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Non-Stationary α-Fractal Surfaces
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Abstract. In this paper, we define non-stationary fractal interpolation
surfaces on a rectangular domain and give some upper bounds for their
fractal dimension. Next, we define a fractal operator associated with
the non-stationary fractal surfaces, and study some properties of it. In
particular, we hint at the existence of a Schauder basis consisting of
non-stationary fractal functions.
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1. Introduction

Motivated by the seminal work [1] of Barnsley on Fractal Interpolation Func-
tions (FIFs), Navascués [23] introduced a family of fractal interpolation func-
tions fα known as α-fractal functions corresponding to a continuous function
f on closed and bounded interval of R. The α−fractal function fα approx-
imates and interpolates f simultaneously. As it is evident from some works
of Navascués and her collaborators [8,9,14,22–24,28,30,32] that there are
enormous applications of (stationary) fractal functions in different areas of
mathematics.

The univariate FIFs are studied more than the bivariate case. In [19],
Massopust introduced a construction of fractal surfaces on a triangular do-
main from coplanar data points on the boundary of the domain. Chand and
Kapoor [8] presented a hidden variable FISs on rectangular domains with
some conditions but it is observed by Xu and Ruan [26] that their con-
struction is not feasible. In [10], Dalla obtained FISs on rectangular grids
for collinear interpolation points on the boundary. Bouboulis and Dalla [5]
obtained a continuous fractal surface using coplanar data points. In [21], Met-
zler and Yun generalised the construction given by Malysz [18] by using a
vertical scaling function instead of constant scaling factor. Ruan and Xu [26]
introduced a general framework to construct fractal interpolation surfaces

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-022-02242-9&domain=pdf
http://orcid.org/0000-0001-7591-6660


48 Page 2 of 18 M. A. Navascués and S. Verma MJOM

on a rectangular domain without any conditions on data points. We refer
the reader to, albeit incomplete, list of references, [5,6,19,21,24,26] for some
constructions of fractal surfaces.

Fractal dimension has been at the heart of fractal geometry. Estimating
the fractal dimension for many sets may require a lot of work, sometimes
it is too difficult to compute, see, for instance, [13]. We encourage the non-
fractalist reader to consult [28] for a better starting in the field of the fractal
dimension of bivariate function. In [18], Malysz computed the box dimen-
sion of fractal interpolation surfaces. In [15], Kong et al. obtained the box
dimension of bilinear fractal interpolation surfaces using the variation of the
fractal function over small subrectangles. In [29,30], Verma and Viswanathan
introduced and studied the bivariate α-fractal functions from the fractal ge-
ometry, operator theoretic and constrained approximation point of view. In
[14], Jha et al. obtained some bounds of the box dimension of α-fractal func-
tion. They also focus on some approximation and smoothness properties of
bivariate α-fractal function.

Recently, Liang and Ruan [17] construct recurrent fractal interpolation
surfaces (RFISs) on rectangular grids and introduce bilinear RFISs without
any restrictions on interpolating data and vertical scaling factors. Further,
they compute the box dimension of bilinear RIFSs with suitable conditions.
In [24], Navascu’es et al. launch a new construction method of fractal surfaces
on a rectangular domain from a given germ function f and a base function
b under the condition that f and b take the same values on the boundary of
the rectangular domain.

The first connection between stationary subdivision schemes and self-
similar fractals is originated in [27]. Motivated by this work, Levin et al. [16]
study trajectories of contraction mappings, which they consider a general-
ization of Banach fixed point theorem. Using this notion, they establish a
nice relation between non-stationary subdivision schemes and fractals. Fur-
ther, they compared their results with V − variable fractals and superfractals,
see, [3]. Following the previous work, Dyn et al. [12] attempted to connect
more general types of subdivision schemes to sequence of function systems.
Recently, Massopust [20] introduces the concept of non-stationary FIFs by
considering a sequence of Read-Bajraktarević (RB) operators. He also shows
with some examples that non-stationary version of fractal interpolation func-
tions have greater flexibility than stationary case. Now, our aim here is to
construct and study non-stationary fractal α−fractal surfaces.

We should emphasize that the non-stationary version is presented not
merely as generalization of the stationary case; however with an eye towards
broadening non-stationary fractal surfaces to the region of constrained ap-
proximation.

The content of the paper is as follows. In the second section, we target
to develop the non-stationary fractal surfaces on a rectangular domain. In
third, we deal with the dimension of the non-stationary FISs using oscillation
spaces and Hölder space. In the last section, we define a non-stationary fractal
operator, and establish some properties of it.
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2. Non-Stationary α-Fractal Surfaces

In this section, we construct a non-stationary bivariate α-fractal function on
rectangular grids; for details on stationary bivariate α-fractal function, the
reader is referred to [26,30].
Let I = [a, b] and J = [c, d]. Define �� = I × J . Let a continuous function
f : �� → R be given. Define a net Δ by

Δ := {(xi, yj) ∈ R
2 : a = x0 < x1 < · · · < xN = b; c = y0 < y1 < · · · < yM = d}.

We will use the following notation: ΣN = {1, 2, . . . , N}, ΣN,0 = {0, 1, . . .
N}, ∂ΣN,0 = {0, N} and intΣN,0 = {1, 2, . . . , N − 1}.

Here we should note that we are working with a set D = {(xi, yj , zij) :
i ∈ ΣN,0, j ∈ ΣM,0} of three-dimensional data points where the date set is
originated from the function f , that is, zij = f(xi, yj). Let s = {sk}k∈N be
a sequence of continuous functions sk ∈ C(��,R) satisfying sk �= f , ‖s‖∞ :=
supk∈N

‖sk‖∞ < ∞, and

sk(xi, yj) = f(xi, yj), ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0.

Let α = {αk}k∈N be a sequence of continuous functions αk ∈ C(��,R) such
that

‖α‖∞ := sup{‖αk‖∞ : k ∈ N} < 1.

We define affine functions ui : I → Ii := [xi−1, xi] and vj : J → Jj :=
[yj−1, yj ] as follows:

ui(x) = aix + bi, vj(y) = cjy + dj ,

where constants involved are suitably determined by the following set of
equations:

ui(x0) = xi−1, ui(xN ) = xi, if i is odd,

ui(x0) = xi, ui(xN ) = xi−1, if i is even,

vj(y0) = yj−1, vj(yM ) = yj , if j is odd, and

vj(y0) = yj , vj(yN ) = yj−1, if j is even.

(2.1)

Set K = �� × R and define Fij,k : K → R by

Fij,k(x, z) = αk

(
Pij(x)

)
z + f

(
Pij(x)

) − αk

(
Pij(x)

)
sk(x),

where x = (x, y) and Pij(x) := (ui(x), vj(y))). For each (i, j) ∈ ΣN × ΣM ,
we define Wij,k : K → ��ij × R by

Wij,k(x, z) =
(
Pij(x), Fij,k(x, z)

)
,

where ��ij := Ii × Jj . Now, we have a sequence of IFSs Ik :=
{
K,Wij,k :

(i, j) ∈ ΣN × ΣM

}
.

Let us mention two examples for such function sk ∈ C(��,R).
(1) sk(x) = f(x)tk(x), where tk ∈ C(��,R) is a fixed non-constant function

such that tk(xi, yj) = 1, ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0.
(2) sk(x) = (f◦tk)(x), where tk ∈ C(��,��) is a fixed map such that tk �= Id,

the identity map, and tk(xi, yj) = (xi, yj), ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0.
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Let X be a metric space and {Tk}k∈N be a sequence of Lipschitz maps on X.
We define backward procedures as follows:

Ψk := T1 ◦ T2 ◦ . . . Tk.

Definition 2.1. Two sequences {xk}k∈N and {yk}k∈N in a metric space (X, d)
are said to be asymptotically similar if d(xk, yk) → 0 as k → ∞.

Example 2.2. Let X = [0, 1] and xk = zk, yk = z2k for some z ∈ X. Then
{xk}k∈N and {yk}k∈N are asymptotically similar.

Remark 2.3. If {xk}k∈N and {yk}k∈N are asymptotically similar then

lim
k→∞

xk = x ⇐⇒ lim
k→∞

yk = x.

Proposition 2.4. ([16], Proposition 3.4) Let {Tk}k∈N be a sequence of Lips-
chitz maps on a complete metric space X such that Tk has Lipschitz constant
ck. If limk→∞

∏k
i=1 ci = 0, then {Ψk(x)}, {Ψk(y)} are asymptotically similar

for all x, y ∈ X.

Example 2.5. Let us consider X = [0, 1] and Tk : X → X defined by
Tk(x) = x

k . Here ck = 1
k and limk→∞

∏k
i=1

1
i = 0. Then all the trajecto-

ries are asymptotically similar.

Proposition 2.6. Let {Tk}k∈N be a sequence of Lipschitz maps on a complete
metric space X. If there exists x ∈ X such that the sequence {d(x, Tk(x))} is
bounded, and

∑∞
k=1

∏k
i=1 ci < ∞, then the sequence {Ψk(x)} converges for

all x ∈ X to a unique limit x.

Proof. For m, k ∈ N, m > k, and x ∈ X satisfying the conditions of the
statement:

d(Ψm(x),Ψk(x)) ≤ d(Ψm(x),Ψm−1(x)) + d(Ψm−1(x),Ψm−2(x))+

· · · + d(Ψk+2(x),Ψk+1(x)) + d(Ψk+1(x),Ψk(x))

≤
( m−1∏

i=1

ci

)
d(Tm(x), x) + · · · +

( k∏

i=1

ci

)
d(Tk+1(x), x).

Since the sequence {d(x, Ti(x))} is bounded, that is, there exists M > 0 such
that supi∈N

d(x, Ti(x)) ≤ M, then d(Ψm(x),Ψk(x)) ≤ M(Sm−1 − Sk−1),
where Sj represents j-th partial sum of the series

∑∞
k=1

∏k
i=1 ci. This further

implies that {Ψk(x)} is Cauchy and hence convergent. Using the previous
proposition, all the trajectories {Ψk(y)} are convergent to the same limit for
all y ∈ X. �

From the above proposition, it is immediate to deduce the following
result.

Corollary 2.7. If X is a complete and bounded metric space, and {Tk} is a
sequence of Lipschitz mappings on X with

∑∞
k=1

∏k
i=1 ci < ∞, then all the

trajectories {Ψk(x)} converge to the same limit.
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Let us recall the following notation:

α := {αk}k∈N and s := {sk}k∈N.

Now, let Cf (��) :=
{
g ∈ C(��) : g(xi, yj) = zij , ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0

}
.

Proposition 2.8. The set Cf (��) is a complete and convex subset of C(��) with
respect to the uniform (or supremum) distance.

Proof. Let us consider a convergent sequence of elements fm ∈ Cf (��) ⊂
C(��) and lim fm = g ∈ C(��) with respect to the supremum norm. The uni-
form convergence implies pointwise convergence and g(xi, yj) = limm fm(xi, yj)
= limm zij = zij . Besides g must be a continuous function, therefore g ∈
Cf (��). Consequently, Cf (��) is a closed set of the complete space C(��) and
thus complete. The convexity is a straightforward consequence of the defini-
tion. �

For k ∈ N, we define a sequence of RB operators Tαk : Cf (��) → Cf (��)
by

(Tαkg)(x) = Fij,k(Qij(x), g(Qij(x)) ∀x ∈ ��ij , (i, j) ∈ ΣN × ΣM ,

where x = (x, y) and Qij(x) := (u−1
i (x), v−1

j (y)). For completeness, we shall
hint at the well-definedness of Tαk .

Proposition 2.9. The above Tαk : Cf (��) → Cf (��) is well-defined for each
k ∈ N.

Proof. Let us denote the boundary of a set X by ∂(X). If (x, y) ∈ (xi−1, xi)×
(yj−1, yj), then Tαkg(x, y) takes exactly one value.
If (x, y) ∈ ∂(Ii × Jj), then we have at least one of the following:
(1) (x, y) ∈ ∂(Ii × Jj) ∩ ∂(Ii+1 × Jj)
(2) (x, y) ∈ ∂(Ii × Jj) ∩ ∂(Ii × Jj+1)
(3) (x, y) ∈ ∂(Ii × Jj) ∩ ∂(Ii−1 × Jj)
(4) (x, y) ∈ ∂(Ii × Jj) ∩ ∂(Ii × Jj−1).

We show the first case, as the others will follow similarly. Assuming (x, y)
= (xi, y) as a point in ∂(Ii × Jj) we get

(Tαkg)(x, y) = f(x, y) + αk(x, y)
(
g
(
u−1

i (x), v−1
j (y)

) − sk

(
u−1

i (x), v−1
j (y)

))

(2.2)

and treating (x, y) = (xi, y) as a point in ∂(Ii+1 × Jj)

(Tαkg)(x, y)=f(x, y) + αk(x, y)
(
g
(
u−1

i+1(x), v−1
j (y)

)−sk

(
u−1

i+1(x), v−1
j (y)

))
.

(2.3)

If i is an even number, then u−1
i (xi) = u−1

i+1(xi) = x0, otherwise u−1
i (xi) =

u−1
i+1(xi) = xN , This with Eqs. (2.2) and (2.3) yield the same value for

Tαkg(xi, y). Hence, Tαkg is well-defined. �
We further note that Tαk is a contraction map, that is,

‖Tαkg − Tαkh‖∞ ≤ ‖αk‖∞‖g − h‖∞.

Now, we are ready to prove the non-stationary version of [ [30], Theorem 3.1].
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Theorem 2.10. Let us consider the sequence of operators {Tαk} on Cf (��)
defined above with the conditions described. Then for every g ∈ Cf (��) the
sequence {Tα1 ◦ Tα2 ◦ · · · ◦ Tαkg} converges to a map fA

s of Cf (��).

Proof. Let us consider g ∈ Cf (��). We first check that {‖Tαkg − g‖∞} is
bounded. Applying the definition of Tαk ,

‖Tαkg − g‖∞ ≤ ‖f‖∞ + ‖g‖∞ + ‖αk‖∞(‖g‖∞ + ‖sk‖∞)

= (1 + ‖α‖∞)‖g‖∞ + ‖f‖∞ + ‖α‖∞‖s‖∞,

the bound does not depend on k. Applying Proposition 2.6, there exists
fA

s ∈ Cf (��) such that fA
s = limk→∞ Tα1 ◦ Tα2 ◦ · · · ◦ Tαkg for any g ∈

Cf (��). �

Remark 2.11. Recall [30, Theorem 3.2] that if ‖α‖∞ < (1+‖Id−L‖)−1, then
the associated (stationary) fractal operator Fα

Δ,L : C(��) → C(��) defined by
Fα

Δ,L = fα
Δ,L, where fα

Δ,L is the (stationary) α-fractal function corresponding
to the scaling function α : �� → R and base function Lf satisfying the self-
referential equation:

fα
Δ,L(x, y) = f(x, y) + α(x, y)fα

Δ,L

(
u−1

i (x), v−1
j (y)

)

−α(x, y)(Lf)(
(
u−1

i (x), v−1
j (y)

)
,

is a topological automorphism. See [30] for notation and more details. The
mentioned result convinces us that every function in C(��) is a stationary α-
fractal function corresponding to some parameters. But, it should be noted
[2] that the construction of an IFS for a given function is really a difficult
task.

Definition 2.12. The function fA
s is the non-stationary fractal surface with

respect to f, α, s and the net Δ. Note that to make distinction between
stationary and non-stationary α-fractal functions, we are denoting the non-
stationary α-fractal function by fA

s , where A represents the sequence α. This
may be a slight abuse of notation.

Remark 2.13. Since each Tαk is a contraction, there exists a unique function
fα

k , known as (stationary) α−fractal function corresponding to Tαk , such
that Tαk(fα

k ) = fα
k . Being the fixed point of the RB-operator Tαk [30], fα

k

satisfies the functional equation:

fα
k (x) = Fij,k

(
Qij(x), fα

k (Qij(x))
)

∀ x ∈ ��ij ,

where x = (x, y) and Qij(x) := (u−1
i (x), v−1

j (y)). That is, for all (i, j) ∈
ΣN × ΣM and x ∈ ��ij , we have

fα
k (x) = f(x) + αk(x)fα

k (Qij(x)) − αk(x)sk(Qij(x)). (2.4)

Define Wαk(B) := ∪(i,j)∈ΣN ×ΣM
Wij,k(B) for B ⊆ �� × R.

Proposition 2.14. Let us consider the IFS Ik :=
{
K,Wij,k : (i, j) ∈ ΣN ×

ΣM

}
. Let h : �� → R be a continuous function interpolating the data {(xi, yj ,

f(xi, yj)) : i ∈ ΣN,0, j ∈ ΣM,0}, then if Gh is the graph of h, Wαk(Gh) = Gg

where Gg is the graph of a continuous function g : �� → R interpolating
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the data, then Tαkh = g where Tαk is the operator defined as previously.
Moreover, if g = Tαkh then Wαk(Gh) = Gg.

Proof. Let Gh be the graph of a continuous function h : �� → R. Let
(x, h(x)) ∈ Gh then

Wij,k(x, h(x)) = (Pij(x), Fij,k(x, h(x)))

If Pij(x) = x̃, then

Wij,k(x, h(x)) = (x̃, Fij,k(Qij(x̃), h(Qij(x̃))))

and x̃ ∈ ��ij . Each Wij,k transforms the graph Gh in the graph of a contin-
uous map gij : ��ij → R defined by

gij(x̃) = Fij,k(Qij(x̃), h(Qij(x̃)))

The values of gij at the boundaries of ��ij are coinciding. In this case,
we can link the surfaces gij to compose a continuous function g such that
g(x) = gij(x) for x ∈ ��ij . The definition of g agrees with the image of h
by the operator Tαk so that Tαkh = g. The proof can be followed in inverse
sense. �

The graph of the function attractor satisfies the self-referential equation

Gfα
k

=
⋃

(i,j)∈Σ

Gfα
k,ij

(2.5)

where fα
k,ij is the restriction of fα

k to ��ij .
Let us consider the set of graphs of the continuous functions belonging to
Cf (��), G = {Gh}h∈Cf (��). In this collection of sets it seems natural to define
the metric

d(Gh, Gg) = ‖h − g‖∞ (2.6)

The set G is a complete metric space due to the completitude of Cf (��). We
can define the map

F̃ : G → Cf (��) (2.7)

such that F̃ (Gh) = h. F̃ is an isomorphism of metric spaces, in particular
is an isometric embedding and it preserves the fractal dimension (see [3]).
F̃ also preserves the topological invariants. The topology of G agrees with
the identification topology induced by F̃ ([3]). The next result can be easily
proved.

Theorem 2.15. If S : Cf (��) → Cf (��) is a contractive transformation on
(Cf (��), ‖ · ‖∞) with contractivity factor r, the map Ŝ : G → G such that
Ŝ(Gh) = GS(h) is a contraction with the same factor.

We could have followed the inverse way and define the H-metric on the
space of functions (see [25]), given by

d(h, g) = dH(Gh, Gg)
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where Gh, Gg are the graphs of h and g, respectively, and dH is the Haus-
dorff distance (for sets) between them, but the uniform distance seems more
intuitive.
We can consider that (G,Wαk) is a dynamical system with an attracting fixed
point Gfα

k
.

Proposition 2.16. The attractor of a finite composition Wα1 ◦Wα2 ◦ · · · Wαk

is the graph of a function gk : �� → R interpolating the data.

Proof. Let us consider Tα1 ◦ Tα2 ◦ · · · ◦ Tαk : Cf (��) → Cf (��). Since Cf (��)
is complete and the mapping is a contraction then it admits a fixed point
gk ∈ Cf (��). The corresponding attractor of Wα1 ◦ Wα2 ◦ · · · Wαk is the
graph of this function. �

Remark. The function fA
s is the uniform limit of the maps gk defined in the

Proposition 2.16.

3. Fractal Dimension of Non-Stationary α-Fractal Surfaces

Next we aim to compute the fractal dimension of the graph of a non-stationary
fractal interpolation function using the concept of oscillation and Hölder
spaces. We refer the reader to [7,11] for oscillation spaces. Fractal dimension
is a tool which tries to distinguish fractals. We denote by dimB(C),dimB(C)
and dimH(C) the lower box dimension, upper box dimension and Hausdorff
dimension of a set C respectively. The reader can consult [13] for definitions
and some properties of fractal dimensions.

Let Q ⊂ [0, 1] × [0, 1] =: I2 dyadic square so that Q =
[

i
2m , i+1

2m

]
×

[
j

2m , j+1
2m

]
for some integers m ≥ 0 and 0 ≤ i, j < 1

2m . For a continuous

function f : I2 → R we define oscillation of f over Q as follows:
Rf (Q) = sup

x,y∈Q
|f(x) − f(y)|

= sup
x∈Q

f(x) − inf
x∈Q

f(x),

and total oscillation of order m,

Osc(m, f) =
∑

|Q|=2−m

Rf (Q)

where the sum ranges over all dyadic squares Q ⊂ I2 of side-length |Q| = 1
2m .

For a given 0 < β ≤ 1, we define oscillation space Vβ(I2) by

Vβ(I2) =
{

f ∈ C(I2) : sup
m∈N

Osc(m, f)
2m(2−β)

< ∞
}

.

One can define

Vβ−(I2) = {f ∈ C(I2) : f ∈ Vβ−ε(I2) ∀ ε > 0}
and

Vβ+(I2) = {f ∈ C(I2) : f /∈ Vβ+ε(I2) ∀ ε > 0}.
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Theorem 3.1. ([7], Theorem 4.1) Let f be a real-valued continuous function
defined on I2, we have

dimB(Graph(f)) ≤ 3 − γ ⇐⇒ f ∈ Vγ−(I2) if 0 < γ ≤ 1

and

dimB(Graph(f)) ≥ 3 − γ ⇐⇒ f ∈ Vγ+(I2) if 0 ≤ γ < 1.

Now, it is easy to check that ‖f‖Vβ := ‖f‖∞ + supm∈N

Osc(m,f)
2m(2−β) is a

norm on Vβ(I2). Let us note the following result.

Theorem 3.2. The space (Vβ(I2), ‖.‖Vβ ) is a Banach space.

Proof. Proof follows on the similar lines of [31, Theorem 3.6]. �

Lemma 3.3. Let N = M = 2n for some n ∈ N and |uj(I)| = |vj(I)| = 1
2n for

all j ∈ ΣN . Then for m > k, we have

Osc(m, g) = N2Osc(m − n, f),

where g(x) := f(Qij(x)) for x ∈ ��ij.

Proof. We have

Osc(m, g) =
∑

|Q|=2−m

sup
x,y∈Q

|g(x) − g(y)|

=
∑

|Q|=2−m

sup
x,y∈Q

|f(Qij(x)) − f(Qij(y))|

=
∑

i,j∈ΣN

∑

|Q|=2−(m−n)

sup
x,y∈Q

|f(x) − f(y)|

= N2Osc(m − n, f),

(3.1)

completing the proof. �

For the upcoming theorem, let us introduce the following notation:
‖α‖∞ := supk∈N

‖αk‖∞ < 1 and Osc(m,α) := supk∈N
Osc(m,αk) < ∞.

Let Vβ
f (I2) := {g ∈ Vβ(I2) : g(xi, yj) = f(xi, yj), ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0}.

We observe that the space Vβ
f (I2) is a closed subset of Vβ(I2). It follows

that Vβ
f (I2) is a complete metric space with respect to the metric induced by

norm ‖.‖Vβ .
Now, we are well-equipped to establish the next result.

Theorem 3.4. Let f, sk, αk ∈ Vβ(I2) be such that sk(xi, yj) = f(xi, yj),
∀(i, j)
∈ ∂ΣN,0×∂ΣN,0. Further, we assume that |uj(I)| = |vj(I)| = 1

2n for some n ∈
N and for all j ∈ ΣN with N = M = 2n. If max

{
‖α‖∞+N2 supm∈N

Osc(m,α)
2m(2−β) ,

N2‖α‖∞
2n(2−β)

}
< 1, then for any g ∈ Vβ

f (I2) the sequence {Ψk(g)} converges in

norm ‖.‖Vβ to a map fA
s ∈ Vβ(I2). Furthermore, we have 2 ≤ dimH

(
GfA

s

) ≤
dimB

(
GfA

s

) ≤ dimB

(
GfA

s

) ≤ 3 − β.
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Proof. It is well-known [13] that

2 ≤ dimH

(
GfA

s

) ≤ dimB

(
GfA

s

) ≤ dimB

(
GfA

s

)
.

Now, we continue by defining a sequence of mappings Tk : Vβ
f (I2) → Vβ

f (I2)
by

(Tkg)(x) = f(x) + αk(x) (g − sk)(Qij(x)),

for all x ∈ ��ij , (i, j) ∈ ΣN × ΣN , where x = (x, y) and Qij(x) := (u−1
i (x),

v−1
j (y)).

Using Lemma 3.3, for g, h ∈ Vβ
f (I2) we have

‖Tkg − Tkh‖Vβ

= ‖Tkg − Tkh‖∞ + sup
m∈N

Osc(m,Tkg − Tkh)
2m(2−β)

≤ ‖α‖∞‖g − h‖∞ +
∑

(i,j)∈ΣN ×ΣN

‖αk‖∞
2n(2−β)

sup
m∈N

Osc(m − n, g − h)
2(m−n)(2−β)

+
∑

(i,j)∈ΣN ×ΣN

‖g − h‖∞ sup
m∈N

Osc(m,αk)
2m(2−β)

≤
(

‖αk‖∞ +
∑

(i,j)∈ΣN ×ΣN

sup
m∈N

Osc(m,αk)
2m(2−β)

)

‖g − h‖∞

+
( ∑

(i,j)∈ΣN ×ΣN

‖αk‖∞
2n(2−β)

)
sup

m∈N,m>n

Osc(m − n, g − h)
2(m−n)(2−β)

≤ max

{

‖αk‖∞ + N2 sup
m∈N

Osc(m,αk)
2m(2−β)

,
N2‖α‖∞
2n(2−β)

}

‖g − h‖Vβ .

From the condition taken, it follows that each Tk is a contraction map on
Vσ

f (I2). Note also that the sequence {‖Tkg − g‖Vβ } is bounded.
On applying Proposition 2.6, the backward trajectories Ψk := T1 ◦ T2 ◦

· · · ◦ Tk of (Tk) converge for every g ∈ Vβ
f (I2) to a unique attractor fA

s ∈
Vβ

f (I2). With the help of Theorem 3.1, we obtain dimB

(
GfA

s

) ≤ 3 − β. This
completes the proof. �

Remark 3.5. In [11], Deliu and Jawerth showed that the oscillation spaces
are refinements to Hölder spaces. They also expressed the fractal dimension
in terms of different classical oscillation measures and in terms of wavelet
expansions by comparing the oscillation spaces to certain Besov spaces. In
[14,28,29], box dimensions of (stationary) α-fractal functions are estimated
using Hölder spaces and variation method, however, the case of oscillation
spaces are not discussed. Our result may generalize the results available in
[15,17], because bilinear FIS is a particular case of (stationary) α-fractal
function, see, for instance, [30, Remark 2.1]. It should be noted that in [15,17],
the exact value of box dimensions of bilinear FISs and bilinear RFISs are
computed under certain conditions, however, we provide lower and upper



MJOM Non-Stationary α-Fractal Surfaces Page 11 of 18 48

bounds of dimensions of non-stationary fractal function under less restrictive
conditions, see, [30, Remark 2.1].

A function f : �� → R is said to be Hölder continuous with exponent σ
if

|f(x) − f(y)| ≤ kf‖x − y‖σ
2 , ∀ x,y ∈ ��,

and for some kf > 0.

For Hölder continuous functions f with exponent σ, let us define σth Hölder
seminorm as

[f ]σ = sup
x �=y

|f(x) − f(y)|
‖x − y‖σ

2

and consider the Hölder space

Hσ(��) := {g : I × J → R : g is Hölder continuous with exponent σ}.

The space Hσ(��) is a Banach space when endowed with the norm ‖g‖σ :=
‖g‖∞ + [g]σ.

Remark 3.6. If f ∈ Hσ0(��) then f ∈ Hσ(��) for each 0 < σ < σ0.

Let us define Hσ
f (��) = {g ∈ Hσ(��) : g(xi, yj) = f(xi, yj), ∀ (i, j) ∈

∂ΣN,0 × ∂ΣM,0}. One can check that the space Hσ
f (��) is a closed subset of

Hσ(��). It follows that Hσ
f (��) equipped with the obvious metric is complete.

Now, we are ready to prove the next result.

Theorem 3.7. Let f and αk be Hölder continuous with exponent σ1 and σ2

respectively for every k ∈ N. Let sk be Hölder continuous with exponent
σ3 satisfying sk(xi, yj) = f(xi, yj), ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0, k ∈ N.

If max
{

‖α‖σ, ‖α‖∞
(min{|ai|,|cj |})σ

}
< 1 then for any g ∈ Hσ

f (��) the sequence

{Ψk(g)} converges in norm ‖.‖σ to a map fA
s ∈ Hσ(��), where σ = min{σ1, σ2,

σ3} and ‖α‖σ = sup{‖αk‖σ : k ∈ N}. Furthermore, 2 ≤ dimH

(
GfA

s

)

≤ dimB

(
GfA

s

) ≤ dimB

(
GfA

s

) ≤ 3 − σ.

Proof. Note [13] that

2 ≤ dimH

(
GfA

s

) ≤ dimB

(
GfA

s

) ≤ dimB

(
GfA

s

)
.

From Remark 3.6, we say that f, αk and sk are elements of Hσ(��), where
σ = min{σ1, σ2, σ3}. Now we proceed by defining a sequence of mappings
Tk : Hσ

f (��) → Hσ
f (��) by

(Tkg)(x) = f(x) + αk(x) (g − sk)(Qij(x))
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for all x ∈ ��ij , (i, j) ∈ ΣN × ΣM , where x = (x, y) and Qij(x) := (u−1
i (x),

v−1
j (y)). Then we have

[
(Tkg)

]
σ

= max
(i,j)∈ΣN ×ΣM

sup
x �=y ,x,y∈��ij

|Tkg(x) − Tkg(y)|
‖x − y‖σ

2

≤ max
(i,j)∈ΣN ×ΣM

sup
x �=y ,x,y∈��ij

[
|f(x) − f(y)|

‖x − y‖σ
2

+
|αk(x)|

∣
∣
∣(g − sk)(Qij(x)) − (g − sk)(Qij(y))

∣
∣
∣

‖x − y‖σ
2

+

∣
∣
∣(g − sk)(Qij(y))

∣
∣
∣|αk(x) − αk(y)|

‖x − y‖σ
2

]

≤ [f ]σ +
‖α‖∞

(min{|ai|, |cj |})σ

(
[g]σ + [sk]σ

)
+ ‖g − sk‖∞[α]σ,

this immediately show that Tk is well-defined. Let g, h ∈ Hσ
f (��). We have

‖Tkg − Tkh‖σ = ‖Tkg − Tkh‖∞ + [Tkg − Tkh]σ
≤ ‖αk‖∞‖g − h‖∞

+
‖αk‖∞

(min{|ai|, |cj |})σ
[g − h]σ + [αk]σ‖g − h‖∞

≤ max
{

‖α‖σ,
‖α‖∞

(min{|ai|, |cj |})σ

}
‖g − h‖σ.

(3.2)

This yields that each Tk is a contraction mapping on Hσ
f (��).

Note also that the sequence {‖Tkg − g‖σ} is bounded. Using Proposi-
tion 2.6, the backward trajectories Ψk := T1 ◦ T2 ◦ · · · ◦ Tk of (Tk) converge
for every g ∈ Hσ

f (��) to a unique attractor fA
s ∈ Hσ

f (��). Since fA
s ∈ Hσ

f (��),
one deduces dimB

(
GfA

s

) ≤ 3 − σ. This proves the result. �

Remark 3.8. The above theorem can be compared with [28, Theorems 5.2.7
- 5.2.9]. To be precise, if we choose sk = s and αk = α for all k ∈ N then
the above theorem will reduce to [28, Theorems 5.2.7 - 5.2.9], and further, it
can be compared to [14, Theorem 4.2 (i)], where the box dimension of the
stationary bivariate fractal function is estimated, that is, dim

(
GfA

s

) ≤ 3 − σ
under the condition:

N∑

i=1

M∑

j=1

sup{α(x, y) : (x, y) ∈ ��ij} ≤ 1,

with the help of method of variation over small subrectangles. However, we
here use the dimensional property of Hölder space to obtain the bound:
dimB

(
GfA

s

) ≤ 3 − σ. Further, we emphasize on the fact that both of the
above techniques have been applied in [28] for obtaining different bounds
on the box dimension of stationary bivariate fractal function under different
conditions.
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4. Associated Fractal Operator

Let us recall that ‖α‖∞ = supk∈N
‖αk‖∞ < 1 and ‖s‖∞ = supk∈N

‖sk‖∞.
In view of Theorem 2.10 and Sect. 2, we are now well-equipped to prove the
next theorem.

Theorem 4.1. The non-stationary fractal function fA
s satisfies the following

properties.:

(1) If A is the null sequence then fA
s = f.

(2) The perturbation error is given by:

‖fA
s − f‖∞ ≤

∞∑

k=1

‖α‖k
∞‖f − sk‖∞ ≤ ‖α‖∞Cf,s

1 − ‖α‖∞
,

where Cf,s = supk∈N
{‖f − sk‖∞}.

(3) If the sequence {αm = {αm
k }}m∈N converges to the null sequence in

sup-norm then fAm

s converges to f.
(4) If the sequence {sm = {sm

k }}m∈N is such that Cf,sm → 0 as m → ∞,
then fA

sm converges to f.

Proof. (1) Due to Eq. (2.2),

Tαkg(x) = f(x) + αk(x)g(Qij(x)) − αk(x)sk(Qij(x)), ∀ x ∈ ��ij ,

(i, j) ∈ ΣN × ΣM ,

where x = (x, y) and Qij(x) := (u−1
i (x), v−1

j (y)). Let A be a null se-
quence. That is, αk = 0 for all k ∈ N. Then we get Tαkg(x) = f(x) for
all x ∈ ��. This on induction provides

Tα1 ◦ Tα2 ◦ · · · ◦ Tαkg(x) = f(x), ∀ x ∈ ��.

On taking the limit k → ∞, we have

fA
s (x) = lim

k→∞
Tα1 ◦ Tα2 ◦ · · · ◦ Tαkg(x) = f(x), ∀ x ∈ ��,

proving the assertion.
(2) By definition of RB operators Tαk , we have

Tα1 ◦ Tα2 ◦ · · · ◦ Tαkf(x) − f(x)

= α1(x)
(
Tα2 ◦ Tα3 ◦ · · · ◦ Tαkf − s1

)
(Qij(x)),∀ x ∈ ��ij .

Inductively, we get

Tα1 ◦ Tα2 ◦ · · · ◦ Tαkf(x) − f(x) =
k∑

l=1

α1(x) . . . αl(Ql
ij(x))

(
f − sl

)
(Ql

ij(x)),

∀ x ∈ ��ij ,

where Ql
ij is a suitable finite composition of mappings Qij . Now,

‖Tα1 ◦ Tα2 ◦ · · · ◦ Tαkf − f‖∞ ≤
k∑

l=1

‖α‖l
∞‖f − sl‖∞.
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As k → ∞, we have

‖fA
s − f‖∞ ≤

∞∑

l=1

‖α‖l
∞‖f − sl‖∞ ≤ ‖α‖∞

1 − ‖α‖∞
sup
k∈N

‖f − sk‖∞.

This completes the proof of item (2).
(3) From the proof of item (2), we get

‖fAm

s − f‖∞ ≤ ‖αm‖∞Cf,s

1 − ‖αm‖∞
.

Since ‖αm‖∞ = supk∈N
‖αm

k −0‖∞ → 0 as m → ∞, we have the required
result.

(4) The proof follows on similar lines of the previous item.
�

Remark 4.2. In [32–34], Vijender introduced and studied the (univariate sta-
tionary) Bernstein fractal functions by considering the base function as Bern-
stein polynomial Bn(f) of the generating function f in the α−fractal function.
Our result mentioned above can be treated as a non-stationary generalization
of his result, and we believe that the above result will find many applications
similar to Vijender’s work.

By considering sk = Lk(f), where Lk : C(��) → C(��) is a bounded lin-
ear operator such that Lkg(xi, yj) = g(xi, yj), ∀ (i, j) ∈ ∂ΣN,0 × ∂ΣM,0, k ∈
N, and ‖L‖∞ := supk∈N

‖Lk‖ < ∞.
Now, we define an operator so-called non-stationary fractal operator

FA
s : C(��) → C(��) defined as:

FA
s (f) = fA

s ,

where fA
s is the non-stationary fractal function corresponding to f and fixed

sequences (αk) and (Lk).

Theorem 4.3. The fractal operator FA
s : C(��) → C(��) is a bounded linear

operator where sk is taken as above.

Proof. Let f, g ∈ C(��) and β, γ ∈ R. In view of the proof of item (2) in
Theorem 4.1, we write

(βf)A
s (x) = βf(x) + lim

k→∞

k∑

l=1

α1(x) . . . αl(Ql
ij(x))

(
βf − Ll(βf)

)
(Ql

ij(x)),

and

(γg)A
s (x) = γg(x) + lim

k→∞

k∑

l=1

α1(x) . . . αl(Ql
ij(x))

(
γg − Ll(γg)

)
(Ql

ij(x)).

Using linearity of Lk, the above equations give

(βf)A
s (x) + (γg)A

s (x) = (βf + γg)(x) + lim
k→∞

k∑

l=1

α1(x) . . .

αl(Ql
ij(x))

(
βf + γg − Ll(βf + γg)

)
(Ql

ij(x)).
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Now, since

(βf + γg)A
s (x) = (βf + γg)(x) + lim

k→∞

k∑

l=1

α1(x) . . .

αl(Ql
ij(x))

(
βf + γg − Ll(βf + γg)

)
(Ql

ij(x)),

we deduce that

(βf + γg)A
s = (βf)A

s + (γg)A
s ,

that is, FA
s is a linear operator. Again by item (2) of Theorem 4.1, we get

‖FA
s (f)‖∞ − ‖f‖∞ ≤ ‖α‖∞

1 − ‖α‖∞
sup
k∈N

‖f − Lkf‖∞ ≤ ‖α‖∞
1 − ‖α‖∞

CL‖f‖∞,

where CL = supk∈N
‖I − Lk‖. Equivalently,

‖FA
s (f)‖∞ ≤

(
1 +

CL‖α‖∞
1 − ‖α‖∞

)
‖f‖∞,

establishing the result. �

Remark 4.4. We can deduce [14, Theorem 3.2] from the above theorem by
choosing Lk = Bm,n and αk = α for all k ∈ N and for some m,n ∈ N, where
Bm,n denotes the (bivarate) Bernstein polynomial operator of order (m,n).

Remark 4.5. Using item-(2) in Theorem 4.1, we have

‖FA
s (f) − f‖∞ ≤ ‖α‖∞

1 − ‖α‖∞
CL‖f‖∞,

where CL = supk∈N
‖I − Lk‖. From this, we deduce the following result: If

‖α‖∞ < 1
1+CL

then FA
s is a topological isomorphism. The topological isomor-

phism of FA
s can be used to construct a Schauder basis of C(��) consisting of

nonstationary fractal functions. Since FA
s is a topological automorphism for

‖α‖∞ < 1
1+CL

, we have
⋃

A,s

FA
s (C(��)) = C(��),

where the union is taken over all possible A and s.

Remark 4.6. In view of the above results, one can prove the non-stationary
version of [30, Theorems 3.2, 4.1, 4.4].

In the next result we show the existence of a non-trivial closed invariant
subspace for the non-stationary fractal operator. The proof of this next the-
orem is given by modifying and adapting some standard techniques present
in the literature on invariant subspace problem; see, for instance, [4,28].

Theorem 4.7. There exists a non-trivial closed invariant subspace for the
fractal operator FA

s : C(��) → C(��).
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Proof. We begin by taking a non-zero continuous function f : �� → R such
that f(xi, yj) = 0 for every (xi, yj) ∈ Δ. Denote by (FA

s )r the r-fold com-
position of FA

s with itself, and (FA
s )0 := f. Now, we construct the FA

s -cyclic
subspace generated by f , that is,

Yf = span{f,FA
s (f), (FA

s )2(f), . . . }.

It is obvious that Yf �= {0} and FA
s (Yf ) ⊆ Yf . Let g ∈ Yf . Using the definition

of Yf , there exist constants ti ∈ R and ri ∈ N ∪ {0} such that

g = t1(FA
s )r1(f) + t2(FA

s )r2(f) + · · · + tm(FA
s )rm(f).

With the help of the interpolatory property of the fractal operator, we obtain

f(xi, yj) = (FA
s (f))(xi, yj)

for every (xi, yj) ∈ Δ. This implies that g(xi, yj) = 0, ∀ (xi, yj) ∈ Δ. Assume
that Y = Yf . We immediately establish that FA

s (Y ) ⊆ Y, hence that Y is a
closed invariant subspace of FA

s .
To prove Y is a nontrivial closed invariant subspace of FA

s , we proceed
as follows. Let h ∈ Y. Then there exists a sequence (hn)n∈N ⊂ Yf such that
hn → h uniformly. Since uniform convergence implies pointwise convergence,
we deduce that h(xi, yj) = 0, ∀ (xi, yj) ∈ Δ. From which we conclude that a
continuous function that is nonzero at some points in Δ does not belong to
Y. In particular, Y �= C(��), completing the proof. �

Remark 4.8. Let us consider a set of data on a grid {(xi, yj , tij) : i ∈ ΣN,0, j ∈
ΣM,0}. The set of continuous interpolants of these data is a convex, closed
invariant set with respect to the transformation FA

s . If tij = 0 for all i, j,
then it is also an invariant linear subspace.
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