
FRACTAL SOBOLEV SYSTEMS OF FUNCTIONS

ASSOCIATED WITH ORTHONORMAL SYSTEMS OF

FUNCTIONS

Abstract. The paper introduces the uniform boundedness of the Sobolev
orthonormal systems of functions associated with uniformly bounded or-
thonormal complete systems of continuous functions and also defines the
α-fractal Sobolev system corresponding to Sobolev Orthonormal Sys-
tem. An approximation related result similar to Weierstrass theorem is
derived. It has been shown that the set of α-fractal versions of Sobolev
sums is dense and complete in the weighted Sobolev space Wr,2

ρ (I). A

Schauder basis and a Riesz basis of fractal type for the space Wr,2
ρ (I)

are found. The Fourier-Sobolev expansion of an α-fractal function fα

corresponding to a certain set of interpolation points is presented. Also
the convergence of fαwith respect to uniform norm and Sobolev norm
are established.

1. Introduction

Fractal approximation has been used to describe geometrical structure of
the objects which have irregular and complex characteristics in nature such
as surface of broken stone, lightning, clouds, mountain ranges, coastlines,
price graphs, smoke etc. The geometrical structures and the properties of
such irregular objects were first addressed by Benoit B. Mandelbrot and he
coined it as fractal theory [1].

Fractal interpolation functions whose graphs are fractals have been broadly
used in approximation theory, interpolation theory, financial series, com-
puter graphics, signal processing and many on. Barnsley [2], constructed
the fractal interpolation function (FIF) using Hutchinson’s operator [3] on
an iterated function system (IFS), whose attractor is the graph of a contin-
uous function interpolating a certain data set.

Navascués [7, 8], defined an α-fractal interpolation function fα as a fractal
version of a continuous function f ∈ C(I) on a compact interval I of R. The
function fα is continuous but non differentiable in nature.

The theory and application of α-fractal interpolation function fα have
been extensively studied by Navascués [8, 10]. In [4], several properties of
the operator Fα : C(I) → C(I) defined by f → fα have been analysed and
also been extended to more general spaces like Lp-space Lp(I)(1 ≤ p <∞),
r-smooth function space Cr(I) and the Sobolev space Wr,p(I).
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In [11], Sharapudinov defined the Sobolev orthonormal system {ϕr,k}∞k=0
associated with an orthonormal system {ϕk}∞k=0 of functions defined on
I = [a, b] with weight function ρ(x). Some particular cases of the Sobolev
orthonormal systems of the form {ϕr,k}∞k=0 generated by the classical Ja-
cobi, Legendre, Chebyshev and Haar orthonormal systems were considered
in [11]-[15]. Results on the uniform convergence of Fourier-Sobolev series
can be found in [11].

In [19], the fractal Jacobi system is defined and the convergence of Fourier-
Jacobi expansion for an affine FIF as well as non-affine FIF is briefly dis-
cussed. In the same paper, a fractal version of a classical result namely
Weierstrass theorem is found and also it is proved that the fractal Jacobi
system forms a Schauder basis for a space of weighted square integrable
functions.

In the present paper, it is shown that the Sobolev orthonormal system of
functions is uniformly bounded. Mainly, the α-fractal Sobolev system is de-
fined here and an approximation based result similar to Weierstrass theorem
is derived. It is proved that the set of α-fractal versions of Sobolev sums
is dense in the weighted Sobolev space Wr,2

ρ (I) and the α-fractal Sobolev

system is complete in Wr,2
ρ (I). Also this paper shows that the α-fractal

Sobolev system forms a Schauder basis and also a Riesz basis for Wr,2
ρ (I).

Some results on convergence of Fourier-Sobolev expansion of an α-fractal
function corresponding to a certain data set, are established.

2. Definitions and Notations

2.1. Weighted Sobolev Space.
Consider a closed compact interval I = [a, b]. Let ρ : R → (0,∞) be any

continuous weight function. For 1 ≤ p <∞, a weighted Lp-space is defined
as Lpρ(I) := {f : I → R; f is measurable and ‖f‖Lpρ(I) <∞}, where

‖f‖
Lpρ(I)

:=

[∫
I
|f(x)|p ρ(x)dx

] 1
p

, 1 ≤ p <∞.

For sup-norm and Lpρ-norm, we have, if f ∈ L∞(I)

‖f‖
Lpρ(I)

≤ ‖f‖
∞

[∫
I
ρ(x)dx

] 1
p

,

where sup-norm ‖f‖
∞

= ess sup{|f(x)| : x ∈ I}.
When ρ(x) = 1, then Lpρ(I) = Lp(I) and write L1(I) = L(I).

The weighted Sobolev space [11] is defined as Wr,2
ρ (I) := {f : I → R; f is

(r − 1)-times continuously differentiable on I such that f (r−1) is absolutely

continuous on I and f (r) ∈ L2
ρ(I)}. The inner product in Wr,2

ρ (I) is defined
by

〈f, g〉 =

r−1∑
j=0

f (j)(a)g(j)(a) +

∫
I
f (r)(x)g(r)(x)ρ(x)dx, (2.1)
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for all f, g ∈ Wr,2
ρ (I), if 1

ρ(x) ∈ L(I). The norm is defined as

‖f‖Wr,2
ρ (I)

=

r−1∑
j=0

∣∣∣f (j)(a)
∣∣∣2 +

∫
I

∣∣∣f (r)(x)
∣∣∣2 ρ(x)dx

 1
2

,

for all f ∈ Wr,2
ρ (I).

This makes Wr,2
ρ (I) a Banach space. Wr,2

ρ (I) is also a Hilbert space

with the inner product (2.1). When ρ(x) = 1, then Wr,2
ρ (I) =Wr,2(I). It is

needed to mention that for any compact interval I, Cr(I) is dense inWr,2
ρ (I)

(in view of Theorem 2, Page-251 in [21]).

2.2. Sobolev Orthonormal System.
Let {ϕk}∞k=0 be an orthonormal system of functions on a compact interval

I = [a, b] with the weight function ρ(x). That is,

〈ϕk, ϕm〉 =

∫
I
ϕk(x)ϕm(x)ρ(x)dx =

{
1; k = m.
0; k 6= m.

(2.2)

From (2.2),
∫
I |ϕk(x)|2 ρ(x)dx = 1. Therefore ϕk ∈ L2

ρ(I), k = 0, 1, 2, ....
By including the condition that ϕk ∈ L(I), k = 0, 1, 2, ... , one can define the
following functions generated by the system {ϕk}∞k=0 (see [11]). Let r ∈ N,

ϕr,r+k(x) =
1

(r − 1)!

∫ x

a
(x− t)r−1ϕk(t)dt; k = 0, 1, 2, ... (2.3)

and

ϕr,k(x) =
(x− a)k

k!
; k = 0, 1, 2, ...(r − 1). (2.4)

It follows from (2.3) and (2.4) that for a.e. x ∈ I,

ϕ
(j)
r,k(x) =


ϕr−j,k−j(x) if 0 ≤ j ≤ r − 1, r ≤ k.

ϕk−r(x) if j = r ≤ k.
ϕr−j,k−j(x) if j ≤ k < r.

0 if k < j ≤ r.

(2.5)

In [11], it is shown that {ϕr,k}∞k=0 is an orthonormal system in Wr,2
ρ (I)

and also complete in Wr,2
ρ (I) with respect to (2.1) if {ϕk}∞k=0 is complete in

L2
ρ(I) and if 1

ρ(x) ∈ L(I).

The system {ϕr,k}∞k=0 is known as Sobolev orthonormal system generated
by the orthonormal system {ϕk}∞k=0. If the initial system {ϕk}∞k=0 is of
continuous functions, then from (2.5), each ϕr,k ∈ Cr(I).

The Fourier series of f ∈ Wr,2
ρ (I) with respect to the system {ϕr,k}∞k=0 is

of a mixed form, which is given by (see [11])

f(x) ∼
r−1∑
k=0

f (k)(a)
(x− a)k

k!
+
∞∑
k=r

fr,k(f)ϕr,k(x), (2.6)
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where

fr,k = fr,k(f) =

∫ b

a
f (r)(t)ϕ

(r)
r,k(t)ρ(t)dt =

∫ b

a
f (r)(t)ϕk−r(t)ρ(t)dt. (2.7)

The series (2.6) converges to f uniformly also if 1
ρ(x) ∈ L(I) (see Theorem

22, [11]).
The n-th partial sum of (2.6) is defined by

Yr,n(f, x) =
r−1∑
k=0

f (k)(a)
(x− a)k

k!
+

n∑
k=r

fr,k(f)ϕr,k(x); for x ∈ I.

2.3. Fractal Interpolation Function.
Let N ≥ 2 be an integer. Consider a set of interpolation points D =

{(xi, yi) ∈ I×R : i = 0, 1, ..., N}, where ∆ : x0 < x1 < ... < xN is a partition
of the closed interval I = [x0, xN ]. Set Ii = [xi−1, xi] for i = 1, 2, ..., N . Let
Li : I → Ii, i = 1, 2, ..., N, be contraction homeomorphisms such that

Li(x0) = xi−1, Li(xN ) = xi, (2.8)

|Li(x)− Li(y)| ≤ ai|x− y|, (2.9)

for all x, y in I and 0 ≤ ai < 1.
Again, let Fi : I × R → R, i = 1, 2, ..., N be given continuous functions

such that
Fi(x0, y0) = yi−1, Fi(xN , yN ) = yi, (2.10)

|Fi(x, y)− Fi(x, y′)| ≤ |αi||y − y′|, (2.11)

for all x in I and for all y, y′ in R and for some 0 ≤ |αi| < 1, i = 1, 2, ..., N .
Let

C∗(I) = {f ∈ C(I) : f(x0) = y0, f(xN ) = yN},
C∗∗(I) = {f ∈ C(I) : f(xi) = yi; i = 0, 1, 2, ..., N}.

The Read-Bajraktarvic (RB) operator T : C∗(I)→ C∗∗(I) is defined by (see
[6])

(Tf)(x) = Fi(L
−1
i (x), f(L−1

i (x))); x ∈ Ii, i = 1, 2, ..., N.

is a contraction with contractivity factor |α|∞ = max{|αi| : i = 1, 2, ..., N}.
Due to Banach fixed point theorem, T has a unique fixed point g (say).
Furthermore, g interpolates the data set D and satisfies the fixed point
functional equation

g(x) = Fi(L
−1
i (x), g(L−1

i (x))); x ∈ Ii, i = 1, 2, ..., N. (2.12)

Define mappings Wi : I × R → Ii × R; i = 1, 2, ..., N by Wi(x, y) =
(Li(x), Fi(x, y)), for all (x, y) ∈ I × R. Then

W = 〈I × R;Wi(x, y) : i = 1, 2, ..., N〉 ,
constitutes an IFS. Barnsley [2], proved that this IFS W has a unique attrac-
tor G, where G is the graph of a continuous function g : I → R interpolating
the points of D. This function g is called a fractal interpolation function
(FIF) and it is the unique function satisfying (2.12).
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The most studied FIFs are defined by the iterated mappings

Li(x) = aix+ ei, i = 1, 2, ..., N, (2.13)

where ai = xi−xi−1

xN−x0 , ei = xNxi−1−x0xi
xN−x0 .

Fi(x, y) = αiy + qi(x), i = 1, 2, ..., N, (2.14)

where qi(x)s are suitable continuous functions on I for which Fi satisfies
(2.10) and (2.11). For each i = 1, 2, ..., N , αi is a free parameter with
|αi| < 1 and is called a vertical scaling factor of the transformation Wi.
Then the vector α = (α1, α2, ..., αN ) is called the scale vector of this IFS. If
qi(x)s are affine maps, then the corresponding FIF is known as affine FIF
(AFIF).

2.4. α-Fractal Interpolation Function.
Let f ∈ C(I). Consider the IFS defined by the iterated mappings in (2.13)

and (2.14), where qi(x) = f(Li(x))− αib(x), i.e.,

Fi(x, y) = αiy + f(Li(x))− αib(x), i = 1, 2, ..., N (2.15)

and b ∈ C(I), known as base function that follow b(x0) = f(x0) and b(xN ) =
f(xN ). Let fα be the continuous function whose graph is the attractor of
the IFS defined by (2.13) and (2.15). Then, the function fα is called the
α-fractal function of f with respect to the base function b and the partition
∆. From (2.12), fα satisfies the fixed point equation

fα(x) = f(x) + αi(f
α − b)(L−1

i (x)), (2.16)

for all x ∈ Ii, i = 1, 2, ..., N. From (2.16), it is easy to deduce that

‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖f − b‖∞ . (2.17)

For α = 0, the fractal function is same as the classical one. More discussion
about α-fractal function for different choices of b can be found in [7]-[9].
Take

b = Lf,

where L : C(I) → C(I) is a linear and bounded operator with respect to
the uniform norm on C(I) such that Lf(x0) = f(x0) and Lf(xN ) = f(xN ).
Then from (2.17), for any f ∈ C(I) and its fractal function fα satisfies

‖fα − f‖∞ ≤
|α|∞

1− |α|∞
‖Id − L‖∞ ‖f‖∞ , (2.18)

where Id is identity operator and ‖Id − L‖∞ represents the corresponding
operator norm as well.

In the following, the fractal function of any function from the space Cr(I)
is discussed.
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Theorem 2.1. [2](Barnsley et al.) For a given data set x0 < x1 < ... < xN ,
let Li(x) = aix + ei be such that it satisfies (2.8), (2.9) and Fi(x, y) =
αiy + qi(x) satisfy (2.10), (2.11) for i = 1, 2, ..., N . Suppose for some
r > 0, |αi| < sari , 0 < s < 1 and qi ∈ Cr[x0, xN ], i = 1, 2, ..., N . Let

Fi,k(x, y) =
αiy+q

(k)
i (x)

aki
, y0,k =

q
(k)
1 (x0)

ak1−α1
, yN,k =

q
(k)
N (xN )

akN−αN
, k = 1, 2, ..., r. If

Fi−1,k(xN , yN,k) = Fi,k(x0, y0,k) for i = 1, 2, ..., N and k = 1, 2, ..., r, then

{Li(x), Fi(x, y)}Ni=1 determines a FIF f ∈ Cr[x0, xN ] and f (k) is the FIF
determined by {Li(x), Fi,k(x, y)}Ni=1 for k = 1, 2, ..., r.

In view of the Theorem 2.1, P. Viswanathan established α-fractal ver-
sion of r-smooth functions with scaling functions αi(x) in place of constant
scaling factors αi.

Theorem 2.2. [4, 5](Viswanathan et al.) Let f ∈ Cr(I), r ∈ N. Suppose
that ∆ = {x0, x1, ..., xN} is a partition of I = [x0, xN ] satisfying x0 < x1 <
... < xN , Ii = [xi−1, xi] for i = 1, 2, ..., N and Li : I → Ii are affine maps
Li(x) = aix + ei satisfying Li(x0) = xi−1, Li(xN ) = xi for i = 1, 2, ..., N.
Suppose that r-times continuously differentiable scaling functions and base
function are selected so that

‖αi‖Cr(I) ≤ (
ai
2

)r,

b(j)(x0) = f (j)(x0), b(j)(xN ) = f (j)(xN ); j = 0, 1, 2, ..., r.

Then the RB operator defined by

(Tg)(x) = f(x) + αi(L
−1
i (x))(g − b)(L−1

i (x)); x ∈ Ii, i = 1, 2, ..., N,

is a contraction on the complete metric space

Crf (I) := {g ∈ Cr(I) : g(j)(x0) = f (j)(x0), g(j)(xN ) = f (j)(xN ); j = 0, 1, ..., r}.

and the corresponding fractal function fα is r-smooth. Furthermore, the
derivative (fα)(j) of its unique fixed point fα satisfies the self-referential
equation

(fα)(j)(x) = f (j)(x) + a−ji

[
j∑

m=0

(
j

m

)
αj−mi (L−1

i (x))(fα − b)(m)(L−1
i (x))

]
;

x ∈ Ii, i = 1, 2, ..., N, j = 0, 1, 2, ..., r and consequently, fα agrees with f at
the knot points up to the r-th derivative.

If we consider again constant scale factors, for α = (α1, α2, ..., αN ) with
|α|∞ ≤ (ai2 )r; i = 1, 2, ..., N, the α-fractal function fα of f ∈ Cr(I) satisfies
the self-referential equation

fα(x) = f(x) + αi(f
α − b)(L−1

i (x)) (2.19)

and for j = 0, 1, 2, ..., r

(fα)(j)(xi) = f (j)(xi); i = 0, 1, 2, ..., N. (2.20)
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It follows from (2.19) that

‖fα − f‖Cr(I) ≤ δ ‖f
α − b‖Cr(I) , (2.21)

i.e., ‖fα − f‖Cr(I) ≤
δ

1− δ
‖f − b‖Cr(I) , (2.22)

where δ =
|α|∞

min{ari ; i=1,...,N} and ‖f‖Cr(I) := max{
∥∥f (j)

∥∥
∞ : j = 0, 1, 2, ..., r}.

In [4], it is seen that for fixed scale vector and various choice of base func-
tions, the operator Fα : Cr(I)→ Cr(I) defined by

Fα(f) = fα, for all f ∈ Cr(I)

is linear and bounded. Let b = Lf, where L : Cr(I)→ Cr(I) is a linear and

bounded operator with respect to the norm on Cr(I) such that Lf (j)(x0) =

f (j)(x0) and Lf (j)(xN ) = f (j)(xN ); j = 0, 1, 2, ..., r. Then (2.22) becomes

‖fα − f‖Cr(I) ≤
δ

1− δ
‖Id − L‖Cr(I) ‖f‖Cr(I) . (2.23)

3. Uniform Bound for Sobolev Orthonormal System

We assume that {ϕk}∞k=0 is any uniformly bounded orthonormal and com-
plete system of continuous functions on a compact interval I = [a, b] with
respect to the weight function ρ in L2

ρ(I). Then for any k ∈ N∪{0}, ‖ϕk‖∞ ≤
B, where B is a positive real. For k = 0, 1, 2, ..., (r − 1) and for all x ∈ I,
|ϕr,k(x)| ≤ (b−a)k

k! . Again, for k = r, (r + 1), ... and for all x ∈ I,

|ϕr,k(x)| ≤ 1

(r − 1)!

∫ x

a
|x− t|r−1 |ϕk−r(t)| dt.

For x, t ∈ I, |x− t|r−1 |ϕk−r(t)| ≤ B(b − a)r−1 and consequently, for
k = r, (r + 1), ... and for all x ∈ I,

|ϕr,k(x)| ≤ B(b− a)r

(r − 1)!
.

Thus for any k ∈ N ∪ {0} and for all x ∈ I, |ϕr,k(x)| ≤ D, where D =

max{1, (b− a), (b−a)2

2! ..., (b−a)r−1

(r−1)! ,
B(b−a)r

(r−1)! }. Then

‖ϕr,k‖∞ ≤ D.

From (2.5), for any k ∈ N ∪ {0} and for all x ∈ I, for j = 0, 1, ..., r,∣∣∣ϕ(j)
r,k(x)

∣∣∣ ≤ µ = max{B,D}.

Therefore

‖ϕr,k‖Cr(I) = sup{
∥∥∥ϕ(j)

r,k

∥∥∥
∞

: j = 0, 1, ..., r} ≤ µ.
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4. α- Fractal Sobolev System

Let us take any compact interval I = [a, b] with partition ∆ : a = x0 <
x1 < ... < xN = b. Let ϕr,k, k ∈ N ∪ {0} be any function from the Sobolev
orthonormal system {ϕr,k}∞k=0 generated by the orthonormal and complete
system of continuous functions {ϕk}∞k=0. As each ϕr,k ∈ Cr(I), then the
α-fractal function of ϕr,k exists in Cr(I) (see Theorem 2.2). Denote ϕαr,k as
the α-fractal function of ϕr,k, then it satisfies the self-referential equation

ϕαr,k(x) = ϕr,k(x) + αi(ϕ
α
r,k − br,k)(L−1

i (x)); x ∈ Ii, i = 1, 2, ..., N,

where br,k ∈ Cr(I) is a base function satisfying

ϕ
(j)
r,k(x0) = b

(j)
r,k(x0), ϕ

(j)
r,k(xN ) = b

(j)
r,k(xN ); j = 0, 1, 2, ..., r.

We say that the system {ϕαr,k}∞k=0 is the α-Fractal Sobolev System generated

by the system {ϕk}∞k=0. In view of (2.20), it follows that for j = 0, 1, 2, ..., r,

(ϕαr,k)
(j)(xi) = ϕ

(j)
r,k(xi); i = 0, 1, 2, ..., N. (4.1)

Let us assume throughout the paper that the base function br,k be linearly
related with ϕr,k that is br,k = Lϕr,k, where L : Cr(I) → Cr(I) is a linear
and bounded operator with respect to the norm on Cr(I) such that

Lϕ
(j)
r,k(x0) = ϕ

(j)
r,k(x0), Lϕ

(j)
r,k(xN ) = ϕ

(j)
r,k(xN ); j = 0, 1, .., r.

Lemma 4.1. Suppose that ϕαr,k is the corresponding α-fractal function of
ϕr,k. Then

∥∥ϕαr,k − ϕr,k∥∥Wr,2
ρ (I)

≤ δ

1− δ
‖Id − L‖Cr(I) ‖ϕr,k‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

,

where δ =
|α|∞

min{ari ; i=1,...,N} .
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Proof. In view of (2.23) and using (4.1),

∥∥ϕαr,k − ϕr,k∥∥Wr,2
ρ (I)

=

 ∑r−1
j=0

∣∣∣(ϕαr,k − ϕr,k)(j)(a)
∣∣∣2

+
∫
I

∣∣∣(ϕαr,k − ϕr,k)(r)(x)
∣∣∣2 ρ(x)dx


1
2

=

[∫
I

∣∣∣(ϕαr,k − ϕr,k)(r)(x)
∣∣∣2 ρ(x)dx

] 1
2

=
∥∥∥(ϕαr,k − ϕr,k)(r)

∥∥∥
L2ρ(I)

≤
∥∥∥(ϕαr,k − ϕr,k)(r)

∥∥∥
∞

[∫
I
ρ(x)dx

] 1
2

≤
∥∥ϕαr,k − ϕr,k∥∥Cr(I) [∫

I
ρ(x)dx

] 1
2

≤ δ

1− δ
‖Id − L‖Cr(I) ‖ϕr,k‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

.

�

The following definitions can be found in [18].

Definition 4.1. A sequence {un}n∈Λ in a normed linear space V is called
total in V if the class of all finite linear combinations

∑
n∈Λ anun is dense

in V .

Definition 4.2. A sequence {un}n∈Λ in a Hilbert space H is called complete
in H if the only element of H which is orthogonal to every un is the null
element, that is

〈f, un〉 = 0 for all n ∈ Λ⇒ f = 0.

For any sequence in a Hilbert space, we have the following proposition.

Proposition 4.1. [18] If {un}n∈Λ is any sequence in a Hilbert space H,
may be orthogonal or not. Then the followings are equivalent:

(a) {un}n∈Λ is complete.
(b) {un}n∈Λ is total.

In the following theorem, it is shown that any function from Sobolev space
can be approximated by an α-fractal Sobolev sum.

Theorem 4.1. Suppose that f is any function in Wr,2
ρ (I), r ∈ N. Consider

the data set D = {(xi, f(xi)) ∈ I × R; i = 0, 1, ..., N}, where N ≥ 2 is an
integer and ∆ : x0 < x1 < ... < xN is a partition of the closed interval
I = [x0, xN ]. For every ε > 0 and for any partition ∆ of I and for linear
bounded operator L : Cr(I) → Cr(I), there exists an α-fractal Sobolev sum

Φα
r (x) =

∑M
m=1 fr,kmϕ

α
r,km

(x) with α 6= 0 such that

‖f − Φα
r ‖Wr,2

ρ (I)
< ε.
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Proof. Let ε > 0 be given and f be any function in Wr,2
ρ (I). Then there

exists g ∈ Cr(I) such that

‖f − g‖Wr,2
ρ (I)

<
ε

3
. (4.2)

By completeness of {ϕr,k}∞k=0 in Wr,2
ρ (I), the Proposition 4.1 implies that

{ϕr,k}∞k=0 is total. Therefore, for any ε > 0, there exists M ∈ N and Sobolev

sum Φr(x) =
∑M

m=1 fr,kmϕr,km(x) such that

‖g − Φr‖Wr,2
ρ (I)

<
ε

3
. (4.3)

Since Φr(x) =
∑M

m=1 fr,kmϕr,km(x) ∈ Cr(I), the linearity of Fα gives

Φα
r = Fα(Φr)

= Fα
(

M∑
m=1

fr,kmϕr,km

)

=
M∑
m=1

fr,kmϕ
α
r,km .

By the same way of Lemma (4.1),

‖Φα
r − Φr‖Wr,2

ρ (I)
≤ δ

1− δ
‖Id − L‖Cr(I) ‖Φr‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

=
δ

1− δ
λ,

where δ =
|α|∞

min{ari ; i=1,...,N} and λ = ‖Id − L‖Cr(I) ‖Φr‖Cr(I)
[∫
I ρ(x)dx

] 1
2 .

Therefore

‖Φα
r − Φr‖Wr,2

ρ (I)
<
ε

3
, (4.4)

whenever

δ <
ε

ε+ 3λ
.

By (4.2), (4.3) and (4.4)

‖f − Φα
r ‖Wr,2

ρ (I)
≤ ‖f − g‖Wr,2

ρ (I)
+ ‖g − Φr‖Wr,2

ρ (I)
+ ‖Φr − Φα

r ‖Wr,2
ρ (I)

<
ε

3
+
ε

3
+
ε

3
= ε.

This completes the proof. �

Remark 4.1. From the Theorem 4.1, it is clear that the set of α-fractal
versions of Sobolev sums is dense and complete in Wr,2

ρ (I).

The following definitions of Schauder basis and basis constant can be read
in [16].
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Definition 4.3. Let X be a real normed space and let {xn}∞n=0 be a non
zero sequence in X. We say that {xn}∞n=0 is a Schauder basis for X, if for
each x ∈ X, there is a unique sequence of scalars {an}∞n=0 such that x =∑∞

n=0 anxn, where the series converges in norm to x. We define a sequence
of linear maps {Pn}∞n=0 on X by Pnx =

∑n
i=0 aixi, where x =

∑∞
i=0 aixi.

The map Pn is a projection onto span{xi : 0 ≤ i ≤ n}. In addition, since
{xn}∞n=0 is a Schauder basis, it follows that Pnx → x in norm as n → ∞
for each x ∈ X and Pn is continuous. Moreover, K = sup

n
‖Pn‖ < ∞. The

number K is called the basis constant of the basis {xn}∞n=0.

Theorem 4.2. [17]Every basis ({xn}, {an}) for a Banach space X is a
Schauder basis for X. In fact, the coefficients functionals an are contin-
uous linear functionals on X which satisfy

1 ≤ ‖an‖ ‖xn‖ ≤ 2K,

where K is the basis constant.

4.1. Expansion in Terms of Fractal Sobolev System.
Let {αk}∞k=0 be any sequence of scale vectors such that

µ∗ =
∞∑
k=0

∣∣αk∣∣∞
|a|0 − |αk|∞

<∞,

and |a|0 >
∣∣αk∣∣∞ , k = 0, 1, 2, ..., where |a|0 = min{ari ; i = 1, ..., N} and

assume that L is linear bounded with respect to the Cr(I)-norm.

Theorem 4.3. Let {ϕαr,k}∞k=0 be α-fractal Sobolev system of the Sobolev

orthonormal system {ϕr,k}∞k=0 generated by any uniformly bounded complete
orthonormal system of continuous functions {ϕk}∞k=0. Then the operator

T : span({ϕr,k}∞k=0)→ span({ϕαkr,k}∞k=0) defined by

T

(
M∑
m=1

fr,kmϕr,km(x)

)
=

M∑
m=1

fr,kmϕ
αkm
r,km(x)

is linear and bounded.

Proof. The linearity is straight forward. To show, the boundedness of T :∥∥∥∥∥
M∑
m=1

fr,kmϕ
αkm
r,km

∥∥∥∥∥
Wr,2
ρ (I)

≤

∥∥∥∥∥
M∑
m=1

fr,km

(
ϕα

km

r,km − ϕr,km
)∥∥∥∥∥
Wr,2
ρ (I)

+

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

. (4.5)

Since {ϕr,k}∞k=0 is an orthonormal basis for Wr,2
ρ (I), fr,k is a bounded

linear functional on Wr,2
ρ (I). Therefore

|fr,k(f)| ≤ ‖fr,k‖2 ‖f‖Wr,2
ρ (I)

, (4.6)
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where ‖.‖2 represents the norm as functional operator. Treating fr,km as the

km-th Fourier-Sobolev coefficient of
∑M

m=1 fr,kmϕr,km(x) and using (4.6), the
first term of inequality (4.5) becomes∥∥∥∥∥

M∑
m=1

fr,km

(
ϕα

km

r,km − ϕr,km
)∥∥∥∥∥
Wr,2
ρ (I)

≤
M∑
m=1

∥∥∥fr,km (ϕαkmr,km − ϕr,km
)∥∥∥
Wr,2
ρ (I)

≤
M∑
m=1

‖fr,km‖2

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

∥∥∥ϕαkmr,km − ϕr,km
∥∥∥
Wr,2
ρ (I)

=

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

M∑
m=1

‖fr,km‖2
∥∥∥ϕαkmr,km − ϕr,km

∥∥∥
Wr,2
ρ (I)

.(4.7)

Using Lemma (4.1), we have for m = 1, ...,M,∥∥∥ϕαkmr,km − ϕr,km
∥∥∥
Wr,2
ρ (I)

≤ δkm

1− δkm
‖Id − L‖Cr(I) ‖ϕr,km‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

,

where δkm =
|αkm |∞
|a|0

.

Therefore, (4.7) becomes∥∥∥∥∥
M∑
m=1

fr,km

(
ϕα

km

r,km − ϕr,km
)∥∥∥∥∥
Wr,2
ρ (I)

≤

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

M∑
m=1

‖fr,km‖2

× δkm

1− δkm
‖Id − L‖Cr(I) ‖ϕr,km‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

. (4.8)

As a complete orthonormal basis, {ϕr,k}∞k=0 is a Schauder basis forWr,2
ρ (I),

then the following inequality hold (see Theorem 4.2),

1 ≤ ‖fr,km‖2 ‖ϕr,km‖Wr,2
ρ (I)

≤ 2K, (4.9)

where K is the basis constant. But ‖ϕr,km‖Wr,2
ρ (I)

= 1 and since {ϕr,k}∞k=0

is orthonormal in the Hilbert space Wr,2
ρ (I), then the basis constant K = 1

(see [22]), then from (4.9)

1 ≤ ‖fr,km‖2 ≤ 2. (4.10)

Again, for any k ∈ N ∪ {0}, (see Section 3)

‖ϕr,k‖Cr(I) ≤ µ.
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Therefore

‖fr,km‖2 ‖ϕr,km‖Cr(I) ≤ 2µ.

Then (4.8) becomes∥∥∥∥∥
M∑
m=1

fr,km

(
ϕα

km

r,km − ϕr,km
)∥∥∥∥∥
Wr,2
ρ (I)

≤

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

×2µ ‖Id − L‖Cr(I)
[∫

I
ρ(x)dx

] 1
2

M∑
m=1

δkm

1− δkm
. (4.11)

By given conditions on scale vectors, we have∑M
m=1

δkm

1−δkm =
∑M

m=1
|αkm |∞

|a|0−|αkm |∞
≤ µ∗. Therefore, it follows from (4.11)

that ∥∥∥∥∥
M∑
m=1

fr,km

(
ϕα

km

r,km − ϕr,km
)∥∥∥∥∥
Wr,2
ρ (I)

≤ 2µµ∗σ

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

,

where σ = ‖Id − L‖Cr(I)
[∫
I ρ(x)dx

] 1
2 . Therefore, from (4.5)∥∥∥∥∥

M∑
m=1

fr,kmϕ
αkm
r,km

∥∥∥∥∥
Wr,2
ρ (I)

≤ (1 + 2µµ∗σ)

∥∥∥∥∥
M∑
m=1

fr,kmϕr,km

∥∥∥∥∥
Wr,2
ρ (I)

.

Hence T is a linear and bounded operator. �

Lemma 4.2. [19](Linear and Bounded Operator Theorem) Let X be a
normed linear space, Y be a Banach space and U : X → Y be a linear
and bounded operator. If X is dense in X ′, then U can be extended to X ′

preserving the norm of U .

Theorem 4.4. The map T :Wr,2
ρ (I)→Wr,2

ρ (I) given by

T (f) =
∞∑
k=0

fr,k(f)ϕα
k

r,k(x),

where

f(x) =

∞∑
k=0

fr,k(f)ϕr,k(x),

is well defined, linear and continuous.
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Proof. Since {ϕr,k}∞k=0 is complete in Wr,2
ρ (I), by the Proposition 4.1, it is

total in Wr,2
ρ (I) and therefore, span({ϕr,k}∞k=0) is dense in Wr,2

ρ (I). Then
by Lemma 4.2, the operator defined in the Theorm 4.3 can be extended to

T :Wr,2
ρ (I)→Wr,2

ρ (I),

with
∥∥T∥∥Wr,2

ρ (I)
= ‖T‖Wr,2

ρ (I)
.

The linearity and boundedness of T imply that T (f) =
∑∞

k=0 fr,k(f)ϕα
k

r,k(x)

whenever f(x) =
∑∞

k=0 fr,k(f)ϕr,k(x). �

4.2. Schauder Basis for Wr,2
ρ (I).

In the present section, it is proved that the fractal Sobolev system forms
a Schauder basis forWr,2

ρ (I) under some conditions on scale vectors and the
hypothesis given in the Theorem 4.3.

Theorem 4.5. Suppose that the sequence {αk}∞k=0 of scale vectors are such
that

|a|0 >
∣∣α0
∣∣
∞ ≥

∣∣α1
∣∣
∞ ≥

∣∣α2
∣∣
∞ ≥ ...,

and
∞∑
k=0

∣∣αk∣∣∞
|a|0 − |αk|∞

<∞.

If 2µµ∗ ‖Id − L‖Cr(I)
[∫
I ρ(x)dx

] 1
2 < 1, then {ϕαkr,k}∞k=0 is a Schauder basis

for Wr,2
ρ (I).

Proof. To prove, let us consider the operator V :Wr,2
ρ (I)→Wr,2

ρ (I) defined
by

V (f) =
∞∑
k=0

fr,k(f)
(
ϕr,k − ϕα

k

r,k

)
. (4.12)

Now

T (f(x)) = T

( ∞∑
k=0

fr,k(f)ϕr,k(x)

)

=

∞∑
k=0

fr,k(f)ϕα
k

r,k(x)

= f(x)−
∞∑
k=0

fr,k(f)
(
ϕr,k − ϕα

k

r,k

)
(x)

= f(x)− V (f)(x).

This implies that T = Id − V .
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Using the equations similar to the proof of Theorem 4.3 we have,

‖V (f)‖Wr,2
ρ (I)

≤
∞∑
k=0

|fr,k(f)|
∥∥∥ϕr,k − ϕαkr,k∥∥∥Wr,2

ρ (I)

≤
∞∑
k=0

‖fr,k‖2 ‖f‖Wr,2
ρ (I)

∥∥∥ϕr,k − ϕαkr,k∥∥∥Wr,2
ρ (I)

= ‖f‖Wr,2
ρ (I)

∞∑
k=0

‖fr,k‖2
∥∥∥ϕr,k − ϕαkr,k∥∥∥Wr,2

ρ (I)

≤ 2µµ∗σ ‖f‖Wr,2
ρ (I)

,

where σ = ‖Id − L‖Cr(I)
[∫
I ρ(x)dx

] 1
2 and consequently∥∥Id − T∥∥Wr,2

ρ (I)
= ‖V ‖Wr,2

ρ (I)
≤ 2µµ∗σ < 1.

Hence T is a continuous isomorphism, it maps Schauder basis onto Schauder

basis. Therefore {ϕαkr,k}∞k=0 forms a Schauder basis for Wr,2
ρ (I). �

4.3. Riesz Basis for Wr,2
ρ (I).

In this section, it is shown that the α-fractal Sobolev system is a Riesz
basis for Wr,2

ρ (I) under some suitable conditions on scale vectors.

Definition 4.4. [20]A sequence {xk}∞k=0 in a Hilbert space H is called a
frame for H if the inequalities

A ‖x‖2 ≤
∑
k

|〈x, xk〉|2 ≤ B ‖x‖2

hold for some positive constants A and B, and for all x ∈ H. The constants
A and B are called a lower and an upper frame bound, respectively. A frame
is said to be exact if it ceases to be a frame when an element is deleted.

Definition 4.5. [20]A sequence {xk}∞k=0 in a Hilbert space H is called a
Riesz basis for H if it is complete and the inequalities

A
∑
k

|ak|2 ≤

∥∥∥∥∥∑
k

akxk

∥∥∥∥∥
2

≤ B
∑
k

|ak|2

hold for some positive constants A and B, and for every sequence {ak}∞k=0 in
`2(I). The constants A and B are called a lower and an upper Riesz bound,
respectively.

Since the Sobolev system {ϕr,k}∞k=0 is complete and orthonormal inWr,2
ρ (I),

then it is a Riesz basis with A = B = 1, as for any orthonormal basis
{xk}∞k=0, we have ∥∥∥∥∥∑

k

akxk

∥∥∥∥∥
2

=
∑
k

|ak|2 .
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It is well known that a sequence in a Hilbert space is a Riesz basis if
and only if it is an exact frame [20]. For instance, the Sobolev orthonormal
system {ϕr,k}∞k=0 is an exact frame.

Theorem 4.6. Suppose that the sequence {αk}∞k=0 of scale vectors are such
that

|a|0 >
∣∣α0
∣∣
∞ ≥

∣∣α1
∣∣
∞ ≥

∣∣α2
∣∣
∞ ≥ ...,

and
∞∑
k=0

∣∣αk∣∣∞
|a|0 − |αk|∞

<∞.

If 2µµ∗ ‖Id − L‖Cr(I)
[∫
I ρ(x)dx

] 1
2 < 1, then {ϕαkr,k}∞k=0 is a Riesz basis for

Wr,2
ρ (I).

Proof. In the proof of Theorem 4.5, it is shown that the operator T defined
in Theorem 4.4, is a continuous isomorphism. A continuous isomorphism

maps Riesz basis onto Riesz basis and consequently {ϕαkr,k}∞k=0 is a Riesz

basis for Wr,2
ρ (I). �

Remark 4.2. From the Theorem 4.6, it concludes that {ϕαkr,k}∞k=0 is an exact
frame.

5. Convergence of Fourier-Sobolev Expansion

In this section, the convergence of Fourier-Sobolev series of an α-fractal
function corresponding to certain data set, is introduced. To establish the
main results the following theorem on convergence of the Fourier-Sobolev
series is needed.

Theorem 5.1. [11] Suppose that 1
ρ(x) ∈ L(I) and the system {ϕk}∞k=0 is

complete in L2
ρ(I) and orthonormal with weight ρ(x) on I. Let {ϕr,k}∞k=0

be the Sobolev orthonormal system in Wr,2
ρ (I) with respect to inner product

(2.1), generated by the system {ϕk}∞k=0 according to (2.3) and (2.4). Suppose

that f ∈ Wr,2
ρ (I) . Then the Fourier-Sobolev series (2.6) converges to f

uniformly with respect to x ∈ I.

Lemma 5.1. Suppose that 1
ρ(x) ∈ L(I) and the system of functions {ϕk}∞k=0

is complete in L2
ρ(I) and orthonormal with weight ρ(x) on I. Let {ϕr,k}∞k=0

be the Sobolev orthonormal system in Wr,2
ρ (I) with respect to inner product

(2.1), generated by the system {ϕk}∞k=0 according to (2.3) and (2.4). Suppose

that f ∈ Wr,2
ρ (I) . Then r-th derivative of the Fourier-Sobolev series (2.6)

converges to f (r) with L2
ρ(I)-norm on I.
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Proof. The nth partial sum of Fourier series of f (r) ∈ L2
ρ(I) in the system

{ϕk}∞k=0 is given by

Sn(f (r)) = Sn(f (r), x) =
n∑
k=0

fr,k+rϕk(x),

where the coefficients fr,k+r; k = 0, 1, 2, ..., are defined in (2.7). Then∥∥∥f (r) − Sn(f (r))
∥∥∥
L2ρ(I)

→ 0 as n→∞. (5.1)

The (r + n)th partial sum of the series (2.6) is

Yr,r+n(f, x) =

r−1∑
k=0

f (k)(a)
(x− a)k

k!
+

r+n∑
k=r

fr,kϕr,k(x) (5.2)

and Taylor’s formula with integral remainder gives us

f(x) =
r−1∑
k=0

f (k)(a)
(x− a)k

k!
+

1

(r − 1)!

∫ x

a
(x− t)r−1f (r)(t)dt. (5.3)

Using (2.3), we have from (5.2) and (5.3),

f(x)− Yr,r+n(f, x) =
1

(r − 1)!

∫ x

a
(x− t)r−1f (r)(t)dt−

r+n∑
k=r

fr,kϕr,k(x)

=
1

(r − 1)!

∫ x

a
(x− t)r−1f (r)(t)dt

− 1

(r − 1)!

∫ x

a
(x− t)r−1

r+n∑
k=r

fr,kϕk−r(t)dt

=
1

(r − 1)!

∫ x

a
(x− t)r−1

[
f (r)(t)−

r+n∑
k=r

fr,kϕk−r(t)

]
dt

=
1

(r − 1)!

∫ x

a
(x− t)r−1

[
f (r)(t)− Sn(f (r), t)

]
dt.(5.4)

Applying Leibniz’s rule for differentiation under the integral sign on (5.4),
for j = 0, 1, 2, ..., (r − 1),

f (j)(x)− Y (j)
r,r+n(f, x)

=
1

{(r − 1)− j}!

∫ x

a
(x− t)(r−1)−j

[
f (r)(t)− Sn(f (r), t)

]
dt (5.5)

and

f (r)(x)− Y (r)
r,r+n(f, x) = f (r)(x)− Sn(f (r), x). (5.6)
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Using (5.5) and Hölder’s inequality, for all x ∈ I and for j = 0, 1, 2, ..., (r−1),

∣∣∣f (j)(x)− Y (j)
r,r+n(f, x)

∣∣∣ ≤ 1

{(r − 1)− j}!

(∫ b

a

|x− t|2{(r−j)−1}

ρ(t)
dt

) 1
2

×
(∫ b

a

∣∣∣f (r)(t)− Sn(f (r), t)
∣∣∣2 ρ(t)dt

) 1
2

=
1

{(r − 1)− j}!

(∫ b

a

|x− t|2{(r−j)−1}

ρ(t)
dt

) 1
2

×
∥∥∥f (r) − Sn(f (r))

∥∥∥
L2ρ(I)

. (5.7)

Therefore, by using (5.1), from (5.7), for j = 0, 1, 2, ..., (r − 1),∥∥∥f (j) − Y (j)
r,r+n(f)

∥∥∥
∞
→ 0 as n→∞.

Therefore, for j = 0, 1, 2, ..., (r − 1),∥∥∥f (j) − Y (j)
r,r+n(f)

∥∥∥
L2ρ(I)

≤
∥∥∥f (j) − Y (j)

r,r+n(f)
∥∥∥
∞

[∫
I
ρ(x)dx

] 1
2

→ 0 as n→∞ (5.8)

and from (5.6),∥∥∥f (r) − Y (r)
r,r+n(f)

∥∥∥
L2ρ(I)

=
∥∥∥f (r) − Sn(f (r))

∥∥∥
L2ρ(I)

→ 0 as n→∞. (5.9)

Using (5.8) and (5.9), the result follows. �

Theorem 5.2. Suppose that 1
ρ(x) ∈ L(I). Let g ∈ Cr(I) be the original

function providing the data {(xi, yi)}Ni=0 with constant step h = xi − xi−1.
Let f be the α-fractal function of g with scale vector αh such that |αh|∞ <
(ai2 )rh; i = 1, 2, ..., N, defined in the Theorem 2.2. Then the Fourier-Sobolev
expansion of f converges to g in weighted Sobolev norm as h→ 0 and n→∞
on I.

Proof. Suppose that gα = f is the α-fractal function of g. For convenience,
write Yr,n(f, x) = Yr,n(f).

From the Lemma 5.1,∥∥∥f (r) − Y (r)
r,r+n(f)

∥∥∥
L2ρ(I)

→ 0 as n→∞. (5.10)

From (5.5), for j = 0, 1, 2, ..., (r − 1),

(f − Yr,r+n(f))(j)(a) = 0. (5.11)
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Now, using (5.10) and (5.11)

‖f − Yr,r+n(f)‖Wr,2
ρ (I)

=

[ ∑r−1
j=0

∣∣(f − Yr,r+n(f))(j)(a)
∣∣2 +∫

I

∣∣(f − Yr,r+n(f))(r)(x)
∣∣2 ρ(x)dx

] 1
2

=

[∫
I

∣∣∣(f − Yr,r+n(f))(r)(x)
∣∣∣2 ρ(x)dx

] 1
2

=
∥∥∥(f − Yr,r+n(f))(r)

∥∥∥
L2ρ(I)

→ 0 as n→∞. (5.12)

Now, in view of (2.23), we have

‖f − g‖Wr,2
ρ (I)

= ‖gα − g‖Wr,2
ρ (I)

=

[ ∑r−1
j=0

∣∣(gα − g)(j)(a)
∣∣2 +∫

I

∣∣(gα − g)(r)(x)
∣∣2 ρ(x)dx

] 1
2

=

[∫
I

∣∣∣(gα − g)(r)(x)
∣∣∣2 ρ(x)dx

] 1
2

=
∥∥∥(gα − g)(r)

∥∥∥
L2ρ(I)

≤
∥∥∥(gα − g)(r)

∥∥∥
∞

[∫
I
ρ(x)dx

] 1
2

≤ ‖gα − g‖Cr(I)
[∫

I
ρ(x)dx

] 1
2

≤ δ

1− δ
‖Id − L‖Cr(I) ‖g‖Cr(I)

[∫
I
ρ(x)dx

] 1
2

, (5.13)

where δ =
|αh|∞
|a|0

. Since |αh|∞ < (ai2 )rh; i = 1, 2, ..., N , it follows from (5.13)

that

‖f − g‖Wr,2
ρ (I)

→ 0 as h→ 0. (5.14)

Therefore

‖Yr,n(f)− g‖Wr,2
ρ (I)

= ‖Yr,n(f)− f + f − g‖Wr,2
ρ (I)

≤ ‖Yr,n(f)− f‖Wr,2
ρ (I)

+ ‖f − g‖Wr,2
ρ (I)

. (5.15)

Using (5.12) and (5.14), the result follows from (5.15). �

Theorem 5.3. Suppose that 1
ρ(x) ∈ L(I). Let g ∈ Cr(I) be the original

function providing the data {(xi, yi)}Ni=0 with constant step h = xi − xi−1.
Let f be the α-fractal function of g with scale vector αh such that |αh|∞ <
(ai2 )rh; i = 1, 2, ..., N, defined in the Theorem 2.2. Then the Fourier-Sobolev
expansion of f converges to g uniformly as h→ 0 and n→∞ on I.
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Proof. Let gα = f . Then from the Theorem 5.1,

‖Yr,n(f)− f‖∞ → 0 as n→∞ on I. (5.16)

With the help of (2.18),

‖f − g‖∞ = ‖gα − g‖∞

≤
|αh|∞

1− |αh|∞
‖Id − L‖∞ ‖g‖∞ . (5.17)

Since |αh|∞ < (ai2 )rh; i = 1, 2, ..., N , it follows from (5.17) that

‖f − g‖∞ → 0 as h→ 0. (5.18)

Using (5.16) and (5.18), the result follows from the following inequality

‖Yr,n(f)− g‖∞ ≤ ‖Yr,n(f)− f‖∞ + ‖f − g‖∞ .
�

Theorem 5.4. Suppose that 1
ρ(x) ∈ L(I). Let g ∈ Cr(I) be the original

function providing the data {(xi, yi)}Ni=0 with constant step h = xi−xi−1. Let
f be the α-fractal function of g with scale vector αh such that |αh|∞ < (ai2 )rh;
i = 1, 2, ..., N, defined in the Theorem 2.2. Then the fractal analogue Y α

r,n(f)
corresponding to n-th partial sum Yr,n(f) converges to g in weighted Sobolev
norm as h→ 0 and n→∞ on I.

Proof. Now,∥∥Y α
r,n(f)− g

∥∥
Wr,2
ρ (I)

≤
∥∥Y α

r,n(f)− Yr,n(f)
∥∥
Wr,2
ρ (I)

+ ‖Yr,n(f)− f‖Wr,2
ρ (I)

+ ‖f − g‖Wr,2
ρ (I)

. (5.19)

In view of (2.23), we have∥∥Y α
r,n(f)− Yr,n(f)

∥∥
Wr,2
ρ (I)

≤
∥∥Y α

r,n(f)− Yr,n(f)
∥∥
Cr(I)

[∫
I
ρ(x)dx

] 1
2

≤ δ

1− δ
‖Id − L‖Cr(I) ‖Yr,n(f)‖Cr(I)

×
[∫

I
ρ(x)dx

] 1
2

, (5.20)

where δ =
|αh|∞
|a|0

. Since |αh|∞ < (ai2 )rh; i = 1, 2, ..., N , it follows from (5.20)

that ∥∥Y α
r,n(f)− Yr,n(f)

∥∥
Wr,2
ρ (I)

→ 0 as h→ 0. (5.21)

With the help of (5.12), (5.14) and (5.21), the inequality (5.19) completes
the proof. �

Theorem 5.5. Suppose that 1
ρ(x) ∈ L(I). Let g ∈ Cr(I) be the original

function providing the data {(xi, yi)}Ni=0 with constant step h = xi−xi−1. Let
f be the α-fractal function of g with scale vector αh such that |αh|∞ < (ai2 )rh;
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i = 1, 2, ..., N, defined in the Theorem 2.2. Then the fractal analogue Y α
r,n(f)

corresponding to n-th partial sum Yr,n(f) converges to g uniformly as h→ 0
and n→∞ on I.

Proof. Similar to the proof of Theorem 5.3. �
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