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Polymer models play the special role of elucidating the elementary features describing the physics
of long molecules and become essential to interpret the measurements of their magnitudes. In this
work the end-to-end distance of an extensible discrete worm-like chain polymer as a function of
the applied force has been calculated both numerically and analytically, the latter as an effective
approximation. The numerical evaluation uses the Transfer Matrix formalism to obtain an exact
calculation of the partition function, while the analytic derivations generalize the simple phenomeno-
logical formulas largely used up to now. The obtained formulas are simple enough to be implemented
in the fit analysis of experimental data of semi-flexible extensible polymers, with the result that the
elastic parameters obtained are compatible with previous measurements, and more, their accuracy
strongly improves in a large range of chain extensibility.
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I. INTRODUCTION

The technological advances in single molecule tech-
niques (magnetic and optical tweezers, AFM, etc.) have
allowed the manipulation and stretching of single poly-
mer molecules by applying a longitudinal force and per-
mitting the estimation of its elastic properties. In a
celebrated experiment, Bustamante and collaborators
have stretched a single double stranded DNA (dsDNA)
molecule [1] obtaining an extension curve as a function
of a large interval of applied forces.

Beyond the simplicity of this purely mechanical exper-
iment, the precise modelling of its outcomes has occupied
the energies of the researchers in a theoretical effort that
still remains far to be completed.

The stretching features of a chain submerged in ther-
mal fluctuations, have been described by means of the
so-called worm-like chain model (WLC), which concerns
a semi-flexible continuous beam [2, 3]. In one of the
most common implementation of this idea, the WLC
model has been discretized as a chain of connected rigid
sticks with the inclusion of a transversal bending be-
tween them, so obtaining a discrete version of the WLC
(DWLC) model [4–8]. This model complicates the sim-
pler freely jointed chain (FJC) model [9], composed by
freely rotating rigid sticks which do not include any stiff-
ness potential between links. While the WLC models
can describe the features of polymers presenting a bend-
ing elasticity, like the double stranded DNA (dsDNA),
the FJC model can effectively depict the elastic features
of a flexible polymeric structure, whose paradigmatic ex-
ample is the single stranded DNA (ssDNA) [1, 10] that
presents a weak resistance to bend.

Moreover, the real polymers present a longitudinal
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elasticity that requires to add a new degree of freedom in
both the FJC and the (D)WLC models. To take into ac-
count the longitudinal extension, a simple correction has
been introduced by Odijk [11] in the WLC model by re-
placing the sticks with harmonic springs, and by adding
phenomenologically the elastic contribution f/(kl0) to
the end-to-end distance of the chain obtained with in-
extensible bonds, where f is the applied stretch force, l0
the rest distance between consecutive monomers, and k
the longitudinal elastic constant of the links.
In this sense, the extension/force curve, normalized

with the contour lenght of the chain, is very simple

ξN = ξinext +
f

kl0
, (1)

or, in an alternative form also largely used in the exper-
imental literature,

ξM = ξinext

(
1 +

f

kl0

)
. (2)

These expressions have been extensively used in fitting
the experimental elastic properties of polymers as the
ssDNA [10, 12, 13], and the dsDNA [14–23], i.e. with
the FJC and the WLC models, respectively.
In recent works, a more complex expression related to

the extensible FJC model has been derived [24–27]:

ξEF = L(βfl0) +
f

kl0

[
1 +

1− L(βfl0) coth(βfl0)
1 + f

kl0
coth(βfl0)

]
,

(3)
with L(x) = cothx− 1/x the Langevin function. Eq. (3)
permits an accurate analysis of the elastic parameters of
a flexible polymer [25].
Analogously, the bending elasticity of the molecular

structures typical of the WLC model also requires an
improved formulation with extensible links. Some of such
studies have been done in Ref [6–8].
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Purpose of this work is, on the one hand, to evaluate
in an exact –numerical– way the extensible discrete WLC
model by means of the Transfer Matrix Theory. To do
that, we perform an accurate calculation of the contri-
bution to the partition function of the extensible degree
of freedom, valid also for small chains. This allows to
obtain numerically the extension curves for a wide range
of the extension parameter. Not surprisingly, we find
that, for highly extensible chains, the simple expressions
of Eq. (1) and Eq. (2) clearly fails for low and interme-
diate forces. This indicates that such formulas are only
a first order approach and a more elaborated analytical
evaluation is needed. In this sense, and founding our cal-
culations on the complete partition function, we are able,
on the other hand, to write down some new handy for-
mulas which nicely reproduce the exact Transfer Matrix
calculations for almost all the force range here consid-
ered. These formulas can be easily implemented in the
fit analysis of experimental data.

The paper is organized as follows: next section will
present the details of the model and the calculation of
the partition function; Section III will treat the numeri-
cal resolution in the outline of the Transfer Matrix Evalu-
ation (TME); in Section IV we derive the analytic curves
with the phenomenological generalization; Section V will
present the fit procedure by using the approximated for-
mula for the EDWLC model, by usign the TME data
as reference; The Summary and Comments section will
close the work.

II. THE MODEL.

FIG. 1: Scheme of the bending recoil in the WLC model. The
recoil torque energy of two consecutive links is kb cosαi,i−1,
supposed the equilibrium angle θ0 = 0. The force f pulls the
chain along the z-axis. In the 3d space the three angles αi,
θi, and θi−1 are not coplanar.

The Hamiltonian of the system is:

H = H0+

N∑
1

−fli cos θi+
N∑
1

1

2
k(li−l0)2−kb

N∑
2

l̂i ·̂li−1,

(4)
with N the number of links, and l0 the rest length of
the springs, which corresponds to the Kuhn length of

the polymer in the continuous case. H0 =
∑N

0 p2/2m

is the kinetic energy contribution. l̂i · l̂i−i is the scalar
product between the unit vectors of two consecutive
links, that is equal to cosαi,i−1. Specifically, l̂i =
(sin θi cosϕi, sin θi sinϕi, cos θi), so

cosαi,i−1 = sin θi sin θi−1 cos(ϕi − ϕi−1) + cos θi cos θi−1.
(5)

The partition function is then the sum over all the poly-
mer configurations of e−βH , specifically the spatial angles
and spring length, written as follows:

Z =
∑

{ϕi}{θi}{li}

eβ
∑N

i=1 fli cos θi− 1
2βk(li−l0)

2+βkb cosαi,i−1 ,

(6)
where the kinetic energy contributes with a force-
independent multiplicative term, here omitted because
not influential. In the last term, the sum starts from the
index i = 2, as the angle difference between the firsts
links is not defined.

The partition function can be rewritten as follows:

Z =
∑

{ϕi}{θi}{li}

N∏
i=1

eβfli cos θi−
1
2βk(li−l0)

2+βkb cosαi,i−1

=

∫ π

0

cos θ1dθ1... cos θNdθN

∫ 2π

0

dϕ1...dϕN

∫ ∞

0

l21dl1...l
2
NdlN

N∏
i=1

eβfli cos θie−
1
2βk(li−l0)

2

eβkb cosαi,i−1 (7)

where the product and sum operators cannot be in- verted, and the sum in all the possible configurations
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has been specified as the integral in the volume element
dΩ = l2 sin θ dl dϕ dθ. The above expression is not fac-
torable in single links because of the presence of the αi,i−1

term which involves the θ variable of two consecutive
links: i and i − 1, while the term βf cos θi affects the
single links only (See Eq. 5).

Nevertheless, both the integrals in the length variable
l and in the angular variable ϕ can be calculated for each

link independently. The integral of the first variable is

G(θi) =

∫ ∞

0

eβfl cos θie−
1
2βk(l−l0)

2

l2dl, (8)

and by changing variable l − l0 = x, and approximating
to high values of kl0, so that βkl20 ≫ 1 we get

G(θi) = eβfl0 cos θi

∫ ∞

−∞
eβf cos θix− 1

2βkx
2

(x+ l0)
2dx

= eβfl0 cos θie
βf2

2k cos2 θi

√
2π

β3k3

[
1 + βkl20

(
1 +

f

kl0
cos θi

)2
]

= eβfl0 cos θiS(θi). (9)

The integration limits of the above integral have been
extended from [−l0,∞] to [−∞,+∞] after the change of
variable. The added part of the integral, that involves the
error function in the interval [−∞,−l0], becomes negligi-
ble under the approximation at high kl0, so allowing its
analytic evaluation in Eq. (9) [31].

The term S(θi) represents the extensible contribution
to the partition function. This expression is a higher
approximation with respect to the analogous calculation
presented by Kierfeld et al. [6], where the same contribu-

tion was expressed by the e
βf2

2k cos2 θ factor only, i.e. the
Hamiltonian there evaluated considers higher k-values
than this one. At that level of approximation, the ef-
fective elastic contributions limits to the expression of
Eq. (1). In those conditions, they were able to resolve
the integrals by using the spherical harmonics decompo-
sition, that is not more helpful with the complete S(θi).
Concerning the ϕ integral, it is important to notice

that the term cos(ϕi−ϕi−1) included in Eq. (5) concerns
the freely rotating azimuthal angles of two subsequent
links ϕi and ϕi−1, whose difference (ϕi − ϕi−1) can be
substituted by a singe variable ϕ in the corresponding
integrations. In fact, given the periodicity of the cosine
function in the i-th integral, the variable ϕi−1 can be
considered as a fixed phase that does not changes the
integral evaluation. This gives

Iϕ(θi, θi−1) =

∫ 2π

0

dϕeβkb cosαi,i−1 (10)

= eβkb cos θi cos θi−1

∫ 2π

0

dϕeβkb sin θi sin θi−1 cosϕ

= 2πeβkb cos θi cos θi−1I0(βkb sin θi sin θi−1)

where I0(x) is the 0th-order Bessel function defined by

2πI0(p) =
∫ 2π

0
ep cosϕdϕ.

As a result of the two above integrations, the partition

function takes the shape:

Z =

∫ 1

−1

dx1 G(x1)

∫ 1

−1

dx2...dxNG(x2)Iϕ(x2, x1)...

... G(xN )Iϕ(xN , xN−1) (11)

where the change of variable cos θi = xi has been
adopted. Is is worth to note that in the limit of strong
longitudinal stiffness the S(θi) function has to reach the
value 1, i.e. limk→∞ S(θi) = 1, which corresponds to the
case of inextensible bonds.
As commented above, the expression (11) is evidently

not computable at single link level. In order to calculate
it numerically, we make use of the Transfer Matrix theory
(see Ref. [28]), which allows a precise determination of
the force vs length curve.

III. TRANSFER MATRIX EVALUATION

The result represented in Equation (11) can be written
as

Z =

∫ 1

−1

dx1G(x1)

∫ 1

−1

dx2...dxi...dxN

T (x2, x1)...T (xi, xi−1)...T (xN , xN−1) (12)

with the general term T (xi, xi−1) = G(xi)Iϕ(xi, xi−1).
The TFE consists in defining an integral operator of

the kind: ∫ 1

−1

dx T (x′, x)ψn(x) = λnψn(x
′). (13)

with ψn and λn the n-th eigenfunction and the n-th
eigenvalue respectively.
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If the integral (13) exists, the eigenfunctions are a
basis which satisfy both the completeness and orthog-
onalization conditions:

∑
n ψ

∗
n(x)ψn(x

′) = δ(x− x′) and∫
dxψn(x)ψ

∗
n′(x) = δn,n′ .

The integrals of Eq. (12) are concatenated between

each other by means of the eigenvalue equation (13).
Supposed ψn(x) known, G(x1) can be decomposed as
G(x1) =

∑
n anψn(x1), (with an =

∫
dxG(x)ψ∗

n(x)), and
by substituting G(x1) in Eq. (12) we get

Z =
∑
n

an

∫ 1

−1

dx1ψn(x1)T (x2, x1)

∫ 1

−1

dx2...dxi...dxN ...T (xi, xi−1)...T (xN , xN−1)

=
∑
n

anλn

∫ 1

−1

dx2ψn(x2)T (x3, x2)...dxi...dxN ...T (xi, xi−1)...T (xN , xN−1)

=
∑
n

anλ
i−1
n

∫ 1

−1

dxiψn(xi−1)T (xi, xi−1)...dxN ...T (xN , xN−1)

= ...

=
∑
n

anλ
N−1
n

∫ 1

−1

dxNψn(xN ) =
∑
n

a′nλ
N−1
n (14)

The method results iterative, in the sense that the ac-
tion of the operator transfer matrix (13) has the effect of
shifting the index variable in each integration, getting one
eigenvalue factor at each integration up to resolve all the
chain, and finally obtaining the simple final expression of
Eq. (14). The eigenvalues can be put in decreasing or-
der, then λ0 > λ1 > ..., and the greatest used as common
factor:

Z = a′0λ
N−1
0

[
1 +

∑
n=1

a′n
a′0

(
λn
λ0

)N−1
]
, (15)

where the fractions λn

λ0
< 1 for n = 1, ....

The numerical evaluation of the previous expressions
requires the discretization of the x-variable (−1 < x < 1)
in the integral (13), which results in the matrix eigenvalue
equation

Na∑
k=0

T (xih, xjk)ψn(xjk) = λnψn(xih), (16)

that can be diagonalized using standard methods in order
to obtain the analogous of equation (15) with a finite
number of eigenvalues.

In the above expression, Na is the number of intervals
(∆x = 2/Na) in which the integral is discretized, and
then xih = −1 + h∆x, h = 0...Na. Along this work, we
have used Na = 4000, that has guaranteed an optimum
convergence of all the integrals calculated.

Helmholtz function at the thermodynamic limit.—
Equation (15) is the exact evaluation of the partition

function in the case of N links polymer chain. A simpli-
fied formula is obtained in the case of long chains, i.e. at
the thermodynamic limit.

lim
N→∞

Z = a′0λ
N−1
0 . (17)

In this case, the free energy F = −kBT lnZ can be cal-
culated as

F = −kBT lnλN−1
0 − kBT ln a′0

= −kBTN lnλ0 − kBT ln
a′0
λ0
, (18)

and, again in the thermodynamic limit, the last constant
term can be neglected with respect to the first one that
scales as N , so that

F ≈ −kBTN lnλ0. (19)

End-to-end distance.— Given the Helmholtz function
F , the normalized end-to-end distance along the direction
of the force is given by the average:

ξ =
1

Nl0
⟨l cos θ⟩ = − 1

Nl0

dF

df
. (20)

The numerical evaluation of ξ with the Transfer Matrix
methods, that we call here ξTME, consists in discretizing
Eq. (13) and construct the T (xi, xj) matrix for a certain
value of force f , then diagonalize it by taking the high-
est eigenvalue λ0, and finally derive numerically applying
Eq. (20), according to the chosen f -span. The results
have been shown in Fig. 2, together with the dynamical
simulations of the Langevin equation which have been
computed to compare and double-check the TM results.

A. Symmetrical Transfer Matrix Algorithm.—

The expression (11) can be written in an explicit sym-
metrical form as follows:
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Z=

∫ 1

−1

dx1G
1/2(x1)

∫ 1

−1

dx2...dxNG
1/2(x1)Iϕ(x2, x1)G

1/2(x2)...G
1/2(xN−1)Iϕ(xN , xN−1)G

1/2(xN )G1/2(xN ). (21)

In this case, the general integrand T (xi, xi−1) =
G1/2(xi)Iϕ(xi, xi−1)G

1/2(xi−1) is symmetrical with re-
spect to the change i and i− 1. This way the expression
(12) becomes

Z =

∫ 1

−1

dx1G
1/2(x1)

∫ 1

−1

dx2...dxi...dxN (22)

T (x2, x1)...T (xi, xi−1)...T (xN , xN−1)G
1/2(xN ).

By discretizing the integrals in a similar way as

Eqs. (13) it is possible to write down an eigenvalue
equation similar to Eq. (16). In this symmetric case,
the eigenfunctions are necessarily real ψ∗

n(x) = ψn(x).
This means that

∑
n ψn(x)ψn(x

′) = δ(x − x′) and∫
dxψn(x)ψn′(x) = δn,n′ . By supposing the ψn(x) eigen-

functions known, we can write down the first integral
of Eq. (23) by decomposing G1/2(x1) =

∑
n anψn(x1),

(with an =
∫
dxG1/2(x)ψn(x)), and substituting in

Eq. (23) we get, equivalently as Eq. (14), and with iden-
tical procedure

Z =
∑
n

an

∫ 1

−1

dx1ψn(x1)T (x2, x1)

∫ 1

−1

dx2...dxi...dxN ...T (xi, xi−1)...T (xN , xN−1)G
1/2(xN )

= ...

=
∑
n

anλ
N−1
n

∫ 1

−1

dxNψn(xN )G1/2(xN ) =
∑
n

a2nλ
N−1
n . (23)

Along this work, given the simplification of the calcu-
lations provided by the real eigenvalues, the symmetri-
cal description has been adopted. The practical imple-
mentation follows the same procedure as described after
Eq. (14).

B. Langevin simulations.—

In order to check the numerical result of transfer ma-
trix we have performed Langevin dynamical computer
simulations of the DWLC. The polymer simulated con-
sists of N+1 dimensionless monomers connected by har-
monic springs, interacting with a bending energy (the
total potential energy is indicated with V (r)), pulled by
a constant force f in the z-direction in accordance to the
Hamiltonian (4).

The dynamics of the chain is given by the overdamped
Langevin equation (LE) of motion

ṙi = −∇⃗iV (ri) + f · ẑδi,N +
√
2kBT η⃗i(t), (24)

where η⃗i(t) represents the thermal contribution in the
shape of a Gaussian uncorrelated noise: ⟨η⃗i,α(t)⟩ = 0,
and ⟨η⃗i,α(t)η⃗j,β(t′)⟩ = δi,jδα,βδ(t − t′), where i, j =
1, ..., (N + 1), α, β = x, y, z. The nabla operator is de-

fined as ∇⃗i = ∂/∂xii + ∂/∂yij + ∂/∂zik. The constant

force f pulls the last monomer in order to stretch dynam-
ically the polymer, while the first monomer is held fixed.
The simulations have been performed by averaging the
end-to-end distance in a long trajectory by integrating
Eq. (24) with a 2nd order Runge-Kutta algorithm [30] by
using an integration time step ∆t = 0.001.

The comparison between the TME and the LE are
shown in Figs. 2 and 3, where we find an excellent
agreement between them, which confirms the correctness
of the calculations performed with the transfer matrix
methods. The parameters used in these calculations are:
the bending constant kb = 10, the rest length l0 = 1, and
β = 1, which are the standard magnitude values used
along the manuscript, and the longitudinal elastic con-
stant k = 1000, that will be changed in some of the cal-
culation performed. Since the TM calculations are much
faster than the Langevin simulations, we used them to
provide the statistical data on which to perform the fit
analysis with the analytical formulas found in the next
section.

C. Dependence on N.—

The TM numerical evaluation also allows to calculate
the dependence of the end-to-end distance with the num-
ber of links N by directly using the partition function of
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FIG. 2: Normalized end-to-end distance ξ as a function of
the force f = the extensible discrete WLC model, for differ-
ent elastic constant k, with the bending constant kb = 10 and
l0 = 1. The symbols represents the Langevin simulations, the
curves which superimpose with the symbols are the transfer
matrix evaluation. ξL and ξO (Eq. (27) and Eq. (28)) are
the näıve extensible generalization (with f/kl0) to the dis-
crete inextensible WLC formulas by Rosa et al. at high forces
(Eq. (26)) and all forces interpolation (Eq. (25)), respectively.

Eq. (15). In this case a larger number of eigenvalues have
to be taken into account, instead of the largest one only
(in principle all Na values, but in practice the first four
are generally enough), and in addition it is necessary to

evaluate all the corresponding integrals
∫ 1

−1
dxψn(x) and∫ 1

−1
dxψn(x)G(x) of Eq. (14) (or

∫ 1

−1
dxψn(x)G

1/2(x) of

Eq. (23) in the symmetric case). The comparison for
different polymer lengths with the result at the thermo-
dynamic limit is presented in Fig. 3. The results have
been shown at relatively low forces, where the size effects
are more evident.

IV. ANALYTIC APPROXIMATIONS OF
EXTENSIBLE LINKS.

A. Phenomenological extensible links.

The inextensible discrete WLC model has been studied
by Rosa et al. [4, 5], who have been able to write down
the following analytic expressions that interpolates all
the force range they considered:

βfl0 = 2βkb

[√
1 +

1

(2βkb)2
1

(1− ξ)2
−

√
1 +

1

(2βkb)2

]

+

(
3
1− L(βkb)
1 + L(βkb)

− 1/(2βkb)√
1 + 1/(2βkb)2

)
ξ, (25)

with L(x) = cothx − 1/x, which tends to the continu-
ous case for liml0→0 giving the famous Marko and Siggia
equation βLP f = 1

4(1−ξ)2 − 1
4 + ξ, with βkbl0 = LP .
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FIG. 3: The curves of the normalized end-to-end distance ξ as
a function of the force f for the extensible WLC model calcu-
lated with the Transfer Matrix method at different polymer
lengths, specifically N = 20 and N = 100, compared with
the thermodynamic limit N = ∞. The longitudinal elastic
constant is k = 1000, the bending constant is kb = 10, the
rest length l0 = 1, and β = 1. The symbols represent the
Langevin simulations with the same parameters.

Another –much simpler– expression is the high force
approximation

ξH = 1− 1

β
√
(l0f)2 + 4l0kbf

, (26)

which differs from Eq. (25) only at very low forces, and
it is here considered as a good reference. As commented
in the introduction, these formulas can be naively gener-
alized for the extensible polymers by adding the elastic
contribution f/(kl0) to every single link, procedure that
is largely used in the literature for fit purposes. Specifi-
cally, the high force limit gives the handy expression

ξL = ξH +
f

kl0
. (27)

while Eq. (25) generalizes to the extensible case by chang-
ing

ξ → ξO = ξ − f

kl0
, (28)

whose inversion to provide a function ξ(f) is not ana-
lytically feasible, and for this reason only the high force
approximation Eq. (27) is useful in fitting analysis.

B. Analytic approximations.

In order to provide a simple expression able to improve
the näıve formula (27), we notice that if we consider con-
stant the value of the cosine present in function S(θi) of
Eq. (9), its contribution to the partition function can be
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factored with respect to the rest of integrands in Eq. (11),
leaving the partition function of the inextensible discrete
WLC as a global factor. This way our approximated
proposal is to write the partition function as follows:

Z ≈ SN (θ̃)ZW , (29)

where S(θ̃) = e
βf2

2k cos2 θ̃
√

2π
β3k3

[
1 + βkl20(1 +

f
kl0

cos θ̃)2
]
.

In other words, the S function, approximated as con-
stant as concerns the cosine term at every force values,
contributes to the partition function as an external
factor that accounts for the longitudinal elasticity, while
the 2nd factor ZW continues being the contribution of
the discrete version of the worm-like chain model that
includes the bending degree of freedom of the polymer.

End-to-end distance.— The normalized end-to-end dis-
tance along the direction of the force is again given by:

ξ =
⟨l cos θ⟩
l0

= − 1

Nl0

dF

df
=

1

Nβl0Z

dZ

df
, (30)

which allows to evaluate the expression

ξEW =
1

Nβl0S(θ̃)ZW

S(θ̃)
dZW

df
+

1

βl0S(θ̃)ZW

dS(θ̃)

df
ZW

= ξW +
1

βl0S(θ̃)

dS(θ̃)

df

= ξW +
f cos2 θ̃

kl0
+

2 cos θ̃(1 + f
kl0

cos θ̃)

1 + βkl20(1 +
f
kl0

cos θ̃)2
, (31)

with ξW the normalized end-to-end distance of the dis-
crete WLC, supposed known.

In order to write down a clear handful formula it is
necessary to characterize the cos θ̃ term. As a zero-th

order approach, we can substitute in the above expression
the value cos θ̃ ≈ 1, that make sense at very high force
values, by obtaining the simple expression

ξEW0
≈ ξW +

f

kl0
+

2(1 + f
kl0

)

1 + βkl20(1 +
f
kl0

)2
. (32)

The two first terms in the above expression are noth-
ing but the näıve correction to the extensible chain com-
mented in the introduction (Eq. (1)).
An improved approximation can be obtained by sub-

stituting the cosine with the ξW expression. In fact ξW
is, essentially, the projection of the unit vector of the sin-
gle polymer link along the f -direction in the inextensible
chain, or, in other words, it is the suitable cos θ̃ average
of the polymer links. This way ξW can be used to ap-
proximate the cosine in the end-to-end expression (31).
That considered we obtain

ξEW1
≈ ξW +

f

kl0
ξ2W +

2ξW (1 + f
kl0
ξW )

1 + βkl20(1 +
f
kl0
ξW )2

, (33)

which represents a better approximation than the pre-
vious (cos θ̃ ≈ 1), being ξW = ξW (f) a function that
depends of the applied force.
Along this latter line of reasoning, a third possible pro-

posal arises by the again considering cos θ̃ ≈ ξW , but sub-
stituting it in S(θ̃) instead than in Eq. (31). This way
we have

S(ξW ) = e
βf2

2k ξ2W

√
2π

β3k3

[
1 + βkl20(1 +

f

kl0
ξW )2

]
, (34)

which derived according to equation (30) generates an
additional term because of the f -dependence of ξW , so
obtaining

ξEW2
=

1

Nβl0S(ξW )ZW
S(ξW )

dZW

df
+

1

βl0S(ξW )ZW

dS(ξW )

df
ZW = ξW +

1

βl0S(ξW )

dS(ξW )

df

= ξW +

[
f

kl0
ξW +

2(1 + f
kl0
ξW )

1 + βkl20(1 +
f
kl0
ξW )2

](
ξW + f

dξW
df

)
. (35)

Given the discrete nature of this model, the best ex-
pression for ξW is provided by Eq. (26) calculated for the
inextensible discrete WLC model in Ref. [4, 5]. The ex-
plicit expression are then obtained with the substitution:

ξW → ξH . (36)

All the above approximations are in principle valid at
high forces. However, the discrepancies of the TM eval-
uations and the analytic curves are evident only at very
low forces f ≪ 1, and for this reason the lower extreme

if the fit analysis can be considered equal to zero without
big loss of precision.

Beside the fact that the three equations (32), (33) and
(35) present, in the order, an increasing complexity, they
are still formed by elementary functions, and are suit-
able to be easily inserted in any fitting tool to analyze
experimental data.

Figure 4 shows the above calculated formulas and the
näıve equation (27), compared with the TM evaluation
for two elastic constants: k = 10 and k = 100. We can
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FIG. 4: Comparison of the approximated formulas (lines)
with the “exact” TME (symbols) with k = 10, 100.

see that the curves reveal their differences only at low
k values (for k = 1000 they completely overlap a this
scale). The inset of the figure shows the difference of the
functions with respect to the TME. We can observe that
the näıve approximation clearly deviates form TME at
low and moderate forces and thus it is unable to predict
the entropic region of the curve dominated by the bend-
ing energy term. However, the formulas ξEW0

ξEW1
and

ξEW2
nicely follow the TME curve, and for this reason it

is expected that they give a good parameter prediction
in the fit that includes the entropic region. Strangely
enough, we can see how at high forces the formulas ξEW1

and ξEW2
do not converge to the TME curve and the

difference increases with f . On the contrary, the expres-
sion ξEW0 and the näıve ξL present the correct trend for
f → ∞.

Despite this behavior, due to the cosine square term
that multiplies f/(kl0) in the 2nd term of Eq. (33) and the
equivalent one in Eq. (35), ξEW2

generates the best pa-
rameter predictions with respect to both ξEW0

and ξEW1

when used in the fit analysis.

The general result is that the expression (35) gives the
best performances for low values of the longitudinal elas-
tic parameter k, region in which the deviation of the dee
from the inextensible case becomes more evident. Also,
it gives the best evaluation at intermediate k values, pro-
vided that the contour length of the chain can be con-
sidered known. The fit analysis is the subject of next
section.

V. FIT RESULTS

In order to check the goodness of the analytic formu-
las calculated in the previous section ξEW0

, ξEW1
, ξEW2

,
and their ability to estimate the parameters of the model,
we have performed the fit on the TME data –used as
reference– by using those formulas, together with the ex-

tensible modification of the Rosa formula (ξL) suitable
in this model more than that by Marko and Siggia be-
cause of the discrete nature of the model. The TME pro-
vides the best values for this purpose because the data
are essentially “exact”, as they come out of a numerical
evaluation of the complete partition function.
The fit parameters that appear in the model are the

longitudinal elastic constant k, the bending constant kb,
and the rest length of the links l0. Moreover, to be real-
istic, the functions need to be defined with an additional
parameter that takes into account the polymer length.
In other terms, the fitted expression is considered of the
type

ξ(f ; k, kb, l0, Lc) → Lcξ(f ; k, kb, l0) (37)

where the parameter Lc is the contour length of the poly-
mer that multiplies the normalized extension.

By comparison, the reported fits includes those ob-
tained by using both the extensible FJC model (ξEF )
and the linear function typically used in the high force
region of the curve, i.e. f > 30 in our choice.
Concerning the linear behavior, it is worth to underline

that its expression can be written as ξ = Lc(1 + f
S ),

where the S parameter represents the product kl0. So
the two latter constants, which are parameters of the
model, result indistinguishable between each other in the
linear fit, though S is a magnitude often obtained from
either the fit of experimental measures [23] or theoretical
studies [29].
According to their derivation, also the formulas ξL and

ξEW0 have been fitted at high forces only, while ξEW1 and
ξEW2 have been applied to all the range calculated with
the TM methods: f ∈ ]0, 50], so including the low force
region, simplifying of the fit procedure.

The results of the parameters prediction are resumed
in Table I, calculated for three bond elastic constants
(namely k = 10, 100, and 1000) in a four parameters’
fit. The reference data TME for the fit consist of 500
points generated with a force step ∆f = 0.1 and an in-
tegral discretization Na = 4000. We can observe how
the best outcomes at high elastic constant (k = 1000)
are still given by the Rosa formula ξL, which provides
the best evaluation of the parameters, closely followed
by the ξEW0 . In this k region, the longitudinal elasticity
becomes less relevant and the inextensible approximation
reveals to give the expected parameter values. For the
lower elasticity value k = 100, ξL already provides very
bad parameters’ predictions and the first approximated
formula ξEW0 gives the best results. For low elastic values
k = 10, ξEW2 (formula (35)) gives the best predictions.

In Fig. 5 the curve calculated with the TME has been
plotted for two different values of the elastic constant
k = 10 and k = 100, together with the fitting curves. It
is possible to see that all the curves practically overlap
for k = 100, and even more they overlap for k = 1000
(not shown), while they clearly distinguish for low ks, es-
pecially at low forces. The inset of the figure reports the
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ξEW0 ξEW1 ξEW2 ξL ξEF Lc(1+f/S)
f >30 ]0, 50] ]0, 50] f >30 f >30 f >30

k 6.37 6.62 7.98 1.73 1.70 (10.00)
k = 10 kb 3.08 7.15 7.77 30.64 - -

l0 1.538 1.582 1.281 5.837 5.902 -
Lc 0.982 1.057 1.029 1.007 1.003 1.000
k 91.40 136.6 168.0 58.63 43.96 (95.40)

k = 100 kb 10.50 12.48 15.00 7.97 - -
l0 1.080 0.718 0.580 1.709 2.296 -
Lc 0.992 1.000 0.993 1.002 0.998 0.979
k 947.6 5391 5674 946.6 386.2 (725.0)

k=1000 kb 9.47 49.20 50.88 9.47 - -
l0 1.051 0.179 0.171 1.055 2.396 -
Lc 0.999 1.000 0.999 1.001 0.991 0.970

TABLE I: Four parameters fit (k, kb, l0, Lc) by using the
analytic approximation Eq. (32), Eq. (33) and Eq. (35), and
the näıve formula ξL of Eq. (27). We have used the reference
values: l0 = 1, and kb = 10, and three values of the elastic
constant: k = 10, k = 100 and k = 1000. The linear fit,
included here for completeness, is only able to provide the
Lc parameter, as the elastic parameter k is included together
with the length l0 in the “force” term S = kl0. The bolded
values indicate the best fit outcomes. In parenthesis the S-
value of the linear fit, which coincide with k in this example.

differences of the fitting functions with the TME, show-
ing that ξEW1

and ξEW2
perfectly reproduce the TME

curve in all the force range, while ξL and ξEW0
clearly

fails at low and intermediate forces.
Generally, an increase of the performance in the fit is

achieved by reducing the number of free parameters. The
most delicate parameter here is the rest length of the in-
dividual links l0, which is able to significantly change the
prediction of both the elastic constants k and kb. Unfor-
tunately, l0 is also the most difficult parameter to obtain
and the fit would strongly profit of its independent eval-
uation. A good alternative relies in the contour length
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FIG. 5: Fit of the TME data, by using the analytical formulas
discussed in the text, by using four free parameters k, kb, l0
and Lc. The values obtained are reported in Table I.

ξEW0 ξEW1 ξEW2 ξL ξEF Lc(1+f/S)
f >30 ]0, 50] ]0, 50] f >30 f >30 f >30

k 7.4 10.08 9.89 1.73 1.70 (10.00)
k = 10 kb 5.14 12.75 9.48 30.64 - -

l0 1.359 0.972 1.002 5.837 5.902 -
Lc 1.007∗ 1.007∗ 1.007∗ 1.007 1.003 1.000
k 114.9 125.2 109.9 58.63 43.96 (95.40)

k = 100 kb 4.50 11.43 9.87 7.97 - -
l0 0.882 0.787 0.910 1.709 2.296 -
Lc 1.002∗ 1.002∗ 1.002∗ 1.002 0.998 0.979
k 1165 898.1 925.2 946.6 386.2 (725.0)

k=1000 kb 11.33 8.15 8.32 9.47 - -
l0 0.866 1.135 1.110 1.055 2.396 -
Lc 1.001∗ 1.001∗ 1.001∗ 1.001 0.991 0.970

TABLE II: Three parameters fit (k, kb, l0) by using the an-
alytic formulas. The asterix indicates that the value of Lc is
fixed to the outcome of the näıve formula ξL (Eq. (27)). The
bolded values indicate the best fit outcomes.

Lc, which is a robust and easy-to-calculate parameter of
the model, being only a multiplicative factor in front of
the normalized elongation ξ. Even so, the differences in
the estimations of Lc, even if small among the different
functions, are still appreciable, as reported in Table I.
One may think that the estimation of the contour length
is a natural outcome of a linear fit at high forces. How-
ever in Table I it can be seen that the best prediction for
Lc is found by using the näıve formula ξL, almost inde-
pendently of the k values. Table II shows the results of
the three parameters fit performed by fixing in the value
of Lc as calculated by ξL. This way the prediction of
the remaining parameters strongly improves for almost
all the functions, leaving ξEW2

as the most performant
function, which overall gives the best outcomes for both
intermediate and low elastic constant values.

VI. SUMMARY AND COMMENTS.

This paper presents an analytical derivation of the par-
tition function of the extensible discrete WLC polymer
model. The difficulty of the model guided us to find two
different approaches. The first one in solving numerically
the problem by means of a Transfer Matrix Evaluation
which has been double checked with Langevin simula-
tions. The second one, by writing down some approxi-
mated handy formulas that allows the fit estimation of
the parameters of the model with increased fidelity with
respect to the past.
As known, the partition function of the discrete ex-

tensible WLC model under stretching is not factorable
in single bonds. Nevertheless, with the limit of the nu-
merical evaluation, the TM gives the exact outcomes,
calculated both at the thermodynamic limit as well as at
finite polymer length.
Analogously as in the previously calculated extensible

FJC (Ref. [25]), the analytic formulas of the end-to-end
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distance here obtained are a combination of elementary
functions easy to implement in any fit of experimental
data of semi-flexible polymers. The fit obtained with the
analytic approximations have confirmed the Rosa equa-
tion with the näıve link extension as giving the best pa-
rameter predictions at high forces, while the new formula
ξEW2

obtains the best predictions at low forces, especially
if the number of free parameters can be reduced to three.

Overall, the derived functions represent the most ap-
proximated expressions to the analytic discrete extensible
WLC model found at the date. Hopefully these func-
tions will help to improve the determination of the poly-
mer magnitudes through a new analysis of experimental

measures as described in this work.
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