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CHAPTER 1

Introduction

In the context of this thesis, numerically efficient algorithms for the coupled non-linear
time domain simulation of highly flexible maritime continua have been developed and
implemented in an open-source framework by the author. While these systems are subject
to hydrodynamic loads and can also include coupled rigid bodies, the primary focus of
the research lies on the development of algorithms, that are able to depict the dynamic
behaviour of the highly flexible continua in a numerically efficient way, since, as will be
shown in the upcoming sections, this poses a challenging task from a numerical point of
view.

In this introductory chapter, first of all, an overview about highly flexible maritime
continua is given including their possible applications in different fields of maritime en-
gineering. Building up on that, the different possible applications of time domain simu-
lations in general will be discussed as well as their corresponding implementation in the
context of this thesis. Subsequently, the numerical challenges when simulating highly
flexible continua are briefly introduced and the aims of research of this thesis are derived
accordingly.

Finally, the hydrodynamic assumptions employed in this connection are discussed, while
these are deliberately chosen to be as simple as possible so as to be able the investigate
the accurate depiction of the structural mechanical behaviour in a focused way.

1.1 Fully Submerged Highly Flexible Maritime Systems

As illustrated by example in figure 1.1, fully submerged highly flexible system are applied
in many areas of maritime engineering. Typical examples of such continua are moorings,
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Figure 1.1 Example Applications. Left: A fishing net (Source: https://www.flickr.
com/photos/swedish_heritage_board/16031381354/). Right: Tethered
vehicle and mooring of a buoy (Source: www.ocnacademy.org).

anchor lines, tow lines, tethered vehicles as well as nets for fishing, cages in aquacultures
or plankton sampling.

In this connection, these systems can be categorised based on their geometrical extents.
Thus, their dimensions in at least one of the three spatial dimensions is negligibly small
compared to the other dimensions. Accordingly, the flexible maritime continua considered
within the context of this thesis can either be approximated as one-dimensional, such as
ropes, mooring chains or tow lines, or as pseudo two-dimensional, such as fishing- or
aquacultural nets. Here, the term pseudo two-dimensional reflects the circumstance that
these continua exhibit primarily two-dimensional geometrical extents, but are comprised
of locally approximately one-dimensional parts such as the twines forming the meshes of
a netting.

Accordingly, it is convenient to first establish a common terminology regarding the
geometrical directions with respect to the corresponding continua. In this context the
following two directions are commonly defined:

Longitudinal direction and asociated forces/moments For one-dimensional continua such
as ropes, chains or cables, this term is used with it’s classical meaning and thus refers
to the longitudinal axis of the continuum. For pseudo two-dimensional continua
such as nettings, this term refers to the local in-surface directions of the continuum
along the associated twines.

Transversal/Bending direction and associated forces/moments The term refers to the
directions in which the extent of the continuum is significantly smaller than the
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extent in the other (longitudinal) directions. For one-dimensional continua, this
is the infinite set of directions in the orthogonal plane of the longitudinal axis,
whereas as for pseudo two-dimensional continua, this is defined as the infinite set
of directions orthogonal to the local longitudinal axes.

Because usually, the transversal extend of these systems is by magnitudes smaller than
their longitudinal extent, the associated elastic forces in- and moments about the transver-
sal directions as well as the elastic moments about the local longitudinal axes are often
negligibly small compared to the forces in longitudinal direction. Accordingly, the term
highly flexible refers to the bending stiffness and torsional stiffness about the longitudi-
nal axes of the concerning systems, while the associated longitudinal stiffnesses are often
magnitudes higher. Exemplarily, this relationship will be discussed in more detail for
bending deformations in section 2.1.

Finally, in some applications there are also fully two-dimensional continua, such as sails
or cloth applied to e.g. seal leakages. However, fully two-dimensional continua are not a
direct subject of the research conducted within the context of this thesis, since they are
often either not fully submerged or are rather limited to a narrow range of applications.
Nonetheless, as to be seen throughout the course of this treatise, simulation algorithms
used for these continua can in part also be applied to the simulation of pseudo two-
dimensional as well as one-dimensional highly flexible continua and vice versa. Following
the aforementioned definition of directions, for fully two-dimensional continua, the term
longitudinal refers to all in-surface directions, whereas the term transversal refers to the
direction normal to the surface.

1.2 Areas of Application of Time Domain Simulation
Algorithms

Methods and algorithms for the coupled non-linear time domain simulation of fully sub-
merged highly flexible maritime systems play an important role in different fields of mar-
itime engineering. Here the term coupled refers to the coupled analysis of flexible continua
and rigid bodies under the influence of hydrodynamic loads. Moreover, the term methods
and algorithms refers to both, the automatic generation of the equations of motion of
the coupled system as well as their solution in the time domain. Note that, for the sake
of simplicity, these methods and algorithms will be often referred to as simulation algo-
rithms for short throughout the rest of this thesis. In the following passage, an overview
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of applications is presented and a brief outlook regarding their implementation within the
context of this thesis is given.

Transient simulations First and most obvious, such simulation algorithms are used to
perform transient time domain simulations of systems involving highly flexible parts.
These analyses are primarily conducted in order to investigate the transient response
behaviour of such structures as well as to obtain fatigue and ultimate stress data. Thus, for
instance, the station keeping properties (compare e.g. [CLÖ14] and [CLÖ12]) of moored
structures or the response characteristics of towed systems can be examined and optimized
based on time-domain simulations. Moreover, at the same time, transient stresses in the
mooring system or tow lines are obtained, based on which an ultimate stress analysis or
lifetime prediction can be performed as described in, for instance, [Cha05]. Accordingly,
these time domain simulations play an important role in the design and verification process
of the maritime structures in question. The algorithms for the time domain simulation of
said systems developed in the context of this thesis as well as their implementation will
be discussed in detail in chapter 4.

Static analyses Furthermore, non-linear time domain simulations provide the possibil-
ity to conduct static analyses without limitations by defining proper boundary condi-
tions. This is especially important, as in many cases the determination of static equi-
librium configurations of non-linear systems can be a complex task requiring special
techniques as described in e.g. [Oma14]. Accordingly, it has also become common
practise in multibody system dynamics to retrieve static equilibrium configurations by
performing time domain simulations based on time-constant or ramped external loads
and a properly defined damping approach. Thus, for instance, the software Simpack
(https://www.3ds.com/products-services/simulia/products/simpack/) offers the
possibility to obtain equilibrium configurations based on time integration and inertia-
proportional damping. Thus, such analyses can serve as a basis for the early design
process in many maritime applications or for the analysis and design of systems that are
primarily subject to quasi-static environmental loads. For instance, this involves systems
that are mainly exposed to almost constant flow velocities over large periods of times such
as buoys installed in river mouths as well as systems the weight and buoyancy of which
is very large compared to the transient hydrodynamic loads acting on the structure, so
that the latter are negligibly small.

In the context of this thesis, static analyses will be performed based on time integra-
tion and optionally ramped loads as described above. Also, simplified inertia-proportional
damping is optionally available to investigate equilibrium configurations in a resting fluid
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with improved convergence rates as compared to the otherwise employed hydrodynamic
loads due to relative motion of the fluid and structure. A brief description of the imple-
mentation of this procedure in the context of this thesis will be given in section 6.2.

Frequency response analyses Moreover, time domain simulations can also be employed
to determine the frequency response of structures to harmonic excitations. A general
introduction to frequency response analyses is given in, for instance, [Kle13] while e.g.
[Cha05] explains their specific relevance for maritime engineering in the form of e.g. re-
sponse amplitude operators (RAOs).

In contrast, when not using time domain analysis, a system’s frequency response to a
purely harmonic excitation is classically determined by linearisation of the equations of
motion yielding a linear time-invariant system. Subsequently, it is often assumed that the
whole system is oscillating harmonically at the frequency of excitation after a transient
phase of synchronisation, which conveniently allows for the direct determination of the
response amplitudes and phase shifts as described in e.g. [GKL12]. This approach is
sometimes also referred to as the direct method, which it will also be referred to in the
course of this thesis. Although there are more advanced approaches to determine the
frequency response of linear time-invariant systems involving e.g. the additional excitation
of eigenmodes1, this is a valid assumption for certain simple scenarios. Accordingly, this
convenient direct method will serve as an additional reference for the verification of the
simulation algorithms developed throughout this thesis as will be outlined in section 6.3.2.

It must be noted, however, that the process of linearisation in general involves the
linearisation of the stiffness and damping matrices of the system as well, which, in general,
can potentially lead to large errors. This becomes especially relevant when considering
large non-linear deformations and non-linear hydrodynamic loads due to relative motions
of the system with respect to the surrounding fluid. Thus, in e.g. [Cha05] the linearisation
of the equations of motion is commented by the following statement (page 677): ”[...]
frequency domain solutions are possible but gross assumptions associated with linearisation
of stiffness and damping need to be made.”

In order to counteract these problems, the response can also be determined by means
of time domain simulations. For that purpose, the system is excited at the corresponding

1In reality, the linearised system will in most cases not only respond at the frequency of excitation but in
part also with a combination of its eigenmodes and the associated frequencies. In order to address this
issue, a mass- or stiffness proportional damping approach is employed so that the equations of motion
can be decoupled using modal transformation as described in e.g. [Kle13]. As a result, the system
response can be determined as a superposition of the direct response to the excitation frequency as
well as the excitation of the distinct eigenmodes. However, for the sake of simplicity, the direct method
outlined here is chosen to generate reference data for verification.
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frequency and a subsequent fast Fourier transformation (FFT, named after Jean Bap-
tiste Joseph Fourier2, compare e.g. [Won11]) is employed to yield the corresponding
response amplitudes and phase shifts. Additionally, in doing so, the full response includ-
ing the excitation of eigenmodes is retrieved in a convenient way directly from the results
of the FFT. In addition to that, while in general being, of course, more costly in terms
of computational performance, this approach offers the advantage, that the linearisation
of the stiffness and damping matrices is avoided, thus giving a far more accurate repre-
sentation of the structures response in most cases. Thus, in doing so, the non-linearity
of the hydrodynamic loads is conveniently being accounted for. Also, the response to
arbitrary periodic loads as e.g. occurring when using non-linear wave theories (compare
e.g. [CLÖ14]) can conveniently be determined this way. A brief description of the imple-
mentation of this approach in the context of this thesis will be given in section 6.2.

Finally, some of the algorithms for the automatic formulation of the equations of motion
developed within the context of this thesis can also be used as a convenient basis for the
derivation of a linearised system of equations of motion which can in turn be used as a basis
for the direct determination of the frequency response as discussed above. Additionally,
a modal analysis can be performed in doing so. This procedure will be illustrated by
example in section 6.3.2.

Controller design/implementation on controllers In terms of system control, the sim-
ulation algorithms developed in the context of this thesis can serve three different pur-
poses. On the one hand, as already mentioned within the preceding paragraph regarding
frequency response analyses, the algorithms involve the automatic generation of the equa-
tions of motion of the system and these equations can be conveniently linearised. Thus,
the system’s transfer function can be retrieved as a basis for controller design. As also
pointed out in the preceding section, as an alternative, the frequency response can also
be determined based on time domain simulations. Although not directly applied to con-
troller design within the context of this thesis, both methods will be outlined as general
verification examples in more detail in chapter 6.

On the other hand, if the derived models are performant enough, they can also be
employed directly as an observer or as a predictor in model predictive control (refer, for
instance, to [RL18]). Although not applied to this specific purpose, the focus of this thesis
will be to develop performant simulation algorithms, as pointed out in the following section
1.3. Thus, it will be shown in section 8.9, that the algorithms are realtime-capable up to
high number of degrees of freedom, i.e. the execution time of the simulation is shorter

2Jean Baptiste Joseph Fourier, *1768 near Auxerre (France); †1830 in Paris (France)
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than the simulated time span.
Finally, the third possible application field of the developed simulation algorithms is

controller testing. For this purpose, the controller code can either be implemented into
or linked against the simulation code and thus tested within the simulation. This is
especially convenient, since, as will be outlined in the upcoming section, all simulation
algorithms derived in the context of this thesis are implemented in a modular open-source
framework, that can easily be extended and compiled for arbitrary architectures and
operating systems. Finally, since, as already outlined above, the simulation algorithms
are realtime-capable up to high number of degrees of freedom, they can also be employed
in hardware-in-the-loop applications.

Since the applications in controller design will not be directly employed in the context
of this thesis, they will not be explained further at this point. However, for further
information on the subjects discussed above, the reader is kindly referred to either [WI18],
[BJ02] or [RL18]. Also, more specific to ocean engineering, a discussion of the control of
underwater robots can be found in [AFY16].

1.3 Aims of Research

While early approaches to the analysis of highly flexible continua date back until 1638
(compare [Gal54]), there have been numerous approaches to their numerical simulation
during the past decades in the context of emerging computer technologies. A detailed
overview of these approaches will be given in section 2.2. However, as will be shown
in that context, the majority of modern approaches consider elastic deformations in the
longitudinal directions of the continua. While this assumption is perfectly reasonable or
even required in many scenarios, it usually leads to numerically ill conditioned systems
of equations of motion. This is due to the fact that, as already pointed out in section
1.1, highly flexible maritime systems typically exhibit a high difference in their lateral
and longitudinal stiffnesses ultimately leading to stiff systems of differential equations
as pointed out in e.g. [DSC83] or [TH94]. Here, the term stiff refers to the property of
systems of equations of motion to be associated with highly different eigenvalues. For more
information the properties of stiff systems of differential equations refer to e.g. [CH52] or
[WAW06].

In consequence, the highest eigenvalues typically associated with longitudinal deforma-
tions of the system enforce small time step sizes even though only the analysis of the lower
frequent parts of the motion of the concerning system in transversal direction might be of
interest. Although special integration schemes, as for instance presented in [Gea69] have
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been developed to address this issue, such problems can still be considered a challenging
task from a numerical point of view, especially when simulating systems with a high num-
ber of degrees of freedom. This becomes especially problematic, when either performing
large scale time domain simulations as required for e.g. system certification or fatigue
analyses or when realtime-capability is required as for instance in model predictive con-
trol applications. A more detailed discussion of the stiffness of the equations of motion
of highly flexible maritime continua will be given in the upcoming section 2.1.

However, in many cases it is admissible to not consider elastic longitudinal deformations
when analysing the characteristics most relevant to the application of the concerning
maritime systems. For instance, in most slack mooring systems (compare e.g. [DR17]),
the transversal deformations exceed the longitudinal deformations by orders of magnitude
and thus dominate the system’s behaviour. Also, when investigating towed vehicles with
low hydrodynamic drag that are designed to follow a certain trajectory behind a vessel that
varies mainly in lateral direction, the most relevant response characteristics are primarily
dominated by transversal deformations in the tow line. Finally, for the analysis of certain
types of maritime nets, it is also admissible to focus on transversal deformations of the
twines in order to investigate characteristics such as the mouth opening geometry of
trawl nets. For many applications, this does not only apply to the resulting geometric or
response characteristics of the system, but also to the resulting internal stresses. However,
users of the simulation algorithms developed in the context of this thesis are strongly
advised to check, whether the assumption of longitudinal inextensibility is valid for their
specific application case.

Accordingly the primary aim of research conducted in the context of this thesis is
to derive and implement different new numerically performant simulation algorithms
for the time domain simulation of highly flexible maritime systems based on the as-
sumption of longitudinal inextensibility. Specifically, in doing so, larger time step sizes
in transient time domain simulations shall be achieved by generating less stiff sets of
equations of motion. In this context, all algorithms presented in this thesis are im-
plemented in a modular open-source simulation framework created by the author of
this thesis, that is licenced under the GNU General Public License [Sta+91], Version
3. The simulation framework is called OCN-SIM Flex (for more information, refer
to http://www.ocnacademy.org/ocn-sim/ocn-sim-flex/) and published on the open-
source platform OCN Academy (http://www.ocnacademy.org/) also created by the au-
thor this thesis. It is completely implemented in Fortran [Rei08] and assembled based
on the GNU toolchain, namely the GNU Compiler Collection [Sta88] as well GNU Make
[SMS88]. Since the GNU Compiler Collection covers a wide range of different program-

8
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ming languages, it is conveniently possible to link against compiled object code generated
in all these languages. This is especially advantageous, when employing the simulation
algorithms in a context of controller testing as stated in the previous section, since con-
troller code is often implemented in the languages C [RKL88] or C++ [SKM02], which
are also part of the GNU Compiler Collection.

1.4 Hydrodynamic Model
In the context of this thesis, the focus is set on the development and implementation of
different numerical methods for the simulation of the dynamics of the flexible structures.
Accordingly, only very simple hydrodynamic models are used so as to be able to clearly
investigate the accuracy of the developed models in an actual structural dynamical way.
Correspondingly, the following assumptions are made regarding the hydrodynamic loads:

Hydrodynamical transparency It can be argued that some of the applications discussed
will have a significant influence on the surrounding fluid, e.g. fishing gear with small
meshes. However, for the sake of simplicity, it is assumed, that the influence of the
structures considered in this thesis on the surrounding fluid is negligibly small, so
that they can be classified as hydrodynamically transparent as described in e.g.
[CLÖ14].

Morrison’s equation Because, as stated above, it can be assumed that the highly flexible
structures’ influence on the surrounding fluid is negligibly small, Morison’s3 equa-
tion (compare [MJS50]) can be used to describe the hydrodynamic loads acting on
them.

Constant Reynolds numbers The Reynolds-number (named after Osborne Reynolds4,
compare [Rey83]) is a widely applied non-dimensional parameter for the character-
isation of fluid flow situations. In this connection, the Reynolds-number reflects
the ratio of inertial to viscous forces and is an important means to predict, whether
a flow situation is predominantly laminar or turbulent. For the sake of simplicity,
the Reynolds-number is assumed to be constant for all examples discussed in this
thesis.

No vortex-induced vibrations As for instance outlined in [ST04], vortex-induced vibra-
tions can play an important role in the analysis of maritime structures. Thus, for

3J.R. Morison. Unfortunately, no further biographical information could be retrieved, except that he
worked for the University of California in Berkeley, California.

4Osborne Reynolds, *1842 in Belfast (Northern Ireland), †1912 in Watchet in Somerset (England)
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instance, so-called Kármán vortex streets (named after Theodore von Kár-
mán5, compare [Kár63]) imply the periodic shedding of vortices within a certain
range of Reynolds-numbers. Due to their periodic nature, this can lead to signifi-
cant motion amplitudes when the frequency of the vortex shedding is near one of the
eigenfrequencies of the system. However, in the context of the research conducted
here, it is assumed that this effect is negligible. Accordingly it has to be taken care
when analysing highly flexible structures, where these effects are important.

No influence on adjacent elements It is assumed, that the local influence of the struc-
tures on the fluid velocity field is small enough, that disturbances in the fluid veloc-
ity do not affect adjacent elements. This assumption is even made for nets, where
this might hardly seem admissible. However, the assumption is not uncommon in
maritime engineering and also employed in e.g. [Pri13].

Finally, due to the modular structure of the open source simulation framework, the
hydrodynamic model can easily be extended. Thus, for instance the structural mechanical
models developed here can conveniently be coupled to distinct solvers for computational
fluid dynamics (CFD) so as to perform perform fully coupled fluid-structure-interaction
analyses in the time domain.

5Theodore von Kármán, *1881 in Budapest (Austria-Hungary) as Tódor Kármán; †1963 in Aachen
(Germany)
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CHAPTER 2

Physical and Mathematical Modelling

2.1 Problem Statement
In general, highly flexible maritime continua have a significant difference between longitu-
dinal and lateral stiffness. Naturally, this is due to the specifically small dimensions of the
cross-sections in relation to the longitudinal or in-plane dimensions of the continua. Re-
ferring to, for instance, [Gro+18], when considering approximately beam-like structures,
such as e.g. cables, the bending stiffness1 cB is in general2 proportional to the modulus
of elasticity E (cB / E), the bending moment of inertia IB (cB / IB) as well as to the
inverse length of the cable L to the power of 3 (cB / L�3). In contrast, the longitudinal
stiffness cL is in general proportional to the modulus of elasticity E (cL / E), the cross
sectional area A (cL / A) and the inverse length only to the power of 1 (cL / L�1). These
relations can be summed up to

cB / EIBL
�3 (2.1)

cL / EABL
�1 : (2.2)

Considering, for instance, a circular cross section with an area Acirc and bending moment
of inertia IB;circ according to

Acirc = �R2 ; (2.3)
1In contrast to the commonly used definition, in this context the term bending stiffness relates small
(linear) lateral deflections ulat to externally applied lateral forces flat according to ulatcB = flat.

2Here, the term in general refers to the fact that these relations apply to beam-like structures under
arbitrary statically determinate boundary conditions.
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IB;circ =
�

4
R4 = A

4
R2 ; (2.4)

with R being the radius of the cross section, the above relationships can be restated for
circular cross sections as

cB / ER4
BL

�3 (2.5)
cL / ER2

BL
�1 : (2.6)

Accordingly, relating the two proportionalities yields

cB
cL

/
�
R

L

�2
: (2.7)

Thus, for small radii compared to the length it can be stated, that the longitudinal stiffness
becomes significantly higher than the bending stiffness

cL ≫ cB if R � L : (2.8)

Accordingly, the longitudinal or in-plane deflections are small in comparison to the transver-
sal deflections in many loading scenarios. Consider, for instance, a cable of length L

clamped at one end loaded by a force of magnitude fend in either longitudinal or transver-
sal direction at its end point. The cross section of the cable is approximated as a circle
of radius R and A and IB are constant over the length of the cable. Also, the material is
homogeneous over the cross section. According to e.g. [Gro+18], for longitudinal loading
the deflection of the end point in longitudinal direction then evaluates to

uend = fendL

EA
; (2.9)

while loading the cable in transversal direction yields a transversal deflection of

wend = fendL
3

3EIB
: (2.10)

Inserting the area of a circle Acirc as well as its bending moment of inertia IB;circ from
equations (2.3) and (2.4) and comparing the longitudinal and transversal deflection yields

uend

wend
= 3

4

�
R

L

�2
: (2.11)
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Since for typical cables, R � L, the term 3
4

�
R
L

�2
in the above equation becomes very

small, since it contains the squared ratio of R and L, so that

uend

wend
≪ 1 if R � L : (2.12)

Moreover, ropes, wire ropes, cables or fabrics are typically stranded, made up of several
layers or woven (compare, for instance, [Cos97] or [HA00]). In consequence, these continua
have a lowered shear resistance in the longitudinal direction, because the different parts
of the compound are thus given the possibility to displace against one another. Hence,
the bending stiffness is lowered even more. However, the longitudinal stiffness is hardly
affected and the longitudinal strain can often be approximated by a linear relationship,
as for instance shown in [CS77].

When treated as a dynamical system, this difference in stiffnesses results in a significant
difference of the eigenvalues in transversal and longitudinal/in-plane direction. Thus,
considering a cable with the same properties as in the above example, according to e.g.
[Sha19] or [GKL12], the first eigenfrequencies in longitudinal direction !L;1 and transversal
direction !T;1 can be determined as

!L;1 � 3:516
s

EIB;circ

�AcircL4 (2.13)

and

!T;1 =
�

2L

s
E

�
(2.14)

with � being the homogeneous material density of the cable. Again, the two values are
set into relation yielding

!L;1

!T;1
� �

3:516
L

R
: (2.15)

Thus, for typical cables with R � L, the first eigenfrequencies differ by orders of mag-
nitudes. Furthermore, it can be shown, that also the following eigenfrequencies differ
by orders of magnitude with the eigenfrequencies in transversal direction always being
smaller then the frequencies in transversal direction (compare figure 2.1). This circum-
stance was confirmed by many authors investigating the dynamic simulation of highly
flexible continua, as for instance [DSC83], [TH94], [BW98] or [Buc03].

In consequence, the governing equations constitute a set of stiff non-linear partial differ-
ential equations. Here, the term stiff indicates the fact, that there is a large difference in
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ωT

ωL ≫ ωT

Figure 2.1 Difference in longitudinal and transversal deflections (indicated as arrows)
and associated eigenfrequencies of a clamped cable

the lowest and highest eigenfrequencies of the concerning system (compare e.g. [Gea69]).
When analysed numerically, stiff differential equations are likely to become unstable if the
order of the integration step is chosen larger then the order of the smallest time constants
arising from the high eigenfrequencies (compare e.g. [Vet+89]). In consequence, using
classical explicit time integration techniques, very small time step sizes have to be used
even when only the low frequent parts of the motion of the system are of interest. Thus,
the computational burden often becomes unacceptably high. In consequence, special in-
tegration techniques for the integration of stiff differential equations, as for instance the
backward differentiation formulas introduced in [CH52] (also compare e.g. [Gea69]) have
been developed. Thus, the equations can be integrated with an acceptable timestep size.
However, these integration techniques are typically implicit and thus have the disadvan-
tage of an increased computational burden, because non-linear systems of equations have
to be solved to obtain the accelerations of the next timestep implicitly appearing in the
current accelerations.

2.2 State of the Art
As illustrated in figure 2.2, the modelling of highly flexible continua can be divided into
three phases or levels. First of all, every model needs to be based on certain physical
assumptions. In this context, the most relevant distinction is made between the con-
sideration of elastic forces and moments occurring in the system. Here, it is commonly
assumed in accordance with the scope of continua presented in section 1.1, that deforma-
tions in the bending direction are always allowed and associated with low moments and
forces while the effects of torsional deformations and the associated moments about the
local longitudinal axes are negligible. Accordingly the main elastic forces and moments
that can occur in the system remain:

Elastic longitudinal forces If elastic forces in the longitudinal directions of the continuum
are considered, it necessarily has to be allowed to deform in that direction inducing
associated restoring forces. If elastic longitudinal forces are not considered, the
continuum automatically becomes inextensible in that direction.
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Physical
assumptions

Elastic longi-
tudinal forces?

Elastic
bending?

Modelling of highly flexible continua
Bending deformations always allowed

Torsion not considered in this comparison

Physical
model Continuum … …or discrete?

Mathematical
description

Direct
solution …

…or approx.
algorithms?

Figure 2.2 Possible approaches to model highly flexible continua

Elastic bending moments and forces If elastic bending is considered, the model induces
restoring bending moments and forces when deformed in the system’s transversal
directions. If not, the model becomes ideally flexible.

2.2.1 Modelling Based on ContinuumMechanics

Galileo Galilei3 initially suggested in [Gal54], that a hanging chain would take the
form of a parabola. However, according to e.g. [Loc07], it was later shown by Christiaan
Huygens4, Johann I Bernoulli5 and Gottfried Wilhelm Leibniz6 that this is
not true and it is rather described by a hyperbolic function in response to a challenge
posed by Jakob I Bernoulli7. According to [Tru60], their results were published in
[Men91], which could not be verified directly by the author of this thesis, since the source
was not accessible.

A list of approaches for the modelling of flexible systems based on continuum mechanical
modelling is shown in table 2.1. The different sources were selected such, that a sufficient
representation of all commonly employed approaches during the past decades shall be
achieved. Here, the approaches are categorised according to the criterion of the elastic

3Galileo Galilei, *1564 in Pisa (Italy), †1642 in Arcetri (Italy)
4Christiaan Huygens, *1629 in Den Haag (Netherlands), †1695 in Den Haag (Netherlands)
5Johann I Bernoulli, *1667 in Basel (Switzerland), †1748 in Basel (Switzerland)
6Gottfried Wilhelm Leibniz, *1646 in Leipzig (Germany), †1716 in Hannover (Germany)
7Jakob I Bernoulli, *1655 in Basel (Switzerland), †1705 in Basel (Switzerland)
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Table 2.1 Analytical approaches for the modelling of highly flexible continua. Elastic
forces and moments considered (EF): L (longitudinal forces), B (bending
moments and forces).

Source Application EF Remarks
L B

Static
[Men91] Chains (2) Catenary equation, source not accessible but

confirmed by [Tru60]
Elastic catenary Chains (2) x

Quasi-dynamic
[SC71] Cables (3) Equilibrium of cables towed on a circular path
[YYI82] Moorings (2) x Equivalent 2D stiffness of moorings
[GS15] Moorings (2) x Equivalent horiziontal stiffness of moorings

forces and moments considered as discussed in the introductory part of this section.

2.2.2 Discrete Modelling

A selection of different approaches to discretise one- and two-dimensional continua is given
in table 2.2. In analogy to the approaches based on continuum mechanics, the different
sources were selected such, that a sufficient representation of all commonly employed
approaches during the past decades shall be achieved. The approaches were categorised
according to the criteria of element types being used, in which way they are connected
and if the consider longitudinal and or bending stiffnesses. In this context, the criterion
element type refers to the basic type of discrete elements used in the model. They can be
classified as:

Mass points Also referred to as lumped mass modelling. Here, all inertia properties of
the continuum are concentrated in mass points located in discrete distances on the
continuum. Also, per definition, the mass points do not possess rotational inertia.

Rigid bar elements Here, the inertia properties of the continuum are discretised using
rigid bar elements. Unlike mass points, this also enables the depiction of rotational
inertia.

Flexible elements Here, both the inertia - as well as flexibility properties are depicted us-
ing elements, that are deformable themselves. Due to their nature, these elements
are typically connected based on geometric constraints (refer to the upcoming de-
scription of connection types below).
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Figure 2.3 Common element types and features of discrete one-dimensional and pseudo
two-dimensional flexible systems

Furthermore, the criterion connection type refers to the way, the elements are connected
to one another and be distinguished according to:

Force-based connection These are either spring or spring-damper elements.

Geometric connection This term refers to a connection based on algebraic equations im-
posing constraint conditions on the positions of the elements. Since this also im-
poses constraints on the time derivatives of the positions, they are also referred to
as kinematic constraints. However, according to e.g. [Woe11], the terms are not
used consistently along different sources of literature. Consequently, in the context
of this thesis, the term geometric connection is used to refer to the constraints on
position, velocity and acceleration level.

Finally, the criterion elastic forces and moments considered again refers to the defini-
tions from the introductory part of this section. A schematic overview of the different
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types of modelling resulting from these criteria is given for one-dimensional and pseudo
two-dimensional continua is given in figure 2.3.

Table 2.2 Discrete numerical approaches for the dynamic (and also static, if explicitly
stated) simulation of highly flexible continua. Element types (ELTY): M
(mass points), R (rigid bar elements), F (flexible elements). Connection be-
tween elements (CO): F (force-based, i.e. e.g. spring-damping elements),
G (geometric constraints). Elastic forces and moments considered (EF):
L (longitudinal forces), B (bending moments and forces). Types of models:
LM (lumped mass), RMBS (rigid multibody system), FMBS (flexible multi-
body system), FEM (finite element method8). Other abbreviations: NL
(non-linear), RT (Realtime capable), ANCF (Absolute nodal coordinate for-
mulation according to [GB12])

Source Application ELTY CO EF Remarks
M R F F G L B

1-dimensional continua
[WP60] Cables (2) x x LM, implicit contraints
[BB79] Beams (3) x x x x NL FEM
[KN90] Cables (3) x x LM, relative coordinates
[Buc+03] Cables (3) x x x x NL FEM, twisted cubic splines
[Buc03] Cables (3) x x x x NL FEM, twisted cubic splines
[GPL05] Cables (3) x x x NL FEM, Kirchhoff rods
[TSS05] Cables (2) x x x x FEM, Euler-Bernoulli beam elements
[TP05] Chains (2) x x RMBS, relative coordinates
[GS06] Cables (3) x x x x FMBS, ANCF, low-order cable elements
[WLT06] Cables (3) x x x LM, relative coordinates
[WHD08] Cables (3) x x x LM, variable length (deployment/retrieval)
[FK09b] Ropes (2) x x x RMBS, force-based coupling
[FK09a] Ropes (2) x x RMBS, relative coordinates
[Sun+09] Cables (3) x x LM, Implicit constraints (stabilised)
[Kim+10] Chains (3) x x x NL FEM (static)
[Lug+11] Cables (2) x x x x FMBS, ANCF, Augmented Lagrangian
[Szc11] Pipelines (3) x x x x RMBS, force-based coupling
[MND12] Cables (3) x x x LM (static)
[KF13] Ropes (2) x x x x RMBS, force-based coupling
[Kim+13] Chains (3) x x x x NL FEM, extension of [Kim+10]
[Pal+13] Cables (3) x x x FEM, discontinuous Galerkin method

8The term refers to the flexible finite element method typically applied in structural engineering as
described e.g. in [MG15].
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Source Application ELTY CO EF Remarks
M R F F G L B

[Aga+14] Chains (3) x x RMBS, RT, Recursive solution, DOFs� 1
[SHB14] Cables (3) x x x LM, RT
[XYZ16] Chains (3) x x x LM, Moorings with soil contact
[Asc+17] Cables (2) x x x FEM (largely linear), RT
[Gre+17] Cables (3) x x x x Linearised FMBS, ANCF, RT
[Ant+18] Moorings (3) x x x x NL FEM

2-dimensional continua
[BW98] Cloth (3) x x x LM, RT, Stiffness-based constraints
[Jak01] Cloth (3) x x LM, RT, Projection-based constraints
[Ben+13] Cloth (3) x x x LM, RT, Projection-based constraints
[Pri13] Netlike (3) x x x x LM, stiffness-based
[Mar+18] Netlike (3) x x x LM (static)

As to be seen from the overview given in table 2.2, most of the approaches do consider
longitudinal elastic forces thus leading to stiff eigenvalue problems as described in the
preceding section. However, without further proof it must be noted, that these are par-
tially either outdated or based on rigid spatial bodies as element types. Accordingly, in
the upcoming section a new approach based on simple mass points with longitudinal in-
extensibility will be derived so as to be able to prevent the resulting systems of equations
of motion from becoming stiff and to improve the overall numerical efficiency.

2.3 Models and Solution Methods

a)
l

z

b)

Figure 2.4 a) Rope with length l b) Discretisation into rigid bar elements

As already outlined in the chapter 1, highly flexible maritime continua often exhibit a
high tensile stiffness, while the bending resistance is often negligibly low. Accordingly,
in many cases it is a viable physical assumption to depict them as ideally flexible, in-
extensible continua, as is for instance done for the derivation of the catenary equation
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(compare [Men91]). In order to be able to derive a physical model from this assumption,
the corresponding continua are depicted by massless, rigid bar elements interconnected by
rotary joints as shown in figures 2.4 and 2.5, where the mass is equally distributed to dis-
crete point masses at the ends of the bar elements. Furthermore, due to the low torsional
stiffness of said continua, rotations about the local longitudinal axes are not considered.
It is also assumed, that all constraints arising from the modelling are scleronomous, i.e.
they do not explicitly depend on time as is e.g. the case for moving supports.

Based on this physical model, two basic methods based on Lagrangian dynamics for
the derivation of the equations of motion will be discussed in this thesis. Thus, as will
be outlined in more detail in the following chapter 3, the equations of motion can either
be derived based on absolute9 coordinates and implicit constraint equations, or based on
a set of relative joint coordinates and explicit constraint equations. Note that here, as
will be explained below, the equations of motion in terms of relative joint coordinates can
either be solved as a fully coupled system or by means of recursive algorithms with greatly
improved numerical efficiency compared to the fully coupled solution. Finally, a newly
developed, numerically efficient, projection based method for the solution of the equations
of motion in terms of absolute coordinates will be introduced as a central subject of this
this thesis.

While the first method based on absolute coordinates is widely applied in many im-
plementations, it mainly has two disadvantages. On the one hand, using the classical
approach of so-called Lagrange-multipliers (refer to e.g. [Sha05]) or even improved
methods such as the augmented-Lagrangian presented in [GB12] to solve the resulting

9Due to the presence of constraints in the system, these are usually redundant, since as a consequence
of the constraints, the number of degrees of the system is reduced. For a detailed analyses of this
subject, the reader is kindly referred to e.g. [Sha05].

li

m1,i

m2,i

Figure 2.5 Example discretisation of a netting
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equations of motion, large coupled systems of equations need to be solved in each time
step, resulting in poor numerical performance. Furthermore, as will be briefly discussed in
section 3.6, the constraints are integrated numerically and thus cause a drift, which needs
to be stabilised using e.g. Baumgarte-stabilisation (compare e.g. [Woe11] or [Sha05]).
Accordingly, while being perfectly suited for a large range of applications in mechanical
engineering, it is hardly suited for the time integration of highly flexible systems based on
the above physical modelling. However, its discussion in the context of this thesis serves
three different purposes: First and foremost, the implicit constraints form the theoretical
basis for the derivation of the aforementioned projection-based solution methods for the
equations of motion in terms of absolute coordinates. Secondly, the calculation of internal
reaction forces will be based on these methods and lastly, in OCN-SIM Flex they provide
an additional means to verify the accuracy of statical analyses by calculating the residual
acceleration as an error criterion once at the end of these analyses. While a general intro-
duction to the concept will be given in the following chapter 3, its application to highly
flexible systems will be discussed in detail in section 4.2.

The second method on the other hand eliminates the problem of numerical constraint
drift by being based on explicit constraint equations in the first place. Furthermore, it
provides two possibles ways to solve the resulting equations of motion: Thus, in a direct
approach, the complete coupled system of equations is solved at once resulting in cubic
time complexity, i.e. the computational effort is proportional to the number of degrees
of freedom to the power of 3. However, although also not being preferably used for time
domain simulations, this algorithm is still implemented in OCN-SIM Flex and briefly
discussed in this thesis. The reason for this is, that it can be numerically efficient for
small numbers of degrees of freedom (compare e.g. [Woe11]) and also because the such
derived equations of motion can be linearised in a convenient way. Thus they provide a
good basis for further research in the field of e.g. frequency response analyses of highly
flexible maritime systems.

In addition to that, the equations of motion in terms of explicit constraint equations can
also be solved recursively resulting in linear time complexity, i.e. the numerical effort is
directly proportional to the number of degrees of freedom being involved. While the other
methods mentioned so far are not recommended for large scale time domain simulations,
this algorithm is one of two main implementations with just that purpose discussed in
this thesis. However, while avoiding the problem of constraint drift, both algorithms
based on relative joint coordinates have disadvantages, when systems involving a large
number of kinematic loops are considered. Thus, using these algorithms, the loop closing
conditions need to be depicted as implicit constraint equations as described in e.g. [Sha05].
Accordingly, here the problem of numerical constraint drift again needs to be dealt with.
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Figure 2.6 Overview of derived simulation algorithms
Method Applications Remarks

Absolute coordinates
Lagrange-multipliers Basis for RRF solver Relatively slow

Calculation of reaction forces Constraint drift
Residual acceleration (statics)

RRF Time integration Numerically very efficient

Relative joint coordinates
Non-recursive Linearisation Slow for larger systems

Time integration (small systems)
Recursive Time integration Numerically efficient

Also, the organisational effort for the automated generation of the equations of motion
becomes very large, especially when a large number of kinematic loops is considered, as
e.g. when simulating net-like structures as shown in figure 2.5. Both methods will be
discussed in chapter 4, while a general introduction to the concept will be given in the
following chapter 3.

Finally, as already mentioned above, a numerically efficient, projection based method
for the solution of the equations of motion in terms of absolute coordinates has been
derived, implemented and validated as a central subject of this thesis. The method is an
extension of the concepts presented in [Jak01] or [Ben+13] in a sense that the method
has been extended to a semi-implicit predictor-corrector method based on the trapezoidal
rule and additional corrective terms have been introduced. Thus, the original methods are
primarily aimed at creating visually plausible representations of the dynamic behaviour
of the structures in question for e.g. video games. Accordingly, they are solely based
on projections of the constraints on the position level, while the methods implemented
here will also allow for projections of the constraints on a velocity and acceleration level
(compare section 4.6). Also, a further numerical stabilisation of the constraint equations
is carried out by means of different methods (compare section 4.6.4). Additionally, here
the calculation of internal stresses is possible, which is not possible using the original
algorithms. Due to their projection based nature and because the reaction forces are not
determined explicitly but rather reconstructed from the result of the projection of the
constraints, this method was originally introduced by the name reconstructed reaction
forces (RRF) formulation in [OP13] and continuously extended since. Concludingly, an
overview of all methods discussed above as well as their applications is given in table 2.6.
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CHAPTER 3

Fundamentals of Multibody System
Dynamics

In this chapter, multibody system dynamics will be discussed for spatial rigid bodies. The
resulting equations will later serve as a basis for the derivation of the equations of motion
of the discretised flexible continua as well as the coupled rigid bodies in chapter 4.

3.1 Introduction and Classification

Multibody system (MBS) dynamics describe the kinematically constrained movement of
systems of interconnected rigid or flexible bodies undergoing large rotational and trans-
lational displacements under the influence of external forces and force elements as exem-
plarily shown in figure 3.1. If an MBS only consists of rigid bodies, it is called a rigid

Force elements

Kinematic connections

External forces

Figure 3.1 Schematic depiction of a multibody system
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Figure 3.2 Branches of mechanics

MBS, otherwise it is categorised as a flexible MBS. In the context of this thesis, only rigid
MBS are considered, since the mass points are interconnected using rigid bar elements.

Multibody system dynamics is a subdiscipline of engineering mechanics. Mechanics
itself is a branch of physics and its purpose is to study the state of rest or motion of
solid bodies under the influence of forces. According to e.g. [Gro+13], mechanics can be
classified into statics (Latin status: ”standing”) as well as kinematics and kinetics (Greek
kinesis: ”movement”). While statics describes the state of rest of sold bodies due to
the action of forces, kinetics describes the motion of solid bodies due to forces. Finally,
kinematics solely describes the motion of solid bodies without taking forces into account.
It can thus be interpreted as the geometry of motion of solid bodies.

In addition to that, the term dynamics (Greek dynamis: ”force”) can be introduced as
a superclass of statics, kinetics and kinematics according to figure 3.2. Here, in classical
mechanics, the term dynamics refers to the effects of forces acting as described in e.g.
[Jam12]. Accordingly, statics and kinematics together form the superclass of dynamics.
While this is an etymologically consistent definition of the term dynamics, it has become
common practise in engineering mechanics to define dynamics as the means to investigate
the motion of bodies (compare, for instance, [Gro+13]). Accordingly, here kinematics and
kinetics form the superclass of dynamics. Since, as mentioned above, multibody system
dynamics is a branch of engineering mechanics, it adheres to the latter definition and thus
involves kinematics and kinetics. Accordingly, in the upcoming sections, the kinematics
of spatial multibody systems are described firstly so as to then form the basis for a later
discussion of spatial multibody systems kinetics.
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ey,j

Kj

r

Figure 3.3 Coordinate transformation of a vector r between two Cartesian reference
systems Ki and Kj

3.2 Rigid Body Kinematics
In order to describe the spatial motion of a rigid body, the description of it’s rotation is a
crucial requirement. In consequence, the upcoming derivations focus on the mathematical
description of coordinate transformations between different reference systems. For this
purpose, the transformation matrix will be introduced as a general way to describe the
orientation of a rigid body. Based upon these derivations, the general displacement of a
rigid body will then be discussed.

3.2.1 The Transformation Matrix

Considering the spatial rotation of a rigid body, the transformation of an arbitrary body-
fixed vector jr defined in a body-fixed coordinate system Kj to another coordinate system
Ki can be specified as a projection using the transformation matrix ijT

ir = ijT jr : (3.1)

Note that the upper left index indicates the reference system in which any vectorial quan-
tity is specified throughout this document. Moreover, in the case of the transformation
matrix, the first index specifies the target coordinate system, whereas the second index
indicates the base system.

In order to derive the transformation matrix, the transformation of an arbitrary vector r
from one reference system Kj to another system Ki as depicted in figure 3.3 is considered.
Here, the decomposition of r in Kj, jr, is considered to be the given quantity, while
its decomposition in Ki, ir, is to be obtained by transformation. For this purpose, the
decomposition of the vector in the two coordinate systems is specified as a product of its
scalar components along the unit vectors of the axes of the systems ex;i, ey;i, ez;i and ex;j,
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ey;j, ez;j as

r =
h
ex;i ey;i ez;i

i 26664
irx
iry
irz

37775 (3.2)

and

r =
h
ex;j ey;j ez;j

i 26664
jrx
jry
jrz

37775 : (3.3)

Equating (3.2) and (3.3) and pre-multiplication with eT
xi leads to the x-component of

vector ir expressed in Ki

eT
x;iex;i| {z }

i

irx + eT
x;iey;i| {z }

0

iry + eT
x;iez;i| {z }

0

irz = eT
x;iex;j

jrx + eT
x;iey;j

jry + eT
x;iez;j

jrz

irx = eT
x;iex;j

jrx + eT
x;iey;j

jry + eT
x;iez;j

jrz :

(3.4)

Repeating this operation with eT
yi as well as eT

zi leads to analogous relationships for the y

and z-components of ir, which can be concluded in matrix form together with (3.4) as
26664
irx
iry
irz

37775 =

26664
eT
x;iex;j eT

x;iey;j eT
x;iez;j

eT
y;iex;j eT

y;iey;j eT
y;iez;j

eT
z;iex;j eT

z;iey;j eT
z;iez;j

37775
26664
jrx
jry
jrz

37775
ir = ijT jr

: (3.5)

In conclusion the sought transformation can be expressed by the transformation matrix
ijT which has the following properties:

Rows and columns The columns of ijT represent the coordinates of the axis unit vectors
of Kj expressed in Ki and its rows the coordinates of the axis unit vectors of Ki

expressed in Kj

ijT =
h
iex;j

iey;j
iez;j

i
=

26664
jeT

x;i

jeT
y;i

jeT
z;i

37775 : (3.6)
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Figure 3.4 General displacement of body j and a body fixed point k with respect to a
reference system i

Orthogonality and inverse transformation ijT is orthogonal, i.e.

ijT ijT T = I3 : (3.7)

The inverse transformation of vectors from Ki to Kj is carried out according to

jr = jiT ir (3.8)

where jiT is the inverse of ijT which equals its transpose due to its orthogonality

jiT = ijT�1 = ijT T : (3.9)

Degrees of freedom Due to the orthogonality of the transformation matrix, only 3 of its
9 elements are independent. This equals the number of degrees of freedom of the
spatial rotation of a rigid body.

3.2.2 General Displacement

The spatial motion of a body j with respect to a reference coordinate system Ki can
be described by the position and orientation of a body fixed coordinate system Kj with
respect to Ki. Here, as a basis for derivation of the general motion quantities of a rigid
body, a body-fixed point k is considered as shown in figure 3.4.

Positions

The position rki of an arbitrary point k on body j with respect to Ki is given by

rki = rji + rkj ; (3.10)
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where rkj denotes the point’s local position in Kj. Specified in Ki, this evaluates to

irki = irji + irkj = irji + ijT jrkj : (3.11)

Velocities

The velocity of the body-fixed point k with respect to Ki can be found by derivation of
equation (3.10) with respect to time as

vki =
d rki
d t

= _rji + _rkj : (3.12)

Since the length jrkjj = rT
kjrkj of rkj is constant in time, it can be stated that

d rT
kjrkj

d t
= 2 _rT

kjrkj = 0 : (3.13)

Consequently, _rkj is perpendicular to rkj and thus can be expressed as the cross product

_rkj = !ji � rkj = ~!jirkj ; (3.14)

where !ji is the vector of angular velocities of body j with respect to Ki and ~!ji the
corresponding skew symmetric matrix of angular velocities. Here, corresponding to section
A.1.1, !ji and ~!ji are defined as

!ji =

26664
!x;ji

!y;ji

!z;ji

37775 ; ~!ji =

26664
0 �!z;ji !y;ji

!z;ji 0 �!x;ji

�!y;ji !x;ji 0

37775 : (3.15)

Accordingly, the skew symmetric matrix ~!ji can also be interpreted as a skew symmetric
second order tensor.

Equation (3.14) can be evaluated in any arbitrary coordinate system resulting in the
angular velocity of body j with respect to that system. Thus, in order to retrieve the
angular velocity with respect to reference system Ki evaluated in Ki, irkj = ijT jrkj from
equation (3.11) is differentiated with respect to time

i _rkj = ij _T jrkj = ij _T ijT T irkj ; (3.16)

where the inverse transformation jrkj = jiT irkj = ijT T irkj was substituted. Comparison
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to equation (3.14) reveals that

i ~!ji = ij _T ijT T : (3.17)

Here, the notation i ~!ji indicates the relative velocity of coordinate system Kj with respect
to coordinate system Ki evaluated in Ki. Similarly, the angular velocity of Kj with
respect to Ki can be evaluated in Kj. For this purpose, equation 3.16 is pre-multiplied by
jiT = ijT T to yield

ijT Tiv = ijT T ij _T jr

jv = ijT T ij _T jr :
(3.18)

Again, comparison to equation (3.14) reveals that

j ~!ji = ijT T ij _T (3.19)

is the sought angular velocity of Kj with respect to Ki evaluated in Kj. Finally, the
transformation of the angular velocity tensors from one coordinate system to another is
derived. For this purpose, equations (3.17) and (3.19) are each rearranged for ij _T and
equated to provide the relationship

ij _T = i ~!ji
ijT = ijT j ~!ji : (3.20)

Post multiplication with ijT T ultimately leads to the relationships

i ~!ji = ijT j ~!ji
ijT T : (3.21)

In conclusion, the coordinates of the second order tensor of angular velocities are trans-
formed by pre- and post-multiplication of the according transformation matrices. Based
on these considerations, it can be shown that the general transformation of an arbitrary
second order tensor ~! from one reference system Kj to another system Ki is performed
according to

i ~! = ijT j ~! ijT T : (3.22)

Note, that this is in contrast to the transformation of one dimensional coordinates, which
are transformed by mere pre-multiplication of the corresponding transformation matrix.
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Accelerations

The accelerations are retrieved by evaluation of the second time derivative of the position
of point k. Thus, taking into account equation (3.14), the derivation of equation (3.12)
with respect to time yields

aki =
dvki

d t
= •rji + •rkj = •rji + _~!jirkj + ~!ji _rkj : (3.23)

Substituting (3.14) for _rkj and introducing the angular acceleration vector

~�ji = _~!ji (3.24)

finally leads to

aki = •rji + ~�jirkj + ~!ji ~!jirkj : (3.25)

Successive Rotations

Consider the three coordinate systems Ki, Kj and Kk. Let the relative orientation of Kj

with respect to Ki be defined by ijT and the relative orientation of Kk with respect to Kj

be defined by jkT . It can then be shown, that the orientation of Kk with respect to Ki is
specified by

ikT = ijT jkT : (3.26)

Moreover, it follows from equation(3.17), that the angular velocity of Kk with respect to
Ki is given by

i ~!ki = ik _T ikT T : (3.27)

Differentiation of equation (3.26) with respect to time and substitution into (3.27) leads
to

i ~!ki =
�
ij _T jkT + ijT jk _T

�
jkT T ijT T

= ij _T jkT jkT T| {z }
I3

ijT T + ijT jk _T jkT T| {z }
j ~!kj

ijT T : (3.28)

Finally, using relationships (3.17) and (3.22), the above equation can be interpreted as the
superposition of the relative angular velocities of Kj with respect to Ki and the relative
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angular velocities of Kk with respect to Kj as

i ~!ki = i ~!ji + i ~!kj : (3.29)

It follows immediately from this relationship, that relative angular velocities of successive
rotations can be linearly superposed in a consistent coordinate system according to

i!ki = i!ji + i!kj : (3.30)

3.3 Rotation Parameters
As to be seen from the preceding section 3.2.2, the description of the spatial movement
of a rigid body requires the specification of it’s translational and rotational displacement.
While the mere translation of the body reference system can be easily described by means
of a (3)-vector of translational coordinates, the movement of any arbitrary point on the
body due to rotation of the body needs to be described by a (3; 3)-transformation matrix.
However, it was shown in 3.2.1, that only 3 of the 9 elements of the transformation matrix
are independent. Accordingly, it is possible to describe the rotation by a smaller subset
of rotational coordinates. Here, typically 3 completely independent or 4 partly dependent
coordinates are used as exemplarily illustrated in the succeeding sections.

Moreover, it will be shown in section 3.3.2, that rotations are non-commutative. In
consequence, it is not possible to directly integrate rigid body rotations as one would
integrate translations. However, this can be overcome by the use of appropriate rotational
coordinates, the time derivatives of which are integrable.

3.3.1 Rotation About an Arbitrary Axis

A versatile way to describe a spatial rotation is to interpret it as a rotation about an axis
by an angle. This approach was initially introduced by Leonhard Euler1 and later
served as a basis for the so-called Euler-parameters. The Euler-parameters are a set
of rotational coordinates and will be discussed in section 3.3.5.

Orientation

Without loss of generality, consider a body with a body-fixed coordinate system Kj, the
origin of which coincides with the origin of the global reference system Ki according to
figure 3.5. Also, it is assumed that the axes of both coordinate systems are initially

1*1707 in Basel, †1783 in in Saint Petersburg
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Figure 3.5 Rotation of a body with a body-fixed coordinate system K1 about an axis
uR through the origin of the coordinate system

parallel. The body is then rotated about an arbitrary axis uR through the origin by an
angle ', whereby uR is normalised, i.e. juRj = 1. Together, ' and uR form a vector

qR;ji =

24 '

uR

35 (3.31)

of rotational parameters quantifying the orientation of Kj with respect to Ki. Accordingly,
an arbitrary body-fixed vector jrk has the initial position ir0 � jrk and the rotated
position irk (uR; '). In order to derive the transformation matrix ijT (uR; '), an auxiliary
Cartesian coordinate system Kk is introduced and the decomposition of vector rk is
derived with respect to this system. Here, the auxiliary system’s z-axis is identical with
uR, while the x-axis is directed towards r0. Consequently, the xy plane is parallel to
the grey area in figure 3.5 and perpendicular to uR. Accordingly the vector ez;k can be
directly specified as

ez;k = uR ; (3.32)

while ex;k can be retrieved as the normalised vector pointing from the projection of r0
onto uR to r0. For this purpose the projection of r0 onto uR is introduced as 2

r?
0 = uR

�
uR

Tr0
�
; (3.33)

2The projected length of r0 onto uR is obtained from the dot product uR
Tr0. Accordingly, the projected

vector along uR is retrieved by multiplication with uR as uR
�
uR

Tr0
�
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so that ex;k is obtained as

ex;k =
r0 � r?

0���r0 � r?
0

��� : (3.34)

Finally, ey;k is obtained as the cross product of ez;k and ex;k

ey;k = ez;k � ex;k =
uR � r0���r0 � r?

0

��� =
~uRr0���r0 � r?

0

��� ; (3.35)

where the identity uR � r0 = ~uRr0 was used. Here, ~uR is the skew symmetric matrix of
the coordinates of uR. In consequence, the decomposition of r can now be specified in Ki

as

irk = c1
iex;k + c2

iey;k + c3
iez;k ; (3.36)

where c1, c2 and c3 can be determined as

c1 =
���ir0 � ir?

0

��� cos' ; c2 =
���ir0 � ir?

0

��� sin' ; c3 = iuR
Tir0 : (3.37)

Thus, irk is found as

irk =
�
ir0 � ir?

0

�
cos'+ i ~uR

ir0 sin'+ iuR
�
iuR

Tir0
�

=
h�
I3 � iuR

iuR
T
�
cos'+ i ~uR sin'+ iuR

iuR
T
i
ir0

=
h
I3 cos'+ i ~uR sin'+ (1� cos') iuR

iuR
T
i

| {z }
ijT

jrk :
(3.38)

Consequently, the sought transformation matrix can finally be specified as

ijT = I3 + i ~uR sin'+ (1� cos') iuR
iuR

T : (3.39)

Angular Velocities

The angular velocities can be derived based upon the consideration of an infinitesimal
rotation d' about the previously defined axis uR within a time interval d t. The according
transformation matrix introduced in (3.39) then becomes

ijT = I3 + i ~uR sin d'+ (1� cos d') iuR
iuR

T : (3.40)
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Performing a series expansion up to the first order, the approximations sin d' � d' as
well as cos d' � 1 can be applied and the above equation can be linearised to yield

ijT � I3 + i ~uR d' : (3.41)

Accordingly, the rotated vector irk is found as

irk = ijT jrk = jrk + d'i ~uR
jrk : (3.42)

Differentiation with respect to time reveals, that the vector changes with a rate of

d irk
d t

= i _rk =
�
�
��
0

d jrk
d t

+ d
d t

�
'i ~uR

jrk
�
= i ~uR

d'
d t

jrk (3.43)

during the interval d t. Recalling from equation (3.14) that _rk = ~!jirk, the sought angular
velocities can be identified from the above equation as

i ~!ji = i ~uR
d'
d t

= i ~uR _' or i!ji = iuR
d'
d t

= iuR _' : (3.44)

3.3.2 Non-Commutativity of Rotations

As to be seen from figure 3.6, the order of successive rotations is non-commutative. Here,
an exemplary body is rotated by �

2 =̂ 90 deg about the global x- and z-axis. The figure
shows the results of the two different sequences of rotations: a) x-axis first, b) z-axis
second as well as z-axis first, x-axis second. As to be seen from the final positions of the
body, the order of successive rotations is not arbitrary and thus needs to be specified at
any time in order to provide a unique solution.

3.3.3 Integration of Angular Velocities

Apart from simple one-dimensional rotations about a specified axis, it is not possible to
directly integrate angular velocities in a way similar to integrating translational velocities.
Thus, while the following relationship applies without loss of generality

3

t1Z
t=t0

26664
vx (t)
vy (t)
vz (t)

37775 d t =
26664
rx

ry

rz

37775
1

�

26664
rx

ry

rz

37775
0

; (3.45)
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Figure 3.6 Comparison of different sequences of rotation

the angular velocities of a body cannot be individually integrated

7

t1Z
t=t0

26664
!x (t)
!y (t)
!z (t)

37775 d t = ??? : (3.46)

due to the non-commutativity of rotations explained in the previous section 3.3.2.

For the purpose of illustrating this fact, consider the exemplary body shown in figure
3.7 a). Let the body rotate with equal angular velocities

0!x = 0!y =
�p
2
s�1

about the x0- and y0-axis. Taking into account equations 3.30 and 3.44, the combined
angular velocities can then be interpreted as a rotation about one common axis uR with
a constant angular velocity _' by applying the transformation

0! =

26664
0!x

0!y

0!z

37775 =

26664
1
0
0

37775 �p
2
s�1 +

26664
0
1
0

37775 �p
2
s�1 = 1p

2

26664
1
1
0

37775 �s�1 = uR _' : (3.47)
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Figure 3.7 Integration of angular velocities

In consequence after �t = 1s the body will rotate � =̂ 180 deg about uR resulting in the
position shown in figure 3.7 b). Again considering the effect of order of rotation, it becomes
clear, that it is impossible to directly integrate the described rotation by individually
integrating the angular velocities 0!x and 0!y. Thus, e.g., the body could first be rotated
about its the global x-axis and secondly rotate about the global y-axis. Accordingly, the
body would be positioned in the xz-plane, which is incorrect for the given state of motion.
In order to address this issue, it is necessary to define rotation parameters that allow for
an integration and derive a relationship between the time derivative of these parameters
and the angular velocities of a body. For this purpose, equation (3.47) is rewritten in
terms of the vector of rotational parameters from equation (3.31) as

26664
0!x

0!y

0!z

37775 =
h
uR 0

i 24 _'
0

35
0! = 0P !q _qR

: (3.48)

with the velocity projection matrix P !q projecting the time derivative of the rotational
coordinates onto the actual physical angular velocities. Note, that the time derivative of
the axis of rotation uR does not appear in the above equation, since the axis of rotation
is constant in this case. This relationship is then solved for the time derivative of the
rotational parameters according to

24 _'
0

35 =

24 u�1
x u�1

y u�1
x

0 0 0

35
26664
0!x

0!y

0!z

37775
_qR = 0P q! 0!

(3.49)
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with the velocity projection matrix P q! projecting the physical angular velocities onto the
time derivative of the rotational coordinates. In the following derivations, two different
exemplary sets of parameters will be discussed. More information on the subject including
further sets of rotation parameters can be found e.g. in [Sha05].

3.3.4 XYZ-Kardan-Angles

One way to specify 3-dimensional rotations is the use XYZ-Kardan-angles. Here, a
rotation of a coordinate system Kj against another coordinate system Ki is described by
three succeeding rotations about the x-, y- and z-axis by angles �, � and  as shown in
figure 3.8. Accordingly, the set of rotational coordinates qR;ji describing this rotation is
defined as

qR;ji =
h
� � 

iT
ji
: (3.50)

In the context of this thesis, a simplified version of the XYZ-Kardan-angles without
rotations about the z-axis will later be used to derive the equations of motion of the flexible
continua (compare section 4.3). However, for the sake of completeness, the transformation
matrix for the complete set of XYZ-Kardan-angles is specified here as

ijT =

26664
c � c  c � s  s �

c� s  + s� s � c  c� c  � s� s � s  � s� c �
s� s  � c� s � c  s� c  + c� s � s  c� c �

37775
ji

: (3.51)

The corresponding angular velocities and accelerations, however, will not be discussed
here and the reader is kindly referred to e.g. [Sha05] or [Woe11].

3.3.5 Euler-Parameters

Based on the rotation of a rigid body about an arbitrary axis uR as described in section
3.3.1, the 4 Euler-parameters (compare e.g. [Sha05]) are defined as

qR;ji =

26666664
ps

px

py

pz

37777775
ji

=

26666664
cos '

2

uRx sin '
2

uRy sin '
2

uRz sin '
2

37777775
ji

: (3.52)

Also note that the magnitude of the vector of Euler-parameters uR always amounts to
1 per definition and needs to be normalised during time integration due to numerical drift
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yj

zj

α

Ki,Kj

b)

xj

yj ≡ yj

zj

xj

zj

β

Kj,Kj

c)

xj

yj

zj ≡ zj

yj

xj

γ

Kj,Kj

Figure 3.8 Order of rotation for XYZ-Kardan angles. a) 1st rotation by �i about x-axis.
b) 2nd rotation by �i about y-axis. c) 3rd rotation by i about z-axis.

if necessary. The transformation matrix and velocity projections are then given by

jiT = 2

26664
p2s + p2x � 1

2 pxpy � pspz pxpz + pspy

pxpy + pspz p2s + p2y � 1
2 pypz � pspx

pxpz � pspy pypz + pspx p2s + p2z � 1
2

37775
ji

; (3.53)

26664
i!x

i!y

i!z

37775
ji

=

26664
�px ps �pz py

�py pz ps �px

�pz �py px ps

37775
ji

26666664
_ps
_px
_py
_pz

37777775
ji

i!ji = iP !q
ji _qR;ji

; (3.54)

as well as26666664
_ps
_px
_py
_pz

37777775
ji

=

26666664
�px �py �pz

ps pz �py

�pz ps px

py �px ps

37777775
ji

26664
i!x

i!y

i!z

37775
ji

_qR;ji = iP q!
ji

i!ji :

: (3.55)
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Finally, it can be shown, that the angular acceleration projections are retrieved as

i�ji = i _!ji = iP !q
ji •qR;ji +������:0

i _P !q
ji _qR;ji (3.56)

and

•qR;ji = iP q!
ji

i�ji (3.57)

because the product of the time derivative of the projection matrix and the time derivative
of the Euler-parameters becomes a zero vector.

3.4 Motion Quantities of Rigid Bodies

The position of a rigid body i in a spatial multibody system is described by its translational
position

0ri =
h
0xi

0yi
0zi

iT
(3.58)

and its orientation, which is usually specified with respect to a global reference system
K0. As outlined in the previous sections, the orientation is specified by a set of rotational
parameters, as for instance Euler-parameters, which will be used to describe rigid bodies
throughout the rest of this thesis. If these are denoted by the vector qR;i, the so-called
pose of the body can by specified as

0r̂i =

24 0ri

qR;i

35 ; (3.59)

where the hat indicates a combination of translational and rotational position quantities.
Taken together, the poses of all nB bodies in the system form the system position vector

0r̂ =
h
0r̂1 : : : 0r̂nB

iT
=̂

h
0r̂1 : : : 0r̂nCo

iT
(3.60)

containing the nCo coordinates of the system. Finally, it shall be noted for the purpose
of completeness, that another way to specify the orientation of a body is by means of the
transformation matrix 0iT derived in the previous section. The pose of the body is then
specified as the set

0r̂i =
n
0ri;

0iT
o
: (3.61)
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However, note that henceforth the upper left index indicating the coordinate system is
omitted for the sake of a more compact notation, since the following derivations are valid
in any arbitrary, yet consistent, coordinate system. In contrast to the pose being a set of
physical motion quantities plus generalised coordinates for the description of rotations,
the velocity vector of rigid body i can be expressed as a vector containing only physical
motion quantities. Accordingly is defined as a vector containing the translational velocity
vi as well as the rotational velocity !i as a projection of the time derivatives of the
rotational coordinates as defined in the previous sections

v̂i =

24vi

!i

35 =

24 _ri
P !q

i qR;i

35 =

24I3 0

0 P !q
i

35
| {z }

P̂ !q
i

24 _ri
qR;i

35 (3.62)

with the coupled translational and rotational velocity projection matrix P̂ !q
i of body i.

Accordingly, the whole system velocity vector is then retrieved as

v̂ =
h
v̂T
1 : : : v̂T

nB

iT
=

26664
P̂ !q

1 : : : 0
... . . . ...
0 : : : P̂ !q

nB

37775
| {z }

P̂ !q

_̂r (3.63)

with the system velocity projection matrix P̂ !q. Accordingly, the time derivative of
the coordinates describing the position of the system can be retrieved as a the inverse
projection according to

_̂r = P̂ q! v̂ : (3.64)

Finally, the accelerations are retrieved by differentiating equation (3.63) with respect to
time, which in the case of Euler-parameters being used to describe rigid body rotations,
(compare equation (3.57)) evaluates to

â = d v̂
d t

= _̂v (3.57)= P̂ !q •̂r ; (3.65)

3.5 Constraint Equations

As already outlined in section 2.3, the constraint equations of multibody systems can
either be formulated in terms of implicit or explicit equations leading to equations of
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motion in absolute coordinates or relative joint coordinates respectively. Here the term
absolute coordinates refers to the full set of motion quantities as specified in the previ-
ous section, which are to some degree redundant due to the presence of the constraint
equations restricting the number of degrees of freedom. For further information on this
subject, the reader is kindly referred to e.g. [Sha05]. In the following derivations, both
concepts as well as the resulting equations of motion will be presented.

3.5.1 Implicit Constraint Equations

Consider a system constrained by nC implicit, scleronomous constraint equations, that
accordingly do not contain explicitly time dependent variables3. The constraints restrict-
ing the positions of the system can then be specified as a set of nC implicit constraint
equations in the position variables r̂ in the form

�g (r̂) =
h
�g1 (r̂) : : : �gnC (r̂)

iT
= 0 : (3.66)

Furthermore, the constraints also impose restrictions on the velocity vector of the system.
In consequence, the velocities need to satisfy the first derivative of the constraint equations
with respect to time. It is retrieved by total differentiation of equation 3.66 as

_�g = d �g (r̂; t)
d t

= 1
d t

 
@�g (r̂; t)

@r1
_r1 + � � �+ @�g (r̂; t)

@rnCo

_rnCo

!
= 0 : (3.67)

Using the velocity projection introduced in equation 3.64, this relationship can be rewrit-
ten in matrix form as

_�g =
"
@�g (r̂; t)

@r1
: : :

@�g (r̂; t)
@rnCo

#
P̂ q! v̂ = 0 : (3.68)

Finally, introducing the system’s Jacobian-matrix of the implicit constraints with respect
to the absolute coordinates r̂

�Gr =
"
@�g (r̂; t)

@r1
: : :

@�g (r̂; t)
@rnCo

#
P̂ q! ; (3.69)

equation 3.68 can be written in compact form as

_�g = �Gr (r̂) v̂ = 0 : (3.70)

3Systems without explicitly time dependent variables are called scleronomous, compare e.g. [Woe11] or
[Sha05]. Otherwise, they are referred to as rheonomous
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Finally, the accelerations also need to satisfy the corresponding derivative of the constraint
equations, which is retrieved by total differentiation of equation 3.68 as

•�g = d _�g (r̂; v̂)
d t

= �Gr (r̂)
d v̂
d t

+ d �Gr (r̂)
d t

v̂ = 0 : (3.71)

Introducing the total derivative of the Jacobian-matrix with respect to time

_�Gr =
d �Gr (r̂)

d t
(3.72)

and applying relationship 3.65, equation 3.71 can finally be rewritten as

•�g = �Gr (r̂) â+ _�Gr
�
r̂; _̂r

�
v̂ = 0 : (3.73)

3.5.2 Explicit Constraint Equations

In contrast to the algorithms based on implicit constraint equations, the equations of
motion of multibody systems can also be derived based on Lagrangian dynamics and a
set of nq relative joint coordinates

q =
h
q1 : : : qnq

iT
(3.74)

In the case of multibody systems without kinematic loops, these are also the system’s
minimal coordinates, i.e. the minimum set of coordinates required to completely describe
the position of the system. Accordingly, in that case the number of joint coordinates
equals the number of degrees of freedom of the system.

The scleronomous constraints �r restricting the position are then given in explicit form,
so that the position vector of the system r̂ can be specified as an explicit function of the
joint coordinates q according to

r̂ � �r (q) : (3.75)

Finally, kinematic loops are usually depicted by the introduction of additional loop closing
conditions, that are typically realised by secondary implicit constraint equations (compare
e.g. [Woe11]). However, as will be described in the following chapter 4, here a different,
force-element-based approach will be used, so that the above condition can be applied
without restrictions.

The velocities of rigid body i are retrieved by total differentiation of the translational
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part of equation 3.75 with respect to time according to

vi =
"
@ri
@q1

: : :
@ri
@qnq

# 26664
_q1
...
_qnq

37775 = JT;i(q) q (3.76)

with the translational part of the Jacobian matrix of body i in terms of relative joint
coordinates JT;i. The angular velocities, on the other hand, are retrieved in a convenient
way by using the superposition of angular velocities as described in section 3.3 as

!i = JR;i(q) q : (3.77)

Here, the translational part of the Jacobian matrix of body i in terms of relative joint
coordinates JR;i is specified using the corresponding velocity projections defined in section
3.3. Taken together, these relationships can now be used to express the physical system
velocity vector in terms of relative joint angles according to

26666666664

v̂1

!̂1
...

v̂nB

!̂nB

37777777775
=

26666666664

JR;1

JR;1
...

JR;nB

JR;nB

37777777775

26664
_q1
...
_qnq

37775

v̂ = Ĵ(q) q :

(3.78)

Finally, introducing the total time derivative of the Jacobian-matrix

_̂
J = d Ĵ(q)

d t
; (3.79)

the system acceleration vector can be specified as

â = Ĵ •q + _̂
J _q : (3.80)

3.6 Equations of Motion

Based on the principle of virtual power (compare e.g. [Sha05]), the spatial motion of a
general 3-dimensional rigid body i in a multibody system can be described by the so-called
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Newton-Euler equations with respect to its centre of gravity4 according to
24miI3 0

0 �i

35
| {z }

M̂i

24ai

�i

35
| {z }
âi

=

24 0

�~!i�i!i

35
| {z }

f̂ c

+

24f e
i

� e
i

35
| {z }
f̂ e

+

24f r
i

� r
i

35
| {z }
f̂ r
i

: (3.81)

Here, M̂ is the mass matrix of body i, while the vectors f̂ c, f̂ e and f̂ r
i represent the

centrifugal and Coriolis-forces, the external forces as well as the reaction forces due to
the constraints with their respective translational and rotational components f

c=e=r
i and

�
c=e=r
i . Taken together, these equations constitute the whole system’s equations of motion:

26664
M̂1 � � � 0

... . . . ...
0 � � � M̂nB

37775
26664

â1
...

ânB

37775 =

26664
f e
1
...

f e
nB

37775 +

26664
f c
1
...

f c
nB

37775 +

26664
f̂ r
1
...

f̂ r
nB

37775
M̂ â = f̂ e + f̂ c + f̂ r :

(3.82)

Here, the key aspect of every MBS algorithm is the determination or elimination of the
unknown reaction forces f̂ r.

3.6.1 Equations Based on Absolute Coordinates

The equations of motion in absolute coordinates are based on the fact, that the reaction
forces always act in the directions of the rows of the Jacobian-matrix in terms of the
implicit constraints (compare e.g. [Sha05]). Thus, they can be expressed as a linear
combination of these rows with nC unknown Langrange-multipliers � according to

f̂ r = �Gr
T� : (3.83)

Inserting this relationship into the collected Newton-Euler equations from equation
(3.81) of all bodies in the system as well as rearranging and adding equation (3.73),
together the equations constitute the equations of motion in terms of absolute coordinates
according to

24 M̂ � �Gr
T

� �Gr 0

35 24â
�

35 =

24f̂ e + f̂ c

_�Grv̂

35 : (3.84)

4Note, that the equations of motion take a more complex form, if a point not coinciding with the centre
of gravity is chosen. For more information, refer to e.g. [Woe11] or [Sha05].
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As to be seen from the above equation, here the constraints are only integrated on velocity
and acceleration level, so that they usually tend to be violated on position level after a
number of numerical integration steps, which is also referred to as constraint drift. There
exist a number of approaches to deal with this issue, such as e.g. the so-called Baumgarte-
stabilisation (compare e.g. [Sha05]). However, since, as already indicated in section 2.3,
in this thesis the equations of motion in terms of absolute coordinates only serve purposes
not directly related to time integration, they shall not be further discussed at this point
and the reader is kindly referred to secondary literature such as [Sha05].

3.6.2 Equations Based on Relative Joint Coordinates

Substitution of the physical accelerations depending on the accelerations of the joint
states from equation (3.80) into equation (3.82) and premultiplication with the transposed
Jacobian leads to

ĴTM̂Ĵ| {z }
M q

•q = ĴTf̂ e| {z }
fq;e

+ ĴTf̂ c � ĴTM̂
_̂
J _q| {z }

fq;c

+����*0
ĴTf̂ r

(3.85)

because the reaction forces are perpendicular to the constraint manifold, which is defined
by the columns of the Jacobian-matrix (compare e.g. [Sha05]). The system’s generalised
mass matrix

M q = ĴTM̂Ĵ ; (3.86)

the vector of generalised Coriolis forces

fq;c = ĴTf̂ c � ĴTM̂
_̂
J _q (3.87)

as well as the vector of generalised external forces

fq;e = ĴTf̂ e (3.88)

appearing in the above equations can be interpreted as projections of the respective inertia
and external forces to the constraint manifold. Conclusively, in contrast to the equations
based on implicit constraint equations, the of equations of motion can now be solved in
terms of relative joint coordinates, and the constraint equations are fulfilled at any time.
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CHAPTER 4

Implementation of Flexible Body
Dynamics

Within the context of the upcoming chapter, the concrete implementation of the algo-
rithms for the coupled simulation of the highly flexible continua as well as attached rigid
bodies described in section 2.3 will be derived. For that purpose, firstly all necessary com-
mon definitions are introduced. Subsequently, all terms required to solve the equations
of motion based on the corresponding algorithms will be derived. Finally, the coupling
mechanism for rigid bodies is discussed and a generalised method for calculating the
internal forces in the flexible continua is derived.

4.1 Common Definitions
As a basis for all upcoming derivations, a common topological structure for all systems
discussed in this theses as well as implemented in OCN-SIM Flex is defined, which is
depicted in figure 4.1. As to be seen from that schematic, the flexible continua depicted
here are commonly referred to as rope elements, whereas the term ropes is used as a
general abstraction of all 1-dimensional, highly flexible continua and thus also covers e.g.
anchor chains, tow lines or flexible cables. These ropes can be connected in an arbitrarily
complex manor to each other or non moving reference points referred to as support nodes
by means of primary joints in order to establish a kinematic tree structure. In order
to realise kinematic loops, these ropes can then be further connected to one another by
secondary constraints. Finally, rigid bodies are coupled to the system by means of force
elements as described in detail in section 4.7.
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Figure 4.1 General setup of structural elements

According to the physical modelling derived in section 2.3, the system of ropes is dis-
cretised by mass points interconnected by massless, ideally stiff bar elements according to
figure 4.2. As to be seen from figures 4.1 and 4.2, the kinematic root of all ropes are fixed
supports nodes defined in a global inertial coordinate system K0. Here, the coordinates
of support node i are denoted by the vector

0si =
h
0sx

0sy
0sz

iT
i
: (4.1)

K0

mi

f e
i

ss̄(i) ri

Figure 4.2 Common definitions: Position ri of node i with respect to global coordinate
system K0, kinematic root s�s(i) of node i, external forces f e

i acting on node
i and mass mi of node i.
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Moreover, the mass matrix of node i is defined as

Mi = miI3 (4.2)

and the vector of external forces on node i

f e
i = f g

i + fb
i + fhyd

i + fCRB
i + fCo

i (4.3)

with the gravity and buoyancy forces f g
i and fb

i , the hydrodynamic forces fhyd according
to chapter 5 as well as the optional rigid body connection forces fCRB

i according to section
4.7 and the also optional secondary constraint forces fCo

i (section 4.3.2) used to depict
secondary constraints in algorithms based on the explicit constraint equations.

Moreover, all equations of motion derived in this thesis will be solved by the so-called
Verlet-integration scheme (compare e.g. [Jak01]) extended to a semi-implicit predictor
corrector algorithm in terms of the trapezoidal rule. Here, without the loss of generality,
a general position state vector s is integrated based on the following scheme

sk+1 =
1
2
�•skh2 + _skh+ sk ; (4.4)

where the bar notation �•sk represents the averaged acceleration over the duration of the
time step, which is determined by first integrating the time step and a subsequent de-
termination of the accelerations at the end of the time step. Moreover the remaining
variables in the above equation are the time step size h as well as the index of the current
time step k. Finally, the velocities are also integrated based on the average accelerations
according to

_sk+1 = �•skh : (4.5)

Finally, note that throughout the course of the upcoming derivations, the key equations
relevant for the implementation in OCN-SIM Flex are marked with a grey background
for clarity.

4.2 Lagrangian Dynamics Using Absolute Coordinates
As already pointed out in section 2.3, the algorithms based on absolute coordinates and
implicit constraint equations here only serve purposes, that are not directly related to
time domain simulations and shall thus only be discussed briefly. However, they will form
the basis for the derivations regarding the RRF solver in section 4.6 and also for the
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calculation of the reaction forces in section 4.8.
Consider the ith distance constraint �gi (r) restricting the positions of two nodes k1 (i)

and k2 (i) to be at given a distance liC . Here, k2 (i) is defined to always be a moveable
node belonging to the vector r, where k1 (i) can also be a support node belonging to the
vector s.

k1 (i) =

8><>:ID of predecessor node if node is moveable,

�1 � (ID of predecessor node) is a support node.
(4.6)

The distance between the nodes must then equal the specified length lgi , so that the
condition

�gi (r) = (rg
i )

2 � (lgi )
2 = 0 (4.7)

is satisfied at any time. Here, the difference of the positions of the nodes

rg
i =

8><>:rk2(i) � rk1(i) if k1 (i) > 0 ;

rk2(i) � s�1�k1(i) otherwise.
(4.8)

is defined to be the vector pointing from node k1 (i) to k2 (i). Note, that the constraint
equation is set up in terms of the squared lengths, since this eliminates the square root
that would appear as a result from determining the norm of vector rg

i thus making dif-
ferentiation of the constraint equation more convenient.

Gathered together, the nC constraints form the system’s vector of implicit constraints

�g (r) =

26664
�g1 (r)

...
�gnC (r)

37775 = 0 : (4.9)

Differentiating equation (4.7) with respect to time leads to

_�gi =
d
�
(rg

i )
2 � (lgi )

2
�

d t
= 2rg

i

d rg
i

d t
� 2lgi

�
�
��7
0

d lgi
d t

= 0 (4.10)

which expands to

_�gi = 0 =

8><>:2rg
i vk2(i) � 2rg

i vk1(i) if k1 (i) > 0

2rg
i vk2(i) if k1 (i) otherwise

(4.11)
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Collecting these constraint equations and sorting for the velocities of the nodes v, the
time derivative of the system’s implicit constraint equation vector can be specified as

_�g =

26664
�Gr;11 : : : �Gr;1nN

... ...
�Gr;nC1 : : : �Gr;nCnN

37775
26664
v1
...

vnN

37775
_�g = �Gr v

(4.12)

Here, the block matrices forming �Gr =
h
�Gr;ij

i
evaluate to

�Gr;ij =

8>>>><>>>>:
�2 (rg

i )
T if j = k1 (i) ;

2 (rg
i )

T if j = k2 (i) ;

0; otherwise.

(4.13)

By analogy, the block matrices of the time derivative of the Jacobian-matrix _�Gr =�
_�Gr;ij

�
can be found as

_�Gr;ij =

8>>>><>>>>:
�2

� _rg
i

�T
if j = k1 (i) ;

2
� _rg

i

�T
if j = k2 (i) ;

0; otherwise.

(4.14)

In conclusion, all terms required to solve the equations of motion in absolute coordinates
according to section 3.6 are now known.

4.3 Lagrangian Dynamics Using Relative Joint Coordinates –
Common Definitions

In order to be able to derive the constraint equations in a structured way, the system
is first divided into kinematic trees as depicted in figure 4.3. Moreover, local coordinate
systems Ki are introduced, the rotation of which is specified with respect to their respective
predecessor p(i) in terms of relative joint angles �i and �i in the style of the XYZ-Kardan-
angles defined in section 3.3 with i set to 0. Furthermore, the automated formulation
of implicit loop closing constraints in terms of additional implicit constraint equations
would be a complicated task from an organisational point of view due to the arbitrarily
complex structure of the systems considerer in this thesis. Accordingly, as a simplification,
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K0

ss̄(i)

rp(i)

ri

Ki
di

Figure 4.3 Position ri of node i with respect to global coordinate system K0, local posi-
tion di of node i with respect to its joint coordinate system Ki and position
rp(i) of predecessor p (i) of node i

the loop-closing constraints are rather depicted by PID-controlled force elements, which
especially seems admissible due to typically large time constants of the systems under
consideration. In doing so, the nodes involved in the concerning secondary constraints
are forced to be approximately coincident on position, velocity and acceleration level
besides only being depicted by force elements instead of algebraic constraint equations.

Furthermore, in order to define the topological structure of the system, the predecessor
of a node is defined according to

p (i) =

8><>:ID of predecessor node if node is moveable,

�1 � (ID of predecessor node) is a support node.
(4.15)

Here, the node numbers are ordered such, that the predecessor node of any node i

always has an index that is smaller than i

p (i)
!
< i

so that during recursive iterations, any quantities associated with p (i) are already defined
when evaluating the concerning quantity for node i. Finally, the following definitions are
introduced as commonly used quantities: the displacement vector idi of node i with
respect to its joint in the local coordinate system Ki, the vector qi = [�i �i]T containing
the relative joint XY-Euler angles �i as well as �i with respect to its predecessor p(i) and
the transformation matrix 0iT from Ki to the reference system K0.

4.3.1 Node Positions and Coordinate Transformations

The position of the predecessor node is defined as
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rp
i =

8><>:rp(i) if p (i) > 0 ;

s�1�p(i) otherwise.
(4.16)

Accordingly, the position of node i with respect to the global coordinate system K0 can
be defined as the sum of the position of its predecessor node rp

i and its displacement with
respect to its joint di according to

0ri = 0rp
i + 0di = 0rp

i + 0iT idi : (4.17)

The determination of the transformation matrix 0iT occurring in the above equation will
be discussed in the succeeding section. Besides its occurrence in equation (4.17), the
evaluation of the coordinate transformation matrix of a node coordinate system with
respect to the coordinate system of its predecessor will often be required over the course
of the following sections. Thus, the matrix 0iT transforming the coordinates from the
local coordinate system Ki associated with node i to the global coordinate system K0 can
be obtained as a relative rotation with respect to the coordinate transformation matrix
of its predecessor 0p(i)T by means of a local transformation matrix p(i);iT according to

0iT = 0p(i)T p(i);iT : (4.18)

Introducing the joint transformation matrix iS

iS =

26664
c �i 0 s �i

s�i s �i c�i � s�i c �i

� c�i s �i s�i c�i c �i

37775 � p(i);iT ; (4.19)

this relationship can be rewritten as

0iT = 0p(i)T iS : (4.20)

Since all support nodes are defined in the global reference system K0, all transformation
matrices 0p(i)T with respect to support nodes are defined as an identity matrix as

0p(i)T � I3 if p(i) < 0 : (4.21)

Also, the time derivative of the transformation matrix from equation (4.20) will be re-
quired in the course of the upcoming derivations. Applying the product rule of differen-
tiation, it can be specified as

0i _T = 0p(i) _T iS + 0p(i)T i _S = 0p(i) _T iS + 0p(i)T

 
@iS

@�i

_�i +
@iS

@�i

_�i

!
: (4.22)
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With the derivatives of the joint transformation matrix iS with respect to � and �

iS� = @iS

@�i

=

26664
0 0 0

c�i s �i � s�i � c�i c �i

s�i s �i c�i � s�i c �i

37775 (4.23a)

iS� = @iS

@�i

=

26664
� s �i 0 c �i

s�i c �i 0 s�i s �i

� c�i c �i 0 � c�i s �i

37775 ; (4.23b)

one gets

0i _T = 0p(i) _T iS + 0p(i)T
�
iS� _�i + iS�

_�i

�
: (4.24)

Finally, the time derivatives of the transformation matrices of the support nodes

0p(i) _T � 0(3;3) if p(i) < 0 ; (4.25)

becomes a zero matrix, since these nodes per definition do not move.
Finally, the time derivatives of the derivatives of the joint transformation matrices with

respect to � and � will also be required in upcoming derivations. They can be determined
according to

j _S� = @jS�

@�j

_�j +
@jS�

@�j

_�j

=

26664
0 0 0

� s�j s �j � c�j s�j c �j

c�j s �j � s�j � c�j c �j

37775 _�j +

26664
0 0 0

c�j c �j 0 c�j s �j

s�j c �j 0 s�j s �j

37775 _�j (4.26a)

j _S� = @jS�

@�j

_�j +
@jS�

@�j

_�j

=

26664
0 0 0

c�j c �j 0 c�j s �j

s�j c �j 0 s�j s �j

37775 _�j +

26664
� c �j 0 s �j

� s�j s �j 0 s�j c �j

c�j s �j 0 � c�j c �j

37775 _�j : (4.26b)

4.3.2 Secondary Constraints

As already indicated in section 4.1, the loop-closing secondary constraints are depicted
by means of PID force elements. Considering a loop closing secondary constraint i, the
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condition of two nodes k1(i) and k2(i) having the same 3-dimensional position requires
three constraint equations that are represented by three PID-based force elements accord-
ingly. Accordingly, for time step k, the constraint forces are calculated according to the
following scheme:

eP
i;k =

h
ePx;i ePy;i ePz;i

iT
k
= rk1(2) � rk2(i) (4.27)

eI
i;k =

h
eIx;i eIy;i eIz;i

iT
k
= eI

i;k�1 + eP
i;kh (4.28)

eD
i;k =

h
eDx;i eDy;i eDz;i

iT
k
= vk2(i) � vk1(i) (4.29)

fCo
i;k = eP

i;kk
P + eI

i;kk
I + eD

i;kk
D : (4.30)

Taken together, here the constraint forces arising from the secondary constraint forces
form the system vector of additional constraint forces

fCo =
�
: : :

�
fCo
i

�T
: : :

�T
; (4.31)

which, in the context of Lagrangian dynamics, is accounted for in the vector of external
forces as described in section 4.1.

4.4 Lagrangian Dynamics Using Relative Joint Coordinates –
Non-recursive Formulation

In this section, the explicit constraint equations in relative joint coordinates will be derived
on position, velocity and acceleration level as a basis for the solution of the equations of
motion.

4.4.1 Constraint Equations

Let Pi be the set of moveable predecessor nodes of node i in ascending order starting from
the root of the associated kinematic chain,

�Pi = fPi; ig (4.32)

the set of predecessor nodes extended by node i itself and �s (i) the node ID of the root
of the associated kinematic chain. The position 0ri of node i can then be evaluated in
the global coordinate system K0 as the sum of the position of its root node �s (i), all
displacement vectors of it’s predecessor nodes and the local displacement of the node
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itself. Using the �Pi notation introduced in equation (4.32), the recursive relationship
from equation (4.17) can now be noted as a sum according to

0ri = s�s(i) +
X
k2�Pi

0kT kdk : (4.33)

Using the joint transformation matrix introduced in equation (4.19), the transformation
matrix 0kT appearing in the above equation can be specified as a sequential product of
joint transformations

0kT =
Y
l2�Pk

lS ; (4.34)

and equation (4.33) now expands to

0ri =
X
k2�Pi

Y
l2�Pk

lS kdk : (4.35)

Applying the chain rule of differentiation, the velocity of node i is retrieved as

0vi =
d 0ri
d t

=
X
k2�Pi

d 0kT kdk

d t
=

X
k2�Pi

X
j2�Pi

@0kT kdk

@�j

_�j +
@0kT kdk

@�j

_�j

=
X
j2�Pi

X
k2�Pi

@0kT kdk

@�j

_�j +
@0kT kdk

@�j

_�j :

(4.36)

Since kdk = const:, the derivatives simplify to

0vi =
X
j2�Pi

X
k2�Pi

@0kT

@�j

kdk _�j +
@0kT

@�j

kdk
_�j : (4.37)

Moreover, the derivative becomes 0 if the position of node k does not depend on the state
of joint j. In consequence, the subset of predecessor nodes of node i, the velocity of which
depends on the state of joint j, is introduced as

�Pij = �Pi n Pj = fj; : : : ; p(i); ig ; (4.38)

so that the above relationship can be rewritten as

0vi =
X
j2�Pi

X
k2�Pij

@0kT

@�j

kdk _�j +
@0kT

@�j

kdk
_�j =

X
j2�Pi

X
k2�Pij

vij : (4.39)
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The velocity component vij of node i resulting from the velocity of joint j 2 �Pi can then
be specified in matrix form as

vij =

24 X
k2�Pij

@0kT

@�j

kdk

X
k2�Pij

@0kT

@�j

kdk

35 24 _�j

_�j

35 if j 2 �Pi

vij = Jij _qj

(4.40)

with the Jacobian-matrix Jij of node i with respect to joint j

Jij =
h
J�;ij J�;ij

i
=

24 X
k2�Pij

@0kT

@�j

kdk

X
k2�Pij

@0kT

@�j

kdk

35 : (4.41)

In order to determine the derivatives of the transformation matrix 0kT with respect to �j

and �j, 0kT can be split up into the succeeding transformations

0kT = 0;p(j)T jS jkT ; (4.42)

so that the derivatives occurring in (4.41) can be rewritten as

@0kT

@�j

= 0;p(j)T jS�
jkT (4.43a)

@0kT

@�j

= 0;p(j)T jS�
jkT (4.43b)

with jS� and jS� defined from equation (4.23). Substitution into (4.41) leads to:

J�=�;ij =
X
k2�Pij

0;p(j)T jS�=�
jkT kdk =

X
k2�Pij

0;p(j)T jS�=�
jdk : (4.44)

Since the term 0;p(j)T jS�=� does not depend on index k, it can be factored out of the
sum, so that one gets

Jij = 0;p(j)T
h
jS�

P
k2�Pij

jdk
jS�

P
k2�Pij

jdk

i
: (4.45)

The sum in the equation above can be identified as the vector pointing from the prede-
cessor of node j to node i. Thus, introducing

di;p(j) = ri � rp
j (4.46)

as a shorthand, the masspoint’s Jacobian-matrix with respect to joint j 2 �Pi from
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equation (4.41) can now be specified in compact form as

Jij = 0;p(j)T
h

jS�
jdi;p(j)

jS�
jdi;p(j)

i
if j 2 �Pi : (4.47)

Finally, the sub-Jacobian-matrices Jij; j 2 �Pi as well as the associated joint velocities
qj; j 2 �Pi can be arranged into the complete set of joint velocities q so as to derive a
projection of the complete set of velocities onto the Cartesian velocities of node i.

0vi =
h
Ji1 � � � Ji;nN

i 26664
_q1
...
_qnN

37775
0vi = Ji _q

(4.48)

Here all submatrices Jij become 0(3;2) if j ��2 �Pi and (4.47) needs to be extended to

Jij =

8><>:
0;p(j)T

�
jS�

jdi;p(j)
jS�

jdi;p(j)

�
if j 2 �Pi ;

0(3;2) otherwise.
(4.49)

Gathered together, the vectors 0vi form the velocity vector of all nodes in the system
26664

0v1
...

0vnN

37775 =

26664
J11 : : : J1nN
... . . . ...

JnN1 : : : JnNnN

37775
26664

_q1
...
_qnN

37775
0v = J _q

(4.50)

with the Jacobian-matrix J of all nodes. A physical interpretation of the velocity
equations are given in appendix A.3.

Finally, differentiating (4.50) with respect to time leads to the system’s vector of ac-
celerations

0a = d 0v

d t
= J •q + _J _q : (4.51)

Finally, in order to evaluate the derivative of the Jacobian-matrix appearing in this
relationship, equation (4.47) is derived with respect to time according to
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_Jij =
dJij

d t
= 0;p(j) _T

h
jS�

jdi;p(j)
jS�

jdi;p(j)

i
+ : : :

0;p(j)T
h

j _S�
jdi;p(j)

j _S�
jdi;p(j)

i
if j 2 �Pi :

(4.52)

4.4.2 Equations of Motion

Finally, all terms required to solve the equations of motion in relative joint coordinates
according to section 3.6 are now known. Accordingly, the equations of motion are retrieved
by inserting all required terms into equation 3.85 and solving for •q.

4.5 Lagrangian Dynamics Using Relative Joint Coordinates –
Recursive Formulation

First of all, since the recursive formulation of Lagrangian dynamics based on relative
joint coordinates will be often referenced to throughout the rest of this thesis, it will
henceforth also be referred to as recursive Lagrangian algorithm for short.

In the upcoming section, the velocity and acceleration constraints will first be derived
as a basis for the recursive solution, since the recursive determination of the positions
has already been discussed in section 4.3. Subsequently, the recursive solution scheme
itself will be outlined. In this context, as will be seen in the upcoming derivations, the
recursive formulation of the equations of motion requires the angular velocities to be
evaluated. Accordingly, the mass matrix needs to be extended by the rotational tensor of
inertia to match this requirement in the following manner

0M̂i =

24miI3 03�3

03�3 03�3

35 : (4.53)

However, here the rotary moment of inertia only serves as placeholder so far and will later
be filled with generalised back-projected inertia terms during the recursive determination
of the acceleration terms.

4.5.1 Relative Velocities and Accelerations

The aim of the upcoming derivations is to find a recursive relationship for the velocities
of node i in the form24vi

!i

35 = Bi

24vp(i)

!p(i)

35+Ci

24 _�i

_�i

35 : (4.54)
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Note that in order to find this relationship, the introduction of the angular velocity 0!i is
required, which is counter-intuitive, since a mass point does, per definition, not inherit an
angular velocity. However, in this case the angular velocity refers to the angular velocity
at which the local coordinate system Ki is rotating. Consider the angular velocity of body
i, which can be expressed as skew a symmetric matrix

0 ~!i0 = 0i _T 0iT T : (4.55)

based on the transformation matrix and its derivative according to e.g. [Sha05]. Using
the identity

0iT = 0p(i)T iS ; (4.56)

the above relation can be rewritten as

0 ~!i0 =
�
0p(i) _T iS + 0p(i)T i _S

� �
0p(i)T iS

�T

= 0p(i) _T

I3z }| {
iS iST 0p(i)T T| {z }
0 ~!p(i)0

+ 0p(i)T i _S iST 0p(i)T T| {z }
0 ~!ip(i)

:
(4.57)

It follows from this relationship, that the angular velocity of body i with respect to the
global coordinate system K0 can be expressed as the vectorial superposition

0!i0 = 0!p(i)0 + 0!ip(i) (4.58)

of the angular velocity of its predecessor 0!p(i)0 with respect to K0 and the angular velocity
of body i 0!ip(i) with respect to Kp(i) by analogy to the derivations made in section 3.2.2.
Moreover, the product

i _S iST =
�
iS� _�i + iS�

_�i

�
iST � p(i) ~!i;p(i) (4.59)

from equation (4.57) can be identified as the the skew symmetric matrix p(i) ~!i;p(i) of the
angular velocity of body i with respect to its predecessor p(i) evaluated in the predecessor
coordinate system Kp(i). Inserting the derivatives of the joint transformation matrices
from equation (4.23), the corresponding angular velocity vector can be determined as

p(i)!i;p(i) =

26664
_�i

_�i cos(�)i
_�i sin(�)i

37775 : (4.60)
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Finally, transforming this vector to the global coordinate system K0 and factoring out the
joint velocities �i and �i as well as

h
0vT

p(i)
0!T

p(i)

iT
, equation (4.57) can now be specified

in matrix form as

0!i0 =
h
0 I3

i 240vp(i)
0!p(i)

35+ 0p(i)T

26664
1 0
0 cos(�)
0 sin(�)

37775
24 _�i

_�i

35 (4.61)

and the sought rotational Jacobian-matrix can be specified as

0CR;i = 0p(i)T

26664
1 0
0 cos(�i)
0 sin(�i)

37775 : (4.62)

The translational velocity of node i can be determined recursively by differentiating
equation (4.17) with respect to time

0vi =
d 0ri
d t

= d
d t

�
0rp

i + 0iT idi

�
= 0vp(i) + 0i _T idi : (4.63)

Inserting the time derivative of the transformation matrix from equation (4.24) and ex-
panding the resulting product, one gets

0vi = 0vp(i) + 0p(i) _T iS idi + 0p(i)T
�
iS� _�i + iS�

_�i

�
idi : (4.64)

The second term on the right hand side of the above equation, 0p(i) _T iS idi, can be further
manipulated to yield

0p(i) _T iS idi = 0p(i) _T iS

I3z }| {
0iT T 0iT idi = 0p(i) _T

I3z }| {
iS iST 0p(i)T T| {z }
0 ~!ip(i)

0di = �0 ~di
0!ip(i) ; (4.65)

which results in

0vi = 0vp(i) � 0 ~di
0!ip(i) + 0p(i)T

�
iS� _�i + iS�

_�i

�
idi : (4.66)

Finally, factoring out the joint velocities �i and �i as well as
h
0vT

p(i)
0!T

p(i)

iT
, this can be

rewritten in matrix form as

0vi =
h
I3 �0 ~di

i 240vp(i)
0!p(i)

35+ 0p(i)T
h
iS�

idi
iS�

idi

i 24 _�i

_�i

35 (4.67)
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and the sought translational Jacobian-matrix1 of joint i can now be obtained as

0CT;i = 0p(i)T
h
iS�

idi
iS�

idi

i
: (4.68)

Gathered together, the sought recursive relationship for the velocities of node i with
respect to its predecessor p(i) can now be found as

240vi

0!i

35
| {z }
v̂i

=

24I3 �0 ~di

0 I3

35
| {z }

0Bi

240vp(i)
0!p(i)

35
| {z }
v̂p(i)

+

240CT;i

0CR;i

35
| {z }

0Ci

24 _�i

_�i

35
| {z }
_qi

(4.69)

with the link matrix 0Bi and the joint Jacobian-matrix 0Ci. Finally, differentiating the
above equation with respect to time leads to the accelerations according to

âi = 0Biâp(i) + 0Ci •qi +

24I3 �0 _~di

0 I3

35 v̂p(i) + 0 _Ci _qi| {z }
âqu
i

(4.70)

with

0 _CT;i = 0p(i) _T
h
iS�

idi
iS�

idi

i
+ 0p(i)T

h
i _S�

idi
i _S�

idi

i
(4.71)

and

0 _CT;i = 0p(i) _T
h
iS�

idi
iS�

idi

i
+ 0p(i)T

h
i _S�

idi
i _S�

idi

i
(4.72)

4.5.2 Equations of Motion – Recursive solution

In a first step, a forward projection of the geometric and kinematic quantities is carried
out. For this purpose, the transformation matrices 0iTi and displacement vectors 0ui

and 0ri are updated in a first step. Subsequently, the absolute velocities are retrieved
according to (4.69) by updating matrices 0Bi as well as 0CT;i and 0CR;i. Finally, the
external loads are updated based on previously obtained positions and velocities.

In a second step, a backward projection of the inertia terms and external loads is
carried out. Here, at first all projected mass matrices and force vectors are initialised

1Note, that the relationship for the translational Jacobian-matrix can also be obtained by evaluating
equation (4.49) for Jii.
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with physical values. For 1 � i � n assign:

M̂ �
i = M̂i (4.73)

f̂ ec�
i = f̂ ec

i (4.74)

Then, the actual projection takes place by an iterative calculation of the following terms
for n � i � 2:

Ni = CT
i M̂

�
i Ci (4.75)

Pi = BT
i

�
I6 � M̂ �

i CiN
�1
i CT

i

�
(4.76)

M̂ �
p(i) += PiM̂

�
i Bi (4.77)

f̂ ec�
p(i) += Pi

�
f̂ ec�
i �M �

i â
qu
i

�
(4.78)

Calculate N1 and C1, then calculate:

_�1 = N�1
1 CT

1

�
f̂ ec�
1 � M̂ �

1 â
qu
1

�
(4.79)

â1 = C1 _q1 + âqu
1 (4.80)

Finally, the resulting accelerations are calculated by forward iteration. For 2 � i � n do:

_qi = N�1
i CT

i

�
f̂ ec�
i � M̂ �

i

�
Biâp(i) + âqu

i

��
(4.81)

âi = Biâp(i) +Ci _qi + âqu
i (4.82)

4.6 The Reconstructed Reaction Forces (RRF) Solver

As already outlined in the previous sections, the equations of motion derived in this thesis
are either based on explicit constraint equations and relative joint coordinates or implicit
constraint equations and redundant absolute coordinates. However, both methods have
disadvantages, when it comes to simulating flexible maritime continua. On the one hand,
the algorithms based on absolute coordinates are numerically expensive and give rise to
the problem of constraint drift. On the other hand, the algorithms based on relative joint
coordinates can indeed be implemented in a numerically efficient way by using recursive
solution schemes as described in the previous section. However, despite being faster
than the non-recursive solution schemes, they still require numerically complex back-
projections of the inertia terms and are also complex from an organisational point of
view when compared to the relatively simple implementation of the dynamics in terms of
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absolute coordinates. Also, when considering systems involving a very large number of
loop closing secondary constraints, as for instance fishing nets, the organisational effort for
incorporating the the secondary constraints into the equations of motion in an automated
way becomes unfeasibly high.

Accordingly, in the context of this thesis, a projection based solver for the implicit
constraint equations has been developed as an extension of projection based solvers already
developed and implemented for usage in 3-D graphics applications (compare e.g. [Jak01]
or [Ben+13]). Here, instead of determining or eliminating the reaction forces as described
in section 3.6 they are rather omitted in the first place and the effect of the constraints on
the dynamics of the system is rather depicted by subsequent projections of the constraint
equations as will be outlined in section 4.6.5. Also, as already pointed out in section 2.3,
those algorithms have been extended to a semi-implicit predictor-corrector method. In
addition to that, the equations are extended by projections of the constraints on a velocity
and acceleration level. Also, a further numerical stabilisation of the constraint equations
is achieved by means of additional PID-based force elements. Finally, the predictor step is
additionally stabilised by the weighted inclusion of the reaction forces from the previous
integration step. In the upcoming section, first of all the projections of the constraints on
position, velocity and acceleration level will be derived. Subsequently, the stabilisation
terms will be derived and the complete algorithm will be presented.

4.6.1 Projection of Positions

rg

k1

k2

∆l

l

|rg| ̸= l
rpr

a)

rg

k1

k2

|rg| = l

rpr1

rpr2

b)

Figure 4.4 Projection of the positions. a) Constraint prior to projection b) Constraint
after projection

The Relaxation algorithm as described in [Jak01] or [Ben+13] projects the positions
r� violating the constraint equations back towards the constraint manifold, thus that the
projected positions r approximately fulfil the constraint condition g(r) � 0. In order to
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express this algorithm mathematically, the operator

r = project(r�) (4.83)

is introduced. As already pointed out in the beginning of this section 4.6, the projection
algorithm is based on the implicit constraint equations in terms of absolute coordinates.
Accordingly, recall from equation (4.7), that due to constraint �gi, the distance between
two nodes k1 (i) and k2 (i) is constrained to a specified length lgi

�gi (r) = (rg
i )

2 � (lgi )
2 = 0

with the difference vector of the positions of the nodes

rg
i = rk2(i) � rk1(i)

pointing from node k1 (i) to k2 (i). However, due to the aforementioned negligence of
constraint forces during the predictor step, the constraints are most likely going to be
violated. Consequently, there will be a difference in the actual distance of the nodes and
the specified length lgi . This difference is expressed by the introduction of the term

�lgi = jrg
i j � lgi =

q
rg
i
2 � lgi ; (4.84)

which, unlike the actual constraint equation, is the difference of the actual lengths – not
their squared values. To correct this violation by projection, both nodes are moved along
the direction of the constraint, thus that �lgi becomes 0. For this purpose, the so-called
direction of the constraint

ug
i =

rg
i

jrg
i j

(4.85)

is introduced as the unity-vector pointing in the same direction as rg
i and a projection-

vector rpr
i with the length of �lgi is created in this direction:

rpr
i = ug

i�lgi : (4.86)

Finally, rpr
i is distributed to the two nodes by splitting it into two vectors of opposite

direction. Here, the distribution of the projection-vector is weighed by the interchanged
masses of the nodes so that the node with the higher mass is shifted less due to it’s higher
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Table 4.1 Projection algorithm
Projection algorithm

for i = 1 to : : : npr
p=v=a do

for each constraint giC do

xi+1
k1/2(iC) = xi

k1/2(iC) + �pr
p=v=a x

pr1=2
i with x=̂r=v=a (4.89)

end for each
end for

inertia. The two vectors, by which the nodes are to be shifted, are then obtained as

rpr1
i =

mk2(i)

mk1(i) +mk2(i)
rpr
i (4.87)

and

rpr2
i = �

mk1(i)

mk1(i) +mk2(i)
rpr
i : (4.88)

Finally, the projection algorithm is implemented as an iteration over all constraints and
repeated npr

p times as illustrated in table 4.1 and figure 4.4. Here, �pr
p ≦ 1 is introduced as

a weight factor in order to stabilise the solution by distributing the projection vector over
a number of iterations. Note that within one iteration step the positions ri

k1/2(i) might
occur in several concurring constraints. In that case, the position already changed by
the preceding projection of another constraint is used as a basis for the projection of the
current constraint.

4.6.2 Projection of Velocities

Recall from equation (4.11) that the derivative of constraint �gi evaluates to

_�gi = 2rg
i vk2(i) � 2rg

i vk1(i) = 0 :

Dividing by 2 jrg
i j leads to the relationship, that the projected velocity components of

both nodes in the direction of the constraint ug
i must be equal

_�gi = rg
i

jrg
i j
vk2(i) �

rg
i

jrg
i j
vk1(i) = ug

ivk2(i) � ug
ivk1(i) = 0 (4.90)
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rg
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a)

vpr1
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vg2

v2

b)

Figure 4.5 Projection of velocities. a) Velocities prior to projection b) Velocities after
projection

By analogy to the position constraints, the above condition can be violated by

�vgi = ug
ivk2(i) � ug

ivk1(i) (4.91)

due to errors resulting from the numerical integration of the constraint equations. Ac-
cordingly, the velocity projection vector is defined as

vpr
i = ug

i�vgi (4.92)

and the projection is again carried out considering the node masses according to the
algorithm outlined in table 4.1 with

vpr1;i =
mk2(i)

mk1(i) +mk2(i)
vpr
i (4.93)

and

vpr2;i = �
mk1(i)

mk1(i) +mk2(i)
vpr
i : (4.94)

4.6.3 Projection of Accelerations

Differentiating equation 4.11 with respect to time gives the constraints on acceleration
level

•�gi (r;v;a) = 2
h
�rg

i
T rg

i
T

i 24 ak1(i)

ak2(i)

35+ 2
h
�vg

i
T vg

i
T

i 24 vk1(i)

vk2(i)

35 = 0 (4.95)
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with

vg
i = d rg

i

d t
=

d
�
rk2(i) � rk1(i)

�
d t

= vk2(i) � vk1(i) : (4.96)

Expanding the quadratic velocity terms in the above equation

2
�
�

�
vk2(i) � vk1(i)

�T �
vk2(i) � vk1(i)

�T � 24 vk1(i)

vk2(i)

35 : : :
= 2

�
�vk2(i) � vk1(i) + vk1(i) � vk1(i) + vk2(i) � vk2(i) � vk1(i) � vk2(i)

�
= 2

�
vk2(i) � vk1(i)

�2
= 2vg

i
2 :

leads to

•�gi = 2
�
�rg

i � ak1(i) + rg
i � ak2(i) + vg

i
2 :

�
= 0 : (4.97)

By analogy to the derivations made for the velocities, this relationship is divided by
2 jrg;iC j to yield the relationship

•�gi =
rg
i

jrg
i j

� ak2(i) �
rg
i

jrg
i j

� ak1(i) +
vg
i
2

jrg
i j

= 0

= ug
i � ak2(i) � ug

i � ak1(i) +
vg
i
2

jrg
i j

= 0 ;
(4.98)

in order to not violate the constraint. Physically, this can be interpreted such, that the
difference of the acceleration components in the direction of the constraint ug

i need to
equal the squared difference of the velocities of the two nodes of the constraint divided
by the length of the constraint. Again, a term

�ag;i = ug
i � ak2(i) � ug

i � ak1(i) +
vg
i
2

jrg
i j

(4.99)

is introduced in order to express the violation of this condition. In analogy to the pre-
viously explained corrections of the positions and velocities, this error is corrected by
projection along the direction of the constraint according to

apr;i = ug
i�ag;i : (4.100)
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Accordingly, the projection is again carried out considering the node masses according to
the algorithm outlined in table 4.1 with

apr1;i =
m2;iC

m1;iC +m2;iC
apr;i (4.101)

as well as

apr2;iC = � m1;iC
m1;iC +m2;iC

apr;i : (4.102)

4.6.4 Stabilisation of the Constraint Equations

For the additional stabilisation of the implicit constraint equations, magnitude-based PID-
elements are introduced. Thus, implicit constraint i is stabilised based on the following
scheme for the integration step k:

ePi;k � �lgi (4.103)
eIi;k = eIi;k�1 + ePi;kh (4.104)
eDi;k � �vgi (4.105)

fCStab
i;k = ug

i

�
kPePi;k + kIeIi;k + kDeDi;k

�
: (4.106)

Taken together, the constraint stabilising forces in RRF-solvers form the system vector
of constraint stabilising forces

fCStab =
�
: : :

�
fCStab
i

�T
: : :

�T
: (4.107)

In addition to that, the reaction forces from the end of the previous time step k � 1 will
be included as additional constraint stabilising forces during the predictor step with a
weight factor �reac as will be described in the upcoming section regarding the solver’s
implementation.

4.6.5 Solver Implementation

As already pointed out at the beginning of this section, the solver is implemented as a semi-
implicit predictor-corrector algorithm based on an extension of the Verlet-integration
scheme by application of the trapezoidal rule. Here, an overview of the different steps of
the solver implementation is given in figure 4.6, while the different steps will be explained
in detail in the course of the upcoming derivations.
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I Predictor step
Approximate state at end of time step

Approximate initial velocity vk

rk

1
2a

∗
kh

2

v̄k−1h rp∗
k+1

project

rp
k+1

vk ≈
(
rp
k+1 − rk

)
/h

II Averaged acceleration
Compute acceleration at end of time step
Average & project resulting acceleration

rk
rp
k+1

a∗
ka
∗
k ap∗

k+1

ā∗
k = 1

2

(
a∗
k + ap∗

k+1

)

project
ā∗
k ⇒ āk

III Integration (Trapezoidal rule)
Integrate time step based on

averaged acceleration

rk

1
2 ākh

2 + vkh

project
⇒ rk+1

v̄∗
k = (rk+1 − rk) /h

IV Velocity projection
Project velocity to constraint manifold
tangent space at end of time step

rk v̄∗
k

project
v̄∗
k ⇒ v̄k

Constraint manifold
tangent at rk+1

rk+1

Figure 4.6 Substeps of one integration step of the RRF-solver

In this context, first recall from equation (4.4) that the positions are updated according
to

sk+1 =
1
2
�•skh2 + _skh+ sk ; (4.4)

with a generic set of position variables s, the time step size h and the index of the current
time step k, where the bar notation �xk generally refers to averaged quantities during time
step k. As a basis for the upcoming derivations, this relationship is first specified in terms
of the specific state variables, that are used in the RRF solver according to

rk+1 =
1
2
�akh

2 + vkh+ rk =
1
4
(ak + ak+1)h2 + vkh+ rk : (4.108)
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I Predictor Step

Now, as will be seen from the upcoming derivations, that besides the already known posi-
tion at the beginning of the current time step rk, this mainly requires the determination
of two sets of quantities, i.e. the accelerations at the end of the time step ak+1 as well as
the current velocity vk at the beginning of the time step. While the necessity to determine
the first of the two mentioned quantities might seem obvious, the necessity to determine
the initial velocity is based on the fact, that per se only the averaged velocities from the
previous time step are known. This circumstance is a consequence of the projection based
nature of the solver. Thus, despite the projection algorithm derived in the previous sec-
tion, the accelerations are only assumed to be known as an approximation not necessarily
precisely satisfying the constraint conditions. Accordingly, they will not be used as a
basis for integrating the velocities according to equation (4.5). Instead, the velocities will
simply be updated by dividing the difference of the positions from the beginning of each
time step divided by the time step size and a subsequent projection according to

�vk = project
�
rk+1 � rk

h

�
(4.109)

and thus are only known as averaged quantities over a time step that has already been
integrated. Accordingly, only �vk�1 is known in advance and vk remains yet to be deter-
mined. Consequently, the current velocity vk can be approximated by

vk �
1
2
akh+ �vk�1 : (4.110)

Here, for performance reasons, the corresponding accelerations are determined only based
on the external loads as well as the constraint stabilising terms as discussed in the previous
section, i.e. the constraint stabilising PID-elements as well as the weighted inclusion of
the reaction forces from the end of the previous time step f r

k. A projection as derived
in the preceding section, however, is not carried out, as this step only serves the rough
approximation of the state at the end of the time step and a projection of the positions
at the end of the predictor step is assumed to be sufficient as a basis to achieve this goal.
Thus, ak is determined according to

ak � M�1
�
f e
k (�vk�1; rk) + �reacf

r
k + fCStab

k (�vk�1; rk)
�
; (4.111)
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where the reaction forces from the end of the previous time step k � 1 are determined
according to

f r
k �

3
2

�
M

vk � vk�1

h
� �f e

k�1

�
� 1

2
f r
k�1 : (4.112)

Accordingly, this relationship is used to perform a predictor step according to

rP
k+1 = project

�1
2
akh

2 + �vk�1h+ rk

�
; (4.113)

with the predicted positions at the end of the time step rP
k+1, which now allows for the

approximation of the velocities at the beginning of the time step according to

vk �
�
rP
k+1 � rk

�
=h (4.114)

At the same time, this provides a prediction of the state variables at the end of the time
step. Here, it can be argued, that strictly analysed, the predicted positions at the end of
the time step are not depicted fully accurately, because they are not based on the precise
velocities and velocity-dependent forces at the beginning at the time step, but are rather
determined based on the averaged velocities from the previous time step. However, it
is assumed, that this a sufficiently precise approximation for the implementation of the
trapezoidal rule. Also, it must be noted in advance, that the correctness of this assumption
will later be reinforced by a rather precise depiction of the dynamic behaviour in the course
of the validation benchmarks carried ot in chapters 7 and 8. Moreover, it can now be
derived, that the predicted velocities at the end of he time step can now be determined
with sufficient accuracy according to

vP
k+1 �

3
2
vk �

1
2
�vk�1 ; (4.115)

which will serve as a basis for the determination of the velocity depended force components
at the end of the time step.

II Averaged Accelerations

Based on the terms derived in the predictor step, the averaged accelerations can now be
determined according to

�ak = project
�
M�1

h
�f e
k + �fCStab

k

i�
(4.116)
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with

�f e
k � 1

2
�
f e
k (�vk�1; rk) + f e

k

�
vP
k+1; r

P
k+1

��
(4.117)

and

�fCStab
k � 1

2
�
fCStab
k (�vk�1; rk) + fCStab

k

�
vP
k+1; r

P
k+1

��
(4.118)

Note that here, again the velocity dependent components of the external forces are based
on the averaged velocities from the previous time steps for performance reasons. However,
as already pointed out in the previous section, it will later be shown in the course of the
validation benchmarks in chapters 7 and 8, that this simplification does not lead to errors
in the depiction of the system’s dynamic behaviour.

III Integration and IV Velocity Projection

Finally, all terms required to integrate the equations of motion according to equations
(4.108) and (4.109) are now known, so that rk+1 as well as �vk can be determined as a
basis for the next integration step.

4.6.6 Solver Parameters and Critical Constraint Violation

As to be seen from the preceding derivations, besides the integration time step size h, the
behaviour of the RRF solver is determined by 10 different parameters, which are listed
here for convenience in the following table 4.2.

Table 4.2 Summary of RRF solver parameters
Parameter Description
npr
p , npr

v , npr
a Projection of positions, velocities & accelerations

– number of iterations
�pr
p , �pr

v , �pr
a Projection of positions, velocities & accelerations

– weight factor
�P, �I, �D PID stabilisation

– weight factor for the P, I and D part
�reac Predictor step stabilisation

– weight factor for the reaction forces
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Finally, the violations of all constraints �gi

"gi =
�lgi
lgi

(4.119)

are required to be below a defined critical threshold "gcrit. If this condition is violated, the
simulation in OCN-SIM Flex is automatically aborted and the user is informed with a
corresponding error message.

4.7 Rigid Body Implementation and Coupling

As already pointed out in chapter 1, the main focus of the research conducted in the con-
text of this thesis is the derivation, implementation as well as verification and validation
of the solvers for highly flexible maritime continua. Accordingly, the coupling of the rigid
bodies to the flexible continua is not done by means of geometric constraints, but rather
by means of force-based elements in terms of the terminology introduced in section 2.2.2.
In fact, it can be argued, that this force-based coupling introduces high eigenfrequencies
to system, which contradicts the primary intent of the research conducted in the context
of the thesis. However, there are two factors that put this seemingly disadvantageous
circumstance into perspective:

Kinematic loops First of all, in maritime engineering, rigid bodies are often not just
coupled to flexible systems by just one connection. This is e.g. the case for multiple
point moorings, otter boards and many other maritime devices. Accordingly, this
leads to kinematic loops, the secondary constraints of which are handled by forced
based elements in the implementation of Lagrangian dynamics already.

Projection-based solution of 3-dimensional rigid body constraints If the rigid body cou-
plings were to be realised as geometric connections as well, projection-based so-
lutions for the resulting rigid body constraints would have had to be developed.
Although this might be a potential subject of future research based on the findings
of the current research, it would have been too complex to also derive and verify
these algorithms in the context of this thesis.

Accordingly, here, he ith rigid body coupling between two markers2 k1(i) and k2(i) is
depicted by element-wise PID-force elements in the same way as secondary constraints are

2Here, the term marker either refers to arbitrarily defined markers attached to the rigid body, flexible
body nodes or fixed support nodes in the global inertia system
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depicted in Lagrangian dynamics using relative joint angles (compare equations 4.27
through 4.30). Accordingly, for time step k, the coupling forces are defined as

eP
i;k =

h
ePx;i ePy;i ePz;i

iT
k
= rk1(2) � rk2(i) (4.120)

eI
i;k =

h
eIx;i eIy;i eIz;i

iT
k
= eI

i;k�1 + eP
i;kh (4.121)

eD
i;k =

h
eDx;i eDy;i eDz;i

iT
k
= vk2(i) � vk1(i) (4.122)

fCRB
i;k = eP

i;kk
P + eI

i;kk
I + eD

i;kk
D : (4.123)

Taken together, here the forces arising from the from the connection of rigid bodies
form the system vector of rigid body coupling forces

fCRB =
�
: : :

�
fCRB
i

�T
: : :

�T
; (4.124)

Independent from the type of solver being used, they are accounted for in the vector of
external forces f e as described in .section 4.1. Finally, the equations of motion of the rigid
bodies are thus only coupled to the equations of motion of the flexible continua, so that
they can be integrated separately based on the Newton-Euler-equations presented in
equation (3.81), where the reaction forces due to constraints f̂ r

i become zero. Here, for
the integration, the same semi-implicit integration scheme as given by equations (4.4)
and (4.5) is used for integration, where the rigid body rotations are described by Euler-
parameters as presented in section 3.3.5. Note that here, the Euler-parameters are
normalised at the end of each integration step so as to avoid numerical drift.

4.8 Internal Forces

g1

g2

g3

g4r1

r2
r3 r4

=
g5 . . . g7

s1

s2

Figure 4.7 Exemplary system with a secondary constraint between r3 and r4

Based on the solution of the equations of motion derived in the preceding section 4.3,
4.5 and 4.6, the internal reaction forces in the bar elements shall be derived in this section.
For this purpose, it is assumed that the positions r, velocities v as well accelerations a

74



4.8 Internal Forces
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

are present as known results for every time step. As already indicated in section 4.2, the
internal forces are calculated based upon the implicit constraint equations. Note that this
can also be achieved based on the explicit constraint equations as described in appendix
A.4. However, in contrast to the method based on the explicit constraint equations, this
will allow for the calculation of reaction forces in the presence of secondary constraints
without limitations. Also, there is no error propagation due the summing up of forces
along a kinematic tree. In order to derive the general algorithm, the four node exemplary
structure shown in figure 4.7 is analysed first.

Using equation 4.7, the implicit constraint equations of this system can be specified as

g (r) =

266666666666666666664

g1

g2

g3

g4

g5

g6

g7

377777777777777777775

=

266666666666666666664

(r1x � s1x)2 + (r1y � s1y)2 + (r1z � s1z)2 � l21

(r2x � r1x)2 + (r2y � r1y)2 + (r2z � r1z)2 � l22

(r3x � r2x)2 + (r3y � r2y)2 + (r3z � r2z)2 � l23

(r4x � s2x)2 + (r4y � s2y)2 + (r4z � s2z)2 � l24

r4x � r3x

r4y � r3y

r4z � r3z

377777777777777777775

= 07 ; (4.125)

which can be written in a more compact form as

g (r) =

26666666666664

(r1 � s1)2 � l21

(r2 � r1)2 � l22

(r3 � r2)2 � l23

(r4 � s2)2 � l24

r4 � r3

37777777777775
= 07 : (4.126)

Partial differentiation with respect to ri leads to the Jacobian-matrices Gi of the implicit
constraints. Thus, for instance, G2 can be retrieved as

G2 =
@g

@r2
= 2

26666666666664

0 0 0

(r2x � r1x) (r2y � r1y) (r2z � r1z)

� (r3x � r2x) (r3y � r2y) (r3z � r2z)

0 0 0

03 03 03

37777777777775
= 2

26666666666664

0

(r2 � r1)T

� (r3 � r2)T

0

03

37777777777775
: (4.127)
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Gathering the Jacobian matrices of all constraints, the system’s Jacobian can finally
be specified as

G =
�
G1 : : : G4

�
= 2

26666666666664

(r1 � s1)T 0 0 0

� (r2 � r1)T (r2 � r1)T 0 0

0 � (r3 � r2)T (r3 � r2)T 0

0 0 0 (r4 � s2)T

0 0 �1
2I3

1
2I3

37777777777775
:

(4.128)

According to the Lagrange-d’Alembert principle, the reaction forces acting on mass
point i may only act in the direction of the implicit constraints, which are defined by the
row vectors of G. Accordingly, the reaction forces can be expressed as a linear combination
of G and a set of nC so far unknown Lagrange-multipliers � as

f r =

2666666664

f r
1

f r
2

f r
3

f r
4

3777777775
= 2

2666666664

(r1 � s1) � (r2 � r1) 0 0 0

0 (r2 � r1) � (r3 � r2) 0 0

0 0 (r3 � r2) 0 �1
2I3

0 0 0 (r4 � s2) 1
2I3

3777777775

26666666666666664

�1
...

�4

�5

�6

�7

37777777777777775
:

(4.129)

Given the total reaction forces f r
i according to

f r
i = Miai � f e

i ; (4.130)

this linear system of equations can now be solved for �1 : : : �5. Once the Lagrange-
multipliers are known, the forces associated with the single constraints can be determined.
As to be seen from the example given above, each constraint equation generates internal
reaction forces acting on two nodes. This is in accordance with Newton’s third law as
already discussed in the previous section. Thus, for instance, constraint g2 restricts the
motion of nodes r1 and r2. As to be seen from equation (4.129), this causes the same
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internal reaction

fb
2 = 2 (r2 � r1)�2 (4.131)

force acting on both nodes with an inverted sign. Accordingly, the reaction forces acting
on all nodes from equation (4.129) can now be interpreted as the sum of all reaction forces
associated with the constraints, in which the corresponding nodes are involved:
26666664
f r
1

f r
2

f r
3

f r
4

37777775 = 2

26666664
(r1 � s1)�1 � (r2 � r1)�2

(r2 � r1)�2 � (r3 � r2)�3

(r3 � r2)�3

(r4 � s2)�4

37777775+
26664

0

�I3

I3

37775
26664
�5

�6

�7

37775 =

26666664
fb
1 � fb

2

fb
2 � fb

3

fb
3

fb
4

37777775+
26664

0

�I3

I3

37775
26664
�5

�6

�7

37775 : (4.132)

In order to conclude a general relationship from these derivations, consider a general
constant distant constraint gi between two nodes k1 (i) and k2 (i)

gi =
�
rk2(i) � rk1(i)

�2
� l2i : (4.133)

Once the Lagrange-multipliers are known in accordance to the procedure illustrated by
the above example, the internal reaction force associated with gi can be determined as

fb
i = 2

�
rk2(i) � rk1(i)

�
�i : (4.134)

Finally, note that in doing so, the thus retrieved tensions are averaged values for the
corresponding bar element and thus most precise at the element’s midpoint. Accordingly
it is advised to decrease the element length in regions of steep tension gradients so as to
be able to capture the highest occurring tensions as precisely as possible.
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CHAPTER 5

Hydrodynamic Loads

5.1 Hydrodynamic Loads on Cylindrical Elements

5.1.1 One-dimensional Case

According to [MJS+50], the hydrodynamic forces on an infinitely extended, slender cylin-
drical structure in normal direction to the cylinders longitudinal axis can be described by

fhyd = �V _u| {z }
f f

+ �CAV ( _u� •r)| {z }
fa

+ 1
2
�CDA (u� _r) ju� _rj| {z }

fd

(5.1)

with r being the position of the cylinder, u the flow velocity, V the volume of the cylinder,
� the density of the fluid, CA and CD the added mass and drag coefficients. Moreover,
the resulting force components can be distinguished as the Froude-Krylov force f f ,
the added mass force f a as well as the drag force fd.

5.1.2 Three-dimensional Case

Only translational velocities of the cylinder elements are considered, because the angular
velocities are negligibly small with decreasing element sizes. Accordingly, in the cylinder’s
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local coordinate system Ki, one gets

ifhyd

26664
ifhyd

x

ifhyd
y

ifhyd
z

37775 =

26664
�V i _u
�V i _v
0

37775+

26664
�CAV (i _u� i•x)
�CAV (i _v � i•y)

0

37775+ 1
2
�CD (�)Aiurel

���iurel

��� : (5.2)

Note, that since the cylinder is axially symmetric with respect to its z-axis, both the hy-
drodynamic mass terms as well as the Froude-Krylov force have the same coefficients in
the cylinder’s x- and y-direction. Accordingly, the coefficients of these forces are invariant
for arbitrary rotations about the cylinder’s local z-axis and constant for any direction in a
plane normal to the cylinder’s longitudinal axis. Also, both Froude-Krylov- and added
mass forces -in longitudinal direction are zero for ropes, wires and other 1-dimensional
flexible continua with comparatively high length. Accordingly, the coefficients are set
to be zero in z-direction. Conclusively, these forces only act in the cylinder’s normal
plane. Moreover, note that the drag force always acts in the direction of the relative flow
velocity and the direction dependence of the force is reflected in a direction dependent
drag coefficient CD (�). Here, both the drag as well as the added mass coefficients depend
on a variety of factors. Thus, the drag coefficient usually depends on the Reynolds
number, where the added mass coefficient is typically frequency-dependant (compare e.g.
[CLÖ14]). However, for the sake of simplicity, in the context of this thesis the following
simplified approach is used for the calculation of the drag coefficient

CD (�) = 1:2 � sin (�) ; (5.3)
CA (�) = 1:0 (5.4)

where the longitudinal direction of the cylinder is defined as � = 0�.

5.2 Equations of motion with hydrodynamic loads due to
cylindrical elements

In the following derivations, the hydrodynamic loads caused by cylindrical elements as
part of a flexible continua, such as a ropes or steel wires, are considered. Here, as already
described in the preceding chapters, the flexible continuum is discretised as a system
of point masses interconnected by massless cylindrical elements and rotary, frictionless
joints. Accordingly, the motion of each cylindrical element and thus the associated hy-
drodynamic loads are fully characterised by the motion of both adjacent point masses.
Furthermore, if the element size is chosen sufficiently small and if high frequent local
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vibrations due to e.g. vortexes are neglected, the rotational motions of each cylindrical
element become negligibly small compared to its translational motion. Accordingly, it
would seem obvious to approximate the translational velocities _rj and accelerations •rj
of each cylindrical element j by the average translational velocities and accelerations of
both its nodes according to

_rj =
1
2
�
_rk1(j) + _rk2(j)

�
(5.5)

•rj =
1
2
�
•rk1(j) + •rk2(j)

�
(5.6)

with _rk1(i) and _rk2(i) as well as •rk1(i) and •rk2(i) being the velocities and accelerations of
both nodes associated with cylinder element i.

However, in this case each element would not experience any rotational damping at all.
Accordingly, it is more convenient to split each cylindrical element into two sections each
of which move with the velocity and acceleration of the according node as illustrated in
figure 5.1.

K0

i

ṙk1(j)/r̈k1(j)
ṙk2(j)/r̈k2(j)

rk1(j)

rk2(j)

Figure 5.1 Assumed velocity and acceleration distribution on a cylindrical element

Accordingly, the equations of motion of an arbitrary node i can be specified as

mi•ri = f e
i + f r

i +
nCyl;iX
j=1

fhyd
ij (5.7)

with the vector of external forces f e
i , the vector of reaction forces caused by the constraints

f r
i as well as the sum of the hydrodynamic forces PnCyl;i

j=1 fhyd
ij caused by all cylinder

elements adjacent to node i.
For the sake of simplicity and without loss of generality, only a single cylindrical element

consisting of two nodes is considered in the upcoming derivations. Moreover, the above
equation of motion needs to be evaluated in an arbitrary, yet consistent coordinate system.
Since each node may belong to multiple cylinder elements, it is convenient to use the global
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reference coordinate system K0 for the evaluation of equation (5.7). Thus, inserting the
hydrodynamic forces specified in the cylinder’s local coordinate system Kj from equation
(5.2) and distributing them to both nodes using the assumptions regarding the velocity
and acceleration distribution discussed above, the following relationship is retrieved:

26664
mi 0 0
0 mi 0
0 0 mi

37775
26664
0•xi

0•yi
0•zi

37775 = 0f e
i + 0f r

i ++0jT

0BBB@ 1
2

26664
�CAV (j _ui � j•xi)
�CAV (j _vi � j •yi)

0

37775
| {z }

jf a
ij

+

+ 1
2

26664
�V (j _ui)
�V (j _vi)

0

37775
| {z }

jf f
ij

+ 1
4
�CD;j (�)Aj

jurel;i

���jurel;i

���
| {z }

jfd
ij

1CCCA :

(5.8)

Finally, with the aim of separating the accelerations of the point masses, the added mass
terms depending on j•xi and j •yi are moved to the left-hand side of the equation

26664
mi 0 0
0 mi 0
0 0 mi

37775
| {z }

Mi

26664
0•xi

0•yi
0•zi

37775
| {z }
0•ri

+0jT
1
2

26664
�CAV 0 0

0 �CAV 0
0 0 0

37775
| {z }

jM a
i

26664
j•xi

j •yi
j•zi

37775
| {z }
j •ri

=

= 0f e
i + 0f r

i + 0jT

0BBB@ 1
2

26664
�CAV

j _ui

�CAV
j _vi

0

37775
| {z }

j �f a
ij

+jf f
ij + jfd

ij

1CCCA
(5.9)

and the accelerations are transformed to K0 yielding

�
Mi + 0jT jM a

ij
0jT T

�
0•ri = 0f e

i + 0f r
i + 0jT

�
j �f a

ij + jf f
ij + jfd

ij

�
: (5.10)

5.2.1 Froude-Krylov-forces and �f a

As already described in the preceding section, these forces only act in the cylinder’s normal
plane. Also, both forces depend on the flow accelerations j _u and j _v in the cylinder’s normal
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plane and can thus be combined according to

0jT
�
j �f a

ij + 0jT jf f
ij

�
= 0 �f a

ij + 0f f
ij =

1
2
�V (1 + CA) 0jT

26664
j _u
j _v
0

37775 : (5.11)

Accordingly, instead of applying the above coordinate transformation, it is equivalent to
directly determine the normal components of the flow acceleration vector with respect to
the cylinders longitudinal axis within the global reference system K0 according to

0 �f a
ij + 0f f

ij =
1
2
�V (1 + CA) 0an;ij (5.12)

with 0an being the normal component of the fluid acceleration vector with respect to the
cylinder’s longitudinal axis determined according to appendix A.1.2.

5.2.2 Hydrodynamic Drag

As already mentioned in the preceding section, the drag force always acts in the direction
of the relative flow velocity urel according to

0jT jfd
ij = 0fd

ij =
1
4
�CD;j (�)Aj

0jT jurel;i

���jurel;i

���
= 1

4
�CD;j (�)Aj

0urel;i

���jurel;i

���
(5.13)

Since the magnitude of the relative flow velocity vector remains constant when being
transformed from one coordinate system to another, it can be stated that

���iurel;i

��� � ���0urel;i

��� ;
so that the drag force can be evaluated directly in K0 according to

0fd
ij =

1
2
�CD;j (�)Aj

0urel;i

���0urel;i

��� : (5.14)

5.2.3 Determination of the Added Mass Terms (RRF-Solver)

In order to be able to solve equation (5.10) for the accelerations of the point mass, the
added mass matrix jM a

ij needs to be transformed to K0 according to

0M a
ij = 0jT jM a

ij
0jT T : (5.15)
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Here, the full evaluation of 0jT is necessary for a proper transformation of added mass
matrix. However, when using the RRF-solver, only the translational position of the two
nodes defining the corresponding element are know. Accordingly, only the direction of the
local z is known per se, while the directions of the local x- and y-axes remain yet to be
determined. For that purpose, first of all, the fact is used, that the rows of the coordinate
transformation matrix 0jT contain the unit vectors of the three axis of Kj defined in K0

according to

0jT =
h
0ex;j

0ey;j
0ez;j

i
: (5.16)

Since the cylinder is axially symmetric with respect to its z-axis, the remaining columns
of the matrix are constructed based on cross products of the z-axis with axes of the
global reference system, that are chosen such that the crossproduct is numerically well-
conditioned. For this purpose, the axis with the biggest angle with respect to ez;j is
chosen as a reference axis for the first cross product defining 0ex;j. This is the case for
the axis that coincides with the smallest component of 0ez;j, so that one gets

0exj =

8>>>>>>>><>>>>>>>>:

0ez;j � 0ex0 if 0ezx;j < fezy;j; ezz;jg
0ez;j � 0ey0 if 0ezy;j < fezx;j; ezz;jg
0ez;j � 0ez0 if 0ezz;j < fezx;j; ezy;jg
0ez;j � 0ex0 if 0ezx;j = ezy;j = ezz;j :

(5.17)

Note that here, a double index notation with the first index being typeset in bold face is
used to refer to the components of the axis unit vectors. In this context the first index
refers to the actual axis that the unit vector represents, whereas the second index refers
to the corresponding component of the vector. Thus, e.g. ezx;j refers to the x-component
of the z-axis unit vector of coordinate system j. Finally, the last unit vector defining Kj

is then retrieved as the crossproduct of ez;j and ex;j according to

0ey;j = 0ez;j � 0ex;j (5.18)

so as to yield a proper right hand rule coordinate system.

5.3 Hydrodynamic Loads on Rigid Bodies

For the sake of simplicity, in the context of this thesis only spherical rigid bodies are con-
sidered. Accordingly, the hydrodynamic forces can be defined in a direction-independent
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way according to
26664
fhyd;x

fhyd;y

fhyd;z

37775 = �V

26664
_u
_v
_w

37775+ �CAV

26664
_u� •rx
_v � •ry
_w � •rz

37775+ 1
2
�CDA

26664
(u� _rx) ju� _rxj
(v � _ry) jv � _ryj
(w � _rz) jw � _rzj

37775 (5.19)

with CA = 1:0 and CD = 0:5.

5.4 Simplified Damping
Finally, in order to be able to achieve increased convergence rates in load cases without a
moving fluid and for the purpose of better comparability with respect to some standard
analytical reference solutions such as e.g. the n-pendulum discussed in section 6.3.2, a
simplified, velocity and mass proportional damping approach is introduced according to

fSD = �SDmiurel (5.20)

with the simplified damping coefficient �SD.
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CHAPTER 6

Comparative Analyses

In the context of this thesis, a number of different analyses and benchmark cases has
been conducted to be able to verify and validate the developed RRF-solver as well as to
give recommendations regarding its usage and configuration. In this chapter, an overview
of the benchmarks is given and selected reference solutions are derived, while the actual
results will be discussed in the next chapters 7 as well as 8. In this context, for the purpose
of clarity, first of all the conducted types of analyses in reference to section 1.2 will be
discussed and corresponding error criteria will be derived.

Here, since the recursive Lagrangian algorithms can primarily be interpreted as the
application of well-known algorithms of multibody system dynamics to the simulation
of highly flexible systems, the focus of these analyses is the verification and validation
of the RRF solver. Furthermore, as already indicated in chapter 1, the hydrodynamic
models applied are as simple as possible in order to be able to focus the investigations
on the accurate depiction of the dynamic behaviour of the flexible continua. The same
circumstance applies to the investigation of the interaction with rigid bodies, so that the
regarding examples are kept as simple as possible. The validity of this approach is based
on the assumption, that, if the solvers are able to depict the dynamic behaviour of the
flexible structures due to arbitrary external and inertia forces, they must automatically
be able to depict the regarding structures’ responses to arbitrarily complex hydrodynamic
forces and reaction forces arising from the interaction with rigid bodies.

The behaviour of the RRF-solver is determined by a total number of 10 different solver
parameters (compare section 4.6.5). Thus, in a first step, a set of optimised solver param-
eters is identified based on automated parameter variations. These parameter variations
serve two purposes: on the one hand, they enable the actual derivations of the desired
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optimal solver parameters, while, on the other hand, they serve as a verification and val-
idation of the RRF-solver. However, it must be noted, that due to the enormous number
of automated calculations (compare the upcoming section 6.2), an evaluation of the re-
sults can only be done by means of automated evaluation scripts and based on simple
evaluation criteria such as e.g. the displacement of selected nodes. Accordingly, based on
the such determined optimised solver parameters, a set of single run benchmarks as well
as one comprehensive parameter variation benchmark will then be conducted verifying
the choice of parameters as well as the resulting accuracy of the RRF-solver. Thus, in
the following sections, a systematic overview of these analyses is presented.

Moreover, as already indicated above, selected reference solutions will be derived. As
already outlined in section 2.2, in the majority of cases, an analytical solution to problems
involving highly flexible continua cannot be obtained. However, in section 6.3 a selected
set of (semi)-analytical reference solutions will be derived, involving, amongst others,
the well-known catenary equation. Moreover, beyond these reference solutions, further
reference solutions for the RRF-solver benchmarks need to be obtained numerically by
means of verified and validated algorithms. Since the recursive Lagrangian-solver is
based on well known and established algorithms of multibody system dynamics, the results
should be accurate within the boundaries of the physical assumptions. On the one hand,
this requires, that these physical assumptions are applicable, i.e. that a discretion into
mass points interconnected by massless, ideally stiff bars elements is a valid method to
describe highly flexible maritime continua. Although this seems to be a perfectly valid
assumption, here some minor examples shall further underpin this assumption. On the
other hand, the implementation of recursive Lagrangian dynamics for systems involving
an arbitrary number of kinematic branches and loops is a laborious and complex task
from a programming point of view which is thus error prone and needs to be verified for
correctness. Finally, the implementation of the loop closing constraints by means of PID-
elements is, in contrast to the classically used approach of Lagrange-multipliers, not
that well established and shall thus also briefly be evaluated here. Since the verification
of the recursive Lagrangian implementation founds the basis for the later verification
of the RRF-solvers, the corresponding results are discussed at the end of this chapter
instead of in the following result chapters.

6.1 Types of Analyses

In the context of this thesis, three types of analyses as listed in the following paragraphs
have been conducted. In addition to that, simple error criteria have been defined in order
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to be able to automatically evaluate the results obtained from the parameter variations
described in the upcoming section 6.2.

Stability These analyses are purely focused on stability. Accordingly, error criteria such
as static or transient displacements of nodes are not discussed in this context. Accordingly,
there is no relative error defined here. However, the maximum stable integration time
step sizes will be compared to those obtained using the recursive Lagrangian algorithm.

Static analyses As already indicated in section 1.2, the static equilibrium configurations
are obtained as a result from time integrations. Here, for the sake of simplicity, no hydro-
dynamic loads are considered, so that in all cases the simplified hydrodynamic damping
approach as described in section 5.4 is used as a damping approach to achieve improved
convergence rates. As a relative error criterion, the position r of a single, meaningfully
selected node is compared to the corresponding reference position rref . Accordingly, the
corresponding error criterion is defined as

�f =

���r � rref
���

jrref j
� 100% : (6.1)

The only exception to this, however, is the catenary line, where the complete displacement
of all nodes is compared to the reference as will be described in section 6.3.1.

Dynamic analyses These analyses mainly include the determination of response ampli-
tudes by means of time domain simulations as a major criterion for the accurate reproduc-
tion of the systems dynamic behaviour. For this purpose, a time domain simulation of the
concerning system under harmonic excitation is carried out. Here, after a transient phase,
it is assumed that the system responds with displacements, that are harmonic functions of
time as well. Accordingly, the corresponding response amplitude r̂ of a selected displace-
ment quantity is chosen as an error criterion. For this purpose, the resulting amplitude is
determined by performing a fast Fourier transformation (compare e.g. [Won11]) of the
associated time series while ignoring the initial transient phase of the system’s response.
Accordingly, here, the error criterion is defined as

�f =

���r̂ � r̂ref
���

jr̂ref j
� 100% (6.2)

with the corresponding reference response amplitude r̂ref . In addition to that, the conver-
gence time Tconv until reaching static equilibrium of initially elongated systems is analysed,
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where the error criterion is defined as

�f =

���Tconv � T ref
conv

���
jT ref

convj
� 100% (6.3)

with T ref
conv being the reference convergence time. For this purpose, the convergence time is

determined based on a commonly defined holding time criterion. Here, since the geometric
dimensions of all systems is in the magnitude of more than one meter, the criterion is
defined such, that equilibrium is considered to be reached, if the velocities of all nodes in
the system remain below 0:1 mm/s for at least 1 second.

6.2 Identification of Optimal Solver Parameters

Positions
nIter

wtFac

Accelerations
nIter

wtFac

Velocities
nIter

wtFac

Reaction forces
wtFac

PID-Stabilisation
P-wtFac
I-wtFac
D-wtFac

Timestep
dt [s]

* Parameter depending
on loadcase

1, 3, 6
0.5

0 … 0.75

0, 3
0.5

0, 3
0.5

0 … 10
0 … 10
0 … 10

Varying*

Stability
Double pendulum

Heavy chain
Rope pendulum
Swing pendulum

Maximum stable
time step size

Statics
Double pendulum (LTS)

Heavy chain (LTS)
Catenary (LTS)

Static
Displacements of
selected nodes

Dynamics
Rotating chain CE (LTS)

Double pendulum CT (LTS)
Double pendulum RA (LTS)

Heavy chain RA (LTS)
Rope pendulum RA (LTS)

Transient
displacements of
selected nodes

Code Description
nIter Number of iterations (projection)
wtFac Weight factor (projection and stabilisation)
LTS Additional analyses with large time step sizes
CE Conservation of energy
RA Response amplitudes
CT Convergence times

Figure 6.1 Overview of varied parameters and test load cases
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As already outlined in section 4.6.6, besides the time step size, the RRF-solver is
configured based on 10 different solver parameters controlling the projection as well as
stabilisation of the constraints on the position and kinematic level. Accordingly, in a set of
preliminary considerations, these parameters are varied in a set of distinct combinations so
as to be able to derive recommendations regarding their values. These recommendations
will then serve as a basis for all subsequent benchmarks carried out in the context of
this thesis. An overview of the varied solver parameters including their corresponding
investigated value ranges as well as the analyses carried out to determine their optimal
values is given in figure 6.1. The configurations of the single load cases, as well as their
relevant parameters and reference solutions including their corresponding sources will be
listed in chapter 7 prior to the associated results.

6.2.1 Parameter Variations – Selection of Parameter Sets

As already mentioned above, the RRF-solver is configured by 10 different parameters.
Accordingly, investigating every possible combination of these parameters based on nvar

different values each results in n10
var different combinations per benchmark load case. Thus,

only combining 3 different values for each parameter would result in 59049 combinations.
Hence, instead of varying over the full set of parameters, the parameters are partially
grouped together into parameters the effect of which is expected to be similar. For this
purpose, the parameters are summarised into two groups:

Projection of the position and kinematic variables The first group of parameters controls
the actual projection of the constraints on the position level as well as on the kine-
matic level including the velocities and accelerations. This includes the projection
of the positions determined by (np; �p) as well as the projection of the velocities
and accelerations determined by (nv; �v) and (na; �a) respectively. Since increasing
both the corresponding numbers of iterations as well as weight factors is expected
to increase the accuracy of the projection on the corresponding (position and kine-
matic) level in a certain extent, they will be grouped as described in the following
subsection.

Stabilisation of the positions and kinematic variables The second group of parameters
controls the actual projection of the constraints on the position level as well as
on the kinematic level including the velocities and accelerations. This includes the
PID-stabilisation of the constraints controlled by (�p; �i; �d) as well as the stabil-
isation by the partial inclusion of the reaction forces from the previous time step
determined by �reac. However, unlike the projection parameters, in this context a
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grouping does not seem appropriate, since the underlying mechanisms of these 4
parameters are each too different to expect them to have a similar effect.

The resulting groups are then varied in terms of set levels as described in the following
subsections resulting in a manageable number of 3000 combinations per analysis.

6.2.2 Determination of Optimal Projection Parameters

The parameters controlling the geometric and kinematic projection are each combined to
a number of distinct levels representing the amount of projection done. Here, it is assumed
that the projection of the position variables has the biggest influence on the accuracy of
the results, so that it is varied over three different levels as summarised in table 6.1.

Table 6.1 Levels of position projection
POS-Levels

Parameter Description WEAK NORM HIGH
npr
p Number of iterations 1 3 6

�pr
p Weight factor 0.5 0.5 0.5

Moreover, the projection of the kinematic quantities is varied in terms of two different
levels as listed below in table 6.2, to be able to derive their influence in a qualitative way.

Table 6.2 Levels of kinematic projection
KIN-Levels

Parameter Description NONE NORM
npr
v � npr

a Number of iterations 0 3
�pr
v � �pr

a Weight factor 0 0.5

Here, in both cases the ”norm” setting is chosen such, that, in theory, the resulting
projection vectors are large enough, to compensate the error. Due to the iterative nature
of the projection and the same quantities appearing in multiple concurring constraints,
here in theory the 3 � 0:5 = 1:5-fold distance is projected so as to achieve this goal.

6.2.3 Determination of Optimal Stabilisation Parameters

The aim of the PID-stabilisation is to limit the relative error "gi occurring in constraint �gi
to be below a defined maximum allowable threshold "gcrit as defined in section 4.6.6. For
this purpose, PID-elements are introduced, the proportional (spring) part fp

i of which
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Table 6.3 Levels of PID-stabilisation
PID-Levels

1 2 3 4 5
Parameter Description OFF WEAK MED NORM HIGH

�P Weight factor (proportional part) 0.0 0.1 0.5 1.0 10.0
�I Weight factor (integral part) 0.0 0.1 0.5 1.0 10.0
�D Weight factor (differential part) 0.0 0.1 0.5 1.0 10.0

Table 6.4 Levels of reaction forces stabilisation
Reaction Forces-Levels

Parameter Description OFF MED NORM HIGH
�reac Weight factor 0.0 0.25 0.5 0.75

was originally introduced in equation (4.106) and can alternatively be specified as

fp
i = kp

i �lgi : (6.4)

Also, recall from equation (4.119), that the violation of constraint �gi is defined as

"gi =
�lgi
lgi

:

Rearranging equation (4.119) for the change in length �l and inserting into equation (6.4)
yields

fp
i = kp

i l
g
i "

g
i : (6.5)

Accordingly, kp
i can be determined such, that the strains induced by the global maximum

tension f t
max occurring in the load case would equal the critical strain threshold "gcrit:

kp
i = �p

f t
max

lgi "
g
crit

(6.6)

For the damping and integral parts, various approaches had been investigated by running
iterative parameter studies and comparing the maximum stable time step sizes. As a
result of these investigations, the parameters have been defined as follows. The damping
constant is determined based on an approach similar to Ziegler-Nichols according to

kd
i = �d

1
�
kp
i T

p
i = �d

1
�
kp
i

2�
!p
i

= �d
1
�
kp
i

2�q
kp
i =mi

= �d2
q
kp
i mi : (6.7)
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Finally, the integral part is simply chosen to be proportional to kp
i according to

ki
i = �ik

p
i : (6.8)

The levels of PID-stabilisation investigated in the context of this thesis are listed in
table 6.3. Finally, the weight factor for the inclusion of the reaction forces from the
previous time step in order to stabilise the predictor step is chosen as listed in table 6.4.

6.2.4 Determination of Maximum Stable Time Step Sizes

Ti
m
e
st
ep

si
ze

/m
s

Iteration number

Bisectional search algorithm

10

1

2

4

8

6

5

516
32

5 8
32

512
32 510

32

5 9
32

L

H

N

Divide by 10
until stable

Multiply by 2
until unstable

Theoretically existing maximum stable
time step size (example): hmax = 5.3ms

Boundaries L hlo H hhi N hnew

Repeat hnew = 1
2 (hlo + hhi)

hnew is
{
stable ⇒ hlo = hnew

unstable ⇒ hhi = hnew

Figure 6.2 Bisectional search algorithm for the determination of maximum stable time
step sizes. The values in the boxes indicate the time step size being investi-
gated, where green and red boxes represent stable and unstable simulations
respectively.

For the determination of the maximum stable integration time step sizes, an adapted
version of the bisectional search algorithm widely employed in software engineering is
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implemented as illustrated in figure 6.2. For this purpose, load cases are setup with the
simplified damping approach as outlined in section 5.4, that are supposed to converge
towards a static equilibrium configuration after a given time. Here, a simulation run
counts for being stable, if this criterion is met after at most five times the reference
convergence time. If this is not the case or if numerically infinite state variables occur
during the simulation, the simulation counts for being unstable accordingly. Thus, first
of all, if not converging, an initially specified time step size is repeatedly decreased by
a factor of 10 until the calculation becomes stable. The time step is then doubled until
the calculation becomes unstable again and the actual bisectional search is started as
illustrated in figure 6.2. As to be seen, here the tolerance of the estimated maximum stable
time step size is repeatedly bisected between the last known stable and unstable time step
size, so that the tolerance improves by a squared order. Here, this process is repeated for
a minimum number of 7 iterations and until the last time step size investigated is stable.

6.3 Selected Reference Solutions

6.3.1 Catenary Line Applications
Statics

Q (x)
A

By

x

Figure 6.3 Rope attached to supports A and B under the influence of distributed load

As described in for instance [EV16], the catenary line is the static equilibrium curve of
a hanging rope-like structure which is supported at both ends and loaded only vertically
by self-weight. As a basis for the upcoming derivations, a rope as shown in figure 6.3 is
considered. The rope is assumed to be ideally flexible, inextensible and to have a constant
weight per length

pC = g dm
dL

= const: (6.9)
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Q (x)
F r
A,y

F r
A,x

F r
B,y

F r
B,x

A

By

x
wC

hC

HC

Figure 6.4 Rope under the influence of distributed load – free body diagram with reac-
tion forces

F t

F t
x

F t
y

F t + dF t

F t
x + dF t

x

F t
y + dF t

y

dF e

dx

d y

d l

Figure 6.5 Equilibrium of forces at infinitesimally small rope element

Moreover, the rope as assumed to only transfer loads in longitudinal direction due to it’s
ideal flexibility. The supports or mounting points are denoted by A and B and their
position vectors si are introduced as sA = [�xA �yA]T and sB = [�xB �yB]T respectively.

Without loss of generality, the supports are replaced by their corresponding reaction
forces F r acting on the cable in points A and B denoted as F r

A =
h
F r
A;x F r

A;y

iT
and

F r
B =

h
F r
B;x F r

B;y

iT
in order to obtain a free body diagram as shown in figure 6.4. In

doing so, more general catenary configurations can be analysed, since the thus applied
reaction forces can be arbitrary internal or external loads. In consequence, a broad variety
of boundary conditions can be depicted. Please also note that, in conclusion, points A

and B are always denoted as supports or mounting points, even is the catenary is only
mounted at one point and e.g. loaded by a force at the other, thus moveable, point.
Furthermore, the length of the catenary LC is assumed to be longer then the horizontal
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distance wC between the supports

wC = �xB � �xA ; (6.10)

so that

LC > wC : (6.11)

Also, the right support B is expected to have a higher elevation than support A

�yB > �yA (6.12)

and the difference in elevation is denoted by

hC = �yB � �yA : (6.13)

Finally, the reference coordinate system is placed in the lowest point of the catenary curve
in order to facilitate the mathematical derivations. This is even done, if the minimum of
the yet to be determined catenary equation is not positioned between �xA and �xB. This
can, for instance, be the case when considering the catenary-shaped mooring of a buoy
under horizontal loading in a resting fluid. Moreover, the vertical distance of this lowest
point and support A is introduced as the so-called sag of the catenary

SC = �yA : (6.14)

In order to derive the equation of the curve, the equilibrium of forces at an infinitesimally
small element of the rope as shown in figure 6.5 is considered

X
F ! x: � F t

x + F t
x + dF t

x = 0 (6.15)X
F " y: � F t

y + F t
y + dF t

y = dF e
y (6.16)

with the horizontal and vertical components of the internal tensile force F t =
h
F t
x F t

y

i
in

the cable as well as the external applied loads F e =
h
0 F e

y

i
.

It follows immediately from the first equation, that dF t
x = 0 because there are only

external loads in vertical direction. Accordingly, the horizontal component of the internal
tension in the catenary is constant and defined as

F t
x = const: = HC (6.17)

95



6 Comparative Analyses
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

for short. Accordingly, the horizontal components of the reaction forces in A and B can
be retrieved as

FA;x = �FB;x = �HC : (6.18)

Furthermore, from the second equation, it can be concluded that

dF t
y = dF e

y : (6.19)

This equation may not be integrated directly over x, since both sides are a function of
x. In conclusion, both terms need to be expressed in terms of dx first, which is done by
utilising the fact that the tensile forces only act in longitudinal direction of the catenary.
Accordingly, it can be stated that

F t
y

F t
x

= d y
dx

: (6.20)

Reordering for F t
y and substituting F t

x = const: = HC leads to

F t
y = HC

d y
dx

; (6.21)

which can be derived with respect to x to obtain

dF t
y

dx
= HC

d2 y

dx2 : (6.22)

Thus, finally dF t
y can be expressed in terms of dx as

F t
y = HC

d2 y

dx2 dx : (6.23)

Since according to the aforementioned assumptions, only the constant weight per length
is considered as an external load, dF e

y can be expressed in terms of the weight per length
as

dF e
y = pC dL = pC

q
(d x)2 + (d y)2 : (6.24)

Substituting both equations (6.23) and (6.24) into (6.19) leads to

HC
d2 y

dx2 dx = pC

q
(d x)2 + (d y)2 ; (6.25)
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which can be reordered to yield

d2 y

dx2 = pC
HC

vuut1 +
 
d y
dx

!2

: (6.26)

Integrating the above solution twice yields

y = HC

pC
cosh

�
pC
HC

x+ C1

�
+ C2 (6.27)

with the integration constants C1 and C2, with have yet to be determined by apllying
proper boundary conditions. For this purpose, as already pointed out in the beginning of
this section, the coordinate system used to describe the catenary is placed at the lowest
point of the catenary, even if the minimum of the catenary is not positioned between �xA

and �xB. Accordingly, at this point x = 0, the vertical position y as well as its derivative

d y
dx

= y0 = sinh
�
pC
HC

x+ C1

�
(6.28)

become zero. Inserting these relationships, the equation for the catenary and its derivative
can finally be retrieved as

y = HC

pC
cosh

�
pC
HC

x
�
� HC

pC
(6.29)

y0 = sinh
�
pC
HC

x
�
: (6.30)

Here, depending on the load case and given boundary conditions, different unknown
variables occur. Thus, e.g. the constant horizontal component of the internal tension
HC or the distance of the mounting points can be unknown. Also, the position of the
coordinate system with respect to the supports is typically not known in most cases.
Depending on the load case and associated boundary conditions, these unknowns have to
be determined in a different way. Typically, some additional relationships are required
in order to determine these unknowns. Accordingly, in the following the most relevant
relationships for the boundary conditions discussed in this thesis are derived.

Thus, it is often required to know the length of the catenary curve L12 between two
arbitrary points x1 and x2. This relationship can be found by integrating the length of
an infinitesimally small element

dL =
q
(d x)2 + (d y)2 ; (6.31)
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which leads to

L12 =
HC

pC

�
sinh

�
pC
HC

x2

�
� sinh

�
pC
HC

x1

��
: (6.32)

For a detailed derivation of this relationship refer to e.g. [EV16]. Accordingly, the total
length of the catenary is retrieved by evaluating the above equation for x1 = �xA and
x2 = �xB = �xA + wC according to

LC = HC

pC

�
sinh

�
pC
HC

�xB

�
� sinh

�
pC
HC

�xA

��
: (6.33)

Furthermore, it will often be useful to know a relationship between the distances of the
mounting points in horizontal and vertical direction hC and wC, the total length of the
catenary LC as well as the horizontal force HC. For this purpose, the vertical difference of
the two mounting points hC is determined as the difference of equation (6.29) evaluated
at �xA and �xB according to

hC = �yB � �yA = HC

pC

�
cosh

�
pC
HC

�xB

�
� cosh

�
pC
HC

�xA

��
: (6.34)

Subsequently, this equation is squared and subtracted from equation (6.34) so as to be
able to eliminate �xA and �xB. After applying some transformations, one can find that

LC
2 � hC

2 = 2
 
HC

pC

!2 �
cosh

�
pC
HC

(�xB � �xA)� 1
��

= 2
 
HC

pC

!2 �
cosh

�
pC
HC

wC � 1
��

;

(6.35)

which, using the identity cosh (2x) = 2 sinh2 x+ 1, can finally be transformed to

LC
2 � hC

2 = 4
 
HC

pC

!2

sinh2
�

pC
2HC

wC

�
: (6.36)

Depending on the case of application, this relationship will later be solved for different
parameters.

Moreover, the position of the supports with respect to the reference coordinate system
is typically not known. Here, it is often useful to first determine the horizontal position
of the left support �xA as function of the horizontal force HC. For this purpose, equation
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(6.10) is first reordered for �xB and then inserted into equation (6.34) to yield

hC = HC

pC

�
cosh

�
pC
HC

�xA + wC

�
� cosh

�
pC
HC

�xA

��
= HC

pC

�
cosh

�
pC
HC

�xA

�
a+ sinh

�
pC
HC

�xA

�
b� cosh

�
pC
HC

�xA

��
:

(6.37)

with

a = cosh
�
pC
HC

wC

�
(6.38)

b = sinh
�
pC
HC

wC

�
: (6.39)

Using the identity sinh (x) =
q
cosh2 (x) and introducing the substitution

� = cosh
�
pC
HC

�xA

�
; (6.40)

equation (6.37) can be transformed to

hC = HC

pC

h
a�+ b

p
�2 � 1� �

i
: (6.41)

This term can now be rearranged to a quadratic equation in � according to

0 = �2 +
2
�1� a

b

� 
pChC

bHC

!
�1� a

b

�2
� 1

�+

 
pChC

bHC

!2

+ 1�1� a

b

�2
� 1

; (6.42)

which can be solved for � to yield

�1=2 = �pChC

2HC
�

sinh
�
pCwC

HC

�vuut 
pChC

HC

!2

� 2 + 2 cosh
�
pCwC

HC

�
2� 2 cosh

�
pCwC

HC

� : (6.43)

Finally, substituting back into equation (6.40) and solving for �xA leads to 4 solutions

�xA;1:::4 = �HC

pC
arcosh

�
�1=2

�
: (6.44)

Here, two solutions can be excluded, because it can be shown, that the second term
in equation (6.43) must always be � 0. Accordingly, only subtracting it from the first
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term can potentially yield a positive result as a valid argument to the arcosh function in
equation (6.44), so that equation (6.43) can be restated as

� = �pChC

2HC
�

sinh
�
pCwC

HC

�vuut 
pChC

HC

!2

� 2 + 2 cosh
�
pCwC

HC

�
2� 2 cosh

�
pCwC

HC

� : (6.45)

Finally, out of the two possible solutions now remaining from

�xA;1=2 = �HC

pC
arcosh (�) ; (6.46)

the one satisfying equation (6.34) is chosen.

Solution for Given Boundary Conditions and Common Reference Parameters In the fol-
lowing, the solution of the catenary equation for given distances of the mounting points
hC and wC as well as a given length LC and constant specific weight of the cable pC shall
be discussed as the case of reference applied in this thesis. This case occurs, for instance,
when considering a symmetric four point mooring of an object floating at the surface of a
resting fluid. In this case, it can be shown, that the object will float in horizontal centre
the middle of the four mooring points, so that the horizontal distance of the mooring
points and the object is known. Also, the vertical distance is known, because the object
is floating at the surface with a given draught. Accordingly, in a first step, the horizontal
force in the mooring has to be determined. For that purpose, equation (6.36), which is
transcendental in HC, is usually solved numerically for HC. In the concrete implemen-
tation in the context of this thesis, this is done by Newton-Raphson-iteration using
Python’s scipy package. Once HC is known, the actual catenary equation (6.29) can be
solved. However, the positions of the mounting points �xA and �xB is yet to be determined.
Accordingly, �xA is gained by evaluating equations (6.43) through (6.46) while �xB is finally
obtained based on equation (6.10).

Here, the parameters used for common reference throughout all examples appearing in
the course of this thesis are pC = 50 N/m, wC = 80 m, hC = 10 m as well as LC = 100 m.

Definition of Error Quantities As the solution of the catenary equation described above
yields an equation for the vertical deflection y(x), it seems to be convenient to use the
deviation in y as a basis for the error analysis. However, in certain configurations, small
elongations of the catenary can lead to high deviations in the vertical deflection in areas,
where the function has steep slopes. This, for instance, applies to configurations with
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Difference in vertical deflections

Difference of positions of two points
with the same relative curve lengths

A By

x

Figure 6.6 High errors in the deflection in areas of steep slopes

a high sag in comparison to the horizontal distance of the mounts. In consequence, the
difference of position of two points with the same relative curve length is investigated
instead as illustrated in 6.6. While the position for different curve lengths in the discrete
solvers derived in this thesis can be directly inferred from the corresponding element
lengths, the respective positions on the catenary curve are determined based on equation
(6.32).

6.3.2 The N-Pendulum Applications
Stability Statics Dynamics

The non-linear equations of motion of the n-pendulum are derived in independent coor-
dinates with the absolute angles with respect to the global y-axis1 as minimal coordinates

q =
h
�1 �2 : : : �n

i
�

h
q1 q2 : : : qn

i
(6.47)

as illustrated in figure 6.7. Accordingly, the positions of the i-th node of this single

1in contrast to relative joint angles employed throughout the rest of this thesis
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Figure 6.7 N-pendulum: Definition of relevant properties and joint angles

unbranched kinematic chain can be determined according to

ri (q) =
nX

j=1
lj

24 sin�j

� cos�j

35 : (6.48)

Thus, the velocity of an arbitrary node j can be specified as

vi (q) =
nX

j=1
lj

24cos�j

sin�j

35 _�j (6.49)

so that the (2n; n) Jacobian-matrix projecting the absolute angles onto the velocities of
the nodes takes the simple form

J (q) =

26666666666666664

l1 cos�1 0 : : : 0
l1 sin�1 0 : : : 0
l1 cos�1 l2 cos�2 : : : 0
l1 sin�1 l2 sin�2 : : : 0

... ... . . . ...
l1 cos�1 l2 cos�2 : : : ln cos�n

l1 sin�1 l2 sin�2 : : : ln sin�n

37777777777777775
(6.50)

and the system’s velocity and acceleration vectors can be specified as

v = J _q (6.51)
a = J •q + _J _q : (6.52)
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The equations of motion can then be specified in minimal coordinates as

M q (q) •q + fq;e (q) + fq;c ( _q; q) = 0 (6.53)

with the generalised mass matrix, the vector of generalised external forces as well as the
vector of generalised Coriolis-forces according to

M q (q) = JTMJ (6.54)
fq;e (q) = JTf e (6.55)

fq;c ( _q; q) = JTM _J _q (6.56)

where

M =

26666666664

m1 0 : : : 0 0
0 m1 : : : 0 0
... ... . . . ... ...
0 0 : : : mn 0
0 0 : : : 0 mn

37777777775
(6.57)

and

f e =
h
0 m1g : : : 0 mng

iT
: (6.58)

Static Equilibrium (Single End Point Force) Consider a single n-pendulum subject to
gravitational forces as defined in equation (6.58) and a single end point force f ext =h
f ext
x f ext

y

iT
. In static equilibrium, all inertia related terms from the Newton-Euler

equations of motion defined in equation (3.81) become zero, so that the reaction forces
are simply equal to the external forces with an inverse sign. Thus, the nodal reaction
forces can be determined recursively starting with the last node n according to

f r
n = �f e

n = �

24 0
mng

35�

24f ext
x

f ext
y

35 (6.59)

f r
n�1 = �f e

n�1 + f r
n

(6.59)= �f e
n�1 � f e

n = �

24 0
mn�1g

35�

24 0
mng

35�

24f ext
x

f ext
y

35 (6.60)

... ...

f r
1 =

X
i

�f e
i =

X
i

24 0
�mig

35�

24f ext
x

f ext
y

35 : (6.61)
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Since the bar elements can only transfer forces along their longitudinal axis, the orientation
of the reaction forces vector is parallel to the bar’s longitudinal axis. Accordingly, the
angle of each element follows directly from

tan�i = f r
i : (6.62)

Linearisation A linearisation of the equations of motion is achieved by linearisation of
the mass matrix and the external forces by means of a Taylor-series expansion for small
deviations around a linearisation point qL. Since the deviations from qL are small, the
Taylor-series is only expanded up to the terms of first order according to

M q (qL +�q) � ML = Mq (qL) +
nX

i=1

@M q (q)
@qi

�����
q=qL

�qi (6.63)

fq;e (qL +�q) � fL = fq;e (qL) +
nX

i=1

@fq;e (q)
@qi

�����
q=qL

�qi : (6.64)

Furthermore, the Coriolis-forces appearing in equation (6.53) include quadratic velocity
terms due to the time derivation of the Jacobian-matrix. Since the deviations from qL

are required to be small, their time derivates will become small as well. Accordingly, the
squared velocity terms will become very small in comparison to the other terms in the
equation of motions so that the Coriolis-forces can be neglected

fq;c (q) = JTM�
��
� 0

_J _q =) fq;c (q) � 0 : (6.65)

Inserting these linearised terms into equation (6.53) leads to
0@M q (qL) +

nX
i=1

@M q (q)
@qi

�����
q=qL

�qi

1A •q+fq;e (qL)+
nX

i=1

@fq;e (q)
@qi

�����
q=qL

�qi = 0 ; (6.66)

which can be written in compact form as

ML •q + fL = 0 : (6.67)

Here, ML and fL represent the linearised mass matrix as well as the linearised external
forces. In order to get an LTI system, the position-dependant terms of the linearised
mass matrix need to eliminated. As can be seen from the above equation, the position-
dependant terms are multiplied with the acceleration vector. For the same reasons as
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stated above regarding the Coriolis-forces, the product of the deviations from qL and
their time derivatives •qL � •q become very small in comparison to the other terms in the
equation of motions so that the term0@ nX

i=1

@M q (q)
@qi

�����
q=qL

�qi

1A •q � 0 (6.68)

can be neglected. Accordingly, the linearised mass matrix simply evaluates to the non-
linear mass matrix evaluated at the linearisation point qL

ML = M q (qL) : (6.69)

The derivative of the generalised external forces term is specified as the product of the
time-variant Jacobian-matrix and the time-invariant vector of physical forces. Thus, its
derivative with respect to the generalised coordinates can be specified as

@fq;e (q)
@qi

�����
q=qL

= @JT (q)f e

@qi

�����
q=qL

= @JT (q)
@qi

�����
q=qL

f e = JT
q;i (qL)f e : (6.70)

with J q;i (qL) being the derivative of the Jacobian-matrix with respect to qi evaluated
for the linearisation point qL. Thus the force term from eq. (6.66) can be written in
matrix form as

nX
i=1

@fq;e

@qi

�����
q=qL

�qi =
h
JT

q;1f
e : : : JT

q;nf
e
i 26664

�q1
...

�qn

37775 = Kq (qL)�qL : (6.71)

with the linearised stiffness matrix Kq (qL), so that fL from (6.67) becomes

fL = fq;e (qL) +Kq (qL)�qL : (6.72)

Also, the derivatives of the Jacobian-matrix J q;i in equation (6.71) can be specified as

J q;i =
@J (q)
@qi

=

26666666666664

0(2(n�i);i�1) 0(2(n�i)) 0(2(n�i);n�i)

0 �li sin�i 0

0 li cos�i 0
... ... ...
0 �li sin�i 0

0 li cos�i 0

37777777777775
; (6.73)
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so that JT
q;if

e becomes

JT
q;if

e = g

2666664
0(i�1)

li cos�i

nX
j=i

mj

0(n�i)

3777775 : (6.74)

Accordingly, the linearised stiffness matrix is obtained in diagonal form as

Kq = g

2666666664

l1 cos�1

nX
j=1

mj : : : 0

... . . . ...

0 : : : ln cos�n

nX
j=n

mj

3777777775
(6.75)

and the LTI system is finally obtained as

M q (qL) •q +Kq (qL)�qL = �fq;e (qL) : (6.76)

Linearisation about the static equilibrium position and eigenvalue problem It can be
shown, that in static equilibrium, fq;e (0) becomes the zero vector. Furthermore for
qL = 0, �qL equals q so that equation (6.76) becomes

M q (0) •q +Kq (0) q = 0 : (6.77)

Also, in order to evaluate the generalised mass matrix from equation (6.54)

M q (0) = J (0)T MJ (0) ;

the Jacobian-matrix from equation (6.50) needs to be evaluated at qL = 0 yielding

J (0) =

26666666666666664

l1 0 : : : 0
0 0 : : : 0
l1 l2 : : : 0
0 0 : : : 0
... ... . . . ...
l1 l2 : : : ln

0 0 : : : 0

37777777777777775
: (6.78)
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Finally, the generalised stiffness matrix from equation (6.75) evaluated at qL = 0 becomes:

Kq (0) = g

2666666664

l1
nX

j=1
mj : : : 0

... . . . ...

0 : : : ln
nX

j=n

mj

3777777775
: (6.79)

Accordingly, the eigenvalues of the undamped system can now be determined by solving
the general eigenvalue problem according to

�
�2
iM

q (0) +Kq (0)
�
q̂eig
i = 0 ; (6.80)

where q̂eig
i is the ith eigenvector and �i the associated complex eigenvalue (compare e.g.

[Kle13]).

Frequency response Consider the linearised equations of motion from equation (6.77)
with an additional harmonic excitation in terms of generalised forces fq;e and the simpli-
fied mass-proportional damping as introduced in section 5.4 according to

M q (0) •q + �SDM q (0) _q +Kq (0) q = fq;e sin (
t) : (6.81)

with the excitations angular frequency 
. In terms of the direct method introduced in
section 1.2 as described in e.g. [GKL12], the real frequency response amplitudes q̂ can now
be conveniently determined by evaluating the following relationship in terms of complex
numbers:

q̂ =
������
2 �M q (0) + i � �SDM q (0) +Kq (0)

��1
fq;e

���� : (6.82)

6.3.3 Linear Single Pendulum Applications
Linearised analytical time domain

The single pendulum can be interpreted as a simplified case of the n-pendulum discussed
in the previous section. Accordingly, the same geometrical definitions as defined in figure
6.7 are used for the upcoming derivations. Accordingly, the linearised positions, velocities
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and accelerations can be specified as

r =

24 l sin�
�l cos�

35 �

24 l�

�l

35 (6.83)

_r =

24l cos� _�
l sin� _�

35 �

24 l

l�

35 _� (6.84)

�r =

24l cos�•�� l sin� _�2

l sin�•�+ l cos� _�2

35�
24 l

l�

35 •� (6.85)

Based on these linearised motion quantities and the simplified damping approach intro-
duced in section 5.4, the well known equations of motion of the linear pendulum can be
derived without further proof2 as

•�+ 2� _�+ !2
0� = 0 (6.86)

with

� = �SD

2
; !0 =

r
g

l
: (6.87)

Introducing the damped angular frequency

! =
q
!2
0 � �2 ; (6.88)

the position and velocity can then be expressed as a function of time t as

� (t) = �̂e��t cos (!t+ �s) (6.89)
_� (t) = ��̂

h
�e��t cos (!t+ �s) + !e��t sin (!t+ �s)

i
(6.90)

with an amplitude �̂ and a phase shift �s. These are found by adaption to the initial
conditions (compare e.g. [GKL12]) given by an initial angle � (t = 0) = �0 and an initial
velocity of _� (t = 0) = 0 as

�̂ = �0

cos�s
(6.91)

and

tan�s = � �

!
: (6.92)

2For more information, refer to e.g. [GKL12]
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6.3.4 Rigid Body Pendulum Applications
Time domain simulations

y

x

g

l1

l2

φ1

φ2
m1 m2, Θ2

Figure 6.8 Rigid body pendulum definitions

Consider an undamped planar rigid body pendulum according to figure 6.8. Here,
the pendulum with mass m2 = 10 kg and moment of inertia �2 = 10 kgm2 is attached
to a massless stick with an additional end point mass m1 = 1 kg. According to the
geometric quantities defined in 6.8, the minimal coordinates of the system are defined as
q =

h
'1 '2

i
. The position vector of the system can then be specified in terms of explicit

constraint equations as26666666664

x1

y1

x2

y2

'2

37777777775
=

26666666664

l1 sin'1

�l1 cos'1

l1 sin'1 + l2 sin'2

�l1 cos'1 � l2 cos'2

'2

37777777775
: (6.93)

Differentiation with respect to time leads to the velocity and acceleration equations ac-
cording to

26666666664

_x1

_y1
_x2

_y2
!2

37777777775
=

26666666664

l1 cos'1 0
l1 sin'1 0
l1 cos'1 l2 cos'2

l1 sin'1 l2 sin'2

0 1

37777777775
24 _'1

_'2

35 ; (6.94)
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26666666664

•x1

•y1
•x2

•y2
�2

37777777775
=

26666666664

l1 cos'1 0
l1 sin'1 0
l1 cos'1 l2 cos'2

l1 sin'1 l2 sin'2

0 1

37777777775
24 •'1

•'2

35+

26666666664

�l1 sin'1 _'1 0
l1 cos'1 _'1 0
�l1 sin'1 _'1 �l2 sin'2 _'2

l1 cos'1 _'1 l2 cos'2 _'2

0 1

37777777775
24 _'1

_'2

35 : (6.95)

Since the motion of the pendulum is undamped, the vector of external forces only contains
gravity forces according to f̂ e = �g

h
0 m1 0 m2 0

iT
, so that now, together with the

kinematic constraints listed above, all terms required to constitute and solve the equations
of motion derived in section 3.6 in terms of minimal coordinates are now known.

6.3.5 Tension Leg Platform Applications
Frequency response

fv lw

mn

φ

lw

mn

Restoring force: + φ ⇒ −fr

fr = − lc
z

fv
2

= −
lw sin

(
φ

2

)
√
l2m − 4l2w sin2

(
φ

2

)fvlc = 2lw sin
(
φ

2

)
lr = lw cos

(
φ

2

)

fm

−fv
2

(not to scale)
lm

z =
√
l2m − l2c

y

z

x

Figure 6.9 Simplified representation of tension leg platform

Consider a strongly simplified representation of a two-legged tension leg platform model3

as depicted in figure 6.9. Here, the inertia properties of the platform are simplified by
two point masses mn = 5 kg, that are interconnected by a massless rigid bar element
of length 2lw = 1 m. Furthermore, the tension legs of length lm = 5 m are idealised

3The dimensions are kept in small model scale and are not related to any real world application case so
as to provide an academic benchmark model.
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as being massless and always in straight linear shape due to the tension caused by the
positive vertical buoyant force (including both weight and buoyancy of the platform)
fv = 400 N. Finally, the minimal coordinate used to describe the position of the system
is the platform’s angle of rotation about the vertical axis '. Based on the additional terms
defined in figure 6.9, the restoring moment about the vertical axis can now be specified
as

�z = 2lrfr = �
2lw cos

�
'

2

�
lw sin

�
'

2

�
s
l2m � 4l2w sin2

�
'

2

� fv

�z = � l2w sin (')s
l2m � 4l2w sin2

�
'

2

�fv � � l2w
lm

fv'

: (6.96)

Summing up the restoring moment as well as the inertia forces about the vertical axis
2mnl

2
w •' as well as a simplified damping force 2�SDmnl

2
w _' according to section 5.4, the

equations of motion can now be derived for harmonic excitation as

2mnl
2
w •'+ 2�SDmnl

2
w _'+ l2w

lm
fv' = �̂ ext sin (
t)

) •'+ �SD _'+ fv
2mnlm

' = �̂ ext sin (
t)
(6.97)

with the amplitude of excitation �̂ ext = 0:01 Nm and a variable angular frequency of
excitation 
. Since this is the standard form of a damped one degree of freedom oscillator,
it can conveniently be solved for the response amplitudes as described in e.g. [GKL12].

6.4 Verification of the Lagrangian Recursive formulation
Lagrangian dynamics based on relative joint angles is a well understood discipline of
engineering mechanics. Also, the recursive formulation of the equations of motion is also
a well established algorithm as e.g. presented in [Woe11]. Although it has already been
proven that the depiction of inextensible continua as lumped mass point models is a valid
approach, a brief verification based on the catenary equation as an analytical reference
solutions is carried out in this section. Despite a reinforcement of the validity of this ap-
proach, the primary purpose here is to verify the software implementation for correctness.
Thus, the primary aims of the upcoming analyses are to verify the implementation of the
Lagrangian recursive formulation for correctness and also to validate it as a reference
for all further testing of the RRF solver in the later progression of this thesis.
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6.4.1 Catenary Line

Consider a catenary curve, that is retrieved based on the procedure and parameters de-
scribed in section 6.3.1. The resulting displacements as well as tensions are depicted in
figures 6.10 and 6.11. Note that here, the evaluation of the tensions is carried out in the
midpoint of all the elements, since the internal forces determined according to section
4.8 are averaged values for the corresponding bar element and thus most precise at the
midpoint. In the numerical model, the catenary line with a of length 100 m is discretised
with an element length of 5 m and the resulting nodal positions are compared to their
positions at the same curve length as described in section 6.3.1 as an error criterion. As
to be seen from the results, the node positions deviate by no more than 30 mm which is
negligibly small compared to the element length of 5 m and can be primarily accounted to
the geometrical discretisation error. Also, the resulting tensions are accurate within the
order of at most the 10th of a percent so that this can be considered sufficiently accurate
as well.
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Figure 6.10 Catenary line: node positions and deviations of position
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Figure 6.11 Catenary line: element tensions and relative error
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6. 4. 2 R o p e P e n d ul u m

First of all, t h e c o n v er g e n c e ti m e t o r e a c h st ati c e q uili bri u m of a r o p e p e n d ul u m is c o m-

p ar e d t o a r ef er e n c e s ol uti o n d eri v e d b as e d o n t h e li n e aris e d p e n d ul u m as d es cri b e d i n

6. 3. 3. F or t his p ur p os e, t h e s yst e m h as b e e n dis cr etis e d a n d c o n fi g ur e d a c c or di n g t o fi g-

ur e 7. 2. N ot e t h at h er e, t h e i niti al el o n g ati o n is s et t o 5 ° s o as t o m e et t h e s m all a n gl es

crit eri o n, o n w hi c h t h e li n e aris ati o n of t h e p e n d ul u m is b as e d. H er e, b ot h t h e r ef er e n c e

a n d n u m eri c al c o n v er g e n c e ti m es ar e d et er mi n e d a c c or di n g t o t h e h ol di n g ti m e crit eri o n

d e fi n e d i n s e cti o n 6. 1, w h er e t h e c o n v er g e n c e ti m es h a v e b e e n d et er mi n e d b as e d o n di ff er-

e nt ti m e st e p si z es as a c o n v er g e n c e st u d y as pr es e nt e d i n 6. 1 2. M or e o v er, t h e r es ulti n g

d a m p e d fr e e m oti o n is c o m p ar e d t o t h e r ef er e n c e s ol uti o n o bt ai n e d b as e d o n t h e li n e ar

p e n d ul u m f or a st e p si z e of h = 1 ms i n fi g ur e 6. 1 3.

Fi n all y, t h e fr e q u e n c y r es p o ns e is d et er mi n e d. F or t his p ur p os e, h o w e v er, t h e li n e aris e d

e q u ati o ns of m oti o n of t h e n - p e n d ul u m as d eri v e d i n s e cti o n 6. 3. 2 ar e us e d as a b asis

f or t h e d eri v ati o n of t h e r ef er e n c e s ol uti o n s o as t o b e a bl e t o als o i n cl u d e t h e d y n a mi c

e ff e cts of t h e dis cr etis e d r o p e t o w hi c h t h e p e n d ul u m m ass is att a c h e d. H er e, t h e p e n d u-

l u m is c o n fi g ur e d a c c or di n g t o fi g ur e 7. 1 1 wit h t h e o nl y di ff er e n c e b ei n g t h e fr e q u e n c y of

e x cit ati o n b ei n g v ari e d. H er e, t h e r ati o of t h e e x cit ati o n fr e q u e n c y Ω t o t h e first ei g e n-

fr e q u e n c y ω 0 of t h e s yst e m o bt ai n e d a c c or di n g t o 6. 3. 2 is v ari e d b et w e e n 0 .1 a n d 5 .0 a n d

t h e r es ulti n g r es p o ns e a m plit u d es ar e pl ott e d i n fi g ur e 6. 1 4.

T h e c orr es p o n di n g r es ults of t h e a b o v e m e nti o n e d a n al ys es ar e pr es e nt e d i n fi g ur es 6. 1 2

t hr o u g h 6. 1 4. As t o b e s e e n fr o m t h es e r es ults, t h e a n al yti c al m o d el a n d t h e n u m eri c al

m o d el ar e i n v er y g o o d a gr e e m e nt.
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Figure 6.13 Rope pendulum: damped free motion
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Figure 6.14 Rope pendulum: frequency response

6.4.3 Heavy Chain

In this example, the frequency response of a heavy chain configured as to be seen in figure
7.11 is determined, with the only difference being the frequency of excitation being varied.
Here, the linearised equations of motion of the n-pendulum as derived in section 6.3.2 are
used as a basis for the derivation of the reference solution. The ratio of the excitation
frequency 
 to the first eigenfrequency !0 of the system obtained according to 6.3.2 is
varied between 0:1 and 5:0 and the resulting response amplitudes are plotted in figure
6.15. Also note that here, not the resulting response amplitude of the last node is chosen
for comparison, but rather the first node r1 closest to the mount. This is in order not to
only be able to investigate the systems response, but also so as to be able to investigate
the energy transfer along the continuum. As to be seen from these results, the solutions
are in good agreement except for the last frequency investigated with 
=!0 = 5. However,
this deviation is most likely more due the shortcomings of the simplified direct method
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6.4 Verification of the Lagrangian Recursive formulation
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

used to determine the linear frequency response as described in section 6.3.2. In order
to reinforce this assumption, in this case, the non-recursive implementation is used as
another reference. As to be seen from the results, both the recursive and non-recursive
algorithms produce almost identical results, thus reinforcing the idea, that the deviations
are rather based in the simplifications used to determine the analytical solution.
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Lagrangian (non recursive)

Figure 6.15 Heavy chain: frequency response

6.4.4 Linearised Tension Leg Platform

Consider the linearised tension leg platform as described in section 6.3.5, which is numer-
ically represented by discretising the tension legs with 10 elements each. Here, in order
to determine the systems frequency response, the ratio of the excitation frequency 
 to
the first eigenfrequency !0 of the system obtained from the linearised equations of motion
from section 6.3.5 is varied between 0:1 and 5:0 and the resulting response amplitudes
are plotted in figure 6.15. As to be seen from these results, the frequency response of the
analytical and numerical model are in very good agreement.
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Figure 6.16 Linearised tension leg platform: frequency response
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6.4.5 Rigid Body Pendulum

Finally, the transient displacements of a rigid body pendulum as described in section 6.3.4
are investigated to briefly verify the rigid body coupling approach as described in section
6.3.4. For this purpose, the massless stick, on which the rigid body pendulum is mounted
is depicted using just one element and the initial elongation is specified by '1 = 0 and
'2 = 90�. The resulting horizontal displacements y are shown in figure 6.17. As to be
seen, the results are practically identical, so that the approach used to couple the rigid
bodies can be considered valid.
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t=s

y
=m
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Figure 6.17 Rigid body pendulum: damped free motion

6.4.6 Conclusions

As to be seen from the examples presented above, both the discretion scheme by means
of mass points as well as the implementation of the Lagrangian recursive algorithm are
valid. Accordingly, the Lagrangian recursive algorithm is proven to be both a valid
model as well as a correct implementation. It can thus be used as a verified method for
the simulation of the highly flexible continua discussed in this thesis and is also a valid
basis for the derivation of reference solutions for the verification of the RRF solver.
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CHAPTER 7

Results – Identification of Optimal RRF
Solver Parameters

In the following section, the results of all parameter variations for the identification of
optimal RRF solver parameters are presented. However, since the plots are the visualisa-
tion of variations over 6 different parameters, the reader is first encouraged to investigate
the schematic representation of these plots given in figure 7.1 for a clearer understanding
of how to read them. Here, as an illustrative example, a total number of six parameters
P1 ... P6 are varied. In this example, the field marked with an x is associated to the pa-
rameters as follows: P1 equals 3 and P2 equals 1, as indicated by the respective coloured
bars. Furthermore, the x is located in the quadrant, where P5 equals 2 and P6 equals 1,
where P3 equals 2 and, finally, P4 equals 2.

Also, the reader is reminded, that the commonly used labels in the plots are declared
according to the definitions made in section 6.2. Finally, it shall be noted that in the plots
some results are empty. While in terms of the determination of the maximum stable step
sizes this means, that the determination had been aborted, because a minimum threshold
was exceeded. This threshold way globally set to a tenth of a milliseconds, in order to
constrain the calculation times to a reasonable amount. In dynamic and static analyses
however, this means that the corresponding calculation did simply not finish successfully
because either they did not converge or the maximum allowable strains defined in section
4.6.6 were exceeded. Finally note that for all analyses conducted here, the simplified
damping approach as introduced in section 5.4 is used in order to simplify the cases as
far as possible.
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7 Results – Identification of Optimal RRF Solver Parameters
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Figure 7.1 Schematic of the parameter variation result plots

7.1 Maximum Time Step Sizes

As already pointed out in the overview given in the previous section, firstly the maximum
stable time step sizes have been determined based on 4 different standard benchmarks
listed in figure 7.2. Here, in all cases, initially elongated systems are considered that are
supposed to reach a static equilibrium position after a given time. The maximum stable
integration step sizes are then determined based on the bisectional search algorithm pre-
sented in section 6.2.4. The corresponding reference maximum stable time step sizes href

max

are determined using the Lagrangian recursive formulation and are also determined
by means of the bisectional search algorithm. Moreover, a convergence study based on
different time step sizes has been conducted for each of the reference solutions. Together
with the maximum stable step sizes, these reference solutions are listed in appendix B.1.1.

The resulting maximum stable time step sizes for all investigated parameter combina-
tions discussed in the previous section are shown in figures 7.3 to 7.6 on the following
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7.1 Maximum Time Step Sizes
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Double pendulum (LA, B.1.1)
m = 1 kg, l = 1m, '1 = 45�, '1 = 90�

�SD = 1:0, href
max = 280ms

y

x

g

l l

'1

'2

m

m

Heavy chain (LA, B.1.1)
mtotal = 2:356 kg, ltotal = 1m, '0 = 5�

�SD = 0:75, href
max = 36:6ms

y

x

g

mi = mtotal=10
li = ltotal=10

m9
m10

'0

Rope pendulum (LA, B.1.1)
mend = 2 kg, l = 1m, '1 = 5�

�SD = 0:75, href
max = 3:50ms

y

x

g

mi � mend

ltotal
mend

'0

Swing pendulum (LA, B.1.1)
mend = 4 kg, l = 1m, '1 = 5�

�SD = 0:75, href
max = 4:16ms

l

'0
mend

mi � mend

Figure 7.2 Load cases investigated. Common damping hypothesis: simplified, velocity-
proportional damping (�SD). References listed in brackets behind load case
name: LA: Langrangian recursive, AN: anylitcal, section of definition.

pages. As to be seen from these results, both the projection of positions as well as the
projections on kinematic level have a significant influence on the maximum stable time
step size. It can be concluded from these findings, that both, the implementation as a
predictor-corrector algorithm as well as the additional projections of the kinematic quan-
tities are worthwhile extensions of the original algorithms for the simulation of highly
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flexible continua as presented in [Jak01] and [Ben+13]. Thus, integration time step sizes
can be achieved, that range between approximately 25% (swing pendulum) to 70% (dou-
ble pendulum) of the time steps achievable with the Lagrangian recursive algorithm.
Considering the projection based nature of the solver and its fast performance (compare
section 7.4), this can be considered a good result. The additional constraint stabilising
PID-elements as well as the weighted inclusion of the reaction forces from the end of the
previous time step, however, only influence the maximum stable step sizes in a minor
way. In contrary, when chosen too high, they even reduce the maximum stable step size.
However, for the PID-elements this is not an unexpected outcome, as these introduce stiff
terms into the equations. Also, it is an intuitive outcome, that the weighted inclusion
of the reaction forces from the previous time step destabilises the solution as these are
expected to change during the time step.
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Figure 7.3 2-Pendulum: Maximum integration step size
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Figure 7.6 Swing pendulum: Maximum integration step size
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7.2 Static Responses

Double pendulum (LA+AN, B.1.2)
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Figure 7.7 Load cases investigated. Common damping hypothesis: simplified, velocity-
proportional damping (�SD). References listed in brackets behind load case
name: LA: Langrangian recursive, AN: anylitcal, section of definition.

In order to investigate the static accuracy of the RRF solver, the load cases summarized
in figure 7.7 along with their relevant parameters have been analysed. For this purpose,
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as already outlined in section 6.1, time domain simulations of the regarding load cases are
carried out, until the positions of all nodes have converged towards a constant position.
Additionally, the analyses have been repeated with an increased time step size as listed
in appendix B.1.2. Here, the corresponding reference displacements where each obtained
using the method specified in brackets in the title of the corresponding load case in figure
7.7. Additionally, the section where the corresponding reference solution is derived is
specified in those brackets. The results of these analyses are shown in figures 7.8 through
7.10 on the following pages and the long time step results are presented in appendix
B.1.2. As to be seen from these results, the static results are almost always accurate with
relative errors ranging below one percent, except for some rare outliers in the large time
step results presented in the appendix.
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Figure 7.8 2-Pendulum: Static displacement
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7.3 Dynamic Responses

Double pendulum DF (LA, B.1.3)
m = 1 kg, l = 1m, '1 = 45�, '1 = 90�

�SD = 1:0, T ref
conv = 17:2 s

y

x

g

l l

'1

'2

m

m

Double pendulum HE (LA, B.1.3)
f end
x = 0:1 � sin(2:0 s�1 � t) N
f end
y = 0, r̂refx;2 = 26:6mm
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f end
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Heavy chain (LA+AN, B.1.3)
mtotal = 2:356 kg, ltotal = 1m
f end
x = 0:1 � sin(1:84 s�1 � t) N
f end
y = 0, r̂refx;1 = 0:63mm
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Rope pendulum (LA+AN, B.1.3)
mend = 2 kg, l = 1m
f end
x = 1:0 � sin(1:56 s�1 � t) N
f end
y = 0, r̂refx;10 = 66:3mm
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ltotal
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f endr10

Figure 7.11 Load cases investigated. Common damping hypothesis: simplified, velocity-
proportional damping (�SD). References listed in brackets behind load case
name: LA: Langrangian recursive, AN: anylitcal + section, where they
are defined. Other abbreviations: DF: damped free motion, HE: harmonic
excitation.
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In order to be able to investigate the accuracy of the RRF solver in terms of dynamic
behaviour, a set of benchmark cases according to figure 7.11 have been analysed, where all
reference solutions listed in section B.1.3 were determined based on convergence studies
for different time step sizes using the Lagrangian recursive algorithm.

Thus, the convergence time of an initially elongated double pendulum to reach static
equilibrium is investigated by determining the convergence time according to the proce-
dure outline in in section 6.1. Subsequently, the frequency response of the same double
pendulum to a single harmonic excitation in horizontal direction is investigated. Finally,
single frequency response analyses are carried out for a heavy chain and a rope pendulum.
Note however, that here, for the heavy chain, not the resulting response amplitude of the
last node, but rather the resulting amplitude of the first node r1 is investigated. This is
done in order to be able to, despite the global response behaviour, also investigate the
energy transfer along the continuum.

Finally, in addition to that, as a simple example, a chain rotating (henceforth referred
to as rotating chain) with a constant speed about a fixed point without friction will be
analysed, so as to be able to investigate the conservation of kinetic energy when using the
RRF solver. Here, the error criterion is simply defined as the difference in the magnitude
of the velocity of the last node jvj with respect to the magnitude of its initial velocity jv0j
after ten rotation periods according to �f = (jvj � jv0j) = jv0j.

The results of all cases discussed above are presented in figures 7.12 through 7.16 on
the following pages. Additionally, the same analyses have been repeated for larger time
steps and the results are listed in appendix B.1.3. As to be seen from these results, the
results are always sufficiently accurate for the normal time steps selected for the cor-
responding load cases and mostly range below one percent of relative error. The only
example, where the relative error reaches a maximum of 3:68% is the rotating chain ex-
ample. Here, some of the kinetic energy is lost after ten periods of rotation due to the
projection based nature of the solver. However, in real world applications, this case of a
fully conservative, frictionless motion rarely occurs. Accordingly, since the dynamics of
all other non-conservative systems discussed here are depicted sufficiently accurate, this
can be considered an acceptable error. The large time step results listed in appendix B.1.3
however do exhibit bigger derivations. This arises from the projection based nature of
the solver and can be accounted to the loss of kinetic energy discussed above. Conclud-
ingly, it can thus be observed, that the actual parameters varied in the course of these
analyses, i.e. the parameters controlling the position and kinematic projections as well
as the parameters controlling the stabilisation of the constraint equations have a far less
significant influence on the accuracy of the results when compared to the influence of the
time step size. However, due to their potential to increase the maximum stable time step
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size, increased parameters regarding the constraint projection are what even just makes
integration possible for large time step sizes (compare especially figures B.17 and B.18).
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Figure 7.12 Rotating chain: Conservation of rotational velocity after 10 periods
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Figure 7.15 Heavy chain: Response amplitude
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7.4 Conclusions
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7.4 Conclusions
From the findings of the previous sections, the following conclusions can be drawn for the
different categories of the parameters configuring the behaviour of the RRF solver:

Projection parameters These include the projection factors as well as the numbers of
iterations for the projection of the positions, velocities and accelerations. While they
have a significant influence on the maximum stable time step sizes, their influence on the
accuracy of static and dynamic analyses is rather limited. This is also due to the fact,
that the calculations are automatically aborted, if the violation of one of the constraints
exceeds a critical threshold "gcrit as described in section 4.6.6. Accordingly, if a simulation
is not aborted it can be assumed, that the results are sufficiently accurate. Also, the
fact that the maximum stable time step size decreases drastically, when all projection
parameters are set to their minimum considered in theses analyses, reinforces the initial
assumption outlined in section 2.1, that considering longitudinal deformations causes stiff
eigenvalue problems. Here, this is rooted in the circumstance, that with all projection
parameters set to very small values, the PID elements become the primary reason, that
the constraint conditions are not violated. In that case, at the same time, the longitudinal
deflections can only be limited by stiff PID elements introducing high eigenvalues.

Constraint stabilisingparameters These include the constants configuring the constraint
stabilising PID elements as well as the weighted inclusion of the reaction forces from the
end of the previous time step. As to be seen from the results, these can have a moderately
increasing effect on the maximum stable time step size in some cases. However, when
chosen too high, they can decrease numerical stability due to the reasons outlined above,
i.e. they introduce stiff eigenvalues into the system. Their influence on the static and
dynamic accuracy is also rather limited due to the same reason ("gcrit) discussed above for
the projection parameters.

Timestep size This parameter mostly effects the accuracy of dynamic simulations, where
its influence on the static accuracy is rather limited. This is mostly based on the projection
based nature of the solver and the increasing amount of kinetic energy being lost in each
time step when using large step sizes.

Accordingly, the following recommendations can be given regarding the configuration
of the parameters. Both the parameters controlling the projection and stabilisation of
the constraints can be increased to a certain degree in order to achieve larger time steps,
needed for, e.g., the simulation of large systems in real time applications. However,
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caution needs to be taken when increasing the stabilising parameters too much as this
can again reduce the maximum stable time step size. If large time steps are not required,
it is recommended to only employ a projection of the positions with their NORM rating,
as the additional kinematic projections only increase the computational burden (compare
figure 7.17) without significantly increasing the accuracy at the same time. The PID-
elements, however, have a negligible impact on numerical performance and can always be
set to their respective NORM value. Note that, in OCN-SIM Flex this is conveniently done
by just specifying a maximum tension occurring in the system, so that the corresponding
parameters are set automatically based on the derivations made in section 6.2.3.

Finally, the resulting numerical performance of the RRF solver is compared based on
simulating a generic chain in resemblance to the heavy chain example discussed earlier
in this chapter. However, here the number of elements used to discretise the chain is
varied between 10 and 100. Also, again, the simple damping approach from section 5.4
is employed so as to minimize the computational time used to determine hydrodynamic
loads. In each case, 100 s of time are simulated and the elapsed computation time is
compared to the Lagrangian recursive algorithm. Additionally, the RRF solver is once
executed with only the projection of the positions set to NORM and once for the position
projections level set to HIGH and kinetic projection set to NORM so as to be able to
quantify the impact of the projections on the computational burden. First of all, the
results shown in figure 7.17 indicate, that the performance of the RRF solver is strongly
dependent on the iterations of projections being performed. Thus, with both position
and kinematic projections set to a higher amount, the execution time is increased by
approximately 60 %. On the other hand, by only projecting the positions on a NORM
setting, it is about 10 times faster then the recursive Lagrangian algorithm. The latter,
however, is still real time capable up to 100 elements, which is also sufficient for many
applications. Also, both solvers are thus proven to exhibit linear time complexity.
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Figure 7.17 Solver performance in comparison (CPU: Intel®Core i5-4300U)
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CHAPTER 8

Results – RRF Solver Single Run
Benchmarks

Besides the thorough investigation of the accuracy of the RRF solver depending on a wide
range of parameters in the preceding chapter, here additional single run benchmarks are
performed so as to provide a final validation of the RRF solver. Here, all analyses are
carried out based on the parameter recommendations obtained as a result of the analyses
carried out in the previous section. Thus, as already discussed in section 7.4, the RRF
solver parameters primarily have an influence on the maximum time step size but less
so on the achievable accuracy, as long as the time step is sufficiently small. Accordingly,
for the upcoming load cases, most of the parameters are set close to their NORM rating,
except for the kinematic projection, which is disabled in most cases. However, since,
as already pointed out, the parameter’s influence on the achievable accuracy is more of
secondary order and the time step size is a far more influential parameter, the time step
is chosen sufficiently small for all load cases and the other parameters are not further
discussed in the description of the example in order to remain a better clarity.

8.1 Catenary Line

First of all, a catenary line is analysed in analogy to the verification of the Lagrangian
recursive algorithm in section 6.4.1. The resulting displacements as well as tensions are
depicted in figures 8.1 and 8.2. As to be seen from the results, the RRF solver produces
almost identical results in comparison to the recursive Lagrangian algorithm with the
main cause of the deviations being the geometric discretisation. However, the tensions are
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even reproduced a bit more precisely. This might be due to the fact, that the system con-
sists of one kinematic loop and here, in contrast to the recursive Lagrangian algorithm,
no secondary loop closing constraints are required, which are handled in a mathematically
inconsistent way in the Lagrangian algorithm.
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Figure 8.1 Catenary line: node positions and deviations of position
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Figure 8.2 Catenary line: element tensions and relative error

8.2 Rope Pendulum
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Figure 8.3 Rope pendulum: damped free motion
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Here, the damped free motion ending in static equilibrium and the frequency response
of a rope pendulum is analysed in analogy to the verification of the Lagrangian recursive
algorithm in section 6.4.2. The results are depicted in figures 8.3 and 8.4. As to be seen
from the results, the RRF solver produces practically identical results in comparison to
the recursive Lagrangian algorithm.
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Figure 8.4 Rope pendulum: frequency response

8.3 Heavy Chain

Here the frequency response of a heavy chain is analysed in analogy to the verification
of the Lagrangian recursive algorithm in section 6.4.3. As to be seen from the results
depicted in figure 8.5, the RRF solver produces practically identical results in comparison
to the recursive Lagrangian algorithm.
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Figure 8.5 Heavy chain: frequency response
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8.4 Linearised Tension Leg Platform

Here the frequency response of the linearised tension leg platform is analysed in analogy
to the verification of the Lagrangian recursive algorithm in section 6.4.4. As to be
seen from the results depicted in figure 8.6, the RRF solver produces practically identical
results in comparison to the recursive Lagrangian algorithm.
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Figure 8.6 Linearised tension leg platform: frequency response

8.5 Rigid Body Pendulum

Here the transient motion of the rigid body pendulum is analysed in analogy to the
verification of the Lagrangian recursive algorithm in section 6.4.5. As to be seen from
the results depicted in figure 8.7, the RRF solver produces practically identical results in
comparison to the recursive Lagrangian algorithm.
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Figure 8.7 Rigid body pendulum: damped free motion
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8.6 Cylindrical Pendulum

Here, in order to verify the proper implementation of the hydrodynamic forces and espe-
cially added mass terms from chapter 5, a pendulum consisting of cylindrical elements is
investigated. The pendulum is configured in the same way, as the heavy chain example
previously discussed, only with fully considered hydrodynamic loads as defined in chapter
5. Also, the excitation frequency is kept constant with 
 = 1:26 s�1. Again, the result-
ing transient displacements displayed in figure 8.8 are in very good agreement with the
recursive Lagrangian algorithm, which serves as a reference here.
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Figure 8.8 Cylindrical pendulum: Response to harmonic excitation

8.7 Towed Buoy in a Wave Field

Consider a towed spherical buoy in a wave field. Here, the buoy is initially hanging down
vertically attached to a tow line of length ltow = 5:0 m with a diameter of dtow = 5:0 mm
and a density of �tow = 7500:0 kg/m3. The water has a density of �water = 1000:0 kg/m3

and the fluids velocity field is described according to Airy’s theory described in e.g.
[CLÖ14] with an angular wave frequency 
 = 1 s�1, a wave amplitude of 0:5 m, a wave
length of 1 m and a water depth of 20 m. The buoy has a volume of 0:001 m3, a mass
of m = 5 kg and a rotary moment of inertia of � = I3 kg � m2. Hydrodynamic loads
according to chapter 5 are fully considered. After initially hanging down vertically, the
tow velocity is increased to 1 m/s over the duration of 10 seconds. As to be seen from the
results depicted in figure 8.9, the results are in very good agreement with the recursive
Lagrangian algorithm, which serves as a reference here.
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Figure 8.9 Towed buoy in a wave field: vertical position

8.8 Parameter Variation Benchmark – Tension and Element
Size and Maximum Step Size
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Figure 8.10 Rope pendulum with end mass: minimum time constants depending on
number of elements and end mass

As a concluding benchmark, the influence of the tensions and element sizes on the
maximum stable time step sizes shall be investigated based on a representative example.
For this purpose, the damped free motion of an initially elongated rope pendulum as
discussed in e.g. section 7.1 is analysed. Here, the number of elements and the end point
mass of the pendulum are varied and the resulting eigenfrequencies are determined for
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reference according to section 6.3.2. The thus resulting eigenfrequencies are then inverted
to yield the smallest associated time constants Tmin as illustrated in figure 8.10. Finally,
the maximum stable time step sizes �tmax of both the recursive Lagrangian as well as
the RRF solver are determined in the same way as done in section 7.1 and related to the
corresponding theoretical smallest time constants Tmin according to figures 8.11 and 8.12.
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Figure 8.11 Rope pendulum with end mass, Lagrangian recursive dynamics: ratio of
maximum stable integration time step size and minimum time constants
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Figure 8.12 Rope pendulum with end mass, RRF: ratio of maximum stable integration
time step size and minimum time constants
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From an investigation of the results, first of all two general conclusions regarding the
numerical simulation of flexible continua can be drawn. Thus it can be concluded, that
the theoretical smallest time constant Tmin is approximately proportional to the element
size. This is due to the fact, that the number of eigenfrequencies of a continuum rises
with the number of elements, as only as many eigenfrequencies can be depicted, as degrees
of freedom are present in the system. Furthermore, Tmin is proportional to the inverse
square root of the tension, as it is also the case for e.g. guitar strings. Finally, it can be
concluded regarding the solvers, that the Lagrangian recursive solver is stable for time
step sizes up to half the smallest time constant in the system, while the RRF solver is
stable for time steps up to a approximately a tenth of the smallest time constant in the
system. These findings roughly confirm the ratio of maximum step sizes of the RRF and
Lagrangian solver found in section 7.1, which was between 0:25 and 0:7.

8.9 Conclusions
The results discussed in the preceding sections reinforce the conclusions drawn from the
results of the parameter variations in the preceding chapter. Thus, for well chosen pa-
rameters, the RRF solver produces not only accurate, but practically identical results in
comparison to the Lagrangian recursive algorithm. However, as especially shown in
the last section 8.8, the RRF solver is numerically less stable and in most cases only en-
ables maximum time step sizes, that are between 20% to 70% as large as those achievable
with the recursive Lagrangian algorithm. Also, as shown in chapter 7, the RRF solver
becomes inaccurate when the time step size is chosen too large. However, as also shown
in chapter 7, depending on its configuration, it is approximately ten times faster then the
Lagrangian algorithm, so that it can still achieve precise results in less time despite the
reduced maximum stable time step sizes.
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CHAPTER 9

Conclusions and Outlook

Within the context of this thesis, different solvers for the numerically efficient coupled
non-linear time domain simulation of fully submerged highly flexible maritime systems
have been derived and implemented.

Here, first of all, a solver based on the recursive solution of the equations of motion
derived by means of Lagrangian dynamics in relative joint coordinates has been derived
and implemented. In this connection, it has been shown, that the physical modelling as
interconnected lumped mass points is a valid approach and that the resulting equations
of motion can be solved efficiently. Thus, based on this approach, systems with up to
approximately 100 nodes could be simulated in real time on the present hardware (an
Intel®Core i5-4300U mobile CPU) based on strongly simplified hydrodynamics. However,
based on this approach, only systems with kinematic tree structure can be modelled in a
mathematically consistent way. Thus, the loop closing conditions of kinematic loops are
treated differently as opposed to the primary, explicit constraint equations. That is, they
are typically depicted by the introduction of additional loop closing implicit constraint
equations. Here, due to the requirement of being able to depict systems exhibiting an
arbitrarily high number of kinematic loops, as for instance found in fishing nets, the
organisational effort for the automated generation of the equations would be very high,
so that here, an alternate approach based on PID force elements was implemented to
provide a more convenient way to depict the loop closing conditions. However, this does
introduce high eigenvalues into the equations of motion though.

Due to these limitations, a projection based solver referred to as the RRF solver has been
derived and implemented in the context of this thesis. Unlike the recursive Lagrangian
algorithm, it is based on absolute coordinates and solves the implicit constraint equations

147



9 Conclusions and Outlook
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9.1 Example applications of OCN-SIM Flex. Left: a rhombic netting with buoys
attached. Right: a four point mooring. Source: www.ocnacademy.org.

by projection. In doing so, the solver is very fast, so that for typical parameters, it is
approximately ten times faster then the recursive Lagrangian algorithm. Also, here the
number of kinematic loops can be arbitrarily high, because the solver is based on implicit
constraint equations so that all constraints in the system are handled in a consistent way.
Finally, the organisational effort during the implementation is very low in comparison to
the recursive Lagrangian algorithm.

Ultimately, it has thus been proven, that the implicit constraint equations appearing in
Lagrangian dynamics based on absolute coordinates can be solved by projection-based
algorithms in a very performant yet accurate way. This potentially gives rise to further
research in a sense, that these algorithms can be extended to simulate spatial rigid body
multibody systems by extending the types of constraints being projected from constant
distance constraints of mass points to arbitrarily complex constraint equation. Also, it
should be investigated, if these projection based approaches could serve as basis for the
correction of the numerical constraint drift occurring in classical formulations based on
Lagrange multipliers and thus provide an alternative to well established algorithms such
as e.g. Baumgarte-stabilisation.

Both solvers have been thoroughly verified and validated based on reference solutions
and provide accurate results, if configured properly. Accordingly, they can now serve as
newly established algorithms for the simulation of highly flexible maritime continua. Also,
recommendations regarding their parametrisation as well as application have been given.
Accordingly, in real world application scenarios, users are able to decide on a qualified
basis, which implementation to employ for their respective use case.

Finally, all algorithms derived here have been implemented in a modular open source
simulation framework called OCN-SIM Flex, that is available on the open source platform
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[ROPE__1]
l eng th = $ lCha in2 # Length
diam = 0.05 # Diameter
rho = 4000.0 # Dens i ty
nElems = $nElems # Number of elements
j o i n t . refBody = CSYS__0 # Pr imary j o i n t r e f e r ence body
j o i n t . re fMarker = 1 # Pr imary j o i n t r e f e r ence marker
a lpha0 = 0 .0 # I n i t i a l ang le a lpha
beta0 = 45.0 # I n i t i a l ang le beta
alpha_d0 = 0.0 # I n i t i a l angu la r v e l o c i t y alpha_d
beta_d0 = 0.0 # I n i t i a l angu la r v e l o c i t y beta_d
IDCTab le = 1 # ID of hydrodynamic c o e f f i c i e n t s t a b l e

Listing 9.1 Excerpt from an example OCN-SIM Flex input file

OCN Academy (www.ocnacademy.org)1 created by the author of this thesis. OCN-SIM
Flex is a command line tool, where the load cases can be arbitrarily configured based on
configuration files in an ini-file like syntax. Here, arbitrarily interconnected systems of
rope like structures and rigid bodies can be investigated under the influence of hydrody-
namic loads according to the topology defined in chapter 4. For a complete documentation
as well a list of features, refer to

https://gitlab.com/OCN-Academy/OCN-SIM/-/wikis/home (user manual)

and

https://gitlab.com/OCN-Academy/OCN-ED (theory manual).

An exemplary excerpt of such a configuration file is provided in listing 9. Also, two
selected example applications are shown in figure 9.1. Ultimately, in providing the tools
as open source software, an open discourse and collaboration among users, scientists and
developers shall be promoted. Also, in doing so, coupling these models to other models,
such as e.g. computational fluid dynamic models is possible in a convenient way.

1Note that the version being currently available online at the time of writing of this thesis is rather
outdated. This is due to the fact, that in the past years, lots of yet to be published extensions or
even corrections have been derived in the context of this thesis, that will only be published for the
first time with this thesis. Also, publishing these extensions will also require extensive updates to the
documentation available online and thus takes time. Accordingly, if a more recent version of the code
should be desired in advance, the author can be contacted by email via christoph@ocnacademy.org
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Appendix: Additional Information

A.1 Vector Calculus

A.1.1 Cross Product

Let c be the cross product of two (3)-vectors a and b

c = a� b : (A.1)

with

a =

26664
a1

a2

a3

37775 ; b =

26664
b1

b2

b3

37775 (A.2)

The above cross product can then alternatively be expressed as the dot product of the
skew symmetric matrix ~a and b as

c = ~ab ; (A.3)

where ~a is defined as

~a =

26664
0 �az ay

az 0 �ax

�ay ax 0

37775 : (A.4)

A 1



ez

ex = ea � ez

jea � ezj

ey = ez � ex

a = ea jaj

�z
�y

�
ay = ey cos�y jaj

ez cos�z jaj = az

Figure A.1 Decomposition of a general vector with respect to another vector

A.1.2 Decomposition of a vector into normal and axial components with
respect to another vector

Consider a vector a = ea jaj that is to be decomposed into its normal and axial compo-
nents with respect to a second vector ez. For that purpose, an Cartesian coordinate
system Ka defined by the three unit vectors ex, ey and ez is introduced such, that vector
a lies in the yz-plane of Ka. Correspondingly, the x-axis of Ka must be perpendicular
to both ea and ez and can thus be determined by evaluating the cross product of both
vectors according to

ex =

8>><>>:
ea � ez

jea � ezj
; if jea � ezj > 0

0; otherwise :
(A.5)

The corresponding y axis is then obtained as a subsequent cross product of ez and ex

ey = ez � ex : (A.6)

Note that ey does not need to be normalised to a magnitude of 1, since ez and ex are
perpendicular to one another and both have a magnitude of 1. Furthermore, in doing so,
both ex and ey become 0, if a is parallel to ez. This is due to the fact, that in this case,
vector a does not have any normal components with respect to ez and accordingly, the
normal direction with respect to ez is undefined.

Finally, the sought decomposition a = ay +az in the y- and z- directions of Ka can be

A 2



specified as projections of a onto the corresponding unit vectors ey and ez according to

ay = ey cos�y jaj = ey (ey � ea) jaj = ey (ey � a) (A.7)
az = ez cos�z jaj = ez (ez � ea) jaj = ez (ez � a) : (A.8)

A.2 Lagrangian Dynamics Using Relative Joint Coordinates –
Summary and Algorithm

For clarity, the following listings summarise the key equations needed to derive and imple-
ment the Lagrangian dynamics using relative joint coordinates derived in the context
of this thesis.

Common defintions

Topological structure

p (i) =

8><>:ID of predecessor node if node is moveable,

�1 � (ID of predecessor node) is a support node.
(4.15)

Node positions

0ri = 0rp
i + 0di = 0rp

i + 0iT idi : (4.17)

with

rp
i =

8><>:rp(i) if p (i) > 0 ;

s�1�p(i) otherwise.
(4.16)

Transformation matrices

0iT = 0p(i)T iS : (4.20)

with

iS =

26664
c �i 0 s �i

s�i s �i c�i � s�i c �i

� c�i s �i s�i c�i c �i

37775 � p(i);iT (4.19)
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and

0p(i)T � I3 if p(i) < 0 : (4.21)

Time derivatives of transformation matrices

0i _T = 0p(i) _T iS + 0p(i)T
�
iS� _�i + iS�

_�i

�
(4.24)

with

iS� = @iS

@�i

=

26664
0 0 0

c�i s �i � s�i � c�i c �i

s�i s �i c�i � s�i c �i

37775 (4.23a)

iS� = @iS

@�i

=

26664
� s �i 0 c �i

s�i c �i 0 s�i s �i

� c�i c �i 0 � c�i s �i

37775 (4.23b)

and

0p(i) _T � 0(3;3) if p(i) < 0 (4.25)

j _S� = @jS�

@�j

_�j +
@jS�

@�j

_�j

=

26664
0 0 0

� s�j s �j � c�j s�j c �j

c�j s �j � s�j � c�j c �j

37775 _�j +

26664
0 0 0

c�j c �j 0 c�j s �j

s�j c �j 0 s�j s �j

37775 _�j (4.26a)

j _S� = @jS�

@�j

_�j +
@jS�

@�j

_�j

=

26664
0 0 0

c�j c �j 0 c�j s �j

s�j c �j 0 s�j s �j

37775 _�j +

26664
� c �j 0 s �j

� s�j s �j 0 s�j c �j

c�j s �j 0 � c�j c �j

37775 _�j (4.26b)
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Non-recursive solution

Jacobian and time derivate

Jij =

8><>:
0;p(j)T

�
jS�

jdi;p(j)
jS�

jdi;p(j)

�
if j 2 �Pi ;

0(3;2) otherwise
(4.49)

with

di;p(j) = ri � rp
j (4.46)

26664
0v1
...

0vnN

37775 =

26664
J11 : : : J1nN
... . . . ...

JnN1 : : : JnNnN

37775
26664

_q1
...
_qnN

37775
0v = J _q

(4.50)

_Jij =
dJij

d t
= 0;p(j) _T

h
jS�

jdi;p(j)
jS�

jdi;p(j)

i
+ : : :

0;p(j)T
h

j _S�
jdi;p(j)

j _S�
jdi;p(j)

i
if j 2 �Pi :

(4.52)

Recursive solution

Relative velocities240vi

0!i

35
| {z }
v̂i

=

24I3 �0 ~di

0 I3

35
| {z }

0Bi

240vp(i)
0!p(i)

35
| {z }
v̂p(i)

+

240CT;i

0CR;i

35
| {z }

0Ci

24 _�i

_�i

35
| {z }
_qi

(4.69)

with

0CT;i = 0p(i)T
h
iS�

idi
iS�

idi

i
(4.68)

0CR;i = 0p(i)T

26664
1 0
0 cos(�i)
0 sin(�i)

37775 (4.62)
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Relative accelerations

âi = 0Biâp(i) + 0Ci •qi +

24I3 �0 _~di

0 I3

35 v̂p(i) + 0 _Ci _qi| {z }
âqu
i

(4.70)

with

0 _CT;i = 0p(i) _T
h
iS�

idi
iS�

idi

i
+ 0p(i)T

h
i _S�

idi
i _S�

idi

i
(4.71)

0CR;i = 0p(i) _T

26664
1 0
0 cos(�)
0 sin(�)

37775+ 0p(i)T

26664
0 0
0 � sin(�i) _�i

0 cos(�i) _�i

37775 (4.72)

A.3 Physical Interpretation of the Velocity Terms of
Lagrangian Dynamics Using Relative Joint Coordinates

K0

j

i

di;p(j)
!j;p(j)

vij

Figure A.2 Velocity component vij

Consider the velocity component vij of node i due to the angular velocities of joint
j 2 �Pi as given by (4.40) together with the definition of the according Jacobian-matrix
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from (4.47):

0vij = 0;p(j)T
h

jS�
jdi;p(j)

jS�
jdi;p(j)

i 24 _�j

_�j

35
= 0;p(j)T

�
jS� _� + jS�

_�
�
jdi;p(j)

= 0;p(j)T j _S jdi;p(j) � 0;p(j)T p(j);j _T jdi;p(j) :

(A.11)

Inserting the product p(j);jT T p(j);jT = I(3;3) in the above equation results in

0vij = 0;p(j)T p(j);j _T p(j);jT T p(j);jT| {z }
I(3;3)

jdi;p(j) : (A.12)

Here, the product p(j);j _T p(j);jT T can be identified as the skew symmetric matrix p(j) ~!j;p(j)

of angular velocities of j with respect to p(j) in coordinate system Kp(j) (compare e.g.
[Sha05]) as

p(j);j _T p(j);jT T = p(j) ~!j;p(j) : (A.13)

Substitution of this relationship and insertion of the product 0;p(j)T T 0;p(j)T = I(3;3) into
(A.12) leads to

0vij = 0;p(j)T p(j) ~!j;p(j)
0;p(j)T T 0;p(j)T| {z }

I(3;3)

p(j);jT jdi;p(j) ; (A.14)

which can be gathered to

0vij = 0 ~!j;p(j)
0di;p(j) : (A.15)

Consequently, it can be found from this relationship, that the velocity component vij of
node i due to the angular velocities of joint j 2 �Pi can be interpreted as the cross product
of the angular velocity of node j with respect to it’s predecessor p(j) and distance from
joint j to node i. This fact is illustrated in figure A.2.
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A.4 Recursive Calculation of Internal Forces Based on
Explicit Constraint Equations

It follows from (3.82), that the sum of reaction forces acting on node i equals the difference
of inertial forces and external forces

f r
i = Miai � f e

i : (A.16)

In addition to that, the summed up reaction forces can be split up in the components
resulting from the single constraints involving node i. Considering a single unbranched
chain configuration as depicted in figure A.3, these are the bar reaction forces acting along
bar element fb

i and the bar reaction force resulting from the successor bar element s(i)

f r
i = fb

i � fb
s(i) : (A.17)

Note, that the bar reaction force resulting from the successor node contributes with a
negative sign due to Newton’s third law. Equating A.16 and A.17 and solving for fb

i

leads to

fb
i = fb

s(i) +Miai � f e
i : (A.18)

Accordingly, compared to it’s successor element s(i), the additional reaction forces acting
along bar element i equal the difference of inertia and external forces acting on node i.

K0

i s(i) fb
i

�fb
i

fb
s(i)

�fb
s(i)

f r
i = fb

i � fb
s(i) � Miai � f e

i

Figure A.3 Joint- and reaction forces
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Appendix: Additional Results

B.1 Identification of Optimal Solver Parameters –
References and Additional Results

B.1.1 Maximum Time Step Sizes

Reference Solutions

0 5 � 10�2 0:1 0:15 0:2 0:25 0:3
14

16

18

�t

T
C
on

v

Lagrangian

Figure B.1 Convergence study: Double pendulum convergence times and maximum sta-
ble time step size (280 ms)

0 0:5 1 1:5 2 2:5 3 3:5 4
�10�2

20

40

60

�t

T
C
on

v

Lagrangian

Figure B.2 Convergence study: Heavy chain convergence times and maximum stable
time step size (36.6 ms)
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0 0:5 1 1:5 2 2:5 3 3:5
�10�3

20:84

20:86

20:88

�t

T
C
on

v

Lagrangian

Figure B.3 Convergence study: Rope pendulum convergence times and maximum stable
time step size (3.50 ms)

0 1 2 3 4
�10�3

20:83
20:83
20:83
20:83

�t

T
C
on

v

Lagrangian

Figure B.4 Convergence study: Rope pendulum convergence times and maximum stable
time step size (4.16 ms)

B.1.2 Static Analyses

Reference Solutions

0 5 � 10�2 0:1 0:15 0:2 0:25 0:3

1:17
1:17
1:17
1:17

�t

x

Analytical
Lagrangian

Figure B.5 Convergence study: double pendulum end point displacement. Analytical:
x = 1:168, y = �1:591. Chosen: x = 1:17, y = �1:59

0 0:5 1 1:5 2 2:5 3 3:5
�10�2

0:65

0:65

0:65

�t

x

Analytical
Lagrangian

Figure B.6 Convergence study: heavy chain end point displacement. Analytical: x =
0:6509, y = �0:7010. Chosen: x = 0:651, y = �0:701
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B.1.3 Dynamic Responses

Reference Solutions

0 5 � 10�2 0:1 0:15 0:2 0:25 0:3
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�t
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v

Lagrangian

Figure B.10 Convergence study: 2-pendulum convergence times (chosen: 17.2 s)

0 5 � 10�2 0:1 0:15 0:2 0:25 0:3 0:35

5 � 10�2

0:1

0:15

�t

x̂

Lagrangian

Figure B.11 Convergence study: 2-pendulum response amplitudes (chosen: 26.6 mm)
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0:5
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Reference
Lagrangian

Figure B.12 Convergence study: Heavy chain response amplitudes. Analytical reference
(Frequency response from section 6.4.3): 6:3410�4m, chosen: 0:63mm
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�10�3

6:6
6:61
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�10�2

�t

x̂

Reference
Lagrangian

Figure B.13 Convergence study: Rope pendulum response amplitudes. Analytical refer-
ence (Frequency response from section 6.4.2): 6:6055�2m, chosen: 66:3mm
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Figure B.17 Heavy chain: (large time step): Response amplitude
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