
Physiological signal-based emotion
recognition from wearable devices

Master of Science Thesis
University of Turku
Department of Computing
Health Technology
February 2023
Tiina Nokelainen

Supervisors:
PhD Antti Airola
M.Sc Ismail Elnaggar

The originality of this thesis has been checked in accordance with the University of Turku quality assurance system
using the Turnitin OriginalityCheck service.



UNIVERSITY OF TURKU
Department of Computing

Tiina Nokelainen: Physiological signal-based emotion recognition from wearable
devices

Master of Science Thesis, 51 p.
Health Technology
February 2023

The interest in computers recognizing human emotions has been increasing recently.
Many studies have been done about recognizing emotions from physical signals such
as facial expressions or from written text with good results. However, recognizing
emotions from physiological signals such as heart rate, from wearable devices with-
out physical signals have been challenging. Some studies have given good, or at
least promising results. The challenge for emotion recognition is to understand how
human body actually reacts to different emotional triggers and to find a common
factors among people.

The aim of this study is to find out whether it is possible to accurately recog-
nize human emotions and stress from physiological signals using supervised machine
learning. Further, we consider the question what type of biosignals are most infor-
mative for making such predictions. The performance of Support Vector Machines
and Random Forest classifiers are experimentally evaluated on the task of sepa-
rating stress and no-stress signals from three different biosignals: ECG, PPG and
EDA. The challenges with these biosginals from acquiring them to pre-processing
the signals are addressed and their connection to emotional experience is discussed.
In addition, the challenges and problems on experimental setups used in previous
studies are addressed and especially the usability problems of the dataset.

The models implemented in this thesis were not able to accurately classify emotions
using supervised machine learning from the dataset used. The models did not per-
form remarkably better than just randomly choosing labels. PPG signal however
performed slightly better than ECG or EDA for stress detection.
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1 Introduction

The interaction between humans and computers is a vastly researched field, and the

detection of emotions has been increasingly a target of interest in the past decade.

Emotion recognition from the written text, for example, from social media posts, has

been a known research target for a while now. However, emotions are still perhaps

the least researched field in human-computer interaction.

Computers are perceived as logical and rational machines while human emotions are

more individually and illogically, indescribably experienced states of mind. Training

emotions to a computer is not as trivial as, for example, the grammar of a language

[1]. The less researched field of emotion recognition is detecting emotions with

physiological signals using biosensors. As smartwatches and smart rings have become

more common and biosensors have evolved to be used on more mobile and wearable

devices, the utilization of biosignals is more present. Smartwatches can detect sleep

stages, human activity, and even stress levels by using biosignals from the human

body.

1.1 Motivation

Mental health has become an essential topic of discussion in modern society. Nowa-

days, you can switch lights on and off through your smart device and even change



CHAPTER 1. INTRODUCTION 2

the tone of the lights to bright red or green. But what if your smart device could

detect your mood and change the hue of the lights automatically or the genre of

music to listen to according to the way you are feeling? When feeling anxious or

stressed, certain hues of color on lights and genres of music may calm the human

mind and body. Detection of emotions could help detect changes in the mood even

before human themself can.

Emotions are a central part of communication among people; thus, it is - or could

be - an essential part of human-computer interaction. Emotions have been detected

from speech and facial expressions; however, there are some challenges with using

cameras or microphones for emotion detection. To detect facial expression, a camera

is needed, and it is not very practical for everyday use, and finding an optimal

lightning setup causes more challenges. Likewise, speech recognition raises some

difficulties since it is not always desired or possible to speak out to your smart

device, for example, during a movie.

The difficulties in using speech and facial recognition raise interest in developing

alternative systems and technologies for detecting emotions. Biosignals measured

directly from the human body have shown to be a potential and good alternative

for detecting emotions. In addition, the increased development of wearable devices

provides even more possibilities for biosignals in machine learning models. Acquisi-

tion of biosignals is much easier nowadays and can be even more accessible in the

future. Biosensors can be found in jewelry, clocks, or even in clothes.

1.2 Research questions

This thesis aims to fulfill the following research questions:
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RQ1: Is it possible to recognize different emotions from phsysiological signals using

supervised machine learning?

RQ2: What is the best suited supervised machine learning algorithm for making the

most accurate predictions for emotion recognition?

RQ3: What are the best physiological signals for emotion recognition?

1.3 Thesis structure

The basic idea behind emotions, biosignals, and emotion recognition is covered in

chapter 2. In chapter 3, earlier studies in the emotion recognition field are described

and compared. Most common methods are brought to attention and examined. The

dataset used in this thesis is covered in chapter 4, along with methods implemented

in the experimental part of the thesis. Chapter 5 goes into more depth with the

designed model with some visualizations and the results. The results and experiment

results are discussed in more detail in chapter 6 with conclusions.



2 Background

Human emotion plays a vital role in human interaction between human to human.

Therefore, it is not unheard of that emotions also play a significant role in human-

computer interaction. The use of physiological signals has been rising when the

bio-sensors have been available in wearable, off-the-shelf devices. Modern wearable

devices can detect, for example, sleep stages or stress levels from the person wearing

the device. Sleep detection presents exciting data for the subject about their quality

of sleep, and they can change their daily routines if needed to get their quality of

sleep higher. Similarly, the device detecting stress level can notify the user if their

stress levels are getting abnormally high to react to it as soon as possible. Commonly

used biosignals in emotion recognition include:

• EEG from the brain

• ECG from the heart

• EDA sweat signal

• The blood volume PPG signal

Different biosignals are described in more detail in chapter 2.3.
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2.1 Challenges in biosignal based emotion recogni-

tion

What makes emotion recognition from physiological signals difficult is that emotions

are not measured in any particular dimension. There is not an objective perspective

of someone’s emotion their feeling. The only known way to define an emotion is

by describing their feelings aloud. Indeed some emotions are easy to recognize by

examining the expression of others’ faces or from the tone of their voice. However,

there is no universal way to express feelings in any numeric or categorical measure,

which is necessary for machine learning. Every individual experiences emotions

differently, and the human body works differently between individuals. One might

feel afraid on the top of a building, and another can feel excited or happy to be in

an exciting and dangerous place.

Off-the-shelf wearable devices that record biosignals have not been on the market

for an extended amount of time. Previously researchers had to rely on professional,

clinically used electronic devices. Recording a biosignal is quite different when the

subject sits quietly unmoved in supervised lab conditions as opposed to actually

moving i.e. "in the wild". Biosignals are more prone to artifacts when the subject

is moving. There are studies about emotion recognition from subjects that are

moving. Kanjo et al. [2] used location data also in addition to biosignals from the

subjects. Their model performed better with the environmental data than using

only the biosignals which implifies there is a correlation between environment and

emotions.

Because the human body can react unintentionally to different kinds of triggers,

external or internal, there is no certainty that a change in the signal is a product of

emotional experience. This means that while analyzing and processing biosignals, it
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needs to be considered that not all reactions are desirable and presumed outcomes.

For example, suppose a reaction is expected from some emotional trigger e.g., while

watching a video of someone jumping from a plane. In that case, it can affect

sweating and risen heart rate, but it can also result from pain like an acute stomach

ache or a headache [3].

From a machine learning perspective, biosignals can be very informative signals and

reliable, but they are prone to artifacts to a considerable extent. Biosignals (non-

invasive) are very sensitive to any motion or other distraction. Though they can be

filtered and cleaned from any noise and artifacts, the signal cannot be saved every

time. While biosignals gather information about emotional response, distinguishing

negative and positive experiences i.e. arousal from each other, is not straightfor-

ward.

2.2 Automatic Nervous System

The autonomic nervous system (ANS), in other words, the involuntary response

system, plays a significant role in emotional experience. It regulates the smooth

muscles, the secretion glands of internal organs, and cardiac muscles. The auto-

nomic nervous system is divided into the sympathetic nervous system (SNS) and

parasympathetic nervous system (PNS). The rhythm of the heart is controlled by

the medulla oblongata, which locates in the brain and is part of ANS.

Emotional stimuli affect the autonomic nervous system and its activity. For example,

the sympathetic nervous system is connected to sweat glands that react to external

stimuli, e.g., temperature changes or an emotional response. It is known to be

described as "the flight or fight response". The parasympathetic nervous system is

more known to stimulate the "rest and digest" states. For example, it controls the
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constriction of pupils and airways and the heartbeats when the pulse is low [4].

2.3 Biosignals in emotion recognition

Biosignal-based emotion recognition is an intricate task; thus, selecting suitable

physiological signals for own research is the key element. Although emotions are

reasonably easy to recognize from facial expressions using EMG or even from the

brains using EEG, they are not entirely practical signals since they both require

several electrodes to be attached to the subject. Attaching electrodes to the subject

is not always the preferable or even possible solution therefore wearable devices come

in handy. Photoplethysmogram, skin conductance response, and skin temperature

are often used as signal resources for emotion recognition because they are often

implemented in wearable devices. Some wearable devices can even collect some

ECG signal, which is valuable in emotional experience [5]. The selected signals

should reflect the activity of the autonomic nervous system [4]. The signals used in

this thesis experiment are electrocardiogram (ECG), electrodermal activity (EDA),

and photoplethysmogram (PPG). The most used biosignal in emotion recognition is

electroencephalography (EEG), which measures the brain’s electrical signals.

2.3.1 Electroencephalogram

Electroencephalogram (EEG) measures the electrical activity of the brain. The

brain’s electrical activity is a product of the current of ions within the electrically

charged neurons in the brain. The activity’s rhythmic and periodic patterns of

brainwaves are formed, captured as EEG. EEG is commonly used to detect epilepsy

or brain damage. Since emotions are seen to be a product of psychological ex-

perience e.g. feeling happy or stressed, EEG is widely used in emotion detection

experiments.
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Acquisition

Figure 2.1: EEG electrode placement using 10-20 system. Each circle represents an

electrode. [6]

EEG is measured by placing several electrodes on the skin of the scalp. Electrodes

have a conductive gel or paste on them. Mostly 19 electrodes are used to collect EEG

signals. The International 10-20 system is used to place the electrodes in a standard

pattern on the scalp, as seen in figure 2.1. The signal is divided into different

frequency bands, which are the main interest of EEG. Frequency bands are listed in

the table 2.1. Different frequencies are present during a different state of the human

mind. Delta brainwaves are active when a human is asleep, and theta brainwaves

represent being alert. In a relaxed state, alpha brain waves are activated. When

brains are focused, beta brainwaves are present in EEG. Brainwaves with gamma

frequencies are known to be multi-processing states of the brain. Mu brainwaves stop
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Table 2.1: EEG bands

Band Frequency (Hz) Location

Delta < 4 Frontally

Theta 4− 7 -

Alpha 8− 15 Posterior regions of head

Beta 16− 31 Both sides

Gamma > 32 Somatosensory cortex

Mu 8− 12 Sensimotor cortex

idling when the human body moves a significant part of their body. [7] Sampling

frequency of EEG should be at least 100 Hz, but usually, a higher sampling rate is

used, typically 300 Hz.

Common artifacts

Common artifacts in EEG signals are caused by eye movement, swallowing, and

poor electrode contact.

Challenges

Recording EEG signals is not very practical since many electrodes are attached all

around the head. Some consumer-level devices have been present in the market

recently, but their signal quality does not necessarily reach the required or desired

level. EEG being already vulnerable to artifacts and having relatively low signal

quality, measuring good quality signals in day-to-day life is challenging. Extracting

robust features from EEG can also cause some difficulties. [8]
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2.3.2 Electrocardiogram

Electrocardiography (ECG) is a non-invasive method to measure the muscle activity

of the heart. It is commonly used to detect various arrhythmias i.e. abnormal heart

rhythm, and it is an essential tool used in hospitals. It is crucial to detect cardiac

arrhythmia as early as possible since some arrhythmias can be fatal if they are not

treated without delay. Emotions have an impact on heart activity as well. When a

human gets excited, it is expected that their heart rate might increase, and when

the body feels relaxed, the heart rate decreases.

ECG provides information about many things besides arrhythmias. Heart rate is

possible to extract from ECG after finding R-peaks (specified in 2.2) and calculating

the heart rate from it. In addition, respiration rate is possible to extract from

ECG. The respiration signal is usually filtered out from ECG signal by eliminating

low frequencies e.g. with a high-pass filter. However, it can provide important

information about respiration if needed.

Components of ECG signal

One cycle of a heartbeat in ECG signal consists of a few different components as

seen in figure 2.2: P-wave, QRS-complex, and T-wave from which the most crucial

component is the QRS-complex. All these components represent a particular stage in

one heartbeat cycle. The P-wave represents atrial depolarization, the QRS-complex

ventricular depolarization, and the T-wave ventricular repolarization.

Acquisition

In lab conditions (hospital, clinics) ECG is measured with ten electrodes attached

to specific body parts. From 10 electrodes, 12 ECG leads are formed as listed in

the table 2.2. Each lead represents the electrical activity of the heart from a certain
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Figure 2.2: Illustration of one heart beat cycle and ECG’s different components.

angle. Most information is gathered with 12 leads; however, ECG signal is possible

to measure with only one lead which gives the least information because of the signal

represents only one angle of the heart. In clinical settings regular sampling rate can

be up to 1000 Hz; however, 500 Hz is commonly used in a wearable device or even

lower frequency. It is not recommended to use a much lower sampling rate than 100

Hz [9]. However, heart rate variables have been successfully extracted from ECG

signals with a sampling rate equal to as low as 50 Hz. [10]

Common artifacts

Common artifacts or noise in ECG signals are typically muscle artifacts, contact

noise, power line interference (50/60 Hz), baseline wanderer, and noise from the

data collecting device [13]. The preceding three noises are easily filtered out from

the signal using low-pass and high-pass filters.

Challenges

Noise is the greatest challenge when processing ECG signals. Detecting the R-peaks

can be difficult with much noise due to e.g. poor electrode attachment or movement
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Table 2.2: 12 leads from 10 electrode/sensors [12]

Lead Negative electrode Positive electrode Angle of heart

Lead I RA LA Lateral

Lead II RA LL Inferior

Lead III LA LL Inferior

aVR LA + LL RA None

aVL RA + LL LA Lateral

aVF RA + LA LL Inferior

V1 Septal

V2 Septal

V3 Anterior

V4 Anterior

V5 Lateral

V6 Lateral
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Figure 2.3: Placement of ECG electrodes [11]

of the subject (e.g. coughing). Noise can be filtered out with high pass and low pass

filters and with a set of rules e.g. how close two R-peaks can physically be with each

other. However, filtering should be carefully executed to avoid losing any desired

information.

2.3.3 Electrodermal activity

Electrodermal activity measures the changes in the electrical properties of the human

skin - the so-called "sweat signal". When human skin starts to produce sweat even

mildly, the skin conductance level rises since sweat, which is mostly water, conducts

electricity [4]. EDA is found to be a good and sensitive signal for emotion recognition

for its close relationship with ANS, and it is known to be the key signal in lie

detectors for that reason. Because EDA is one of the oldest used and researched

biosignals and is reasonably easy to measure, it is implemented in many wearable

devices.
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Acquisition

Electrodermal activity is easy to measure from the human body. It requires two

Ag/AgCl electrodes to be placed on the skin’s surface. Usually, electrodes are placed

on the fingertips. In addition, EDA can be measured from the palm, wrist, or even

from the foot. When the subject is sweating even a little, the conductance of the

skin changes. Sweat glances produce more sweat which makes the resistance of skin

drop, and on the contrary, the skin’s conductance rises [14]. Skin conductance is

linear to the activity of sweat glands - the more sweat glands push sweat to the

surface of the skin, the higher the skin conductance rises. The skin conductance is

measured in siemens units (S), more specifically in micro siemens (µS). Siemens is

used as a unit of electric conductance. The usual sampling rate for a good quality

signal is 200 to 400 Hz.

Different units of EDA

The EDA signal is usually split into different components: tonic skin conductance

level (SCL) and phasic skin conductance response (SCR). SCL represents the slow

changes in EDA signal - the tonic levels. SCR component represents the fast-

changing signal in skin conductance. SCR can tell the rapid reaction of the stimu-

lus, which is usually 1-5 seconds after the stimulus. After a stimulus, the SCR level

changes rapidly and forms peaks. Therefore SCR is an excellent signal when focus-

ing on the instant reactions to different stimuli. The tonic level of the signal changes

more slowly, representing the overall skin conductance level without the SCR peaks

giving information about the subject’s emotional or physical state.

Common artifacts

Common artifacts in EDA signal are due to poor sensor contact or motion artifact

such as subject tapping on the sensors. A poor sensor contact or a dry electrode can
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Figure 2.4: Different components in EDA signal [15]

cause artifacts to the signal, such as an unusually low signal, or they can exasperate

the electrical noise (50 Hz/60 Hz), which is not usually a problem in EDA signal since

the EDA signal is low-pass filtered. Usually, artifacts in EDA signals are unusual

rises or drops in the signal level that are not physiologically possible. SCR peaks

can reach their highest point in 1-3 seconds, and the SCR signal can lower 50% in

2-10 seconds. If there is a rapid change in the EDA signal, let us say 2 µS drop in

less than two seconds, it is impossible to be from a normal physiological cause. [16]

[17]

Challenges

The way a body produces sweat differs significantly between individuals. EDA is the

most accurate when the conductance is over 0.5 µS. However, due to low production

of sweat or even too high air conditioning or cold environment can lead to EDA signal

under 0.5 µS [16]. The signal under 0.5 µS is most likely useless since different EDA
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components are nearly impossible to distinguish. Artifacts from loose electrodes

cannot be recovered during signal processing. The best practice is to ensure that

the electrodes are correctly attached to the skin’s surface and that the electrodes do

not move during the recording. Also, it should be considered that EDA responses

occur with a bit of delay after a stimulus, usually after 1-2 seconds.

2.3.4 Photoplethysmogram

Photoplethysmogram (PPG) is a non-invasive optical measurement technique to

detect cardio-vascular pulse waves, usually from a fingertip using a light source and

a detector. The light source sends infrared, which is low-intensity light, or/and green

light, through the finger. Then the detector measures the amount of backscattered

infrared, which corresponds with the blood volume variation [18]. Blood volume

is the volume of blood cells (red cells, plasma) in the blood. The blood volume

changes as wave-like pulses when the heart contracts blood to the vessels all the

way to the fingertips. The blood volume rises when the heart contracts since more

blood cells travel through vessels; hence, less light backscatters to the detector. An

example of a PPG signal is seen in figure 2.5. The high point of the signal refers to

the contraction of the heart - the systolic peak. The second peak, which is certainly

lower, refers to the relaxation of the heart when the heart is filled with fresh blood -

a diastolic peak. From PPG, there is a possibility to extract a few different signals.

PPG can detect pulse rate, respiration rate, and even oxygen saturation.

Acquisition

Commonly PPG is measured by attaching a pulse oximeter around the subject’s

fingertip as seen in figure 2.6 LED being the light source and PD the detector.

There are other ways to collect PPG data, such as attaching the oximeter to the

earlobe, which is how this thesis’ PPG data is collected. There are two typical ways
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Figure 2.5: Illustration of a pure PPG signal with no noise or artifacts. [19]

of setting up the light source and detector. The source and the detector can be

next to each other when the detector measures how much light backscatters to the

detector. The other way is for the source and detector to be placed on opposite

sides of the finger when the receiver detects the amount of light coming through

the finger. In addition, PPG can also be measured from the wrist as modern smart

clocks do. In both, they have the same idea of having the light source and the light

receiver. PPG is usually obtained using a 125-1000 Hz sampling rate. [19]

Common artifacts

Common artifacts are muscle and motion artifacts and respiration rate, though res-

piration rate is sometimes a wanted outcome from the PPG signal. When the light

source and light detector are side-by-side, the light source can cause some interfer-
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Figure 2.6: Two main setup style of PPG sensors with LED light source and a

receiver. [20]

ence to the signal. However, it can be maintained by proper probe attachment and

filtering. [21]

Challenges

PPG being based on optical recording method skin tone can have some affect on

the signal; different skin tones absorb light differently.

2.4 Emotion models

There are many approaches to measuring emotions. The approaches can be catego-

rized into two categories by the emotional model used. The two categories broadly

used are discrete emotional models (DEM) and affective dimensional models (ADM)

[22]. Both models require the subject to report what they are feeling and even how

strongly they are feeling them. There is a well-used reporting tool as Self Assess-

ment Manikin (SAM) [23]. Some studies even use both emotion models since they

are in a way linked to each other, as shown in figure 2.7.
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2.4.1 Discrete emotional model

In discrete emotional models, the subject recognizes different emotional states and

reports them, such as feeling joy or disgust. Common wanted emotions are anger,

disgust, happiness, fear, sadness, and surprise. These emotions are said to be the

six basic emotions. However, humans may interpret their emotions differently and

their ability to recognize their own emotions according to the chosen emotions is

questionable.

2.4.2 Affective dimensional model

In the affective dimensional model, we look at emotions through two different param-

eters: valence and arousal. Arousal measures the intensity of emotional stimulation

on a scale of low to high. Valence measures the pleasantness of the emotional ex-

perience on a scale from very pleasant to very unpleasant (high to low). Different

combinations of arousal and valence often imply a specific type of emotion, as shown

in figure 2.7.

Figure 2.7: Emotions in affective dimensional model coordinator [24]
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2.5 Machine learning approaches in emotion recog-

nition

Machine learning is a field of computer science where a computer is programmed

to operate without its response to input being accurately programmed. This means

that the computer learns to operate independently with the help of features learned

from the data. The computer builds a model from the sample feeds from which

it learns to make decisions or predictions. In data analysis, machine learning is

used to find complex models in the data that can be used to make predictions. Re-

searchers can make reliable decisions and results from the data used based on these

predictions. Machine learning methods are often divided into supervised learning

and unsupervised learning. Supervised learning is a more commonly used approach

in emotion recognition models, which might be result of supervised learning being

broadly used in many machine learning problems, and most machine learning al-

gorithms are supervised [25]. However, unsupervised learning models have given

promising, or at least acceptable results in emotion recognition also.

2.5.1 Supervised learning approaches

In supervised learning, the training data is known in advance. The task is to de-

termine the output y for the input x using the known training data. The training

data consists of pairs where the outputs Y are defined for the points X. The su-

pervised model can make a decision - prediction - for the unknown data input x

based on the training data. How the model makes this decision depends on the

different supervised algorithm approaches. Supervised models aim to reduce the

error rate of the model. The error rate is calculated by comparing the predictions

made to the training data and the actual outputs. The most popular supervised

learning approach in emotion recognition is Support Vector Machines (SVM) [26].
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Deep learning methods have raised interest lately, and for instance, simple deep

learning method Convolutional Neural Network (CNN) has performed excellently in

few emotion recognition studies [2].

2.5.2 Unsupervised learning approaches

In unsupervised learning, only the inputs xi are known from the training data, but

the outputs yi are unknown. In such cases, the task of the computer is usually to

cluster the data, i.e. to group the same type of data points into their own clusters.

Therefore, the purpose is to find interesting characters in the data, like shapes. This

is much less well-defined than supervised learning, as the characters you are looking

for are unknown in advance. Unsupervised learning methods also do not have an

exact error measure, as there is no training data to compare with the prediction

made. Unsupervised learning can be used for marketing by targeting customers with

similar attributes. In this situation, an unsupervised learning method identifies or

groups the same type of customers into their own groups, which allows you to target

your advertising to specific customer groups better. Attributes can include tracking

social media accounts, customer age, and gender [27] [25]. Unsupervised methods

are rarely used in emotion recognition systems particularly based on physiological

signals. In emotion recognition, an unsupervised learning method would divide data

points into several clusters. Each cluster would represent a certain emotion.

2.5.3 Feature extraction from biosignals

A feature extraction takes place before the machine learning model can be trained.

When having a large dataset of the raw signal, processing it can be pretty over-

whelming. Feature extraction helps to reduce data redundancy and speed up the

machine learning process since the number of data decreases while still keeping the

vital information. Finding the most informative and appropriate features is essen-



CHAPTER 2. BACKGROUND 22

tial and can have a huge impact on the model’s performance. The most common

features extracted from biosignals are statistical and frequency domain features.

Statistical features include e.g. the number of peaks in the EDA signal or the mean

of heart rate from ECG signals. Frequency domain features can include the power

of a particular frequency band e.g. power in 0-0.04 Hz or the prominent frequency

in the signal.[1][16]

After feature extraction, we are left with a dataset that can have dozens of features

per entity or even hundreds. Training a model with multidimensional data may

lead to overfitting it or losing informative data by drowning the crucial features.

A good practice is choosing a subselection of features to train the model. This is

called feature selection [28]. There are many different techniques and approaches

to feature selection, yet they all have the same goal to find the best features for

the model. Some techniques even combine different features to reduce dimension-

ality while still describing the original data and keeping valid information such as

Principal Component Analysis (PSA).



3 Related work

Physical signals such as facial expression and speech in emotion recognition have

been much more studied for years than physiological signals. The oldest studies with

physiological signals are, however, from the 1950s. Most of the oldest studies with

more than one signal usually consist of a combination of physical and physiological

signals [29]. Emotion recognition with only physiological signals has become more

common in the 2010s; this might be due to having wearable devices available for

consumers.

This thesis is more focused on physiological signals that are reasonably easy to

measure from the human body. Some studies included here have used physical

signal EMG, which measures the muscle activity, usually the muscle activity of

facial expressions.

3.1 Datasets

Reacting to external stimuli with physiological emotions is remarkably dependent

on the subject since everyone reacts to different events differently. Likewise, hu-

man bodies react physiologically differently to different emotions. Age, gender, and

mental health have been seen to have a considerably significant effect on different

physiological signals.
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In K. H. Kim et al. [4] their dataset contains biosignals from 50 individual children

aged from seven to eight years. Their initial target was younger subjects; how-

ever, younger children had difficulties inducing emotions and reporting them. Many

other studies used their own acquired data too as [30] [31] [32] [33]. Some studies

used ready-made datasets such as AMIGOS or DEAP. Several databases are openly

reachable via the Internet, like the database used in this thesis. These publicly avail-

able datasets consist of data recorded from 23-32 subjects. Most of the studies have

used their own data. Two studies used the same dataset, consisting of data from

only one male subject recorded over 25 days, with four emotion recordings per day

[34][35]. Wagner et al. also compared their model with another dataset from MIT

Media Lab, achieving similar accuracies for valence (81-88 %) and slightly lower

accuracies for arousal (87.50 % versus 96.59 %). The MIT Media Lab dataset also

contains data from only one subject. Das et al. [33] used their own dataset with

only four medically healthy subjects suggesting that their method achieves close to

100 % with using only EDA signal. These high results might mean overfitting of the

model thus the model wouldn’t perform well with new unseen data.

Since biosignals depend highly on the subject, many features affect the signal output.

Medical conditions, age, even gender can impact the signal. It is good to review the

subjects used in the studies. Many datasets consist demographically similar subjects.

Relatively young people (18-35 years old) were desirable subjects in many - if not

all - studies since the quality of the signal is known to be better from a younger

person. [36] [30] [33] [31] studies even wanted to make sure that their subject were

overall healthy, not on any medication. [31] even made sure that their subjects

did not have any history of psychological or neurological conditions. [32] had 101

volunteers that were all first-year students who are presumably 18 years old. The

gender distribution was quite even in all studies which expressed the distribution

except in [2] they had data recorded from all female subjects.



CHAPTER 3. RELATED WORK 25

3.2 Experiment setups

There is not only one specific way to trigger emotions and collect data. Many studies

have found videos and pictures to induce emotions successfully, and the materials

are easy to label even beforehand, though it is not desirable to assume the emotions

experienced. Self-assessment reports are a common way to help label the data

properly. Usually, the emotion model used for self-assessment reports and labeling

is the ADM with valence and arousal, though DEM is also broadly used.

In Dar et al. [24], their model performed distinctly better on AMIGOS dataset

than on the DREAMER dataset. They suggest that this is due to more accurate

self-assessment reporting. In AMIGOS, subjects reported emotions on a scale from

1 to 9, and in DREAMER, emotions were reported from 1 to only 5. Thus choosing

the reporting type for the experiment should be carefully deliberated.

Many experiments used ready-made emotion eliciting picture, video, or audio databases

such as International Affective Picture System (IAPS) or International Affective Dig-

itized Sounds (IADSs). In these databases, every picture and sound is labeled with

arousal and valence rates, and they are supposed to elicit these labeled emotions or

feelings from the subjects.

Many studies noticed that emotions are easier to separate on the arousal axes than

on valence. Arousal rate was over 10 % better recognized than valence rate in [35] in

a scale low/high arousal and positive/negative valence. They found similar results

in other literature as well.
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3.3 Supervised

Many studies use a common machine learning model, Support Vector Machine

(SVM), a supervised learning model. However, SVM performance varied between

studies. Das et al. [33] achieved promising results on their SVM model with GSR

and ECG signals, accuracy being well over 90 %. They used DEM as their emo-

tional model with three different emotions: happy, sad, neutral. Interestingly, their

study achieved 100 % accuracy with only GSR signal in all their models (SVM, NB,

KNN) with statistical features. They suggest that GSR is a highly reliable source

for emotion recognition. In [4] and [31] studies GSR signal wasn’t one of the chosen

biosignals for their models. Their best accuracy was only close to 70 % in both

studies.

3.4 Deep learning

Studies show promising results in using deep learning methods to recognize different

emotions. Convolutional neural network (CNN) gave good results in [24] and [2]

with accuracies 98.8 % and 87.3 %. They both used the LSTM layer in their CNN

model. In Dar et al. [24], ECG and GSR signal were sent through the LSTM

layer (Long Short Term Memory) in 1D-CNN. EEG, being a different kind of signal

than ECG and GSR, was converted to PNG images and run through 2D-CNN.

Multi-modal fusion was used to decide the classes by major vote. They got good

results of 99% accuracy by using ECG and EEG signals together; GSR did not

help the model’s performance. Kanjo et al. [2] used different biosignals: ECG,

GSR, BT, and they also recorded movement of the subjects with an accelerometer.

They adopted the LSTM as an additional layer in their CNN model. LSTM helped

determine which information from earlier steps should be remembered for the next

state and which information should be forgotten. Interesting with their study is
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that they used environmental and location sensor data in their model. Using only

data from biosignal sensors, they achieved an average of 87.3 % accuracy with five

different output classes. They managed to improve their performance to 94.7 % by

including environmental and locational data in the model. Their study also tested

emotion recognition with Multi-layer perception (MLP), which CNN outperformed

by 6 % of accuracy MLP having average accuracy of 79 %. MLP is a fairly simple

deep learning method that still performed quite well though not matching the CNN

models’ results.

3.5 Unsupervised

There are close to none unsupervised systems in the literature for biosignal-based

emotion recognition. Only one study found that uses the unsupervised learning

method in their model. In [37], only EEG signal was used in their model of hy-

pergraph Laplacian-based partitioning. They adopted K-means to cluster the data

into the number of emotion classes. They used ADM for the emotion model with

arousal, valence, dominance, and liking classes. Their results varied between 54.61

and 65.12 %. Though their results do not compare to supervised learning meth-

ods, it is interesting to have a study in the unsupervised learning field as well. In

addition, the results suggest that unsupervised learning methods should be more

researched in emotion recognition.

3.6 Feature Extraction

Extracting appropriate features from the biosignals for the model is an essential task

in emotion recognition machine learning models, especially in supervised learning

methods. Many studies use traditional statistical features in their models - time

and frequency domain features. Some studies tested specific algorithms for feature
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extraction.

In [36] they suggest that their HAF-HOC feature extraction for EEG signal improves

classification efficiency for emotion recognition getting an accuracy rate up to 85.18

%. HOC-based analysis constructs the feature vector (FV HOC) as follows.

FV HOC = |D1, D2, . . . , DL|, 1 < L ≤ J

where J denotes the maximum order of the estimated HOC, and L is the HOC

order up which they were used to form the FV HOC . HOC measures the relationship

between zero-crossing rate and autocorrelation [36].

Zong et al. [34] suggest that their feature extraction technique outperforms tradi-

tional methods. Their technique is based on the Hilbert-Huang Transform (HHT).

Their technique with ’fission’ based features improved their model from 71% to 76%.

HHT method is based on decomposing signal into IMFs (Intrinsic Mode Functions),

and the fission approach of HHT aims to extract features from each IMF, and the

feature vector used in the model is the combination of these features. Also [22] study

used HHT as a feature extraction method.

Wen et al. [32] extracted features using local scaling dimension (LSD). LSD calcu-

lates how the signal fluctuates in different time scales, giving information about the

strength of the fluctuations. The LSD is defined at each time scale ε as follows:

Dm(ε) ≡ 1
m−1

δlogχm(ε)
δlogε

where χm(ε) are the moments.

A popular method for frequency-domain features is Welch’s method to estimate the

power of the signal at different frequencies. At least [33] [37] mentioned using the

method for power spectrum density. Another algorithm for spectrum analysis was
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used in [4]: ARMAsel.

Studies using CNN, a neural network, learned features directly from the raw signal

without manual feature extraction. Those studies were [24] and [2] which both had

models with combination of CNN and LSTM.

3.7 Validation methods

Almost all studies used either leave-one-out cross-validation (LOOCV) or leave-one-

subject-out cross-validation (LOSOCV), which is no surprise since biosignals are

very subject-dependent. [24] and [2] papers did not disclose validation method other

than that they trained their model with 70 % of the data and tested with the other

30 %. [24] tested their model twice on both datasets (AMIGOS & DREAMER)

with randomly splitting their data into train and test sets. The accuracy of their

model was calculated by the mean of both performances.

3.8 Subject dependency

Emotions are very personally experienced states in human body and each individual

experiences them differently. When having data in training set from the same subject

or subjects than in test set, this makes the model subject dependent. Models can

perform better when they are subject dependent since training and test sets contains

data points from same subject which can make the classification easier. As seen in

the table 3.1 most of the studies are subject dependent. Couple studies ([36] and

[22]) tested subject independency but their models’ performance were significantly

poorer than subject dependency. However, in [24] they achieved accuracy of 98.8 %

having used subject independency which is a great result.
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3.9 Summary of related work

Support Vector Machine is the most common learning method used in emotion recog-

nition problems. In addition, SVM models achieve desirable results for classifying

different emotions. However, SVM is not always the best model to recognize emo-

tions. In [30] KNN performed better than SVM with an accuracy of 82 %. It is worth

mentioning that many of the databases used have data only from 50 or fewer sub-

jects. [32] used their database with 101 subjects which is a fairly extensive database.

However, their results with Random Forest only achieved 74 % accuracy, which is

not the worst performance, but other models have more promising results. Recently,

deep learning has increased popularity in machine learning approaches altogether;

however, only a few studies were found within the emotion recognition scope. [24]

and [2] both used CNN deep learning method with promising results 98.8 % and 87.3

% indicating that neural networks should be more researched as an emotion recogni-

tion model. It should be addressed that many of the studies used subject-dependent

models resulting better performances than subject-in-dependency. Although Dar

et al. [24] study did manage to get high performance rate of 98.8 % with subject

independency.

Understandably, unsupervised models do not attract researchers as the selected

model since emotions rely heavily on labeled data. Nonetheless, [37] shows that

unsupervised models should not be excluded entirely. However, it should be con-

sidered that they used only EEG signals in their unsupervised model, and other

studies presented in this thesis usually had more than one biosignal. EEG cannot

be collected with wearable off-the-shelf devices, making it a problematic biosignal

for this challenge.

Keeping in mind that this thesis concentrates primarily on signals collected with

wearable devices, the most common biosignal in emotion recognition is ECG, while
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overall, the most popular biosignal seems to be EEG, often used by itself. ECG

presents vital data about heart rate, which makes it a valuable and reliable signal.

When looking at the emotion models, it seems to be distributed evenly between

ADM and DEM. If studies are grouped by their emotion models, the average accu-

racy in models with the ADM emotion model is 76 %. Models with DEM emotion

model performed only two percentage points better if [24] is excluded from the cal-

culations since they used both DEM and ADM emotion models. All related work

reviewed in this thesis is presented in table 3.1.
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4 Materials and methods

4.1 Data - CLAS

For the experimental part of the thesis, an open dataset downloaded from Mendeley

Data [38] is used to test the model. The dataset is A Database for Cognitive Load,

Affect and Stress Recognition (CLAS) from the University of Varna, Bulgaria [39].

The data was collected from 62 volunteers who were students between 20 and 27 of

age, except one in their thirdies and one over fifty. Among these volunteers 17 were

women and 45 were men. Dataset consists of three different biosignals recorded

while subjects performed different cognitive tasks and watched emotion eliciting

videos and pictures. Biosignals recorded from the subjects were ECG, EDA, and

PPG. In addition, accelerometer data is collected, representing the subject’s physical

movement. The accelerometer is not in the scope of this thesis. In this thesis, only

the data from the emotion eliciting part of the test is processed.

4.1.1 Data collection setup

The CLAS database contains data from three different cognitive stimuli: math prob-

lems, the Stoop test, and logic problems, as well as emotional stimuli. Each session

started with a one-minute baseline recording before the cognitive part of the exper-

iment, followed by the emotion eliciting audio-visual material. The baseline repre-
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sents the normal state of the subject’s body and mind. The cognitive stimuli data

is excluded from this thesis; therefore, they are not described in detail. Different

audio-visual materials were shown to the subjects to evoke emotions. The subjects

watched 16 different emotionally tagged videos from the DEAP database [40] and

16 different emotionally tagged pictures from the IAPS database. The videos are

organized in four blocks with four 30-second videos each. A neutral video stimulus

was shown between the blocks. After the videos, the pictures were shown to the

subjects also in four blocks with neutral video separating the pictures.

Three biosignals were recorded with Shimmer3 GSR+ Unit and Shimmer3 ECG

Unit. The PPG signal was captured with an optical pulse sensor linked to the

Shimmer3 GSR+ Unit. A sampling rate of 256 Hz was used to acquire all the

biosignals with a 16-bit resolution per sample. The Shimmer3 GSR+ records the

resistance of the skin, which was measured in kilo-ohms (kΩ). The resistance can

be converted to conductance with equation G = 1/R, where G is conductance and

R is resistance. Therefore conductance is the reciprocal of resistance.

4.1.2 Data quality

Few subjects whose data were excluded from this thesis had problems in at least one

of the signals (ECG, EDA, or PPG). The signals were missing data from the start

or end of the experiment; some had unusable EDA or ECG signals having, e.g., no

changes in the signal. The EDA signal is susceptible to artifacts if the electrodes are

not attached well or if the signal is under 0.5 µS as covered in chapter 2.3. Figure

4.1 is an example of an EDA signal which was excluded from this experiment since

there is not a proper informative signal. A good quality EDA signal is below that

in the same figure where the EDA peaks are clearly noticeable, and the tonic level

also changes. In the poor signal, these EDA peaks are not present, indicating that
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the signal was not recorded correctly.

Figure 4.1: Comparison of a good EDA signal versus poor.

Data from 58 subjects were included in the model. A few signals had quite notice-

able power line interference of 50/60 Hz in ECG signals and some EDA and PPG

signals, which is fortunately easily filtered out - more on filtering and preprocessing

methods in subsection 4.2.1. Overall, PPG signals were almost 100% usable signals

on every subject, which might be due to the acquisition style. PPG was measured by

attaching the meter to the subject’s earlobe, which is more likely to stay unmoved

compared to ECG electrodes on the subject’s body or EDA electrodes on the fingers

of the subject.

Most of the signals were fairly good quality with minor artifacts from movement

and power line interference. In figure 4.2 is sample signals of ECG, PPG, and EDA

from one subject. Note that each signal is a sample of different experiment times,

and they are not synchronized in this figure. In ECG, the QRS-complex is easily

distinguished while having noticeable power line interference. The PPG signal is very
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Table 4.1: Emotion setup

(a) Setup for subjects ids 1-11

block block type dur (s) emotion

10 neutral 30 neutral

11-14 videoclip 4 x 60 excitement

25 neutral 30 neutral

16-19 videoclip 4 x 60 bored

20 neutral 30 neutral

21-24 videoclip 4 x 60 calm

25 neutral 30 neutral

26-29 videoclip 4 x 60 stress

30 neutral 30 neutral

31 pictures 4 x 20 excitement

32 neutral 30 neutral

33 pictures 4 x 20 calm

34 neutral 30 neutral

35 pictures 4 x 20 bored

36 neutral 30 neutral

37 pictures 4 x 20 stress

(b) Setup for subjects ids 12-62

block block type dur (s) emotion

10 neutral 30 neutral

11 pictures 4 x 20 excitement

12 neutral 30 neutral

13 pictures 4 x 20 calm

14 neutral 30 neutral

15 pictures 4 x 20 bored

16 neutral 30 neutral

17 pictures 4 x 20 stress

18 neutral 30 neutral

19-22 videoclip 4 x 60 excitement

23 neutral 30 neutral

24-27 videoclip 4 x 60 bored

28 neutral 30 neutral

29-32 videoclip 4 x 60 calm

33 neutral 30 neutral

34-37 videoclip 4 x 60 stress

good with noticeable "artifact" from respiration. The phasic and tonic levels are

easily discovered from the EDA signal with little noise. These signals are somewhat

ideal signal samples of the biosignals.

In figure 4.3 it is possible to see how emotions or how the subject feels can affect on

EDA signal and heart rate (beats per minute). The red lines represent the start of

a trigger which lasts until the next trigger starts. While the subject watched videos

labeled as neutral or bored, the EDA signal level stays quite low and the heart rate
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Figure 4.2: Samples of all three signals

does not necessarily elevate. Actually it can be seen that during neutral periods the

heart rate lowers and during stress trigger it elevates a little. Noticeable elevation

can be seen immediately after first excitement trigger. The heart rate reaches its

peak during the third excitement trigger and likewise the highest point of EDA

signal is reached during the same period.

4.2 Methodology

4.2.1 Pre-processing of biosignals

In the preprocessing of the filters, background noise were filtered out from ECG

signal with Butterworth band-pass filter with cutoff frequencies of 0.5 Hz and 20

Hz. Fedotov 2016 [41] suggested that band-pass filter 8-20 Hz is the best filter
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Figure 4.3: Example of how triggers affect on EDA signal and heart rate.

to measure R-R intervals with least amount of error. The low cut frequency of 8

Hz eliminates P- and T-waves of the ECG signals which are not relevant for our

model since only R-peaks are calculated and features are extracted from R-peak

information. However, cutoff frequencies of 0.5 Hz and 20 Hz were chosen since

it they are common cutoff frequencies used in ECG preprocessing. The suggested

frequencies were also tested but they didn’t improve the model significantly. Within

the preprocessing phase, few signals were excluded having a lot of noise in the

Figure 4.4: Experiment model pipeline.
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signals.

The neutral signals were excluded from the experiment for not representing any

emotion in interest.

Figure 4.5: Butterworth band-pass filter to ECG signal with frequencies 0.5-20 Hz.

4.2.2 Feature extraction

Each signal were divided in different blocks based on their emotional trigger and

each emotion block were divided into 20 second windows. 17 features were extracted

from each signal from these 20 second windows. Features included statistical and

frequency based features presented in table 4.2. Features were chosen based on the

original study of the chosen dataset [39]. Note that no frequency based features

were extracted from EDA signal.

4.2.3 Feature selection

Not all features were used for the model since too many features can result in loss

of important features which can lead to poor performance. A Recursive Feature
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Table 4.2: Features extracted from the signals

Signal Statistical Frequency

ECG+PPG mean heart rate powerband 0 - 0.4 Hz
mean RR powerband 0.04 - 0.15 Hz
max NN interval powerband 0.15 - 0.4 Hz
pNN50 VLF percent
SDNN LF percent
RMSSD HF percent
std of the difference of LF/HF ratio
successive NN intervals
SD1 (short term variability)
SD2 (long term variability)

EDA number of peaks no frequency based features
max amplitude of the peaks
min amplitude of the peaks
mean conductance of the peaks
RMS
std of the peaks
mean absolute value of the peaks
skewness of the peak distribution
kurtosis of the peak distribution
mean resistance
first quartile
third quartile
interquartile range
percentile 2.5
percentile 10
percentile 90
percentile 97.5
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Elimination (RFE) were used to select a subset of features which contains the most

efficient features for the classification model.

4.2.4 Classifiers

Two different supervised classifiers is trained; Random Forest and Support Vector

Machines.

Random Forest

Random Forest is a simple classifier based on majority decision. It operates by

constructing multiple decision trees at training and the output is selected based on

the most selected output of the decision trees. A basic idea of how random forest

classifies an instance is described on figure 4.6. Typically at least 100 decision trees

are constructed. Each tree can pick only from a subset of features and the features

are randomly picked for all the decision trees.

For this model, 150 decision trees are constructed with random state 20 with criteria

of entropy.

Support Vector Machine

Support vector machine algorithm finds an optimal hyperplane that can distinctly

classify different data points. Hyperplane is in N-dimensional space where N is the

number of features. In figure 4.7 is a basic sample of a 2-dimensional classification

problem with two different classes (blue and green). Red line represents the optimal

hyperplane to divide the two classes.
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Figure 4.6: Basic structure of a Random Forest classifier

Figure 4.7: Example of 2-dimensional SVM classification hyperplane [42]



5 Experiment

The goal of this experiment was to find the best supervised machine learning mod-

els for emotion recognition using physiological signals. Test subjects were shown

different videos and emotion to trigger different emotions which were excitement,

calm, bored and stress. The signals were also labeled with stress and no-stress labels

which helped to narrow down the experiment to first experiment if the models are

able to differentiate these two classes from each other and plan was to then broaden

the stress detection to four different emotion recognition.

The first objective was to find best model for emotion recognition or stress detection.

Second objective was to figure out which biosignal is the most suitable for emotion or

stress recognition. With biosignals the acquisition and pre-processing of the signal

play big roles in the machine learning challenge and these were taken into account

in analysing of the results.

5.1 Training supervised classifiers

Two different supervised classification models were trained; Random Forest and

Support Vector Machines. Random Forest is a simple classification model that is

had not been used in many related works. SVM was used in many previous studies

and was therefore selected as one classifier for this experiment. Random Forest
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was selected since it is quite simple algorithm and not the first choice for emotion

recognition models. Leave-One-Subject-Out Cross-Validation were used to validate

both models. Therefore the models were subject independent since there was not

data from same subject in test and training sets. Subject dependent models were

also tested for an attempt to improve the model performance rate.

Models firstly classified the data to two different labels; stressed and no stressed.

This was on easier problem to tackle than to classify to four different emotions (ex-

citement, calm, bored, stress). Excitement, calm and bored labels were labeled as no

stress and stress as stress. This made the data imbalanced having different amount

of samples for each class which was taken into account when training the data.

SMOTE (Synthetic Minority Over-sampling Technique) [43] were used to tackle the

imbalanced data. Since there is less data for stress-label, SMOTE duplicates stress-

data to balance the data resulting in same amount of data between stress and no

stress samples in the training sets.

5.2 Results

5.2.1 Performance metrics

The performance of the models were measured with precision, recall, f1-score and

overall accuracy. These metrics are quite basic measurements of machine learning

model performances. In all the metrics used, the higher the value is, the better the

performance of the model is, highest value being 1.0.

Precision of the model measures how many of the positive identifications were ac-

tually correct. Precision is calculated as follows

Precision = TP
TP+FP
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where TP = True Positives and FP = False Positives.

Recall attempts to measure how many of the actual positives were identified cor-

rectly. Recall is calculated as follows

Recall = TP
TP+FN

where FN = False Negatives.

F1-score is the mean of the precision and recall.

f1-score = 2× precision×recall
precision+recall

where precision and recall is calculated as previously.

Accuracy is simple way to measure the performance of the model by dividing cor-

rectly classified examples by all examples as following

Accuracy = TP+TN
TP+TN+FP+FN

where TN = True Negatives. The overall accuracy can be quite good but it still

doesn’t give information on how the model actually performs on identifying true

positives from negatives (stress from no stress).

5.2.2 Performance results of the experiment models

The results of the stress classifiers were not as good as expected which indicated that

recognizing four different emotions instead of stress and no stress from the dataset

would be very difficult task thus leaving emotion recognition out of the scope and

it was not implemented.

The results of Random Forest classifier is presented in table 5.2 and SVM in table
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Table 5.1: Results of all classified as one label

Target precision recall f1-score overall accuracy (stress+no stress)

All stress 24 % 100 % 39 % 24.47 %

All no stress 76 % 100 % 86 % 75.53 %

Table 5.2: Results of Random Forest classifier

signal(s) precision recall f1-score overall accuracy (stress+no stress)

ECG 23 % 29 % 26 % 59.46 %

EDA 24 % 25 % 25 % 62.72 %

PPG 26 % 36 % 31 % 59.88 %

ECG+EDA 24 % 28 % 26 % 60.79 %

PPG+EDA 26 % 28 % 27 % 62.66 %

5.3. It can be said that both models performed poorly on recognizing stress from

no stress signals. SVM had good recall score of 85 % using only EDA signal but the

overall accuracy suffered being only 31.72 % meaning that it classified many no stress

examples as stressed even though it labeled many true stressed as stressed.

It is good to compare the results of classification models to results of classifying all

the instances as one label. In table 5.1 is presented results when all the instances

are classified as stressed or no stressed. When classifying all instances to stressed,

precision is only 24 % which is almost the same performance result of the experiment

models.

When looking at the area under the curve, it can be seen that the models performed

very poorly. If the ROC curve approaches diagonal line from lower left side to upper

right side, it indicates that the model probably just randomly classifies the labels to

instances rather than actually learns anything from the data. The ROC cure of RF



CHAPTER 5. EXPERIMENT 47

Table 5.3: Results of Support Vector Machines classifier

signal(s) precision recall f1-score overall accuracy (stress+no stress)

ECG 28 % 35 % 31 % 62.48 %

EDA 24 % 85 % 38 % 31.72 %

PPG 23 % 51 % 32 % 47.13 %

ECG+EDA 28 % 27 % 28 % 65.26 %

PPG+EDA 24 % 47 % 32 % 50.39 %

model is presented in figure 5.2 and SVM in figure 5.2. Neither of the curves differ

notably from a straight diagonal line. This indicates well that the models performed

poorly in the stress detection challenge.

Figure 5.1: Area Under Curve from Random Forest classifier with different biosig-

nals.
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Figure 5.2: Area Under Curve from Support Vector Machines classifier with different

biosignals.



6 Conclusion

The hypothesis were proven to be incorrect; emotions are difficult to recognize from

biosignals using methods presented in this thesis (RQ1). Answering to the RQ2 is

difficult since both of the models in this experiment performed poorly. However,

taking into account previous works, SVM seem to be a promising algorithm for

supervised machine learning model for emotion recognition. Although the results

should be critically examine since emotions are difficult to recognize even by a human

being and emotions are personally experienced thus common factors - if any - are

difficult to detect.

To find the best biosignal for emotion recognition - anwering to the RQ3 - is not

that easily selected. EDA is an important signal for emotion recognition since it has

a strong correlation with emotional arousal. However, EDA signal can be surpris-

ingly difficult to acquire reliably. It is prone to different artifacts and the placement

of sensors plays a big role in the signal acquisition and the environment can also

have a huge impact on the signal (cool and dry environment versus warm and hu-

mid environment). ECG and PPG gives important features about the heart and

PPG did even perform slightly better than ECG with the same features. PPG is

easier to acquire with wearable devices and still managing to generating important

information about emotions.
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With the dataset used proved that the quality of the data is an important aspect

in this problem. Looking at the dataset provided in this experiment might not have

been the most compatible data with this problem. The signals were measured using

commercial devices and the quality of the signals was not accurate enough with

some subjects and some of the samples had to be cut off. Especially the EDA signal

had problems since the skin conductance should be at least 0.5 mS to be accurate

and many of the signals were under 0.5 mS.

The plan was to implement emotion recognition using the CLAS dataset but when

the dataset was tested to recognize stress from other emotions, the models didn’t

even manage to detect stress from no-stress signals. Performing a multi-class detec-

tion is far more complex than two class classification, therefore emotion recognition

with four emotions was sadly not implemented.

Previous studies do present optimistic results which indicates that emotion recogni-

tion with supervised machine learning models is possible and should be researched

more. The challenge is that the experiment setup should be well designed and imple-

mented which can have some problems in execution. Designing a study protocol with

emotion recognition is extremely difficult since emotions are remarkably subjective

therefore trying to trigger same emotions across the study subjects is challenging

achieve.
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