
INTERNATIONAL JOURNAL OF AGRICULTURAL SCIENCES VOL.6 NO. 2 (2022) 95 - 103 

 

 Available online at http://ijasc.pasca.unand.ac.id 

International Journal of Agricultural Sciences  

ISSN: 2598 – 1145 (online) 

 

 

 

DOI: 10.25077/ijasc.6.2.95-103.2022  Attribution-NonCommercial 4.0 International. Some rights reserved 

Nanoemulsion from Piper aduncum, Cymbopogon nardus, and Bacillus 

thuringiensis to Control Xanthomonas axonopodis pv. allii 

Ly Lan Phuong*a, Eka Candra Linab, Yulmira Yanti b 

a Student of Plant Protection, Post Graduated Program, Andalas University, Kampus Unand Limau Manis, Padang 25163, Indonesia  
b Plant Protection Department, Faculty of Agriculture, Andalas University, Kampus Unand Limau Manis, Padang 25163, Indonesia 

 

ARTICLE INFORMATION  A B S T R A C T  

Article history: 

Received: 2 October 2022 

Revised: 22 December 2022 

Available online: March 2022 

 

Keywords:  

Nanoemulsion, Piper aduncum, Bacillus 

thuringiensis 

  

Correspondence: 

E-mail: lylanphuong.agu@gmail.com 

The bacterial species Xanthomonas axonopodis pv allii (Xaa) is an 

important pathogen causing leaf blight in shallots. The use of botanical 

pesticides with nanoemulsion formulations has become a common 

alternative. This study aims to determine the characteristics and 

optimum concentration of the mixture of essential oil of Piper 

aduncum and fragrant Cymbopogon nardus waste. Nanoemulsion 

formulations are made using spontaneous emulsification methods. 

Besides, testing Bacillus thuringiensis strain MRSNR3.1 and its 

secondary metabolites toxicity against Xaa was carried out by the 

diffusion method using paper discs to determine the diameter of the 

inhibition zone. The results demonstrate that all four concentrations, 

1%, 2.5%, 5%, and 7.5%, could control Xaa bacteria. A concentration 

of 1% is considered more optimal than the other three concentrations 

in bactericidal effects against Xaa, as manifested in the formed clear 

zone (diameter of 3.17 cm). Besides, Bacillus thuringiensis strain 

MRSNR3.1 and its secondary metabolites were also effective against 

Xaa after four days of incubation with inhibition zones of 3.04 ± 0.44 

and 2.21 ± 0.28, respectively. Hence, it is concluded that 

nanoemulsion at 1% concentration and Bacillus thuringiensis strain 

MRSNR3.1 have bactericidal properties that can be used to control 

Xaa. 

@2022 

 
  

INTRODUCTION 

Shallot (Allium cepa L.) is an important crop distributed 

widely in tropical regions. During the growing process, 

various diseases appear to reduce the yield and quality of 

shallot (Gent & Schwartz, 2005). It is one of the most 

dangerous diseases affecting many other countries and the 

areas of the country that produce shallots (Alvarez, 

Buddenhagen, Buddenhagen, & Domen, 1978). The 

disease progresses rapidly, leading to significant yield 

loss due to the destruction of leaves in an environment 

with high relative humidity, persistent rain, and warm 

temperatures (Conn, Lutton, & Rosenberger, 2012). If no 

control methods are used, yield losses (including tuber 

size and quality) might reach 100%, especially in the 

rainy season (Picard et al., 2008). Besides the use of 

chemical pesticides, people also use antibiotics to prevent 

disease-causing bacteria, while this is limited use in 

agriculture due to the antibiotic content that can remain in 

the product (Schlegel & Zaborosch, 1993). 

Pesticides should not be used continuously or improperly 

since they might harm the environment. Instead, 

biological control is used using microorganisms from 

native plants that encourage disease-resistant growth, 

where the Bacillus thuringiensis group is used to make 

plants more resistant to pathogens (Rosliani, Palupi, & 

Hilman, 2013). Through secreting extracellular 
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compounds such as antibiotics, cell wall hydrolases, and 

accessory cells, the Bacillus thuringiensis engaged in 

antagonistic activities (Sansinenea, 2012). These bacteria 

have the capacity to create a large variety of secondary 

metabolites, each having a very distinct nature, structure, 

and range of activity (Alvarez et al., 1978). 

These metabolites were first created to help the bacteria 

survive in their natural environment and include 

antibiotics, pigments, poisons, growth promoters (for both 

animals and plants), ecological competition effectors, 

pheromones, enzyme inhibitors, and other bioactive 

substances (Stein, 2005). The majority of Bacillus species 

and the products they produce are thought to be 

environmentally friendly. Bacillus thuringiensis induced 

inhibition of bacterial growth through a variety of 

processes, including competition for nutrients and space, 

generation of antibiotics and hydrolytic enzymes, 

formation of cellular appendages, and/or generation of 

systemic resistance (Wraight, Zangerl, Carroll, & 

Berenbaum, 2000). Additionally, Bacillus thuringiensis 

can function as biofertilizers or biostimulants by 

promoting the uptake of certain nutrients from the 

environment (nitrogen fixation, phosphate solubilization) 

or by giving plants substances (plant hormone production) 

(Xu, Yu, Wu, & microbiology, 2005). Bacillus 

thuringiensis is a biocontrol agent that can control many 

pathogens such as Pseudomas syringae pv Arabidopsis, 

Xanthomonas campestris pv on cabbage (Dimkić et al., 

2022), Xanthomonas axanopodis pv glycine on soybean, 

Xanthomonas vesicatoria on tomato (Khosro, Sara, 

Saeed, & Mohammad, 2012), Ralstonia solanacearum on 

medicinal plants leaves and mulberry plants (Hyakumachi 

et al., 2013), and Ralstonia syzygii sub sp. (Zwahlen, 

Hilbeck, Gugerli, & Nentwig, 2003). Hence, disease 

control strategies with antagonistic bacteria or botanical 

pesticides with relatively lower negative effects than 

synthetic pesticides have received attention.  

Botanical pesticides contain natural active ingredients 

derived from plants that are readily degraded in nature 

and are selective so that they are safe for non-target 

organisms and the environment (Dubey, Shukla, Kumar, 

Singh, & Prakash, 2010). Other advantages include the 

fact that it may be combined with other pest management 

methods, is not likely to quickly lead to resistance, and 

that easy preparation can lessen dependency on chemicals 

and synthetic pesticides (Dubey et al., 2010). 

According to Brazao et al. (2014), the bactericidal activity 

of essential oil from Piper aduncum was used against 

multi-resistant strains of Staphylococcus spp. (Brazao, 

Brazao, Guilherme, & Monteiro, 2014). Dilapiol, which 

had a peak area of 68.8% on chromatograms based on a 

gas chromatographic examination, was the primary 

component in the active fraction of the n-hexane extract 

of Piper aduncum fruit (Wibawa et al., 2019). In addition 

to its insecticidal activity, dilapiol was isolated from the 

essential oil of Piper aduncum leaves and also exhibits 

antifungal and antibacterial activities in addition to its 

insecticidal effect. By preserving the chemicals and 

improving their release and coverage of the leafy produce, 

the formulation of essential oils in nanoemulsions offers a 

new way to increase their effectiveness in food systems 

(Hasyim, 2011). 

The antibiotic capabilities of P. aduncum were used 

against bacteria (Streptococcus mutans) and health-related 

bacteria in addition to its capacity to combat disease-

causing insects (Streptococcus sanguinis) (Ferreira et al., 

2022). P. aduncum extracts may inhibit sucrose-

dependent adhesion and decrease the acid production of S. 

mutans. The extracts are more effective against S. mutans 

than S. sanguinis, so there is a chance that this plant 

species can stop harmful bacteria from growing 

(Streptococcus mutans) ( Magalhães et al., 2016).  

Cymbopogon nardus contains citronellal (monoterpene 

aldehyde) as its main constituent and the other active 

compounds, citronellol, and geraniol, respectively 

(Mahalwal & Sanjrani, 2003). The antibacterial activity of 

the methanol extract of Citronella at concentrations of 20, 

30, 50, and 400 mg/ml was shown that inhibit the growth 

of Staphylococcus aureus, Bacillus cereus, and 

Escherichia coli. Its antibacterial action is enhanced by 

higher doses (Jafari et al., 2012). The antibacterial activity 

of Cymbopogon nardus essential oils may be due to 

terpenoids and phenolic compounds (Kamal et al., 2020). 

The mixture from Piper aduncum and Cymbopogon 

nardus has a higher value in bactericidal activity than the 

single extract and was strongly synergistic. This will 

certainly positively impact agricultural production 

because there were many previous cases where there was 

an outbreak of certain pests due to the inappropriate use 

of pesticides. Biological control is thus considered an 

alternative or supplemental way of reducing the use of 

chemicals in agriculture (Lengai, Muthomi, & Mbega, 

2020). 

Therefore, this study aimed to find the concentration of 

nanoemulsion of Piper aduncum essential oil and mix 

fragrant Cymbopogon nardus distilled waste, Bacillus 

thuringiensis strain MRSNR3.1, and its secondary 

metabolites toxicity against Xanthomonas axonopodis pv. 

allii. 

METHOD 

The research was conducted at the Laboratory of 

Microbiology, Insect Bioecology, and Greenhouse of 

Faculty Agriculture at Andalas University, Padang. The 

research begins in June to October 2022. 

Materials used are the fruit of Pipper aduncum and 

hydrosol from Cymbopogon nardus obtained from Limau 

Manis and Xanthomonas axonopodis pv. allii, Bacillus 

thuringiensis strain MRSNR3.1, Secondary metabolites of 
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Bacillus thuringiensis strain MRSNR3.1, MgSO4, tween 

80, distilled water. 

Making nanoemulsion from Piper aduncum and 

Cymbopogon nardus 

Cymbopogon nardus was taken from the city of Solok and 

brought to the Insect Bioecology Laboratory of Andalas 

University, which will be used as a solvent for 

nanoemulsions. 

Piper aduncum, which was obtained from Bukit Lampu, 

was cleaned with tissue paper from the attached dirt. Five 

hundred grams of plant material were cut into pieces that 

weighed as much as 100 grams. Then put it into a boiling 

flask with a volume of 3 liters. 2,5 liters of distilled water 

was added to a flask that already contained plant material. 

The distillation process is carried out for four hours since 

the water in the flask boils. The oil that drips on the 

collecting column is then transferred slowly into a glass 

bottle. Magnesium sulfate is used to remove the 

remaining water in the obtained volatile oil liquid (Erlina, 

Lina, & Djamaan, 2020). 

Preparation of bacterial cultures  

Colonies of each X. axonopodis pv. allii grew for 48 h on 

YPGA medium. A bacterial concentration of about 107 

colony-forming units (CFU)/ml was used. 100-microlitre 

suspensions were diluted continuously 10-fold, then 

coated on the surface of each Petri dish in replicates. 

Bacterial density after culture in YPGA medium was 

determined by MacFarland 107 (Figure 1) 

 

Figure 1. Propagation of X. axonopodis pv. allii (1) 

Suspension X. axonopodis pv. allii, (2) McFarland's 

solution scale 7 with a population density of 107 

 

The secondary metabolite of Bacillus thuringiensis strain 

MRSNR3.1 was carried out by adding 9 ml of sterile 

distilled water to a petri dish. It was then suspended with 

the help of a needle, put into a test tube, and homogenized 

with a vortex. A total of 2 ml was inoculated into 200 ml 

of sterile NB medium and incubated on a shaker for 24 

hours. The cells were separated from the solution by 

centrifugation to obtain the Bacillus thuringiensis strain 

MRSNR3.1 supernatant  (4100 rpm for 15 minutes) 

(Okulate, 2009). 

Test of nanoemulsion and Bacillus thuringiensis strain 

MRSNR3.1 and secondary metabolites of Bacillus 

thuringiensis strain MRSNR3.1 to attack 

Xanthomonas axonopodis pv. allii 

Treatments were arranged factorially in the Randomized 

completely block design (RCBD) with five treatments 

(Nanoemulsion, Bacillus thuringiensis strain MRSNR3.1, 

Secondary metabolites of Bacillus thuringiensis strain 

MRSNR3.1, Nanoemulsion + Bacillus thuringiensis strain 

MRSNR3.1, Nanoemulsion + Secondary metabolites of 

Bacillus thuringiensis strain MRSNR3.1) 4 replications. 

 

Figure 2. Test sketch of inhibit Xanthomonas axonopodis 

pv allii, (a) treatment, (b) Inhibition zone, (c) Control, (d) 

Xaa. 

 The nanoemulsion formulation was tested by 

preparing concentrations 1, 2.5, 5, and 7.5, respectively. 

Filter paper discs were prepared and dipped one by one in 

the nanoemulsion formula with a certain concentration, 

including the control solution and the other treatments. 

The experiment is followed by using a 100 µl pipette of 

bacteria of each type (cell density 106 CFU/ml), then 

mixing evenly on the stable dried nutrient agar (NA) 

medium and waiting for the surface to dry. Disc paper 

6mm sterile absorbent saturated with each treatment and 

wait to dry, then put on the surface of the agar that has 

contained bacteria, gently press the paper disc to fix on 

the agar surface (Figure 2).  

 The disc paper in the middle is impregnated with the 

control solution (distilled water), and the surrounding 

paper discs are soaked with successive treatments. 

Transfer the petri dishes to the refrigerator (10oC) for 

about 4 - 8 hours for the essential oils to diffuse into the 

agar, then incubate at 37oC for 24 – 48 hours. After 

incubation, the diameter of the inhibition ring (Dd) was 
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determined by the difference between the diameter of the 

outer ring (D, mm) and the diameter of the paper plate (d 

= 6 mm) when Dd > 0 mm, the essential oil was extracted 

considered antibacterial. The recorded result D is the 

average measurements on the same experimental unit. 

Data will be recorded daily up to 96 hours after 

incubation. 

RESULTS AND DISCUSSION 

Nanoemulsion made from Piper aduncum essential oil 

and fragrant Cymbopogon nardus distilled waste. 

The process of steam distillation uses saturated or 

superheated steam as a separation agent and energy to 

extract volatile components with high boiling points from 

inert and difficult substrates, both in solid and liquid 

form. The procedure of obtaining essential oils from 

plants has been widely employed (Cerpa et al., 2009). 

After cooling and condensing the resultant vapor phase, 

the water and organic phase were separated depending on 

their immiscibility. The compounds are heated by the 

steam, which causes them to volatilize before being 

transported to the steam through diffusion. The 

distillation chamber receives heat from the burner flame, 

which causes the water to boil and evaporate compounds. 

The condenser cools the water vapour and drip-by-drip 

transfers it to the Erlenmeyer flask. Condensation of the 

water vapour is aided by the flowing water in the outer 

cooling tube enclosing the inner condensing tube. After 

cooling and condensing the resultant vapor phase, the 

water and organic phase are separated depending on their 

immiscibility. Essential oil and hydrosol are the two 

products that are produced as a result of the procedure 

(Figure 3). Nanoemulsion is generated in two stages. 

First, for the aqueous phase, the hydrosol was mixed with 

the surfactant (Tween 80) in the respective ratio of 87:3, 

then homogenized the mixture by placing them on Stirrer 

for 30 minutes (Stir bar was added in an elernmeyer flask 

containing the aqueous phase). Organic phases consist of 

essential oil from P.aduncum and ethanol (1:1 ratio). In 

the next stage, nanoemulsion was prepared by dropping 

the organic phase containing oil and ethanol. The organic 

phase is dripped into the aqueous phases until the end 

using a magnetic stirrer for 40 min at 4000 rpm. At the 

end of the process, nanoemulsion will be obtained with 

the ratio of water phase and organic phase of 9:1, 

respectively. The nanoemulsions should have maximum 

stability, which is not a phase separation (creaming and 

cracking) (Drais & Hussein, 2015). 

 

Figure 3. Nanoemulsion mixture of fragrant Cymbopogon 

nardus waste (hydrosol) and Piper aduncum essential oil 

 

Nanoemulsion and Bacillus thuringiensis strain 

MRSNR3.1 to attack Xanthomonas axonopodis pv. allii 

invitro. 

The results of the antibacterial activity test showed that 

nanoemulsion from Piper aduncum and Cymbopogon 

nardus could inhibit the growth of Xanthomonas 

axonopodis pv. allii bacteria, which was shown by the 

presence of a clear zone around the paper discs. The 

results of the antibacterial activity test of nanoemulsion at 

different concentrations can be seen in Table 1 and Figure 

4.

 

Table 1. The average diameter of the inhibition zone of the nanoemulsion from a mixture of fragrant Cymbopogon nardus 

waste and Piper aduncum essential oil against Xanthomonas axonopodis pv. allii bacteria. 

Concentrations 

% 

Average resistance area diameter (cm) (day) (X ± SD) 

1 2 3 4 

1 0.87 ± 0.15 a 1,50 ± 0,10 a 2.70 ± 0.30 a 3.17 ± 0.80 a 

2.5 0.73 ± 0.06 a 1.33 ± 0.55 a 1.67 ± 0.58 b 2.30 ± 0.26 b 

5 0.93 ± 0.21 a 1.33 ± 0.29 a 1.53 ± 0,50 b 1.53 ± 0.23 b 

7.5 0.90 ± 0.10 a 1.40 ± 0.47 a 1.43 ± 0.31 b 1.47 ± 0,31 b 

0 (control) 0.00 ± 0.00 b 0.00 ± 0.00 b 0.00 ± 0.00 c 0.00 ± 0.00 c 

Numbers followed by the same letter are no different from Duncan's results X = Average, SD = Standard deviation 

 

Based on the result of research on nanoemulsion made 

from Piper aduncum and Cymbopogon nardus, it can be 

seen that all four concentrations of nanoemulsion, 1%, 

2.5%, 5%, and 7.5%, were able to attack Xaa bacteria. In 
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general, results after 1 and 2 days of incubation for all 

four concentrations were not significantly different from 

0.00% concentration (control). The observation results 

can be seen in Table 1. The concentration considered less 

controllable Xaa is 7.5%, with a diameter (cm) after four 

days are 1,47 ± 0.31. However, after 3 and 4 days, the 

concentration of 1% was considered to be the most 

optimal compared with the remaining concentrations with 

an average diameter of the inhibition of 2,70 ± 0.30 (cm); 

3,17 ± 0,80 (cm), respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Nanoemulsion concentration inhibition zone 

from P. aduncum essential oil and hydrosol of C. nardus 

(a) 1%, (b) 2.5%, (c) 5%, (d) 7.5 %, (e) Control (distilled 

water) 

 

Analysis of the P. aduncum essential oil from fresh leaves 

revealed that the main constituent found in the leaf of 

essential oil of P. aduncum is dillapiole, a 

phenylpropanoid derivative that ranges from 31% to 97% 

bioactivity that is antimicrobial due to these substances 

(Arze, Collin, Garneau, Jean, & Gagnon, 2008). The 

majority of P. aduncum's biological activities are 

governed by dillapiole (Navickiene et al., 2006). 

Additionally, dillapiole was reported to operate in 

synergy with a number of organic insecticides, such as 

carbamates, organochlorides, pyrethrum, tenulin, and 

azadirachtin. Dillapiole interacts synergistically with 

other volatiles in P. aduncum oil to increase stability, 

insecticide activity, and antibacterial activity. The 

essential oil of P. aduncum was active against protozoa 

parasites and diverse microorganisms, including 

pathogenic bacteria and fungi, showing properties as 

antimicrobial, molluscicidal, and cytotoxic (de Morais et 

al., 2007). 

Besides, waste distilling of fragrant Cymbopogon nardus 

has been utilized as a mixed material for botanical 

insecticides, where the potential of hydrosol as a pest 

controller or botanical insecticide can be further 

developed to have insecticide activity (Abena et al., 

2007). Alkaloids, terpenoids, polypeptides, phenolics, 

polyphenols, and other compounds found in Cymbopogon 

nardus plant extracts are natural and potent substitutes for 

antibiotics, agrochemicals, and other synthetic substances 

(Nakahara, Alzoreky, Yoshihashi, Nguyen, & 2003). The 

main active ingredients in fragrant lemongrass oil are 

aldehydes (citronellol-C10H18O) by 30 - 45%, alcohol 

compounds (cyronelolC10H20O and geraniol-C10H18O) 

by 55- 65%, and other compounds such as geraniol, cyral, 

nerol, metal, heptonon, and dipentene (Carmo et al., 

2012). These compounds function as immune system 

stimulants and have growth-promoting, antibacterial, and 

substitutive qualities (Mekonnen et al., 2015). The 

concentration of Cymbopogon nardus has an inhibitory 

effect on the growth of bacteria, especially Gram-positive 

bacteria (Chisowa, Hall, Farman, & Journal, 1998). 

 

 

Table 2. The average diameter of the inhibition zone area of Bacillus thuringiensis strain MRSNR3.1 and secondary 

metabolites of Bacillus thuringiensis strain MRSNR3.1 against Xanthomonas axonopodis pv. allii bacteria 

Treatment 
Average resistance area diameter (cm) (day) (X ± SD) 

1 2 3 4 

Bacillus thuringiensis strain MRSNR3.1 1.03 ± 0,09 a 1.57 ± 0,58 a 1.91 ± 0,61 a 3.04 ± 0,44 a 

Secondary metabolites of Bacillus 

thuringiensis strain MRSNR3.1 
0.55 ± 0,51 a 1.07 ± 0,23 a 1.19 ± 0,21 a 2.21 ± 0,28 a 

Control 0,00 ± 0,00 b 0,00 ± 0,00 b 0,00 ± 0,00 b 0,00 ± 0,00 b 

Numbers followed by the same letter are no different from Duncan's results X = Average, SD = Standard deviation. 

 

According to Table 2, the strain Bacillus thuringiensis 

MRSNR3.1 and its second metabolites (supernatant) 

could attack Xaa (Figure 5). It can be seen that after four 

days of incubation, the diameter of strain Bacillus 

thuringiensis MRSNR3.1 is larger than that of its 

secondary metabolites with an inhibition zone of 3.04 ± 

0.44; 2.21 ± 0.28, respectively.  

Bacillus thuringiensis can produce spores under 

unfavorable circumstances and is more resilient to harsh 

circumstances. Due to its long-term storage capacity and 

ability to trigger an immune reaction in the host plants 

leads to systemic resistance (Induced SR), rendering the 

plant less susceptible to pathogen infection  (Jung et al., 

2008). Bacillus thuringiensis can exist in soil under 
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various environmental circumstances, can move freely, 

competes in the rhizosphere and plant tissue, and is a 

facultative anaerobe (Yanti, Habazar, Reflinaldon, 

Nasution, & Felia, 2017).  

Bacillus thuringiensis, as a biocontrol, be able to test for 

pathogens such as Pseudomas syringae pv Arabidopsis 

(Niazi et al., 2014), Xanthomonas campestris pv. in 

cabbage (Wulff et al., 2002), Xanthomonas axanopodis 

pv glycine in soybean (Choudhary & Johri, 2009), 

(Xanthomonas vesicatoria in tomato (Cook & Stall, 

1969). Exotoxinthermostable exotoxin generated by B. 

thuringiensis is a broad-spectrum vegetative factor 

released in the supernatant of B. thuringiensis during 

vegetative development (Sharma, Prasad, Pai, & Sharma, 

2000). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Zone of inhibition of (1) Bacillus thuringiensis strain MRSNR3.1 (1a) Bacillus thuringiensis strain MRSNR3.1 

(1b) Control (2) Secondary metabolites of Bacillus thuringiensis strain MRSNR3.1 (2a) Secondary metabolites of Bacillus 

thuringiensis strain MRSNR3.1 (2b) Control. 

 

Due to secondary metabolites, Bacillus thuringiensis is 

more competitive with other microbes (Liu et al., 2014). 

Specifically, Nonribosomal peptides (NRPs) have a 

considerable antibacterial potential through bacterial 

protein synthesis suppression, fungal membrane 

perforation, enzyme inhibition, and cell lysis (Schwartz & 

Laprade, 2000). Secondary metabolites provide Bacillus 

thuringiensis with increased competitiveness towards 

other microorganisms (Kamoun, Zouari, Saadaoui, Jaoua, 

& biotechnology, 2009). They have a tremendous 

antibacterial potential by disrupting bacterial protein 

production, perforating fungal membranes, and inhibiting 

enzymes (Sansinenea & Ortiz, 2011).

 

Table 3. The average diameter of the inhibition zone of the nanoemulsion from Piper aduncum and Cymbopogon nardus, 

Bacillus thuringiensis strain MRSNR3.1, and secondary metabolites of Bacillus thuringiensis strain MRSNR3.1 against 

Xanthomonas axonopodis pv. allii bacteria 

Treatment 
Average resistance area diameter (cm) (day) (X ± SD) 

1 2 3 4 

1 % 1.07 ± 0.47 a 1.80 ± 0.26 a 3.10 ± 0.69 a 3.33 ± 0.29 a 

2.5 % 0.77 ± 0.12 a 1.70 ± 0.52 a 2.33 ± 1.04 ab 2.77 ± 0.25 ab 

5 % 1.10 ± 0.17 a 1.53 ± 0.64 a 2.20 ± 0.17 ab 2.63 ± 0.64 b 

7.5 % 0,00 ± 0.00 b 1.50 ± 0.36 a 2.00 ± 0.46 b 2.53 ± 0.72 b 

Bacillus thuringiensis strain MRSNR3.1 1.00 ± 0.10 a 1.93 ± 0.25 a 2.60 ± 0.36 ab 2.83 ± 0.29 ab 

Secondary metabolites of Bacillus 

thuringiensis strain MRSNR3.1 
0.60 ± 0.53 a 1.27 ± 0.06 a 2.70 ± 0.17 ab 2.83 ± 0.38 ab 

Control 0,00 ± 0,00 b 0,00 ± 0,00 b 0,00 ± 0,00 c 0,00 ± 0,00 c 

Numbers followed by the same letter are no different from Duncan's results X = Average, SD = Standard deviation. 

 

Based on the results of measuring the average diameter of 

the inhibition zone on nanoemulsions made from Piper 

aduncum and Cymbopogon nardus, it can be seen that the 

concentration of nanoemulsions (1%, 2.5%, 5%, 7.5%) ) 

strain of Bacillus thuringiensis MRSNR3.1 and 

supernatant of the strain Bacillus thuringiensis 

a a 

a a 

b 

1 

a 

a 

a 
a 

b 

2 
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MRSNR3.1 were able to inhibit Xaa at four days after 

incubation (Table 3 and Figure 6). According to the 

results from Table 3, in the nanoemulsion treatment, a 

concentration of 1% with an inhibition zone of 3.33 ± 

0.29 (cm) was considered to be more optimal than the rest 

of the treatments for effectively inhibiting Xaa at four 

days after incubation. P. aduncum oil is an essential oil 

that acts as an antibacterial by disrupting the process of 

forming membranes or cell walls so that they are not 

formed or formed imperfectly (Brazao et al., 2014). The 

hydrophobicity of essential oils can break down lipids in 

bacterial cell membranes, damage the membrane 

structure, causing cell membrane leakage and ultimately 

causing bacterial cells to die (Benchimol, Sutton, Bastos, 

& Dias-Filho, 2001). 

Bacillus thuringiensis shows antimicrobial activity in the 

nanomolar range against a broad spectrum of Gram-

positive bacteria (Kamoun et al., 2011). Its antibacterial 

efficacy is caused by cytoplasmic membrane penetration 

of susceptible bacteria (Wirth, Walton, & Federici, 2010). 

These bacteria can produce a wide range of secondary 

metabolites with very different natures and structures and 

display broad-spectrum activities (de la Vega, Barboza-

Corona, Aguilar-Uscanga, & Ramírez-Lepe, 2006). In 

especially, nonribosomal peptides (NRPs) have an 

enormous antimicrobial potential by causing cell lysis, 

perforation of fungal membranes, enzyme inhibition, or 

disruption of bacterial protein synthesis. Antibiotics and 

other secondary metabolites found in bacterial isolates 

have been suggested to have a role in the prevention of 

pathogen development, for which antibiosis is the primary 

mechanism of action for disease control (Ortiz‐Rodríguez, 

De La Fuente‐Salcido, Bideshi, Salcedo‐Hernández, & 

Barboza‐Corona, 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Zone of inhibition of (1) Concentrations of Nanoemulsion + Bacillus thuringiensis strain MRSNR3.1, (1a) 1%, 

(1b) 2.5%, (1c) 5%, (1d) 7.5%, (1e) Bacillus thuringiensis strain MRSNR3.1 (1f) Control; (2) Concentrations of 

Nanoemulsion + Secondary metabolites of Bacillus thuringiensis strain MRSNR3.1 (2a) 1%, (2b) 2.5%, (2c) 5%, (2d) 

7.5%, (2e) Secondary metabolites of Bacillus thuringiensis strain MRSNR3.1 (2f) Control. 

 

CONCLUSIONS 

Based on the research that has been done, it can be 

concluded that the nanoemulsion mixture of Piper 

aduncum essential oil and Cymbopogon nardus waste is 

effective to be used as an alternative in control 

Xanthomonas axonopodis pv. allii. The study promoted 

the possibility that the essential oil of P. aduncum and C. 

nardus waste could be developed into the industrial 

production of bactericides, fungicides, and insecticides. In 

order to obtain greater benefits, the mixed nanoemulsion 

should be tested for its effectiveness against other 

pathogens and its effectiveness in controlling pathogens 

in the field. Besides, Bacillus thuringiensis species 

represent a rich source of secondary metabolites that 

exhibit strong antifungal and antibacterial activities and 

enable the bacterium to survive in its natural environment. 

In this perspective, the development of Bacillus 

thuringiensis was able to control Xaa for plant growth.  
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