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Abstract
Automated Sleep Scoring,

Deep Learning and Physician Supervision

Luigi FIORILLO, Ph.D. in Computer Science

Universität Bern, 2021

Sleep plays a crucial role in human well-being. Polysomnography is used in
sleep medicine as a diagnostic tool, so as to objectively analyze the quality of sleep.
Sleep scoring is the procedure of extracting sleep cycle information from the whole-
night electrophysiological signals. The scoring is done worldwide by the sleep
physicians according to the official American Academy of Sleep Medicine (AASM)
scoring manual. In the last decades, a wide variety of deep learning based algo-
rithms have been proposed to automatise the sleep scoring task. In this thesis we
study the reasons why these algorithms fail to be introduced in the daily clinical
routine, with the perspective of bridging the existing gap between the automatic
sleep scoring models and the sleep physicians. In this light, the primary step is the
design of a simplified sleep scoring architecture, also providing an estimate of the
model uncertainty. Beside achieving results on par with most up-to-date scoring
systems, we demonstrate the efficiency of ensemble learning based algorithms, to-
gether with label smoothing techniques, in both enhancing the performance and
calibrating the simplified scoring model. We introduced an uncertainty estimate
procedure, so as to identify the most challenging sleep stage predictions, and to
quantify the disagreement between the predictions given by the model and the an-
notation given by the physicians. In this thesis we also propose a novel method to
integrate the inter-scorer variability into the training procedure of a sleep scoring
model. We clearly show that a deep learning model is able to encode this variability,
so as to better adapt to the consensus of a group of scorers-physicians. We finally
address the generalization ability of a deep learning based sleep scoring system,
further studying its resilience to the sleep complexity and to the AASM scoring
rules. We can state that there is no need to train the algorithm strictly following the
AASM guidelines. Most importantly, using data from multiple data centers results
in a better performing model compared with training on a single data cohort. The
variability among different scorers and data centers needs to be taken into account,
more than the variability among sleep disorders.

https://www.unibe.ch
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Chapter 1

Introduction

Sleep disorders represent a significant and increasing public health problem. A
considerable proportion of the world population is suffering from serious sleep
disorders and requires medical attention [1]. Since its origin, in the late 1950s,
polysomnography (PSG) has been at the centre of several investigations, aiming
at simplifying the related scoring procedure so as to better analyze the quality of
sleep and the common sleep pathologies, e.g., sleep breathing disorders, narcolepsy,
sleep-related movement disorders. A PSG is the whole night recording of several
biosignals related to sleep. Brain activity (electroencephalogram), eye movements
(electrooculogram), muscle activity or skeletal muscle activation (electromiogram
derivations for chin and legs), body position (video camera and accelerometer),
heart rhythm (electrocardiogram), breathing functions (respiratory airflow, oxygen
saturation, respiratory effort indicators) and other vital parameters are monitored
overnight. A PSG typically requires that the patients sleep overnight at the hospital
while their bio-physiological signals are recorded.

The sleep scoring is the procedure of extracting information from the PSG sig-
nals. Sleep stages, arousals, respiratory events, movements and cardiac events have
to be correctly identified. Wakefulness and sleep phases (i.e., stages 1, 2, 3 and rapid
eye movement) can be mainly described by the following bio-signals: electroen-
cephalography (EEG), electrooculography (EOG) and electromyography (EMG).
Clinical sleep scoring involves a visual review of overnight polysomnograms by a
human expert, that may require up to two hours of tedious repetitive work. This
can explain why the search for simplifying and speeding up the sleep scoring work
begun already in the late 1960s.

The scoring is done worldwide accordingly to official standards, i.e., the Amer-
ican Academy of Sleep Medicine (AASM) scoring manual for adults, children and
infants [2]. It could appear then a suitable task for modern artificial intelligence (AI)
algorithms. Many different techniques and approaches have been proposed and
tested, reaching very good results in terms of overall accuracy. Machine learning
(ML) algorithms have been applied to sleep scoring for many years. As a result,
several software products offer nowadays automated or semi-automated scoring
services. Very recently, thanks to the increased computational power, deep learning
(DL) based algorithms have also been employed with promising results. ML/DL
algorithms can undoubtedly reach a high accuracy in specific situations, but there
are many difficulties in their introduction in the daily clinical routine. The vast
majority of the sleep physicians do not use them. The high inter-scorer variability
(agreement of about 70-80%), and the low intra-scorer agreement (about 90%) [3]–
[5], may partially explain the low acceptance of the automated scoring systems.



2 Chapter 1. Introduction

1.1 Motivation and Challenges

The automatic sleep scoring on healthy people, on both adults and children, has
been practically solved by using EEG, EOG and EMG biosignals. Indeed, different
scoring algorithms results in a higher consensus level compared to the averaged
inter-scorer agreement. Nevertheless, even in simple applications (e.g., on a distri-
bution of healthy subjects), these algorithms fail to be exploited in the daily routine.
Clearly, the real needs of the single physician are still not completely understood.

Below we report the two main reasons why physicians do not use the ML/DL
scoring algorithms, setting the background for the analysis we present in this thesis.
Our final perspective is to bridge the existing gap between the automatic sleep scor-
ing models and the sleep physicians.

Scorer personalization. In our view, the major challenge lies in customizing the
sleep scoring systems for each physician. The common practice is to train a scoring
system with datasets where each whole night recording is annotated by a single
physician or sleep lab. Only in a few cases, we have datasets where each recording
is annotated by multiple physicians and/or from different sleep labs. Thus, typi-
cally, the model emulate the scoring procedure of a single physician/lab or of the
consensus of a group of physicians. Most likely a new physician (i.e., the end-user)
will disagree with the single scorer or with the group of scorers. Hence, the need
to build a closed-loop interaction between the scoring algorithm and the end-user.
The prospective is to personalise a sleep scoring algorithm on the end-user "taste",
eventually fine-tuning the model to the scoring rules of the new scorer. However,
tackling such a challenge requires first to correctly identify the disagreement be-
tween the predictions given by the model and the end-user annotations. Hence, the
first need and our primary challenge is to be able to quantify the uncertainty of a
sleep scoring algorithm. The predictions with low confidence (lowest probability
values in output) are more likely to match with the disagreed ones. However, un-
fortunately, the wrong prediction are often associated with high probability values.
Methods quantifying wrong decisions needs to be implemented.

Data heterogeneity. A big challenge involves both the mismatch of sleep record-
ings coming from different sources or data domains, and the resulting heterogeneity
among these recordings. This leads to different hardware or subjects with different
demographic and sleep disorders, even in the same data cohort. In a real-case sce-
nario, the performance of a scoring algorithm on a PSG coming from an unseen data
distribution (e.g., different data domain) would drastically decrease. Changes in
numbers and positions of the available channels, or changes in type of sleep disor-
ders - worst case scenario neurological disorders - may require different algorithmic
solutions. It raises the need to first explore and then adapt existing scoring architec-
tures on new data domain via transfer learning or domain adaptation techniques.
Even in the same data cohort, it would be extremely interesting to investigate
the impact of different data distributions (e.g., changes in well-known patient demo-
graphic such as the chronological age) on the performance of the scoring algorithms.
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1.2 Contributions

In this thesis we study the reasons why the existing sleep scoring algorithms fail
to be introduced in the daily clinical routine, with the vision of bridging the gap
between the automatic scoring models and the sleep physicians.

With the ultimate goal of assessing the disagreement between the predictions
given by the DL based sleep scoring algorithm and the end-user annotations, we
first propose to simplify an existing state-of-the-art scoring architecture while main-
taining its high performance. We exploit ensemble learning based algorithms to-
gether with label smoothing techniques, as to enhance the calibration of the model
and to further enhance the performance of the scoring architecture. Then we intro-
duce an uncertainty estimate procedure to identify the most challenging sleep stage
predictions, so as to quantify the number of predictions in disagreement with the
physicians, i.e., to quantify the misclassified sleep stages. We demonstrate the effi-
ciency of these methodologies on different scoring architectures and sleep databases.
In a follow-up study we also validate the hypothesis that our simplified sleep scor-
ing architecture is actually able to learn from a multi-scored dataset. The scoring
algorithm is able to learn the inter-scorer variability, so as to adapt to the scoring
consensus distribution of multiple physicians.

In order to study the generalization ability of a sleep scoring algorithm, we ex-
ploit a powerful and recently proposed U-Net inspired architecture, testing it on dif-
ferent large-scale-heterogeneous data cohorts, i.e., 28528 polysomnography studies
from 13 different clinical sleep labs. We highlight two very interesting properties of
a DL based scoring algorithm: there is no need to train it following the strict AASM
scoring guidelines, and there is no need to train it with additional chronological
age-related information. We finally demonstrate that the variability among different
sleep data centers (e.g., hardware, scoring rules etc.) needs to be taken into account,
more than the variability among different subjects with different sleep disorders.

1.2.1 Chapter Outline

Chapter 2: Background. We provide a general overview about the clinical sleep
scoring, and the ML algorithms proposed to automatize the scoring procedure. In
Chapter 2 we focus on the very latest approaches that exploit DL based architec-
tures to tackle the clinical task. We further discuss about the existing barriers to the
introduction of the automated scoring in the clinical practice.

Chapter 3: Automated sleep scoring, temporal dependency and recurrent neural
networks. Most of the DL based sleep scoring architectures exploit recurrent neural
networks (RNNs) to model the temporal dynamic behaviour of sleep. In Chapter
3, starting from a well-known state-of-the-art architecture, we propose to replace
the recurrent layers with simple fully connected layers. The results suggest that a
simple feed forward architecture achieves comparable performance to those using
the RNNs. Thus, the reason why the architectures succeed in encoding the temporal
dynamic behaviour (e.g., stage transitions) may not necessarily relate to the recur-
rent blocks itself, but to the temporal context we give as input.

Chapter 4: A simplified sleep scoring model with uncertainty estimates. Existing
DL based sleep scoring algorithms exploit computationally demanding architectures
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and process lengthy time sequences in input. Only few of these architectures provide
an estimate of the model uncertainty. In Chapter 4 we propose DeepSleepNet-Lite,
a simplified and lightweight scoring architecture, processing only 90-second EEG
sequences in input. We exploit, for the first time in sleep scoring, the Monte Carlo
dropout along with the label smoothing technique. We show the efficiency of these
techniques in calibrating and enhancing the performance of our model. We also
demonstrate the efficiency of the proposed uncertainty estimate procedure: it is able
to identify the most challenging sleep stage predictions.

Chapter 5: Exploitation of the multi-scored databases in automated sleep scoring.
The visual scoring of a PSG is a highly subjective procedure. Most of the existing
DL based sleep scoring algorithms are trained using datasets where each recording
is annotated by a single scorer. Even when annotations from two or more scorers
are available, the architectures are trained on the single one-hot encoded label (i.e.,
scorer consensus). The averaged scorer’s subjectivity is transferred into the model,
losing information about the internal variability among different scorers. In Chapter
5 we propose to use label smoothing along with the soft-consensus distribution to
consider the multiple-labels, i.e., the annotation from different physicians, into the
training procedure of the model. The results suggest that our approach enables the
model to better adapt to the consensus of the group of scorers.

Chapter 6: U-Sleep: resilient to AASM guidelines. AASM guidelines are the re-
sults of decades of efforts to try to standardize the sleep scoring procedure as to
have a commonly used methodology. The guidelines cover several aspects from
the technical specifications to the sleep scoring rules. Any DL based sleep scoring
algorithm is trained on recordings annotated by sleep physicians according to the
AASM manuals. Clinical knowledge and guidelines have been exploited to support
the algorithms in solving the scoring task. In Chapter 6 we show that a DL based
sleep scoring algorithm may not need to fully exploit the clinical knowledge or to
strictly follow the AASM guidelines. Specifically, we demonstrate that U-Sleep, a
state-of-the-art sleep scoring algorithm, can be strong enough to solve the scoring
task even by using clinically non-recommended or non-conventional derivations,
and with no need to exploit information about the chronological age of the subjects.
We finally strengthen a well-known finding that using data from multiple data cen-
ters always results in a better performing model compared with training on a single
cohort. We show that this latter statement is still valid even by increasing the size
and the heterogeneity of the single data cohort.

Each chapter is associated with one of the papers as in the following list:

• Chapter 2 - "Automated sleep scoring: A review of the latest approaches" [6],
published in Sleep Medicine Reviews, 2019.

• Chapter 3 - "Temporal dependency in automatic sleep scoring via deep learn-
ing based architectures: An empirical study" [7], published in EMBC, 2020.

• Chapter 4 - "DeepSleepNet-Lite: A Simplified Automatic Sleep Stage Scor-
ing Model with Uncertainty Estimates" [8], published in IEEE Transactions on
Neural Systems and Rehabilitation Engineering, 2021.

• Chapter 5 - "Multi-Scored Sleep Databases: How to Exploit the Multiple-Labels
in Automated Sleep Scoring", in Sleep, 2022. (submitted)
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• Chapter 6 - "U-Sleep: resilient to AASM guidelines", in Nature Portfolio Jour-
nal digital medicine, 2022. (submitted)
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Chapter 2

Background

2.1 Visual Sleep Scoring Procedure

The polysomnographic record of sleep is usually divided into 30-second epochs,
starting from the lights-off event. This time interval is a heritage from old PSG
machines where a paper speed of 10mm/s gave an output page of a 30-second
timespan. During a visual analysis each epoch is assigned a stage, and if two or
more stages coexist during a single epoch the stage comprising the majority of the
30 seconds is scored (an example in Figure 2.1).

In 1968 the first manual to standardize terminology and rules of this procedure
was published by Rechtschaffen and Kales (R&K) [9]. It categorized sleep into seven
distinct stages: wakefulness, stages 1, 2, 3, 4, rapid eye movement (REM) sleep
and movement time (MT) stage. These rules were adopted worldwide until 2007,
when the AASM updated the scoring manual [2]. The AASM standard manual
for the scoring of sleep and associated events is designed to cover all aspects of
the PSG, from the technical ones (parameters, assessment protocols, filtering, etc.),
to its execution, the analytic scoring (sleep staging, arousals, cardiac, movement,
and respiratory signals), and the final interpretation of PSG results. The number of
stages was reduced to five: wakefulness W, stage N1, stage N2, stage N3 (formerly
3 and 4 sleep stages), and stage R (formerly REM sleep stage). MT stage was abol-
ished, and it was decided to score an epoch with a major body movement as wake
if any part of the epoch shows alpha rhythm, or if a wake epoch either precedes or
follows the epoch in question. Otherwise, the epoch is scored as the same stage as
the epoch that follows it. Almost every year there is a new version of the AASM
manual with usually a few updates. Recommended EEG derivations are F4-M1,
C4-M1, O2-M1, while other accepted derivations are Fz-Cz, Cz-Oz, C4-M1. EEG can
be contaminated by other electrophysiological signals, as for example ECG, EOG,
EMG and pulse-oxymetry signal. Movement artifacts are also often present and
need to be addressed. EEG is conventionally described in terms of its frequency
components. The main ones are delta (0.5-4Hz), theta (4-8Hz), alpha (8-12Hz), and
beta (12-35Hz). Waves in the frequency range 0.5-2Hz and peak-to-peak amplitude
>75µV are considered slow wave activity. Sleep spindles (train of distinct waves in
the 12-14Hz range, lasting for more than 0.5-seconds), K-complexes (sharp negative
waves followed by a smooth, positive waves longer than 0.5-seconds) and vertex
sharp waves (negative-going bursts of less than 0.5-seconds) are also introduced
to better describe the EEG. Scoring rules are based on the recognition of EEG fre-
quencies and on the presence of certain pattern, but applying these rules can lead to
unexpected complexity, especially in unhealthy subjects.
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FIGURE 2.1: An example of polysomnographic sleep epochs.
An example of a polysomnographic record of sleep divided into 30-

second epochs; each epoch is assigned a sleep stage.

Sleep stages progress cyclically from N1 through R, then begin again with stage
N1. A full sleep cycle takes on average from 90 to 110 minutes, with each stage
lasting between 5 to 15 minutes. The first sleep cycles present relatively short REM
sleeps and long periods of deep sleep. The characteristics of the sleep phases and
the scoring rules accordingly to the AASM are summarized in the following list.

• Stage W: it is characterized by the presence of alpha rhythm in the EEG sig-
nal, usually over the occipital region, and/or any of the following events: eye
blinking, rapid eye movements with normal or high chin muscle activity (with
signal frequency higher than 30Hz), reading eye movements.

• Stage N1: it shows slow eye movements and it can be easily disrupted leading
to awakenings or arousals. EEG signal amplitude does not exceed 200mV with
frequencies within 2-7Hz. Alpha components should not exceed 50% of the
total spectral band, and vertex sharp waves are often seen during transitions
from other stages to N1. Slow eye movements can be visible in the EOG, and
EMG level should be lower than in the previous stage. N1 continues until there
is evidence of another stage. N1 usually covers 5% of the sleep time.

• Stage N2: awakenings or arousals are not so common as in N1 and the slow-
moving eye starts to disappear. Sleep spindles and K complexes may appear.
N2 should be scored if during the last half of the previous epoch or the first
half of the actual one there are either one or more K-complex or one or more
trains of spindle, and it should continue to be scored N2 (also without spindles
and K-complexes), until a new stage appear. N2 normally covers 50% of the
sleep time.

• Stage N3: it is the deep restorative sleep. Delta waves and slow waves are
predominant in the EEG signal. Awakenings or arousals are rare. Spindles
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and K-complex may appear. N3 should be scored if more than 20% of the
epoch consists of slow waves. N3 covers usually 20% of the sleep time.

• Stage REM: the dreaming stage. Eye movements are rapid and brain waves
are more active than in N2 and in N3. Awakenings and arousals can occur
more easily in REM. The EEG has low voltage, mixed frequency and possible
sawtooth waves, EMG is at its lowest level, episodic REMs usually lasting less
than 500ms appears in the EOG. A stage should continue to be scored as REM
until one or more of the following occur: a transition to stage W or N3 appears;
chin EMG muscle tone increases; a K-complex without arousal or a spindle
occurs in the first half of the epoch with no REMs. This stage normally covers
20-25% of the sleep time.

The sleep staging procedure may be quite complex: many parameters have to
be considered at the same time; previous and future epoch scoring has to be taken
into account as well. The heterogeneity of the subjects and of the sleep epochs may
be quite difficult to be comprehensively described in a manual, which generates
uncertainty in the scoring procedure and leads to different interpretations of the
same signal from different scorers. Subjects with specific sleep disorders can be more
challenging to be scored than healthy ones. It has also to be highlighted that some
errors may be more costly than others. N2 is very often considered as a transition
phase between light and deep sleep, consequently if N2 percentage is a little higher
or a little lower, the impact on the "big picture" of the sleep analysis will be minimal.
The presence of sleep apneas, parasomnias, periodic limb movement and of other
sleep abnormalities will still be examined if N2 is confused with N1 or N3. Instead,
if the error is related to wakefulness all the scoring process will be impacted, as
the presence of sleep abnormalities will not be considered. Inter-rater variability
studies show how agreement can vary among stages [10]. Rosemberg et al. [3]
compared a large number of scorers (>2500): the agreement was higher than 80% for
REM, N2 and W, but it dropped for N3 (67%) and N1 (63%), the overall agreement
was of about 83%. Human scorers’ discrepancies occur mainly in the judgment of
transitions between two different stages. This is not surprisingly as AASM rules are
trying to characterize a continuum physiological process with fixed stages.

2.2 Automated Sleep Scoring by Artificial Intelligence

AI consists of the emulation of human intelligence processes performed by ma-
chines. ML is an application of AI that provides systems the ability to automatically
learn and improve from experience.
ML algorithms can then replicate human intelligence processes to assist and simplify
manual process. This powerful approach should then be suitable for sleep scoring,
which could be considered as a tedious, repetitive classification work based on the
observation of standardized rules. Two main approaches of AI might potentially
address the automatic sleep stage classification (ASSC) problem: learning processes
based on features extracted starting from the knowledge of the experts (i.e., shallow
learning), and learning processes that start directly from the raw data (i.e., DL).

2.2.1 Shallow Learning Approach

In a ML workflow, the main steps are data pre-processing, feature extraction, feature
selection/dimensionality reduction and classification. The pre-processing phase al-
lows the detection of bias, noise or artifact present in the PSG raw signals. The
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features extraction, feature selection and dimensionality reduction steps allow to
identify the most relevant information. The last classification phase uses all the
information for sleep stage identification.

Feature extraction and feature selection techniques

The feature extraction procedure starts from the measured data and derives
values (i.e., features) intended to be informative and non-redundant, facilitating
the subsequent learning and generalization steps, and in some cases leading to a
better human interpretation. A feature is an individual measurable property or
characteristic of the PSG; an example can be the time-domain signal power over the
entire epoch. Feature extraction techniques can be linear and non-linear and can be
grouped into three major categories: temporal domain methods, frequency domain
methods and hybrid of temporal and frequency domain methods [11], [12]. Among
the most recent works, the standard statistics in time domain, the non-parametric
analysis in frequency domain and the wavelet transform in time-frequency domain
are the most used techniques for ASSC [13].
In some cases the extracted features are redundant or generate a dataset with a
high dimensionality. Dimensionality reduction is a process that can reduce the
number of features, focusing on the most significant ones. The most widely used
approaches are the principal component analysis, for dimensionality reduction, and
the sequential floating search method for feature selection [13]. These techniques
allow representing data in a reduced dimensional space maintaining almost the
same information, resulting in increased performance of the classifier [14].

Machine learning classifiers

The ML classification techniques used in automatic sleep stage identification
- shallow learning approach - are manifold. Several reviews have exhaustively
analyzed feature-based approaches. In particular, Ronzhina et al. [15] reviewed
classification systems using artificial neural networks (ANN) in automatic sleep
scoring. The reported ANN based scoring system performance varies within a
broad range of accuracy, depending on the recognized stages. Şen et al. [12] carried
out a comparative study trying to identify the most effective features and the most
efficient algorithm to classify the sleep stages. They propose a methodology that
can reach an overall accuracy of 98%. Radha et al. [16] also tried to identify optimal
ML and signal processing methods, focusing on online sleep staging and a single
EEG channel. They concluded that spectral linear features, epoch duration between
18 and 30 seconds, and a random forest classifier lead to optimal classification per-
formance while ensuring real-time online operation. In the comprehensive survey
of Aboalayon et al. [13] several sleep stage classification techniques using EEG
signals have been reported and compared, with accuracy ranging from 70 to 94%.
They have also presented their own approach based on novel features and using
10-second epochs claiming to reach an average accuracy of 93%.
It is important to note that comparing the performance of different approaches
is a quite complex task. Sleep stages considered, extracted features, datasets and
channels, classification algorithms, validation methods adopted and evaluation
metrics reported have to be taken into consideration. For a better comparison, some
researchers have reapplied classification approaches to the same dataset. For ex-
ample, in a recent work, Boostani et al. [17] carried out a comparative review of
several ML classification techniques used in ASSC. They selected five classification
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approaches [18]–[22] and reapplied them on public datasets containing PSG data
of healthy and unhealthy subjects. They tested various combinations of extracted
features and classification techniques in order to find the best one in predicting sleep
stages correctly. The random forest classifier together with the entropy of wavelet
coefficients proved to be the best combination, reporting percentages of accuracy of
87% in healthy subjects and 69% in patients.

DL based algorithms can also be applied in the feature-based workflow with
good results [23]–[25], but they exert their full potential when applied directly to
raw data, as presented in the next paragraph.

2.2.2 Deep Learning Approach

DL is part of a broader family of ML methods; it is based on learning data represen-
tations, as opposed to task-specific algorithms. For couple of decades now, the use
of DL classification techniques has shown to be highly performing in several fields
of application such as image captioning, image classification, and speech recogni-
tion [26]–[28]. The possibility to extract complex information from a large amount
of data is one of the first reasons to apply DL techniques in PSG classification.
The great advantage of the DL models is the high performance in dealing with a
large amount of data. DL can learn features directly from the raw input data with
little to no prior knowledge. However, the non-interpretability of the results and
the longer computational times can be a drawback. On the other hand, features
extracted starting from the knowledge of the experts are thought to be affected by
several factors, primarily by the characteristics of the available dataset [29]. In sleep
scoring the dataset present a wide variety, and the number of epochs in a single
dataset is huge. The feature-based approach may not be suitable to satisfy a com-
prehensive description of the heterogeneity of the subjects and the set of recorded
signals. For this reason, over the last few years, several works applied DL algorithms
directly on raw PSG signals. In this short period of time, DL based algorithms have
produced impactful results that were never seen with more conventional ML meth-
ods for a long time.

Convolutional Neural Networks and Recurrent Neural Networks

DL models are based on artificial neural networks and differ mainly on the
architecture, which is how several neurons are arranged and connected to each
other. Neurons lying on the same level make up the so-called layer. The network
is composed of several units or neurons, each of them performs a linear combina-
tion of the input followed by a non linear transformation, as explained in details
in Figure 2.2. The standard deep neural networks are characterized by multiple
layers sequentially fully connected. Several types of DL architectures have been
developed. Convolutional neural networks (CNNs) and recurrent neural networks
(RNNs) are the most widely used in ASSC.

A CNN is a supervised classification model in which the input (e.g., raw data,
spectrogram images) is processed by a network of filters and sub-sampling (pooling)
layers. Each of these filters can be thought of as feature identifiers, whereas sub-
sampling reduces the dimensionality but retains the important information. The
last layer, usually a softmax layer, computes the output probability of each sleep
stage to identify the target of the signal. An example of CNN overall architecture is
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FIGURE 2.2: A simple artificial neuron. Each single neuron com-
putes the dot product of the input x and the weight w vectors. A bias
b value is added to the dot product and a non-linear function, called
activation function (e.g., sigmoid s, hyperbolic tangent tanh, rectified

linear unit or ReLu, leaky rectified linear unit), is then applied.

provided in Figure 2.3 and in Figure 2.4. During the training phase of the CNN the
neuron filter weights and bias are adjusted in order to reach the target probability
class for that input (epochs). After training, the CNN is ready to be applied on new
input. As more layers are stacked more complex features are produced.

RNNs are networks of filters that can be trained, but they work on the principle
of saving the output of a layer and feeding it back to the input, in order to predict
the future output of the layer. CNN considers only the current input while RNN
considers the current input together with the previously received inputs. Therefore,
RNNs can easily handle sequential data.

In a sleep stage scoring procedure, the staging of each 30-second epoch is
strongly related to the preceding and following epochs. Thus, over the years, a
temporal dynamic behavior unit has been added to the CNNs - i.e., the feature
extractor or the epoch processing block - by introducing recurrent connections -
i.e., the sequence processing block. The more common memory units are a type of
RNNs called long-short-term memory (LSTM) [30] and gated recurrent unit (GRU)
[31]. This memory allows the model to process sequences of inputs (that are called
epochs in our sleep staging task). That said, despite in literature many studies
propose RNNs based architectures to encode the temporal dynamic behaviour, re-
cently completely feed-forward architectures (e.g., CNNs along with fully connected
neural networks) have proven to be equally, if not even more, successful. This last
statement will be further discussed in the next Chapter 3.

2.3 Sleep Databases

Several public and not public PSG datasets are employed to train DL based algo-
rithms. The more common open access databases are Sleep-EDF and Sleep-EDF
expanded version [32], followed by the Montreal Archive of Sleep Studies [33] and
the Sleep Heart Health Study collection [34]. The biggest not public database be-
longs to the Massachusetts General Hospital Sleep Laboratory [35], that has 10000
recordings.

In Table 2.1 we report an extensive list of all the PSG datasets available online.
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FIGURE 2.3: CNN based sleep scoring architecture.
The CNN architecture can be divided in two subsequent parts, each
performing a different process. The first, the feature learning activity,
consists of several convolutional conv and of some pooling pool layers.
The last, the classification process, is carried out by a fully connected
layer and a softmax function. In the last part, the signal is flattened
to one dimension, it is processed through a fully connected layer and
finally classified using the last softmax layer. Unlike the conv layer,
every unit of the fully connected layer interact with every input unit.
The softmax layer computes the output probability of each sleep stage

to identify the target of the signal.

FIGURE 2.4: 1D-convolution operation. Example of the 1D-
convolution operation and feature maps construction in a conv layer.
Conv layer firstly implements the convolution operation between the
30-second epoch and the n filters fi of the n neurons si, then an activa-
tion function is applied (e.g ReLu). Each feature map i is the output of
each convolution operation. Each value of a feature map can be con-
sidered as the result of the dot product between the local part of the
input (size of the filter) and the filter f. The dash-line window shows

how each filter fi is shifted during the convolution (stride).

Datasets may differ for the sampling rate, the employed hardware - i.e., differ-
ences in channels and derivations. Sometimes the subject category (e.g., healthy or
patients) as well as the human scorer identifier are missing. Clearly, an algorithm
trained on healthy subjects would not keep the same performance on patients [52],
even worse on patients with neurodegenerative diseases, e.g., Parkinson’s. The loss
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of structure or function of neurons leads to important alteration of the EEG patterns.

As explained in section 2.1, in one night sleep, awake and N1 epochs are less
frequent than others. As a consequence, PSG datasets are not balanced with respect
to the number of classification targets (sleep stages). Usually there are a lot more
epochs for N2 stage than for awake and N1 stages. Without balancing the datasets,
it is highly likely that a classifier will exhibit skewed performance favoring the most
represented classes, unless the least represented are very distinct from the other
ones. In order to overcome this issue different approaches have been proposed:
some authors apply oversampling on the sleep stages with fewer samples [29]; others
apply under-sampling on the stages with a higher number of samples [53]. In some
other studies, a weight is computed for each class, defined as the ratio between the
frequency of the single class divided by the frequency of the most frequent class. The
weights are assigned to each class as to contribute equally to the final prediction [54].

Last but not least, the datasets may have potential demographic and technical
biases, e.g., age, BMI, sex or hardware settings, that might significantly affect the
learning and subsequentially the performance of the automatic scoring systems.

2.4 Deep Learning based Architectures

In the last decade, a wide variety of DL based architectures have been proposed
for the sleep staging: autoencoders [55], deep neural networks (DNNs) [24], U-Net
inspired architectures [56], [57], CNNs and fully-CNNs [7], [52], [53], [58]–[64],
RNNs [65], [66] and several combination of them [29], [35], [54], [67]–[73]. The main
advantage of these approaches is the ability to learn features directly from raw data,
by also taking into account the temporal dependency among the sleep stages. The
architectures of these models may be quite complex, a high number of parameters
need to be trained - up to 24.7 million. The most recent ones process lengthy time se-
quences in input - up to 17.5 minutes. Most of them use RNNs, thus requiring extra
resources to buffer the PSG input and making them unsuitable in home-monitoring
and in real-time applications.

In most of these studies, CNNs and RNNs have been applied directly on raw
PSGs data. Other approaches, that have shown performance on par if not better, are
based on the usage of precomputed spectrograms (spectral images representing the
frequency content of the signals over time) given in input to CNNs and RNNs based
architectures [35], [52], [59], [71]. Recently, in [73], the combination of both raw PGS
signals and spectrograms given in input to two parallel neural networks - i.e., fully
CNNs and attention-based RNNs - has proven to be highly efficient, outperforming
state-of-the-art architectures on several databases. The main advantage of this latter
approach is that it is capable to learn from both raw signal and the time-frequency
images at the same time. The network is trained such that the learning pace on each
input type is adapted based on their overfitting/generalization beahaviour.

One of the main goal of all the DL based architecture is to extract features from
the data with a minimal manual pre-processing. Basic band pass filters (0.3-35Hz)
are sometimes applied, as recommended in the AASM manual. During visual scor-
ing, artifact removal is done using the contextual information. Unlike in feature-
based approaches, only few DL algorithms consider the artifact reduction. Cui et al.
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[61] use Butterworth filters to reduce some artifact from the signals, whilst Supratak
et al. [29] apply a weight decay on the first layers of the CNNs in order to avoid
overfitting to noises-artifacts in EEG data. In contrast, Malafeev et al. [54] point
out that a DL algorithm can learn important information from epochs with artifacts,
bringing as example the fact that wakefulness is almost always accompanied by
movement artifacts and a movement is often followed by a transition into stage N1.

As a rule of thumb, deep architectures with a high number of layers and pa-
rameters need to be trained on large databases to prevent overfitting. Generally,
increasing independent data-domains leads to an increase in the quality of the data
analysis. In fact, in [57] the winning ingredient is the large amount of data (i.e.,
hetereogeneity of the datasets and biases) used to train their U-Net inspired archi-
tecture, in combination with the heterogeneity of the EEG and EOG signals (i.e.,
recording from different hardware) given in input to the algorithm.

There are still contrasting ideas and opinions regarding the channels and deriva-
tions to be used to train the scoring models. Clearly, their usage may also depend
on the ultimate purpose of application, whether it is clinical or in home-monitoring.
The vast majority of the existing architectures exploits information from different
EEG channels. In particular Chambon et al. [53] have shown that the accuracy im-
proves employing up to six well distributed EEG channels. They indicated that it is
worth adding more EEG sensors, but up to a certain point. Biswal et al. [35] showed
that there is a small reduction in performance between six and two EEG channel
approach, but still on par with the level of accuracy attained by experts. It has also
been shown that EEG together with EOG and EMG signal information leads to an
increase in performance [73]. Hence, the usage of a multi-channel system improves
the performance of the classification algorithms and can also better gather sleep in-
formation. However, sometimes the improvement is quite small whilst adding more
channels can be computationally expensive, and could compromise the efficiency of
the algorithm without leading to a far better classification. Many emerging home-
based settings require a reliable solution with few channels. For these reasons, dif-
ferent groups have focused their attention on single-channel EEG or even on single-
channel EOG analysis.

2.4.1 Benchmarking

The sleep scoring architectures, as commonly done for the ML algorithms, are evalu-
ated splitting the data into a training set, a validation set and a test set. The training
set is the database partition used to develop the algorithm, so high performance is
expected. Validation and test sets are both independent from the data with which
the model has been built. The validation set is used during the training phase, while
the test set is used only to measure the final model performance. The validation pro-
cedure depends on the number of subjects available in the database. The data split
commonly used in literature for databases with thousands of subjects (e.g., SHHS,
MROS, MESA) is 80% training and 20% test (hundreds of subjects held out from
training set for validation set); another common data split choice is 75% training,
10% validation and 15% test. When there are less than a few hundred subjects in
the database, the performance is evaluated with a cross-fold validation procedure,
using both k-fold and leave-one-out methodologies. In k-fold cross-validation, the
PSG dataset is randomly partitioned into k equal sized recording groups. Out of
the k groups a single group is retained as the test set data for testing the model;
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the remaining k-1 subgroups are used as training data, and further split into a val-
idation set (e.g., 10% of the training set) for evaluating the model during training.
The cross-validation process is then repeated k times, with each of the k groups
used exactly once as the test data. The k results can then be averaged to produce
a single estimation. The advantage of this method is that all observations are used
for training/validation/test, and each observation is used for testing exactly once.
When k = n (the number of observations), the k-fold cross-validation is exactly the
leave-one-out cross-validation.

The results are represented generally with the percentage agreement between
the classifier and the gold standard, that is the visual scoring by a human expert.
The performance of the scoring algorithms are usually evaluated using the macro-
averaging F1-score (MF1), the per-class F1-score, the overall accuracy (Acc.), the
Cohen’s kappa (k), the average sensitivity and the average specificity. The F1-score,
sensitivity and specificity are given for each sleep stage, and resemble in general
the same problematics as in the visual scoring procedure. N1 is the more difficult
stage to be identified. The Cohen’s kappa is generally thought to be a more robust
measure as it takes into account the possibility of the agreement occurring by chance.

The evaluation metrics are calculated considering the human visual scoring as
the gold standard. Consequentially, a performance similar to the inter-scorer agree-
ment (that is on average around 80%) should be considered an excellent result,
whilst higher performance may be considered, in most of the cases, as overfitting on
the dataset. The information of the training set and of the test set belongs to different
recordings, but if they still belong to the same dataset they cannot be considered to-
tally independent. A dataset usually comes from the same sleep center and contains
recordings from the same expert scorers. The high percentages of accuracy could be
the result of an overfitting phenomenon (the models fit to the specific dataset). Data
from different sleep labs and data from several cohorts ensure the reproducibility
of the developed methods. Some authors have measured the performance of their
model using test set coming from external database [35], [52], [57], [67]; their results
should be then considered more robust.

Keeping in mind all the previous considerations, it appears quite clear the great
difficulty of comparing different author works. They evaluate their architectures
on different database, by using different derivations-hardware, different amount of
subjects and metrics. Moreover, even if the architectures have been evaluated on the
same database, the validation procedures are not comparable. In Supplementary
Table B.1 we report an up-to-date overview of the available DL based scoring archi-
tectures, along with the dataset characteristics, subject type (healthy or unhealthy),
information sources (channels), DL network type (classifier) and performance. Most
of them reach very good performance in terms of overall accuracy, compared with
the inter-scorer agreement. In order to decide which classifier is better than the oth-
ers, all the classifiers should be developed using the same channels, trained on the
same dataset and validated with the same procedure.

2.5 Automated Sleep Scoring in Clinical Practice

In light of all the recent well-performing (i.e., intra-scoring agreement accuracy level)
scoring architectures, one question arises: why these automated scoring algorithms
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are not already routinely adopted in all the sleep centers? In the following points
the perspectives of ICT researchers and sleep scoring experts are summarized.

• Aversion to technology: in the health care domain, new technologies are per-
ceived often as a threat [74], especially if these new tools are going to substitute
part of the work done by human beings and if they intervene somehow in the
diagnosis.

• Usability: many tools that are on the market are not easy to use and have not
a friendly user interface [75] ; a user-centered design should be favored [76].

• Security and privacy issues: some powerful scoring service requires the up-
loading of the sleep recordings data to the cloud, i.e., Z3Score [77], or externally
to secure servers, i.e., Michele [78]. This action is often forbidden or discour-
aged inside the hospitals [79].

• Dataset biases: automatic scoring works well on healthy subjects. The ma-
jority of the ML approaches for improving sleep scoring have used a training
set of healthy adult male subjects. Consequentially applying these algorithms
to patients with sleep disorders [17], [54] or neurodegenerative disorders [52],
[80] often fails.

• Scoring rules: the actual scoring rules leave space for subjective interpretation,
leading to a high inter- and intra-scorer variability. Moreover the rules, based
on 30-second epochs, tend to consider sleep stages as distinct entities, while
sleep should be viewed as a gradual transition from a stage to the other [81].
Younes et al. [82] in a recent paper state that data interpretation performed by
only one technologist should be considered unreliable.



18 Chapter 2. Background

TABLE 2.1: Online databases overview.

Datasets Recordings Subjects Age (years) Sex % F/M
ABC (X) 132 49 48.8±9.8 43/57
CCSHS (X) 515 515 17.7±0.4 50/50
CFS (X) 730 730 41.7±20.0 55/45
CHAT (X) 1638 1232 6.6±1.4 52/48
DCSM X 255 255 - -
DOD-H X 25 25 35.3±7.5 24/76
DOD-O X 55 55 45.6±16.5 36/64
ISRUC-SG1 X 100 100 51.1±15.9 44/56
ISRUC-SG2 X 16 8 46.9±17.5 25/75
ISRUC-SG3 X 10 10 39.6±9.6 10/90
HPAP (X) 238 238 46.5±11.9 43/57
MASS-C1 (X) 53 53 63.6±5.3 36/64
MASS-C3 (X) 62 62 42.5±18.9 55/45
MESA (X) 2056 2056 69.4±9.1 54/46
MROS (X) 3926 2903 76.4±5.5 0/100
PHYS X 994 994 55.2±14.3 33/67
SEDF-SC X 153 78 58.8±22.0 53/47
SEDF-ST X 44 22 40.2±17.7 68/32
SHHS (X) 8444 5797 63.1±11.2 52/48
SOF (X) 453 453 82.8±3.1 100/0
SVUH-UCD X 25 25 50.0±9.4 16/84

ABC: The Apnea, Bariatric surgery, and CPAP [36], [37]; CCSHS: The Cleveland
Children’s Sleep and Health Study [36], [38]; CFS: The Cleveland Family Study [36],
[39]; CHAT: The Childhood Adenotonsillectomy Trial [36], [40], [41]; DCSM: The
Danish Centre for Sleep Medicine; DOD-H & DOD-O The Dreem Open Dataset –
Healthy & Obstructive [25], [42]; ISRUC: The Sleep Medicine Centre of the Hospital
of Coimbra University [43]; HPAP: The Home Positive Airway Pressure [36], [44];
MASS: The Montreal Archive of Sleep Studies [33]; MESA: The Multi-Ethnic Study
of Atherosclerosis [36], [45]; MROS: Study of Osteoporotic Fractures in Men [36],
[46], [47]; PHYS: 2018 PhysioNet/CinC Challenge by the Massachusetts General
Hospital’s Computational Clinical Neurophysiology Laboratory and the Clinical
Data Animation Laboratory [48], [49]; SEDF: The Sleep-EDF Database (Expanded)
[32], [48]; SHHS: The Sleep Heart Health Study [34], [36]; SOF: Study of Osteoporotic
Fractures [36], [50], [51]; SVUH-UCD: The St. Vincent’s University Hospital / Uni-
versity College Dublin Sleep Apnea Database [48].
Datasets directly available online are identified by X, whilst datasets that require
approval from a Data Access Committee marked by (X).
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Chapter 3

Automated sleep scoring, temporal
dependency and recurrent neural
networks

In Chapter 2 we have provided a general overview of the latest DL based archi-
tectures proposed to automatize the sleep scoring procedure. These models can be
grouped into four classification schemes (see Figure 3.1), based on the number of
epochs in input and on the number of sleep stages (i.e., sleep labels) in output:

(a) one-to-one or epoch-to-epoch. It is the simplest classification scheme. The
architecture receives in input a single PSG epoch, and it outputs a single corre-
sponding sleep stage [83]. Formally, given in input the epoch xt, the epoch-to-
epoch sleep staging approach is designed to maximize the conditional proba-
bility P(yt|xt), where yt is the t� th one-hot encoded vector of the ground-truth
label. The clear drawback is that this classification scheme does not take into
account the temporal dependency that exists between the epochs.

(b) many-to-one or sequence-to-epoch. The architecture receives in input a se-
quence of PSG epochs, and it outputs a single sleep stage corresponding to the
central epoch in the sequence [52]. Formally, given in input the sequence of L
epochs (x1, x2, ..., xL), the many-to-epoch sleep staging approach is designed to
maximize the conditional probability P(yt|x1, x2, ..., xL), where yt is the one-hot
encoded vector of the ground-truth label corresponding to the central epoch xt
in the sequence. In that case a contextual input is given to the architecture,
actually emulating what the physician does during the manual scoring proce-
dure. This classification scheme was the most popular until 2018.

(c) one-to-many or epoch-to-sequence. It is the orthogonal scheme to the com-
monly used many-to-one classification scheme. The architecture receives in
input a single PSG epoch, and it outputs simultaneously its sleep stage and the
sleep stages in its neighbourhood (i.e., the contexual output). Formally, given
in input the central epoch xt in a sequence L, the epoch-to-many sleep staging ap-
proach is designed to maximize the conditional probability P(y1, y2, ..., yL|xt),
where (y1, y2, ..., yL) is the sequence of the corresponding L one-hot encoded
vectors of the ground-truth label. The rational behind this approach, proposed
in [84], is that given the temporal dependency between the PSG epochs, we
should be able to predict the sleep stages of the neighbors only using the infor-
mation of a single epoch.

(d) many-to-many or sequence-to-sequence. The architecture receives in in-
put a sequence of PSG epochs, and it outputs the corresponding sequences
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FIGURE 3.1: Classification schemes for automatic sleep scoring.
Classification schemes for automatic sleep scoring: (a) one-to-one
or epoch-to-epoch, (b) many-to-one or sequence-to-epoch, (c) one-to-
many or epoch-to-sequence, and (d) many-to-many or sequence-to-

sequence.

of sleep stages at once [66]. Formally, given in input the sequence of L
epochs (x1, x2, ..., xL), the many-to-many sleep staging approach is designed
to maximize the conditional probability P(y1, y2, ..., yL|x1, x2, ..., xL), where
(y1, y2, ..., yL) is the sequence of the corresponding L one-hot encoded vectors
of the ground-truth label. The majority of the recently proposed sleep scoring
architectures follow this classification scheme. The main advantage is that it
exploit both the contextual input and the contextual output at once.

In the last five years, the common trend of the many-to-many based scoring ar-
chitecture was to divide the framework in three main blocks (see Figue 3.2): the
epoch processing block (EPB), the sequence processing block (SPB) and the classifi-
cation block (often a simple fully connected layer followed by a softmax function).

• The EPB is an epoch-wise feature learner block. It takes in input an epoch
xt (e.g., the raw signal or the time-frequency image) in a sequence L, where
1  t  L. The input can be a single-channel or a combination of multiple
channels. The EPB is applied independently on all the epochs in the sequence
in input, and it transforms each xt into a feature representation vector ft.
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FIGURE 3.2: Framework of the sleep scoring architectures.
The framework of the sleep scoring architecture is divided in three
blocks: the epoch processing block (EPB in grey), the sequence pro-
cessing block (SPB in light blue) and the classification block (fully

connected layer and the softmax function in light red).

• The SPB block encodes the sequence of the epoch-wise feature vectors from
EPB (f1, f2, ..., fL) into the sequence of output vectors (o1, o2, ..., oL). The pur-
pose of this block is to encode the temporal dependency between the epochs
of the sequence L.

• The classification block exploit a fully connected (FC) layer along with the soft-
max activation function to output the sleep stage probabilities ( p̂1, p̂2, ..., p̂L),
i.e., the final predictions, from the sequence of output vectors (o1, o2, ..., oL).

The idea to use a sequence processing block in cascade to an epoch processing
block comes from the need to capture the long-range dependencies between the
sleep epochs. Supratak et al. [29] were the first to add two layers of LSTM to en-
code a long sequence of epoch-wise feature vectors, (f1, f2, ..., fL), into a sequence of
output vectors, (o1, o2, ..., oL), before the softmax layer. DeepSleepNet significantly
boosted the automated scoring performance at that time. Inspired by their results,
the community started to exploit the SPB block, by using RNNs based architectures.
The aim was to enhance the long-term capacity of the classification model.

In Chapter 3 we describe experiments performed starting from the well-known
DeepSleepNet [29] architecture, state-of-the-art architecture at the time. Our main
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assumption was that the sequence processing blocks (i.e., the RNN layers) were
not effectively encoding the temporal dependencies between the epochs within
the sequence. The reason why the architectures succeed in encoding the tempo-
ral dynamic behaviour may not necessarily relate to the recurrent blocks, but to
the temporal context they were giving in input. Thus, we propose to replace the
recurrent layers with simple FC layers, or to directly remove the RNN layers and
solve the classification task by only using the CNN layers. We demonstrate that the
long-range dependencies between the sleep epochs can be encoded quite well by
also using a simple feedforward architecture.

Contributions. Our contributions can be summarized as follows: (1) we prove
how simple feed forward architectures achieve comparable performance to the re-
current neural network based ones; (2) we show that a feed forward architecture,
trained with a small temporal context (i.e., three sleep epochs), already achieves
quite good performance; (3) we attempt to introduce a new metric to better eval-
uate the ability of each network to model sequential information.

3.1 Architectures

To better understand all the experiments, the different training approaches and the
models proposed in this chapter, it is worth first spending few words about the
architecture originally proposed by Supratak et al. [29].

DeepSleepNet consists of two main parts as shown in Figure 3.3.

• The representation learning part, or what we refer to as EPB, is designed to pro-
cess 30-second single-channel EEG epochs, and it aims at learning epoch-wise
features. It consists of two parallel CNNs employing small (CNNqS) and large
(CNNqL) filters at the first layer. The small filter has been used to extract high-
time resolution patterns, while the large filter has been used to extract high-
frequency resolution patterns. The idea behind the use of the small and large
filter sizes comes from the way the signal processing experts define the trade-
off between temporal and frequency precision in the feature extraction pro-
cedure [85]. Each CNN section consists of four convolutional layers and two
max-pooling layers. Each convolutional layer executes three operations: a one-
dimensional convolution of the filters with the 30-second EEG epochs, a batch
normalization [86] and an element-wise rectified linear unit (ReLU) activation
function. The pooling layer is used to downsample the input. The filters size,
the number of filters, the stride size of each conv layer, the pooling size and the
stride size of the pooling layers are all defined in Figure 3.3.
Each 30-second EEG epoch xi is given in input to the convolutional neural net-
works CNNqS and CNNqL . The parameters q of each CNN are independently
trained, so as to return in output two feature vectors hi

S and hi
L. The outputs

are concatenated in fi, then forwarded to the sequence residual learning part.

hi
S = CNNqS(xi) (3.1)

hi
L = CNNqL(xi) (3.2)

fi = hi
S||hi

L (3.3)
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FIGURE 3.3: DeepSleepNet architecture. An overview of DeepSleep-
Net architecture consisting of two main parts: representation learning
(EPB) and sequence residual learning (SPB). Each trainable layer is a
layer containing parameters to be optimized during a training pro-

cess.

• The sequence residual learning part, or what we refer to as SPB, is designed to
process sequences of epochs, and it aims to encode the temporal information
(e.g., stage transition rules) from the sequence of epoch-wise feature vectors fi.
It consists of two layers of bidirectional-LSTM [87] and a shortcut connection.
Th bi-LSTM layer differs from the standard LSTM layer by having two LSTMs
process forward f and backward b input sequences independently.
Given the features (f1, f2, ..., fL) from the CNNs, where 1  t  L denotes the
time index of the 30-second EEG epochs, the sequence residual learning block
operates as follows:

ht
f , ct

f = LSTMqf (ht-1
f , ct-1

f , ft) (3.4)

ht
b, ct

b = LSTMqb(ht+1
b, ct+1

b, ft) (3.5)

ot = ht
f ||ht

b + FCq(ft) (3.6)
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LSTM process the sequences of features ft with the two-layers of LSTM, pa-
rameterized by qf for forward and by qb for backward directions; h and c rep-
resent the vectors of the hidden and cell states of the LSTMs; FC transforms ft
into a vector to be added to the concatenated ht

f and ht
b vectors. The hidden

size for the forward and backward LSTMs, along with the size of the FC layer
are defined in Figure 3.3.

The softmax function, together with the cross-entropy loss function H, is used
to train the model to output the logits zi and the probability for the five mutually
exclusive classes that correspond to the five sleep stages.

zi = WToi + b (3.7)

p̂i,k =
exp(zi,k)

Sjexp(zi,j)
(3.8)

H(yi, pi) =
K

Â
k=1

�yi,k · log( p̂i,k) (3.9)

where q = {W,b} are the parameters of the softmax layer, i is the i � th 30-second
EEG epoch xi in the sequence of lenght L; oi is the output of the sequence residual
learning part associated to xi; j is the index of the vector z; p̂i,k is the output proba-
bility of class k associated to xi.

DeepSleepNet is trained end-to-end via backpropagation in two steps. In the
first step the representation learning part is pre-trained epoch by epoch, i.e., epoch-to-
epoch classification scheme. Note that the two CNNs are stacked with a softmax
layer (which we will refer to as softmax*). This softmax* layer is only used in this
step to pre-train the two CNNs; its parameters are discarded at the end of the
pre-training step. In the second step, the whole architecture (the sequence residual
learning in cascade to the representation learning) is fine-tuned sequence by sequence,
i.e., sequence-to-sequence classification scheme. For a detailed description about the
network, the two-step training algorithm and the training parameters we refer the
reader to [29].

In the following we propose two architectures that differ from [29] mainly in the
second learning block SPB. They are all trained in two step, but the fine-tuning is
performed using both a sequence-to-sequence classification scheme and a sequence-
to-epoch classification scheme, for which we will use the corresponding names
SeqToSeq and SeqToEpoch. In Supplementary Figure B.1 we report the classification
scheme of the original DeepSleepNet architecture.

bi-LSTM. The first EPB block is as in [29], whilst, instead of the two bidirectional-
LSTM layers along with the shortcut connection FC, only a single layer of bidirectional-
LSTM cells is used in the SPB block. Unlike the original network, the input of the
sequential part is the sequence of the L vectors of z*

t logits stacked; where L is
the number of 30-second PSG epochs considered in a sequence, and the z*

t log-
its are the output of the first softmax* (in which its parameters are not discarded)
used during the pre-training of the first representation learning part. The fine-tuning
of the whole architecture is performed with a sequence-to-sequence classification
scheme, resulting in SeqToSeq-bi-LSTM (see Supplementary Figure B.2), and with
a sequence-to-epoch classification scheme, resulting in SeqToEpoch-bi-LSTM (see
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Supplementary Figure B.3).

FFNN (Feed Forward Neural Networks). The first EPB block is as in [29], whilst
the SPB consists of two fully connected layers, with ReLU non-linearity and batch
normalization. The FC layers have 500 and 250 hidden units respectively. The input
of the sequential part is the sequence of the L vectors of z*

t logits stacked, as in
the previous architecture. The fine-tuning of the whole architecture is performed
with a sequence-to-sequence classification scheme, resulting in SeqToSeq-FFNN (see
Supplementary Figure B.4), and with a sequence-to-epoch classification scheme, re-
sulting in SeqToEpoch-FFNN (see Supplementary Figure B.5).

All the architectures share the same pre-trained EPB block proposed in [29].
It receives as input the single PSG epoch xt and output the corresponding sin-
gle sleep stage yt. We refer to this simple architecture as EpochToEpoch-EPB (see
Supplementary Figure B.6), as the pre-training of the first block is done using the
simplest epoch-to-epoch classification scheme. In our experiments we have also
trained the EPB block using the sequence-to-epoch classification scheme, resulting
in SeqToEpoch-SPB (see Supplementary Figure B.7). Thus, the architecture receives
the contextual input of an epoch and the epoch itself, and it predicts the correspond-
ing target of the centred 30-second signal. In this case, the EPB block has to be
considered as a SPB block, as it processes the whole sequence/signal instead of only
one 30-second EEG epoch at a time.

As in [29], in all the experiments, we adopted a sequence of length L = 25, unless
otherwise specified. All the training parameters and the regularization techniques
are identical as in DeepSleepNet. The architecture has several hyperparameters (e.g.,
number of layers, number/sizes of filters, regularization parameters, training pa-
rameters etc.) which could be optimized to tune its performance on any dataset. We
decided to not systematically tune all these parameters - out of our scope - but to fix
them for all the experiments, as done in the original network.

3.2 Database

SEDF-SC-13. The Sleep-EDF Sleep Cassette, is a subset of the open source Sleep-EDF
Expanded dataset [32], [48]. In order to facilitate the comparison with the original
DeepSleepNet, we use the previous upload of the Sleep-EDF database, published in
2013 (to which we will refer as SEDF-SC-13). The database contains PSGs from 20
subjects (10 males and 10 females) aged from 25 to 34, sampled at 100 Hz. Except
for the second night of the subject 13, for all the subjects are available two whole
nights, resulting in 39 PSG recordings. Each recording includes two scalp EEG chan-
nels (Fpz-Cz and Pz-Cz), one EOG (horizontal) channel, one submental chin EMG
channel and one oro-nasal respiration channel. The recordings are manually scored
by sleep experts on 30-second epochs according to R&K scoring rules [9], resulting
in the eight classes Wake, N1, N2, N3, N4, REM, MOVEMENT and UNKNOWN. In
order to use the AASM standard [2], we have merged the N3 and N4 stages into a
single stage N3, and we have excluded the MOVEMENT and UNKNOWN classes.
In many recordings there were long wake periods before the patients went to sleep
and after they woke up. As in [29], only 30 minutes of data before and after in-
bed parts have been taken into account. In our experiments we have considered the
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single-channel EEG Fpz-Cz, with a sampling rate of 100 Hz and without any pre-
processing.

3.3 Results

3.3.1 Experiment Designs

We evaluate each model using the k-fold cross-validation scheme. We set k equal to
20, i.e., the total number of subject in the database. We used in each fold recordings
from 19 subjects to train the models, and the recordings from the left out subject to
test the trained model (i.e., leave-one-out cross validation scheme). This process is
repeated k times so that all of the recordings are tested.

3.3.2 Metrics

The per-class F1-score, the overall accuracy (Acc.), the macro-averaging F1-score
(MF1) and the Cohen’s kappa (k) have been computed from the predicted sleep
stages from all the folds to evaluate the performance of each model [88], [89].

Temporal Encoding. In order to better evaluate the ability of each network to
model sequential information, we attempt to introduce the new metric dnorm.
We noticed that misclassifications usually appear in the sleep-phase-transition prox-
imity; the networks show clear difficulties in codifying the sequential information
corresponding to transitions. It was also clear that when there is a misclassification
the second highest probability value was almost always the correct one. Indeed the
performance of all the architectures in a Top-2 classification increases in overall ac-
curacy, on average above 92%. It can be assumed that the difference between the
first max logit value and the second max logit value decreases if there is a misclassi-
fication, and increases if there is not.
The output of the last softmax layer is p̂i,k, i.e., the output probability for each class
k associated to xi (eq 3.9). We define the d parameter as the ratio between Dµ,incorrect
and Dµ,correct.

Dµ,incorrect =
Ân*

incorrect
i=1 (max( p̂i)� 2nd max( p̂i))

i
(3.10)

Dµ,correct =
Âncorrect

i=1 (max( p̂i)� 2nd max( p̂i))

i
(3.11)

d =
Dµ,incorrect

Dµ,correct
(3.12)

Dµ,incorrect is the averaged value of the differences between the max probability
and the second max probability computed on all the misclassified (n*

incorrect) epochs
where the second max probability matched the true target. Whilst, Dµ,correct is the
averaged value of the differences between the max probability and the second max
probability computed on all the correctly classified (ncorrect) epochs. In our analysis
we have considered the normalized parameter dnorm.

dnorm =
Dµ,incorrect

Dµ,correct
⇤

n*
incorrect

nincorrect
ncorrect
ntotal

(3.13)
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TABLE 3.1: Overall performance on all the experiments on SEDF-
SC-13. Training parameters, overall performances, per-class F1-score
and dnorm parameter of each architecture obtained from 20-fold cross-

validation, with best shown in bold.

Methods Training Overall Metrics Per-class F1-Score
dnormParam. Acc. MF1 k W N1 N2 N3 REM

DeepSleepNet ⇠ 24.7M 82.0% 76.9% 0.76 84.7% 46.6% 85.9% 84.8% 82.4% 0.73
SeqToSeq-bi-LSTM ⇠ 1.1M 85.2% 79.9% 0.80 88.5% 50.2% 88.4% 86.1% 86.3% 0.47

SeqToSeq-FFNN ⇠ 0.8M 82.7% 76.0% 0.76 87.5% 41.4% 86.4% 81.8% 82.9% 0.43
SeqToEpoch-bi-LSTM ⇠ 1.1M 84.9% 79.9% 0.79 87.2% 49.2% 88.6% 88.6% 86.2% 0.56

SeqToEpoch-FFNN ⇠ 0.8M 84.0% 79.1% 0.78 85.1% 50.9% 88.3% 86.9% 84.2% 0.49
EpochToEpoch-EPB ⇠ 0.6M 81.1% 75.0% 0.75 85.8% 38.5% 87.1% 86.8% 76.8% 0.51

SeqToEpoch-SPB ⇠ 1.0M 83.1% 77.3% 0.77 85.4% 44.4% 87.3% 88.1% 81.2% 0.63

3-SeqToEpoch-SPB* ⇠ 0.6M 83.9% 78.9% 0.78 87.4% 49.1% 87.7% 88.3% 82.0% 0.55

where nincorrect is the number of epochs misclassified, n*
incorrect is the number

of epochs misclassified with the second max probability matching the true target,
ncorrect is the number of epochs well classified and ntotal is the total number of classi-
fied epochs.

The d parameter lies in the interval ]0, •[, where the tendency to zero value were
supposed to denote a good sequential soft classifier, and the tendency to • value
were suposed to denote a bad sequential soft classifier. In the next subsection 3.3.3
we will explain the real meaning of this d parameter, and its close relationship with
the concept of calibrated neural networks.

3.3.3 Analysis of Experiments

In Table 3.1 we report the performances of each architecture, along with their com-
plexity - i.e., the number of parameters to be trained. The overall metrics and the
per-class F1-score are computed for each model over the 20-fold cross-validation.

SeqToSeq-bi-LSTM and SeqToEpoch-bi-LSTM, that are less complex versions of the
original DeepSleeNet (i.e., number of training parameters reduced by a factor of
22.5), achieve the best results among all the networks. The SeqToSeq classification
scheme reaches an overall accuracy of 85.2% and k equal to 0.80, whilst the SeqToE-
poch scheme reaches an overall accuracy of 84.9% and k equal to 0.79.
SeqToSeq-FFNN and SeqToEpoch-FFNN have slightly lower performance, even though
the number of parameters is about half the number of parameters for the bi-LSTM
based models. The feed forward architecture along with the SeqToEpoch classifica-
tion scheme reaches an overall accuracy of 84.0% and k equal to 0.78. The results
obtained by using only the first block, trained with the SeqToEpoch classification
scheme and a temporal context in input of only 3 epochs, are quite interesting. The
3-SeqToEpoch-SPB model reaches an overall accuracy of 83.9% and k equal to 0.78.
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3.4 Discussion

This first preliminary study sets the stage for the experiments we will go through
in the next Chapter 4, with the ultimate goal of quantifying the disagreement be-
tween the predictions given a sleep scoring algorithm and the physician’s annota-
tions. Here, we propose to simplify DeepSleepNet, an existing state-of-the-art RNN
based sleep scoring architecture. We prove how simpler feed forward architectures
achieve comparable performance to that of a recurrent neural network approach, on
a small-sized dataset (i.e., low heterogeneity between subjects). The reason why the
architectures succeed in encoding the temporal dynamic behaviour (e.g., sleep stage
transitions) may not necessarily relate to the recurrent blocks, but to the temporal
context we give as input. From these results, we can assume that the first part of the
network, i.e., the CNN based processing block, does most of the work. However,
there is still a gap to fill to reach a higher level of performance. This gap can be filled
with information related to the sequentiality, mimicking the human visual analysis
procedure (see the architecture exploited in Chapter 6.

As a result of follow-up analysis, we realized that we cannot rely on the dnorm
parameter to evaluate the ability of each method to model the sequential information
(i.e., the temporal dependency between the sleep epochs). Rather, this parameter
returns incomplete information about the calibration of each model. By definition, a
model is perfectly calibrated when the probability associated to the predicted stage
mirrors its ground truth correctness likelihood. So far, different metrics have been
proposed to evaluate the calibration of a model (e.g., ECE [90]). In our approach,
we have practically quantified a similar information, but computing the difference
between the max probability values and the second max probability values in output
from our networks. In the next Chapter 4 we will further explore this topic, we
will give more details about the calibration of a model, we will provide a potential
solution to be able to quantify the uncertainty of a sleep scoring model.
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Chapter 4

A simplified sleep scoring model
with uncertainty estimates

Most of the architectures we mention in Supplementary Table B.1 are quite com-
plex (i.e., high number of parameters to be trained and lengthy time sequences to
process - up to 12 minutes). As a rule, deep architectures with a high number of
layers and parameters need to be trained on large databases to prevent overfitting.
In different scenarios sleep datasets have a limited number of labeled PSG samples
available. Lighter architectures may be better suited if the model needs to be trained
from scratch. Besides, only two architectures [52], [67] perform the automatic sleep
scoring also providing an estimate of the model uncertainty. In [52] they use an
additional classification block-2 (i.e., multilayer perceptron in cascade to the deep
convolutional scoring architecture) to output the final sleep stage and the associated
relative confidence score. In contrast, [67] trains 16 different models and uses the
relative model variance to estimate the uncertain predictions. The common purpose
and our ultimate perspective is to quantify the level of confidence for each predic-
tion, as it could be the key to identify the misclassified sleep stages, to then send
them back to the physician for a secondary review, i.e., a closed-loop interaction
between the algorithm and the end-user.

In Chapter 4 we introduce DeepSleepNet-Lite (DSN-L), a simplified and lightweight
automatic sleep scoring architecture. It provides the predicted sleep stages along
with an estimate of their uncertainty. The major advantage is that it does not require
any additional computation over the baseline architecture to provide this estimate.

Contributions. Our contributions can be summarized as follows: (1) we show
that DSN-L achieves performance on par with most up-to-date scoring systems; (2)
we demonstrate the efficiency of label smoothing and Monte Carlo dropout sam-
pling techniques in both calibrating and enhancing the performance of our model;
(3) we propose a new conditional probability distribution, computed over the tar-
gets (i.e., our prior knowledge), to smooth the labels; (4) we prove the efficiency of
our uncertainty estimate procedure, by showing that it is able to identify the most
challenging sleep stage predictions.

4.1 DeepSleepNet-Lite

In Chapter 3 we proved how simpler feed forward architectures achieve comparable
performance to those using RNNs. We have also shown that the first CNNs based
block of the architecture, trained with a small temporal context (90-seconds) single-
channel EEG signal, does most of the work on a small-sized database. Hence, the
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FIGURE 4.1: DSN-L architecture. An overview of the representa-
tion learning architecture from [29], with our sequence-to-epoch input-

output training approach.

architecture we propose below - which we will refer as DSN-L - is the same as the
simplest 3-SeqToEpoch-SPB proposed in the previous chapter. The two architectures
mainly differ in the optimization techniques used during the training procedure. In
the following subsections we briefly describe the architecture, the training algorithm
and the regularization techniques used in our scoring system.

4.1.1 Architecture

The architecture consists of two parallel CNNs employing small (CNNqS) and large
(CNNqL) filters at the first layer. The small filter has been used to extract high-time
resolution patterns, while the large filter has been used to extract high-frequency
resolution patterns. The idea behind the use of the small and large filter sizes comes
from the way the signal processing experts define the trade-off between temporal
and frequency precision in the feature extraction procedure [85]. Each CNN section
consists of four convolutional layers and two max-pooling layers. Each convolu-
tional layer executes three operations: a one-dimensional convolution of the filters
with the 90-second EEG signal, a batch normalization [86] and an element-wise
rectified linear unit (ReLU) activation function. The pooling layer is used to down-
sample the input. The filters size, the number of filters, the stride size of each conv
layer, the pooling size and the stride size of the pooling layers are all defined in
Figure 4.1.

The 90-second single-channel EEG signal xi is given in input to the convolutional
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neural networks CNNqS and CNNqL . The parameters q of each CNN are indepen-
dently trained, so as to return in output two feature vectors hi

S and hi
L. The outputs

are concatenated in fi, then forwarded to the softmax layer.

hi
S = CNNqS(xi) (4.1)

hi
L = CNNqL(xi) (4.2)

fi = hi
S||hi

L (4.3)

The softmax function, together with the cross-entropy loss function, is used to
train the model to output the logits zi and the probability for the five mutually ex-
clusive classes that correspond to the five sleep stages.

zi = WTfi + b (4.4)

p̂i,k =
exp(zi,k)

Sjexp(zi,j)
(4.5)

where q = {W,b} are the parameters of the softmax layer, j is the index of the vec-
tor z, p̂i,k is the output probability of class k associated to x(t), the centred 30-second
signal in xi.

All the model specifications are reported in Figure 4.1, equally to the first repre-
sentation learning in [29].

The architecture is trained end-to-end via backpropagation, using the sequence-
to-epoch learning approach. The classification algorithms learn to predict the most
represented class in the training set, leading to the so called class imbalance prob-
lem. Here the least represented classes are balanced by using two techniques: (i) data
augmentation, by flipping vertically the data input (i.e., multiply by �1 the original
signal, see Figure 4.2) belonging to the least represented classes, then (ii) oversam-
pling randomly the data so that all the sleep stages are equal in number to the most
represented class. In our model, the input is a sequence of three 30-second epochs,
and the output is the corresponding target of the central epoch at time t. So, we refer
to the target of the central epoch to compute the most or least represented classes.
The model is trained using mini-batch Adam gradient-based optimizer [91] with a
learning rate lr. The training procedure runs up to a maximum number of iterations,
as long as the break early stopping condition is satisfied - further details in the next
subsection 4.1.2.

4.1.2 Regularization Techniques

Dropout. Commonly used as regularizer in CNNs, it prevents overfitting and co-
adaptation of the feature maps [92]. During the training procedure a certain number
of neurons are randomly removed, dropping units with a probability p. We fix the
probability of dropping a connection equal to 50%, i.e., p = 0.5.

Early stopping. It provides guidance on how many iterations can be run before
the model begins to overfit [93]. The training procedure should be stopped as soon
as the performance (i.e., F1-score) on the validation set is lower than it was in the
previous iteration step. However, in our experiments, before hastily stopping the
learning procedure, the algorithm runs for an additional number of iterations (by
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FIGURE 4.2: Data augmentation by EEG vertical flip. (top) 90-second
EEG raw signal. (bottom) 90-second EEG vertically flipped.

fixing the so called patience parameter). The model with the highest performance is
the one we finally save.

L2 weight decay. This technique simply adds a term to the loss function that pe-
nalizes the weight values; by doing so it avoids the exploding gradient phenomena
[94]. The lambda defines the degree of penalty and it has been set to 10-3.

4.1.3 Training Parameters

The training parameters are fixed as in [29]. The Adam optimizer’s parameters
beta1 and beta2 have been set to 0.9 and 0.999 respectively. The mini-batch size has
been set to 100. During the batch normalization procedure, the e value of 10-5 has
been added to the mini-batch variance. In order to compute the mean and variance
of the training samples, the moving average has been implemented using a fixed
decay rate value of 0.999. The learning rates parameter lr has been fixed to 10-4. The
maximum number of iterations has been set to 100, with the early stopping patience
parameter equal to 50.

The architecture has several hyperparameters (e.g., number of layers, num-
ber/sizes of filters, regularization parameters, training parameters etc.) which
could be optimized to tune its performance on any dataset. We decided not to sys-
tematically tune all these parameters - out of our scope - but to fix them for all the
experiments, as done in the original networks.

4.2 Model Calibration

Along with the estimated sleep stage, the model should also provide a calibrated
confidence - i.e., the probability associated to the predicted stage should mirror its
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ground truth correctness likelihood. We adopted label smoothing [95] to calibrate
our model. It has been shown to be a suitable technique to improve model calibra-
tion [96].

In a standard training of a neural network, the cross-entropy loss is minimized
using the hard targets yk (i.e., hot encoded targets, ‘1’ for the correct class and ‘0’ for
the other). For a network trained with label smoothing, the hard targets are weighted
with the uniform distribution 1/K (eq. 4.6), and the cross-entropy loss is minimized
using the weighted mixture of the targets (eq. 4.7).

yk
LSU = yk · (1 � a) + a/K (4.6)

H(y, p) =
K

Â
k=1

�yk
LSU · log( p̂k) (4.7)

where a is the smoothing parameter, K is the total number of classes, yk
LSU the

targets smoothed with the uniform distribution, and p̂k the softmax output proba-
bilities.

In our experiments, we introduce a new distribution to smooth the labels, by
mainly taking into account the importance in sleep scoring of the transitions from
one sleep stage to the other. The idea is to compute the conditional probability distri-
bution over the five sleep stages of all the sequences of epochs:

M = P(stage(t)|stage(t � 1), stage(t + 1)) (4.8)

where in M we have the conditional probability values for each possible combi-
nation of sequences of three sleep stages. In detail, we compute the probability to be
in a stage at time t given the previous (t � 1) and the next (t + 1) sleep stages over
the whole database. The matrix M is (K⇥K⇥K) dimensional, where K is the total
number of sleep stages.

As stated previously, the architecture takes in input a sequence of three epochs,
and outputs the corresponding target of the central epoch yk,(t). So, during the train-
ing procedure, given the knowledge of the sleep stage at time (t � 1) and the sleep
stage at time (t + 1), the hot encoded yk,(t) will be smoothed with the corresponding
conditional probability vector from M.

In Table 4.1 we report an example of the conditional probability values computed
over the sequences extracted from the SEDF-SC-13 dataset (see section 4.4), with
the label at time (t � 1) fixed in sleep stage awake. We highlight in light-green an
example of the conditional probability vector to use when we had awake W at time
(t � 1) and N1 at time (t + 1), which results in the following smoothed target:

yk
LSS = yk · (1 � a) + a · MW, K, N1 (4.9)

The cross-entropy loss is minimized using the weighted mixture of the hard
targets with these conditional probability distributions.

The smoothing parameter a for the uniform distribution and the conditional proba-
bility distribution weighting has been set to 0.1 and 0.2 respectively. These two values



34 Chapter 4. A simplified sleep scoring model with uncertainty estimates

TABLE 4.1: Conditional probability values on sleep sequences.
Conditional probability values computed over the sequences, ex-
tracted from the SEDF-SC-13 ±30mins dataset, with the label at time

(t � 1) fixed in awake. i.e., MW,K⇥K.

W(t-1) W(t+1) N1(t+1) N2(t+1) N3(t+1) R(t+1)
W(t) 0.991 0.503 0.131 0.333 0.217
N1(t) 0.008 0.495 0.581 0.000 0.109
N2(t) 0.000 0.002 0.275 0.000 0.000
N3(t) 0.000 0.000 0.006 0.667 0.000
R(t) 0.000 0.000 0.006 0.000 0.674

gave us the highest performance on both SEDF-SC-13 and SEDF-SC-18. In both, we
explored a values up to 0.5.

4.3 Monte Carlo Dropout

We exploit the dropout regularization technique to both enhance the performance
of the model and to estimate the model uncertainty. As explained above, during
the training procedure, at each iteration, dropout removes a certain number of
units within our network at random. It randomly samples a certain number of
sub-networks, so that each time the model’s architecture is slightly different. In a
standard application, dropout is used only during the training phase. At test time,
instead, all the trained neurons and connections are used - i.e., all the weights of the
whole network. The output could be interpreted as an averaging ensemble of all the
sub-networks.

We employ, for the first time in sleep staging, the Monte Carlo (MC) dropout [97],
to quantify the model uncertainty, and to further enhance the performance of the
scoring architecture. Monte Carlo refers to a specific class of algorithms that rely on
random sampling, to provide estimates and distributions of numerical quantities.
MC dropout simply consists in applying the randomized sampling even at test time.
The different sub-networks could be interpreted as Monte Carlo samples extracted
from the space of all the possible models. As a result, by applying dropout N times at
inference time (with the probability of dropping a connection p = 0.5), we would get
N different predictions. We compute the mean and the variance of the N predictions
for each sleep stage k using the following

µi,k =
ÂN

n=1 p̂n,i,k

N
(4.10)

s2
i,k =

ÂN
n=1( p̂n,i,k � µi,k)2

N
(4.11)

where p̂n,i,k is the output probability for the sleep stage k of the n-th prediction
for the input xi. The final prediction ŷi of the model will be given by max(µµµi), which
we will refer to as µmax, along with the assigned variance value s2

µmax.
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TABLE 4.2: Sleep stages on SEDF-SC-13 and SEDF-SC-18.
Number and percentage of 30-second epochs per sleep stage of the

SEDF-SC datasets with different trimming.

Datasets W N1 N2 N3 R Total
SEDF-SC-13
±30mins

8285 2804 17799 5703 7717 42308
(19.6%) (6.6%) (42.1%) (13.5%) (18.2%)

SEDF-SC-13 5907 2687 17255 5465 7647 38961
(15.2%) (6.9%) (44.3%) (14.0%) (19.6%)

SEDF-SC-18
±30mins

65951 21522 69132 13039 25835 195479
(33.7%) (11.0%) (35.4%) (6.7%) (13.2%)

SEDF-SC-18 43055 19168 64408 12042 25275 163948
(26.3%) (11.7%) (39.3%) (7.3%) (15.4%)

The uncertain predictions will be then estimated by analysing both their com-
puted mean and variance. The selection procedure of the uncertain sleep stages is
explained in detail in subsection 4.5.4. The selected uncertain predictions could be
then presented to the physician for a secondary review.

4.4 Database

SEDF-SC. The Sleep-EDF Sleep Cassette is a subset of the open source Sleep-EDF
dataset [32], [48]. The PSG data belong to 78 subjects (37 males and 41 females)
aged from 25 to 101 years. Except for the first nights of subjects 36 and 52, and for
the second night of subject 13, for all the subjects are available two whole nights,
resulting in 153 PSG recordings. Each recording includes two scalp EEG channels
(Fpz-Cz and Pz-Cz), one EOG (horizontal) channel, one submental chin EMG chan-
nel and one oro-nasal respiration channel. The recordings are manually scored by
sleep experts on 30-second epochs according to R&K scoring rules [9], resulting in
the eight classes Wake, N1, N2, N3, N4, REM, MOVEMENT and UNKNOWN. In
order to use the AASM standard [2], we have merged the N3 and N4 stages into a
single stage N3, and we have excluded the MOVEMENT and UNKNOWN classes.
In many recordings there were long wake periods before the patients went to sleep
and after they woke up. We have done experiments with the two common ways
these periods are trimmed in literature: 1) only in-bed parts are employed [98], i.e.,
from light-off time to light-on time; 2) 30 minutes of data before and after in-bed parts
are taken into account in the experiments [29]. In our experiments we have consid-
ered the single-channel EEG Fpz-Cz, with a sampling rate of 100 Hz and without
any pre-processing.

In order to facilitate the comparison with many existing DL based scoring algo-
rithms, in this work we use the last expanded version published in 2018 (to which we
will refer as SEDF-SC-18), and also the previous upload of the Sleep-EDF database
published in 2013 (to which we will refer as SEDF-SC-13). In the older upload there
were only 39 PSG recordings from 20 subjects. In Table 4.2 we report a summary of
the total number and percentage of the epochs per sleep stage.
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TABLE 4.3: Data split on SEDF-SC-13 and SEDF-SC-18.
Data split on the SEDF-SC datasets.

Datasets Size Experimental Held-out Held-out
Setup Validation Set Test Set

SEDF-SC-13 20 20-fold CV 4 subjects 1 subject
SEDF-SC-18 78 10-fold CV 7 subjects 7 subjects

4.5 Results

4.5.1 Experiment Designs

The validation procedure is in line with the state-of-the-art methods considered in
Table 4.7. In fact, we evaluate our model using the k-fold cross-validation scheme.
We set k equal to 20 for SEDF-SC-13 (leave-one-out evaluation procedure) and 10 for
SEDF-SC-18 datasets. In Table 4.3 we summarize the data split for each dataset. We
decide to further standardize the experiments by considering in each fold the same
subject IDs used in [73]. We believe that in such small datasets, the subjects involved
in the training/validation/test set may have an impact on the final results.

The following experiments are conducted:

• base. The model is trained without label smoothing.

• base+LSU. The model is trained with label smoothing using the standard 1/K
uniform distribution - i.e., the hard targets are weighted with the uniform dis-
tribution.

• base+LSS. The model is trained with label smoothing using our statistical anal-
ysis done on the sequences of sleep stages - i.e., the hard targets are weighted
with the conditional probability distribution.

These three models, differently trained, have been evaluated with and without
the MC dropout sampling technique. In subsection 4.5.3 we present the results ob-
tained for the three models, and the impact of MC dropout at inference time.

4.5.2 Metrics

The per-class F1-score, the overall accuracy (Acc.), the macro-averaging F1-score
(MF1) and the Cohen’s kappa (k) have been computed from the predicted sleep
stages from all the folds to evaluate the performance of our model [88], [89]. In our
experiments the weighted-averaging F1-score has been also reported, taking into
account also the label imbalance problem. It computes the average of the metric
weighted by the number of true instances for each label. The F1-score computed in
this way is not a realistic weighted average of the precision and recall, but it takes
into account the high imbalance between the sleep stages.

Model Calibration. We evaluated the calibration of our model using the ex-
pected calibration error (ECE) proposed in [90]. It approximates the difference in
expectation between accuracy acc and confidence con f , where with confidence it
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TABLE 4.4: DSN-L models performance. Overall performance and
calibration measure of the models obtained from 20-fold and 10-fold
cross-validation with and without MC on both SEDF-SC-13 ±30mins

and SEDF-SC-18 ±30mins datasets. Best shown in bold.

Overall Metrics Calibration
Datasets Models Acc. MF1 k F1 ECE conf

SE
D

F-
SC

-1
3

±
30

m
in

s

w
/o

M
C base 82.3% 76.6% 0.76 82.5% 0.111 93.4%

base+LSU 82.8% 77.2% 0.77 83.0% 0.023 80.5%
base+LSS 82.7% 76.4% 0.76 82.7% 0.071 89.7%

w
/M

C base 83.0% 77.1% 0.77 83.0% 0.060 89.0%
base+LSU 84.0% 78.0% 0.78 83.9% 0.055 78.5%
base+LSS 83.4% 77.0% 0.77 83.3% 0.031 86.5%

SE
D

F-
SC

-1
8

±
30

m
in

s

w
/o

M
C base 79.4% 74.5% 0.72 80.0% 0.064 85.8%

base+LSU 79.3% 74.3% 0.72 79.8% 0.020 77.4%
base+LSS 79.2% 74.4% 0.72 79.8% 0.045 83.8%

w
/M

C base 80.3% 75.3% 0.73 80.7% 0.031 83.4%
base+LSU 80.3% 75.2% 0.73 80.6% 0.047 75.6%
base+LSS 80.4% 75.3% 0.73 80.7% 0.015 81.9%

refers to the softmax output probabilities. More in detail, we first divide the pre-
dictions into M equally spaced bins (size 1/M), then for each bin we compute the
accuracy acc(Bm) and we define the average predicted probability value con f (Bm):

acc(Bm) =
1

|Bm| ·
K

Â
i2Bm

1(ŷi = yi) (4.12)

con f (Bm) =
1

|Bm| ·
K

Â
i2Bm

p̂i (4.13)

where yi and ŷi are the true and predicted labels for the sample i, Bm is the group
of samples whose predicted probability values falls into the interval Im = (m�1

M , m
M ],

and p̂i is the predicted probability value for sample i.
Then we finally compute the weighted average of the acc and con f difference of the
M bins,

ECE =
M

Â
m=1

|Bm|
n

· |acc(Bm)� con f (Bm)| (4.14)

where n is the number of samples in each bin.

Clearly, perfectly calibrated models have acc(Bm) = con f (Bm) for all m 2
{1, .., M}, resulting in ECE = 0.

4.5.3 Analysis of Experiments

In Table 4.4 we report the overall performance and the calibration measure of three
different models, with and without Monte Carlo dropout at inference time, to which
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FIGURE 4.3: F1-score and Monte Carlo Sampling. F1-score against
the number of Monte Carlo samples N of the three models (base,
base+LSU and base+LSS) evaluated on SEDF-SC-13 ±30mins dataset.
Monte Carlo sampling converges after 30 samples without further sig-

nificant improvement on the average of the three models.

we refer w/ MC and w/o MC respectively, on both SEDF-SC-13 ±30mins and SEDF-
SC-18 ±30mins datasets. We show the efficiency of label smoothing in calibrating
the model. The con f value refers to the average of all the predicted probability
values. In both LSU and LSS models, the con f probability better reflects the ground
truth correctness likelihood - i.e., accuracy value. Indeed, e.g., on the SEDF-SC-13
±30mins dataset, it results in a better ECE value 0.023 and 0.071, compared to the
higher 0.111 for the base model. The overall performance are preserved or even
improved. By using MC at test time, we show the efficiency of label smoothing and
MC techniques in both calibrating and enhancing the performance of the model. It
is quite interesting the impact of MC dropout: an increase in overall metrics and a
decrease in the average predicted probability values. This justifies a better calibrated
model by using our conditional probability distribution smoothing technique LSS - i.e.,
on the SEDF-SC-13 ±30mins dataset, ECE value equal to 0.031. In Figure 4.3 we
report the F1-score against the number of Monte Carlo samples N, evaluated over all
the experiments experiments performed on the SEDF-SC-13 ±30mins dataset. We
want to highlight how the Monte Carlo sampling outperforms the experiments done
without applying MC after approximately three samples, on the average of the three
models. On average we get a plateau after 30 samples, so we decided to set N equal
to 30 in all our experiments w/ MC.

From here on, the analysis will be limited to one of the experimented models,
i.e., the base+LSU w/ MC, on average the model with high performance on both the
SEDF-SC datasets.

In Table 4.5 we report the confusion matrix and the per-class performance of the
best of our models evaluated on SEDF-SC-13 ±30mins and SEDF-SC-18 ±30mins
respectively. The i-th row and the j-th column indicates the percentage number of
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TABLE 4.5: Confusion matrix on SEDF-SC-13 ±30mins and SEDF-
SC-18 ±30mins. Confusion matrix obtained from 20-fold and 10-
fold cross-validation on both SEDF-SC-13 ±30mins and SEDF-SC-18

±30mins datasets.

Predicted Per-class Metrics
Dataset (%) W N1 N2 N3 R Pr. Rec. F1

SE
D

F-
SC

-1
3

±
30

m
in

s

W 90.4 6.0 1.4 0.3 1.9 84.0 90.4 87.1
N1 18.6 42.6 19.2 0.8 18.8 46.5 42.6 44.4
N2 3.0 2.4 86.0 4.5 4.1 89.9 86.0 87.9
N3 1.3 0.2 7.9 90.6 0 85.9 90.6 88.2
R 3.5 5.7 7.8 0.1 82.9 82.0 82.8 82.4

Predicted Per-class Metrics
Dataset (%) W N1 N2 N3 R Pr. Rec. F1

SE
D

F-
SC

-1
8

±
30

m
in

s

W 90.0 7.5 0.6 0.2 1.7 93.0 90.0 91.5
N1 14.2 48.1 24.5 1.0 12.2 44.1 48.1 46.0
N2 0.7 8.5 80.3 5.3 5.2 85.6 80.3 82.9
N3 0.2 0.3 12.8 86.5 0.2 73.0 86.5 79.2
R 3.4 8.8 7.6 0.8 79.4 73.7 79.4 76.4

90-second EEG instances with the true label being i-th class and the predicted label
being j-th class. In bold we highlight the percentage number of instances well clas-
sified. As expected [3], the lowest performance has been obtained for the N1 sleep
stage, i.e., F1-score 44.4% and 46.0%; most of the N1 have been wrongly classified
in awake, N2 and REM. The F1-score for all the other sleep stages were in range be-
tween 82.4% and 88.2% on SEDF-SC-13 ±30mins, and between 76.4% and 91.5% on
SEDF-SC-18 ±30mins.

4.5.4 Uncertainty estimate

In order to select the uncertain instances, at first, we used the variance, i.e., s2
µmax of

the predicted probability values obtained from the N sampling. The selection proce-
dure - referred to as query procedure - simply rely on the setting of a threshold value
q%, that corresponds to the percentage number of epochs - for each PSG recording
- to select (reject) and to send potentially to the physician for a secondary review.
The epochs with the highest values of variance will be the q% selected. We also tried
to use the mean, i.e., µmax of the predicted probability values obtained from the N
sampling, to select the uncertain instances. In this case the epochs with the lowest
mean values will be the q% selected. The selected epochs are the predictions where
the averaging ensemble of the models outputs the higher uncertainty.

In Figure 4.4 we report the F1-score computed over the remaining epochs against
the percentage number of selected instances. We have fixed the q% threshold value
to 5%, because it was considered to be a reasonable number of epochs (54 on average
for each PSG recording) to select and to eventually present to the physician for a
secondary review. The results show that by using µmax in the selection procedure we
obtain higher performance. In Figure 4.5 we report, for each q% number of selected
instances, the percentage of misclassified and correctly classified epochs among the
selected ones. As illustrated, by using µ, the percentage number of misclassified
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FIGURE 4.4: F1-score after query procedure. F1-score computed over
the remaining epochs after the query procedure against the percent-
age number of epochs to select. In light green and in light blue the
F1-score performance in case the selection procedure has been done
using the variance (s2

µmax query) and the mean (µmax query) respec-
tively. The performance refers to the best of our model evaluated on

SEDF-SC-13 ±30mins dataset.

FIGURE 4.5: Percentage of selected/rejected correct/misclassified
epochs. Percentage of misclassified and correctly classified epochs
among the q% selected. In light green and in light blue the percent-
age values in case the selection procedure has been done using the
variance (s2

µmax query) and the mean (µmax query) respectively. The
performance refers to the best of our models evaluated on SEDF-SC-

13 ±30mins dataset.
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TABLE 4.6: Per-class s2
µmax and µmax on prediction w/ MC.

Per-class s2
µmax and µmax of the predicted probability values com-

puted on SEDF-SC-13 ±30mins and SEDF-SC-18 ±30mins datasets.

Datasets Total W N1 N2 N3 R
SEDF-SC-13
±30mins

s2
µmax 0.008 0.024 0.009 0.006 0.014

µmax 81.3% 60.2% 80.4% 81.7% 75.3%
SEDF-SC-18
±30mins

s2
µmax 0.005 0.015 0.009 0.006 0.013

µmax 82.9% 60.4% 74.7% 79.5% 70.4%

epochs are greater than the correctly classified up to the selection threshold q%
equal to 10%. Whilst, by using s2

µmax, the percentage number of selected epochs q%
radically decreases to 2%.

In Table 4.6 we also report the average of the per-class s2
µmax and µmax predicted

probability values, to have an overall estimate of the model uncertainty, evaluated
on both SEDF-SC-13 ±30mins and SEDF-SC-18 ±30mins datasets. As expected, the
results show that the model has more difficulty in classifying N1 and REM epochs,
while provides greater confidence in classifying W, N2 and N3 sleep stages (lower
variance and higher predicted probability values).

4.5.5 Benchmarking with SOTA

In Table 4.7 we compare our best model with the other state-of-the-art methods eval-
uated on the two versions of the SEDF-SC database. We report the results for each
experimental scenario: 1) only in-bed recordings; 2) additional 30 minutes record-
ings before and after in-bed. We have considered only the methods using DL based
architectures, raw single-channel EEG Fpz-Cz, same evaluation procedure (i.e., k-
fold cross-validation) and using independent training and test sets. We decided to
further standardize our experiments by considering in each fold the same subject
IDs used in [73]. All the results indicated by † are not directly comparable, since
they use a different set of subject IDs in their training/ evaluation/ testing proce-
dure. The sleep scoring algorithms are compared across the overall metrics (Acc.,
MF1, Cohen’s Kappa and F1-score) and the per-class F1-score. The proposed DSN-L
achieves slightly lower performance, if not on par, compared to the state-of-the-art
models on all the SEDF-SC datasets. The results confirm what we had already par-
tially observed in [7] on the SEDF-SC-13: the first EPB block from DeepSleepNet,
trained with a small temporal context in input, still succeed in solving the classi-
fication task on the small-sized database. Indeed, on both SEDF-SC-13 and SEDF-
SC-18 in-bed recordings, our model achieves an overall accuracy only below 1.3%
compared to the recent state-of-the-art XSleepNet2 [73]. We are not surprised to see
our lighter architecture to overperform DeepSleepNet: one of the reasons could be
that in [29] they have not implemented any early stopping procedure, and they save
their model only at the latest iteration step, thus not mitigating the overfitting phe-
nomenon. The number of training parameters of our lighter model are significantly
reduced, ⇠0.6M compared to the others TinySleepNet [72] ⇠1.3M, SleepEEGNet
[69] ⇠2.6M, FCNN+RNN [73] ⇠5.6M, Naive Fusion and XSleepNet2 ⇠5.8M [73] and
DeepSleepNet [29] ⇠24.7M. Nevertheless, SeqSleepNet [71] is still the network with
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TABLE 4.7: Benchmarking DSN-L with SOTA. Comparison between
our method and the other DL based automatic sleep scoring sys-
tems using raw single-channel EEG Fpz-Cz, evaluated on SEDF-SC
datasets with overall accuracy (%Acc.), macro F1-score (%MF1), Co-
hen’s Kappa (k) and % per-class F1-score. The best performance met-

rics for each dataset are indicated in bold.

Datasets Methods Training Sequences Overall Metrics Per-class F1-score
Param. of epochs Acc. MF1 k W N1 N2 N3 R

SEDF-SC-13
±30mins

FCNN+RNN [73] ⇠ 5.6M 20 81.8 75.6 0.75 89.4 44.1 84.0 84.0 76.3
DeepSleepNet [29] ⇠ 24.7M 25 81.4 75.6 0.75 83.9 43.5 85.4 84.1 81.1

DeepSleepNet [29] † ⇠ 24.7M 25 82.0 76.9 0.76 84.7 46.6 85.9 84.8 82.4
IITNet [68] † - 10 84.0 77.7 0.78 87.9 44.7 88.0 85.7 82.1
Our method ⇠ 0.6M 3 84.0 78.0 0.78 87.1 44.4 87.9 88.2 82.4

SleepEEGNet [69] † ⇠ 2.6M 10 84.3 79.7 0.79 89.2 52.2 86.8 85.1 85.0
SeqSleepNet+ [71] ⇠ 0.2M 20 85.2 78.4 0.80 90.5 45.4 88.1 86.4 81.8
Naive Fusion [73] ⇠ 5.8M 20 85.0 78.8 0.79 91.7 48.8 87.2 82.9 83.6

TinySleepNet [72] † ⇠ 1.3M 15 85.4 80.5 0.80 90.1 51.4 88.5 88.3 84.3
XSleepNet2 [73] ⇠ 5.8M 20 86.3 80.6 0.81 92.2 51.8 88.0 86.8 83.9

SEDF-SC-13

Naive Fusion [73] ⇠ 5.8M 20 80.2 74.9 0.72 77.3 47.4 85.8 84.8 79.3
DeepSleepNet [29] ⇠ 24.7M 25 82.5 76.8 0.76 80.1 47.3 87.0 85.7 83.8

DeepSleepNet [29] † ⇠ 24.7M 25 82.6 77.1 0.76 82.9 46.8 86.5 84.1 85.2
FCNN+RNN [73] ⇠ 5.6M 20 81.3 76.0 0.74 76.4 50.0 86.8 85.3 81.3
SeqSleepNet+ [71] ⇠ 0.2M 20 82.2 74.1 0.75 78.5 37.1 87.6 86.2 81.2

Our method ⇠ 0.6M 3 82.6 76.3 0.76 81.6 42.4 87.4 87.9 82.1
XSleepNet2 [73] ⇠ 5.8M 20 83.9 78.7 0.77 81.6 52.9 88.1 85.3 85.4

SEDF-SC-18
±30mins

DeepSleepNet [29] ⇠ 24.7M 25 76.9 70.7 0.69 90.8 44.8 78.5 67.9 71.3
DeepSleepNet [29] † ⇠ 24.7M 25 77.1 71.2 0.69 90.4 46.0 79.1 68.6 71.8
SleepEEGNet [69] † ⇠ 2.6M 10 80.0 73.6 0.73 91.7 44.1 82.5 73.5 76.1

Our method ⇠ 0.6M 3 80.3 75.2 0.73 91.5 46.0 82.9 79.2 76.4
Naive Fusion [73] ⇠ 5.8M 20 82.3 76.2 0.75 93.2 49.6 86.2 79.4 82.5
SeqSleepNet+ [71] ⇠ 0.2M 20 82.6 76.4 0.76 92.2 47.8 84.9 77.2 79.9
FCNN+RNN [73] ⇠ 5.6M 20 82.8 76.6 0.76 92.5 47.3 85.0 79.2 78.9

TinySleepNet [72] † ⇠ 1.3M 15 83.1 78.1 0.77 92.8 51.0 85.3 81.1 80.3
XSleepNet2 [73] ⇠ 5.8M 20 84.0 77.9 0.78 93.3 49.9 86.0 78.7 81.8

SEDF-SC-18

DeepSleepNet [29] ⇠ 24.7M 25 76.0 72.2 0.68 88.1 45.8 79.7 74.3 72.9
DeepSleepNet [29] † ⇠ 24.7M 25 76.6 73.0 0.69 88.3 46.1 79.9 76.2 74.4
SeqSleepNet+ [71] ⇠ 0.2M 20 79.0 74.6 0.71 83.2 46.8 85.5 76.3 81.0

Our method ⇠ 0.6M 3 79.0 75.1 0.72 89.3 46.9 83.3 78.9 77.1
Naive Fusion [73] ⇠ 5.8M 20 79.1 75.1 0.71 83.9 47.8 85.4 78.4 79.8
FCNN+RNN [73] ⇠ 5.6M 20 79.3 75.1 0.71 84.2 49.1 85.2 76.8 80.4
XSleepNet2 [73] ⇠ 5.8M 20 80.3 76.4 0.73 85.2 49.4 86.0 79.8 81.7

the lowest number of parameters ⇠0.2M. We did not report the number of training
parameters for IITNet [68] since it was not available in literature.

4.5.6 Benchmarking among our methods

In Table 4.8 we report the results of our best model evaluated on the two versions
of the SEDF-SC database - in both experimental scenarios. The outcomes refer to
the performance of the model evaluated before the selection procedure and after the
selection procedure, by using s2

µmax and µmax query values. We report the results
obtained after the selection procedure on both the kept and rejected set of epochs.
As a consequence of what we have observed in Figure 4.5, on both SEDF-SC-13 and
SEDF-SC-18, the model shows an increase in performance over the kept epochs, and
a significant decrease on the rejected epochs (below 50% by using µmax query). These
results highlight the efficiency of the query procedure to select a larger number of
misclassified epochs among the selected one. The best performance for each dataset
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TABLE 4.8: Benchmarking DSN-L after query procedure w/ MC.
Comparison among our methods using s2

µmax and µmax query selec-
tion procedures (q% threshold value fixed to 5%), evaluated on SEDF-
SC datasets with overall accuracy (%Acc.), macro F1-score (%MF1),
Cohen’s Kappa (k), weighted-averaging F1-score (%F1) and % per-
class F1-score. The best performance metrics for each dataset are in-

dicated in bold.

Datasets Evaluated Overall Metrics Per-Class F1-Score
Epochs Acc. MF1 k F1 W N1 N2 N3 R

SEDF-SC-13
±30mins

- all 84.0 78.0 0.78 83.9 87.1 44.4 87.9 88.2 82.4

s2
µmax

kept 85.7 77.9 0.80 85.2 88.6 39.6 88.9 88.5 84.2
rejected 53.0 47.5 0.36 52.4 38.7 54.9 53.3 32.3 58.1

µmax
kept 86.1 79.6 0.81 86.0 89.1 45.7 89.4 89.0 84.8

rejected 44.7 43.4 0.28 44.8 42.8 39.3 49.2 37.9 47.8

SEDF-SC-13

- all 82.6 76.3 0.76 82.4 81.6 42.4 87.4 87.9 82.1

s2
µmax

kept 84.3 76.4 0.78 83.8 83.5 37.9 88.4 88.3 83.6
rejected 50.0 45.2 0.32 49.4 39.6 51.9 47.2 30.6 56.8

µmax
kept 84.5 77.8 0.78 84.4 83.6 43.5 88.8 88.7 84.4

rejected 45.6 45.7 0.29 45.8 45.9 37.6 52.2 49.3 43.5

SEDF-SC-18
±30mins

- all 80.3 75.2 0.73 80.6 91.5 46.0 82.9 79.2 76.4

s2
µmax

kept 81.7 75.9 0.75 81.8 92.3 45.6 84.0 79.9 77.5
rejected 55.2 51.0 0.40 54.4 49.9 49.0 48.1 39.5 68.6

µmax
kept 82.3 76.7 0.76 82.5 92.6 47.1 84.4 80.1 79.4

rejected 42.8 41.8 0.24 43.0 44.3 39.4 45.8 35.6 43.8

SEDF-SC-18

- all 79.0 75.1 0.72 79.3 89.3 46.9 83.3 78.9 77.1

s2
µmax

kept 80.2 75.8 0.73 80.4 90.0 46.9 84.3 79.8 77.8
rejected 57.1 52.1 0.42 56.4 48.9 47.7 50.7 41.4 71.7

µmax
kept 80.9 76.7 0.74 81.2 90.7 48.0 84.7 79.8 79.7

rejected 42.4 41.1 0.23 42.6 41.3 39.7 44.9 34.6 44.9

are indicated in bold. We obtain an overall accuracy equal to 86.1% on SEDF-SC-13
±30mins (84.5% on in-bed only) and equal to 82.3% on SEDF-SC-18 ±30mins 80.9%
on in-bed only).

4.6 Discussion

DSN-L achieves performance slightly lower, if not on par, compared to the existing
state-of-the-art methodologies evaluated on the SEDF-SC databases.
Beside being trained on a small number of parameters, our method does not require
any extra resources to buffer the sequences in input, since it processes sequences of
only 90-seconds EEG. Therefore, we may assume that an automatic sleep scoring
system does not necessarily have to encode such long temporal structures, rather
intrinsic patterns of short-term PSG recordings may be sufficient. The Monte Carlo
dropout technique allows us to enhance the performance of the architecture, and,
at the same time, to identify a relevant number of misclassified epochs among the
ones selected during the query procedure. The major advantage of the proposed
approach is that it simultaneously enhance the performance of the architecture and
it provides an estimate of the model uncertainty by exploiting existing layers of the
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architecture. Unlike the existing confidence estimation algorithms for sleep scor-
ing [52], [67], the proposed uncertainty estimate procedure is easy to implement
and it does not require any additional computation over the baseline architecture.
Moreover, it produces interpretable outputs, i.e., mean and variance of the predicted
probability values. Whilst, a clear disadvantage of the Monte Carlo dropout ap-
proach - as for other ensemble learning based algorithms - is that it needs to be
executed N times, obviously increasing the evaluation time by N. However, in a
real-time application, it may still be a valid solution because the evaluation of a
single sequence takes only a few milliseconds.

The idea to train the model by smoothing the labels through the conditional prob-
ability distribution is interesting, however the results obtained in subsection 4.5.3
Table 4.4 should be further investigated. How this prior knowledge is affecting
the learning procedure is unclear. Even if with this technique we succeed to better
calibrate our network, we do not equally succeed in obtaining higher performance
using it in combination with our query procedure. In addition, unlike what we
expected, it is not always the case that a better calibrated architecture leads to a
better estimate of the model uncertainty. A model with a lower ECE value (see
Table 4.4) does not always enable the detection of a higher number of percentage
of misclassified epochs (see Supplementary Tables B.2 and B.3). This last statement
will be further investigated in the next Chapter 5.

As a result of follow-up analysis, we realized that the proposed uncertainty
estimate is equally efficient in identifying the misclassified epochs, even with a
baseline/standard query selection procedure (i.e., w/o MC, the predicted probability
values max(p̂̂p̂pi) are used to select the uncertain instances, see the high values - > 50%
in percentage of misclassified epochs detected in Table B.2).

Although the proposed simple feed forward architecture has proven to be as
efficient as RNNs based architectures, we cannot generalize concluding that by us-
ing only this first representation learning block we will reach equally good results
on larger databases. As a result of further experiments carried out on larger and
more heterogeneous databases (e.g., PHYS [48], [49] and SHHS [34], [36]), we can
state that these observations are mainly valid on small-sized dataset (i.e., low het-
erogeneity between subjects). DSN-L has a low capacity, i.e., low number of training
parameters, hence is less prone to overfitting on a small dataset. Therefore the need
to further investigate its robustness on larger database. It would be also interesting
to simulate the query procedure on the recent state-of-the-art architectures to assess
its benefit on them. In Chapter 6 we will test the proposed uncertainty estimate pro-
cedure, exploiting the model ensembling and the label smoothing techniques on a
powerful and recently proposed state-of-the-art architecture.
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Chapter 5

Exploitation of the multi-scored
databases in automated sleep
scoring

Most of the existing automated sleep scoring systems are trained using labels anno-
tated by a single scorer, whose subjective evaluation is transferred to the model. The
first remarkable exception comes from [67], where they consider recordings scored
by six different physicians [99]. The scoring algorithm was trained on the six-scorer
consensus (i.e., based on the majority vote weighted by the degree of consensus from
each physician, see section 5.2). In [25] the Dreem group introduced two publicly-
available datasets scored by five sleep physicians. Similarly, they used the scorer
consensus to train their automated scoring system. It has been shown that the per-
formance of an automated sleep scoring system is on-par with the scorer consensus
[25], [67], and mainly that their best scoring algorithm is better than the best human
scorer - i.e., the scorer with the higher consensus among all the physicians in the
group.

Although they both considered the knowledge from the multiple scorers - by
averaging their labels and by training their algorithm on the averaged consensus -
they still trained the algorithm on a single one-hot encoded label. Indirectly, they
are still transferring the best scorer’s subjectivity into the model, and they are not
explicitly training the model to adapt to the consensus of the group of scorers.

In Chapter 5 we train our DeepSleepNet-Lite (DSN-L) architecture and the
lightweight SimpleSleepNet (SSN) architecture proposed in [25] on three open-
access multi-scored sleep datasets. We consider the multiple-labels in the training
procedure, i.e., the annotations of all the physicians are taken into account at the
same time. First we assess the performance of both scoring systems trained with
the scorer consensus, and compare it to the performance of the individual scorer-
experts. Then we exploit label smoothing along with the soft-consensus distribution
to insert the multiple-knowledge into the training procedure of the models and
to better calibrate the scoring architectures. We quantify the similarity between
the hypnodensity-graph generated by the models - trained with and without label
smoothing - and the hypnodensity-graph generated by the scorer consensus. We
finally further analyze the ability of the uncertainty estimate and query procedure,
proposed in Chapter 4, to identify the most challenging sleep stage predictions on
our calibrated DSN-L, on both the model trained with and without smoothing their
labels, whilst using a soft-consensus distribution. We aim at exploring if with a bet-
ter calibrated model (i.e., the predicted probability value p̂ mirrors its ground truth
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correctness likelihood) we are able to detect a higher number of misclassified epochs.

Contributions. Our contributions can be summarized as follows: (1) we demon-
strate the efficiency of label smoothing along with the soft-consensus distribution
in both calibrating and enhancing the performance of both DSN-L and SSN; (2) we
show how the model can better resemble the scorer group consensus, leading to
a similarity increase between the hypnodensity-graph generated by the model and
the hypnodensity-graph generated by the scorer consensus; (3) we prove the effi-
ciency of the query procedure in detecting the most challenging sleep epochs, and
we found that with a better calibrated model we are not always able to better detect
the misclassified epochs.

5.1 Architectures

We run our experiments on both DSN-L architecture (see subsection 4.1.1) and SSN
architecture [25].

DSN-L has been already described in detail in the previous chapter. Below, we
briefly describe the SSN architecture. For further details we refer the reader to [25].

SSN consists of two main parts as shown in Figure 5.1. The first part of the
architecture is inspired by [66], whilst the second part that devises the sequence
dependencies, is inspired by [29].

• The epoch encoder part, or what we refer to as EPB, is designed to process 30-
second multi-channel EEG epochs, and it aims at learning epoch-wise fea-
tures. The EPB block consists of four modules: (1) spectrogram, (2) signals
and frequencies reduction, (3) GRU with attention and (4) positional embed-
ding. In (1) the short-term Fourier transform is computed on each prepro-
cessed epoch, resulting in a time-frequency image S 2 RC,T,N, where C is
the number of channels, T is the number of time-steps and N the number of
frequency bins. In (2) independent linear projections are applied on the fre-
quencies and channels/signals axis to project RC,T,N into Rc,T,n, where c  C
and n  N are the linearly reduced channels and frequencies respectively. In
(3) the reshaped RT,c,n is the input of the GRU block and the attention layer
(implemented as in [100]), and the output is the representation of the sleep
epoch in R2m1, where m1 are the hidden units of the GRU layer. In (4) they ex-
ploit the positional embedding approach recently proposed in [101] to include
the whole night PSG context of each epoch in the following sequence encoder
block. First, they build a vector v = [it

epoch, it,30
cycle, ..., it,150

cycle] 2 R6 for each
epoch, where it

epoch = t
1200 is the epoch index and it,l

cycle = cos( tp
l ) with l in

[30, 60, 90, 120, 150] are the cyclic indexes. The vector v is then projected us-
ing the Linear+Relu layer to output the positional embedding it of each epoch.
Finally, it is concatenated with the output of the attention layer to obtain the
epoch representation at 2 R2m1+6.

• The sequence encoder part, or what we refer to as SPB, is designed to process se-
quences of epochs, and it aims to encode the temporal information (e.g., stage
transition rules). The SPB block consists of two layers of bidirectional GRU
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FIGURE 5.1: SSN architecture. An overview of the SSN architecture
from [25]. ht-1, h0t-1 represent the hidden states of the GRU layers from
the previous epoch of the sequence and ht+1, h0t+1 the hidden states of
the GRU layers from the next epoch of the sequence. at is the embed-

ding of the current epoch.

with skip-connections (SkipGRU) and the softmax classification layer. The se-
quence of epochs a1, ..., at is fed to the SPB block to output for each epoch the
sleep stage probabilities p̂k 2 R5.

The softmax function, together with the cross-entropy loss function H, is used to
train the model to output the probabilities p̂k for the five mutually exclusive classes
K that correspond to the five sleep stages. The architecture is trained end-to-end via
backpropagation, using the sequence-to-sequence learning approach. The model
is trained using mini-batch Adam gradient-based optimizer [91] with a learning
rate lr. The training procedure runs up to a maximum number of iterations (i.e.,
100 iterations), as long as the break early stopping condition is satisfied (i.e., the
validation F1-score stopped improving for more than 15 epochs; the model with
the best validation F1-score is used at test time). All the training parameters (e.g.,
adam-optimizer parameters beta1 and beta2, mini-batch size, learning rate etc.) are
all set as stated in [25].

The architecture has several hyperparameters (e.g., number of layers, num-
ber/sizes of filters, regularization parameters, training parameters etc.) which
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could be optimized to tune its performance on any dataset. We decided to not sys-
tematically tune all these parameters - out of our scope - but to fix them for all the
experiments, as done in the original networks.

5.2 Scorer Consensus

Inspired by [25], [67], we evaluate the performance of the sleep scoring architec-
tures, as well as the performance of each physician, using the consensus among the
five/six different scorers. The majority vote from the scorers has been computed -
i.e., we assign to each 30-second epoch the most voted sleep stage among the physi-
cians. In case of ties, we consider the label from the most reliable scorer. The most
reliable scorer is the one that is frequently in agreement with all the others. We use
the So f t � Agreement metric proposed in [25] to rank the reliability of each physi-
cian, and to finally define the most reliable scorer. We denote with J the total number
of scorers and with j the single-scorer. The one-hot encoded sleep stages given by
the scorer j are: ŷj 2 [0, 1]K⇥T, where K is the number of classes, i.e., K = 5 sleep
stages, and T is the total number of epochs. The probabilistic consensus ẑj among
the J � 1 scorers (j excluded) is computed using the following:

ẑj =
ÂJ

i=1 ŷi[t]
max ÂJ

i=1 ŷi[t]
8t; i 6= j (5.1)

where t is the t-th epoch of T epochs and ẑj 2 [0, 1]K⇥T, i.e., 1 is assigned to a
stage if it matches the majority or if it is involved in a tie. The So f t � Agreement is
then computed across all the T epochs as:

So f t � Agreementj =
1
T

T

Â
t=0

ẑj[yj] (5.2)

where ẑj[yj] denotes the probabilistic consensus of the sleep stage chosen by the
scorer j for the t-th epoch. So f t � Agreementj 2 [0, 1], where the zero value is as-
signed if the scorer j systematically scores all the annotations incorrectly compared
to the others, whilst 1 is assigned if the scorer j is always involved in tie cases or
in the majority vote. The So f t � Agreement is computed for all the scorers, and the
values are sorted from the highest - high reliability - to the lowest - low reliability.
The So f t � Agreement is computed for each patient, i.e., the scorers are ranked for
each patient, and in case of a tie the top-1 physician will be the one used for that
patient.

5.3 Label smoothing with Soft-Consensus

The predicted sleep stage for each 30-second epoch x(t) comes with a probability
value p̂i. As explained in the previous chapters, the probability value associated
with the predicted sleep stage should mirror its ground truth correctness likelihood.
When this happens, we can state that the model is well calibrated, or that the model
provides a calibrated confidence measure along with its prediction [102]. From the
previous chapter we also learned that label smoothing [95] has been shown to be a
suitable technique to improve the calibration of the model.

By default, the cross-entropy loss function is computed between the prediction
pi and the target yi (i.e., the one-hot encoded sleep stages, 1 for the correct class
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and 0 for all the other classes). When the model is trained with the label smoothing
technique, the hard target is smoothed with the standard uniform distribution 1/K
(eq. 5.3). Thus, the cross-entropy loss function (eq. 5.4) is minimized by using the
weighted mixture of the target yi,k

LSU.

yi,k
LSU = yi,k · (1 � a) + a/K (5.3)

H(yi, pi) =
K

Â
k=1

�yi,k
LSU · log( p̂i,k) (5.4)

where a is the smoothing parameter, K is the number of sleep stages, yi,k
LSU the

weighted mixture of the target and p̂i,k the output of the softmax layer with the
predicted probability values.

In our experiments, we exploit the label smoothing technique to insert the knowl-
edge from the multiple-scorers in the learning process. We propose to use the So f t�
Consensus (eq. 5.5) as our new distribution to smooth the hard target yi,k.

So f t � Consensusi =
#(Yi = yi,k)

M
(5.5)

where Yi is the set of observations - i.e., annotations given by the different physi-
cians - for the i-th epoch, k is the class index, M is the number of observations and
# is the cardinality of the set (Yi = yi,k). In simple words, the probability value for
each sleep stage k is computed as the sum of its occurrences divided by the total
number of observations.

So f t � Consensusi 2 [0, 1]1⇥K is the one-dimensional vector that we use to
smooth the hard target (eq. 5.6), and then minimize the cross-entropy loss function
(eq. 5.7).

yi,k
LSSC = yi,k · (1 � a) + a · So f t � Consensusi,k (5.6)

H(yi, pi) =
K

Â
k=1

�yi,k
LSSC · log( p̂i,k) (5.7)

As an example, consider the following set of observations Yi = [W, W, W, N1, N2]
given by five different physicians for the i-th epoch. By applying (eq. 5.5) and
(eq. 5.6) we obtain the following yi,k

LSSC smoothed hard-target:

So f t � Consensusi,k = [ p̂W = 3/5, p̂N1 = 1/5, p̂N2 = 1/5, p̂N3 = 0/5, p̂R = 0/5]

So f t � Consensusi,k = [0.6, 0.2, 0.2, 0, 0]

yi,k
LSSC = yi,k · (1 � a) + a · So f t � Consensusi,k = [0.8, 0.1, 0.1, 0, 0]

with the one-hot encoded target yi,k = [1, 0, 0, 0, 0] and a = 0.5.

We perform a simple grid-search to set the smoothing hyperparameter a. When
the model is trained with the labels smoothed by the uniform distribution a 2 (0, 0.5]
with step 0.1. Extreme values are not considered as for a = 0 the model is trained
using the standard hot-encoding vector; whilst for values higher than 0.5, e.g., a = 1,
the model would be trained using mainly/only the uniform distribution 1/K for
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each sleep stage. When the model is trained with the labels smoothed by the So f t �
Consensus distribution a 2 (0, 1] with step 0.1. In the latter case we also investigate
an a value equal to 1 to evaluate the full impact of the consensus distribution on the
learning procedure.

5.4 Databases

We use the IS-RC (Inter-scorer Reliability Cohort) introduced in [99] to assess the
inter-scorer reliability among different sleep centers and the two publicly available
databases introduced in [25] DOD-H (Dreem Open Dataset - Healthy) and DOD-O
(Dreem Open Dataset - Obstructive).

IS-RC. The dataset contains 70 recordings (0 males and 70 females) from patients
with sleep-disordered breathing aged from 40 to 57. The recordings were collected
at the University of Pennsylvania. Each recording includes the EEG derivations
C3-M2, C4-M1, O1-M2, O2-M1, one EMG channel, left/right EOG channels, one
ECG channel, nasal airway pressure, oronasal thermistor, body position, oxygen
saturation and abdominal excursion. The recordings are sampled at 128 Hz. We
only consider the single-channel EEG C4-M1 to train our DSN-L architecture, and
we use multi-channel EEG, EOG, EMG and ECG to train the SSN architecture. A
band-pass Chebyshev IIR filter is applied between [0.3, 35] Hz. Each recording is
scored by six clinicians from five different sleep centers (i.e., University of Penn-
sylvania, University of Wisconsin at Madison, St. Luke’s Hospital (Chesterfield),
Stanford University and Harvard University) according to the AASM rules [2]. The
dataset contains the following annotations W, N1, N2, N2, R, and NC, where NC is
a not classified epoch. Some epochs are not scored by all the six physicians, and even
for some of them we don’t have any annotation (i.e, NC). We decided to remove the
epochs classified by all the scorers as NC. Epochs with less than six annotations are
equally taken into account to avoid excessive data loss.

DOD-H. The dataset contains 25 recordings (19 males and 6 females) from
healthy adult volunteers aged from 18 to 65 years. The recordings were collected at
the French Armed Forces Biomedical Research Institute’s (IRBA) Fatigue and Vig-
ilance Unit (Bretigny-Sur-Orge, France). Each recording includes the EEG deriva-
tions C3-M2, C4-M1, F3-F4, F3-M2, F3-O1, F4-O2, O1-M2, O2-M1, one EMG channel,
left/right EOG channels and one ECG channel. The recordings are sampled at 512
Hz. DOD-O. The dataset contains 55 recordings (35 males and 20 females) from
patients suffering from obstructive sleep apnea (OSA) aged from 39 to 62 years. The
recordings were collected at the Stanford Sleep Medicine Center. Each recording
includes the EEG derivations C3-M2, C4-M1, F4-M1, F3-F4, F3-M2, F3-O1, F4-O2,
FP1-F3, FP1-M2, FP1-O1, FP2-F4, FP2-M1, FP2-O2, one EMG channel, left/right
EOG channels and one ECG channel. The recordings are sampled at 250 Hz. We
only consider the single-channel EEG C4-M1 to train our DSN-L architecture, and
we use all the available channels to train SSN architecture, on both DOD-H and
DOD-O. As in [25], a band-pass Butterworth IIR filter is applied between [0.4, 18]
Hz to remove residual PSG noise, and the signals are resampled at 100 Hz. The sig-
nals are then clipped and divided by 500 to remove extreme values. The recordings
from both DOD-H and DOD-O datasets are scored by five physicians from three dif-
ferent sleep centers according to the AASM rules [2]. DOD-H and DOD-O contain
the following annotations W, N1, N2, N3, R, and NC, where NC is a not classified
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TABLE 5.1: Sleep stages on IS-RC, DOD-H and DOD-O.
Number and percentage of 30-second epochs per sleep stage for the

IS-RC, DOD-H and DOD-O datasets.

Datasets W N1 N2 N3 R Total

IS-RC 24517 3773 40867 3699 11475 84331(29.1%) (4.5%) (48.5%) (4.4%) (13.6%)

DOD-H 3075 1463 12000 3442 4685 24665(12.5%) (5.9%) (48.7%) (14.0%) (19.0%)

DOD-O 10520 2739 26213 5617 8147 53236(19.8%) (5.1%) (49.2%) (10.6%) (15.3%)

epoch. All the scorers agree about the NC epochs (100% of agreement). Therefore,
all of them are removed from the data. Unlike the previous IS-RC database, for each
epoch five annotations are always available.

In Table 5.1 we report a summary of the total number and percentage of the
epochs per sleep stage for the DOD-H, DOD-O and IS-RC datasets.

TABLE 5.2: Data split on the IS-RC, DOD-H and DOD-O datasets.

Datasets Size Experimental Held-out Held-out
Setup Validation Set Test Set

IS-RC 70 10-fold CV 13 subjects 7 subject
DOD-H 25 25-fold CV 6 subjects 1 subjects
DOD-O 55 10-fold CV 12 subjects 6 subjects

5.5 Results

5.5.1 Experiment Designs

We evaluate DSN-L and SSN using the k-fold cross-validation scheme. We set k
equal to 10 for IS-RC, 25 for DOD-H (leave-one-out evaluation procedure) and 10
for DOD-O datasets. In Table 5.2 we summarize the data split for each dataset.

The following experiments are conducted on both DSN-L and SSN models for
each dataset:

• base. The models are trained without label smoothing.

• base+LSU. The models are trained with label smoothing using the standard
1/K uniform distribution - i.e., the hard targets (scorer consensus) are weighted
with the uniform distribution.

• base+LSSC. The models are trained with label smoothing using the proposed
So f t � Consensus - i.e., the hard targets (scorer consensus) are weighted with
the soft-consensus distribution.
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FIGURE 5.2: Hypnogram. Discrete sleep stage values for each 30-
second epoch of a patient from IS-RC. (top) Majority vote from the
scorers labels. (bottom) Predicted labels from the DSN-L base+LSSC

based model.

These models, differently trained, have been evaluated with and without us-
ing the MC dropout ensemble technique. In Tables 5.4 and 5.5 subsection 5.5.3 we
present the results obtained for each experiment on both DSN-L and SSN evaluated
on IS-RC, DOD-H and DOD-O datasets.

5.5.2 Metrics

The per-class F1-score, the overall accuracy (Acc.), the macro-averaging F1-score
(MF1), the weighted-averaging F1-score (F1) - i.e., the metric is weighted by the
number of true instances for each label, so as to consider the high imbalance be-
tween the sleep stages - and the Cohen’s kappa (k) have been computed from the
predicted sleep stages from all the folds to evaluate the performance of our model
[88], [89].

Model Calibration. We evaluated the calibration of our model using the stan-
dard ECE value as in subsection 4.5.2. Perfectly calibrated models have acc(Bm) =
con f (Bm) for all m 2 {1, .., M}, resulting in ECE = 0 (eq. 4.14).

Hypnodensity-graph. The hypnodensity-graph is an efficient visualization tool
introduced in [67] to plot the probability distribution over each sleep stage for each
30-second epoch over the whole night. Unlike the standard hypnogram sleep cycle
visualization tool, it shows the probability of occurrence of each sleep stage for each
30-second epoch; so it is not limited to the discrete sleep stage value (see Figure 5.2
and Figure 5.3). In our analysis we have used the hypnodensity-graph to display
both the model output - i.e., the softmax output probability vectors p̂i,k - and the
multi-scorer So f t � Consensusi,k probability distributions.

The Averaged Cosine Similarity (ACS) is used to quantify the similarity between
the hypnodensity-graph generated by the model and the hypnodensity-graph gen-
erated by the So f t � Consensus. The ACS has been computed as follows:
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FIGURE 5.3: Hypnodensity-graph. Cumulative probabilities of each
sleep stage for each 30-second epoch of a patient from IS-RC. (top)
Soft-consensus from the scorers labels. (bottom) Predicted probabili-

ties from the DSN-L base+LSSC based model.

ACS =
1
N

N

Â
i=1

So f t � Consensusi,k · p̂i,k

k So f t � Consensusi,k k · k p̂i,k k (5.8)

where N is the number of epochs in the whole night, k . k is the norm computed
for the predicted probability vector p̂i,k and the So f t � Consensusi,k ground-truth
vector for the i-th epoch. Thus, the cosine-similarity is averaged across all the epochs
N to obtain our averaged ACS unique score of similarity. The cosine-similarity val-
ues may range between 0, i.e., high dissimilarity, and 1, i.e., high similarity between
the vectors.

5.5.3 Analysis of Experiments

In Table 5.3 we first report for all the multi-scored databases IS-RC, DOD-H and
DOD-O, the overall scorers performance and their So f t � Agreement (SA), i.e., the
agreement of each scorer with the consensus among the physicians. On IS-RC we
have a lower inter-scorer agreement (i.e., SA equal to 0.69 and F1-score 69.7%) com-
pared to both DOD-H and DOD-O (i.e., SA equal to 0.89 and 0.88, with an F1-score
88.1% and 86.4% respectively). Consequently, we expect a higher efficiency of our
label smoothing with soft-consensus approach (base+LSSC) on the experiments con-
ducted on the IS-RC database. The lower the inter-scorer agreement, the lower the
performance of a model trained with the one-hot encoded labels (i.e., the majority
vote weighted by the degree of consensus from each physician).

In Tables 5.4 and 5.5 we report the overall performance, the calibration measure
and the hypnodensity similarity measures of the three different DSN-L and SSN
models on the three databases IS-RC, DOD-H and DOD-O. The performance of the
DSN-L base models are higher compared to the performance averaged among the
scorers on the IS-RC database, but not on the DOD-H and DOD-O databases. In
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TABLE 5.3: Scorers performance. Scorers performance on IS-RC,
DOD-H and DOD-O datasets with So f t � Agreement (SA), over-
all accuracy (%Acc.), macro F1-score (%MF1), Cohen’s Kappa (k),
weighted-averaging F1-score (%F1) and % per-class F1-score. The
scorer with the best performance (i.e., high agreement with the con-

sensus among the six different physicians) is indicated in bold.

Overall Metrics Per-Class F1-Score
Datasets Scorers SA Acc. MF1 k F1 W N1 N2 N3 R

IS-RC

Scorer-1 0.79 82.9 69.4 0.72 83.7 82.5 47.2 87.3 48.1 89.9
Scorer-2 0.81 89.3 72.6 0.82 89.1 90.7 57.7 92.5 32.4 89.9
Scorer-3 0.53 40.8 26.5 0.11 40.9 29.5 14.7 54.7 18.1 15.4
Scorer-4 0.52 38.9 26.0 0.12 40.6 28.3 14.6 54.3 15.5 17.3
Scorer-5 0.70 73.7 61.5 0.63 75.8 88.6 36.7 70.3 25.8 86.3
Scorer-6 0.79 87.2 77.1 0.81 88.2 92.5 54.3 89.4 59.8 89.6

Average 0.69 68.8 55.5 0.53 69.7 68.7 37.5 74.8 33.3 64.7

DOD-H

Scorer-1 0.88 82.3 77.1 0.75 83.1 86.3 44.0 85.7 83.6 85.9
Scorer-2 0.91 83.7 78.5 0.77 84.3 87.4 47.9 87.0 82.7 87.6
Scorer-3 0.92 84.5 79.5 0.78 84.9 87.9 50.6 87.4 82.0 89.4
Scorer-4 0.84 83.1 77.6 0.76 83.5 83.3 47.6 86.2 81.5 89.6
Scorer-5 0.92 83.7 78.2 0.77 83.9 83.8 48.5 86.8 81.8 89.8

Average 0.89 83.5 78.2 0.76 83.9 85.7 47.7 86.6 82.3 88.5

DOD-O

Scorer-1 0.87 80.7 72.6 0.72 80.1 87.6 38.3 83.2 67.1 86.9
Scorer-2 0.87 80.7 73.6 0.72 80.7 87.7 41.6 83.0 67.3 86.9
Scorer-3 0.88 80.9 73.5 0.72 80.8 88.0 41.7 83.3 66.0 88.7
Scorer-4 0.88 81.2 74.0 0.73 81.3 88.2 42.7 83.9 66.3 88.7
Scorer-5 0.91 81.8 74.7 0.74 82.0 88.5 43.8 84.5 67.5 89.0

Average 0.88 81.1 73.7 0.73 81.0 88.0 41.6 83.6 66.8 88.3

contrast, the performance of the SSN base models are always higher than the per-
formance averaged among the scorers on all the databases. We highlight that the
results we report for SSN on DOD-H and DOD-O are slightly different compared
to the one reported in [25]. We decided to not compute a weight (from 0 to 1) for
each epoch, based on how many scorers voted for the consensus. We do not balance
the importance of each epoch when we compute the above mentioned metrics. We
think it is unfair to constrain any metrics based on the amount of voting physicians.
Overall, the results show a significant improvement in performance on all the
databases (i.e overall accuracy, MF1-score, Cohen’s kappa (k) and F1-score) from
the baseline base and the label smoothing with the uniform distribution (base+LSU)
models, to the ones trained with label smoothing along with the proposed So f t �
Consensus distribution (i.e., base+LSSC). The ACS is the metric that best quantifies
the ability of the model in adapting to the consensus of the group of scorers. A
higher ACS value means a higher similarity between the hypnodensity-graph gen-
erated by the model and the hypnodensity-graph generated by the So f t�Consensus
(i.e., the model better adapts to the consensus of the group of physicians). As all
the other metrics the ACS value is computed per subject, but here we report the
mean and also the standard deviation across subjects (µ ± s ). We found a signifi-
cant improvement in the ACS value from the base and the base+LSU models to the
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TABLE 5.4: DSN-L models performance +LSSC. Overall metrics,
per-class F1-score, calibration and ACS hypnodensity-graph simi-
larity measures of the DSN-L models obtained from 10-fold cross-
validation on IS-RC dataset, from 25-fold cross-validation on DOD-H
dataset, and from 10-fold cross-validation on DOD-O dataset. Best

shown in bold.

Overall Metrics Per-Class F1-Score Calibration Hypn.
Datasets Models a Acc. MF1 k F1 W N1 N2 N3 R ECE conf ACS

IS-RC
base - 69.6 50.6 0.56 70.0 81.6 11.8 71.9 27.2 60.7 0.096 79.0 0.772 ± 0.075

base+LSU 0.4 74.8 57.0 0.63 75.8 83.3 24.3 79.0 30.6 67.7 0.296 45.2 0.806 ± 0.042
base+LSSC 0.6 75.8 56.5 0.64 75.9 83.5 19.5 79.7 33.3 66.4 0.190 56.7 0.836 ± 0.041

DOD-H
base - 76.9 70.0 0.68 77.2 79.7 39.5 78.8 76.5 75.2 0.163 92.7 0.817 ± 0.097

base+LSU 0.2 75.3 68.7 0.66 75.2 78.8 40.0 75.9 72.0 76.8 0.059 68.9 0.829 ± 0.068
base+LSSC 0.8 80.2 72.4 0.72 80.4 80.4 42.3 83.4 77.6 78.4 0.016 81.4 0.873 ± 0.053

DOD-O
base - 77.3 67.8 0.66 78.0 80.7 41.2 81.0 68.1 68.3 0.131 90.2 0.840 ± 0.073

base+LSU 0.1 77.5 68.0 0.67 78.2 80.8 41.9 80.4 68.4 68.7 0.009 78.4 0.859 ± 0.072
base+LSSC 1 79.4 69.6 0.69 79.9 80.4 43.8 83.5 72.5 68.1 0.009 78.3 0.878 ± 0.061

TABLE 5.5: SSN models performance +LSSC. Overall performance,
calibration and ACS hypnodensity-graph similarity measures of the
SSN models obtained from 10-fold cross-validation on IS-RC dataset,
from 25-fold cross-validation on DOD-H dataset, and from 10-fold

cross-validation on DOD-O dataset. Best shown in bold.

Overall Metrics Per-Class F1-Score Calibration Hypn.
Datasets Models a Acc. MF1 k F1 W N1 N2 N3 R ECE conf ACS

IS-RC
base - 81.8 60.8 0.72 80.8 86.3 29.9 85.3 24.3 78.1 0.174 99.4 0.806 ± 0.052

base+LSU 0.3 82.5 59.8 0.72 81.1 86.5 28.8 86.5 18.7 78.7 0.169 99.3 0.811 ± 0.058
base+LSSC 0.7 83.1 60.2 0.73 81.6 86.7 27.6 86.8 20.1 79.8 0.162 99.2 0.817 ± 0.047

DOD-H
base - 87.1 80.2 0.81 87.1 83.6 55.5 90.0 83.3 89.0 0.126 99.7 0.890 ± 0.047

base+LSU 0.4 87.6 81.0 0.81 87.5 85.5 57.3 90.2 82.1 90.3 0.120 99.5 0.899 ± 0.034
base+LSSC 0.5 88.8 82.3 0.83 88.7 86.4 58.8 90.9 83.2 92.1 0.108 99.6 0.907 ± 0.039

DOD-O
base - 85.3 75.9 0.77 85.2 88.2 50.4 87.1 65.9 88.0 0.145 99.7 0.889 ± 0.056

base+LSU 0.1 85.6 75.8 0.78 85.2 88.2 51.2 87.3 64.3 88.4 0.141 99.6 0.893 ± 0.052
base+LSSC 1 86.8 77.7 0.79 86.7 89.0 51.0 88.3 69.3 91.1 0.125 99.2 0.906 ± 0.043

base+LSSC models on all the databases and on both DSN-L (p � values < 0.01) and
SSN (p � values < 0.05). Hence, our approach enables both the DSN-L and the SSN
architectures to significantly adapt to the consensus of the group of physicians on
all the multi-scored datasets.

We could easily infer that the SSN architecture is better (i.e., higher performance)
compared to our DSN-L architecture. The purpose of our study is not to highlight
whether one architecture is better than the other, but we can not fail to notice the
high values of confidence (the con f value is the average of the softmax output max-
probabilities) obtained on the SSN based models. High values of confidence still
persist despite smoothing the labels (with both uniform and soft-consensus distribu-
tions) during the training procedure. The SSN architecture is not highly responsive
to the changes in probability values we implemented on the one-hot encoded labels.
It always rely/overfit on the max probability value given for each epoch, i.e. the
consensus among the five/six different scorers. Indeed, on the IS-RC, which is the
database with the lower inter-scorer agreement, the SSN base+LSSC model reaches
a higher value of F1-score, i.e. 81.6%, compared to our DSN-L base+LSSC model,
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TABLE 5.6: DSN-L and SSN models performance +LSSC w/ and w/o
MC. Overall metrics and ACS hypnodensity-graph similarity mea-
sures on the DSN-L and SSN base+LSSC models, obtained from 10-fold
cross-validation on IS-RC dataset, from 25-fold cross-validation on
DOD-H dataset, and from 10-fold cross-validation on DOD-O dataset

with and without MC. Best shown in bold.

Overall Metrics Hypn.
Datasets Model MC Acc. MF1 k F1 ACS

IS-RC
DSN-L w/o 75.8 56.5 0.69 75.9 0.836 ± 0.041

w/ 78.6 57.6 0.67 78.0 0.850 ± 0.036

SSN w/o 83.1 60.2 0.73 81.6 0.817 ± 0.047
w/ 83.0 59.2 0.73 81.1 0.818 ± 0.048

DOD-H
DSN-L w/o 80.2 72.4 0.72 80.4 0.873 ± 0.053

w/ 84.4 75.9 0.76 84.2 0.906 ± 0.026

SSN w/o 88.8 82.3 0.83 88.7 0.907 ± 0.039
w/ 89.1 82.6 0.84 89.0 0.910 ± 0.039

DOD-O
DSN-L w/o 79.4 69.6 0.69 79.9 0.878 ± 0.061

w/ 80.7 70.8 0.71 80.9 0.889 ± 0.059

SSN w/o 86.8 77.7 0.79 86.7 0.906 ± 0.043
w/ 87.1 78.0 0.80 86.9 0.909 ± 0.041

i.e. 75.9% , but a lower value of ACS (0.817 on SSN and 0.836 on DSN-L, with a
p � value < 0.01). The SSN model overfit to the majority vote or the max probability
value given for each epoch, whilst the DSN-L better adapts to the consensus of the
group of scorers (i.e., better encode the variability among the physicians).
The last statement is also strengthened by Supplementary Figure B.8 and Supple-
mentary Figure B.9 in Appendix B. For DSN-L and SSN we report the ACS values
across all the experimented values, on both the base+LSU and the base+LSSC models
tested on the three databases. As expected, the DSN-L model shows a high sen-
sitivity in ACS values to changes in a-hyperparameter across all databases. This
sensitivity is not as strong with the SSN model.

Moreover, we want to highlight that the standard uniform distribution is not
as efficient as the proposed soft-consensus distribution in encoding the scorer’s
variability. By using the uniform distribution we are not able to learn as well the
complexity of the degree of agreement between the different physicians. Indeed,
in Supplementary Figure B.8, on the DSN-L model, we clearly show how the ACS
value proportionally increase with the a-hyperparameter only by using the pro-
posed soft-consensus distribution.

In our study we exploit, as in Chapter 4, the Monte Carlo (MC) dropout ensembling
technique to further enhance the performance of the models. We apply MC dropout
M = 30 times at inference time. The final prediction ŷi will be given by max(µµµi),
which we will refer to as µmax, along with the assigned variance value s2

µmax. In
Table 5.6 we show that, overall, on all the experiments, we obtained a slight im-
provement (up to 4%) on our best base+LSSC models, on IS-RC, DOD-H and DOD-O
datasets.
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5.5.4 Uncertainty estimate

In Chapter 4 we also introduced a query procedure to estimate the uncertain pre-
dictions given by the model. The query procedure simply relies on the setting of a
fixed threshold value q%=5%, that corresponds to a percentage of sleep epochs to
select/reject and to send potentially to the physician for a secondary review. The
epochs with the lowest probability values are the q% selected (on average up to
50 epochs for each PSG recording). In this study we simply use baseline/standard
query selection procedure, i.e., w/o MC the predicted probability values max(p̂̂p̂pi) are
directly used to select/reject the uncertain sleep epochs.

In Supplementary Table B.4 we report the overall performance achieved on
the DSN-L models on IS-RC, DOD-H and DOD-O datasets as a result of the base-
line/standard query procedure. Specifically, the metrics refer to the epochs kept
after the max(p̂̂p̂pi) base selection procedures (q% threshold value fixed to 5%). We
quantify the percentage of misclassified epochs (%miscl.) among the rejected after
the query procedure. The percentage of misclassified epochs is on average in the
range 50% to 60%. Consequently, on all the models we have an increase in perfor-
mance up to 2%-3% in F1-score. These results highlight the efficiency of the query
procedure to select a good enough number of misclassified epochs among the se-
lected one. Unlike what we expected, it is not always the case that a better calibrated
architecture leads to a better estimate of the model uncertainty. A lower ECE value
(see Table 5.4) does not always enable the detection of a significantly higher number
of percentages of misclassified epochs (%miscl.).

5.6 Discussion

In this Chapter we demonstrate the efficiency of label smoothing along with the
soft-consensus distribution in encoding the scorers’s variability into the training
procedure of a sleep scoring algorithm, specifically on both DSN-L and SSN archi-
tectures. The results show an improvement in overall performance from the base and
the base+LSU models to the ones trained with base+LSSC. We introduce the averaged
cosine similarity metric to better quantify the similarity between the probability
distribution predicted by the models and the ones generated by the scorer consen-
sus. We obtained a significant improvement in the ACS values with our base+LSSC
models on both DSN-L and SSN architectures. Based on the reported high confi-
dence values, we found that SSN tends to overfit on each dataset. Specifically, it
tends to overfit on the majority vote weighted by the degree of consensus from each
physician, consequentially it does not encode as well their variability.

The proposed procedure is quite simple and it enables us to transfer the vari-
ability, the uncertainty, and the noise we have by nature on the sleep labels into
the models. Our approach results quite effective in encoding the complexity of the
scorers’ consensus within the classification algorithm, whose importance is often
underestimated. Moreover, by leveraging both the LSSC technique and the uncer-
tainty estimate procedure described above, we are able to increase the percentage
of detected misclassified epochs among those discarded/removed (up to 60%). The
present approach enables us to better adapt to the consensus of the group of scorers,
and, as a consequence, to better quantify the uncertainty and the disagreement we
have between the different scorers.
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Chapter 6

U-Sleep: resilient to AASM
guidelines

In literature we find many examples about how clinical guidelines have been ex-
ploited into trying to support ML and DL based algorithms. The oldest R&K [9] or
the updated AASM [2] scoring manuals have been designed to cover all the aspects
of the polysomnography: from the technical/digital specifications (e.g., assessment
protocols, data filtering, recommended EEG derivations) to the scoring rules (e.g.,
sleep scoring rules for adults, children and infants, movement rules, respiratory
rules) and the final interpretation of the results. To date, all the sleep scoring algo-
rithms, both ML or DL based, are trained on sleep recordings annotated by sleep
physicians according to these manuals. For example, in [67] they pre-filter the
sleep recordings as indicated in the AASM guidelines before feeding them to their
scoring system; almost all of the algorithms mentioned above were trained using
recommended channel derivations and fixed length (i.e., 30-second) sleep epochs.
However, it still remains unknown whether a DL based sleep scoring algorithm
actually needs to be trained by following these guidelines. A decade ago, it was al-
ready highlighted that sleep is not a global phenomenon affecting the whole brain at
the same time, and that sleep patterns, such as slow waves and spindle oscillations,
often occur out-of-phase in different brain regions [103], [104]. Hence, the usage
of multi-channel derivations, but not necessarily the ones indicated in the AASM
guidelines, may be enough to reach high performance with our DL based scoring
algorithms. Furthermore, in the AASM manual and in previous studies [105], [106],
age has been addressed as one of the demographic factor that mainly change sleep
characteristics (e.g., sleep latency, sleep cycle structure, EEG amplitude etc.). To the
best of our knowledge, it has never been attempted before to incorporate this infor-
mation within a sleep scoring system; it could reasonably improve its performance.

To date, all the effort has focused on optimizing a sleep scoring algorithm in or-
der to be ready to score any kind of subject. Data mismatch and data heterogeneity
is one of the biggest challenges to address. The performance of a sleep scoring algo-
rithm on a PSG from an unseen data distribution (e.g., different data domain/center)
usually drastically decreases. A common objective among researchers is to increase
the model generalizability, i.e., the ability of the model to make accurate predictions
over different or never seen data domains. In recent studies, [71], [107] propose
to adapt a sleep scoring architecture on a new data domain via transfer learning
techniques. They demonstrate the efficiency of their approaches in addressing the
variability between the source and target data domains. [57], [108], [109] propose to
train their sleep scoring architectures on tens of thousands of PSGs from different
large-scale-heterogeneous cohorts. They demonstrate that using data from many
different sleep centers improves the performance of their model, even on never



60 Chapter 6. U-Sleep: resilient to AASM guidelines

seen data domains. In particular, [108] shows that models trained on a single data
domain fail to generalize on a new data domain or data center.

In Chapter 6 we did several experiments to evaluate the resilience of an existing
DL based algorithm against the AASM guidelines. In particular we focused on the
following questions: (i) can a sleep scoring algorithm successfully encode sleep pat-
terns, from clinically non-recommended derivations? (ii) can a single sleep center
large dataset contain enough heterogeneity (i.e., different demographic groups, dif-
ferent sleep disorders) to allow the algorithm to generalize on multiple data centers?
(iii) whenever we train an algorithm on a dataset with subjects with a large age
range, should we exploit the information about their age, conditioning the training
of the model on it?

To address this set of questions, we run all our experiments on U-Sleep, a state-
of-the-art sleep scoring architecture recently proposed in [57]. U-Sleep has been
chosen mainly for the following reasons: it has been evaluated on recordings from
15660 participants of 16 different clinical studies (four of them never seen by the
architecture); it processes inputs of arbitrary length, from any arbitrary EEG and
EOG electrode positions, from any hardware and software filtering; it predicts the
sleep stages for the whole PSG in a single forward pass; it outputs sleep stage labels
at any temporal frequency, up to the signal sampling rate, i.e., it can label sleep
stages at shorter intervals than the standard 30-seconds, up to one sleep stage per
each sampled time point.

In the original implementation of U-Sleep we found an extremely interesting
bug: the data sampling procedure was not extracting the channel derivations recom-
mended in the AASM guidelines, as stated by the authors in [57]. Instead, atypical
or non-conventional channel derivations were randomly extracted. This insight
triggered the above mentioned question (i).

In the previous chapters we evaluated our uncertainty estimate procedure on
existing sleep scoring architectures on small-sized databases. In Chapter 6 we also
want to investigate the efficiency of the uncertainty estimate procedure, together
with the model ensembling and the label smoothing techniques, on U-Sleep archi-
tecture, evaluated on multiple and large-scale databases.

Contributions. Our contributions can be summarized as follows: (1) we find that
a DL based scoring algorithm is still able to solve the scoring task, with high perfor-
mance, even when trained with clinically non-conventional channel derivations; (2)
we show that a sleep scoring model, even if trained on a single large and heteroge-
neous data domain, fails to generalize on new recordings from different data centers;
(3) we demonstrate that the conditional training based on the chronological age of
the subjects is unnecessary; (4) we prove the efficiency of the uncertainty estimate
procedure in detecting a relevant number of challenging epochs, even when evalu-
ated on multiple large-scale databases.
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FIGURE 6.1: U-Sleep overall architecture. [57]. We also report the ad-
ditional Sandwich Batch Normalization layers exploited in the condi-
tional learning procedure (see subsection 6.3). Please refer to [57] for
details on the U-Sleep model architecture and training parameters.

6.1 U-Sleep

U-Sleep [57], optimized version of its predecessor U-Time [56], is inspired by the
popular U-Net architecture for image-segmentation [110]–[112]. Below we briefly
describe U-Sleep architecture, for further details we refer the reader to [57].

6.1.1 Architecture

U-Sleep is a fully convolutional deep neural network. It takes as input a sequence
of length L of 30-second epochs and outputs the predicted sleep stage for each
epoch. The peculiarity of this architecture is that it defines the general function
f (X; q) : RL·i⇥C ! RL⇥K, where L > 0 is any positive integer, q are the learning
parameters, L is a number of fixed-length windows with i sampled points each, C
the number of PSG channels and K the number of sleep stages. Hence, U-Sleep takes
in input any temporal section of a PSG (even the whole PSG) and output a sequence
of labels for each fixed-length i > 0 window. Ideally L · i > 4096, because U-Sleep
contains 12 pooling operations, downsampling the signal by a factor of 2. The archi-
tecture requires at least C = 2, one EEG and one EOG channel, sampled/resampled
at 128Hz, with K = 5, i.e., awake, N1, N2, N3, R.

U-Sleep architecture consists of three learning modules as shown in Figure 6.1.

• The encoder module is designed to extract feature maps from the input sig-
nals, each resulting in a lower temporal resolution compared to its input. The
module includes 12 encoder blocks. Each block consists of a 1D convolutional
layer, one layer of activation function - i.e., exponential linear unit (ELU), a
batch normalization layer and one max-pooling layer.

• The decoder module is designed to up-scale the feature maps to match the tem-
poral resolution of the signals in input. We can interpret the output of the de-
coder as a high-frequency representation of the sleep stages at the same fs of
the input signal (e.g., with fs = 128Hz, output one sleep stage each 1/128Hz).
The module includes 12 decoder blocks. Each block consists of a nearest neigh-
bour up-sampling layer (e.g., with a kernel_size = 2, the length of the feature
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map in input is doubled), a 1D convolutional layer, one layer of ELU activa-
tion function and a batch normalization layer. Then, a skip connection layer
combines the up-scaled input with the output of the batch normalization layer
of the corresponding encoder block. Finally, a 1D convolution, a ELU non-
linearity and a batch normalization are applied to the stacked feature maps.
The output has the same temporal resolution of the signal in input.

• The segment classifier module is designed to segment the high-frequency rep-
resentation output of the decoder into the desired sleep stage prediction fre-
quency. The module consist of a dense segmentation layer (i.e., 1d convolu-
tion layer with a hyperbolic tangent activation function), an average-pooling
layer (e.g., with kernel_size = stride_size = 30sec ⇤ fs considering the same
prediction frequency of a sleep scorer) and two 1D convolutional layers (the
first using an ELU activation function, and the latter using a softmax activa-
tion function). The output of the segment classifier is a L ⇥ K, where L is the
number of segments and K = 5 is the number of sleep stages.

The sequence length L, the number of filters, the kernel and the stride sizes are
specified in Figure 6.1. The softmax function, together with the cross-entropy loss
function, is used to train the model to output the probabilities for the five mutu-
ally exclusive classes K that correspond to the five sleep stages. The architecture
is trained end-to-end via backpropagation, using the sequence-to-sequence learning
approach. The model is trained using mini-batch Adam gradient-based optimizer
[91] with a learning rate lr. The training procedure runs up to a maximum number
of iterations, as long as the break early stopping condition is satisfied.

6.1.2 Regularization Techniques

Unlike [57], we consider early stopping and data augmentation as regularization
techniques. As stated in [94] "regularization is any modification we make to a learning
algorithm that is intended to reduce its generalization error but not its training error".
Early stopping and data augmentation do so in different ways, they both decrease
the regularization error.

Early stopping. It provides guidance on how many iterations can be run before
the model begins to overfit [93]. The training procedure is stopped as soon as the
performance (i.e., F1-score) on the validation set is lower than it was in the previous
iteration step. In our experiments, before hastily stopping the learning procedure,
the algorithm runs for an additional number of iterations (by fixing the so called
patience parameter). The model with the highest performance is the one we finally
save.

Data augmentation. The signals in input are randomly modified during train-
ing procedure to improve model generalization. Variable length of the sequences
in input are replaced with a Gaussian noise. For each sample in a batch, with 0.1
probability, a fraction of the sequence is replaced with N(µ = µ̂, s2 = 0.01), where
µ̂ is the mean of the sample’s signals. The fraction is sampled with a log-uniform
distribution {min = 0.001; max = 0.33}. With a 0.1 probability at most one channel
is entirely replaced by noise.
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6.1.3 Training Parameters

The training parameters (e.g., adam-optimizer parameters beta1 and beta2, mini-
batch size etc.) are all set as stated in [57]. The learning rate, the early stopping
patience parameter and the maximum number of iterations have been changed to
10�5, 100 and 1000 respectively, to let U-Sleep converge faster. The architecture has
several hyperparameters (e.g., number of layers, number/sizes of filters, regular-
ization parameters, training parameters etc.) which could be optimized to tune its
performance on any dataset. We decided to not systematically tune all these param-
eters, as this is out of our scope, but to fix them for all the experiments, as done in
the original network.

6.2 Transfer Learning

We define Transfer Learning quoting the following clear and simple statements:

"Transfer learning and domain adaptation refer to the situation where what has been
learned in one setting (e.g., distribution P1) is exploited to improve generalization in an-
other setting (say, distribution P2)" by [94].

"Given a source domain DS and learning task TS, a target domain DT and learning
task TT, transfer learning aims to help improve the learning of the target predictive function
f T(·) in DT using the knowledge in DS and TS, where DS 6= DT and TS 6= TT" by [113].

Formally, let P1 = DS = {XS, YS} denote the data domain S with the biosig-
nal/feature space XS and the corresponding label space YS. Let TS denote the
task in the domain S maximizing the conditional probability distributions P(yS|xS),
where xS 2 XS and yS 2 YS. Similarly, let P2 = DT = {XT, YT} denote the data
domain T with the biosignal/feature space XT and the corresponding label space
YT. TT denote the task in the domain T maximizing the conditional probability
distributions P(yT|xT), where xT 2 XT and yT 2 YT. The transfer learning technique
aim to improve the learning of the distributions P(yT|xT) given what we previously
learned from DS and TS, where DS 6= DT or TS 6= TT.

Overall the transfer learning approach have the following advantages: (1) The
time-complexity of the training phase on the target domain (i.e., fine-tuning pro-
cedure) is drastically reduced in respect to that required if the learning process
is made from scratch; (2) it does not require a big-sized training set, making the
approach feasible when labelled data are missing; (3) the source model is already
pre-trained, hence the hyperparameters are already tuned/optimized. This allow to
reach quickly high performances on the target task without re-designing the model
and without lose its generalization capabilities. As highlighted in [113], we can
define two macro-classes of transfer learning approaches. Inductive transfer refers to
those scenario in which both the task and the domain are different in the source and
target model; transductive transfer defines a method in which the model adapts to a
different target domain where, however, the source and the target task are the same.
Transductive transfer is exactly what we do in our experiments, where TS ⌘ TT, as
the task is always to perform sleep staging with the same set of sleep classes/stages.

The main challenges when handling with transfer learning are "what" transfer,
"when" transfer and "how" transfer. "What" refers to the data domain shifts (e.g.,
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different hardware, different subject distributions with different disorders) and the
disagreement between the predictions of the model and labels given by different
physicians. "When" is not the major issue here as we will perform the transfer only
once, and directly on the whole target dataset available. "How" is the most chal-
lenging decision. The process involves overwriting a knowledge from a small-sized
database to a previous big-sized knowledge (result of a long training process). In
this scenario, one concern is to avoid ending up in what the data scientists call catas-
trophic forgetting:

"Also known as catastrophic interference, it is the tendency of an artificial neural net-
work to completely and abruptly forget previously learned information upon learning new
information" by [114].

Even if it is conceptually easy to understand, avoiding its occurrence is not triv-
ial. To partially bypass this phenomena we fine-tune the architecture on the target
domain using a smaller learning rate.

In our experiments we will first pre-train the architecture on the data-source do-
main S (e.g., a set of different domains/databases {SDB1, SDB2, ..., SDBn}), then we
fine-tune (i.e., re-train) the model on the data-target domain T. Formally, we first
minimize the loss function LS, resulting in the learned parameters q:

argminq = Â
(x,y)2DS

LS(x, P(y|x), Pq(y, x)) (6.1)

The parameters q of the pre-trained model will be used as the starting point on
the data-target domain T. To transfer the learning on the new domain T, we fine-
tune all the pre-trained parameters q0 = q (i.e., the entire network is further trained
on the new data domain T):

argminq0 = q = Â
(x,y)2DT

LT(x, P(y|x), Pq(y, x)) (6.2)

6.3 Conditional Learning

Basically all the sleep scoring architectures learn in a conditional way. The aim is
to maximize the conditional probability distributions P(Y|X), where X are the se-
quences of the biosignals in input and Y are the corresponding ground-truth labels.
For each epoch xt in input the models aim to maximize the conditional probability
distribution P(yt|xt), where yt is the t � th one-hot encoded vector of the ground-
truth label. Hence, the model is trained to minimize the prediction error conditioned
only by the knowledge of X. We know that the sleep data X often come from dif-
ferent sources or data domains. Even in the same cohort, subjects with different
demographics and sleep disorders may occur, resulting in significant shifts in their
sleep data X distributions. Imagine to have in the same data cohort G different
groups of subjects {g1, g2, ..., gG}, with g1 = {healthy}, g2 = {sleep_apnea} and so
on. This additional information about the group (i.e., the sleep disorder group gi) to
which the subject belongs can be given in input to the model. So, we can either train
G fully separated models, each maximizing G different P(Y|X) functions, or either
train a single model maximizing the conditional probability distributions P(Y|X, gi).
The latter - i.e., train the joint model with the additional condition gi - is the smartest
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approach; the tasks are similar enough to benefit from sharing the parameters and
the extracted features.

We decided to exploit the batch normalization layers to insert the additional
knowledge in the training of our model. In literature different normalization
variants have been proposed by modulating the parameters of the vanilla batch
normalization (BN) layer [115]–[119]. We decided to exploit the Sandwich Batch
Normalization (SaBN) approach recently proposed in [120].

The vanilla BN [86] normalizes the samples in a mini-batch in input by using
the mean µ and the standard deviation s, and then re-scales them with the g and b
parameters. So, given the feature in input f 2 RB⇥C⇥H⇥W , where B is the batch size,
C is the number of channels and H and W are the height and width respectively, the
vanilla BN computes:

h = g(
f � µ( f )

s( f )
) + b (6.3)

where µ( f ) and s( f ) are the mean and variance running estimates (batch statis-
tics, i.e., moving mean and moving variance) computed on f along (N, H, W) di-
mensions; g and b are the re-scaling learnable parameters of the BN affine layer
with shape C. Clearly, the vanilla BN has only a single re-scaling transform, indi-
rectly assuming all features coming from a single data distribution. In [118], to tackle
the data heterogeneity issue (i.e., images from different data domains/distributions),
they propose the Categorical Conditional BN (CCBN), so boosting the quality of the
generated images. The CCBN layer computes the following operation:

h = gg(
f � µ( f )

s( f )
) + bg g = 1, ..., G (6.4)

where gg and bg are the re-scaling learnable parameters of each g � th affine
layer, where g corresponds to the domain index associated to the input. The param-
eters of each affine layer are learned to capture the domain/distribution-specific in-
formation. In [120], instead, they propose the Sandwich Batch Normalization layer,
an improved variant of the CCBN. They claim that different individual affine layers
might cause an imbalanced learning for the different domains/distributions. They
factorize the BN affine layer into one shared "sandwich" BN layer cascaded by a set
of independent BN affine layers, computed as follows:

h = gg(gsa(
f � µ( f )

s( f )
) + bsa) + bg i = 1, ..., G (6.5)

where gsa and bsa are the re-scaling learnable parameters of the "sandwich"
shared affine BN layer, while, as above, gg and bg are the re-scaling learnable pa-
rameters of each g� th affine layer, conditioned on the categorical input g. The SaBN
enable the conditional fine-tuning of a pre-trained U-Sleep architecture, conditioned
by the categorical index in input g.
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6.4 Databases

We train and evaluate U-Sleep on 19578 recordings from 15322 subjects of 12 pub-
licly available clinical studies, as done in [57]. Below a detailed description for each
database:

ABC. The Apnea, Bariatric surgery, and CPAP database consists of 132 record-
ings from 49 patients with severe obstructive sleep apnea and morbity obesity (BMI
from 35 to 45) [36], [37]. EEG signals (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-
M2) and EOG signals (E2-M1, E1-M2) have been considered in our experiments.
The signals are recorded at 256Hz, and hardware low-pass filtered and high-pass
filtered at 105Hz and at 0.16Hz respectively. The recordings are manually scored
by sleep experts according to the AASM rules. For more information we refer to
https://doi.org/10.25822/nx52-bc11 and https://clinicaltrials.gov/ct2/
show/NCT01187771.

CCSHS. The Cleveland Childrend’s Sleep and Health Study consists of children
and adolescents recordings. In our experiments we consider 515 recordings from
adolescents aged 16-19 years. The recordings are collected in three different hospi-
tals around Cleveland, Ohio, US [36], [38]. EEG signals (C4-A1, C3-A2) and EOG
signals (ROC-A1, LOC-A2) have been considered in our experiments. The signals
are recorded at 128Hz, and hardware high-pass filtered at 0.15Hz. The recordings
are manually scored by sleep experts according to the AASM rules. For more infor-
mation we refer to https://doi.org/10.25822/cg2n-4y91.

CFS. The Cleveland Family Study is a family-based study on sleep apnea disor-
dered subjects. The database consists of 2284 subjects from 361 families [36], [39]. We
consider recordings of 730 subjects from 144 families (whence full whole-night PSG
were available). For this specific database, the data split (train/val/test set) is done
by considering subjects and family belonging (i.e., all the family members appear in
the same data split). EEG signals (C4-A1, C3-A2) and EOG signals (ROC-A1, LOC-
A2) have been considered in our experiments. The signals are recorded at 128Hz,
and hardware low-pass filtered and high-pass filtered at 105Hz and 0.16 Hz respec-
tively. The recordings are manually scored by sleep experts according to the AASM
rules. For more information we refer to https://doi.org/10.25822/jmyx-mz90.

CHAT. The Childhood Adenotonsillectomy Trial database consists of 1638
recordings (452 baseline, 407 follow-up and 779 control) from 1232 children post-
adenotonsillectomy-surgery aged 5-10 years. The recordings are collected in six dif-
ferent sleep centers in Massachusetts, Missouri, New York, Ohio and Pennsylvania
[36], [40], [41]. EEG signals (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2, T4-M1,
T3-M2) and EOG signals (E2-M1, E1-M2) have been considered in our experiments.
The signals are recorded at 200Hz (or higher in other sleep centers), and different
hardware filtering given the different acquisition systems. One recording has been
excluded - EOG missing. The recordings are manually scored by sleep experts ac-
cording to the AASM rules. For more information we refer to https://doi.org/10.
25822/d68d-8g03 and https://clinicaltrials.gov/ct2/show/NCT00560859.

DCSM. The Danish Centre for Sleep Medicine database consists of 255 record-
ings from patients with potential and non-specific sleep related disorders. No
demographic is available for the database. EEG signals (F4-M1, F3-M2, C4-M1,

https://doi.org/10.25822/nx52-bc11
https://clinicaltrials.gov/ct2/show/NCT01187771
https://clinicaltrials.gov/ct2/show/NCT01187771
https://doi.org/10.25822/cg2n-4y91
https://doi.org/10.25822/jmyx-mz90
https://doi.org/10.25822/d68d-8g03
https://doi.org/10.25822/d68d-8g03
https://clinicaltrials.gov/ct2/show/NCT00560859
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C3-M2, O2-M1, O1-M2, T4-M1, T3-M2) and EOG signals (E2-M1, E1-M2) have
been considered in our experiments. The signals are recorded at 256Hz, and band-
pass filtered between 0.3Hz and 70Hz. The recordings are manually scored by
sleep experts according to the AASM rules. For more information we refer to
https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8.

HPAP. The Home Positive Airway Pressure database consists of 373 recordings
(238 considered in our experiments) from obstructive sleep apnea patients aged
over 18 years. The recordings are collected in seven different US sleep centers
[36], [44]. EEG signals (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2, T4-M1,
T3-M2) and EOG signals (E2-M1, E1-M2) have been considered in our experi-
ments. The signals are recorded at 200Hz, no filtering applied. Nine record-
ings have been excluded - EOG and/or reference channels missing. The record-
ings are manually scored by sleep experts according to the AASM rules. For
more information we refer to https://doi.org/10.25822/xmwv-yz91 and https:
//clinicaltrials.gov/ct2/show/NCT00642486.

MESA. The Multi-Ethnic Study of Atherosclerosis consists of 2237 recordings
(2056 considered in our experiments) from a cohort of black, white, Hispanic and
Chinese-American subjects aged 45-84 years [36], [45]. EEG signals (Fz-Cz, C4-M1,
Cz-Oz) and EOG signals (E2-Fpz, E1-Fpz) have been considered in our experiments.
The signals are recorded at 256Hz, and hardware low-pass filtered at 100Hz. The
recordings are manually scored by sleep experts according to the AASM rules. For
more information we refer to https://doi.org/10.25822/n7hq-c406.

MROS. The database is a subset of the larger study Osteoporotic Fractures in
Men (MrOS), involving 5,994 community-dwelling men aged over 65 years [36],
[46], [47]. In our experiments we consider 3926 recordings (2900 from visit 1 and
1026 from visit 2) from 2903 subjects, which underwent in-home overnight PSG.
EEG signals (C4-A1, C3-A2) and EOG signals (ROC-A1, LOC-A2) have been con-
sidered in our experiments. The signals are recorded at 256Hz, and hardware
high-pass filtered at 0.15Hz. Seven recordings have been excluded - EOG channels
and/or sleep stage annotation files missing. The recordings are manually scored
by sleep experts according to the AASM rules. For more information we refer to
https://doi.org/10.25822/kc27-0425.

PHYS. The database from the 1028 PhysioNet/CniC Challenge consists of 1985
recordings (994 labelled considered in our experiments) from patients with po-
tential sleep disorders [48], [49]. EEG signals (F4-M1, F3-M2, C4-M1, C3-M2,
O2-M1, O1-M2) and one EOG signal (E1-M2) have been considered in our ex-
periments. The signals are recorded at 200Hz. The recordings are manually scored
by sleep experts according to the AASM rules. For more information we refer to
https://physionet.org/content/challenge-2018/1.0.0/.

SEDF-SC & SEDF-ST. The Sleep-EDF Expanded database consists of 197 record-
ings from two subset studies. The Sleep-EDF Sleep Cassette (SEDF-SC) consists of
153 recordings from 78 healthy subjects aged 25-101 years. The Sleep-EDF Sleep
Telemetry (SEDF-ST) consists of 44 recordings from 22 healthy subjects with mild
difficulty falling asleep (two recordings collected for each subject, i.e., one after

https://sid.erda.dk/wsgi-bin/ls.py?share_id=fUH3xbOXv8
https://doi.org/10.25822/xmwv-yz91
https://clinicaltrials.gov/ct2/show/NCT00642486
https://clinicaltrials.gov/ct2/show/NCT00642486
https://doi.org/10.25822/n7hq-c406
https://doi.org/10.25822/kc27-0425
https://physionet.org/content/challenge-2018/1.0.0/
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temazepam intake and one after placebo intake) [32], [48]. EEG signals (Fpz-
Cz, Pz-Oz) and one EOG signal (ROC-LOC) have been considered in our exper-
iments. The signals are recorded at 100Hz. The recordings are manually scored
by sleep experts according to the R&K scoring rules, and re-aligned to the AASM
rules as described at the end of this section. For more information we refer to
https://doi.org/10.13026/C2C30J.

SHHS. The Sleep Heart Health Study consists of 8444 recordings (5793 from visit
1 and 2651 from visit 2) from 5797 patients with sleep-disordered breathing aged
over 40 years [34], [36]. EEG signals (C4-A1, C3-A2) and EOG signals (ROC-A1,
LOC-A2) have been considered in our experiments. The EEG and EOG signals
are recorded at 125Hz and 50Hz respectively, and hardware high-pass filtered at
0.15Hz. The recordings are manually scored by sleep experts according to the R&K
scoring rules, and re-aligned to the AASM rules as described at the end of this sec-
tion. For more information we refer to https://clinicaltrials.gov/ct2/show/
NCT00005275 and https://doi.org/10.25822/ghy8-ks59.

SOF. The database is a subset of the larger study Osteoporotic Fractures (SOF).
In our experiments we consider 453 recordings (from visit 8), which underwent
in-home overnight PSG [36], [50], [51]. EEG signals (C4-A1, C3-A2) and EOG sig-
nals (ROC-A1, LOC-A2) have been considered in our experiments. The EEG and
EOG signals are recorded at 128Hz, and hardware high-pass filtered at 0.15Hz. The
recordings are manually scored by sleep experts according to the R&K scoring rules,
and re-aligned to the AASM rules as described at the end of this section. For more
information we refer to https://doi.org/10.25822/e1cf-rx65.

In our experiments we also exploit the Bern Sleep Data Base (BSDB) registry,
the sleep disorder patient cohort of the Inselspital, University hospital Bern. The
recordings have been collected from 2000 to 2021 at the Department of Neurology,
at the University hospital Bern. Secondary usage was ethically approved (KEK-Nr.
2020-01094). The dataset consists of 8950 recordings from healthy subjects and pa-
tients aged 0-91 years. The strength of this dataset is that, unlike the ones available
online, it contains patients covering the full spectrum of sleep disorders, many of
whom were diagnosed with multiple sleep disorders and non-sleep related comor-
bidities [121]; thus providing an exceptionally heterogeneous PSG data set. EEG
(F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2) and EOG (E2-M1, E1-M2) standard
derivations have been considered in our experiments. The signals are recorded at
200Hz. The recordings are manually scored by sleep experts according to the AASM
rules.

An overview of all the open access (OA) datasets and the BSDB dataset along
with demographic statistics is reported in Table 6.1.

The data pre-processing and data selection/sampling across all the datasets is
the same as in [57].

Data pre-processing. The signals are resampled to 128Hz and rescaled (per
channel and per-subject), so that, for each channel, the EEG signal has median 0 and
inter quartile range (IRQ) 1. The values with an absolute deviation from the median
above 20*IQR are clipped. The signals outside the range of the scored hypnogram
are trimmed. The recordings scored according to R&K rules results in six scoring

https://doi.org/10.13026/C2C30J
https://clinicaltrials.gov/ct2/show/NCT00005275
https://clinicaltrials.gov/ct2/show/NCT00005275
https://doi.org/10.25822/ghy8-ks59
https://doi.org/10.25822/e1cf-rx65
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TABLE 6.1: Datasets overview with demographic statistics.
Missing values are due to study design or anonymized data. On the
BSDB dataset, we compute the age and the sex values on the 99.1%
and on the 98.6% of the whole dataset, respectively, because of miss-
ing age/sex information. Datasets directly available online are iden-
tified by X, whilst datasets that require approval from a Data Access

Committee marked by (X). BSDB is a private dataset.

Datasets Recordings Age in years Sex %
(µ ± s) (F/M)

[36], [37] ABC (X) 132 48.8 ± 9.8 43/57
[36], [38] CCSHS (X) 515 17.7 ± 0.4 50/50
[36], [39] CFS (X) 730 41.7 ± 20.0 55/45

[36], [40], [41] CHAT (X) 1638 6.6 ± 1.4 52/48
- DCSM X 255 - -

[36], [44] HPAP (X) 238 46.5 ± 11.9 43/57
[36], [45] MESA (X) 2056 69.4 ± 9.1 54/46

[36], [46], [47] MROS (X) 3926 76.4 ± 5.5 0/100
[48], [49] PHYS X 994 55.2 ± 14.3 33/67
[32], [48] SEDF-SC X 153 58.8 ± 22.0 53/47
[32], [48] SEDF-ST X 44 40.2 ± 17.7 68/32
[34], [36] SHHS (X) 8444 63.1 ± 11.2 52/48

[36], [50], [51] SOF (X) 453 82.8 ± 3.1 100/0

- BSDB 8884 47.9 ± 18.4 66/34

classes, i.e., awake, N1, N2, N3, N4, and REM. In order to use the AASM standard,
we merge the N3 and N4 stages into a single stage N3. The loss function for stages
as MOVEMENT and UNKNOWN is masked during the training procedure.

Data sampling. U-Sleep is trained using mini-batch Adam gradient-based op-
timizer. Each element in the batch is a sequence/segment of L = 35 EEG and
EOG 30-second signals/epochs from a single subject. Each sequence/element is
sampled from the training data as follows. (1) dataset sampling: one dataset is se-
lected randomly. The probability that a dataset D is selected is given by P(D) =
aP1(D) · (1 � a)P2(D), where P1(D) is the probability that a dataset is sampled
with a uniform distribution 1/ND, where ND is the number of available datasets,
and P2(D) is the probability of sampling a dataset according to its size. The pa-
rameter a was set to 0.5 to equally weight P1(D) and P2(D); (2) subject sampling: a
recording SD is uniformly sampled from D; (3) channel sampling: one EEG and one
EOG are uniformly sampled from the available combinations of channels in SD (e.g.,
if 2 EEG and 2 EOG channels are available, four combinations would be possible);
(4) segment sampling: a segment of EEG/EOG signals of length L = 35 is selected as
follows: first uniformly sample a class from W, N1, N2, N3, R, then select randomly
a 30-second epoch scored with the sampled class and finally shift the chosen epoch
in a random position of the segment of length L.
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6.5 Results

6.5.1 Experiment Designs

Unlike the recommendation of the AASM manual, during the pre-processing pro-
cedure no filtering was applied to the EEG and the EOG signals. Most importantly,
we found that in their original model implementation the data extraction, and the
resulting sampling procedure, were extracting atypical channel derivations, see Sup-
plementary Table B.5, interestingly different to those recommended in the AASM
guidelines. In this study, we want to test the resilience of U-Sleep to the strict AASM
guidelines. To this aim, we extract the channel derivations following the guidelines
(as meant to be done in [57]), to better understand the impact of channel selection
on the overall performance.

Below we summarize all the experiments performed on U-Sleep:

(i) We pre-train U-Sleep on all the OA datasets using both the original imple-
mentation selecting the atypical channel derivations (U-Sleep-v0), and our adap-
tation following AASM guidelines (U-Sleep-v1). We split each dataset in training
(75%), validation (up to 10%, at most 50 subjects) and test set (up to 15%, at most
100 subjects). The split of the PSG recordings is done per-subject or per-family,
i.e., recordings from the same subject or members of the same family appear in
the same data split. In Table 6.2 we summarize the data split on each open access
dataset. We evaluate both U-Sleep-v0 and U-Sleep-v1 on the test set of the BSDB
dataset. We also evaluate the models on the whole BSDB(100%) dataset, to test on
a higher number of subjects, with a higher heterogeneity of sleep disorders and a
wider age range. A model pre-trained on the open access datasets and evaluated
directly on the BSDB dataset is what we will refer to as direct transfer (DT) on BSDB.

(ii) We exploit the BSDB dataset to evaluate whether a DL based scoring architec-
ture, trained with a large and a highly heterogeneous database, is able to generalize
on the open access datasets from different data centers. We split the BSDB record-
ings in training (75%), validation (10%) and test set (15%). We run two different
experiments on U-Sleep-v1: we train the model from scratch (S) on the BSDB dataset;
we fine-tune (FT) the model pre-trained in (i) on the BSDB dataset, by using the
transfer learning approach (see subsection 6.2). Then, we evaluate both (S) and (FT)
on the test set of all the OA datasets and the test set of the BSDB dataset.

(iii) We exploit the BSDB dataset to investigate whether U-Sleep needs to be
trained by also having access to chronological age-related information. We split
the BSDB dataset in seven groups, according to the age categories of the subjects
[105], resulting in G = 7 subdatasets, see Supplementary Analysis section A.1. We
further split the recordings of each subdataset in training (75%), validation (10%
at most 50 subjects) and test set (15% at most 100 subjects). We run three different
experiments on U-Sleep-v1: we fine-tune the model by using all the training set of
the seven groups (FT); we fine-tune seven Independent models by using the train-
ing set of each group independently (FT-I); we fine-tune a single Sandwich Batch
Normalization model (exploiting the batch normalization layers, see subsection 6.3),
to add the condition on the age-group-index G for each recording (FT-SaBN). These
last two experiments have been replicated considering only two age groups, i.e.,
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TABLE 6.2: Data split on the open access (OA) datasets. We report
the total number of recordings, and the number of recordings used to
train, validate and test the U-Sleep architecture in the experiment (i).

Datasets Recordings Train Valid Test
ABC 132 93 15 24

CCSHS 515 387 50 78
CFS 730 531 95 104

CHAT 1638 1438 70 130
DCSM 255 190 26 39
HPAP 238 178 24 36
MESA 2056 1906 50 100
MROS 3926 3728 69 129
PHYS 994 844 50 100

SEDF-SC 153 115 15 23
SEDF-ST 44 30 6 8

SHHS 8444 8226 77 141
SOF 453 339 46 68

TABLE 6.3: Data split on the BSDB dataset. We report the total num-
ber of recordings, and the number of recordings used to train, validate

and test the U-Sleep architecture in the experiments (ii) and (iii).

Datasets Recordings Train Valid Test
(ii) - 8884 6658 882 1344

B 151 111 14 26
C 246 185 26 35
A 177 132 17 28

(iii) YA 2066 1902 58 106
MA 3636 3482 51 103

E 1539 1378 55 106
OE 988 829 53 106

babies/children and adults, as recommended in [2], resulting in two additional fine-
tuned model (FT-I and FT-SaBN for G = 2). We evaluate all the fine-tuned models
on the independent test test of each age group.

In Table 6.3 we summarize the two different data split, in experiment (ii) and
experiment (iii), on the BSDB dataset.

6.5.2 Metrics

In all our experiments we evaluate U-Sleep as stated in [57]. The model scores the
full PSG, without considering the predicted class on a segment with a label different
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TABLE 6.4: Experiments (i): U-Sleep-v0 and U-Sleep-v1 F1-score.
(i) Performance of U-Sleep-v0 and U-Sleep-v1, pre-trained on the open
access (OA) datasets, and evaluated on the test set of the BSDB
dataset, and on the whole BSDB(100%) dataset, i.e., both direct trans-
fer (DT) on BSDB. We report the F1-score (%F1), specifically the mean
value and the standard deviation (µ± s) computed across the record-

ings.

Datasets
Training on OA

U-Sleep-v0 U-Sleep-v1
BSDB 72.5 ± 12.2 72.5 ± 12.0

BSDB(100%) 72.9 ± 12.4 72.9 ± 12.4

from the five sleep stages (e.g., segment labelled as ’UNKNOWN’ or as ’MOVE-
MENT’). The final prediction is the results of all the possible combinations of the
available EEG and EOG channels for each PSG. Hence, we use the majority vote, i.e.,
the ensemble of predictions given by the multiple combination of channels in input.

The unweighted F1-score metric [89] has been computed on all the testing sets to
evaluate the performance of the model on all the experiments. We compute the F1-
score for all the five classes, we then combine them by calculating the unweighted
mean. Note that the unweighted F1-scores reduce the absolute scores due to lower
performance on less abundant classes such as sleep stage N1. For this reason, we also
report in Supplementary Tables B.6, B.7, B.8 and B.9 the results achieved in terms of
weighted F1-score - i.e., the metric is weighted by the number of true instances for
each label, so as to consider the high imbalance between the sleep stages. In that
case, the absolute scores significantly increases on all the experiments.

6.5.3 Analysis of Experiments

(i) Clinically non-recommended channel derivations. In Table 6.4 we compare the
performance of U-Sleep pre-trained on all the OA datasets, with (U-Sleep-
v0) and without (U-Sleep-v1) using randomly ordered channel derivations.
There is no statistically significant difference between the two differently
trained architectures evaluated on the test set of the BSDB dataset (paired
t-test p � value > 0.05). Most importantly, we found no difference in perfor-
mance with the direct transfer also on the whole BSDB(100%) dataset (paired
t-test p � value > 0.05). These results clearly show how the architecture is able
to generalize regardless of the channel derivations used during the training
procedure, also on a never seen highly heterogeneous dataset.

(ii) Generalizability on different data centers with a heterogeneous dataset.
In Table 6.5 we report the results obtained on U-Sleep-v1 pre-trained in (i) on
the open access (OA) datasets, and evaluated on all the test sets of the open
access datasets and on the test set of the BSDB dataset. We also show the
results obtained on U-Sleep-v1 trained from scratch (S) on the BSDB dataset,
and the results obtained on the model pre-trained in (i) on OA and then fine-
tuned (FT) on the BSDB dataset. Unlike what we expected, both the models
(S) and (FT), trained with a large and a highly heterogeneous database, are
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TABLE 6.5: Experiments (ii): U-Sleep-v1 F1-score.
(ii) Performance of U-Sleep-v1, pre-trained on the open access (OA)
datasets, and evaluated on all the test sets of the open access datasets
and on the test set of the BSDB dataset. We also report the perfor-
mance of U-Sleep-v1 trained from scratch (S) or fine-tuned (FT) on the
BSDB dataset, and evaluated on all the test sets of all the available
datasets. We report the F1-score (%F1), specifically the mean value
and the standard deviation (µ ± s) computed across the recordings.

Datasets
Training on OA Training on BSDB

U-Sleep-v1 U-Sleep-v1 (S) U-Sleep-v1 (FT)
ABC 73.6 ± 11.4 71.4 ± 13.9 69.0 ± 12.5

CCSHS 84.9 ± 5.1 77.3 ± 7.2 77.3 ± 6.7
CFS 76.6 ± 11.6 70.2 ± 10.8 70.9 ± 10.2

CHAT 82.1 ± 6.5 72.9 ± 8.0 68.8 ± 8.7
DCSM 79.3 ± 9.3 71.5 ± 11.2 69.3 ± 10.5
HPAP 73.8 ± 10.8 68.9 ± 11.1 67.9 ± 12.5
MESA 72.7 ± 10.8 68.5 ± 14.3 68.7 ± 11.9
MROS 71.4 ± 12.1 61.7 ± 13.7 63.9 ± 13.2
PHYS 74.2 ± 10.7 72.9 ± 11.2 73.2 ± 11.4

SEDF-SC 77.8 ± 7.9 75.8 ± 8.0 77.9 ± 7.7
SEDF-ST 77.2 ± 10.1 64.3 ± 15.4 67.5 ± 12.4

SHHS 76.9 ± 9.7 70.9 ± 9.3 73.0 ± 8.9
SOF 74.8 ± 9.8 64.6 ± 12.6 67.5 ± 11.2

avg OA 76.5 ± 10.6 69.9 ± 11.9 70.2 ± 11.1

BSDB 72.5 ± 12.0 (DT) 77.6 ± 11.3 77.3 ± 11.4

not able to generalize on the open access datasets from the different data cen-
ters. The average performance achieved on the OA with (S) and (FT) models
is significantly lower compared to the performance of the model pre-trained
on OA (paired t-tests p � value < 0.001). Whilst, with both (S) and (FT) we
show a significant increase in performance compared to the direct transfer
(DT), on the test set of the BSDB dataset (paired t-tests p � value < 0.001).
We also found that the training from scratch results in significantly higher
performance (paired t-test p � value < 0.001) on the BSDB dataset, compared
to the performance of the fine-tuned model. No significant difference (paired
t-test p � value > 0.05) occurs between (S) and (FT) evaluated on the average
performance on OA. The pre-training on the OA dataset it is not beneficial on
the BSDB dataset. With a high number of highly heterogeneous subjects we
can directly train the model from scratch on the dataset. However, we have
to mention that the fine-tuned model reach the the local optimum in a fewer
number of iterations (number of iterations: FT = 382 < S = 533).
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TABLE 6.6: Experiments (iii): U-Sleep-v1 F1-score.
(iii) Performance of U-Sleep-v1 on a single model fine-tuned on all
the training set of the seven BSDB groups (FT); on seven/two mod-
els fine-tuned on the independent training set of each group (FT-I)
with G = 7 and G = 2 respectively; and on a single model fine-
tuned on all the training set of the seven/two BSDB groups condi-
tioned (FT-SaBN) by G = 7 and by G = 2 groups respectively. All
the fine-tuned models are evaluated on the associated test set of each
group. We report the F1-score (%F1), specifically the mean value and
the standard deviation (µ ± s) computed across the recordings. B:
Babies (0-3 years); C: Children (4-12 years); A: Adolescents (13-18
years); YA: Young Adults (19-39 years); MA: Middle Aged Adults
(40-59 years); E: Elderly (60-69 years); OE: Old Elderly (> 70 years).
When G = 2 we have the following two groups G1 = {B [ C},
G2 = {A [ YA [ MA [ E [ OE}, further details in Supplementary

Analysis section A.1

Subsets FT FT-I FT-SaBN
(G=1) (G = 7) (G = 2) (G = 7) (G = 2)

B 74.9 ± 6.8 74.1 ± 6.6 G1 74.8 ± 6.2 G1 72.2 ± 7.7 72.6 ± 7.7
C 75.0 ± 9.8 74.9 ± 9.2 G2 75.9 ± 9.1 G1 74.8 ± 8.9 75.6 ± 10.1
A 82.7 ± 13.7 80.0 ± 14.6 G3 82.8 ± 13.6 G2 82.3 ± 13.7 82.0 ± 14.0

YA 80.8 ± 11.5 80.6 ± 11.6 G4 80.6 ± 11.6 G2 80.3 ± 11.9 79.9 ± 11.9
MA 80.4 ± 7.8 79.90 ± 8.0 G5 79.8 ± 8.2 G2 79.6 ± 8.0 79.4 ± 8.3

E 75.7 ± 10.1 74.2 ± 10.7 G6 74.9 ± 10.2 G2 74.5 ± 10.6 73.9 ± 10.9
OE 75.2 ± 11.7 73.9 ± 11.0 G7 74.9 ± 11.3 G2 73.8 ± 11.7 74.0 ± 11.3
avg 77.9 ± 10.7 77.0 ± 10.8 77.6 ± 10.7 76.9 ± 11.0 76.8 ± 11.1

(iii) Training conditioned by age. In Table 6.6 we show the performance of U-Sleep-
v1 fine-tuned (FT) on all the training set of the seven BSDB groups, i.e., sin-
gle model. We also report the performance achieved using the training set
of each group independently (FT-I) with G = 7 and G = 2 respectively (i.e.,
seven and two models), and the performance achieved using the training set
of the seven/two BSDB groups conditioned (FT-SaBN) by G = 7 and by G = 2
groups respectively (i.e., single model). The mean and the standard deviation
of the F1-score (%F1), are computed across the recordings of the test set of
each of the seven BSDB age groups. Comparing both the experiments (FT-I
and FT-SaBN) and types of grouping (G=2 and G=7) with the baseline (FT),
we did not find a statistically significant increase of the performance in any of
the subgroups (paired t-test p � value > 0.05). Despite the lack of significant
performance differences in our age-conditioned models, REM sleep seems to
be less accurately predicted for small children, if the training data set only con-
sists of data from adults (see Supplementary Figure B.22, confusion matrix for
test {CH} against Model 1b). This is an interesting finding since small chil-
dren exhibit more REM sleep (see Supplementary Figure B.20). Visual scoring
guidelines for small children differ from the guidelines for adults, with REM
sleep scoring strongly relying on irregular respiration [122]. However, over-
all these results show that, despite the age-related differences, the architecture
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TABLE 6.7: U-Sleep-v1 F1-score and uncertainty estimate.
Performance of U-Sleep-v1, pre-trained on the open access (OA)
datasets, and evaluated on all the test sets of the open access datasets
(avg OA) with and without (i.e., U-Sleep-v1 pre-trained in (ii)) label
smoothing. We report the F1-score (%F1), referred to the epochs kept
after the µmax query selection procedure (q% threshold value fixed to
5%), and we report percentage of misclassified epochs among the re-
jected with query (%miscl.). Specifically, we report the mean value
and the standard deviation (µ ± s) computed across the recordings.

Dataset w/o label smoothing w/ label smoothing

avg OA
%F1 78.1 ± 11.2 72.5 ± 12.4

%miscl. 51.1 ± 9.5 53.7 ± 10.6

is able to deal with different age subgroups at the same time, without need-
ing to have access to chronological age-related information during the training
procedure.

6.5.4 Uncertainty estimate

The predicted sleep stage for each fixed-length i > 0 window comes with a probabil-
ity value p̂. As explained in the previous chapters, the probability value associated
with the predicted sleep stage should mirror its ground truth correctness likelihood.
When this happens the model is well calibrated. We also learned that label smooth-
ing [95] has been shown to be a suitable technique to improve the calibration of the
model. In our experiments, we also train U-Sleep with the label smoothing tech-
niques, to add some noise on the labels, to better calibrate the model and to evaluate
its impact on our uncertainty estimate procedure. When the model is trained with
the label smoothing technique, the hard targets are smoothed with the standard
uniform distribution 1/K (eq. 5.3), where K is the number of sleep stages. We fix the
a smoothing parameter equal to 0.1.

We exploit the ensemble of the M different predictions (i.e. one prediction for
each combination of channel in input) and the query procedure introduced in Chap-
ter 4 to estimate the model uncertainty, and consequently the uncertain predictions.
We can compute the mean µi,k and the variance s2

i,k of the M predictions for each
sleep stage k. The final prediction ŷi of the model will be given by max(µi), which we
will refer to as µmax, along with the assigned variance value s2

µmax. The mean µmax
and the variance s2

µmax can be used as indicators of the model uncertainty. High
µmax and low s2

µmax indicate that the model is confident about its prediction, i.e.
low degree of uncertainty. In this chapter, we use only the µmax query procedure, i.e.,
on each subject we select a fixed percentage of epochs with the lowest µmax value.
It has been shown to be more efficient compared to the query procedure via s2

µmax.
The query procedure requires the selection of a threshold q% on the distribution
of the mean values. The selection criterion of the threshold value q% is based on
a reasonable percentage of epochs to be re-sent to the physician for a secondary
review. We fix q% equal to 5%, as done in the previous chapters.
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We found that training U-Sleep-v1 on the OA datasets with the label smoothing
technique results in a significant decrease in performance compared to the base-
line pre-trained in (ii) without label smoothing (paired t-test p � value < 0.001).
Nonetheless, by adding some noise on the label during the training, we are able to
select a significantly higher number of misclassified epochs among the selected ones
(paired t-test p � value < 0.001). We thus succeed to better detect the uncertain
predictions, see Table 6.7.

6.6 Discussion

In this Chapter we demonstrate how resilient to sleep complexity is U-Sleep, a DL
based scoring architecture. We focused on three of the most significant aspects:
channel derivation selection, multi centre heterogeneity needs and age conditioned
fine tuning. Channel derivations do have complementary information, and a DL
based model resulted resilient enough to be able to extract sleep patterns also from
mismatched, atypical and clinically non-recommended derivations. We showed
that the variability among different sleep data centers (e.g., hardware, scoring rules
etc.) needs to be taken into account more than the variability inside one single
sleep center. A large database such as the BSDB (sleep disorder patient cohort of
the Inselspital, with patients covering the full spectrum of sleep disorders) did not
have enough heterogeneity to strengthen the performance of the DL based model
on unseen data centers. Lastly, we show that a state-of-the-art DL network is able
to deal with different age groups simultaneously, mitigating the need of adding
chronological age-related information during training.

To our knowledge, our study on the automatic sleep scoring task is the largest in
terms of number of polysomnography recordings and diversity with respect to both
patient clinical pathology and age spectrum.
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Chapter 7

Conclusions

In this thesis, we deeply investigated the resilience of the DL based scoring algo-
rithms in solving the sleep scoring tasks. Our aims were the following: to increase
the performance of existing sleep scoring algorithms, whilst quantifying the dis-
agreement between their final sleep stages predictions and the annotations given by
the physicians; to study the ability of these architectures in encoding the high inter-
scorer variability and the high data variability from different sleep labs. The primary
step toward these goals was to simplify an existing state-of-the-art sleep scoring ar-
chitecture, while maintaining its performance. In Chapter 3 we first proposed to
tackle the sleep scoring tasks by using simple feedforward based architectures,
achieving comparable results to those using recurrent layers. In Chapter 4 we in-
troduced, for the first time in sleep scoring, a novel approach to better calibrate the
model and to further enhance the performance of the sleep scoring architecture. We
exploited ensemble learning based algorithms together with label smoothing tech-
niques. We also introduced an uncertainty estimate procedure to identify the most
challenging sleep stage predictions, so as to quantify the disagreement between the
algorithm and the physicians. All along the way, we showed the efficiency of these
methodologies on different scoring architectures and sleep databases. In Chapter 5
we proposed to use the label smoothing technique along with the soft-consensus
distribution in the training procedure of our model. The approach enabled the
sleep scoring model to better adapt to the consensus of the multiple-scorers. Hence,
we clearly demonstrate that a scoring algorithm is able to learn the inter-scorer
variability. Finally, in the last Chapter 6 we came with two important findings:
a DL based architecture does not need to be trained following the strict AASM
guidelines, e.g. it solves the scoring task even by using clinically non-conventional
channel derivations, with no need to receive in input additional information about
the chronological age of the subjects; using data from multiple data centers always
results in a better performing model compared with training on a single data cohort.

The above findings leave room to the following additional observations, open
questions and possible directions as a continuation of this work.

Learning from multi-scored databases. The possibility of exploiting the full set
of information that is hidden in a multi-scored dataset would certainly enhance au-
tomated DL algorithms performance. However, in order to generalize the approach
proposed in Chapter 5, there are two big limitations. The first is that a far bigger
datasets, highly heterogeneous (with different diagnosis, age range, gender etc.)
scored by multiple physicians would be necessary. The second is that to transfer
the consensus variability from a dataset to another would require finding a relation
between the consensus variability and the complex, not easy to define, DL extracted
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features related to the epoch itself.

Need to rebuild the AASM scoring rules. AASM scoring rules have been widely
criticized over the years, for many aspects. The scoring manual has been designed
to consider the sleep stages almost as discrete entities. However, it is well-known
that sleep should be viewed as a continuum/gradual transition from one stage to
another. A growing consensus suggests that we should reconsider the scoring rules
and the entire scoring procedure. Given the high variability among the individual
scorers and different sleep centers, more efforts should be made to improve the stan-
dardization of the methodology. This variability inevitably affects the performance
of any kind of algorithm, since all algorithms are learning from the noisy variability
of labels given by physicians. A relevant finding of this thesis is indeed that the
heterogeneity given by data coming from different sleep data centers (e.g., different
sleep scorers) is much more relevant than the variability coming from patients af-
fected by different sleep disorders. This latter insight raises a research question yet
to be answered, i.e., how could we define and quantify the heterogeneity of a sleep
database? To what extent could we consider a database heterogeneous enough, to
allow the algorithm to generalize across different data domains/centers?

Encoding clinically relevant sleep patterns from non-conventional channel
derivations. The resilience of a DL based model to the atypical or non-conventional
channel derivations is fascinating. The model still learns relevant sleep patterns
while solving the scoring tasks with high state-of-the-art performance on multi-
ple large-scale-heterogeneous data cohorts. Although this is a remarkable finding,
it would be useful to further investigate the reasons why the DL model is still
able to encode clinically valid information. DL has been criticised for its non-
interpretability and its black-box behavior, factors that may actually limit its im-
plementation in sleep centers. Future works should focus on solving the following
open question: which sleep patterns/features or which brain regions our DL algo-
rithms are encoding/highlighting from the typical/atypical channel derivations?

Encoding biomarkers of consciousness under conditions of abnormal cortical
dynamics. As a follow-up study of Chapter 6, in section A.2 we demonstrated
that a DL architecture, if properly pre-trained, it is actually also able to recognize
consciousness (awake) and unconsciousness (NREM) states under conditions of
abnormal cortical dynamics, by only looking at the EEG activity. Specifically, the
algorithm pre-trained on a huge and heterogeneous dataset (raw data from healthy
subjects and patients with different sleep disorders) is able to generalize on a dataset
of subjects with genetic disorders, never seen by the algorithm, and characterized
by abnormal sleep physiology. The algorithm is remarkably learning, from the
raw EEG data, general patterns (noise/artifacts helps to discern awake and NREM
states), still useful for the consciousness related task. Can we extract from the hidden
knowledge of the layer of our scoring architecture meaningful biomarkers/features
related to the conscious and unconscious states of these patients?
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Our final consideration relates to the general approach to solve the automated
scoring dilemma. DL algorithms have reached better performance than feature
based approach, DL is definitely able in learning features alone. DL better resemble
the unconscious wide and comprehensive knowledge of the human beings, that
cannot be discretized in a set of well defined features. Being the AASM so widely
criticized, being the sleep labels so noisy (e.g., due to high inter- and intra- scorer
variability), and being sleep so complex: could we delegate to a DL algorithm totally
the scoring procedure? Could an unsupervised approach, that does not use labels,
be the solution?
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Appendix A

Supplementary Analysis

A.1 U-Sleep: Age analysis on BSDB

(G=7) Age Groups by [105]

Inspired by the meta-analysis of quantitative sleep parameters from childhood to
old age reported in [105], we decided to study, and then run all our experiments,
on the following seven age groups: Babies (B; 0-3 years), Children (C; 4-12 years),
Adolescents (A; 13-18 years), Young Adults (YA; 19-39 years), Middle Aged Adults
(MA; 40-59 years), Elderly (E; 60-69 years), Old Elderly (OE; >70 years). Unlike in
[105], we also considered the additional group of Babies, uncovered in their study.
In Supplementary Figure B.10 and in Table A.1, respectively, we show the age dis-
tribution of the BSDB dataset in the seven age groups, and we report the number
of recordings, the age range, the age mean and standard deviation (µ ± s) and the
male/female percentage (M/F) for each group. For each PSG of the BSDB dataset we
compute the following ten sleep parameters: Total Sleep Time (TST), Sleep Period
Time (SPT), Wake After Sleep Onset (WASO), Sleep Latency (SL), Sleep Efficiency
(SE), Percentage of N1 stage (pN1), Percentage of N2 stage (pN2), Percentage of N3
stage (pN3), Percentage of REM stage (pREM) and Number of stage shifts per hour
(n_shift). In Table A.2 we report the mean and standard deviation (µ ± s) of each
sleep parameter for each age group. We also show the boxplots in Supplementary
Figures from B.12 to B.21 computed on each sleep parameter and for each age group.
In some of these plots emerge the continuous positive/negative trend on the specific
sleep parameter from babies to old elderly subjects.

(G=2) Age Groups by AASM [2]

With sleep-specific age groups we refer to those suggested by the AASM scoring
manual [2]. Indeed, it provides two sets of rules for visual sleep scoring, i.e., ba-
bies/children and adults.
The age boundary between the two groups is not well defined; in particular, it is
not clear which group the subjects in the age range between 13 and 18 (adolescents)
belong to. Therefore we started considering two groups plus the adolescents’ group:
Babies/Children (CH; 0-12 years), Adolescents (A; 13-18 years), Adults (AD; < 19
years).

In Supplementary Figure B.11 and in Table A.3, respectively, we show the age
distribution of the BSDB dataset in the three age groups, and we report the number
of recordings, the age range, the age mean and standard deviation (µ ± s) and the
male/female percentage (M/F) for each age group. We used U-sleep to evaluate if
the PSGs of the Adolescents were closer to the Babies/Children’s recordings or to
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TABLE A.1: Age groups by [105] overview with
demographic statistics.

Age groups Recordings Age in years Age in years Sex %
(range) (µ ± s) (F/M) *

B 151 0-3 1.6 ± 1.1 44/56
C 246 4-12 7.8 ± 2.6 43/57
A 177 13-17 15.3 ± 1.4 41/59

YA 2106 18-39 29.7 ± 6.3 42/58
MA 3655 40-59 50.4 ± 5.5 31/69

E 1546 60-69 64.0 ± 2.8 30/70
OE 988 70-91 75.1 ± 4.1 30/70

TABLE A.2: Sleep parameters.

TST
(min)

SPT
(min)

WASO
(%)

SL
(min) SE n shift

(n/h)
pN1
(%)

pN2
(%)

pN3
(%)

pREM
(%)

all 340.2
± 83.7

402.0
± 71.4

15.7
± 13.6

18.1
± 25.1

84.3
± 13.6

20.8
± 7.8

20.2
± 15.1

44.6
± 14.2

17.9
± 12.3

14.5
± 7.6

B 452.0
± 85.8

539.6
± 88.5

15.8
± 11.4

23.5
± 30.4

84.2
± 11.4

14.7
± 5.4

13.0
± 10.0

32.6
± 14.0

29.4
± 10.9

23.9
± 9.3

C 430.2
± 73.3

465.9
± 75.9

7.5
± 7.4

20.3
± 28.3

92.5
± 7.4

12.9
± 4.1

8.0
± 6.6

36.5
± 11.6

36.5
± 13.4

17.0
± 6.9

A 377.8
± 79.3

415.2
± 85.0

9.0
± 10.6

18.7
± 30.1

91.0
± 10.6

14.7
± 5.2

8.9
± 6.7

41.0
± 11.1

32.1
± 10.9

15.1
± 6.3

YA 371.1
± 93.9

414.9
± 90.8

10.9
± 11.4

16.1
± 22.4

89.1
± 11.4

18.1
± 6.5

14.0
± 10.9

44.4
± 13.3

21.4
± 10.9

15.8
± 7.3

MA 336.3
± 66.8

393.7
± 55.4

14.7
± 12.1

16.7
± 22.8

85.3
± 12.1

21.8
± 7.4

20.1
± 13.3

46.5
± 13.8

16.1
± 10.9

14.5
± 7.3

E 311.4
± 72.6

389.6
± 56.8

20.3
± 14.7

20.0
± 26.5

79.7
± 14.7

22.8
± 8.1

25.3
± 15.9

45.1
± 14.6

14.5
± 11.9

13.0
± 7.5

OE 287.8
± 73.4

385.6
± 53.2

25.7
± 15.7

22.6
± 32.0

74.3
± 15.7

23.4
± 8.3

31.9
± 19.3

41.5
± 15.8

13.8
± 12.2

11.6
± 7.4

the Adults’ recordings. We run two different experiments on U-Sleep-v1: in exper-
iment_1 we merge the recordings from the Adolescents with the Babies/Children;
in experiment_2 we merge the recordings from Adolescents with the Adults. In
both the experiments (1, 2), we fine-tuned two different models (a, b), resulting
in four independently trained models: (1a) fine-tuning on G1a = {CH [ A}; (1b)
fine-tuning on G1b = {AD}; (2a) fine-tuning on G2a = {CH}; (2b) fine-tuning on
G2b = {A [ AD}. For each experiment, we tested both the models (a) and (b) on the
test set of the three groups {CH, A, AD}. In Table A.4 we report the macro F1-score
(%F1), specifically the mean value and the standard deviation (µ ± s), computed
across the recordings. In bold we indicate the best performance achieved on each
test set. We compared with a paired t-test the performance of the four models tested
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TABLE A.3: Age groups by AASM [2] overview with demographic
statistics. * The percentage sex % (F/M) has been computed on dif-
ferent percentage (from 99.4% up to 99.5%) of the total recordings for

each age group, given the the lack of availability of the gender
information.

Age groups Recordings Age in years
(range)

Age in years
(µ ± s)

Sex %
(F/M) *

CH 397 0-12 5.4 ± 3.7 43/57
A 177 13-17 15.3 ± 1.4 41/59

AD 8295 18-91 50.6 ± 15.6 34/66

TABLE A.4: U-Sleep-v1 F1-score on {CH, A, AD}. Performance of
U-Sleep-v1 fine-tuned on {CH, A, AD}. We report the F1-score (%F1),
specifically the mean value and the standard deviation (µ ± s) com-

puted across the recordings.
Best shown in bold.

Test Subsets Experiment 1 Experiment 2
(1a) {CH A} (1b) {AD} (2a) {CH} (2b) {A AD}

CH 75.3 ± 8.0 68.2 ± 12.4 75.4 ± 7.9 71.8 ± 10.2
A 76.5 ± 19.1 82.9 ± 13.7 78.4 ± 18.1 82.8 ± 13.6

AD 72.1 ± 13.0 77.7 ± 10.9 72.2 ± 13.3 77.5 ± 10.8

on the Adolescents. The model (2b), fine-tuned on {A [ AD}, performs signifi-
cantly better (p � value < 0.05) on the Adolescents than the model (1a), fine-tuned
on {CH [ A}, suggesting that Adolescents tend to be similar similar to Adults. This
is confirmed by the fact that also the model (1b), fine-tuned on {AD}, performs
better (p � value < 0.05) on the Adolescents than the model (1a), even without
Adolescents’ recordings in the training set. The models (1b) and (2b), fine-tuned
on Adults without or with Adolescents, reach the same performance (paired t-test
p � value > 0.05), hence confirming again the statement above. We might conclude
that the Adolescents belong to the Adults’ group, so as to run all the age condi-
tioning analysis on the following two sleep-related age groups: G1 = {B [ C} and
G2 = {A [ YA [ MA [ E [ OE}.
For both {CH} and {AD} we obtain the same performance (paired t-test p� value >
0.05) with the two models fine-tuned on the group itself, with or without Ado-
lescents. However, we reached significantly lower performance (paired t-test
p � value < 0.01) with the other two models fine-tuned on the complementary
group. This latter statement strengthens the basic assumption that babies/children
and adults are two different groups for the DL scoring algorithm.

In Supplementary Figure B.22 we report the confusion matrix for each of the five
models (0, 1a, 1b, 2a, 2b) and each of the three test sets {CH, A, AD}. With model (0)
we refer to the model fine-tuned on the whole training set, regardless of the subjects’
age.
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A.2 U-Sleep: Consciousness detection in AS/DS children

In Chapter 6 we demonstrate the resilience of U-Sleep, a state-of-the-art sleep scoring
architecture, against the AASM guidelines. U-Sleep has been evaluated on tens of
thousands of PSGs from different large-scale-heterogeneous data cohorts. In order
to rationalize the analyses that follow, we want to highlight the main peculiarities
of U-Sleep and the reasons why we choose this architecture: it processes inputs of
arbitrary length, from any arbitrary EEG electrode positions, from any hardware
and software filtering; it predicts the sleep stages for the whole PSG in a single for-
ward pass; it outputs sleep stage labels at any temporal frequency, up to the signal
sampling rate, i.e., it can label sleep stages at shorter intervals than the standard
30-seconds, up to one sleep stage per each sampled time point.

In this supplementary section, the ultimate goal is to demonstrate that U-Sleep,
if properly pre-trained, it is actually also able to recognize consciousness (awake)
and unconsciousness (non-rapid eye movement - NREM) states under conditions
of abnormal cortical dynamics (i.e., abnormal sleep physiology), by only looking at
the EEG activity. Hence, we first pre-train U-Sleep-v1 on CHAT and NCH datasets
(i.e., whole night recordings from healthy children and children with different sleep
disorders) to solve the binary classification task: awake vs NREM states. Then we
evaluate the pre-trained architecture on children with Angelman Syndrome (AS)
and Dup15q (duplication of the chromosome 15q11.2-13.1) Syndrome (DS), two
genetic disorders characterized by abnormal sleep physiology and abnormal EEG
rhythms. Children with Angelman Syndrome (AS) show an unusual delta EEG
activity. It may resemble slow wave sleep activity during wakefulness, but they are
clearly conscious while awake. Children with Dup15q Syndrome (DS) show an un-
usual beta EEG activity. It may resemble wakefulness during sleep. Thus, conscious
(awake) and unconscious (NREM) states clearly become difficult to score by only
looking at the EEG activity.

We exploit 4522 children whole-night recordings from the two publicly available
clinical studies CHAT and NCH.

CHAT. The Childhood Adenotonsillectomy Trial database consists of 1638
recordings (452 baseline, 407 follow-up and 779 control) from 1232 children post-
adenotonsillectomy-surgery aged 5-10 years. The recordings are collected in six
different sleep centers in Massachusetts, Missouri, New York, Ohio and Pennsyl-
vania [36], [40], [41]. EEG signals (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2,
T4-M1, T3-M2) have been considered in our experiments. The signals are recorded
at 200Hz (or higher in other sleep centers), and different hardware filtering given the
different acquisition systems. The recordings are manually scored by sleep experts
according to the AASM rules. For more information we refer to https://doi.org/
10.25822/d68d-8g03 and https://clinicaltrials.gov/ct2/show/NCT00560859.

NCH. The Nationwide Children’s Hospital Sleep DataBank [36], [123]. The
database contains pediatric sleep studies of 3673 patients conducted at NCH in
Columbus, Ohio, USA. We consider a total of 2884 sleep recordings from 2674 chil-
dren aged 0-12 years, as all the other recordings were excluded due to chronological
age outside the children class-range (see section A.1), to missing data, inability to
align PSG recordings with the hypnogram events, and other technical problems.
EEG signals (F4-M1, F3-M2, C4-M1, C3-M2, O2-M1, O1-M2) have been considered
in our experiments. The signals are recorded at one of three sampling rates: 250Hz,

https://doi.org/10.25822/d68d-8g03
https://doi.org/10.25822/d68d-8g03
https://clinicaltrials.gov/ct2/show/NCT00560859
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400Hz, or 512Hz, and different hardware filtering given the different acquisition sys-
tems. The recordings are manually scored by sleep experts according to the AASM
rules. For more information we refer to https://sleepdata.org/datasets/nchsdb.

We pre-train U-Sleep-v1 on both the CHAT and the NCH datasets. We split each
open access dataset per-subjects in training (80%) and validation (20%). After pre-
trainig U-Sleep, we evaluate the pre-trained architecture on AS and DS datasets.

AS. Children with Angelman Syndrome are recruited through an NIH funded
AS Natural History Study [NCT00296764]. The EEG signals are recorded at two
Boston Children’s Hospital and Rady Children’s Hospital San Diego as part of the
study during wakefulness and sleep in a clinical setting. EEG signals (F4, F3, C4, C3,
T3, T4, O2, O1) have been considered in our experiments. The signals are recorded
at one of three sampling rates: 250Hz, 256Hz, or 512Hz. Periods of drowsiness,
sleep and awake are delineated by the EEG technician during recordings using data
annotations, and EEG annotations are reviewed by a certified neurologist. Note that
because the AS EEG phenotype generally resembles slow wave sleep, sleep scoring
of AS EEG into specific NREM stages (i.e., N1, N2, or N3) is often unreliable, and
wake EEG can potentially be mislabeled as sleep EEG without annotations provided
by an EEG technician. We used 25 EEG recordings from 21 children, aged 1-10 years.
For more information we refer to [124].

DS. Children with Dup15q Syndrome are recruited through the University of
California, Los Angeles, (UCLA), at the Department of Psychology. The EEG signals
are recorded at the UCLA Ronald Reagan Medical Center. EEG signals (F4, F3,
C4, C3, T3, T4, O2, O1) have been considered in our experiments. The signals are
recorded at a sampling rate of 200 Hz. Sections of N2 sleep were delineated by sleep
splines, which were automatically detected using the Python-based toolbox YASA
(Yet Another Spindle Algorithm) [109]. 30-minute sections of wake recordings dur-
ing mid-to-late afternoon are extracted. Wakefulness is inferred by the presence of
ocular (e.g., blink or saccades) and EMG artifacts in data. A certified neurologist
reviewed all extracted EEG sections to confirm that they were scored correctly as
wake or NREM sleep. We used 22 EEG recordings from 11 children, aged 0-11 years.

The data pre-processing and EEG data selection/sampling across all the datasets
is the same as in the previous Chapter 6. The only changes here are that we are us-
ing a single channel EEG, and we are considering only the two labels awake versus
NREM (i.e., we have merged the N1, N2 and N3 stages into a single stage NREM,
and we have excluded the MOVEMENT, REM and UNKNOWN classes). The bi-
nary loss function for stages as MOVEMENT, REM and UNKNOWN is masked
during the training procedure.

The AS and DS data has been further preprocessed as done in [125]. We first
lowpass filter EEG signals at 45 Hz using a finite impulse response filter with the
filter order selected as twice the sampling rate of the signal. Next, we highpass filter
EEG signals at 0.4 Hz using a 5th order Butterworth filter; the stopband attenuation
and roll-off of this filter were optimal for attenuating drift artifacts while minimally
attenuating slow oscillations � 0.5 Hz (0.44 dB attenuation at 0.5 Hz). Following
filtering, each EEG channel is re-referenced to average. Next, we manually exclude
EEG sections with gross physiological and technical artifacts. Periods of flickering
light stimulation intended to trigger epileptiform activity in participants with AS

https://sleepdata.org/datasets/nchsdb
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TABLE A.5: U-Sleep-v1 consciousness detection performance on
AS/DS children. Performance of U-Sleep-v1, pre-trained on the
open access CHAT and NCH datasets, and evaluated on AS and DS
datasets. We report the weighted F1-score (%F1) and the per-class F1-
score. The metrics refer to a high frequency evaluation of the sleep

states - prediction for each one-second window.

Datasets F1 F1/awake F1/NREM
AS 75.0 55.8 83.0
DS 94.7 94.7 95.7

are also excluded. Next, we mark noisy channels to be excluded from independent
component analysis (ICA) and later interpolated following data cleaning. ICA was
then used (FastICA algorithm) to remove stereotyped artifacts such as EMG and
eye movements [126]. Finally, we spatially interpolate noisy channels and repeated
average referencing. EEG datasets are rejected if they did not yield at least 15 valid
frequency transform windows for 0.5 Hz, i.e., the lowest frequency analyzed in sleep
scoring.

We evaluate U-Sleep as stated in [57]. The model scores the full PSG, without
considering the predicted class on a segment with a label different from the five
sleep stages (e.g., segment labelled as ’UNKNOWN’ or as ’MOVEMENT’). The fi-
nal prediction is the results of all the possible combinations of the available EEG
channels for each recordings. Hence, we use the majority vote, i.e., the ensemble of
predictions given by the multiple combination of channels in input. The AS and DS
recordings has been segmented in windows of one-second. Therefore, we evaluate
U-Sleep on both AS and DS recordings exploiting the high-frequency prediction
property of the architecture, i.e., it outputs one sleep stage per each one-second
window.

Despite the different data domain (e.g., different recording hardware) and the
likely impact of the abnormal EEG activities, we achieved remarkable performance
in terms of weighted F1-score on both the unseen datasets AS (F1-score 75.0%) and
DS (F1 score 94.7%). As expected, on the AS dataset the slow delta waves during
wakefulness are fooling the algorithm, i.e., the model is mainly forecasting NREM
state even when the subjects are awake. On the other hand, on the DS dataset the al-
gorithm is robust against the fast beta waves during sleep, i.e., the model is still able
to recognize the two different states. We can conclude that a DL based algorithm,
specifically U-Sleep, pre-trained on a huge and heterogeneous dataset with children
aged 0-12 years, is able to generalize on a never seen dataset of children with genetic
disorders characterized by abnormal sleep physiology.
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TABLE B.1: Overview of the available deep learning based scor-
ing architectures. Summary of systems for sleep scoring using deep
learning classification techniques directly applied to raw data. We re-
port: the dataset from which the data were extracted; the type and
number of subjects considered in the analysis; the type and num-
ber of channels taken into account; the type of deep learning clas-
sification algorithms and the best performance achieved. ANN: ar-
tificial neural network, CNN: convolutional neural network, EEG:
electroencephalogram, EMG: electromyogram, EOG: electrooculo-
gram (LOC/EOG1/E1, ROC/EOG2/E2: left, right EOG, respec-
tively), GRU: gated recurrent unit, LSTM: long short-term mem-
ory, MLP: multilayer perceptron, MSLT: multiple sleep latency test,
PD: Parkinson’s disease, PSG: polysomnography, RCNN: recurrent-
convolutional neural network, RNN: recurrent neural network, VGG:
visual geometry group. Acc.: Accuracy; Sens.: Sensitivity; Agr.: com-

puter scoring / visual scoring agreement.

Datasets Dataset &
Subjects Channels Classifier Performance

Tsinalis et al.
2016 [58]

39
recordings
(healthy) 1

EEG single-
channel
(Fpz-Cz)

CNNs + 2D stack
of frequency-
specific activity in
time (end-to-end
ANN)

Validation set
Overall Acc.
71-76%
Per-stage Acc.
80-84%

Supratak et
al. 2017 [29]

62
recordings
(healthy)
SS3 2

39
recordings
(healthy) 1

EEG single-
channel
(F4-EOG1 or
Fpz-Cz or
Pz-Oz)

Low-frequency
information and
high frequency
information
using CNNs +
RNN (two
bi-LSTM layers)

Validation set 2

Acc. 86.2%
Kappa 0.80
Validation set 1

(SEDF-SC-13)
Acc. 82.0%
Kappa 0.76

Vilamala et
al. 2017 [59]

39
recordings
(20 healthy)
1

EEG single-
channel
(Fpz-Cz)

Time-frequency
image + CNN
(VGGNet as
VGG-FE feature
extractor and as
VGG-FT
fine-tuned
network)

Test set
VGG-FE
Acc. 84-88%
VGG-FT
Acc. 84-88%

Continued on next page
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Datasets Dataset &
Subjects Channels Classifier Performance

Biswal et al.
2018 [35]

10000
recordings 3

5804
recordings 4

EEG
multi-
channel (F3,
F4, C3,
C4, O1, O2)
EEG multi-
channel (C3,
C4)

Spectrograms
+ RCNN
(CNN + RNN)

Train on data3

Test set3

Acc. 87.5%
Kappa 0.80
Test set4

Acc. 77.7%
Kappa 0.73

Chambon et
al.
2018 [53]

61
recordings
(healthy)
SS3 2

EEG
multi-
channel (F3,
F4, C3,
C4, O1, O2)
EOG1,
EOG2
three chin
EMG

Multivariate
network
architecture:
linear spatial
filtering + CNN

Test set
Sens. 52%

Cui et al.
2018 [61]

116
recordings
(healthy,
sick, under
treatment) 5

EEG
multi-
channel (F3,
F4, C3,
C4, O1, O2)
LOC, ROC
X1, X2 and
X3 EMG

CNN +
fine-grained
segment in
multiscale
entropy

Test set
Acc. 92.2%

Malafeev et
al. 2018 [54]

54
recordings
(healthy) 6

43
recordings
(22 PSG and
21 MSLT
narcolepsy
and hyper-
somnia) 7

EEG single-
channel
(Pz-Oz)
one EMG
two EOG

CNN (11 layers)
+
two bi-LSTM
layers;
Residual CNN
(19 layers) +
two bi-LSTM
layers

Test set
Overall Kappa 0.8
(except N1 with
Kappa <0.5)
see paper for
details

Olesen et al.
2018 [62]

2310
recordings
(healthy and
patients) 8

EEG
multi-
channel
(central and
occipital)
EOG1,
EOG2
chin EMG

Deep residual
network model -
50 convolutional
layers

Test set
Acc. 84.1%
Kappa 0.75

Continued on next page



Appendix B. Supplementary Tables and Figures 89

Datasets Dataset &
Subjects Channels Classifier Performance

Patanaik et
al. 2018 [52]

1046
recordings
DS1 (healthy
adolescents)
9

284
recordings
DS2 (healthy
young
adults) 10

210
recordings
DS3 (sleep
disorders) 11

77
recordings
DS4 (PD
adults
patients) 12

EEG
multi-
channel
(C3, C4)
EOG
(E1,E2)

Spectral Image +
deep CNN +
MLP stage
classifier

Train on data 9, 10

Test set 9, 10

Acc. 89.8%
Kappa 0.86
Validation set 11

Acc. 81.4%
Kappa 0.74
Validation set 12

Acc. 72.1%
Kappa 0.60

Sors et al.
2018 [63]

5793
recordings
(patients) 4

EEG single-
channel
(C4-A1)

14 layers CNN Test set
Acc. 87%
Kappa 0.81

Stephansen
et al. 2018
[67]

3000
recordings
(healthy and
patients)
from over 10
databases

EEG
multi-
channel (C3
or C4 and
O1 or O2)
LOC, ROC
chin EMG

CNN + RNN Test set on IS-RC
Acc. 87%
see paper for
details

Zhang and
Wu 2018
[60]

25
recordings
(sleep-
disordered
breathing) 13

16
recordings 14

EEG single-
channel

Complex-valued
unsupervised
CNN

Train on data 13

Validation set 13

Acc. 87%
Kappa 0.81
Test set 14

Acc. 87.2%

Perslev et al.
2019 [56]

153
recordings
(healthy) 1

994
recordings
(sleep
disorders) 15

255
recordings
(sleep
disorders) 16

99
recordings
(sleep
disorders) 5

25
recordings
(sleep-
disordered
breathing) 13

EEG single-
channel
(Fpz-Cz or
C3-A2)

CNNs
U-Net-based
architecture

Test set 1

(SEDF-SC-13)
MF1. 0.79
Test set 1

(SEDF-SC-18))
MF1. 0.76
Test set 15

MF1. 0.77
Test set 16

MF1. 0.79
Test set 5

MF1. 0.77
Test set 13

MF1. 0.73

Continued on next page
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Datasets Dataset &
Subjects Channels Classifier Performance

Phan et al.
2019 [66]

200
recordings
(healthy) 2

EEG single-
channel
(C4-A1)
EOG1,
EOG2
two chin
EMG

Time-frequency
images +
end-to-end
hierarchical RNN
for sequence-to-
sequence sleep
staging

Test set
Acc. 87.1%
Kappa 0.81

Mousavi et
al. 2019 [69]

153
recordings
(healthy) 1

EEG single-
channel
(Fpz-Cz or
Pz-Oz)

Low-frequency
information and
high frequency
information
using CNNs +
Encoder-Decoder
RNN (bi-LSTM
layers)

Validation set 1

(SEDF-SC-13)
Acc. 84.3
Kappa 0.79
Validation set 1

(SEDF-SC-18))
Acc. 80.0
Kappa 0.73

Yildirim et
al. 2019 [64]

Eight
recordings
(healthy,
mild
difficulty in
falling
asleep) 17

61
recordings
(healthy and
mild
difficulty in
falling
asleep) 1

EEG single-
channel
(Fpz-Cz)
single
horizontal
EOG
channel

CNN Test set 17

Acc. 91.22%
Test set 1

Acc. 90.98%

Fiorillo et al.
2020 [7]

39
recordings
(healthy) 1

EEG single-
channel
(Fpz-Cz)

Low-frequency
information and
high frequency
information
using CNNs +
RNN (one
bi-LSTM layer)

Validation set 1

(SEDF-SC-13)
Acc. 85.2
Kappa 0.80

Guillot et al.
2020 [25]

25
recordings
(healthy) 18

55
recordings
(sleep
apnea) 19

EEG multi-
channel
(C3-M2,
C4-M1,
F4-M1,
F3-F4,
F3-M2,
F4-O2,
F3-O1,
FP1-F3,
FP1-M2,
FP1-O1,
FP2-F4,
FP2-M1,
FP2-O2,
O1-M2,
O2-M1)

Time-frequency
image + bi-GRU
with Attention
Layer +
Positional
Embedding +
bi-GRU with
skip-connection
sequence encoder

Test set 18

Acc. 89.9
Kappa 0.85
Test set 19

Acc. 88.7
Kappa 0.82

Continued on next page
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Datasets Dataset &
Subjects Channels Classifier Performance

Seo et al.
2020 [70]

39
recordings
(healthy) 1

62
recordings
(healthy)
SS3 2

5791
recordings
(patients) 4

EEG single-
channel
(Fpz-Cz or
F4-EOG1 or
C4-A1)

CNNs + RNN
(two bi-LSTM
layers)

Test set 1

(SEDF-SC-13)
Acc. 83.6
Kappa 0.77
Test set 2

Acc. 86.2
Kappa 0.79
Test set 4

Acc. 86.3
Kappa 0.81

Supratak et
al. 2020 [72]

200
recordings
(healthy) 2

153
recordings
(healthy) 1

EEG single-
channel
(F4-EOG1 or
Fpz-Cz)

Low-frequency
information and
high frequency
information
using CNNs +
RNN (one
bi-LSTM layer)

Test set 2

Kappa SS1 0.76
Kappa SS2 0.75
Kappa SS3 0.82
Kappa SS4 0.77
Kappa SS5 0.81
Test set 1

(SEDF-SC-13)
Acc. 85.4
Kappa 0.80
Test set 1

(SEDF-SC-18))
Acc. 83.1
Kappa 0.77

Guillot et al.
2021 [107]

5788
recordings
from 7
clinical
studies

EEG
multi-
channel
EOG1,
EOG2
EMG

Time-frequency
image + bi-GRU
with Attention
Layer +
Positional
Embedding +
bi-GRU with
skip-connection
sequence encoder

Test set
MF1 score on
average 0.78
see paper for
details

Olesen et al.
2021 [108]

15684
recordings
from five
clinical
studies

EEG
multi-
channel
(C3-M2,
C4-M1)
EOG1,
EOG2
chin EMG

Deep residual
network model -
ResNet-50-based
architecture

Test set
overall accuracy
on average 0.82
see paper for
details

Continued on next page
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Datasets Dataset &
Subjects Channels Classifier Performance

Phan et al.
2021 [73]

153
recordings
(healthy) 1

200
recordings
(healthy) 2

994
recordings
(sleep
disorders) 16

5791
recordings
(patients) 4

EEG single-
channel
(Fpz-Cz or
C4-A1 or
C3-A2)
EOG
(ROC-LOC
or
E1-M2)
EMG
(chin1-
chin2)

Two parallel
neural networks:
fully CNNs and
attention-based
RNNs +
bi-directional
RNNs (LSTM and
GRU cells)

Test set 1

(SEDF-SC-13)
Acc. 86.4
Kappa 0.81
Test set 1

(SEDF-SC-18))
Acc. 83.9
Kappa 0.77
Test set 2

Acc. 87.6
Kappa 0.82
Test set 16

Acc. 81.4
Kappa 0.75
Test set 4

Acc. 89.1
Kappa 0.85

Perslev et al.
2021 [57]

19924
recordings
from 16
clinical
studies

EEG single-
channel
and EOG
single-
channel
(all possible
combination
of
derivations)

CNNs
U-Net-based
architecture

Test set
F1-dice score on
average 0.79
see paper for
details

Databases: Sleep-EDF X[Expanded] SEDF-SC-13 and SEDF-SC-18 1; Montreal
archive of sleep studies MASS (X) (SS1-SS5) 2; Massachusetts General Hospital
(MGH) Sleep Laboratory 3; Sleep Heart Health Study (SHHS) (X) 4; ISRUC-sleep
X5; University of Zurich 6; Psychiatry and Neurology in Warsaw 7; Wisconsin Sleep
Cohort 8; CNL lab, Singapore 9; CSL lab, Singapore 10; SDU, Singapore GH 11; UC San
Diego sleep lab 12; The St. Vincent’s University Hospital; University College Dublin
Sleep Apnea Database (SVUH-UCD) X13; MIT-BIH database X14; PhysioNetCinC
Challenge by the Massachusetts General Hospital’s Computational Clinical Neu-
rophysiology Laboratory and the Clinical Data Animation Laboratory (PHYS) X15;
The Danish Centre for Sleep Medicine (DCSM) X16; Sleep-EDF X17; Dreem Open
Dataset - Healthy (DOD-H) X18; Dreem Open Dataset - Obstructive Sleep Apnea
(DOD-O) X19. Datasets directly available online are identified by X, whilst datasets
that require approval from a Data Access Committee marked by (X).
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TABLE B.2: DSN-L models performance after query procedure w/o
MC. Overall performance of the models obtained from 20-fold and
10-fold cross-validation without MC on both SEDF-SC-13 ±30mins
and SEDF-SC-18 ±30mins datasets. The metrics refer to the epochs
kept after the standard (i.e., w/o MC the predicted probability values
max(p̂̂p̂pi) used to select the uncertain instances) query selection proce-
dure (q% threshold value fixed to 5%). We report the overall accu-
racy (%Acc.), macro F1-score (%MF1), Cohen’s Kappa (k), weighted-
averaging F1-score (%F1), averaged con f idence value and percentage
of misclassified epochs among the rejected with query (%miscl.). The

best performance metrics for each dataset are indicated in bold.

Overall Metrics
Datasets Models Acc. MF1 k F1 %miscl.

w
/o

M
C

SEDF-SC-13
±30mins

base 84.3% 78.2% 0.78 84.4% 54.1%
base+LSU 85.0% 79.1% 0.79 85.1% 57.4%
base+LSS 84.8% 78.0% 0.79 84.8% 56.6%

SEDF-SC-18
±30mins

base 81.4% 76.0% 0.75 81.9% 57.8%
base+LSU 81.2% 75.8% 0.74 81.6% 56.2%
base+LSS 81.2% 75.9% 0.74 81.7% 58.6%

TABLE B.3: DSN-L models performance after query procedure w/
MC. Overall performance of the models obtained from 20-fold and
10-fold cross-validation without MC on both SEDF-SC-13 ±30mins
and SEDF-SC-18 ±30mins datasets. The metrics refer to the epochs
kept after both the s2

µmax and µmax query selection procedures (q%
threshold value fixed to 5%). We report the overall accuracy (%Acc.),
macro F1-score (%MF1), Cohen’s Kappa (k), weighted-averaging F1-
score (%F1), averaged con f idence value and percentage of misclassi-
fied epochs among the rejected with query (%miscl.). The best perfor-

mance metrics for each dataset are indicated in bold.

Overall Metrics
Datasets Models Acc. MF1 k F1 %miscl.

w
/M

C

SEDF-SC-13
±30mins

s2
µmax

base 84.7% 78.3% 0.79 84.6% 49.7%
base+LSU 85.7% 77.9% 0.80 85.2% 47.0%
base+LSS 84.9% 78.2% 0.79 84.8% 44.9%

µmax

base 85.2% 78.9% 0.80 85.2% 59.2%
base+LSU 86.1% 79.6% 0.81 86.0% 55.2%
base+LSS 85.5% 78.6% 0.80 85.4% 57.3%

SEDF-SC-18
±30mins

s2
µmax

base 81.7% 76.7% 0.75 82.1% 45.1%
base+LSU 81.7% 75.9% 0.75 81.8% 44.8%
base+LSS 81.6% 76.3% 0.75 81.9% 41.8%

µmax

base 82.4% 76.9% 0.76 82.7% 58.2%
base+LSU 82.3% 76.7% 0.76 82.5% 57.2%
base+LSS 82.4% 76.8% 0.76 82.7% 57.8%
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TABLE B.4: DSN-L models performance +LSSC after query proce-
dure w/o MC. Overall performance of the DSN-L models on IS-RC,
DOD-H and DOD-O datasets. The metrics refer to the epochs kept af-
ter the standard (i.e., w/o MC the predicted probability values max(p̂̂p̂pi)
used to select the uncertain instances) query selection procedure (q%
threshold value fixed to 5%). We report the overall accuracy (%Acc.),
macro F1-score (%MF1), Cohen’s Kappa (k), weighted-averaging F1-
score (%F1) and percentage of misclassified epochs among the re-
jected (%miscl.). The best performance metrics for each dataset are

indicated in bold.

Overall Metrics
Datasets Models a Acc. MF1 k F1 %miscl.

IS-RC
base - 79.2 69.6 0.69 79.7 56.7

base+LSU 0.4 79.4 69.9 0.70 80.0 58.6
base+LSSC 0.6 81.6 72.0 0.72 82.0 60.2

DOD-H
base - 78.6 71.6 0.70 78.8 54.4

base+LSU 0.2 76.9 70.2 0.68 76.7 55.1
base+LSSC 0.8 82.1 74.3 0.74 82.3 56.1

DOD-O
base - 71.2 51.7 0.58 71.6 60.4

base+LSU 0.1 76.6 57.8 0.65 77.5 57.6
base+LSSC 1 77.7 57.4 0.66 77.9 59.5
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TABLE B.5: Atypical and/or randomly ordered channel derivations.
U-Sleep channel extraction for each open database: (U-Sleep-v0) atyp-
ical and/or randomly ordered channel derivations are extracted from
the available channels; (U-Sleep-v1) correctly ordered channel deriva-
tions are extracted from the available channels, i.e., expected clinical

derivations meant to be extracted in [57].

Datasets Channel type U-Sleep-v0 U-Sleep-v1
ABC EEG F3-F4 F3-M2

O1-C3 F4-M1
C4-F4 C3-M2
E2-C3 C4-M1
O2-F4 O1-M2
M1-C3 O2-M1

EOG M2-F4 E1-M2
E1-C3 E2-M1

CCSHS EEG LOC-C4 C3-A2
M2-ROC C4-A1

EOG M1-C4 LOC-A2
C3-ROC ROC-A1

CFS EEG A2-A1 C3-A2
C3-C4 C4-A1

EOG ROC-A1 LOC-A2
LOC-C4 ROC-A1

CHAT* EEG M2-E1 F3-M2
F4-T4 F4-M1
C3-E1 C3-M2
E2-T4 C4-M1
C4-E1 T3-M2
T3-T4 T4-M1
M1-E1 O1-M2
O2-T4 O2-M1

EOG O1-E1 E1-M2
F3-T4 E2-M1

DCSM EEG F3-M2 F3-M2
F4-M1 F4-M1
C3-M2 C3-M2
C4-M1 C4-M1
O1-M2 O1-M2
O2-M1 O2-M1

EOG E1-M2 E1-M2
E2-M2 E2-M2

HPAP ** EEG - F3-M2
- F4-M1
- C3-M2

Continued on next page
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Datasets Channel type U-Sleep-v0 U-Sleep-v1
- C4-M1
- O1-M2
- O2-M1

EOG - E1-M2
- E2-M2

MESA EEG E2-Fpz Fpz-Cz
C4-M1 Cz-Oz
E1-Fpz C4-M1

EOG Fz-Cz E1-Fpz
Cz-Oz E2-Fpz

MROS EEG E1-C4 C3-M2
M1-C3 C4-M1

EOG M2-C4 E1-M2
E2-C3 E2-M1

PHYS EEG F3-M2 F3-M2
F4-M1 F4-M1
C3-M2 C3-M2
C4-M1 C4-M1
O1-M2 O1-M2
O2-M1 O2-M1

EOG E1-M2 E1-M2

SEDF-SC EEG Pz-Oz Fpz-Cz
Fpz-Cz Pz-Oz

EOG EOG EOG

SEDF-ST EEG Pz-Oz Fpz-Cz
Fpz-Cz Pz-Oz

EOG EOG EOG

SHHS EEG C4-A1 C4-A1
C3-A2 C3-A2

EOG EOGL-PG1 EOGL-PG1
EOGR-PG1 EOGR-PG1

SOF EEG LOC-A2 C3-A2
A1-C4 C4-A1

EOG C3-A2 LOC-A2
ROC-C4 ROC-A1

* The CHAT dataset has recordings where we may find a different order of EEG
and EOG sensors for different edf files. Consequently, in the U-Sleep version where
they were erroneously extracting atypical and/or randomly ordered channel deriva-
tions (U-Sleep-v0), we can generate multiple combinations of incorrect derivations.
In Table we report the most frequent incorrect EEG and EOG derivations.

** The HPAP dataset has recordings where we can find a different order of EEG
and EOG sensors for each edf file, resulting in different combinations of incorrect
derivations for each recording. For that reason, we preferred not to report the in-
correct and completely random combinations of derivations between the different
recordings.
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TABLE B.6: Experiments (i): U-Sleep-v1 weighted-F1-score.
(i) Performance of U-Sleep-v0 and U-Sleep-v1, pre-trained on the open
access (OA) datasets, and evaluated on the test set of the BSDB
dataset, and on the whole BSDB(100%) dataset, i.e., both direct transfer
(DT) on BSDB. We report the weighted F1-score (%wF1), specifically
the mean value and the standard deviation (µ ± s) computed across

the recordings.

Datasets
Training on OA

U-Sleep-v0 U-Sleep-v1
BSDB 77.8 ± 10.9 77.9 ± 10.8

BSDB(100%) 78.2 ± 11.1 78.3 ± 11.2

TABLE B.7: Experiments (ii): U-Sleep-v1 weighted-F1-score.
(ii) Performance of U-Sleep-v1, pre-trained on the open access (OA)
datasets, and evaluated on all the test set of the open access datasets
and on the test set of the BSDB dataset. We also report the perfor-
mance of U-Sleep-v1 trained from scratch (S) or fine-tuned (FT) on the
BSDB dataset, and evaluated on all the test set of all the available
datasets. We report the weighted F1-score (%wF1), specifically the
mean value and the standard deviation (µ ± s) computed across the

recordings.

Datasets
Training on OA Training on BSDB

U-Sleep-v1 U-Sleep-v1 (S) U-Sleep-v1 (FT)
ABC 81.3 ± 8.5 78.9 ± 10.1 76.5 ± 10.1

CCSHS 90.3 ± 4.6 85.3 ± 6.3 85.4 ± 5.9
CFS 87.8 ± 6.6 82.2 ± 7.9 82.8 ± 7.2

CHAT 86.4 ± 4.8 79.3 ± 6.7 76.5 ± 7.5
DCSM 90.5 ± 4.4 81 ± 8.9 79.1 ± 9.7
HPAP 80.6 ± 7.5 75.8 ± 9.6 74.5 ± 11.7
MESA 84.2 ± 7.2 79.1 ± 12.9 79.6 ± 9.3
MROS 85.3 ± 7.0 75.5 ± 10.5 77.4 ± 9.8
PHYS 80.5 ± 8.6 79.2 ± 8.9 79.2 ± 9.0

SEDF-SC 86.7 ± 5.5 85.1 ± 5.6 86.6 ± 5.3
SEDF-ST 83.5 ± 4.5 73.6 ± 8.3 74.9 ± 6.4

SHHS 86.6 ± 6.3 81.6 ± 7.1 83.5 ± 6.5
SOF 85.6 ± 6.5 75.6 ± 10.9 78.4 ± 9.9

avg OA 85.7 ± 7.1 79.7 ± 9.4 80.0 ± 9.0

BSDB 77.9 ± 10.8 82.2 ± 9.4 82.0 ± 9.4
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TABLE B.8: Experiments (iii): U-Sleep-v1 weighted-F1-score.
(iii) Performance of U-Sleep-v1 on a single model fine-tuned on all the
training set of the seven BSDB groups (FT); on seven/two models
fine-tuned on the independent training set of each group (FT-I) with
G = 7 and G = 2 respectively; and on a single model fine-tuned
on all the training set of the seven/two BSDB groups conditioned
(FT-SaBN) by G = 7 and by G = 2 groups respectively. All the fine-
tuned models are evaluated on the associated test set of each group.
We report the weighted F1-score (%wF1), specifically the mean value
and the standard deviation (µ ± s) computed across the recordings.
B: Babies (0-3 years); C: Children (4-12 years); A: Adolescents (13-
18 years); YA: Young Adults (19-39 years); MA: Middle Aged Adults
(40-59 years); E: Elderly (60-69 years); OE: Old Elderly (> 70 years).
When G = 2 we have the following two groups G1 = {B [ C}, G2 =

{A [ YA [ MA [ E [ OE}.

Subsets FT FT-I FT-SaBN
(G=1) (G = 7) (G = 2) (G = 7) (G = 2)

B 79.2 ± 7.4 78.7 ± 7.2 G1 77.6 ± 8.5 G1 79.5 ± 6.7 77.2 ± 7.9
C 80.8 ± 9.5 80.7 ± 8.9 G2 81.1 ± 7.7 G1 81.5 ± 8.0 81.4 ± 7.9
A 87.3 ± 10.8 86.0 ± 13.4 G3 87.0 ± 10.7 G1 87.0 ± 10.8 86.2 ± 11.3

YA 85.9 ± 9.3 85.6 ± 9.4 G4 85.4 ± 9.5 G2 85.5 ± 9.4 84.6 ± 9.8
MA 84.1 ± 6.2 83.5 ± 6.6 G5 83.4 ± 6.4 G2 83.5 ± 6.6 82.9 ± 6.9

E 80.5 ± 8.3 79.4 ± 9.0 G6 79.6 ± 8.9 G2 80.0 ± 8.2 79.0 ± 9.4
OE 79.8 ± 9.6 78.9 ± 9.4 G7 79.1 ± 9.7 G2 79.4 ± 9.5 78.8 ± 9.4
avg 82.5 ± 9.0 81.8 ± 9.4 81.9 ± 9.2 82.2 ± 8.9 81.4 ± 9.34

TABLE B.9: U-Sleep-v1 weighted-F1-score and uncertainty esti-
mate. Performance of U-Sleep-v1, pre-trained on the open access (OA)
datasets, and evaluated on all the test set of the open access datasets
(avg OA) with and without (i.e., U-Sleep-v1 pre-trained in (ii)) label
smoothing. We report the weighted F1-score (%F1), referred to the
epochs kept after the µmax query selection procedure (q% threshold
value fixed to 5%), and we report percentage of misclassified epochs
among the rejected with query (%miscl.). Specifically, we report the
mean value and the standard deviation (µ ± s) computed across the

recordings.

Dataset w/o label smoothing w/ label smoothing

avg OA
%F1 87.4 ± 7.3 82.5 ± 9.8

%miscl. 51.1 ± 9.5 53.7 ± 10.6
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FIGURE B.1: DeepSleepNet
classification scheme.
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FIGURE B.2: Sequence-to-sequence bidirectional-LSTM
classification scheme.
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FIGURE B.3: Sequence-to-epoch bidirectional-LSTM
classification scheme.
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FIGURE B.4: Sequence-to-sequence FFNN
classification scheme.
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FIGURE B.5: Sequence-to-epoch FFNN
classification scheme.
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FIGURE B.6: Epoch-to-epoch EPB
classification scheme.

FIGURE B.7: Sequence-to-epoch SPB
classification scheme.
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FIGURE B.8: ACS across a values on DSN-L.
ACS values across all the experimented values, on both the base+LSU
and the base+LSSC DSN-L based models tested on IS-RC, DOD-H and

DOD-O datasets.
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FIGURE B.9: ACS across a values on SSN.
ACS values across all the experimented values, on both the base+LSU
and the base+LSSC SSN based models tested on IS-RC, DOD-H and

DOD-O datasets.
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FIGURE B.10: Age distribution on BSDB on seven groups.
Age distribution on the BSDB dataset

in the seven age groups by [105].
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FIGURE B.11: Age distribution on BSDB on three groups.
Age distribution on the BSDB dataset
in the three age groups by AASM [2].



Appendix B. Supplementary Tables and Figures 109

FIGURE B.12: Boxplots on Total Sleep Time (G=7).
Boxplots on the Total Sleep Time

for each age group (G=7).
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FIGURE B.13: Boxplots on Sleep Period Time (G=7).
Boxplots on the Sleep Period Time

for each age group (G=7).
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FIGURE B.14: Boxplots on Wake After Sleep Onset (G=7).
Boxplots on the Wake After Sleep Onset

for each age group (G=7).
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FIGURE B.15: Boxplots on Sleep Latency (G=7). Boxplots on the
Sleep Latency

for each age group (G=7).
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FIGURE B.16: Boxplots on Sleep Efficiency (G=7).
Boxplots on the Sleep Efficiency

for each age group (G=7).
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FIGURE B.17: Boxplots on Percentage of N1 stage (G=7).
Boxplots on the Percentage of N1 stage

for each age group (G=7).
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FIGURE B.18: Boxplots on Percentage of N2 stage (G=7).
Boxplots on the Percentage of N2 stage

for each age group (G=7).
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FIGURE B.19: Boxplots on Percentage of N3 stage (G=7).
Boxplots on the Percentage of N3 stage

for each age group (G=7).
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FIGURE B.20: Boxplots on Percentage of REM stage (G=7).
Boxplots on the Percentage of REM stage

for each age group (G=7).
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FIGURE B.21: Boxplots on Number of stage shifts (G=7).
Boxplots on the Number of stage shifts per hour

for each age group (G=7).
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FIGURE B.22: Confusion matrix on {CH, A, AD}.
Confusion matrix of U-Sleep-v1

fine-tuned on {CH, A, AD}.
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Provazník, “Sleep scoring using artificial neural networks,” Sleep medicine
reviews, vol. 16, no. 3, pp. 251–263, 2012.

[16] M. Radha, G. Garcia-Molina, M. Poel, and G. Tononi, “Comparison of feature
and classifier algorithms for online automatic sleep staging based on a single
eeg signal,” in 2014 36th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, IEEE, 2014, pp. 1876–1880.

[17] R. Boostani, F. Karimzadeh, and M. Nami, “A comparative review on sleep
stage classification methods in patients and healthy individuals,” Computer
methods and programs in biomedicine, vol. 140, pp. 77–91, 2017.
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