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A B S T R A C T

To contain the propagation of emerging diseases that are transmissible from human to human, non-
pharmaceutical interventions (NPIs) aimed at reducing the interactions between humans are usually imple-
mented. One example of the latter kind of measures is social distancing, which can be either policy-driven or
can arise endogenously in the population as a consequence of the fear of infection. However, if NPIs are lifted
before the population reaches herd immunity, further re-introductions of the pathogen would lead to secondary
infections. Here we study the effects of different social distancing schemes on the large scale spreading of
diseases. Specifically, we generalize metapopulation models to include social distancing mechanisms at the
subpopulation level and model short- and long-term strategies that are fed with local or global information
about the epidemics. We show that different model ingredients might lead to very diverse outcomes in different
subpopulations. Our results suggest that there is not a unique answer to the question of whether contention
measures are more efficient if implemented and managed locally or globally and that model outcomes depends
on how the full complexity of human interactions is taken into account.
1. Introduction

The spreading of infectious diseases is a complex process involving
two main aspects. On the one hand, the spreading capabilities of the
pathogen depend on its biological properties, the characteristics of the
host, and the many environmental factors that can play an important
role. On the other hand, the pathogen (except for vector-borne diseases)
can only spread if two hosts have some kind of contact. As such,
the behavior of the host is a key element in the study of epidemic
spreading (Funk et al., 2010; Read et al., 2012). For this reason,
many researches have focused on studying how animals and humans
interact, in order to inform mathematical models and produce better
forecasts (Wilson-Aggarwal et al., 2019; Mossong et al., 2008; Arregui
et al., 2018; Salathé et al., 2010).

Despite having acknowledged the role that behavior plays in the
spreading of infectious diseases, epidemic models usually neglect the
possibility that hosts will change their behavior due to an ongoing
outbreak (Eksin et al., 2019). An exception to this are awareness
models, in which both an epidemic and information spread at the
same time in the population and host reacts accordingly (see da Silva
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et al. (2019) and the references therein). These behavioral changes
have been observed both in animal (Stroeymeyt et al., 2018) and
human societies (SteelFisher et al., 2009). More recently, the spread-
ing of COVID-19 has clearly demonstrated the variety of ways in
which humans react to an epidemic (Coletti et al., 2020; Jarvis et al.,
2020; Zhang et al., 2020; Feehan and Mahmud, 2021; Woskie et al.,
2021). For instance, without forceful government intervention, traffic
in Seoul’s subway declined sharply following the first deaths in South
Korea (Jewel, 2020). Conversely, several communities in other regions
of the world defied social distancing measures (Waitzberg et al., 2020;
Gollwitzer et al., 2020).

Public health authorities base many decisions on the forecasts pro-
duced by epidemic models. It is thus of paramount importance to in-
clude the effect of behavioral changes as something inherently attached
to the spreading of the epidemic (Eksin et al., 2019). Of particular
interest in this regard are metapopulation models. These models pro-
vide a simple way of incorporating the spatial heterogeneity of human
societies, while keeping them mathematically tractable. In essence, in
a metapopulation model hosts are grouped in different subpopulations,
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Table 1
List of symbols and acronyms used throughout the paper.

Description Symbol

Individual infection probability/rate (1/day) 𝛽
Recovery probability/rate (1/day) 𝜇
Basic reproduction number 𝑅0 = 𝛽∕𝜇
Contact reduction coefficient 𝑎𝑖
Response strength exponent 𝑘
Memory coefficient 𝑙
Mobility coefficient 𝜏
Threshold for infectious fraction 𝜀𝐼
Individual counts in each state in subpopulation 𝑖 𝑆𝑖 , 𝐼𝑖 , 𝑅𝑖
Global individual counts in each state 𝑁𝑆 , 𝑁𝐼 , 𝑁𝑅
Global fractions in each state 𝜌𝑆 , 𝜌𝐼 , 𝜌𝑅
Number of nodes (subpopulations) on network 𝑉
Number of links on network 𝑀
Number of individuals in subpopulation 𝑖 𝑁𝑖
Total number of individuals in population 𝑁𝑝𝑜𝑝
Maximum distance for connection on RGN 𝑑
Link weight between subpopulations 𝑖 and 𝑗 𝑇𝑖𝑗
Long-term memory scheme LT
Short-term memory scheme ST
Network RGN

and the exchange of individuals between subpopulations is governed
by certain rules. Within each subpopulation it is possible to assume
that the spreading from host to host follows the classical homogeneous
mixing approach (Lloyd and May, 1996; Colizza and Vespignani, 2008;
Aleta et al., 2017), or include more details on individual heterogeneities
through different techniques (Ajelli et al., 2010; Apolloni et al., 2014).

These models have been extensively used during the emergence
of new pathogens to study how an outbreak might propagate glob-
ally (Bajardi et al., 2009). In the particular case of COVID-19, they
have also been used to study the early spreading of the disease across
countries (Chinazzi et al., 2019), but also within countries (Costa et al.,
2020; Aleta et al., 2020; Aleta and Moreno, 2020). Yet, these models
usually focus on the effect of varying the rules governing the flux
of individuals between subpopulations, or on globally modifying the
transmission due to the introduction of public health interventions. In
this paper, our objective is to understand the role that social distancing
can play in these models and shed some light on the effect that it
can have on the spatial spreading of epidemics when the response is
heterogeneous across regions.

2. Model description

We implement a discrete and stochastic SIR-metapopulation model
composed by 𝑉 subpopulations (Keeling et al., 2004; Ball et al., 2015;
Wang and Li, 2014). In each subpopulation, individuals can interact
with each other and spread the disease following the classical SIR
model. These subpopulations are connected through a certain network,
so that an individual may travel to another subpopulation only if it
exists a direct link between the source and target subpopulations.

To include social distancing effect, either policy-driven or as a con-
sequence of fear of infection, we consider an additional coefficient that
modifies the transmissibility of individuals. This coefficient mimics the
behavioral responses of the population, and evolves according to the
densities of infectious and recovered individuals (Eksin et al., 2019). In
Section 3, we study this model in an homogeneously mixed population.
For the remaining sections, we apply the model to a metapopulation
system.

2.1. Epidemic spreading

For the SIR compartmental model, individuals are assigned com-
partments according to their infectious status: susceptible (S) if they
2

do not have the disease and can catch it; infectious (I) when they have
the disease and can transmit it to susceptibles, and removed (R) when
they no longer transmit the disease after being infectious (either by
recovery or deceasing). At each model’s epidemic update, the following
rules determine the transitions between compartments: (See Table 1).

• S → I: a susceptible individual in subpopulation 𝑖 can become
infectious with probability 𝑃 𝑖

𝑆→𝐼 = 1 − (1 − 𝑎𝑖𝛽∕𝑁𝑖)𝐼𝑖 , where 𝛽
is the individual transmission probability, 𝑁𝑖 is the number of
individuals in subpopulation 𝑖 and 𝐼𝑖 is the number of infectious
individuals in the same subpopulation. The term 𝑎𝑖 is called the
coefficient of contact reduction, and depends on the considered
memory scheme as we describe later on.

• I → R: an infectious individual is moved to the R (removed)
compartment with probability 𝑃 𝑖

𝐼→𝑅 = 𝜇, which is the inverse of
the average infectious period. After this event, the individual no
longer participates on the epidemic dynamics.

The number of new infections and removals are both calculated
through binomial sampling, with distributions 𝐵(𝑆𝑖, 𝑃𝑖(𝑆 → 𝐼)) for
infections and 𝐵(𝐼𝑖, 𝜇) for removals. Throughout this paper, we set 𝜇
to 1∕4 and the basic reproductive number 𝑅0 = 𝛽∕𝜇 to 1.5, which is
compatible with the parameters of an influenza-like disease. In the Sup-
plementary Material we report also results with 𝑅0 = 1.2 and 𝑅0 = 2.5,
the latter being compatible with the spreading of COVID-19 in 2020.
We define 𝑁𝑆 =

∑𝑉
𝑖=1 𝑆𝑖 as the total number of susceptible individuals

in the whole population and, analogously, 𝑁𝐼 and 𝑁𝑅 for the infectious
and removed compartments. The coefficient of contact reduction 𝑎𝑖 is
what determines the behavioral responses to the epidemics, and we
consider different scenarios (memory schemes) for such a response,
each one with a different definition of 𝑎𝑖:

1. Social distancing based on global information
This scenario (or strategy) is based on the one proposed by
Eksin et al. in Eksin et al. (2019), which here we extend to
metapopulations. The coefficient of contact reduction emulates
the social response to an increase in the number of infections,
and it is a function of the total (global) number of infected and
recovered individuals, given by:

𝑎𝑖 =
(

1 −
(𝑁𝐼 + 𝑙 ⋅𝑁𝑅)

𝑁

)𝑘
(1)

Since 𝑎𝑖 only depends on global quantities, its value is the
same for all subpopulations. The parameter 𝑘 is the response
strength, an adjustable exponent that calibrates the intensity of
the response against the number of cases. The coefficient 𝑙 is
called memory coefficient, and determines the importance of the
R compartment to the behavioral response. Following Eksin et al.
(2019), 𝑙 = 0 represents the short-term memory scheme (ST),
where the response weakens when the incidence drops. The case
𝑙 = 1 is the long-term memory scheme (LT), in which the awareness
is proportional to the total accumulated number of cases. These
two limiting cases differ in many aspects, which we describe
throughout the rest of the paper.

2. Social distancing based on local information
In this variant of the previous scenario, we consider that each
subpopulation (node) responds individually, according to its
own number of cases. The expression for the coefficient of
contact reduction is:

𝑎𝑖 =
(

1 −
(𝐼𝑖 + 𝑙 ⋅ 𝑅𝑖)

𝑁𝑖

)𝑘
(2)

3. Constant response after threshold
For comparison, we also implement a more traditional scenario
in which the transmissibility is reduced by a constant factor 𝑎0

once the overall number of cases 𝑁𝐼 + 𝑁𝑅 overcomes a given
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Fig. 1. Scheme of the epidemic and mobility models in a metapopulation. The SIR epidemic dynamics occur inside each subpopulation, where homogeneous mixing is assumed.
Also at each time step, individuals move between neighboring subpopulations 𝑖 and 𝑗 according to a mobility matrix 𝑇𝑖𝑗 .
threshold 𝑁 ⋅ 𝜀𝐼 (with 0 ≤ 𝜀𝐼 < 1). Here we use only the global
cumulative information, thus 𝑎𝑖 is defined as:

𝑎𝑖 =

{

1 𝑁𝐼 +𝑁𝑅 < 𝑁𝜀𝐼
𝑎0 𝑁𝐼 +𝑁𝑅 ≥ 𝑁𝜀𝐼

(3)

and is the same for all subpopulations. This scenario can be
considered as a baseline strategy for modeling, in which social
distancing (or governments policies) is constant and independent
of the state of the system. This is often assumed as the behavioral
response in metapopulation epidemic models. (Perra et al., 2011;
Aleta and Moreno, 2020; Calvetti et al., 2020; Manfredi and
D’Onofrio, 2013).

The choice of 𝑁𝐼 and 𝑁𝑅 (or 𝐼𝑖 and 𝑅𝑖 for local strategies) to guide
the intensity of contention measures is justified by the simplicity of
this approach. Other metrics, such as the number of new infections or
removals, could be used as well, but as these are subject to considerable
stochastic fluctuations, additional procedures would be required to
prevent the contention measures to unrealistically oscillate over a few
steps.

Throughout the paper, we use the words ‘‘memory’’ or ‘‘memory
scheme’’ for the different setups of the memory coefficient, namely LT
(𝑙 = 1) and ST (𝑙 = 0), while the word ‘‘strategy’’ refers to the local or
global use of information, as explained above.

2.2. Mobility model

Following a standard metapopulation framework, the mobility be-
tween subpopulations is modeled as a random walk through the links of
a graph of 𝑉 nodes and 𝑀 links. It is controlled by a master parameter
𝜏 called the mobility coefficient, as well as the weights 𝑇𝑖𝑗 of existing
links between subpopulations (nodes) 𝑖 and 𝑗. During a mobility update,
each individual in subpopulation 𝑖 travels to subpopulation 𝑗 with
probability 𝑝𝑖𝑗 = 𝜏 ⋅ 𝑇𝑖𝑗∕𝑁𝑖(0), where 𝑁𝑖(0) is the number of individuals
attributed to subpopulation 𝑖 at the initial time step. The number of
individuals traveling from 𝑖 to each neighbor 𝑗 is calculated through
multinomial sampling for each state (𝑆, 𝐼 and 𝑅), with number of trials
given by the numbers of individuals (𝑆𝑖, 𝐼𝑖 and 𝑅𝑖) and probabilities 𝑝𝑖𝑗 .
Within this scheme, we have the following features:

• The average number of individuals expected to travel from 𝑖 to 𝑗
3

is 𝜏 ⋅ 𝑇𝑖𝑗 .
• If all links are reciprocal and symmetric (i.e., 𝑇𝑗𝑖 = 𝑇𝑖𝑗 for all con-
nected pairs of subpopulations 𝑖, 𝑗), then the net fluxes between
the subpopulations are balanced and the population of each one
remains approximately constant, fluctuating around 𝑁𝑖(0). We use
this configuration throughout the paper.

• The probability that an individual in subpopulation 𝑖 travels
anywhere is 𝑝𝑖 = 𝜏

∑

𝑗 𝑇𝑖𝑗∕𝑁𝑖(0), and may vary for each subpopu-
lation. We always set 𝜏 to be small enough so that 𝑝𝑖 < 1 for every
subpopulation 𝑖.

During a single time step, we first perform the epidemic interactions
in each subpopulation, then update the number of individuals that
are in each state. After this, we apply the mobility rules to determine
how many individuals move through each link, and update the actual
numbers only after all fluxes have been calculated. This way, the results
do not depend on the order at which we ‘‘visit’’ the subpopulations
to perform the calculations. The mobility and epidemic models are
schematically represented in Fig. 1.

3. Analytical insights for homogeneously mixed populations

For sufficiently low mobility between subpopulations, the local
dynamics can be well described by an isolated homogeneously mixed
system. Also for sufficiently high number of individuals, we can use rate
equations for the expected fractions of the population in each compart-
ment, substituting 𝑆∕𝑁 , 𝐼∕𝑁 and 𝑅∕𝑁 by 𝜌𝑆 , 𝜌𝐼 and 𝜌𝑅, respectively.
The chosen expression for the behavioral response mechanism is simple
enough to allow for analytical manipulation. Particularly, in the long-
term (LT) memory scheme (i.e., with 𝑙 = 1 in Eqs. (1) and (2)), these
rate equations can be integrated to find the trajectory of the dynamical
system. In this section, we explore this tractability to extract some
insights from the model.

3.1. Long-term memory

Considering the dynamics of a single isolated subpopulation, the dy-
namical equations for the average fractions 𝜌𝑆 , 𝜌𝐼 and 𝜌𝑅 of susceptible,
infectious and removed individuals can be written as:

̇𝜌𝑆 = −𝜇𝑅0 𝜌𝑆𝜌𝐼 ⋅ 𝑎(𝜌𝐼 , 𝜌𝑅) (4)

̇𝜌𝐼 = 𝜇𝑅0 𝜌𝑆𝜌𝐼 ⋅ 𝑎(𝜌𝐼 , 𝜌𝑅) − 𝜇𝜌𝐼 (5)

̇𝜌𝑅 = 𝜇𝜌𝐼 , (6)
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where 𝑅0 = 𝛽∕𝜇 is the basic reproduction number and 𝜇 is now
interpreted as the recovery rate (rather than probability). For the long-
term memory, 𝑎(𝜌𝐼 , 𝜌𝑅) = (1−(𝜌𝐼+𝜌𝑅))𝑘 = 𝜌𝑘𝑆 , given that 𝜌𝑆+𝜌𝐼+𝜌𝑅 = 1.
As described in Eksin et al. (2019), we can divide Eq. (4) by Eq. (6) to
obtain a separable differential equation:
d𝜌𝑆
d𝜌𝑅

= −𝑅0𝜌
𝑘+1
𝑆 (7)

For 𝑘 > 0 and assuming that 𝜌𝑅(0) = 𝜌0 ≥ 0 and 𝜌𝐼 (0) = 𝛿 → 0, its
solution is given by:

𝜌𝑆 =
[

1
(1 − 𝜌0)𝑘

+ 𝑘𝑅0(𝜌𝑅 − 𝜌0)
]− 1

𝑘
(8)

Alternatively, writing 𝜌𝐼 as a function of 𝜌𝑅:

𝜌𝐼 = 1 − 𝜌𝑅 −
[

1
(1 − 𝜌0)𝑘

+ 𝑘𝑅0(𝜌𝑅 − 𝜌0)
]− 1

𝑘
(9)

Eq. (9) represents the trajectory of the system in a 𝜌𝐼 vs 𝜌𝑅 dia-
gram, showing how the fraction of infectious individuals peaks as the
prevalence increases in the LT memory. Also, the final 𝜌𝑅 prevalence
at the end of the outbreak can be found by solving Eq. (9) for 𝜌𝐼 = 0
besides the trivial solution 𝜌𝑅 = 𝜌0. The solid lines in Fig. 2 show such
trajectories for different values of the response strength 𝑘, 𝜌0 = 0 and
𝑅0 = 1.5.

For 𝑘 = 0, Eq. (7) solves as a simple SIR model which, for 𝜌𝑅(0) = 𝜌0
and 𝜌𝐼 (0) = 𝛿 → 0, leads to a 𝜌𝐼 vs 𝜌𝑅 trajectory given by:

𝜌𝐼 = 1 − 𝜌𝑅 − (1 − 𝜌0)𝑒−𝑅0(𝜌𝑅−𝜌0) (10)

In the long-term memory with 𝑘 > 0, the contact reduction co-
efficient 𝑎(𝜌𝐼 , 𝜌𝑅) is a decreasing function of 𝜌𝑅 + 𝜌𝐼 , which in turn
can only increase over time. This means that 𝑎(𝜌𝐼 , 𝜌𝑅) will also always
decrease as if the disease contention measures are held forever. This is
not reasonable to assume for the long term behavior of a real situation
and, for this reason, we can consider that at some point after the main
outbreak, 𝑎(𝜌𝐼 , 𝜌𝑅) is set to 1 again, which we call henceforth a system
release (representing a release of the contention measures).

For instance, consider that a system release occurs when the fraction
of infectious individuals reaches a small value 𝛿 > 0 after the main out-
break initiated. This comprises the fact that, during the time evolution
given by Eqs. (4) to (6), 𝜌𝐼 (𝑡) tends to but never actually reaches zero.
For the calculation of the 𝜌𝐼 vs 𝜌𝑅 trajectories though, we can consider
𝛿 → 0. After the system is released, the trajectory follows Eq. (10) with
𝜌0 set to the final size of the first outbreak. In Fig. 2, the dashed lines
represent the secondary outbreaks produced after the system’s release.

As observed in the figure, a system release can generate a second
outbreak which, for higher values of 𝑘, can be greater than the first
one. This happens because, although the long-term memory scheme
effectively reduces the size of the first outbreak (both in 𝜌𝑅 and 𝜌𝐼 ),
it may leave the system under its herd immunity threshold, and thus
vulnerable to new outbreaks (Lu et al., 2021). In this homogeneous
model, the threshold for herd immunity is given by 𝜌ℎ𝑒𝑟𝑑 = 1 − 𝑅−1

0 ,
meaning that for 𝜌𝑅 ≥ 𝜌ℎ𝑒𝑟𝑑 the fraction of infectious individuals can
no longer increase. If the disease dies out before the prevalence reaches
that value, the system will experience a new outbreak if the social
distancing measures are relaxed and the disease is reintroduced in the
population. Note that the critical value of 𝑘 for reaching herd immunity
at the first outbreak is 𝑘 = 1, for which the final outbreak size is exactly
solved as 𝜌∗𝑅 = 1 − 𝑅−1

0 , as noticed by Eksin et al. (2019).

3.2. System resets

Besides releasing the system after the first outbreak, we propose an-
other way to work with multiple outbreaks in the LT memory scheme.
What makes the 𝑎(𝜌𝐼 , 𝜌𝑅) coefficient to be by default strictly decreasing
is its dependence on 𝜌𝑅, which holds a ‘‘long-term memory’’. We can
modify and possibly reset such memory by subtracting a constant
4

Fig. 2. Analytical trajectories of the homogeneously mixed long-term (LT) memory
with system release after the first outbreak (i.e., complete lift of the contention
measures). The trajectories are combinations of Eqs. (9) (solid lines) and (10) (dashed
lines) with 𝜌0 set to the size of the first outbreak. 𝑅0 is set to 1.5.

𝜌0 from the prevalence that is considered for the contact reduction
coefficient 𝑎(𝜌𝐼 , 𝜌𝑅). If we do this right after the main outbreak and set
𝜌0 to the recovered fraction at that time, then 𝑎(𝜌𝐼 , 𝜌𝑅) is momentarily
reset to 1 (i.e., no contention measures), but the system will still react in
the event of another outbreak. We call this a system reset (the memory
of the population is reset, but the social distancing measures still apply),
in contrast with the simpler system release described in the previous
section (in which the contention measures are completely removed).
We are again assuming that 𝜌𝐼 is arbitrarily small at the end of an
outbreak.

During this new round of the dynamics, Eq. (4) divided by Eq. (6)
yields the following differential equation:

d𝜌𝑆
d𝜌𝑅

= −𝑅0 ⋅ (𝜌𝑆 − 𝜌0)𝑘𝜌𝑆 (11)

which is still separable, but for 𝜌0 > 0 solves into a less insightful
expression:

𝑅0 ⋅ (𝜌𝑅 − 𝜌0) = 𝑃𝜌0 ,𝑘(𝜌𝑆 ) (12)

where we define:

𝑃𝜌0 ,𝑘(𝜌𝑆 ) = ∫

1−𝜌0

𝜌𝑆

d𝑢
𝑢(𝑢 + 𝜌0)𝑘

= (13)

= − 1
𝑘(𝑢 + 𝜌0)𝑘

(

1 +
𝜌0
𝑢

)𝑘

2
𝐹1

(

𝑘, 𝑘; 𝑘 + 1,−
𝜌0
𝑢

)|

|

|

|

|

1−𝜌0

𝜌𝑆

where 2𝐹1 is the Gaussian hypergeometric function. Eqs. (12) and (13)
provide 𝜌𝑅 for any given 𝜌𝑆 . For each of these values, 𝜌𝐼 is calculated
as 𝜌𝐼 = 1 − 𝜌𝑆 − 𝜌𝑅, which finally allows the construction of a 𝜌𝐼 vs 𝜌𝑅
trajectory.

Fig. 3 shows the trajectories of the model with system resets, for
different values of 𝑘. The first outbreak of each simulation run is
represented by solid lines, and are traced using Eq. (9). For the runs that
did not achieve the herd immunity threshold (which is shown as a black
dot-dashed line), subsequent outbreaks are represented by dashed lines
and traced using Eqs. (12) and (13). In this scenario, stricter contention
measures (that is, higher 𝑘) always cause smaller infectious peaks, but
can generate more secondary outbreaks, making it more difficult to
comply with the measures. The inset of Fig. 3 shows in more detail
the secondary outbreaks for 𝑘 = 2, 4 and 8, where we can see that there
are multiple outbreaks with decreasing peak size.
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Fig. 3. Analytical trajectories of the homogeneously mixed long-term (LT) memory
scheme with system resets. The first outbreak (solid lines) follows Eq. (9), while
subsequent outbreaks (dashed lines) are traced using Eqs. (12) and (13). The inset
shows a sub-region of the main plot (indicated by a blue dotted rectangle) where
secondary outbreaks are more easily visible, showing how there may be multiple and
successively smaller peaks. 𝑅0 is set to 1.5.

Fig. 4. Numerical trajectories of the homogeneously mixed short-term (ST) memory,
obtained from Runge–Kutta integration of Eqs. (4) to (6) starting with 𝜌𝐼 (0) = 1 ⋅ 10−5

and 𝜌𝑅(0) = 0. 𝑅0 is set to 1.5. Unlike the LT memory, the system always reaches the
herd immunity condition in a single outbreak, without considering any modification to
the baseline model.

3.3. Short-term memory

For the short-term (ST) memory scheme, the coefficient of contact
reduction depends only on 𝜌𝐼 , being written as 𝑎(𝜌𝐼 ) = (1 − 𝜌𝐼 )𝑘 =
(𝜌𝑅 + 𝜌𝑆 )𝑘. This breaks the separability of the differential equation
obtained by dividing Eqs. (4) and (6), leaving no simple method to
solve it for arbitrary values of 𝑘. We can still use a classic Runge–
Kutta of order 4(5) (this is, of order 4 with error correction of order
5) (Dormand and Prince, 1980) to integrate the equations in time, and
plot the 𝜌𝐼 vs 𝜌𝑅 trajectories.

Fig. 4 shows the numerically solved trajectories of the system for dif-
ferent values of 𝑘. The main difference with respect to the LT memory is
that the system eventually reaches the herd immunity condition within
the first and only outbreak. Higher values of 𝑘 reduce the size of the
peak in 𝜌𝐼 , at the expense of larger time-span in which the contention
measures have to be sustained. This cannot be visualized in Fig. 4 as the
time parameter is implicit, but we further explore the interplay between
peak size and time span in Section 5.1. Note also that even for very
large values of 𝑘 the final fraction of removed individuals is beyond
the herd immunity threshold.
5

4. Global strategies and the heterogeneity of local features

The previous analysis has shown that, even if local extinction might
be achievable with social distancing, it renders the system vulnerable
to further reintroductions of the pathogen. Thus, if mobility between
subpopulations is allowed, there could be spill overs from those with
still ongoing outbreaks to those which contained the epidemic. To study
this type of events, we now focus on the proposed model in a metapop-
ulation using Monte Carlo simulations, with the algorithm described in
Section 2. For the metapopulation, we use a random geometric network
(RGN) of 𝑉 = 50 subpopulations, constructed in a square space of
length 1 and connecting subpopulations that are closer than 𝑑 = 0.25. At
this initial point, all links are unweighted and reciprocal. This gives an
expected average degree of 𝑉 𝜋𝑑2 ≈ 9.82, though the specific realization
we used through this paper has an average degree of 7.2. We choose
such a network topology because it emulates the spatial distribution of
cities in small to mid scale, where size hierarchy and long-range links
are not very present. In this comparison, each subpopulation represents
either a city or a small set of cities (such as a province), inside which
homogeneous mixing is assumed.

Once this unweighted graph is constructed, we set the initial popu-
lation of each subpopulation 𝑖 proportional to its degree 𝑘𝑖, according to
𝑁𝑖(0) = ⌊𝑁𝑝𝑜𝑝𝑘𝑖∕(2𝑀)⌋, where we set 𝑁𝑝𝑜𝑝 = 107 and 𝑀 is the number
of links of the network. This makes the overall population to be not
exactly but very close to 𝑁𝑝𝑜𝑝, only deviated due to truncation. Then we
set the weights of existing links between subpopulations 𝑖 and 𝑗 as 𝑇𝑖𝑗 =
𝑁𝑖(0)𝑁𝑗 (0)∕𝑁𝑝𝑜𝑝 = 𝑇𝑗𝑖. Within this scheme, the local population sizes
fluctuate around 𝑁(0) over time, as explained before. Moreover, the
most connected subpopulations are also most populous ones, though
the RGN is reasonably homogeneous in this sense, in comparison with
a scale-free topology for example. For consistency of the results, we
also use a fixed subpopulation as the seed of the disease, seeding
10 infectious individuals at the beginning of the simulations, with
all other subpopulations starting with susceptibles only. The seeded
subpopulation was chosen to be around the center of the square space.

4.1. Long-term (LT) global strategy

For the long-term (LT) memory with global information strategy,
we can compare the outcomes of the simulations with those of a
constant response after a threshold (explained in Section 2.1). Fig. 5
shows the outbreak size (total number of infected individuals) in each
subpopulation for the two strategies, each one averaged over 1000
independent runs. The constant coefficient of contact reduction 𝑎0 =
0.78 was chosen to yield a global outbreak size of ∼ 0.20, approximately
equal to that obtained with the LT global strategy with 𝑘 = 2. We
notice that the LT memory provides more heterogeneous outcomes
between subpopulations compared to the constant response. Especially,
as it can be seen in Fig. 6, subpopulations that are farther from the
seed tend to have smaller outbreak sizes. This happens because, in
the global LT strategy, the intensity of contention measures due to
public awareness is the same for all subpopulations and increases with
time, thus subpopulations that are seeded later have smaller effective
reproduction numbers.

The fact that our proposed model for behavioral responses with
global strategy produces more heterogeneous outbreak sizes is noto-
rious, as this is generally observed after outbreaks of real diseases.
In particular, this situation is compatible with the one observed in
2020 during the COVID-19 pandemic in those countries that imposed
strict global lockdowns even if only part of the country was severely
affected (Pollán et al., 2020; Riccardo et al., 2020; Chinazzi et al.,
2019). In contrast, a local strategy would lead to more homogeneous
outcomes.
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Fig. 5. Comparison of the average outbreak size in each subpopulation between (a) LT global strategy and (b) global constant response with threshold. For the LT memory, a
response strength 𝑘 = 2 was used, while the constant response uses 𝑎0 = 0.78 and a threshold of 𝜀𝐼 = 10−3, meaning that the contact reduction is triggered after 104 overall
infections (out of 𝑁𝑝𝑜𝑝 = 107 individuals) are registered. Both simulations use 𝜏 = 1 ⋅ 10−3 as the mobility coefficient.
Fig. 6. Local outbreak size (given by the maximum of 𝑅𝑖∕𝑁𝑖 over time) in each
subpopulation as a function of its shortest path length to the seed, for global LT strategy
with response strength 𝑘 = 2 (circles) and for constant response with factor 𝑎0 = 0.78
(squares). The 𝑦-axis values represent averages over 1000 independent runs. The boxes
show the inner quartiles of each set. The mobility coefficient is set to 𝜏 = 1 ⋅ 10−3.

5. The efficiency of local and global strategies

We now describe a framework to compare local and global strategies
in terms of their efficiency, characterized by the costs and benefits
of each strategy. Direct comparison of simulations with global and
local strategies using the same response strength 𝑘 is inappropriate,
as global strategies require greater values of 𝑘 to yield similar effects.
We therefore define two metrics, one for the cost and another for the
effectiveness, and compare local and global strategies in parametric
plots of such metrics (with 𝑘 as an implicit parameter). As long-term
and short-term strategies are qualitatively different, we apply different
metrics to characterize each one.

5.1. Short-term (ST) memory

The short-term memory scheme, in which the contact reduction
coefficient only responds to the (either local or global) density of
infectious individuals, is characterized by a slow progression of the
system towards its herd immunity. A higher value of the response
strength 𝑘 represents a more effective response, which reflects into a
smaller prevalence peak (i.e., the maximum 𝜌𝐼 ) yet longer outbreak
duration. The outbreak size (i.e., maximum of 𝜌𝑅) however does not
vary much with 𝑘, as it essentially depends on the herd immunity limit
of the system. Therefore, the infectious peak size 𝜌max

𝐼 is a reasonable
measure of effectiveness in this case, with smaller peaks attributed to
more effective strategies.
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Higher values of 𝑘 also imply more time in which contention
measures are active to control disease propagation. This translates into
𝑎𝑖 being smaller than 1 during longer times. We can quantify ‘‘how
much and for how long’’ the contention measures are applied with the
quantity:

𝐽 𝑖 =
∞
∑

𝑡=0
(1 − 𝑎𝑖(𝑡)) (14)

which accounts for the intensity and time span of the contact reduction.
This provides, in a broad sense, a metric for the cost of a strategy in
the short-term memory scheme, considering that contention measures
typically bring costs to the population. Notice that these metrics must
be calculated for each subpopulation.

For the same population and RGN structure described in Section 4,
we compare local and global strategies with respect to 𝜌max

𝐼 and 𝐽 for
simulations with different values of 𝑘. Fig. 7 shows the plots of these
metrics against each other, grouped by sets of subpopulations according
to their distance to the seeded subpopulation. The metric values are
averaged over 1000 independent runs.

From the plots, it is clear that local strategies outperform global ones
for all subpopulations, as the former produces much smaller peaks sizes
for similar values of 𝐽 in the considered range. This means that, for the
ST memory, the use of local information about contagions is more effi-
cient than using a unified, global strategy. This happens because using
global information may not be well suited for the epidemic situation of
a given subpopulation. For instance, subpopulations that are far from
the seed effectively apply the contention measures before the epidemic
arrives, but as these measures are relaxed at some moment (when the
global prevalence decreases), these subpopulations will still undergo
an intense outbreak, given that they were only subject to minor out-
breaks and the majority of the individuals in these subpopulations are
susceptible.

Although we only display the results for a single value of the
mobility coefficient 𝜏 = 10−3, the same conclusions are obtained for
𝜏 = 10−2 and 10−4, but the advantage of local strategies over global
ones is more pronounced with lower mobility rates. This is expected,
because with lower 𝜏 values, the dynamics of each subpopulation is less
coupled by mobility, making local strategies more practical.

5.2. Long-term (LT) memory

In the long-term memory scheme, the overall intensity of contention
measures increases with time (though it can locally decrease due to
migration), as they are proportional to both I and R densities. As
shown in Section 3 for homogeneous mixing, for sufficiently high 𝑘,
the epidemic spreading is halted before herd immunity is achieved,
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Fig. 7. Parametric curves for the effectiveness and cost of local and global ST strategy, for values of 𝑘 ranging from 3 to 90. The first plot is for the seeded subpopulation, whereas
other plots are arithmetic averages over sets of subpopulations according to their shortest path length to the seeded subpopulation. The last plot is an arithmetic average over all
subpopulations. The arrows indicate the direction towards which 𝑘 increases. The mobility coefficient is set to 𝜏 = 1 ⋅ 10−3. 𝜌max

𝐼 is the maximum over time of the local infection
prevalence 𝜌𝐼 , while 𝐽 is given by Eq. (14).
leaving the system vulnerable to secondary waves in case of a system
release without other immunization policies. We can still characterize
the effectiveness of the strategy in this first wave, either by its outbreak
size (𝜌max

𝑅 ) or by the peak size (𝜌max
𝐼 ). For consistency with Section 5.1,

we chose to work with 𝜌max
𝐼 as well.

For the cost of the strategy, the metric 𝐽 (given by Eq. (14)) does
not provide a reliable measure, as in this case 𝑎𝑖 does not approach
1 again at the end of the main outbreak, making 𝐽 overly sensitive to
the time taken until the epidemic vanishes. We choose instead to simply
work with 𝑎max = 1 − min 𝑎(𝑡), which is the maximum level of contact
reduction adopted by the subpopulation during the simulation. This
metric disregards the temporal evolution of 𝑎𝑖 (making it inappropriate
as a cost of the ST memory), but provides a number that is proportional
to the level of contention measures adopted by the subpopulations in
the LT memory, being more adequate for this scheme.

Using the same RGN setup, we find that the cost vs effectiveness
curves are more complex for the LT strategies than for the ST ones.
Fig. 8 shows the 𝜌max

𝑅 𝑥 𝑎max parametric curves for local and global
strategies, and for three values of the mobility master parameter 𝜏 =
10−2, 10−3 and 10−4. In this case, there is not a clear advantage of local
strategies over global ones, and this depends both on mobility levels
and the distance to the seed. For instance, when 𝜏 = 10−2 (Fig. 8(a)),
a local strategy is better for the seed, while it is generally worse for
more distant subpopulations. For immediate neighbors of the seed (one
step away), the curves cross each other, making the optimal strategy to
depend on the value of 𝑘.

For lower mobility values (Fig. 8(b) and (c)), another interesting
feature is evident: the curves for the local strategies are not monotonic
with the cost, meaning that two strategies (given by two different
values of 𝑘) may have the same cost but notably different effectiveness.
This happens because the contention measures in the LT memory
scheme can affect the invasion threshold and attack rate of the system,
preventing some subpopulations from being reached by the disease for
sufficiently high 𝑘. In this case, as the strategy is based on local preva-
lences, these subpopulations will not have to implement contention
measures, which explains the decrease in the strategy cost.
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6. Local and global strategies with real metapopulations

The simulations described in Section 5 were performed in a simple
RGN topology, which is notably homogeneous. The mobility coefficient
𝜏 is chosen to be not much greater than the invasion threshold of
the system, resulting on the interesting relationship between local and
global strategies, especially for the LT memory. This has important
value to understand the model we propose.

However, for emerging diseases in real world, most systems will be
far above their invasion threshold. Moreover, real topologies are hier-
archical and differ from an homogeneous topology. To complement our
work, we simulate the SIR model with contention measures in two sub-
populations based on real mobility and demographic data: one for Spain
and another for Brazil. The Spanish demographic data was obtained
from the Spanish Statistical Office (2020), while the mobility matrices
were provided by the Ministry of Development of Spain (Anon., 2019).
The Brazilian metapopulation uses demographic and daily commuting
data from the Brasilian Institute of Geography and Statistics (IBGE)
(2020), air transport flows from the National Agency of Civil Aviation
(ANAC) (2020) and interstate buses from National Agency of Terrestrial
Transportation (ANTT) (2020). More details about these data sets are
found in the supplementary material.

By comparing the outcomes of the simulations between the Brazilian
and Spanish metapopulations, we can better understand the role of the
scale of the population in the decision between a local and a global
strategy. Fig. 9 shows the parametric cost vs effectiveness curves of
the local and global strategies for the ST memory, for both Spanish
(upper panels) and Brazilian (lower panels) populations. In each case,
the disease was initiated in the subpopulation with greatest number of
individuals: the province of Madrid in Spain and the state of São Paulo
in Brazil. In this case, the seeded subpopulation has non-null mobility
flows to all other subpopulations, therefore we only plot the curves
for the seeded subpopulation, the immediate neighbors (which are all
subpopulations except the seed) and the whole network.

As in this more realistic population the mobility is considerably
higher than in our synthetic setup from previous sections, the differ-

ences between local and global strategies are milder. Nevertheless,
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Fig. 8. Parametric curves for the effectiveness and cost of local and global LT strategy, for the mobility parameter (a) 𝜏 = 10−2, (b) 𝜏 = 10−3 and (c) 𝜏 = 10−4. The 𝑘 values
range from 0.25 to 50. The leftmost panels represent the seeded subpopulation, the middle panels represent an arithmetic average over its immediate neighbors, and the rightmost
panels show the averages over all subpopulations. The arrows indicate the direction towards which 𝑘 increases. The cost 𝑎max is the maximum value of 1 − 𝑎𝑖 reached during the
simulation.
it is clear that a local strategy is always better in cost/benefit than
a local one for the ST memory, using 𝐽 (Eq. (14)) as the strategy
cost. The difference is particularly visible for the seeded subpopulation,
but also present for the rest of the network. Besides this, it is clear
that the Brazilian metapopulation presents a higher difference between
the strategies. This happens mainly because the difference in scale:
Spain is a densely connected population, with strong mobility flows
between provinces. The mobility is also highly centralized around
Madrid. Brazil, on the other hand, is a much larger country with less
relative mobility between its states. Also notoriously, the most populous
state in Brazil (São Paulo) has roughly the same population as the whole
Spanish country.

In Fig. 10, we show the same results for the LT memory, using the
𝑎max instead of 𝐽 as the strategy cost. Notice that, again, the Brazilian
metapopulation displays greater difference between local and global
strategies. However, for the LT memory scheme, the local strategy
seems to be better for the seeded subpopulation, while the global
strategy is more appropriate for the rest of the network. For high cost
8

strategies, the curves seem also to converge to the same cost as the peak
size goes to zero.

By looking at the results from Figs. 9 and 10, we conclude that, for
real topologies (which display high mobility flows and heterogeneity
between subpopulations), the complicated interplay between local and
global strategies is not observed. Yet the main conclusions from Sec-
tion 5 are still valid: in the ST memory, there is a clear preference
for the local strategy, while in the LT memory the choice depends
on the circumstances and desired goals for the contention. Notice
that we only compare the extreme cases of purely local and global
strategies; in reality, ‘‘mixed’’ approaches may be used for optimal
disease contention.

7. Secondary outbreaks in the global long-term memory with re-
sets

We adapt the metapopulation model with a long-term global strat-
egy to consider system memory resets, as explained in Section 3.2.
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Fig. 9. Parametric curves for the effectiveness and cost of local and global ST strategy on metapopulations based on Spanish (a) and Brazilian (b) data. The left panels shows the
results for the seeded subpopulation only, the middle panels represent the rest of the network, and the right panels comprise the whole network. Disease and simulation parameters
are the same as in Fig. 7.
Fig. 10. Parametric curves for the effectiveness and cost of local and global LT strategy on metapopulations based on Spanish (a) and Brazilian (b) data. The left panels shows the
results for the seeded subpopulation only, the middle panels represent the rest of the network, and the right panels comprise the whole network. Disease and simulation parameters
are the same as in Fig. 8.
This allows us to analyze secondary outbreaks caused by a relief in
the contention measures, represented here as a reset in the ‘‘memory’’
of the contact reduction mechanism (that is, the value of 𝜌𝑅 in the 𝑎𝑖
coefficient).

The system resets are implemented as follows: the contention mea-
sures are activated when the overall fraction of infectious individuals 𝜌𝐼
surpasses an activation threshold 𝜀in

𝐼 = 10−4 (activation threshold), and
then deactivated (possibly after an outbreak) if 𝜌𝐼 goes under another
threshold 𝜀out

𝐼 = 0.8 ⋅10−4 < 𝜀∈𝐼 . At each activation event, the ‘‘memory’’
of the system is reset, that is, the coefficient of contact reduction is
given by 𝑎𝑖(𝑡) = (1−(𝜌𝐼 (𝑡)+𝜌𝑅(𝑡)−𝜌0))𝑘, with 𝜌0 set to the value of 𝜌𝑅 at
the moment of the activation event. This mechanism is slightly different
from that used in Section 3.2 for the rate equations model, but the
distinction 𝜀out

𝐼 < 𝜀in
𝐼 is needed in stochastic simulations so that small

fluctuations around 𝜀𝐼 do not increase the number of outbreaks. To
control the number of secondary outbreaks, we also limit the number
of system reset events to 10. If this number of reset events is reached
9

before the extinction of the epidemics, the system is then released, that
is, 𝑎𝑖 is permanently set to 1.

In Fig. 11, we show the time series of the fraction of infectious
individuals of each subpopulation (colored thin curves), as well as the
global fraction of infectious individuals (black shaded curve) and the
value of 𝑎𝑖 over time (red dashed curve) for a typical execution of
the model. Using the same RGN population as in previous sections,
we set the response strength as 𝑘 = 5 and the mobility coefficient
to 𝜏 = 10−3. Each vertical ascent of the 𝑎𝑖 value represents the
occurrence of a system reset. We notice that, at each reset, a new
set of local outbreaks occurs, raising again the overall incidence and
leading the system to readopt contention measures. Differently from the
homogeneously mixed case (as in Fig. 3), the secondary outbreaks can
be greater in peak size than the first one. This feature is an essential
difference between homogeneously mixed populations and structured
ones like a metapopulation, and occurs because some (usually many)
subpopulations are not reached by the primary outbreak.
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Fig. 11. Time series of the fraction of infectious individuals in each subpopulation
(colored lines), as well as in the whole population (black line). The global value of 𝑎(𝑡)
is also shown as a golden dot-dashed line (with the upper limit 𝑎(𝑡) = 1 as a golden
thin horizontal line). The parameters (described in text) are set to: 𝑘 = 5, 𝜀in

𝐼 = 10−4,
𝜀out
𝐼 = 0.8 ⋅ 10−4, 𝜏 = 10−3. (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

We can better understand this feature by looking at the local inci-
dence. Fig. 12 shows a network map of the greatest peak size (given by
𝜌max
𝐼 ) of each subpopulation, along with the time series of the fraction

of infectious individuals for some selected subpopulations (lateral pan-
els). The curve of panel (a) corresponds to the seeded subpopulation,
displaying a single and pronounced peak in the early stage of the
process. Other subpopulations may also present a single main outbreak
(as in panel (e)), two (separate or close) outbreaks ((d) and (c)) or
even more outbreaks ((b) and (f)). Even though this model is not
focused on COVID-19, we can leverage the information collected during
the pandemic to put these numbers into perspective. The maximum
reductions observed in the figure go up to 40%. Since in this manuscript
we have set 𝑅0 = 1.5, this leads to an effective reproduction number
of ∼ 0.9. To achieve the same value with the reproduction number of
COVID-19 during 2020 (𝑅0 = 2.5), we would require a reduction of
the order of 65%. Estimates from several countries have established
that the reduction in the number of contacts during the earliest phase
of the first wave was around 70%–80%, decaying later on to values
in the order of 30%–40% (Coletti et al., 2020; Jarvis et al., 2020;
Zhang et al., 2020; Feehan and Mahmud, 2021). As such, the spatial
heterogeneity observed in this model is compatible with the one caused
by the contention measures during the COVID-19 pandemic (Costa
et al., 2020; Sun et al., 2020; Dong et al., 2020; Starnini et al., 2021).

The features of a simulation with system resets are better pre-
sented through a single, typical run of the simulation, as we show
in Figs. 11 and 12. We still need to ensure that the observed pattern
of multiple outbreaks is a solid feature of our model. We do this by
counting the number of outbreaks of each time series, then plotting
histograms for 1000 independent runs. We use a simple algorithm to
determine the number of outbreaks of each local time series, described
as follows: every time the fraction of infectious individuals crosses a
given threshold 𝜙in = 1 ⋅ 10−3 from below and, posteriorly, another
threshold 𝜙out = 0.5𝜙in < 𝜙in from above, an outbreak is accounted,
and the time interval between these two crossings is regarded as a
single outbreak. The difference between the two thresholds reduces
spurious detection of outbreaks due to stochastic fluctuations around
the threshold, though this may still marginally occur. We verified that
this choice of parameters prevents most of these spurious detections,
while still being able to separate consecutive major outbreaks. The
purple shaded areas in each time series of 𝜌𝐼 (panels a to f) indicate
periods of time in which an outbreak was occurring, according to this
simple detection algorithm. It can be seen that it performs reasonably
well on separating multiple peaks.
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Fig. 13 shows the statistics of accounted local outbreaks. On panel
(a), the number of outbreaks for each subpopulation and each of the
1000 runs is put into a single histogram, showing that most subpopula-
tions present a single outbreak, but often higher number of outbreaks
also occur. On panel (b), we take the average number of outbreaks over
all subpopulations in a single simulation run, then plot a histogram for
the runs. From it we see that the typical average number of outbreaks
is between 1 and 1.4, meaning that most runs present at least some
subpopulations that undergo multiple outbreaks.

The main points to be discussed from the results of this section are
the following: (i) the occurrence of multiple outbreaks and (ii) the het-
erogeneity of their features over subpopulations and simulation runs.
The first point is a more or less obvious consequence of the mechanism
that we introduced: automatic memory resets, which represent a relief
to the contention measures. Nevertheless, it is important to demonstrate
that our model is capable of producing multiple outbreaks. The second
point, heterogeneity of the outbreaks, can be more clearly observed in
Fig. 12, as each node can display a considerably different epidemic
timeline. Heterogeneity over different runs is visible in Fig. 13.(b),
showing that each run can have substantially different average numbers
of outbreaks. In Section 5 of the supplemental material, we show how
these histograms are affected by the intensity of contention measures
and mobility scales.

8. Conclusions

We have presented a model that incorporates dynamical behavioral
responses to epidemics, which could be driven by governmental policies
or by the endogenous response of individuals (e.g. fear of infection), in
the context of metapopulations. The emerging features of the model are
very rich, showing a complex landscape of outcomes depending on the
implemented memory scheme and strategy.

First, we have shown that for isolated populations, strong social
distancing measures (LT) are able to ablate the epidemic, but render
the system vulnerable. Indeed, as long as the prevalence is below
the herd immunity threshold, a reintroduction of the pathogen after
the measures are lifted will inevitably lead to a second wave. On
the other hand, soft social distancing measures (ST) contain the ex-
ponential growth of the epidemic and leave the system in a state in
which the prevalence is over the herd immunity threshold, preventing
further outbreaks. Note, however, that for a severe disease in which
the infection fatality rate is substantial, larger prevalence implies a
larger number of deaths. Thus, stronger social distancing policies will
reduce the number of deaths at the expense of leaving the system
vulnerable, while softer measures will control the spread but increase
the number of deaths. These observations are particularly important in
the context of metapopulations. Since subpopulations are not isolated,
in the absence of additional control measures, the disease might be
seeded again in disease-free areas by individuals who where infected
in other regions. Thus, besides long and short term strategies, we also
need to incorporate whether the contention measures use global or
local information.

We compared LT and ST memory schemes of our model, in an
attempt to address the question of whether the contention measures
are more efficient if implemented and managed locally (at each sub-
population) or globally (equally in the whole population). For the
ST memory, we measured its cost by the 𝐽 metric that quantifies
the intensity and duration of the contention measures, and used the
maximum number of simultaneous infections (i.e., the peak size) to
quantify the strategy’s performance. We showed that the local strategy
always outperformed the global one, which is valid for any value of
the mobility parameter. For the LT memory, we quantified the cost by
the maximum intensity reached by the contention measures, and the
performance by the peak size. In this case, the cost/benefit relationship
was more complex, depending on the mobility rate and the distance
to the seeded subpopulation. Global strategies are generally better for
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Fig. 12. Map of the final outbreak sizes (𝜌max
𝑅 ) of each subpopulation, for a single simulation run with the memory reset mechanism (main panel). The panels show the time

series of 𝐼𝑖∕𝑁𝑖 for some sample subpopulations, showing that the mechanism introduces diversity in the epidemic trajectory over the population. Shaded areas on each panel show
the periods during which an outbreak is taking place, according to an algorithm described in the text. The average number of detected outbreaks for this run was 1.20. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Histograms of (a) the number of local outbreaks (at subpopulation level) for
all subpopulations, and (b) of the average number of outbreaks in each simulation run
(the average is taken over subpopulations, but not over runs). The parameters of the
simulations are set to: 𝑘 = 5, 𝜀in

𝐼 = 1 ⋅ 10−4 and 𝜀out
𝐼 = 0.8 ⋅ 10−4. The number of system

reset events was constrained to at most 10.
11
distant subpopulations (with respect to the seed). This situation was
precisely the one that emerged in the first wave of infections in 2020
during the COVID-19 pandemic in countries that imposed country-
wide lockdowns even if only one region was severely affected (Pollán
et al., 2020; Riccardo et al., 2020; Chinazzi et al., 2019). Yet, this is
reversed if the mobility is low enough so that the local strategy can
stop the epidemics before these nodes are reached. For the seeded
subpopulation and its neighbors, local strategies are typically preferred.
For this type of memory scheme, therefore, the choice between global
and local strategies is not trivial and should be addressed appropriately.

We extended the comparison between local and global strategies
to data-informed metapopulations, for Spain and Brazil. These differ
from the considered RGN by the heterogeneous/hierarchical structure
and the greater mobility flows. The comparison with the results in
the RGN let us conclude that the local strategies are still better than
global ones for the ST memory, while they are only better for the
seeded subpopulation in the LT memory scheme. Comparison between
the Brazilian and Spanish metapopulations highlight the role of scale:
a larger and less connected population (Brazil) will display greater
difference between local and global strategies than a smaller, denser
population (Spain).

It is important to notice that long-term strategies assume a per-
manent adoption of contention measures, which leaves the system
vulnerable to secondary outbreaks if these measures are lifted. We
address this by implementing memory resets which, after outbreaks,
instantly lifts the intensity of contention measures but leaves its mech-
anism active. Due to the residual presence of infectious individuals,
the system faces secondary outbreaks. Thus, subpopulations that expe-
rienced a milder first wave, might have worse outcomes in subsequent
waves. Besides, regardless of the contention measures, once they are
lifted the system keeps progressing towards the herd immunity thresh-
old, but each population might experience waves of different intensity
at different times. The spatial heterogeneity driven by contention mea-
sures depicted in this paper is compatible with the one observed during
the COVID-19 pandemic in several regions of the world (Costa et al.,
2020; Sun et al., 2020; Dong et al., 2020; Starnini et al., 2021).

In summary, we have shown than even in a simple metapopulation
model a very complex scenario emerges. Depending on the mobility
and distance to the seed, local vs global strategies yield different results
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and introduce different heterogeneities. As such, the full complexity of
human gatherings and behaviors should be accounted for to effectively
deal with emerging diseases.

Our work sets a new framework to considering social distancing
behaviors during emerging epidemics, and we are aware of multiple
possibilities to extend it. For example, the inclusion of disease-driven
mobility reduction or targeted travel restrictions (Feng and Jin, 2020)
could considerably modify the dynamics, possibly enhancing the ef-
fectiveness of local strategies. The model (in particular with the LT
memory) could also be extended to include vaccines and other phar-
maceutical interventions at some point, creating immunity by other
means rather than infection and relieving the contention measures.
Additionally, the behavioral responses mechanism can be enhanced
with opinion dynamics and game theory, regarding the willingness to
adopt protection measures. Some of these models for homogeneous
mixing (Amaral et al., 2021) could be employed at the subpopula-
tion level. These feature leads to overall weaker responses, but also
introduce interesting dynamical features.

CRediT authorship contribution statement

Paulo Cesar Ventura: Methodology, Software, Investigation, For-
mal analysis, Writing – original draft. Alberto Aleta: Conceptual-
ization, Investigation, Writing – original draft. Francisco Aparecido
Rodrigues: Supervision, Writing – review & editing. Yamir Moreno:
Project administration, Writing – review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The source code used for this work is published in Zenodo, available
at https://doi.org/10.5281/zenodo.6258445.

Acknowledgments

P.C.V. acknowledges the financial support of FAPESP through grants
2016/24555-0 and 2019/11183-5. F.A.R. acknowledges CNPq (grant
309266/2019-0) and FAPESP (grant 19/23293-0) for the financial
support given for this research. A.A. and Y.M. acknowledge the sup-
port by Soremartec S.A. Y.M. acknowledges partial support from the
Government of Aragon, Spain and FEDER funds, Spain through grant
E36-20R (FENOL), and by MCIN/AEI and FEDER funds (grant PID2020-
115800GB-I00). The funders had no role in study design, data collec-
tion, and analysis, decision to publish, or preparation of the manuscript.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.epidem.2022.100544.

References

Ajelli, Marco, Gonçalves, Bruno, Balcan, Duygu, Colizza, Vittoria, Hu, Hao, Ram-
asco, José J., Merler, Stefano, Vespignani, Alessandro, 2010. Comparing large-scale
computational approaches to epidemic modeling: Agent-based versus structured
metapopulation models. BMC Infect. Dis. 10 (1), 1–13.

Aleta, Alberto, Hisi, Andreia N.S., Meloni, Sandro, Poletto, Chiara, Colizza, Vitto-
ria, Moreno, Yamir, 2017. Human mobility networks and persistence of rapidly
mutating pathogens. R. Soc. Open Sci. 4 (3), 160914.

Aleta, Alberto, Hu, Qitong, Ye, Jiachen, Ji, Peng, Moreno, Yamir, 2020. A data-
driven assessment of early travel restrictions related to the spreading of the novel
COVID-19 within mainland China. Chaos Solitons Fractals 139, 110068.
12
Aleta, Alberto, Moreno, Yamir, 2020. Evaluation of the potential incidence of COVID-19
and effectiveness of containment measures in Spain: A data-driven approach. BMC
Med. 18 (1), 1–12.

Amaral, Marco A., de Oliveira, Marcelo M., Javarone, Marco A., 2021. An epidemio-
logical model with voluntary quarantine strategies governed by evolutionary game
dynamics. Chaos Solitons Fractals 143, 110616.

Anon., 2019. Studying Interprovince Mobility of Passengers using Big Data. Technical
report, Ministry of Development of Spain, https://observatoriotransporte.mitma.
gob.es/estudio-experimental.

Apolloni, Andrea, Poletto, Chiara, Ramasco, José J., Jensen, Pablo, Colizza, Vittoria,
2014. Metapopulation epidemic models with heterogeneous mixing and travel
behaviour. Theor. Biol. Med. Model. 11 (1), 1–26.

Arregui, Sergio, Aleta, Alberto, Sanz, Joaquín., Moreno, Yamir, 2018. Projecting social
contact matrices to different demographic structures. PLoS Comput. Biol. 14 (12),
e1006638.

Bajardi, Paolo, Poletto, Chiara, Ramasco, Jose J., Tizzoni, Michele, Colizza, Vittoria,
Vespignani, Alessandro, 2009. Human mobility networks, travel restrictions, and
the global spread of H1N1 pandemic. PLoS One 6 (1), e16591.

Ball, Frank, Britton, Tom, House, Thomas, Isham, Valerie, Mollison, Denis, Pel-
lis, Lorenzo, Tomba, Gianpaolo Scalia, 2015. Seven challenges for metapopulation
models of epidemics, including households models. Epidemics 10, 63–67.

Brasilian Institute of Geography and Statistics (IBGE), 2020. https://www.ibge.gov.br.
(Accessed 28 May 2020).

Calvetti, Daniela, Hoover, Alexander P., Rose, Johnie, Somersalo, Erkki, 2020.
Metapopulation network models for understanding, predicting, and managing the
coronavirus disease COVID-19. Front. Phys. 8.

Chinazzi, Matteo, Davis, Jessica T., Ajelli, Marco, Gioannini, Corrado, Litvinova, Maria,
Merler, Stefano, Piontti, Ana Pastore y., Mu, Kunpeng, Rossi, Luca, Sun, Kaiyuan,
Viboud, Cécile, Xiong, Xinyue, Yu, Hongjie, Elizabeth Halloran, M., Longini, Ira M.,
Vespignani, Alessandro, 2019. The effect of travel restrictions on the spread of the
novel coronavirus (COVID-19) outbreak. Science 368 (6489), 395–400.

Coletti, Pietro, Wambua, James, Gimma, Amy, Willem, Lander, Vercruysse, Sarah,
Vanhoutte, Bieke, Jarvis, Christopher I., Van Zandvoort, Kevin, Edmunds, John,
Beutels, Philippe, Hens, Niel, 2020. CoMix: Comparing mixing patterns in the
Belgian population during and after lockdown - Scientific reports. Sci. Rep. 10
(21885), 1–10.

Colizza, Vittoria, Vespignani, Alessandro, 2008. Epidemic modeling in metapopulation
systems with heterogeneous coupling pattern: Theory and simulations. J. Theoret.
Biol. 251 (3), 450–467.

Costa, Guilherme S., Cota, Wesley, Ferreira, Silvio C., 2020. Outbreak diversity in
epidemic waves propagating through distinct geographical scales. Phys. Rev. Res.
2 (4), 043306.

Dong, Ensheng, Du, Hongru, Gardner, Lauren, 2020. An interactive web-based
dashboard to track COVID-19 in real time. Lancet Infect. Dis. 20 (5), 533–534.

Dormand, John R., Prince, Peter J., 1980. A family of embedded Runge-Kutta formulae.
J. Comput. Appl. Math. 6 (1), 19–26.

Eksin, Ceyhun, Paarporn, Keith, Weitz, Joshua S., 2019. Systematic biases in disease
forecasting–The role of behavior change. Epidemics 27, 96–105.

Feehan, Dennis M., Mahmud, Ayesha S., 2021. Quantifying population contact patterns
in the United States during the COVID-19 pandemic - Nature communications.
Nature Commun. 12 (893), 1–9.

Feng, Shanshan, Jin, Zhen, 2020. Infectious diseases spreading on an adaptive
metapopulation network. IEEE Access 8, 153425–153435.

Funk, Sebastian, Salathé, Marcel, Jansen, Vincent A.A., 2010. Modelling the influence
of human behaviour on the spread of infectious diseases: A review. J. R. Soc.
Interface 7 (50), 1247–1256.

Gollwitzer, Anton, Martel, Cameron, Brady, William J., Pärnamets, Philip, Freed-
man, Isaac G., Knowles, Eric D., Van Bavel, Jay J., 2020. Partisan differences in
physical distancing are linked to health outcomes during the COVID-19 pandemic.
Nature Hum. Behaviour 4 (11), 1186–1197.

Jarvis, Christopher I., Van Zandvoort, Kevin, Gimma, Amy, Prem, Kiesha, Klepac, Petra,
James Rubin, G., John Edmunds, W., 2020. Quantifying the impact of physical
distance measures on the transmission of COVID-19 in the UK. BMC Med. 18 (1),
1–10.

Jewel, Park, 2020. Changes in subway ridership in response to COVID-19 in Seoul,
South Korea: Implications for social distancing. Cureus 12 (4).

Keeling, Matt J., Bjørnstad, Ottar N., Grenfell, Bryan T., 2004. Metapopulation dynamics
of infectious diseases. In: Ecology, Genetics and Evolution of Metapopulations.
Academic Press, Cambridge, MA, USA, pp. 415–445.

Lloyd, Alun L., May, Robert M., 1996. Spatial heterogeneity in epidemic models. J.
Theoret. Biol. 179 (1), 1–11.

Lu, Dan, Aleta, Alberto, Ajelli, Marco, Pastor-Satorras, Romualdo, Vespignani, Alessan-
dro, Moreno, Yamir, 2021. Data-driven estimate of SARS-CoV-2 herd immunity
threshold in populations with individual contact pattern variations. medRxiv,
2021.03.19.21253974.

Manfredi, Piero, D’Onofrio, Alberto, 2013. Modeling the Interplay Between Human
Behavior and the Spread of Infectious Diseases. Springer, New York, NY, USA.

Mossong, Joël, Hens, Niel, Jit, Mark, Beutels, Philippe, Auranen, Kari, Mikola-
jczyk, Rafael, Massari, Marco, Salmaso, Stefania, Tomba, Gianpaolo Scalia,
Wallinga, Jacco, Heijne, Janneke, Sadkowska-Todys, Malgorzata, Rosinska, Mag-
dalena, John Edmunds, W., 2008. Social contacts and mixing patterns relevant to
the spread of infectious diseases. PLoS Med. 5 (3), e74.

https://doi.org/10.5281/zenodo.6258445
https://doi.org/10.1016/j.epidem.2022.100544
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb1
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb2
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb2
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb2
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb2
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb2
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb3
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb3
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb3
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb3
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb3
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb4
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb4
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb4
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb4
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb4
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb5
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb5
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb5
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb5
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb5
https://observatoriotransporte.mitma.gob.es/estudio-experimental
https://observatoriotransporte.mitma.gob.es/estudio-experimental
https://observatoriotransporte.mitma.gob.es/estudio-experimental
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb7
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb7
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb7
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb7
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb7
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb8
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb8
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb8
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb8
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb8
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb9
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb9
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb9
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb9
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb9
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb10
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb10
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb10
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb10
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb10
https://www.ibge.gov.br
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb12
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb12
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb12
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb12
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb12
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb13
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb14
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb15
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb15
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb15
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb15
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb15
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb16
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb16
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb16
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb16
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb16
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb17
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb17
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb17
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb18
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb18
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb18
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb19
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb19
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb19
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb20
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb20
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb20
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb20
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb20
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb21
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb21
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb21
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb22
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb22
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb22
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb22
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb22
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb23
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb24
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb25
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb25
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb25
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb26
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb26
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb26
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb26
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb26
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb27
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb27
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb27
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb28
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb29
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb29
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb29
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb30


Epidemics 38 (2022) 100544P.C. Ventura et al.
National Agency of Civil Aviation (ANAC), 2020. https://www.anac.gov.br. (Accessed
27 May 2020).

National Agency of Terrestrial Transportation (ANTT), 2020. https://www.gov.br/antt.
(Accessed 28 May 2020).

Perra, Nicola, Balcan, Duygu, Gonçalves, Bruno, Vespignani, Alessandro, 2011. Towards
a characterization of behavior-disease models. PLoS One 6 (8), e23084.

Pollán, Marina, Pérez-Gómez, Beatriz, Pastor-Barriuso, Roberto, Oteo, Jesús,
Hernán, Miguel A., Pérez-Olmeda, Mayte, Sanmartín, Jose L., Fernández-
García, Aurora, Cruz, Israel, de Larrea, Nerea Fernández, Molina, Marta,
Rodríguez-Cabrera, Francisco, Martín, Mariano, Merino-Amador, Paloma,
Paniagua, Jose León, Muñoz-Montalvo, Juan F., Blanco, Faustino,
Yotti, Raquel, Blanco, Faustino, Fernández, Rodrigo Gutiérrez, Martín, Mariano,
Navarro, Saturnin Mezcua, Molina, Marta, Muñoz-Montalvo, Juan F.,
Hernández, Matías Salinero, Sanmartín, Jose L., Cuenca-Estrella, Manuel,
Yotti, Raquel, Paniagua, José León, de Larrea, Nerea Fernández, Fernández-
Navarro, Pablo, Pastor-Barriuso, Roberto, Pérez-Gómez, Beatriz, Pollán, Marina,
Avellón, Ana, Fedele, Giovanni, Fernández-García, Aurora, Iglesias, Jesús Oteo,
Olmeda, María Teresa Pérez, Cruz, Israel, Martinez, Maria Elena Fernandez,
Rodríguez-Cabrera, Francisco D., Hernán, Miguel A., Fernández, Susana Padrones,
Aguirre, José Manuel Rumbao, Marí, José M. Navarro, Borrás, Begoña Palop,
Jiménez, Ana Belén Pérez, Rodríguez-Iglesias, Manuel, Gascón, Ana María Calvo,
Alcaine, María Luz Lou, Suárez, Ignacio Donate, Álvarez, Oscar Suárez,
Pérez, Mercedes Rodríguez, Sanchís, Margarita Cases, Gomila, Car-
los Javier Villafáfila, Saladrigas, Lluis Carbo, Fernández, Adoración Hurtado,
Oliver, Antonio, Feliciano, Elías Castro, Quintana, María Noemí González,
Fernández, José María Barrasa, Betancor, María Araceli Hernández,
Febles, Melisa Hernández, Martín, Leopoldo Martín, López, Luis-Mariano López,
Miota, Teresa Ugarte, Población, Inés De Benito, Pérez, María Sagrario Celada,
Fernández, María Natalia Vallés, Enríquez, Tomás Maté, Arranz, Miguel Villa,
González, Marta Domínguez-Gil, Fernández-Natal, Isabel, Lobón, Gregoria Megías,
Bellido, Juan Luis Muñoz, Ciruela, Pilar, Casals, Ariadna Mas i.,
Botías, Maria Doladé, Angeles Marcos Maeso, M., del Campo, Dúnia Pérez,
de Castro, Antonio Félix, Ramírez, Ramón Limón, Retamosa, Maria Francisca Elías,
González, Manuela Rubio, Lobeiras, María Sinda Blanco, Losada, Alberto Fuentes,
Aguilera, Antonio, Bou, German, Caro, Yolanda, Marauri, Noemí,
Blanco, Luis Miguel Soria, González, Isabel del Cura, Pascual, Montserrat Hernán-
dez, Fernández, Roberto Alonso, Merino-Amador, Paloma, Castro, Natalia Cabrera,
Lizcano, Aurora Tomás, Almagro, Cristóbal Ramírez, Hernández, Manuel Segovia,
Elizaga, Nieves Ascunce, Sanz, María Ederra, Baquedano, Carmen Ezpeleta,
Bascaran, Ana Bustinduy, Tamayo, Susana Iglesias, Otazua, Luis Elorduy,
Benarroch, Rebeca Benarroch, Flores, Jesús Lopera, de la Villa, Antonia Vázquez,
2020. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): A nationwide,
population-based seroepidemiological study. Lancet 396 (10250), 535–544.

Read, J.M., Edmunds, W.J., Riley, S., Lessler, J., Cummings, D.A.T., 2012. Close
encounters of the infectious kind: Methods to measure social mixing behaviour.
Epidemiol. Infect. 140 (12), 2117–2130.
13
Riccardo, Flavia, Ajelli, Marco, Andrianou, Xanthi D., Bella, Antonino, Manso, Mar-
tina Del, Fabiani, Massimo, Bellino, Stefania, Boros, Stefano, Urdiales, Alberto Ma-
teo, Marziano, Valentina, Rota, Maria Cristina, Filia, Antonietta, D’Ancona, For-
tunato, Siddu, Andrea, Punzo, Ornella, Trentini, Filippo, Guzzetta, Giorgio,
Poletti, Piero, Stefanelli, Paola, Castrucci, Maria Rita, Ciervo, Alessandra,
Benedetto, Corrado Di, Tallon, Marco, Piccioli, Andrea, Brusaferro, Silvio,
Rezza, Giovanni, Merler, Stefano, Pezzotti, Patrizio, the COVID-19 working group,
2020. Epidemiological characteristics of COVID-19 cases and estimates of the
reproductive numbers 1 month into the epidemic, Italy, 28 january to 31 2020.
Eurosurveillance 25 (49), 2000790.

Salathé, Marcel, Kazandjieva, Maria, Lee, Jung Woo, Levis, Philip, Feldman, Marcus W.,
Jones, James H., 2010. A high-resolution human contact network for infectious
disease transmission. Proc. Natl. Acad. Sci. USA 107 (51), 22020–22025.

da Silva, Paulo Cesar Ventura, Velásquez-Rojas, Fátima, Connaughton, Colm,
Vazquez, Federico, Moreno, Yamir, Rodrigues, Francisco A., 2019. Epidemic spread-
ing with awareness and different timescales in multiplex networks. Phys. Rev. E
100 (3).

Spanish Statistical Office, 2020. https://www.ine.es/. (Accessed February 2020).
Starnini, Michele, Aleta, Alberto, Tizzoni, Michele, Moreno, Yamir, 2021. Impact of

data accuracy on the evaluation of COVID-19 mitigation policies. Data Policy 3.
SteelFisher, Gillian K., Blendon, Robert J., Bekheit, Mark M., Lubell, Keri, 2009. The

public’s response to the H1N1 influenza pandemic. N. Engl. J. Med. 362 (22), e65.
Stroeymeyt, Nathalie, Grasse, Anna V., Crespi, Alessandro, Mersch, Danielle P., Cre-

mer, Sylvia, Keller, Laurent, 2018. Social network plasticity decreases disease
transmission in a eusocial insect. Science 362 (6417), 941–945.

Sun, Feinuo, Matthews, Stephen A., Yang, Tse-Chuan, Hu, Ming-Hsiao, 2020. A spatial
analysis of the COVID-19 period prevalence in U.S. counties through June 28, 2020:
Where geography matters? Ann. Epidemiol. 52, 54–59, e1.

Waitzberg, Ruth, Davidovitch, Nadav, Leibner, Gideon, Penn, Nadav, Brammli-
Greenberg, Shuli, 2020. Israel’s response to the COVID-19 pandemic: Tailoring
measures for vulnerable cultural minority populations. Int. J. Equity Health 19
(1), 1–5.

Wang, Lin, Li, Xiang, 2014. Spatial epidemiology of networked metapopulation: An
overview. Chin. Sci. Bull. 59 (28), 3511–3522.

Wilson-Aggarwal, Jared K., Ozella, Laura, Tizzoni, Michele, Cattuto, Ciro,
Swan, George J.F., Moundai, Tchonfienet, Silk, Matthew J., Zingeser, James A.,
McDonald, Robbie A., 2019. High-resolution contact networks of free-ranging
domestic dogs canis familiaris and implications for transmission of infection. PLOS
Negl. Trop. Dis. 13 (7), 1–19.

Woskie, Liana R., Hennessy, Jonathan, Espinosa, Valeria, Tsai, Thomas C., Vis-
pute, Swapnil, Jacobson, Benjamin H., Cattuto, Ciro, Gauvin, Laetitia, Tiz-
zoni, Michele, Fabrikant, Alex, Gadepalli, Krishna, Boulanger, Adam, Pearce, Adam,
Kamath, Chaitanya, Schlosberg, Arran, Stanton, Charlotte, Bavadekar, Shailesh,
Abueg, Matthew, Hogue, Michael, Oplinger, Andrew, Chou, Katherine, Cor-
rado, Greg, Shekel, Tomer, Jha, Ashish K., Wellenius, Gregory A., Gabrilovich, Ev-
geniy, 2021. Early social distancing policies in Europe, changes in mobility &
COVID-19 case trajectories: Insights from spring 2020. PLoS One 16 (6), e0253071.

Zhang, Juanjuan, Litvinova, Maria, Liang, Yuxia, Wang, Yan, Wang, Wei, Zhao, Shanlu,
Wu, Qianhui, Merler, Stefano, Viboud, Cécile, Vespignani, Alessandro, Ajelli, Marco,
Yu, Hongjie, 2020. Changes in contact patterns shape the dynamics of the
COVID-19 outbreak in China. Science.

https://www.anac.gov.br
https://www.gov.br/antt
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb33
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb33
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb33
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb34
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb35
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb35
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb35
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb35
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb35
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb36
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb37
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb37
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb37
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb37
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb37
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb38
https://www.ine.es/
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb40
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb40
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb40
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb41
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb41
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb41
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb42
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb42
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb42
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb42
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb42
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb43
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb43
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb43
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb43
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb43
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb44
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb45
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb45
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb45
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb46
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb47
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48
http://refhub.elsevier.com/S1755-4365(22)00006-8/sb48

	Modeling the effects of social distancing on the large-scale spreading of diseases
	Introduction
	Model description
	Epidemic spreading
	Mobility model

	Analytical insights for homogeneously mixed populations
	Long-term memory
	System resets
	Short-term memory

	Global strategies and the heterogeneity of local features
	Long-term (LT) global strategy

	The efficiency of local and global strategies
	Short-term (ST) memory
	Long-term (LT) memory

	Local and global strategies with real metapopulations
	Secondary outbreaks in the global long-term memory with resets
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


