 Evaluation

This section shows the evolution of capacity and performance for several NV-LLC organiza-

tions, from 100% to 50% capacity, along with experiments on wear-leveling, replacement,

cache size and workload. For all tested organizations, the forecasting procedure uses 16 epochs

of constant extension.

We analyze four NV-LLCs candidates, two based on frame disabling and two on byte dis-

abling plus compression:

• Frame disabling cache (FD). A bitcell failure is just handled by disabling the corresponding

frame [27, 28].

• Frame disabling cache with ECP6 (FD+6). Frame endurance is increased allowing the fail-

ure of up to six bitcells. After the seventh failure, the frame is disabled, because an eighth fail-

ure would no longer be recoverable [29]. This is achieved by adding six ECPs per frame to

the base SECDED mechanism.

• L2C2. A bitcell failure is handled by disabling the corresponding byte. Cache blocks are

stored compressed with BDI. It has an intra-frame wear-leveling mechanism and an LRU-Fit

replacement policy; see Section 3.

• L2C2+6. An L2C2 with 6 spare bytes per cache frame; see Section 3.5.

Two variations of L2C2 are also tested;

• L2C2-NWL. It is an L2C2 without the intra-frame wear-leveling mechanism. The Index Cal-

culation circuit has less complexity; see Section 3.4.3. Writing always starts at the least signif-

icant live byte of the frame.

• L2C2-BF. It is an L2C2 with LRU-Best-Fit replacement policy instead of LRU-Fit.

Table 6 shows the number of storage bits per frame of the tag and data arrays, along with

the percentage increments with respect to FD.

7.1 Lifetime

Fig 11 shows forecasts of capacity degradation, from start-up until 50% of effective capacity is

lost, considering bitcells with increasing manufacturing variabilities for the four NV-LLC can-

didates. The effective capacity shown on the Y-axis is the one contributing to cache block stor-

age. For example, L2C2+6 has 100% effective capacity as long as its nominal 16MB capacity is

available, regardless of whether or not the spare bytes are coming into play. Besides, Table 7a

shows T50C, the time required to lose 50% of the nominal cache capacity.

First of all, it can be seen that FD manufactured with high variability starts with an effective

capacity that may be well below the nominal one; i.e., an FD with cv = 0.3 starts operating with

less than 80% of nominal capacity because many frames come out of production with defective

Table 6. Frame costs in bits. Percentage overhead relative to FD.

SRAM Tag Array STT-RAM Data Array

Bits Overhead, % Bits Overhead, %

FD 34 - 529 -

FD+6 34 0 595 12.5

L2C2 38 11.8 594 12.3

L2C2+6 38 11.8 648 22.5

https://doi.org/10.1371/journal.pone.0278346.t006

PLOS ONE L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime

PLOS ONE | https://doi.org/10.1371/journal.pone.0278346 February 7, 2023 26 / 36

https://doi.org/10.1371/journal.pone.0278346.t006
https://doi.org/10.1371/journal.pone.0278346


bitcells; see Fig 11C. FD+6, in contrast, completely solves this problem by adding redundancy.

On the other hand, T50C decreases markedly for FD and FD+6 as the manufacturing variability

increases, while for L2C2 and L2C2+6 it is the other way around; see Table 7a. This is due to

the byte-level disabling capability of L2C2, which tolerates early byte failures and takes advan-

tage of the later ones.

Second, compared to the sharp drop observed in frame-disabling caches, the byte-disabling

ones show a much more progressive degradation of capacity, resulting in a longer T50C. L2C2

is the longest lived cache, in terms of T50C from 13.7 to 15.4 years, and FD the least, from 2.2 to

0.42 years, depending on cv. L2C2+6 lasts a little less than L2C2, but it is the one that maintains

the nominal capacity for the longest time, namely T99C, between 5.6 and 3.1 years, depending

on cv; see Table 7b. As an example, in terms of T50C, see Table 7a, L2C2 is alive 6, 11 and 37

times longer than FD for cv values of 0.2, 0.25 and 0.3, respectively.

Third, as time goes by, and contrary to expectations, the effective capacity of L2C2+6 is no

longer greater than that of L2C2, with the curves intersecting at around 7.5–5.5 years, depend-

ing on cv. As will be seen in the next subsection the explanation is as follows: before the curves

cross, the L2C2+6 system maintains a higher IPC, which implies a higher write rate and a con-

sequent earlier degradation.

Fig 11. Effective capacity evolution over time until 50% of capacity is lost for three different cv. cv = 0.2 (A), cv = 0.25 (B), cv = 0.3 (C).

https://doi.org/10.1371/journal.pone.0278346.g011

Table 7. T50C, T99C, and T99P in years; I50C|5y in instructions.

T50C, years. T99C, years.

cv 0.2 0.25 0.3 0.2 0.25 0.3
FD 2.2 1.3 0.42 1.1 - -

FD+6 3.3 2.6 1.9 2.9 2.1 1.3

L2C2 13.7 14.5 15.4 3.9 2.4 0.9

L2C2+6 12.9 13.4 14.0 5.6 4.4 3.1

(a) (b)

T99P, years. I50C|5y, instr. ×1018

cv 0.2 0.25 0.3 0.2 0.25 0.3
FD 1.7 0.65 - 0.89 0.51 0.16

FD+6 3.1 2.4 1.6 1.32 1.05 0.77

L2C2 4.3 2.8 0.82 2.01 1.96 1.90

L2C2+6 5.9 4.7 3.5 2.03 2.03 1.98

(c) (d)

https://doi.org/10.1371/journal.pone.0278346.t007
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7.2 Performance

Fig 12 shows the IPC forecast over time from start-up until 50% of effective capacity is lost for

the NV-LLC candidates. The IPCs have been normalized to the IPC of a system with an

NV-LLC with all bitcells operational. The bottom dotted red line (0% EC) represents the IPC

of a system with a fully impaired NV-LLC, i.e. with zero effective capacity.

Before going into the analysis, notice the forecasting procedure only provides IPC values

after the simulation phase of each epoch, corresponding to the health state computed by the

previous epoch. Intermediate IPC values within epochs are obtained by linear interpolation.

However, should it be necessary to have a more precise IPC within an epoch, it is sufficient to

halve the epoch extension once or several times. For instance, we observe that the first L2C2

epochs are long in forecasted time and produce a significant drop in IPC. To obtain more

detail on the IPC loss during that period, the extension of the first two epochs has been halved,

resulting in the new IPC values depicted in the dashed black lines in Fig 12.

Four observations can be highlighted from the curves.

First, after losing 50% of capacity, the IPC with frame-disabling caches is around 20%

higher than that of byte-disabling. This is because having 50% effective capacity with FD or FD

+6 implies that 50% of frames can store any block, whereas with L2C2 and L2C2+6, it implies

that the capacity of all frames has been reduced and therefore some blocks cannot be stored in

any frame.

Second, consistent with the effective capacity forecasts, the IPC degrades later and more

gradually in L2C2 and L2C2+6. The steps seen in their lines correspond to periods in which

the possibility of storing blocks of a given compression encoding has been lost.

Third, the crossings in the IPC and capacity curves occur at the same times. After these

crossings, L2C2 performs slightly better and lasts slightly longer than L2C2+6. The reason is to

be found in the first 4–6 years of operation of L2C2+6 at maximum performance, years that,

compared to L2C2, cause a higher write wear.

And fourth, in the first years of operation L2C2+6 keeps the maximum performance, L2C2

loses it progressively, and FD and FD+6 loses it abruptly. The index T99P, the time during

which performance holds above 99% of the maximum allows to quantify these facts; see

Table 7c. L2C2+6 excels at T99P for all cv values, with L2C2 in second place, except for cv = 0.3,

where FD+6 is better.

From the above analysis, L2C2+6 seems to be the best candidate, followed by L2C2, and at

some distance FD+6.

To get more insight, we propose to measure the work performed by the different organiza-

tions using the aggregate number of instructions executed by the four cores, with a utilization

Fig 12. Normalized IPC evolution over time until 50% of capacity is lost for three different cv. cv = 0.2 (A), cv = 0.25 (B), cv = 0.3 (C).

https://doi.org/10.1371/journal.pone.0278346.g012
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of 100%, until a certain wear-out condition is reached. We calculate this value with the integral

of the CPI curve. Since according to Belkhir et al. the average lifetime of a server is three to five

years [65], we propose the index I50C|5y which measures the number of instructions executed

until 50% of the capacity is exhausted or until five years have elapsed, whichever is earlier; see

Table 7d.

Regarding this index, we can say that the increase in manufacturing variability is very bad

for frame disabling, with reductions of 82 and 42% of I50C|5y in FD and FD+6, going from cv
0.2 to 0.3. In contrast, that same increase in cv slightly reduces I50C|5y in L2C2 and L2C2+6 by

5.5 and 2.5%, respectively.

In short, L2C2+6 offers the best performance in all indexes, with an additional storage cost

over L2C2 and FD+6 of less than 10%. The second option, cheaper but with less performance,

is L2C2, which requires about 12.3% more data array storage than FD, the base option without

redundancy.

7.3 Intra-frame wear-leveling impact on lifetime

In this experiment we aim to see the importance of the intra-frame wear-leveling mechanism.

In an L2C2 without intra-frame wear-leveling, there is an imbalance between the number of

writes that receive the low order bytes and the high order bytes of a frame. Concretely, higher

order bytes will not be written if the block compressed to some extent. This imbalance will

make lower order bytes receive more write operations than higher order ones so they will

become faulty before than in a cache with intra-frame wear-leveling.

To model the L2C2 without wear-leveling, L2C2-NWL, the write rate is not averaged across

the bytes of a frame. Thus, the rate used to age a byte depends not only on the compression

class of the frame it belongs to, CC, and the health state of the set, �A, but also on the position

the byte occupies among the live bytes in the frame.

Fig 13 shows the IPC evolution until the NV-LLC loses 50% of its effective capacity for

cv = 0.2. IPC of L2C2-NWL starts dropping at 3.7 years while L2C2 IPC drops at 4.3 years

(16% later). This temporal shift linking points of equal performance is evident throughout the

duration studied, being around one year on many occasions.

7.4 Fit vs. Best-Fit replacement

In L2C2 an alternative replacement policy to LRU-Fit is LRU-Best-Fit, which consists of

choosing the smallest LRU frame capable of holding the incoming compressed block; see

L2C2-BF in Fig 14. In principle, LRU-Best-Fit could be advantageous since it would preserve

frames with larger capacity from writes, allowing in the long term the hosting of blocks with

low compression capacity; see Section 3.1.1. However, L2C2-BF takes 8.9 years to lose 50% of

its capacity, while L2C2 reaches the same loss at 13.7 years, i.e. 54% longer. Besides, the IPC

drop L2C2-BF experiences at the early stages (0–2 years) is even more pronounced than that of

FD. The explanation for both effects is that when the first frame in a set experiences the first

byte failure, all the compressible blocks addressed to this set, 78% of the total, will be allocated

to this recently degraded frame; see Fig 3 in page 6. This incurring in substantial conflict

misses that degrade performance.

7.5 Sensitivity analysis

To further add generality to the results presented so far, we elaborate on three aspects; see Fig

15. First, the LLC bank size is increased from 4 to 8 MB per bank. Second, the system is scaled

by a factor of 2, going from 4 to 8 cores, from 4 to 8 banks of NV-LLC and from 1 to 2 main
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memory controllers. And third, the workload mixes are changed, including only the top ten

memory intensive applications; see applications with superscript in the Table 4.

Doubling cache capacity with the same number of cores extends performance over time to

a similar amount across all cache organizations. For example, for L2C2+6, T50C goes from 12.9

to 25.3 years when increasing size from 16 to 32 MB; see Figs 12A vs. 15A.

By scaling the system, simultaneously doubling number of cores, cache size and memory

bandwidth, the performance-time curves for all cache organizations maintain their shape; see

Figs 12A vs. 15B. This is an expected conclusion, which reinforces the possibility of incorporat-

ing L2C2-type caches in future generations of on-chip multiprocessors.

Fig 13. IPC evolution until losing 50% of capacity of an L2C2 without intra-frame wear-leveling mechanism,

L2C2-NWL, for cv = 0.2.

https://doi.org/10.1371/journal.pone.0278346.g013

Fig 14. IPC evolution until losing 50% of capacity of an L2C2 with LRU-Best-Fit replacement policy, L2C2-BF, for

cv = 0.2.

https://doi.org/10.1371/journal.pone.0278346.g014
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When considering more memory intensive applications, a first observation is that the per-

formance at full capacity exhaustion is lower, which indicates, not surprisingly, a higher

dependence of performance on the quality of the memory hierarchy; see the red baselines (0%

EC) in Figs 12A vs 15C. In addition, the performance drop is sharper and occurs earlier. For

example, for L2C2+6 the first drop is one year earlier and the relative IPC drops from 0.76 to

0.64. Again, it can be reasoned that applications that exhibit intensive LLC usage are more sen-

sitive to capacity loss, so overall system performance is more affected.

In summary, this sensitivity analysis shows that both the results and the forecasting proce-

dure itself are consistent when varying two significant dimensions, capacity and workload.

7.6 Technological projections of lifetime and performance of NV-LLCs

As we have explained so far, the forward-looking behavior of an NV-LLC can be estimated by

applying a forecasting procedure that has three key elements, namely, a statistical model of bit-

cell write endurance, a detailed simulation model of the NV-LLC organization, and a work-

load. In principle, a new forecast with a change in any of these three elements requires a

feasible, but high computation time.

All the results so far have been obtained for baseline bitcells with given endurances mod-

elled with mean μ = 1011 and cv = 0.2 − 0.3. To obtain results concerning other bitcell endur-

ances and/or NV-LLC latencies, of course the whole forecasting procedure can be repeated,

creating new RWmaps and changing the latencies in the simulation model.

However, as long as the NV-LLC latencies are assumed constant, it is possible to take

advantage of the properties of the linear transformation of Gaussian distributions to reuse the

forecast data and obtain projections for other NVM technologies with a different bitcell write

endurance values.

Specifically, if an NV-LLC is built with an improved technology, which offers the same

cache latencies, but uses bitcells with k times more endurance (μi = k � μb, σi = k � σb), new

capacity and IPC indices as a function of time can be calculated as follows:

• Cap. improved bitcells (t) = Cap. baseline bitcells (tk)

• IPC improved bitcells (t) = IPC baseline bitcells (tk)

That is, new indexes with improved bitcells at time (t) can be obtained from the forecast

made with baseline bitcells at an earlier time (tk); see Eq 8 in S1 Appendix.

Thus, from a few reference forecasts, many technology projections can be obtained. Table 8

is an example that focuses on two arbitrary, but interesting, indices: T90C and T90P, calculated

Fig 15. IPC evolution until losing 50% of capacity of FD and L2C2 for cv = 0.2. Doubling cache size (A), doubling the number of cores while keeping the

same 4MB/core (B), and only considering the most memory-intensive programs (C).

https://doi.org/10.1371/journal.pone.0278346.g015
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from the central column forecasts for μ = 1011 and cv = 0.2 − 0.3. T90C and T90P are the elapsed

times to reduce the rated capacity and performance, measured in IPC, to 90% of the initial val-

ues, respectively. Note that the values of T90C and T90P scale linearly with the value of μ. That

is, the value of T90C for μ = 1012 is equal to 10 times the value of T90C for μ = 1011. As it can be

seen, T90C always trails T90P and L2C2+6 is the best cache organization.

These types of indices can serve as a basis for signing a Service Level Agreement, SLA, with

prospective customers. It is plausible to think that a manufacturer can have a portfolio of

NVM qualities and technologies and that a customer can choose the product with the best per-

formance/cost ratio for her/his needs. For example, for a smartphone projected for a daily

usage of 6 hours at 100% and with an average product life of 1.8 years [65] several cache orga-

nizations and manufacturing variabilities of those shown in the μ = 1011 writes/bitcell columns

may fit. These figures could be representative of a technology with moderate write endurance,

but comparatively inexpensive.

8 Conclusions

We have introduced L2C2, a new fault-tolerant NV-LLC organization that achieves per-byte

write rate reduction without performance loss and allows compressed blocks to be placed in

degraded frames. L2C2 evenly distributes the write wear within each frame, uses an appropri-

ate replacement policy, and inherently allows adding redundant capacity in each cache frame,

further extending the time in which the cache remains without performance degradation.

Compression and decompression circuits have been synthesized, considering intra-frame

wear-leveling, concluding that their inclusion seems very feasible in terms of area, power and

latency.

On the other hand, we have developed a procedure that allows to forecast in detail the tem-

poral evolution of such NV-LLCs. To the best of our knowledge, the proposed forecasting pro-

cedure is the first in its class. It couples simulation phases in which statistics are gathered from

the system with prediction phases in which the bitcells that become faulty are predicted. This

methodology has allowed us to compare several NV-LLC organizations in terms of lifetime

and performance. It has also allowed us to measure the influence of manufacturing process

variability on these results.

Our evaluation shows that, with an affordable hardware overhead, L2C2 achieves a large

lifetime improvement compared to a reference NV-LLC provided with frame disabling. The

lifetime is multiplied by a factor from 6 to 37 times depending on the variability in the

Table 8. T90C and T90P for FD+6, L2C2 and L2C2+6, varying cv and μ. m = months, y = years.

Mean number of writes to fail, μ.

cv Cache 1010 1011 1012

T90C T90P T90C T90P T90C T90P

0.2 FD+6 3.7m 3.9m 3.1y 3.2y 30,7y 32.2y

L2C2 7.1m 7.2m 5.9y 6.0y 58,9y 60.1y

L2C2+6 7.7m 7.8m 6.4y 6.5y 63.8y 64.7y

0.25 FD+6 2.8m 3.1m 2.4y 2.5y 23.5y 25.4y

L2C2 5.7m 5.8m 4.7y 4.9y 47.3y 48.7y

L2C2+6 6.4m 6.5m 5.3y 5.4y 53.1y 54.2y

0.3 FD+6 2.0m 2.2m 1.6y 1.9y 16.4y 18.6y

L2C2 4.5m 4.7m 3.7y 3.9y 37.3y 39.1y

L2C2+6 5.1m 5.3m 4.3y 4.4y 42.5y 43.8y

Projections Forecast Projections

https://doi.org/10.1371/journal.pone.0278346.t008
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manufacturing process. Increasing redundancy significantly increases the time to loss of per-

formance by one to two years in all configurations, regardless of the variability in the

manufacturing process. However, it does not increase the lifetime of the L2C2.

Knowledge of how performance evolves through time could be essential for manufacturers

to be able to incorporate NVM technologies with the confidence that they can guarantee cer-

tain performance for a reasonably appealing time period.

Finally, the new forecast procedure leaves the door open to detailed evaluation of different

cache organizations, varying, for example, content management policy between cache levels,

replacement policy, or wear-leveling.

Supporting information

S1 Appendix. Time scaling of forecasted indexes when considering bitcells with more

endurance.
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Viñals.
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