
IOP Conference Series: Earth and Environmental Science

PAPER • OPEN ACCESS

A POD-based reduced order model applied to 1D
shallow water equations
To cite this article: Pablo Solán-Fustero et al 2023 IOP Conf. Ser.: Earth Environ. Sci. 1136 012036

 

View the article online for updates and enhancements.

You may also like
Assessment of probability density function
based on POD reduced-order model for
ensemble-based data assimilation
Ryota Kikuchi, Takashi Misaka and
Shigeru Obayashi

-

Reduced order modeling of some fluid
flows of industrial interest
D Alonso, F Terragni, A Velazquez et al.

-

Computationally efficient simulation of
unsteady aerodynamics using POD on the
fly
Ruben Moreno-Ramos, José M Vega and
Fernando Varas

-

This content was downloaded from IP address 155.210.148.109 on 03/03/2023 at 13:51

https://doi.org/10.1088/1755-1315/1136/1/012036
/article/10.1088/0169-5983/47/5/051403
/article/10.1088/0169-5983/47/5/051403
/article/10.1088/0169-5983/47/5/051403
/article/10.1088/0169-5983/44/3/031203
/article/10.1088/0169-5983/44/3/031203
/article/10.1088/0169-5983/48/6/061424
/article/10.1088/0169-5983/48/6/061424
/article/10.1088/0169-5983/48/6/061424
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsthb-qY4KyqiqcHCkdst4PMSlJ0eYC0ImNJqOxLMswesM3yv4JFflcTKBEOD_KbdIVzgn9PGoi6ylCouUF34HEISUon5lRKlK4wFfXGfwPW7MSARQGZz7mv33gwwjNSdr5GcvEkutGy-fl0vRfSRBn9PFzjQA-FzEHw9WKBjhdwKWntW4lR89igqh22ignIydR0EmMeTm3BdrmLKYJLVFeu1Bjwm5p-K5z5fZhCgdtFJcc3mLFWKxPJiYQ68fItpQ-n5YXOPBK5twE0zZk-YDcWkmgJX7y0h7Z_-JIIC9ob3w&sai=AMfl-YRMRA5V6t-Rk6niGgBSTv2A2wUnhDy3txe4NS86zH3A5fMDZXEYgrEnvvJyN9GiLRq8IdW0f9jjPauduNM&sig=Cg0ArKJSzNmI_bGOsb1U&fbs_aeid=[gw_fbsaeid]&adurl=https://ecs.confex.com/ecs/244/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanners%26utm_campaign%3D244AbstractSubmit


Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

14th International Conference on Hydroinformatics
IOP Conf. Series: Earth and Environmental Science 1136 (2023) 012036

IOP Publishing
doi:10.1088/1755-1315/1136/1/012036

1

A POD-based reduced order model applied to 1D shallow 
water equations 

Pablo Solán-Fustero1, José Luis Gracia2, Adrián Navas-Montilla1 and Pilar 
García-Navarro1 
1 Fluid Dynamic Technology, I3A, University of Zaragoza, Zaragoza, 50009, Spain 
2 IUMA and Department of Applied Mathematics, University of Zaragoza, Spain 

psolfus@unizar.es 

Abstract. Many environmental problems involving free surface flow can be solved using the 
shallow water equations (SWE) often involving high computational costs due to the large 
spatial and temporal scales of the events. In recent times, reduced order models (ROM) 
techniques are increasingly used to improve the computational efficiency of simulation models. 
The Proper Orthogonal Decomposition (POD) method provides an orthogonal basis for 
representing a given set of data and constructing the ROM by means of the method of 
snapshots. In this work, a POD-based intrusive ROM strategy is applied to the 1D SWE. The 
main goal of this work is to build a simulation model able to reproduce realistic scenarios. We 
analyse the computational improvement and the accuracy of the ROM results with respect to 
those of the full-order model (FOM). 

1. Introduction 
The shallow water equations (SWE) are widely used as mathematical model to represent the time 
evolution of free surface flows in channels. The SWE can be solved computationally following several 
numerical methods [1-3], here called full order models (FOM) that may involve high computational 
costs in realistic cases, thus requiring the use of mathematical tools to speed up the computations. 

Among the various tools currently developed, reduced order models (ROM) based on proper 
orthogonal decomposition (POD) [4] allow the resolution of partial differential equations more 
efficiently than FOM and with little loss of accuracy [5-7]. This requires the proper interval 
decomposition (PID) method to structure the snapshot method in different time windows [8,9]. The 
ROM strategy has a first stage, off-line part, in which the FOM is solved. The solutions obtained by 
the FOM are used to train the ROM and then solve it (on-line part). In this work, two FOM are used: 
one based on Lax-Friedrichs numerical flux due to its simplicity [2] and another following Roe’s 
method due to its robustness and good performance [1]. They are followed by an intrusive ROM using 
the Galerkin method [10]. Due to the non-linear character of the equations, it is necessary to make use 
of time averages of the variables of interest following [11].  

With this objective, we first compare the results obtained by two ROMs developed from the Lax-
Friedrichs FOM, one standard (version 1) and the other with averages of the water velocity (version 
2). Then the time averaging approach is applied to the Roe’s method (version 3). 

The second objective of this work is to determine the best set of ROM parameters in terms of 
accuracy and CPU time. This will be done by measuring the errors of the computed solutions 
compared to the exact solution [12] and the CPU times required to obtain them. 
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2. Mathematical model and numerical method 
As mentioned in the introduction, the cases considered in this paper involve the 1D SWE in the 
framework of a frictionless channel of rectangular cross-section and constant unit width [1] 
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where ℎ is the water depth and 𝑞 = ℎ𝑢 is the water discharge per unit width, with 𝑢, the cross-
sectional average water velocity; 𝑔 is the gravitational acceleration. 

Regarding the FOM numerical method, the computational domain is discretized by means of 
𝑁௫  volume cells of uniform length ∆𝑥 and the positions of the centre and left and right interfaces of 
the 𝑖-th cell are 𝑥௜, 𝑥௜ିଵ/ଶ and 𝑥௜ାଵ/ଶ, respectively, with 𝑖 = 1, … , 𝑁௫. The time step ∆𝑡 = 𝑡௡ାଵ − 𝑡௡ is 
selected dynamically using the Courant-Friedrichs-Lewy (CFL) condition [13]. 

Two different FOMs are used to solve the SWE system (1) using Godunov’s scheme 
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where ℎ௜
௡ ≈ ℎ(𝑥௜ , 𝑡௡), 𝑢௜

௡ ≈ 𝑢(𝑥௜, 𝑡௡) and 𝑞௜
௡ ≈ 𝑞(𝑥௜, 𝑡௡) are the cell average values of the water 

depth, velocity and discharge over the cell (𝑥௜ିଵ/ଶ, 𝑥௜ାଵ/ଶ). 
In the first case, the numerical fluxes are given by the Lax-Friedrichs method [2] 
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with 𝐶𝐹𝐿 ≤ 𝜈 ≤ 1. 
The second FOM is formulated using Roe’s numerical flux 
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3. Reduced-order model strategy 
The POD-based ROM in this work is based on the snapshot method [14], which consists of the 
computation of a set of 𝑁௧ time numerical solutions of SWE, (ℎ௜

௡, 𝑢௜
௡), also called snapshots, as 

numerical approximations to ℎ and 𝑢 using the FOM. The snapshots are used to construct the snapshot 
matrices 𝑀ℎ = (𝒉ଵ, ⋯ , 𝒉ே೅ ), 𝑀௨ = (𝒖ଵ, ⋯ , 𝒖ே೅ ) and 𝑀௤ = (𝒒ଵ, ⋯ , 𝒒ே೅). The POD 
basis of functions is computed by applying the singular value decomposition of these matrices. The 
Galerkin method [10] and these bases are used to reconstruct the numerical solutions 
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where 𝜙௜,௞, 𝜑௜,௞ and 𝛷௜,௞  are the functions of the basis of each variable, being the number of POD 
modes 𝑁௉ை஽ ≪ 𝑁௫. 

The ROM of (1) is obtained by: i) introducing the Galerkin method (8) into the FOM (2) or (5); ii) 
multiplying each resulting equation by ϕ

୧,୩
 and Φ୧,୩, respectively; and iii) summing up over the cells. 

This procedure meets difficulties when the FOM scheme is nonlinear, as in the case of Roe’s scheme. 
Zokagoa and Soulaïmani in [11] propose to use time averages of some variables where appropriate. 
Before applying this approach, the performance of two ROMs developed from the same Lax-
Friedrichs FOM with and without time averages of𝑢are compared. 

With the aim of improving the resolution of non-linear problems, Zokagoa and Soulaïmani in [11] 
make use of the PID method, originally introduced by [8]. Following this method, the total simulation 
time 𝑇 is partitioned into 𝑁௪ non-overlapping time windows [0, 𝑡ଵ] ∪ [𝑡ଶ, 𝑡ଷ] ∪···∪ ൣ𝑡ே೟ିଵ, 𝑡ே೟

= 𝑇൧, so 
that as many snapshot matrices (and POD bases) are generated as there are time windows 𝑀ℎೢ
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= (𝒖ଵೢ , ⋯ , 𝒖ே೅ೢ ) and 𝑀௤ೢ

= (𝒒ଵೢ , ⋯ , 𝒒ே೅ೢ ), with 𝑤 =

1, … , 𝑁௪. Hereafter the reference to time windows in the equations is omitted for the sake of clarity. 
The vector formulations of three versions of the ROM of SWE are presented below. The first one 

(version 1) is based on the Lax-Friedrichs method without time averaging of 𝑢 
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The second one (version 2) is based on the same method, but considers time averages of the water 
velocity 𝑢, so that the Galerkin method is only applied to the water depth ℎ and the water discharge 𝑞 
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where the matrices are the same as in version 1, except for 
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The third version (version 3) arises from Roe’s method and considers time averages of water 
velocity 𝑢 and the water depth ℎ in denominators or square roots of (7) 
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𝐷(𝑘, 𝑝) = ൫𝛷ଶ,௞ − 𝛷ଵ,௞൯𝑑̅ଷ/ଶ𝛷ଵ,௣ + ෍ ൣ൫𝛷௜ାଵ,௞ − 𝛷௜,௞൯𝑑̅௜ାଵ/ଶ + ൫𝛷௜,௞ − 𝛷௜ିଵ,௞൯𝑑̅௜ିଵ/ଶ൧𝛷௜,௣

ேೣିଵ

௜ୀଶ

+൫𝛷ேೣ,௞ − 𝛷ேೣିଵ,௞൯𝑑̅ேೣିଵ/ଶ𝛷ேೣ,௣,

 

with 

𝑎ത௜ାଵ/ଶ = ቆ
ห𝜆̅ଵห𝜆̅ଶ − ห𝜆̅ଶห𝜆̅ଵ

𝑐̅
ቇ

௜ାଵ/ଶ

, 𝑏ത௜±ଵ/ଶ = ቆ
𝜆̅ଵ

∓ − 𝜆̅ଶ
∓

𝑐̅
ቇ

௜±ଵ/ଶ

,

𝑒̅௜±ଵ/ଶ = ቆ
𝜆̅ଵ𝜆̅ଶ

𝑐̅
ቇ

௜±ଵ/ଶ

൫𝜆̅ଵ
∓ − 𝜆̅ଶ

∓൯
௜±ଵ/ଶ

, 𝑑̅௜±ଵ/ଶ = ቆ
𝜆̅ଵ𝜆̅ଵ

∓ − 𝜆̅ଶ𝜆̅ଶ
∓

𝑐̅
ቇ

௜±ଵ/ଶ

,

                         (15) 

where ൫𝜆̅ଵ൯
௜ାଵ/ଶ

, ൫𝜆̅ଶ൯
௜ାଵ/ଶ

, ൫𝜆̅ଵ
∓൯

௜ାଵ/ଶ
, ൫𝜆̅ଶ

∓൯
௜ାଵ/ଶ

 and 𝑐௜̅ାଵ/ଶ are computed from the time averages 𝑢ത௜ 

and 𝑐௜̅  following (7). 
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4. Numerical results 

4.1. Case 1 
Consider the 1D shallow water equations (1), where the spatial domain is [0, 𝐿], where 𝐿 = 12, and 
the final time is 𝑇 = 1.02. 

The initial conditions (ICs) are defined as a dam break time as 

ℎ(𝑥, 0) = ൜
2, 𝑖𝑓 𝑥 ≤ 6
1, 𝑖𝑓 𝑥 > 6

  , 𝑢(𝑥, 0) = 0, 0 ≤ 𝑥 ≤ 𝐿,                             (16) 

given in 𝑚 and 𝑚/𝑠, respectively; and free BCs are considered. 
In this case, the two versions of the ROM, with and without time averages, developed from the 

Lax-Friedrichs method are compared in terms of accuracy and CPU time. The CFL number is 0.9 and 
𝜈 = 0.9. 

The accuracy is measured by computing the error of ℎ and 𝑞 at the final time in the 𝐿ଵ norm with 
respect to the exact solution [12]. They are denoted by 𝐿ଵ(ℎ) and 𝐿ଵ(𝑞), respectively. The CPU time 
required by each ROM is also measured to study their efficiency. 

Following the PID strategy approach, the construction of the snapshot matrices has been divided 
into time windows with the same number of snapshots. Table 1 shows the number of time windows 
𝑁௪ arranged according to the number of snapshots per window 𝑁௦ and per mesh refinement 𝑁௫. Each 
𝑁௫  corresponds to a value of 𝑁௧ according to the CFL condition. 
 

Table 1. Number of time windows 𝑁௪ = 𝑁௧/𝑁௦ for different values of 𝑁௧ and 𝑁௦. 

𝑵𝒙 𝑵𝒕 
𝑵𝒔 

16 8 4 2 
100 48 3 6 12 24 
203 96 6 12 24 48 
409 192 12 24 48 96 
822 384 24 48 96 192 

 
First, the influence of 𝑁௪ and 𝑁௉ை஽  on the computation of the solution is studied. The goal is to 

find the optimal set of values of these ROM parameters. 
Figures 1-4 show the errors in the 𝐿ଵ norm of the solutions computed with version 1 (left) and 

version 2 (right) of the ROM in terms of ℎ and 𝑞 as a function of 𝑁௫. 
 

  

Figure 1. 𝐿ଵ(ℎ) of ROM v.1. Figure 2. 𝐿ଵ(ℎ) of ROM v.2. 
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Figure 3. 𝐿ଵ(𝑞) of ROM v.1. Figure 4. 𝐿ଵ(𝑞) of ROM v.2. 

The yellow line represents the errors of the FOM solutions with respect to the exact solution. The 
rest of the colours represent the errors of the ROM solutions according to the number of snapshots in 
each time window 𝑁௦. The line type indicates the number of modes of the ROM: 𝑁௉ை஽ = 2 (solid 
line), 5 (dashed line) and 10 (dotted line). 

As can be seen by comparing the figures of ROM version 1 with those of version 2, the ROM 
version 1 solutions are slightly more accurate for both variables ℎ and 𝑞. In both cases, all ROM 
solutions are equally or less accurate than those of the FOM. On the other hand, the solutions obtained 
by solving only 2 POD modes (solid lines) are less accurate. The rest of the solutions with 𝑁௉ை஽ = 5 
and 10 presented are slightly more accurate in ROM version 1. 

Figures 5 and 6 show the CPU times required by versions 1 (left) and 2 (right) of the ROM. ROM 
version 1 results are clustered according to the number of modes solved 𝑁௉ை஽ regardless of the 
number of time windows, with 𝑁௉ை஽ = 2 (solid lines) being the best in terms of CPU time, achieving 
an order of magnitude improvement over FOM CPU times. However, the results of ROM version 2 do 
not show such clusters and are mixed without any pattern related to 𝑁௉ை஽ or 𝑁௦. In this case, the CPU 
time improvements reach two orders of magnitude. Nevertheless, the above study shows that the 
fastest results are the least accurate, so the CPU times against errors are plotted to obtain the optimal 
values of 𝑁௉ை஽ and 𝑁௪. 
 

  

Figure 5. CPU times of ROM v.1. Figure 6. CPU times of ROM v.2. 
 
Figures 7-10 show the errors in the  norm against CPU times of versions 1 (left) and 2 (right) of the 

ROM. In general, the CPU times of ROM version 2 are better than those of version 1; otherwise, the 
errors obtained by both versions are very similar. 
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Figure 7. 𝐿ଵ(ℎ) vs CPU times of ROM v.1. Figure 8. 𝐿ଵ(ℎ) vs CPU times of ROM v.2. 
 
The best set of ROM parameter values is 𝑁௦ = 4 and 𝑁௉ை஽ = 5, as it obtains very accurate final 

time solutions with the ROM, as can be seen in Figures 11 and 12, where the FOM and the ROM 
version 2 solutions at the final time 𝑇 are represented together with the exact solution and the IC. 
Other ROM parameter values obtain results with inaccurate wave fronts. 
 

  

Figure 9. 𝐿ଵ(𝑞) vs CPU times of ROM v.1. Figure 10. 𝐿ଵ(𝑞) vs CPU times of ROM v.2. 

  

Figure 11. ℎ computed with ROM v.2. Figure 12. 𝑞 computed with ROM v.2. 

In conclusion, it can be said that ROM version 2 is more efficient with hardly any loss of accuracy 
despite the use of time averages of 𝑢. 
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4.2. Case 2 
Once the validity of the time averaging approach has been checked, the same problem as in Case 1 is 
solved with the version 3 ROM developed from the Roe’s method. 

Figures 13 and 14 show the errors in the 𝐿ଵ norm of ℎ (left) and 𝑞 (right) as a function of 𝑁௫. First 
of all, it should be noted that the solution computed by the FOM following the upwind method is more 
accurate than the FOM of the Lax-Friedrichs method. This makes some solutions obtained by version 
3 of the ROM even better than those of the Lax-Friedrichs FOM. 

In terms of water depth, the accuracy of solutions obtained with version 3 of the ROM becomes 
worse when only 2 POD modes are solved. It can also be observed that when two snapshots per time 
window are solved, worse results are obtained than in the case of 𝑁௦ > 2. Considering the water 
discharge, the errors show more diversity. Altogether, 𝑁௦ = 4 with 𝑁௉ை஽ = 5 and 10 are the most 
accurate. 

Figure 13 shows the CPU times required by version 3 of the ROM, which reach two orders of 
magnitude better than the CPU times of the FOM. The CPU times required by the FOM based on the 
upwind method are practically the same as those of the FOM based on the Lax-Friedrichs. Some sets 
of ROM parameter values reach two orders of magnitude improvement over the FOM. 

In terms of the measured error in the water depth, it could be considered that the best values of the 
ROM parameters would be 𝑁௦ = 8 or 16 with 𝑁௉ை஽ = 5, as can be seen in Figure 16. However, these 
values present worse values of the measured error in the flow rate, as can be seen in Figure 17. 
Considering both figures, it is concluded that, as in case 1, the best set of ROM parameter values are 
𝑁௦ = 4 and 𝑁௉ை஽ = 5, as these give very high accuracy solutions, as can be seen in Figures 18 and 19. 

  

Figure 13. 𝐿ଵ(ℎ) of ROM v.3. Figure 14. 𝐿ଵ(𝑞) of ROM v.3. 

 

Figure 15. CPU times of ROM v.3. 
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Figure 16. 𝐿ଵ(ℎ)vs CPU times of ROM v.3 Figure 17. 𝐿ଵ(𝑞)vs CPU times of ROM v.3. 

  

Figure 18. ℎ of ROM v.3. Figure 19. 𝑞 of ROM v.3. 
 
Table 2 shows the speed-ups of each of the ROM versions with respect to FOM. As can be seen, 

the versions with time averages 2 and 3 present higher speed-ups than version 1, which exceed the 
order of magnitude. 

 
Table 2. Speed-ups of each version of the ROM. 

𝑁௫ 100 203 409 822 
ROM v.1 9.69 7.34 5.99 5.20 
ROM v.2 37.18 34.77 25.86 31.85 
ROM v.3 50.55 41.22 28.56 31.58 

5. Conclusions 
In this work a dam break problem has been solved with the 1D SWE using the ROM strategy. For this 
purpose, two numerical methods (FOM) of discretisation of the mathematical model have been 
considered, one based on the Lax-Friedrichs method and the other based on Roe’s method. From 
these, three reduced order models have been studied. 

With the two ROMs developed from the Lax-Friedrichs-based FOM, the validity of the time-
averaging approach proposed in [9] has been tested. The results obtained show that the time-averaged 
ROM produces accurate solutions, as much as the standard ROM, and in a more efficient way. 
Furthermore, this time averaging approach has been applied to the development of the ROM from the 
FOM based on the Roe’s method, obtaining satisfactory results. 

The performance of the different ROMs has been studied against the variation of their own 
parameters, number of time windows (following the PID method) and number of POD modes solved, 
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as well as the number of cells in the spatial domain. It can be concluded that the best values to obtain 
accurate and efficient results from the ROM are 𝑁௦ = 4 and 𝑁௉ை஽ = 5, as they achieve good error 
rates and have low CPU times. 
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