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Background: The intestinal tract of practically all animals is inhabited by a diverse micro-

organism referred to as gut microbiome. The importance of gut microbiome to its host is well 

known and an increasing number of studies show that the microbes are associated with many 

body functions, such as the gut-brain axis function. Stress, in particular, can impact the gut-brain 

axis at all stages of life. Stress can reshape the gut bacterial composition through glucocorticoid 

secretion, inflammation, or autonomic alterations. This often leads to gut bacterial imbalance 

(dysbiosis), as well as low microbial diversity. Although studies on gut microbiome are 

increasing, the mechanisms of gut-brain axis and how microbes associate with stress still remain 

poorly understood. Also, the gut microbiome studies have focused mostly on humans or 

laboratory animals in controlled environments. It is important to widen the studies on mammals 

in their natural environment to better understand the complex development of gut microbiome. 

The aim of this thesis was to (1) determine the composition of gut microbiome of Asian elephants 

living in their natural environment and (2) test the hypothesis that increased stress alters the gut 

microbiome composition. 

Methods: The gut microbiome was determined from 94 semi-captive Asian elephants (Elephas 

maximus) in Myanmar, from which both fecal sample collection and blood sampling was possible. 

The gut microbiome was analyzed from the fecal samples using 16S rRNA metabarcoding 

approach. Stress levels were determined from the blood samples as: (I) serum cortisol (SC), (II) 

heterophil to lymphocyte ratio in blood samples (H:L) and (III) fecal glucocorticoid metabolites 

(FGM). 

Results: The overall gut microbe composition in Asian elephants was similar to previous studies, 

dominated by Firmicutes (55%) and Bacteroidetes (25%) followed by Spirochaetaes (8%). One 

specific genus Solibacillus was found to be significantly more abundant in this thesis compared 

to previous studies. There were also differences in the microbiome between elephants. The age 

and location of the elephant had significant effects on the gut microbe composition. The stress 

measure H:L ratio was also associated with gut microbiome by reducing the alpha diversity. All 

three stress measures were also associated with compositional changes in the gut microbiome.  

Conclusions: Gut microbe composition in Asian elephants is diverse and similar to other 

fermenters. Stress, particularly long-term stress, can shape the composition of the microbiome. 

This thesis provides in my knowledge the most comprehensive picture of gut microbiome in Asian 

elephants in their natural living environment. In addition, this thesis adds important knowledge 

of the microbiota-gut-brain axis and how stress levels are associated with it. 
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1. Introduction 

 

1.1 Gut microbes 

 

Microbes are a diverse group of microscopic organisms consisting of bacteria, archaea, 

algae, viruses and fungi. Through the development of high-throughput sequencing 

technologies, the knowledge of the importance of microbes, especially gut microbes, is 

increasing. The use of the term “superorganism” has been increasing in scientific 

literature since 2000 to describe the symbiotic relationship between host and its 

microbiome. Microbes colonize different parts of the body including intestinal tract, 

genital area, skin, and mucus membranes both in the mouth and in the respiratory system, 

with different niches in each body cavity, forming different microbiomes. The term 

microbiome is used to refer to the complex microbial community, with all its genetic 

material, in a specific body cavity (Ursell et al., 2012; Wu et al., 2013). Microbes 

colonizing the intestinal tract form the largest microbiome in the body.  

  

Recent studies on the microbiome have increased the knowledge about the importance of 

the gut microbes. Studies in both humans and other mammals have implicated the role of 

gut microbiome in a range of physiological processes vital to health and overall quality 

of life: energy homeostasis, metabolism, gut epithelial health, immunologic activity, and 

neurobehavioral development are all affected by gut microbes (Barko et al., 2018). In 

order to understand the impact that gut microbes have on health, it is necessary to decipher 

the content, diversity and functioning of the microbial gut community.  

 

Currently there are two main DNA-sequencing based approaches to analyze gut 

microbiome: DNA amplicon sequencing and shotgun metagenomic sequencing 

approaches (Xia et al., 2018). In amplicon sequencing only a fragment of one gene is 

amplified and sequenced depending on what is studied. In bacterial community analysis 

the 16S rRNA gene is often targeted for its suitability for bacterial species identification. 

The 16S rRNA gene encodes the RNA component of the prokaryotic ribosome, with a 

slow rate of evolution. The gene contains both conserved regions and variable regions. 

There are together nine hypervariable regions (V1-V9) in the 16S rRNA gene, and they 

are used in the identification of different prokaryotic taxa. The conserved domains serve 
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as a universal primer binding site for the PCR amplification of gene fragments (Boers et 

al., 2019). The shotgun metagenomic sequencing seeks to understand the microbial 

community beyond the taxonomic identification, as well as adding resolution to the 

species determination. Metagenomics refers to sequencing of the DNA fragments from 

whole genomic DNA in a specific environment like the digestive system of humans and 

other mammals. The difference to amplicon sequencing is the ability to directly analyze 

the biological functions of specific bacterial taxa (Sharpton et al., 2014). 

 

1.1.1 Composition of gut microbiome 

 

It is challenging to create an overview of the whole gut microbiome. The microbial 

composition varies between host species and there are a vast majority of factors affecting 

the composition and diversity of the microbial gut community. The gut microbiome 

composition also varies between individuals, making it even harder to distinguish the 

normal composition. There are two main diversity measures that can be used to describe 

the microbiome: alpha and beta diversity. Alpha diversity is a measure for species 

diversity in one individual and beta diversity quantifies similarities or dis-similarities in 

the microbiome between individuals. The human gastrointestinal tract is inhabited by 

approximately 1014 microorganisms, with over 1000 species, largely from 14 “core” 

genera of bacteria. (Wiley et al., 2017) Despite the variation, it is possible to determine 

the core gut microbiome in different species and individuals. 

 

The gastrointestinal tract of mammals consists of esophagus, stomach (and rumen in 

ruminants), small intestine and large intestine. The microbiome composition is reflective 

of the physiological properties in each region. Colon as a part of the large intestine 

provides a suitable environment for anaerobic bacteria to grow and reproduce, and for 

that reason the microbial community is the most diverse and abundant there. Dominating 

taxa in the colon are Prevotellaceae, Lachnospiraceae and Rikenellaceae (Thursby & 

Juge, 2017). The second most diverse microbial community exists in the small intestine. 

The environmental differences between these two intestinal tracts drive the separation 

between the microbial communities. For example, the small intestine is susceptible for 

digestive enzymes and oxygen, the peristaltic of the bowl and short transit time, making 

it a more difficult environment for the microbes to colonize. The small bowel is largely 

dominated by Lactobacillaceae (Thursby & Juge, 2017).  Depending on the host species 
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the gastrointestinal tract has different adaptations like ruminant or cecal. The two 

adaptations are recognized in herbivorous animal species (Savage, 1977). 

 

The core gut microbiome consists of two most abundant phyla Firmicutes and 

Bacteroidetes. Firmicutes make up for 50 – 80 % and Bacteroidetes 20 – 40 % of the gut 

microbiome in various species from humans to different herbivorous species (Million et 

al., 2013; Rojas et al., 2021). Gut microbiome in humans is classified into 12 different 

phyla, Firmicutes and Bacteroidetes being the most abundant, followed by 

Proteobacteria, Actinobacteria, Verrucomicrobia, Fusobacteria and Cyanobacteria 

(Molina-Torres et al., 2019; Thursby & Juge, 2017). In herbivores the most abundant 

bacterial families in the gut microbiome are Ruminococcaceae, Rikenellaceae, 

Lachnospiraceae, and Prevotellaceae. Members of these bacterial families participate in 

digestion of lignin, cellulose, hemicellulose, and protein found in vegetation (Rojas et al., 

2021).  

 

1.1.2 Function of gut microbiome 

 

Gut microbes play important roles in many different functions in the mammalian body, 

having both systemic and local effects (Hill & Round, 2021). One of the main functions 

of the gut microbiome is the fermentation of indigestible food ingredients. It is a process 

which increases energy intake and nutrient use, amongst other things, by producing short-

chain fatty acids (SCFAs). In herbivorous species members of bacterial families 

Ruminococcaceae, Rikenellaceae, Lachnospiraceae, and Prevotellaceae participate in 

digestion of lignin, cellulose, hemicellulose, and protein found in vegetation, turning 

these into a SCFAs (Rojas et al., 2021). Fermentation occurs in the colon where 

carbohydrates, fats and proteins are fermented. 

 

In addition to fermentation gut microbes are involved in the development of many 

systems including the brain (Cryan et al., 2019) and immune system (Zheng et al., 2020). 

Specific microbes from the gut microbiome can produce antimicrobial agents like 

metabolites or express molecules on their surface that can affect the immune system 

pathways. In addition to that, the microbes can prevent the colonization of pathogenic 

organisms by competing from resources and producing toxins or detrimental metabolites.  
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Studies also suggest a connection between gut microbes and brain function and also 

mental health issues (Molina-Torres et al., 2019; Peirce & Alviña, 2019). The 

development of a diverse gut microbiome, especially in the early life, is believed to be 

vital for multiple features of behavior and physiology. If the composition or diversity is 

impaired, it can lead to neuropsychiatric illnesses such as anxiety and depression (Wiley 

et al., 2017). Stress is often a common feature in many neuropsychiatric disorders 

(Musazzi & Marrocco, 2016). 

 

1.1.3 Development of gut microbiome 

 

The early life microbial exposure plays an important role in determining the composition 

of gut microbiome in humans and in other mammals. The initial microbial exposure 

occurs 10 weeks after conception as the fetus begins to swallow the amniotic fluid. There 

is evidence that the microorganisms could start to colonize the gastrointestinal tract 

already after that (Golofast & Vales, 2020). The next microbes that the fetus encounters 

depend on the mode of the birth, which plays an important role in determining the 

composition of an individual's gut microbiome (Odamaki et al., 2016). In C-section 

deliveries the lack of exposure to vaginal microbes and microbes from mother’s skin 

alters the type and diversity of the gut microbial community. The total amount of 

microbes in infants’ gut is fewer and the composition is different from infants delivered 

vaginally. The C-sectionally delivered infants are more likely to be colonized by 

Clostridium difficile and less likely by Bifidobacterium and Bacteroides in the first 

months (Francino, 2018). It is also shown that the fecal microbiome of babies delivered 

vaginally resembles the fecal microbiome of mothers’ in 72% of the cases. In babies 

delivered C-sectionally the percentage is reduced to only 41% (Thursby & Juge, 2017). 

 

The establishment of a stable gut microbiome is usually followed by two remarkable 

transitions in infancy. The first transition occurs during lactation when the gut 

microbiome becomes dominated by Bifidobacterium. The undigested oligosaccharides 

from breast milk pass through infants' gastrointestinal tract and provide favorable 

conditions for the growth of Bifidobacterium genus (Marcobal et al., 2011). The second 

transition occurs by introduction to solid foods. By consuming solid food, the microbiome 

composition changes towards adult-like complex microbiome dominated by the phyla 

Bacteroidetes and Firmicutes. In humans the stable gut microbiome composition is 



 

5 

 

acquired during the first two years of life and after that the composition depends largely 

on lifestyle (Tanaka & Nakayama, 2017). 

 

The gut microbiome develops gradually, meaning that the bacterial species that already 

colonize the gastrointestinal tract create the conditions for the subsequent species. After 

the stable gut microbiome has been formed in early life, the microbiome composition can 

be altered by lifestyle factors such as diet, environmental changes, antibiotics, and 

exercise, but also different genetic factors, aging and life events affect the composition 

(Odamaki et al., 2016; Willing et al., 2011; Wu et al., 2011). Stress is also known to affect 

the composition of gut microbes. Prolonged physical or mental stress can alter the gut 

microbiome by for example by reducing the diversity of the microbes.  

 

Food is an important modifier of the adult gut microbiome in humans and other mammals. 

Low fiber and high fat diets are positively associated with phyla Bacteroidetes and 

Actinobacteria and negatively associated with Firmicutes and Proteobacteria. In human 

studies the Bacteroides enterotype was highly associated with animal protein and 

saturated fats, suggesting that meat consumption, as in Western diet, characterizes this 

enterotype. Prevotella enterotype in contrast is associated with carbohydrate-based diet, 

more typical of agrarian societies (De Filippo et al.,2010; Wu et al., 2011). Besides 

humans, the dietary effects of other mammals have been studied also (Moustafa et al., 

2021; Rojas et al., 2021; Zhang et al., 2019). In their study Rojas et al. (2021) showed 

that in herbivores the gut microbiome is highly species-specific, and that the host 

taxonomy (30 %) accounted for more variation than the dietary guild (10 %) in the gut 

microbiome.  

 

Antibiotics have been developed to treat bacterial infections, however through their use, 

lasting alterations are made for the composition of gut microbiome. Antibiotics use is one 

of the most dramatic factors affecting the gut microbiome in adults as well as in infants. 

The gut microbiome is a complex network of co-dependent microbes and by affecting 

one population, other populations that exchange for example secondary metabolites with 

the targeted population are indirectly affected. (Willing et al., 2011) 

 

Genetic factors also play an important role in determining the gut microbiome. Host 

genetic variation is used to elucidate the variation with the microbiome in microbiome 

genome-wide association studies. Studies have shown how the genetic variation is linked 
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to the microbiome in humans. Goodrich et al. (2014) showed in their study how the 

microbiome of monozygotic twins is more similar compared to their other siblings. They 

also showed that siblings have a more similar microbiome than unrelated individuals. The 

most highly heritable taxon in the study were family Christensenellaceae and 

environmental factors shaped mostly the members of Bacteroidetes phylum because most 

of them were not heritable. Similar results have been found while studying the gut 

microbiome of monozygotic twins, marital partners, and unrelated individuals. Zoetendal 

et al. (2001) show in their study that the microbiome between monozygotic twins is 

significantly more similar than those of unrelated individuals. Similarities in the gut 

microbiome were not observed between marital partners in comparison to unrelated 

individuals. This study emphasizes the importance of genetic inheritance at the expense 

of environmental factors. 

 

Lastly, aging affects the composition of microbes in the intestinal tract and the other way 

around. Aging is a genetically determined process that leads to decline in physiological 

functions and deterioration of various homeostatic functions. These alterations, related to 

gastrointestinal tract, like degeneration of the enteric nervous system and alteration of 

intestinal motility causes the gut microbiome to change. (Mangiola et al., 2018) In 

humans the relative abundance of Lactobacillus and Bifidobacterium decreased with age, 

while Bacteroides increased with age (Barko et al., 2018). After the stable gut 

microbiome composition is acquired in childhood the composition stays relatively stable 

through adulthood until it deteriorates at old age (Odamaki et al., 2016). 

 

1.2  Stress and gut microbiome 

 

Stress has negative implications for the host gut microbiome at all ages and stages of life, 

and it has become a significant health issue. The major response to stress is the activation 

of the hypothalamic-pituitary-adrenal (HPA) axis. HPA axis activation results in the 

release of various hormones, leading to a range of different biological effects, such as the 

modulation of the gut microbiome composition (Wiley et al., 2017). In general, stress can 

be defined as the state of disturbed homeostasis. It is an organism’s response to different 

stressors like environmental pressure as well as mental or physical distress. Evolution has 
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developed ways to restore homeostasis, which requires a complex activation of responses 

from endocrine, nervous, and immune systems collectively. 

 

Stress responses can be divided into acute and chronic responses. Acute stress responses 

consist of physiological and behavioral changes that have developed to aid survival in the 

wild. In an acute stress response, the normal life-history functions are suspended, 

allowing more energy to go to counteract the stressor. The primary response to stressors 

is the activation of the HPA axis and the activation of the sympathetic nervous system.  

(Misiak et al., 2020; Palma et al., 2014) Fight-or-flight response is a well-known example 

of the activation of the sympathetic nervous system in acute stress response. The blood 

flow to brain and muscles are heightened throughout the activation of the cardiovascular 

system, providing more energy for the animal to respond to danger. (Sapolsky et al., 2000)  

 

 In chronic stress response the same pathways are activated as in acute stress reaction. 

The difference is that chronic stressors are often persistent, or they have altered 

intensities, which causes the stress response to last longer. In a chronic stress response, 

the long-term release of glucocorticoid hormone and dysregulation of the HPA axis 

causes chronic disturbances in reproductive behavior, immune system functions and in 

other normal life-history functions. (Dickens & Romero, 2013) Overall, chronic stress is 

more difficult to define and measure than acute stress. 

 

1.2.1 HPA axis 

 

The HPA axis works through the positive and negative feedback system. Physical or 

physiological stressors activate the HPA axis resulting first into the release of 

corticotropin-releasing factor (CRF) from the hypothalamus. CRF binds into a receptor 

localized on pituitary corticotrophs and induces the release of adrenocorticotropic 

hormone (ACTH) into a systemic circulation. Circulating adrenocorticotropic hormone 

stimulates glucocorticoid synthesis in adrenal cortex, the principal target for the ACTH 

in systemic circulation. In response to stress a glucocorticoid (GC) hormone, such as 

cortisol and corticosterone are released causing a physical stress response. By measuring 

hormones like cortisol or corticosterone the levels of stress can be assessed. (Misiak et 

al., 2020) 

 



 

8 

 

1.2.2 Gut-brain axis 

 

In all its simplicity the gut-brain axis means a conversation between intestinal tract and 

brain. The brain can communicate with the intestinal microbiome directly by releasing 

signal molecules to the lumen, or indirectly by altering intestinal permeability, activation 

of the HPA axis, autonomic nervous system, or the neuroendocrine system. Conversely 

the microbes can communicate with the brain via epithelial cells, microbial metabolites, 

and neurotransmitters. (Wiley et al., 2017) Several studies also suggest that stress can 

affect this bidirectional conversation between intestinal microbiome and the brain 

(Misiak et al., 2020; Molina-Torres et al., 2019).  

 

There are different pathways for the cross-talk between intestinal microbiome and the 

central nervous system (CNS). The HPA axis is one of the most important pathways in 

the gut-brain axis (Misiak et al., 2020). Gut microbiome and HPA axis have bidirectional 

communication. Activated HPA axis increases the gut permeability allowing bacteria and 

bacterial antigens to cross the epithelial barrier causing the activation of mucosal immune 

responses, which in turn alters the composition of gut microbiome, and enhances HPA 

drive. On one hand, the altered gut microbiome may enhance the release of small 

bioactive molecules and cytokines from the intestine to the bloodstream, where they can 

migrate to the brain, pass through the blood brain barrier and serve as potent activator of 

the HPA axis (Misiak et al., 2020). 

 

Besides the HPA axis, the communication between intestinal microbiome and brain 

occurs through enteric nervous system (ENS) and vagus nerve. Cranial vagus nerve is the 

fastest and most direct way to connect the gut and the central nervous system. Several 

bacteria can synthesize neurotransmitters such as acetylcholine (Lactobacillus 

plantarum), dopamine (Bacillus, Proteus vulgaris, Serratia marcescens), norepinephrine 

(Bacillus, E. coli and Saccharomyces), GABA (Lactobacillus and Bifidobacterium), 

histamine (Citrobacter, and Enterobacter), and serotonin (Candida, E. 

coli, Enterococcus and Streptococcus). (Strandwitz, 2018) Neurotransmitters are 

transported to the brain through the vagus nerve, where they can influence brain function. 

Then again, signals from the brain may influence sensory, motor and secretory modalities 

of the GI tract (Molina-Torres et al., 2019). 
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The indirect communication of the gut-brain axis occurs through microbial waste 

products like SCFA. They enhance the integrity of the intestinal epithelium as well as 

modulate the gut motility, stimulate vagus nerve, and also exert anti-inflammatory effects 

such as promotion of regulatory T cells (Farzi et al., 2018). The exact mechanisms of 

different communication pathways of the microbiota-gut-brain axis remains unknown, 

and more research is needed to understand the significance of the symbiotic relationship 

between host and microbe in the context of brain and intestinal health. 

 

1.2.3 Stress and the gut microbiome composition 

 

Stress can be detected as the activation of the HPA axis or in other changes in the 

functioning of the gut-brain axis. Overall, it can lead to changes in the gut microbiome 

composition. For instance, stress activates the HPA axis and in this way induces CRF 

release, which directly affects the bowel causing bowel dysfunction. The HPA axis also 

influences the microbiome through the glucocorticoid hormone release. Elevated cortisol 

hormone levels in mammals are associated with increase in the relative abundances of 

Proteobacterial groups and lower relative abundances of the lactic acid bacteria. (Misiak 

et al., 2020) Different Lactobacillus and Bifidobacterium species (Lactobacillus 

helveticus R0052 and Bifidobacterium longum R0175) have also been found to reduce 

cortisol hormone levels, demonstrating the cross-talk between gut and brain (Messaoudi 

et al., 2011). Studies have revealed how chronic stress reduces the diversity of the gut 

microbiome and causes similar alterations to the composition of gut microbes as do acute 

stress responses (Wiley et al., 2017). 

 

The association between stress and gut microbiome has been studied for over forty years. 

Tannock and Savage (1974) revealed how stressed mice showed dramatic reductions in 

the relative abundance of Lactobacilli when the environment of the mice was changed, 

and the food and water removed. The negative implications of stress on many health 

issues through the gut microbiome are indisputable and therefore the study of 

microbiome, as a potential therapeutic target for modulating stress response is becoming 

more important (Wiley et al., 2017). However, despite the fact that the association 

between stress and gut microbiome has already been studied over forty years, there are 

still a number of challenges that must be addressed before microbe manipulation can be 

used as a treatment for stress-related disorders.  
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Most importantly, many findings on how stress affects gut microbiome have come from 

studies with germ free mice. These results are not a realistic representation of the 

narrowing of gut microbiome diversity, which is the most frequently reported 

consequence of stress in clinical populations. Also, a controlled laboratory environment 

is not the most favorable environment of studying the complex and changing gut 

microbiome. In addition to laboratory mice, the focus has been on human gut microbiome 

and in the literature most of the gut microbiome studies revolve around humans. This may 

lead to severe bias, because microbiome and stress need to be studied also in natural 

conditions without access to advanced medical care and in a range of taxa in order to fully 

understand the complex mechanisms of gut-brain axis in other species as well.  

 

To fully utilize the gut microbiome to improve health and use it as a treatment for stress-

related disorders, it is important to know which microbes are present and what are their 

functions. Currently, despite the advances in sequencing technologies in the 2000s, the 

ideal “healthy” microbiome remains to be established and many microbes are still yet to 

be characterized. Humans are good targets for studying gut microbiome in long-lived 

species because age is a significant factor in the development of the gut microbe 

composition. One of the longest living terrestrial mammals alongside humans, are Asian 

elephants (Elephas maximus). Asian elephants could serve as a good model species to 

increase the diverse knowledge of gut microbes. Asian elephants differ from humans for 

example being herbivorous species and hindgut fermenters, but they also share 

similarities, like social lifestyle, reproductive pace and longevity. 

 

1.3  Objectives and hypothesis  

 

The scientific objective of this study is to assess the interaction between stress and gut 

microbes in Asian elephants. To complete this objective, my first sub-aim is to 

characterize the microbiome composition of the Asian elephant, second sub-aim is to 

measure the stress levels of the study elephants and determine whether there are elephants 

suffering from short-term or long-term stress, and finally I will compare the gut 

microbiome composition of individuals exposed to varying levels of stress to see the 

potential associations.  
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Previous studies on Asian elephants have provided information about their core 

microbiome as well as the effects of anthropogenic interferences on the Asian elephant 

gut microbiome (Moustafa et al. 2021), but the sample sizes have been small ranging 

between 3 and 30 individuals (Ilmberger et al., 2014; Zhang et al., 2019). This study will 

be one of the first to provide a comprehensive picture of the composition of the Asian 

elephant gut microbiome and how stress associates with it. The gut microbiome will be 

determined from 94 semi-captive Asian elephants living and foraging in their natural 

habitat in Myanmar, together with three different physiological stress measures used to 

assess stress levels; cortisol hormone measures from blood serum (SC), faecal 

glucocorticoid metabolites (FGM) and leucocyte profiles, more specifically the ratio 

between heterophils and lymphocytes (H:L). 

 

I expect the gut microbe composition of Asian elephants to be similar to other fermenters, 

as far as the core species are concerned. I expect phyla Bacteroidetes and Firmicutes to 

be the dominant, but I also expect to detect phyla like Proteobacteria and Clostridia 

(Ilmberger et al., 2014). I also expect there to be variation in the composition of gut 

microbes inside the study population and that the variation is coming from the age, sex 

and origin (captive born, wild caught) of the elephant, as well as from the location of the 

working camp. For the second sub-aim I expect to find natural variation in the stress 

levels of Asian elephants. I also expect that the three different stress measures give 

differing pictures of the stress levels in elephants, because the measures are chosen to 

represent the overall stress as comprehensively as possible, with fecal glucocorticoid 

metabolites and leucocyte profiles representing long term stress and serum cortisol short 

term stress. As measures of stress, fecal glucocorticoid metabolites and leucocyte profiles 

also differ from each other considerably. 

 

For the main objective about the connection between stress and microbiome I expect to 

find a decrease in the microbial diversity in the gut in stressed elephants. I will also expect 

that the relative abundance of various bacteria groups will alter in elephants suffering 

from stress. Reduction in genus Lactobacillus and increase in Proteobacteria have been 

previously reported as a stress associated change in the gut microbiome composition 

(Wiley et al., 2017). 

 

My hypothesis is that stress has an effect on the gut microbiome through various 

mechanisms. I will focus my research on this line of discussion of the gut-brain axis, and 
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not assess how the microbes might affect the brain function. The knowledge of the 

different mechanisms is valuable, but in my study, I will be looking at the correlation 

between gut microbiome and different physical parameters known to associate with 

stress. Studying the causality of stress and the gut microbes would require a more 

interventional approach beyond the scope of a study such as mine focused on an 

endangered species roaming in its natural habitat and exposed to a wide range of stress 

causes. 
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2. Material and methods 

 

2.1 Study population 

 
Asian elephants are used for various human purposes throughout their range countries. 

Significant proportion of the remaining population of Asian elephants are working as 

draft and transport animals in the timber industry in Myanmar. Myanmar has the biggest 

population of semi-captive Asian elephants worldwide with a population of 5000 

individuals, which is more than the rapidly shrinking wild population (Sukumar, 2006). 

More than half of this semi-captive population is state-owned through Myanma Timber 

Enterprise (MTE) (Seltmann et al., 2020). 

 

This study focuses on MTE elephants. These elephants are a good model animal for 

studying the association between stress and gut microbiome. MTE elephants live in semi-

captive conditions meaning that the elephants are working during daytime in the timber 

industry and at night they are released into the forest to forage naturally and interact with 

each other as well as occasionally wild conspecifics. This amount of freedom leads to the 

effects of natural environmental variation such as food availability, disease prevalence, 

complex climate patterns and host behavior affecting the physiology of the elephant and 

development of their gut microbiome. These elephants receive basic veterinary care to 

assess their working condition regularly, and the MTE keeps detailed records of all their 

elephants and their health information. (Crawley et al., 2020)  

 

The diet plays an important role in determining the composition of gut microbes. This is 

especially the case with Asian elephants, which are considered one of the few extant 

megaherbivores and which can spend 12-18 hours a day feeding. Asian elephants are 

hind-gut fermenters and the plant cellulose is digested by the gut microbes in the large 

caecum and colon. (Sukumar, 2006) In Myanmar there are three seasons: 1) cool season 

from late October to March, 2) hot season from March until May, 3) wet/monsoon season 

from June to late October and the food availability is highly dependent on the season. In 

hot season over 70 % of the diet is browse while in the wet season grasses comprise the 

majority of the diet.  In tropical forests, such as rainforests, the diet is mainly fruits and 

browse. (Sukumar, 2006) 
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The MTE elephants live in logging camps across the country. Camps are divided by age, 

health, or work status of the elephants. For example, the working elephants are located in 

different camps than the tamed, pregnant or lactating elephants. Age is connected to the 

elephant’s physiology, composition of gut microbiome, and in MTE elephants to the 

particular stages of life. Elephants from age 20 until 50 are considered working adults. 

Over 50-year-old elephants are retired, and elephants under 20 are considered juveniles. 

Calves are tamed at the age of 4-5 years. In this thesis the age is categorized in these four 

groups.  

 

In this study population one third of the elephants were born wild, captured, and tamed 

for working purposes. Two thirds of the elephants were born in captivity. Capture of wild 

animals may have long-term consequences on life-history for many reasons, one of them 

being altered behavior, physiology or immunity through chronic stress and sustained 

injuries. It has also been demonstrated that the capturing of the wild elephants increases 

the mortality compared to the captive-born elephants (Lähdenperä et al., 2018). The 

wellbeing and growth of the Asian elephant population worldwide is an important matter, 

as the population of Asian elephants has halved since 1950 and it is classified as an 

endangered species. The population growth is most limited by low birth rates and high 

juvenile mortality, with over 25% of calves being reported to die before the age of five. 

(Crawley et al., 2020)  

 

2.2 Material 

 

The gut microbe composition was determined from fecal samples collected from 94 

elephants (males: 25 females: 69) during field sampling in May 2020, between the hot 

and the wet season. The samples were collected fresh after defecation from elephants in 

two different working camps in Sagaing region: Kawlin (n= 53) and West Katha (n=38). 

The age of the elephants varied between 1- to 67-year-old. Also, the life-history stage of 

the elephants varied between reproductive and non-reproductive as well as the 

background of the elephants, 68 born in captivity and 26 born in the wild. This kind of 

variety in the samples enables one to obtain a comprehensive picture of the gut 

microbiome as well as a wide range of stress experiences.  
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All the fecal samples were preserved in Myanmar, using two different preservation 

methods: ethanol (70 %) and by drying the feces in the low temperature oven 50 °C. The 

ethanol preserved samples were used for the gut microbiome analysis and the dried fecal 

samples for the stress analysis. Roughly at the same time as the fecal sample collection, 

blood samples for the stress analysis were taken by veterinarians in charge of the regular 

health care of the animals, as part of their health monitoring routine. Blood samples were 

collected early in the morning from an ear vein into vacuettes containing either 

ethylenediaminetetraacetic acid (EDTA), for differential white blood cell counts for H:L 

measure, or serum separator tubes for SC measure. The blood samples were collected 

from 68 elephants (males: 18 females: 50) corresponding the collected fecal samples. 

Sample size varied due to difficulties in obtaining blood samples for young untamed 

individuals. 

 

2.3 Gut microbiome 

 

2.3.1 DNA extraction 

 

The ethanol-preserved fecal samples were stored at room temperature in Myanmar until 

transporting them to Finland.  The samples were then stored in – 80°C, prior to DNA 

extractions. For the DNA extraction Qiagen´s PowerSoil Pro Kit (Ref nr: 47014) was 

used, following the manufacturer's protocol (version 05/2019). 120 mg of ethanol-

preserved feces were dried and loaded to Powerbead tubes, deviating from manufactures 

recommendation of 250 mg. The optimization of the 120 mg sample weight was 

conducted prior to the extractions using two test samples, 100 mg, and 250 mg. The 

quality of the extracted DNA from the test samples were compared using Nanodrop 

(ThermoFisher Scientific). 800 µl of solution CD1 was added to the Powerbead tubes and 

vortexed briefly to start the cell lysis. Sample homogenization was conducted using 

TissueLyser II (QIAGEN). Powerbead tubes were placed on the TissueLyser Adapter Set, 

shaken 5 minutes at the speed of 25 Hz, re-orientated and shaken again. Powerbead tubes 

were centrifuged at 15,000 x g for 1 minute and the supernatants were transferred to a 2 

ml Microcentrifuge tube. 200 µl of solution CD2 was added to the Microcentrifuge tube 

and vortexed for 5 seconds. The Microcentrifuge tube was then centrifuged at 15,000 x g 

for 1 minute and the supernatant transferred to a new Microcentrifuge tube, avoiding the 
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pellet. In addition to supernatant, 600 µl of solution CD3 was added into the 

Microcentrifuge tube and vortexed briefly. 650 µl of the lysate was loaded onto MB Spin 

Column and centrifuged at 15,000 x g for 1 minute. The flow-through the MB Spin 

Column was discarded and the rest of the lysate was loaded onto the same MB Spin 

Column and centrifuged again. 

 

The DNA was bound to the silica filter membrane of MB Spin Column and the next 

phases included DNA purification. MB Spin Column was placed into 2 ml Collection 

tube and 500 µl of wash buffer EA was added and centrifuged at 15,000 x g for 1 minute. 

The flow-through was discarded and MB Spin Column placed back into the Collection 

tube. 500 µl of ethanol-based wash solution C5 was added to the MB Spin Column and 

centrifuged again at 15,000 x g for 1 minute. The MB Spin Column was placed into a 

new 2 ml Collection tube and centrifuged at 16,000 x g for 2 minutes for the ethanol to 

come off the membrane. MB Spin Column was placed into a 1,5 ml Elution Tube and 

100 µl of solution C6 was added to the center of the filter membrane in MB Spin Column 

and centrifuged at 15,000 x g for 1 minute. The MB Spin Column was discarded, and the 

DNA was diluted in 100 µl of elution buffer (C6), in the Elution Tube. Prior to the PCR 

reactions the DNA was stored in -20°C.   

 

2.3.2 PCR  

 

To obtain gut microbiome composition DNA amplicon sequencing method was used in 

this study. Polymerase chain reaction (PCR) was conducted to the extracted DNA.  PCR 

was targeted on prokaryotic 16S rRNA gene regions V3 to V4, containing species-

specific signature sequences, useful for identification of different bacteria. The length of 

the amplified region was 464 bp. Targeting of PCR was conducted using universal 

primers Bakt-341F (CCTACGGGNGGCWGCAG) and Bakt-805R 

(GACTACHVGGGTATCTAATCC) (Herlemann et al., 2011). Like the DNA 

extractions, also the PCR protocol were optimized, and the reagents tested before actual 

analyses.  

 

Altogether three PCR replicates were conducted on all the DNA samples. Negative 

controls, and a positive control sample ”mock” (ZymoBIOMICS Microbial Community 



 

17 

 

DNA Standard) was also used in the PCR. The reaction volume used in the PCR was 10 

µl and the reaction components and volumes are presented in Table 1. 

 

 

Table 1. PCR reagents and volumes used to amplify bacterial 16S rRNA gene regions 

V3 to V4. 

 

Reagents Concentration 

in reaction 

Volume (µl)  96 x volume (µl) 

Sterile H₂O - 2.6 µl 250 µl 

Bakt-341 F 0.2 µM 0.2 µl 19.2 µl 

Bakt-805R R 0.2 µM 0.2 µl 19.2 µl 

DNA polymerase KAPA Hifi 1x 5 µl 480 µl 

DNA - 2 µl - 

 

Master mix was prepared by adding sterile H₂O, DNA polymerase KAPA Hifi (Roche) 

and both forward and reverse primers into a sterile Eppendorf tube (Table 1). After that 

8 µl of the master mix and 2 µl of the extracted DNA was pipetted into the 96 well plate 

and the reagents were spun down. The PCR reaction was conducted on a Bio-rad 

Thermocycler. The amplification program started by initial denaturation (95 °C, 3 min) 

and followed by 25 cycles of denaturation (95 °C, 30 s), annealing (55 °C, 30 s) and 

extension (72 °C, 30 s). The program finished on a 10-minute final extension on a 72 °C 

temperature. The PCR products were kept at 4 °C after the PCR.  

 

The agarose gel electrophoresis was used to evaluate the PCR products. The reaction was 

conducted on 1,5 % agarose gel, prepared by mixing 100 ml of 0,5 x TBE Buffer, 1,5 g 

of agarose and 5 µl of Midori green advanced DNA Stain marker (Nippon Genetics). 

GeneRuler 100 bp (ThermoFisher Scientific) molecular weight marker was used in the 

reaction. The PCR products and the molecular weight marker were loaded into the 

agarose gel and run 30 minutes with a voltage of 120 V. DNA was visualized using 

ChemiDoc (BioRad). 
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2.3.3 Index PCR 

 

Following the protocol for Illumina 16S sequencing library preparation, two-step PCR 

reaction was performed to the extracted DNA. The indexing PCR reaction was conducted 

in order to tag each DNA sample with specific indexes. The DNA from the first PCR 

reaction and other reagents (Table 2) were used in indexing PCR. Different sets of 

primers, with individual indexes for each of the samples were used in the second PCR 

reaction. 

 

Table 2.  Reagents and volumes used in the index PCR.  

 
 plate 1.1 plate 1.2 plate 2.1 plate 2.2 plate 3.1 plate 3.2 

Reagents Conc. Volume Conc. Volume Conc. Volume 

DNA 

polymerase 

1x  5 µl 1x 5 µl 1x 5 µl 

i7_14R 

GAGATCTG 

0.5 µM 1 µl - - - - 

i7_58R 

TGACAGAG 

0.5 µM 1 µl - - - - 

i7_7R 

AGATCTG 

- - 0.5 µM 1 µl - - 

i7_11R 

GGCTACAG 

- - 0.5 µM 1 µl - - 

i7_5R 

ACCACTGT 

- - - - 0.5 µM 1 µl 

i7_98R 

TGTGCACT 

- - - - 0.5 µM 1 µl 

DNA  

1:st PCR 

- 3 µl - 3 µl - 3 µl 

 

Altogether three index PCR reactions were conducted, one on each replicate plate. Six 

master mixes were prepared, one for each i7 reverse primer, by adding 250 µl of DNA 

polymerase and 50 µl of i7 reverse primer. PCR primers i7_14R and i7_58R were used 

in plate 1 and both master mixes were pipetted for one 96 well plate. The volume of 

master mix per well was 6 µl. Half of the plate contained reverse primer i7_14R and 

another half i7_58R. After that, 1 µl of i5 forward primer were added into the wells. Each 

well was added with a different i5 forward primer (supplement 1). DNA from the first 

PCR reaction was added into the wells (V= 3 µl), making the total volume of the reaction 

10 µl. The PCR program used in the index PCR was shorter and had fewer rounds than 

the first PCR program. Index PCR program started with initial denaturation (95 °C, 4min) 

and followed by 10 cycles of denaturation (98 °C, 20 s), annealing (60 °C, 15 s) and 

extension (72 °C, 30 s). The program finished on a 3-minute final extension at a 

temperature of 72 °C. 
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In the other two index PCR reactions, different reverse primers were used to balance the 

nucleotides of the primers for the Illumina sequencing. The reverse primers used in plate 

2 and plate 3 are presented in Table 2. The i5 forward primers were the same as in plate 

1 (Supplement 1). 

 

2.3.4 DNA purification and pooling 

 

Before sequencing, the DNA samples had to be purified. Purification of the DNA was 

conducted using SPRI-bead purification method following the protocol of Vesterinen et 

al. (2016). The SPRI-bead solution was prepared as described in the Supplement 2. The 

purification method was based on the concentration of the SPRI-bead solution and was 

conducted in two parts. The length of the amplified DNA fragments was 427 bp and in 

the first SPRI-bead purification, fragments longer than 800 pb were discarded. In the first 

part of the purification, the DNA from one PCR plate at a time was combined and 100 µl 

of the DNA was placed into an Eppendorf tube. After that 100 µl of SPRI-bead solution 

and 100 µl on ddH₂O was added into the tube. After five-minute incubation the tube was 

placed on a magnet and 300 µl of the supernatant was transferred into a second Eppendorf 

tube. The long DNA fragments had combined with the magnetic beads and constructed a 

pellet purifying the sample from unwanted long DNA fragments.  

 

In the second part of the DNA purification 300 µl of the supernatant from the first 

purification and 60 µl of SPRI-bead solution was added into the second Eppendorf tube. 

In the second purification all the DNA fragments longer than 400 bp were combined with 

the SPRI-beads. The supernatant was discarded after it was cleared from the SPRI-bead 

solution, and fresh 80 % ethanol was added into the Eppendorf tube. The one-minute 

ethanol wash was repeated keeping the tube still on a magnet. After the ethanol wash, the 

DNA was diluted into a 150 µl of ddH₂O, vortexed and incubated before placing it back 

on a magnet again. The clear solution, containing the purified DNA, was then pipetted 

into a new Eppendorf tube and the purity of the DNA was ensured using Qubit 2.0 

Fluorometer (ThermoFisher Scientific). The same SPRI-bead purification protocol was 

conducted on all the replicate plates. 
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Before the samples were sent to Finnish Functional Genomics Centre (FFGC) for 

sequencing, the quality of the purified DNA was also analyzed on 2100 Expert 

Bioanalyzer (Agilent Technologies) and E-gel. The DNA pools were analyzed separately, 

and the concentrations are presented in Table 3, the Bioanalyzer results are presented in 

the Supplement 3. The purified DNA from three replicate plates were pooled into one 

DNA library based on the Qubit concentrations presented in Table 3.  

 

Table 3. DNA concentrations measured in Qubit 2.0 Fluorometer. DNA volumes in the 

final sequencing library based on Qubit concentrations. 

 

 Concentration Qubit DNA Volume 

Pool 1 4.96 ng/ µl 38.8 µl 

Pool 2 45.3 ng/ µl 2.3 µl 

Pool 3 27.6 ng/ µl 6.8 µl 

 

2.3.5 Bioinformatics 

 

To obtain the gut microbe composition the sequencing data needed to be analyzed using 

different bioinformatics methods. First the Illumina MiSeq (2 X 300 bp) sequenced fastq 

files was uploaded to CSC (IT Center for Science) for data trimming. The data handling 

was carried out in a batch job in CSC (Supplement 4). In short, the script contained (i) 

modified VSERCH (Rognes et al., 2016) algorithm to filter the forward and reverse reeds 

and merge them together for one fasta file. (ii) cutadapt (Martin, 2011) to create a cleaned 

fasta file by removing adapter sequences, primers and poly A-tails. (iii) VSERCH to 

dereplicate sequences (iiii) usearch (Edgar, 2010) and VSERCH algorithms to make zero-

radius OTU (Zotu) and taxonomy assignments for the sequences.  Taxonomy assignations 

was made by comparing sequences to known bacterial sequences in the SILVA database 

(Quast et al., 2013). 

 

The total amount of reads Illumina MiSeq sequencing produced were 18 274 368 and 

after merging and quality-filtering 13 166 863 reads remained for the further analysis. 

The sequences were pooled and collapsed into 1 165 438 unique haplotypes where the 

singleton reeds were removed, and clustered into 8 809 Zotus.  The 8 809 Zotus formed 

a Zotu table which together with the taxonomy table were moved into R software for 

further analysis.  

 



 

21 

 

2.4 Stress analyses 

 

Glucocorticoid hormones, secreted by the adrenal cortex in response to stressors can be 

measured directly in blood, as an immediate response to stress, or they can be measured 

through glucocorticoid hormone metabolites excreted in feces (Crawley et al., 2021). 

Stress can also be measured from blood samples using alternative stress measures to 

hormones, such as characterizing and calculating the white blood cell counts. Heterophils 

(or neutrophils, depending on the species) and lymphocytes are both involved in 

immunological processes and studies suggest that corticosteroids can drive the changes 

in heterophils and lymphocytes numbers by increasing the number of heterophils and 

decreasing the number of lymphocytes (Davis et al., 2008). To obtain a comprehensive 

measure of the stress variation in my study subjects, I used these three methods combined. 

The sample sizes varied between different stress measures because of the difficulties to 

collect the blood samples.  

 

2.4.1 Serum cortisol 

 

The cortisol hormone levels were analyzed from the serum to measure the circulating 

stress hormone levels in the blood at the time of sampling. The serum from the elephant 

blood samples were obtained by centrifuging serum separator tubes for 20 minutes at 

3400 rpm. 64 serum samples (males: 17 females: 47) were analyzed for cortisol at the 

University of Turku, using a species independent Enzyme Immunoassay (Arbor Assays) 

following the manufacturers protocol. Monoclonal mouse antibody was used following 

the manufacturer's protocol.  

 

Serum samples were prepared by mixing 10 µl dissociation agent and 10 µl blood serum. 

Samples were diluted 1:32 in assay buffer and 50 µl of the sample were pipetted into a 

well of the plate (coated with goat anti-mouse IgG) along with 25µl DetectX® Cortisol 

Conjugate and 25µl Cortisol Antibody. Two parallel samples were used in each plate. 

After that the plate was shaken at room temperature for one hour. Before adding 100µl 

TMB Substrate and incubating 30 minutes the plate was tapped dry and aspirated 4 times 

with 300 µl of wash buffer. The incubation was terminated by adding 50µl of Stop 

Solution and the optical density was red of each well at 450 nm. The optical density 

analyses were conducted on MyAssays software that yielded the cortisol concentrations. 
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The accepted intra-assay coefficient of variation was <10% and all samples with duplicate 

intra-assay coefficients of variation >10% were reanalyzed.  

2.4.2 Fecal glucocorticoid metabolites 

 

The Fecal glucocorticoid metabolites were analyzed to obtain a more integrated level of 

circulating glucocorticoids that reflects an individual’s stress exposure over a longer time 

(Harper & Austad, 2000). The FGM analyses were carried out for 78 elephants (males: 

18 females: 60) at Veterinary Diagnostic Laboratory, Chiang Mai University, Thailand. 

Glucocorticoid metabolite concentrations were obtained via boiling extraction and 

measured using a double-antibody enzyme immunoassay with a polyclonal rabbit 

antibody (CJM006). The protocol followed a validated enzyme immunoassay (Watson et 

al., 2013). Absorbance was measured at 450 nm, and the accepted intra-assay coefficients 

of variation for duplicate samples were <10%. FGM concentrations varied between (29,7 

to 103,5 ng/g/faeces) a range that has been previously observed in Asian elephants 

(Seltmann et al., 2020). 

 

2.4.3 Heterophil and lymphocyte ratio 

 

Heterophil and lymphocyte ratio was analyzed from the whole blood samples in a 

laboratory in Myanmar. To carry out the analysis blood cells were counted manually 

using a blood smear stained with Romanowsky stain and optical microscope with an 

amplification of 1000 x. The analysis was conducted within 12 hours of the sample 

collection. In total 68 blood samples were analyzed (males: 18 females: 50). The ratios 

were calculated based on the amounts of heterophils and lymphocytes in the blood sample 

slide. The H:L ratio varied between (0,2 to 3,9) which is considered as a normal range for 

elephants (Seltmann et al., 2020). 

 

2.5 Statistical analysis 

 

 

Statistical analyses of the gut microbiome and the stress measures were conducted using 

R Software (version 4.2.1). Statistical analysis focused on the three basic microbiome 
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analysis methods; analyzing alpha diversity (Shannon diversity), beta diversity, and 

differential abundance analysis (DAA). Also, bar plot analysis was used to visualize the 

microbiome composition. Microbiome alpha diversity, sometimes used with the term 

species diversity, summarizes the distribution of species abundances in one sample into 

a single number that depends on species richness and evenness. The species richness 

refers to the total number of species in one sample and the evenness focuses on species 

abundances. Then again, beta diversity quantifies similarities and dis-similarities between 

all of the samples. To focus particularly on the differences in the gut microbiome between 

groups, DA analysis was used. 

 

2.5.1 Gut microbiome composition  

 

First to answer the question about the overall composition of gut microbes in Asian 

elephants, the microbiome composition in males and females was visualized at the 

phylum level using bar plot. The analysis was conducted using the phyloseq R package 

where the composition was visualized using relative abundances (McMurdie & Holmes, 

2013). Also, in order to understand what biologically meaningful explanatory factors 

might cause variation in the gut microbiome community, permutational multivariate 

analysis of variance (PERMANOVA) was conducted using adonis2 function on a vegan 

package (Oksanen et al., 2022). Adonis2 function runs an analysis of variance using 

distance matrices. The Bray-Curtis distance metric was chosen for the analysis based on 

the literature (Lahti et al., 2021) The independent variables in the model were camp 

(Kawlin, West Katha), age (fixed factor with four categories calf, juvenile, adult and 

senior), sex (male, female), and origin (captive or wild). The distance between samples, 

calculated by the phyloseq distance function, was the dependent variable. Before running 

PERMANOVA the homogeneous group dispersions (variances) were checked by plotting 

the dependent variables on R. 

 

Age and camp effects on the microbiome were further analyzed in order to create the 

overall picture of the microbiome composition. The composition of gut microbes in 

different age groups was visualized on a genus level using bar plot and the analysis was 

conducted using the phyloseq R package (McMurdie & Holmes, 2013). The age and alpha 

diversity were analyzed later. The effect of the location to the composition of gut 

microbes was tested using differential abundance analysis. In order to determine which 
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species differ in abundance between the two camps, DESeq2 package was used (Love et 

al., 2014). DESeq2 uses shrinkage estimation for dispersions and log2 Fold-Changes to 

perform the quantitative analysis of differential expression of sequences corresponding 

to bacterial species.  

 

Lastly the Shannon alpha diversity of the Asian elephants was assessed. Depending on 

the diversity index, alpha diversity can describe species richness (number of different 

species) or diversity (species richness and species evenness) in a single sample. Shannon 

alpha diversity summarizes the distribution of species abundances in a single sample into 

a number based on both species’ richness and evenness. First the Shannon alpha diversity 

was calculated and visualized using the phyloseq R package. The Shannon alpha diversity 

was visualized by the camp and age. Second, the factors affecting Shannon alpha diversity 

were tested using a general linear model (GLM) from R software’s own stats package. In 

the model the dependent variable was the Shannon alpha diversity. The Shannon alpha 

diversity for each individual elephant was calculated using the phyloseq 

estimate_richness function. The independent variables used in the model were age (calf, 

juvenile, adult and senior), sex (male, female), and camp (Kawlin, West Katha). The 

residuals were tested for over/underdispersion, outliers and for normal distribution 

(Kolmogorov–Smirnov test) using DHARMa package. The best model was chosen based 

on a lower AIC value between two biologically meaningful models. The analysis of the 

deviance table (type III test) was done by using the car R package (Fox & Weisberg, 

2019). Post hoc analysis was conducted to the age groups using the emmeans package in 

R (Lenth, 2023). 

 

2.5.2 Stress and gut microbiome composition  

 

Next, I investigated how stress was connected to the gut microbiome composition. The 

measured stress values (FGM, H:L ratio, SC) were grouped in three categories: “low” 

“medium” and “high” stress. The categories were formed by dividing all of the values in 

three equal size groups.  The stress groups and the average stress values are presented in 

Table 4 and the whole list of the stress values can be found in Supplement 5. 
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Table 4.  The number of studied elephants (n), the average stress value, and the cut-off 

values for different measures (SC, FGM, H:L ratio). Stress grouped in three categories 

(low-stress, medium-stress and high-stress) 

 

 SC FGM H:L ratio 

n elephants  

average 

cut-off values 

n=64 

31.18 ng/ml 

4.42- 86.24 ng/ml 

n=78 

66.75 ng/g/feces 

29.73-103.56 ng/g/feces 

n=68 

1.18 

0.22-3.92 

Low n=21 

15.26 ng/ml 

4.42-22.02 ng/ml 

n=26 

48.15 ng/g/feces 

29.73-60.48 ng/g/feces 

n=22 

0.665 

0.22-0.84 

Medium n=22 

26.41 ng/ml 

22.16-33.99 ng/ml 

n=26 

66.56 ng/g/feces 

60.62-73.57ng/g/feces 

n=22 

1.05 

0.84-1.27 

High n=21 

51.14 ng/ml 

34.48-86.24 ng/ml 

n=25 

85.45 ng/g/feces 

73.89-103.56 ng/g/feces 

n=21 

1.80 

1.31-3.92 

 

First, I tested whether stress as a categorical variable or as a continuous variable affected 

the microbiome beta diversity. I tested this by using the same PERMANOVA analysis as 

previously and added different stress measures to the model one at a time. In the model 

the distance between samples, calculated by the phyloseq distance function, were the 

dependent variable and camp, age, sex, origin and FGM levels (high, medium, low) were 

the independent variables. After that the FGM levels were replaced in the model with 

continuous FGM values. The same was done for each stress measures (FGM, H:L ratio, 

SC). 

 

After that I tested whether the stress levels were connected to the microbiome alpha 

diversity. The Shannon alpha diversity was calculated and visualized for all stress 

measures (FGM, H:L ratio, SC) and stress groups (low, medium, high) with the 

microbiome R package following the protocol of Lahti et al (2017). The Shannon alpha 

diversity and stress was analyzed using a general linear model. The same standard model 

was used as previously, where the dependent variable was the Shannon alpha diversity 

and independent variables were camp, age, sex and origin. Each stress measure (FGM, 

H:L ratio, SC) were added to the model one at a time using both categorical variables and 

continuous variables. The residuals were tested for over/underdispersion, outliers and for 

normal distribution (Kolmogorov–Smirnov test) using DHARMa package and the 

analysis of the deviance tables (type III test) were done by the car R package (Fox & 

Weisberg, 2019). Post hoc analysis was conducted to all of the stress groups using the 

emmeans package in R (Lenth, 2023). 
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The final analysis was conducted for all of the three stress measures separately. The DA 

analysis was conducted in order to see how different levels of stress and the composition 

of gut microbes might be connected, regarding specific microbial taxa. The analysis was 

conducted on all the stress measures FGM, H:L ratio, and SC comparing the low and high 

stress groups together. The covariates in the analysis were camp and age. The DESeq2 R 

package was used in the DA analysis, as previously. 

 

 

 

 

 

 



 

27 

 

3. Results 

 

3.1 Gut microbiome composition 

 

The first aim of this study was to determine the gut microbe composition of Asian 

elephants. The relative abundance of the most abundant phyla of the gut microbiome 

differed visually little between females and males (figure 1). The most abundant phylum 

was Firmicutes (55%) followed by Bacteroidetes (25%) These two phyla made up 80% 

of the total gut microbe composition in Asian elephants. The second most common phyla 

were Spirochaetae (8%), Proteobacteria (4.5%), Actinobacteria (2%) and Lentisphaerae 

(1.6%). One phylum of Archaea was also detected in elephant gut microbiome: 

Euryarchaeota.   

 

 

 

Figure 1. Gut microbiome composition of Asian elephants. The y-axis represents the 

relative abundance of the most abundant phyla of gut microbes. In the x-axis, samples are 

grouped for female (n=69) and male (n=25) elephants.  

 

 

To determine which biologically meaningful factors such as sex, working location 

(logging camp), age, and origin (captive born or wild caught) formally associated with 

the composition of the gut microbiome, the beta diversity was tested using 

PERMANOVA (number of permutations: 999). The microbiome composition differed 
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significantly between logging camps (West Katha and Kawlin) (Table 5). Also, different 

age groups show statistically significant differences in the communities. Overall, camp 

explains 8 % of the total variation in the microbiome composition between individuals 

and age close to 5 %. Sex of the elephant and the origin does not statistically significantly 

influence the composition. 

 

Table 5. The results of the PERMANOVA analysis. In the standard model the effects of 

camp, age, sex and origin to the microbiome beta diversity was assessed. Camp and age 

explain most of the variation in the microbiome community within the study population.  

 

 Df SumOfSqs R2 F Pr(>F) 

Camp 1 1.497 0.083 8.215 0.001 *** 

Age 3 0.891 0.049 1.629 0.003 ** 

Sex 1 0.242 0.013 1.329 0.111 

Origin 1 0.173 0.010 0.951 0.493 

Residual 84 15.309 0.845   

Total 90 18.112 1.000   

 

3.1.1 Age and gut microbiome 

 

The most abundant bacteria in Asian elephants on a genus level is Solibacillus, followed 

by Ruminococcaceae_UCG-005 and Pseudobutyrivibrio depending on the age group, all 

belonging to phylum Firmicutes (figure 2). Because age explained some of the variation 

in the microbiome composition, it was further visualized in the figure 2, where relative 

abundances of bacteria in different age groups (calves: 4–10 years old, juveniles: 11–20 

years old, adults: 21–50 years old, seniors 51–72 years old) were visualized using bar 

blot. Depending on different age groups the following genus are 

Rikenellaceae_rc9_gut_group, Trepomena_2 and Eubacterium hallii group. From the 

figure 2 can be seen that the genus Rikenellaceae_rc9_gut_group seems to decrease with 

age while Ruminococcaceae_UCG-005 increases. Also, the gut microbe composition of 

calves and senior elephants to resemble each other the most, especially with the genus 

Solibacillus and Pseudobutyrivibrio. Whenever the genus Solibacillus is dominating the 

microbiome composition Pseudobutyrivibrio is present less than when Solibacillus is not 

that dominant. In calves and seniors Solibacillus is dominating and Pseudobutyrivibrio is 

less present and in adults and juveniles Solibacillus is not dominating and the genus 

Pseudobutyrivibrio is almost as abundant as Solibacillus. 
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Figure 2. Gut microbe composition of Asian elephants on a genus level. The y-axis 

presents the relative abundance of the most abundant genus of gut microbes. In the x-

axis, samples are grouped to age groups: calf (n=14), juvenile (n=13), adult (n=41), senior 

(n=26). 

 

 

3.1.2 Camp and gut microbiome 

 

In addition to age, the location where the elephant was working had an effect on the 

microbiome composition. The gut microbiome composition of elephants in Kawlin camp 

is more diverse than in elephants in West Katha camp (figure 3). The gut microbes that 

are more common in Kawlin are presented in the figure 3 y-axis as a negative log2 fold 

change, positive log2 fold change in the y-axis represents the microbes that are more 

common in West Katha. Firmicutes and Bacteroidetes are the most represented phyla in 

the figure and more common in Kawlin compared to West Katha. In phylum 

Bacteroidetes there are a lot of uncharacterized genera of bacteria, most of them belong 

to the family Bacteroidales_S24-7_group as well as class 

Bacteroidales_BS11_gut_group and Porphyromonadaceae. Phylum Actinobacteria is 

also more common in Kawlin.  The uncharacterized genus of Actinobacteria belongs to 

the family Coriobacteriaceae. In addition to previous, phyla Spirochaetae, Tenericutes 

and Proteobacteria also have bacteria that are also more common in Kawlin. 

 

The log2 fold change in family Coriobacteriaceae is the greatest in the figure, meaning 

that the difference between camps in that family of bacteria is also the greatest. From the 
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figure 3 it is also possible to see that there are only two genus of bacteria 

(Lachnospiraceae_NK4A136_group and Rikenellaceae_RC9_gut_group) that are found 

more often in West Katha camp. 

 

 

Figure 3. The difference in gut microbe composition between camps Kawlin (n= 53) and 

West Katha (n=38). Positive log2 fold change in y-axis represents microbes more 

common in West Katha and negative log2 fold change microbes more common in Kawlin. 

The greater the log2 fold change is the more likely it is that the genus is met on that camp 

compared to the other. 

 

3.1.3 Alpha diversity and gut microbiome 

 

Shannon alpha diversity for the study population is between 5.5 and 7.0 (figure 4). There 

are differences in the alpha diversity between individuals. In figure 4 the samples are 

grouped based on the age groups on the x-axis and the calculated Shannon diversity index 

is in the y-axis. The location of the camps is presented in the figure 4 in colors. The alpha 

diversity is higher in Kawlin than in West Katha. The alpha diversity changes with 

different age groups. The diversity is lower in calves and seniors and highest in the 

juveniles.  
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Figure 4. Shannon alpha diversity measure of Asian elephants by the age groups. Each 

dot in the picture represents the calculated alpha diversity of that elephant. Shannon alpha 

diversity measure is presented in the y-axis and the age groups of the elephants in the x-

axis: calf (n=14), juvenile (n=13), adult (n=41), senior (n=26). The colors represent 

different camps. 

 

 

The results of the GLM confirms the observed findings in the Figure 4 (Table 6). The 

model shows how the independent variables age, sex, camp and origin affect alpha 

diversity. From the independent variables, camp showed a statistically significant effect 

on the Shannon alpha diversity (GLM, p-value < 0.05, F-value= 18.2). Also, when the 

different age groups (calf, juvenile, adult, senior) were compared pairwise, averaged over 

the levels of camp, sex and origin, the comparisons between juvenile and senior age 

groups were statistically significant (p-value= 0,05) (Supplement 4). Sex or the origin of 

the elephant didn’t affect the alpha diversity. 

 

Table 6. The results of the general linear model (GLM). The standard model represents 

change in the alpha diversity in respect to age, camp, sex and origin.  

 

 Df SumOfSqs F value Pr(>F) 

Camp 1 1.4068 18.2317 5.119e-05 *** 

Age 3 0.3855 1.6652 0.1807 

Sex 1 0.0001 0.0012 0.9726 

Origin 1 0.0000 0.0005 0.9830 

Residual 84 6.4817   
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3.2 Stress and gut microbiome composition  

 

There was no statistically significant association between stress measures and gut 

microbiome beta diversity (Table 7). The associations were tested on both categorical 

stress values (low, medium, high) (Table 7) and continuous variables (Supplement 4) and 

the stress measures were added to the standard model one by one.  

 

Table 7. Results of three PERMANOVA analysis where stress measures (FGM, H:L 

ratio, SC) were added to the standard model one at a time. Stress groups (low, medium, 

high) did not significantly explain the variation in the gut microbiome in the population. 

 

 Df SumOfSqs R2 F Pr(>F) 

Camp 1 1.19 0.084 6.88 0.001 *** 

Age 3 0.863 0.061 1.67 0.001 *** 

Sex 1 0.216 0.015 1.25 0.134 

Origin 1 0.197 0.014 1.15 0.228 

FGM 2 0.344 0.024 0.999 0.449 

Residual 66 11.4 0.802   

Total 74 14.2 1.00   

 

 

 Df SumOfSqs R2 F Pr(>F) 

Camp 1 0.968 0.078 5.51 0.001 *** 

Age 3 0.790 0.064 1.50 0.006 ** 

Sex 1 0.262 0.021 1.49 0.043 * 

Origin 1 0.172 0.014 0.977 0.439 

H:L 2 0.377 0.030 1.07 0.259 

Residual 56 9.84 0.793   

Total 64 12.4 1.00   

 

 

 Df SumOfSqs R2 F Pr(>F) 

Camp 1 0.922 0.078 5.25 0.001 *** 

Age 3 0.991 0.084 1.88 0.001 *** 

Sex 1 0.209 0.018 1.19 0.166 

Origin 1 0.180 0.015 1.02 0.369 

SC 2 0.386 0.033 1.10 0.221 

Residual 52 9.12 0.772   

Total 60 11.8 1.00   

 

Stress however was associated with the alpha diversity of the gut microbiome. Stress 

measure H:L ratios showed statistically significant association to the Shannon alpha 



 

33 

 

diversity (GLM, p-value < 0.05, F-value= 3.68, adjusted for age, camp, sex, origin) 

whereas FGM and SC measures did not (Table 8).  

 

Table 8. Results of three GLM analyses where stress measures (FGM, H:L ratio, SC) 

were added to the standard model one at a time. Stress measure H:L ratio showed 

statistically significant association to the Shannon alpha diversity. FGM and SC measures 

were not associated to the Shannon alpha diversity. 

 

 Df SumOfSqs F value Pr(>F) 

Camp 1 0.667 12.4 0.0008 *** 

Age 3 0.396 2.44 0.072 . 

Sex 1 0.022 0.410 0.524 

Origin 1 0.008 0.148 0.701 

FGM 2 0.017 0.156 0.855 
Residual 66 3.57   

 

 Df SumOfSqs F value Pr(>F) 

Camp 1 0.768 13.6 0.0005 *** 

Age 3 0.436 2.58 0.062 . 

Sex 1 0.184 3.27 0.076 . 

Origin 1 0.020 0.365 0.548 

H:L 2 0.415 3.67 0.032 * 
Residual 56 3.15   

 

 Df SumOfSqs F value Pr(>F) 

Camp 1 0.778 11.4 0.001 ** 

Age 3 0.767 3.75 0.016 * 

Sex 1 0.201 2.95 0.092 . 

Origin 1 0.087 1.28 0.263 

SC 2 0.006 0.047 0.954 
Residual 52 3.54   

 

From the Figure 5b it is possible to see that in the H:L ratio measure the low stress group 

is higher in the y-axis than the high stress group, indicating higher Shannon alpha 

diversity in the low stress group compared to the high. The same trend can be seen in the 

FGM measure (Figure 5a), but there is no statistical support for the difference. In the post 

hoc analysis of H:L ratio measure for stress groups (low, medium, high) the statistical 

significance was between the low and high stress group (p-value = 0.0008) (Supplement 

4).  
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Figure 5. Shannon alpha diversity and the three different stress measures A: FGM, B: 

H:L ratio, C: SC. In the figure stress groups represent calculated Shannon alpha diversity 

of the gut microbiome on elephants belonging to that stress group. The diversity measure 

is not controlled for covariates. (FGM: low n=26, medium n=26 high n=25, H:L: low 

n=22, medium n=22 high n=21, SC: low n=21, medium n=22 high n=21) 

 

Finally, the stress measures and microbiome composition were also analyzed using 

differential abundance analysis. The DA analysis showed statistically significant 

differences in the abundances of individual taxonomic groups between low and high 

stress groups in each stress measure, but there is no clear consistency in the results 

between the three stress measures. All measures (A: FGM, B: H:L ratio, C: SC) have an 

effect on the gut microbiome composition, but the affected taxa are different (Figure 6). 

 

In the Figure 6, the y-axis represents log2 fold change of specific microbial taxa. Positive 

log2 fold change represents microbes that are more abundant in low stress groups and 

negative log2 fold change microbes that are more abundant in high stress groups. The 

threshold for statistical difference, used in the Desq2 algorithm, was p=0.01. Age and 

camp were used as covariates in the analysis.  
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Figure 6. Differential abundance analysis between high and low stress groups in A: FGM, 

B: H:L ratio, and C: SC measures (FGM: low n=26, high n=25, H:L ratio: low n=22, high 

n=21 SC: low n=21, high n=21). In the figure each point represents a unique sequence 

that was found to be significantly higher in abundance in different stress groups. Positive 

log2 fold change represents high stress group and negative low2 stress group. The greater 

the log2 fold change is, the bigger the difference in abundance between compared groups.  
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Lentisphaerae is the only phylum that increases in abundance in all of the stress measures 

in high stress groups (Figure 6). Although no specific class were associated with all 

measures, class Lentisphaerae_RFP12_gut_group is increasing in both FGM and H:L 

ratio measures. In SC measure the increase is in class Lentisphaeria in genus Victivallis. 

Conversely, the class Lentisphaerae_RFP12_gut_group in SC measure is increasing in 

low stress groups. In phylum Firmicutes the class Clostridia is also increasing with stress 

in all of the measures. From the family Ruminococcaceae the genus 

Ruminococcaceae_UCG-010 is increasing in H:L ratio and FGM measures and genus 

Ruminococcaceae_UCG-002 in SC measure. 

 

Another common feature in the Figure 6 is the increase in phylum Bacteroidetes in high 

stress groups in two of the stress measures (FGM and SC). Order Bacteroidales from 

phylum Bacteroidetes significantly increased in abundance in high stress groups with one 

common genus Prevotellaceae_UCG-003. In the Figure 6 the H:L ratio measure is acting 

differently to FGM and SC measures. The phyla Proteobacteria and Bacteroidetes is for 

example increasing in high stress groups in both FGM and SC measures, but not in H:L 

ratio measure. Also, the abundance of Euryarchaeota is behaving oppositely in FGM and 

H:L ratio measures. Notably, there are as many differences as there are similarities in the 

responses of the microbiome to different stress measures. 

 

By viewing the Figure 6 it is possible to see that there are some genera of bacteria that 

have greater log2 fold change compared to others.  The greatest log2 fold change in the 

Figure 6 can be seen in the phylum Firmicutes. In Figure 6A genus 

Erysipelotrichaceae_UCG-004 from class Erysipelotrichia is significantly increased in 

the low stress group (Log2FoldChange= -27,4 p-value= 2.470499e-17). On the other 

hand, in Figure 6C genus Ruminococcaceae_UCG-002 from class Clostridia is 

significantly more abundant in the high stress group (Log2FoldChange= 30,0 p-value= 

2.83e-22). By generalizing the results, what it means in practice is that genus 

Ruminococcaceae_UCG-002 is more abundant in elephants suffering from high levels of 

stress and genus Erysipelotrichaceae_UCG-004 on the other hand is more common in 

elephants that are not showing physical signs of stress. 
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4. Discussion 

 

 

This thesis provided a comprehensive picture of the composition of Asian elephant’s gut 

microbiome by studying 94 semi-captive Asian elephants living in their natural 

environment, and with known identity, age and background information available, 

enabling the largest microbiome assessment of Asian elephants to-date. In addition to 

successfully characterizing the overall microbiome composition and its variation among 

individuals, this study also assessed the interaction between stress and gut microbes by 

utilizing a rare opportunity for a long-lived species to combine microbiome data with a 

range of stress measures obtained from blood sampling and glucocorticoid metabolite 

analysis. I found out that increases in the H:L ratio stress measures were associated with 

decline in microbiome alpha diversity, and that stress was associated with the changes of 

specific gut microbial taxa. The method established here to study gut microbes in elephant 

feces provides a convenient and reusable approach for future studies. The results of this 

thesis deepen our knowledge, not only on elephant gut microbiome, but also how stress 

and gut microbiome are linked to each other in general. 

 

4.1 Gut microbiome composition 

 

My first hypothesis was that the Asian elephant gut microbiome resembles other 

fermenters and that it is most dominated by phyla Firmicutes and Bacteroidetes, the two 

most common phyla on gut microbiome regardless of the species. My results confirmed 

that the same applied on Asian elephants and phyla Firmicutes (55%) and Bacterioidetes 

(25%) made up a total 80% of the gut microbiome. What comes after these two are more 

interesting and species specific. Previous studies on Asian elephants have provided 

contradictory information on the following phyla, but were all based on a small sample 

size ranging between 3 to 30 (Ilmberger et al., 2014; Moustafa et al., 2021; Zhang et al., 

2019).  The one common phylum in all the studies was Spirochaetaes. Proteobacteria 

and Fibrobacteres were abundant in two of the studies and phyla Actinobacteria and 

Lentisphaerae were reported to be abundant in one study. These phyla are similar to what 

I detected in this thesis, but their relative abundances differed. In this thesis the most 

abundant phyla after Firmicutes and Bacterioidetes were Spirochaetae, Proteobacteria, 
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Actinobacteria, and Lentisphaerae. These results confirm the previous findings of the 

composition of gut microbes at the phylum level. Furthermore, what these findings 

suggest is that the composition and abundance of different taxa is more related to the 

environment than elephant physiology.  

 

On a genus level there was more variation between previous studies. A study conducted 

in China for three Asian elephants suggested that the most abundant genera were 

Fibrobacter, followed by Treponema, Prevotella, Bacteroides, Bacillus, Butyrivibrio, and 

Ruminococcaceae (Zhang et al., 2019). In another study conducted in a German zoo for 

two elephants, the most abundant genera were Lachnospiraceae, Ruminococcaceae, 

Prevotellaceae and the RC9 gut group of Rickenellaceae (Ilmberger et al., 2014). Only 

Ruminococcaceae were abundant in both studies. In this thesis I also found genus 

Ruminococcaceae to be abundant (Figure 2). Other previously reported genera that were 

also detected in this thesis were Treponema, Butyrivibrio, and the RC9 gut group of 

Rickenellaceae. Interestingly, what I found out to be the most abundant genus in the semi-

captive elephants in Myanmar was not reported in other studies. Genus Solibacillus was 

the most abundant genus in this thesis, ranging from 20% to 50% in relative abundance, 

depending on the age of the elephant (Figure 2). In addition to limited sample size in 

previous studies based on mostly zoo animals, one reason for such clear differences in 

gut microbiome composition between studies could be the methods chosen for the 

analysis that can affect the detected composition. Nevertheless, in wild African buffalos, 

the two most abundant genera were Solibacillus and Ruminococcaceae UCG-005 (Couch 

et al., 2021). These two genera, more specifically the enrichment of the genus, were also 

linked to putative enterotypes in wild African buffalo gut microbiome. In microbiome 

studies enterotypes are often linked to a stable gut microbiome which is dependent on 

long-term diet and host health. (Couch et al., 2021) In the African buffalo study the 

presence and enrichment of genus Solibacillus was linked to an enterotype prevalent 

under restricted dietary conditions whereas the enrichment of Ruminococcaceae-UCG-

005 was linked to resource-abundant dietary regimes. Many other genera were also 

similar between semi-captive Asian elephants and wild African buffalos. This highlights 

the importance of studying species in their natural environment. The previous studies on 

Asian elephants conducted in a zoo environment might not offer a comprehensive overall 

picture of the Asian elephant gut microbiome. In one recent study, the same effect was 

noticed where different zoo facilities had a strong influence on the Asian elephant gut 

microbiome community (Keady et al., 2021). 
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The abundance of Solibacillus in the Asian elephant gut microbiome, especially as great 

abundance as detected in this thesis, is possibly linked to restrictions in vegetation. During 

restricted resource periods, Solibacillus is known to increase in abundance. It can be 

because it is adapted to resource-restricted regimes and therefore can more likely survive 

in the gut better than other taxa. In some mammals, goats and cattle, genus Solibacillus 

has also been associated with reduction in forage intake, which can possibly be an 

adaptive response to increased dietary variability. (Couch et al., 2021) The abundance of 

Solibacillus in Asian elephant gut shown in this thesis calls for further research to 

determine the causes for this. For example, all samples analyzed in this thesis were 

collected at the turn of the hot and rainy season in Myanmar, when food abundance is at 

its lowest and elephant body weight declines. How seasonal variation in the Asian 

elephants’ natural range area affects their gut microbiome composition remains to be 

studied.  

 

4.1.1 Age and gut microbiome composition 

 

I expected age to affect the composition of gut microbes in the study population that 

ranged from 1 to 67-year-old. In this thesis I observed variation in both alpha diversity 

and beta diversity between the study elephants. Alpha diversity among juveniles (11–20 

years old) was higher than that of other age groups. The alpha diversity was lower in 

calves and seniors, and higher in juveniles and adults (Figure 3).  The same trend has been 

detected also in human studies (Xu et al., 2019) as well as in other Asian elephant studies 

(Li et al., 2022). In the Li et al. (2022) study the diversity was reported to be highest in 

elephants at 25-year-old and then show a decreasing trend with age. The sample size in 

that study was however only two elephants per age group (calf: tow 3-year-old, juveniles: 

13 and 18-year-old, adults: two 25-year-old, and old adults: two 40-year-old semi-captive 

elephants) but the results were in line with my observations. 

 

Age was also linked to beta diversity of the gut microbiome (Table 5), with compositional 

changes across age in the core gut microbiome at the genus level (Figure 2). The biggest 

changes can be seen in the most abundant genus Solibacillus. In calves and seniors, the 

relative abundance is close to 50% and in juveniles the abundance is just 30% and in 

adults even lower. Abundance of genus Pseudobutyrivibrio behaves opposite to 
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Solibacillus meaning that it is more prevalent in juveniles and adults and less in calves 

and seniors. The effect of aging on the microbiome composition cannot be assessed from 

Figure 2 alone and it would require future testing. It is still the most comprehensive 

illustration of the relative abundances of gut microbes on semi-captive Asian elephants 

in different age groups.  

 

4.1.2 Camp and gut microbiome composition 

 

I expected the working camps of the elephants to have an effect on the composition of 

gut microbes within the study population. The location in which the elephants work, live 

and eat are referred to as the camps. In Figure 4, Shannon alpha diversity in camp Kawlin 

is significantly higher than in camp West Katha. The differences in alpha diversity can 

be due to the differences in vegetation of the areas, which are directly influenced by 

climate patterns. The climate in Kawlin is rainier than in west Katha. Average amount of 

rain at the time of sampling in Kawlin was 100 mm whereas in West Katha it was 37 mm. 

The rainfall should have a high impact on the plant diversity and quality, and this would 

be expected to explain some of the variation between the camps in alpha diversity. 

 

The difference between the camps was also observed in the microbiome beta diversity 

(Table 5) and in community comparison analysis (Figure 3). In Kawlin phylum 

Bacteroidetes is clearly more abundant than in West Katha. The reason why this is, can 

also be linked to the vegetation of the area. Bacteroidetes phylum is the main cellulosic 

plant material degraders in herbivores, especially bacteria belonging to families 

Bacteroidales, Bacteroidaceae and Bacteroides (Li et al., 2022). The genera belonging 

to Bacteroidales in Kawlin is Prevotellaceae UCG-001, Prevotellaceae UCG-03, 

Prevotella 1 and also two classes of Bacteroidales: Bacteroidales_S24-7_group and 

Bacteroidales_BS11_gut_group. The differences in the microbiome between Kawlin and 

West Katha do not only restrict to phylum Bacteroidetes. The genus Succinivibrio from 

phylum Sphirochaetae and genus Treponema_2 from Proteobacteria is also more 

abundant in Kawlin. The abundance of Succinivibrio could also be explained by the 

vegetation, as it is known as Prevotella-type plant polysaccharide-fermenting commensal 

(Tan & Nie, 2020). The abundance of genus Treponema_2 in camp Kawlin and its 

possible association to nutrient digestibility is something that should be studied more. 

There are previous studies on fermenters about nutrient digestibility and microbial 
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fermentation, where genus Treponema_2 is mentioned (Greene et al., 2019; Mi et al., 

2022). In one Asian elephant study the genus Treponema was also associated with 

elephants being semi-captive rather than captive elephants (Moustafa et al. 2021). Phylum 

Spirochetes plays an important role in degrading plant polymers materials such as xylan, 

pectin and arabinogalactan, Treponema_2 particularly is associated with high pectin 

content. (Mi et al., 2022) Interestingly, many of the microbes associated with complex 

carbohydrate fermentation found in the caecum and colon of elephants are similar to those 

found in the rumen of ruminants. The same phenomenon has been noticed in the literature 

before (Greene et al., 2019). The main differences between the camps Kawlin and West 

Katha are most likely a result of different diets, which would explain the increase in 

different plant material degrading genus in Kawlin.  

 

4.2 Stress and gut microbiome  

 

In this thesis the main question was to assess the connection between stress and gut 

microbiome composition. My hypothesis was that I would find a decrease in the microbial 

richness in stressed elephants, in line with studies on stress and gut microbiome proposing 

such an association (Maltz et al., 2018; Mir et al., 2019; Wiley et al., 2017). I also 

expected to find variation in abundances in different bacterial taxa, for example reduction 

in genus Lactobacillus and increase in Proteobacteria in association with stress. In this 

thesis I found differences in alpha diversity in respect to different levels of stress. I also 

detected changes in the abundances of specific bacterial taxa in all of the used stress 

measures. However, I did not find reduction in genus Lactobacillus or a clear increase in 

Proteobacteria in association with stress.  

 

In order to ask the question about the connection between gut microbiome and stress, one 

must first establish a way of measuring stress. I decided to use three physical stress 

measures, previously reported in the literature (Harper & Austad, 2000; Seltmann et al., 

2020). The three measures were chosen to represent the overall stress at the time of the 

measurement. FGM and H:L ratio represented the long-term stress measures, and the SC 

was more an indication of acute stress reaction. Stress can reshape the gut bacterial 

composition through glucocorticoid secretion, inflammation, or autonomic alterations. 

The outcome of this is often gut bacterial imbalance, called dysbiosis, as well as low alpha 

diversity. In turn, the gut bacteria release metabolites, toxins, and neurohormones that can 
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affect the brain functions for example the eating behavior and in some cases also 

upregulate stress responsiveness. (Madison & Kiecolt-Glaser, 2019) The two-way 

interaction between the gut and the brain is important to keep in mind while interpreting 

the results of stress and gut microbes in this thesis. 

 

The results on alpha diversity and stress, presented in the Figure 4 and Table 8, are partly 

in line with the hypothesis as well as previous studies (Maltz et al., 2018; Mir et al., 2019; 

Wiley et al., 2017). The decrease in alpha diversity with stress was detected for long-term 

stress measure that is descriptive for chronic stress. The statistical differences were 

detected between the lowest and the highest stress groups of H:L ratio measure, but no 

difference in the alpha diversity was detected in another long term stress measure FGM. 

I was not expecting to see changes in the alpha diversity with SC measure, for it works 

as an indication of acute stress, and in order to detect changes in the gut microbiome the 

physiological pathways of stress must have time to affect the gut microbe composition. 

Also, the causality of changes in the microbiome alpha diversity in respect to stress cannot 

be assessed. In more interventional studies the causality could be assessed, whereas in a 

natural setting such as the semi-captive elephants the drivers of stress differences between 

individuals are likely complex and diverse.  

 

The compositional changes in the gut microbiome that associates with stress are 

visualized in the Figure 6. The absence of clear consistency in the results makes the 

interpretation of the results difficult. The results could be viewed by looking at each stress 

measurement separately, or by grouping it based on the biology behind the measures. One 

possible way of interpreting the results is looking the stress measures FGM and H:L ratio 

together. The FGM and the H:L ratio are both physiological markers of stress that reflect 

more integrated level of glucocorticoids, and therefore work as a measure of stress 

exposure over a longer time (Seltmann et al., 2020). The common feature in the fFigure 

6 in these measures was the increase in class Lentisphaerae_RFP12_gut_group in high 

stress groups. There were no further taxonomic assignments for this class in the SILVA 

database, and in my knowledge, not many studies focusing on this class of bacteria either. 

It is therefore hard to find evidence supporting this finding and future research is needed 

to determine whether this class of bacteria is associated with chronic stress. In both FGM 

and H:L ratio measures class Clostridia from phylum Firmicutes were abundant in high 

stress group. Genus Ruminococcaceae_UCG-010 from class Clostridia is referred as 



 

43 

 

pathogen in one study (Chen et al., 2019) and in other study it is associated with high 

sugar diets and decrease in Firmicutes to Bacteroidetes (F:B) ratio (Yue et al., 2019).  

 

Another way of interpreting the results is to look the FGM and SC measures together. 

Both measures are more direct measures of glucocorticoid hormones, compared to H:L 

ratio. The abundance of phylum Bacteroidetes is increasing in high stress groups in these 

measures. One common genus Prevotellaceae_UCG-003 was found to be significantly 

higher amongst stressed elephants. Prevotellaceae_UCG-003 is a genus that is associated 

with dysbiosis (Z. L. Wu et al., 2022). The phylum Proteobacteria also increased in FGM 

an SC measures. Especially clear change was observed with the FGM measure, where all 

Alpha-, Beta-, Delta-, and Gammaproteobacteria increased in high stress groups. 

Reduction in F:B ratio, caused by the increase in Bacteroidetes, as well as increase 

in Proteobacteria is previously reported to be the indicator of dysbiosis (Mir et al., 2019; 

Shin et al., 2015). Genus Acinetobacter from class Gammaproteobacteria was increased 

in both SC and FGM measures in high stress groups. Gram-negative Acinetobacter genus 

is common in soil but also capable of occupying several ecological niches, including the 

mammalian intestine. The genus is often associated with infections. (Glover et al., 2022; 

Visca et al., 2011) Infections caused by Acinetobacter genus are also reposted to cause 

inflammatory responses in animal studies. For example, it induces inflammatory 

cytokines, such as IL-8 and tumor necrosis factor (TNF). (Wong et al., 2017) The low-

grade inflammation is reported to be associated both with chronic diseases and with gut 

microbiome composition which are both associated with stress. Other Proteobacteria 

increased in high stress group in FGM measure were Alphaproteobacteria 

Brevundimonas, which is a non-fermenting, gram-negative, opportunistic pathogen 

(Ryan & Pembroke, 2018). Also, Stenotrophomonas from Gammaproteobacteria and 

GR-WP33-58 from Deltaproteobacteria increased in high stress groups. 

 

One study on Asian elephants shows that captivity induced stress increased the abundance 

of class Clostridia and Bacteroidia in the microbiome (Moustafa et al., 2021). In this 

thesis the number of bacteria in class Clostridia were also more abundant in high stress 

group compared to low stress groups in both FGM and SC measures. Also, class 

Bacteroidia increased in high stress group, but only for the FGM measure.  
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4.3 Strengths and limitations  

 

 

This thesis has several strengths and limitations. One of the limitations is related to the 

overall limitation of microbiome analysis. By doing all of the steps from laboratory to 

computer analysis I gained understanding of the whole gut microbiome analysis pipeline, 

but this also introduces limitations. Because of the limited time I was not able to spend 

as much time on the statistical analysis of the data. This can affect the results as it is 

recommended in microbiome data analysis to use multiple different tests to confirm the 

results, because different methods use different approaches (parametric vs non-

parametric, different normalization techniques, assumptions etc.) (Nearing et al., 2022). 

This is a common challenge in all microbiome analysis that needs to be considered.  

 

The results can also be affected by methodological causes, that can explain the observed 

variation between different studies in Asian elephant gut microbiome. First, the fecal 

samples were collected in ethanol, and only after the samples were sent to the University 

of Turku, were they frozen. The procedure was the same for all stress groups, but could 

potentially affect the overall composition of gut microbes, especially to the relative 

abundances of different microbial taxa. Second, the DNA extraction method or the 

sequencing can cause bias to the gut microbe composition. Third, it is worth mentioning 

that in the laboratory analysis the final quality check of the sequencing library using 

Bioanalyzer produced data that was untypical (Supplement 3). (Leigh Greathouse et al., 

2019) 

 

One of the limitations of this thesis has to do with the Asian elephant study population. 

Myanmar has three seasons, and the effect of seasonality to the gut microbiome could be 

more closely studied. Season and other ecological conditions like vegetation or seasonal 

workload might have effects on the microbiome composition and stress levels. However, 

to minimize heterogeneity caused by such effects, samples used in this thesis were all 

collected at the turn of the hot and rainy season when none of the elephants had been 

working since mid-February. Also, there could have been more male elephants in this 

thesis in order to get the sex ratio more equal as well as more young elephants to get the 

age groups more equal. The statistical power was not limited in this thesis in regard to 

microbiome analysis, on the other hand there could have been more measures for the 

stress analysis. 
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Strengths of this thesis was the rare opportunity to study the gut microbiome composition 

of long-lived non-human species in their natural conditions, with known background 

information. The background information includes information about the exact birth 

dates, cause of death, maternal information, medications and other health parameters. All 

of this background information is especially important in gut microbiome studies because 

there are many factors affecting the complex ecosystems of gut microbes. One of the 

strengths of this thesis is also the used measures of stress. Three different measures, if 

working correctly to measure the stress levels in different aspects, gives a comprehensive 

picture of the stress level of each elephant.  

 

4.4 Conclusions 

 

In this thesis I was able to conduct a study answering the question about the composition 

of the Asian elephant gut microbiome and how stress associates with it. My results have 

diverse relevance. First, the characterization of the semi captive Asian elephant gut 

microbiome has value for previous studies that have mostly focused on zoo animals only. 

There is a limited number of previous studies on the composition of gut microbes in Asian 

elephants, considering that the importance of gut microbes is nowadays much 

appreciated. In this thesis I detected one especially abundant genus Solibacillus in Asian 

elephants that was not previously reported as an abundant genus in that species. This 

finding highlights the importance of studying animals in their natural environments as 

well as the importance of increasing studies focusing on the gut microbiome of various 

different species. By understanding the structure and dynamics of microbial communities 

in wild populations it is possible to find ecological patterns in host–microbiome 

relationships that can help to understand these complicated relationships and add to our 

knowledge on gut microbes also in humans. 

 

Second, the differences in the gut microbiome composition between elephants in different 

working camps is of relevance. This is something that was also reported to Myanma 

Timber Enterprise (MTE) who owns and takes care of the elephants’ health. The 

difference in the microbiome alpha diversity between the camps, with alpha diversity 

being lower in West Katha, is important to acknowledge. Lower levels of diversity are 
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associated with several acute and chronic diseases, and are also linked to chronic stress 

(Manor et al., 2020). In the case of alpha diversity differences observed in this thesis the 

probable cause is the different diets of the elephants in different camps. I didn’t test in 

this thesis whether the stress levels of elephants in different camps would be different, 

but this would be interesting to assess in future studies. 

 

Third, this thesis gives a snapshot of the current levels of stress of Asian elephants 

working in the logging industry in Myanmar. In addition, this thesis tries to assess the 

complicated relationship between gut microbiome and brain function, using these stress 

levels as a response to brain function. The results about stress and gut microbiome are 

partly in line with previous literature. The strongest results were observed with stress 

measure H:L ratio and microbiome alpha diversity. With increasing stress, the diversity 

of microbes decreases. If the same would have been detected also in the FGM stress 

measure the results would have been stronger and indicating the link between chronic 

stress and lower microbial alpha diversity.  

 

Lastly, the methods used in this study provide tools for the future analysis of elephant gut 

microbiome in challenging environments. One of the key findings in the methods was to 

see that fecal samples could be preserved in ethanol before DNA extraction. In the 

literature the fecal samples are often immediately frozen after, but in many distant 

locations, like forest in Myanmar, that is not possible. The ethanol preserved fecal 

samples worked in the analysis, but it must be kept in mind while interoperating the 

results. This thesis aims for full reproducibility of the results, with the methods described 

in detail, and the bioinformatics pipeline for the data analysis in the supplements.  
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Supplement materials   
 

Supplement 1: 

i5_sequence_in_adapter 

 

1 TGCATGAT 33 CACTTCGA 101 GGTATACT 

2 TGACATCG 34 CAGCGTTA 102 GTAGTACG 

3 TTGCCTAG 35 CATACCAA 103 GTACACGT 

4 TGTGGTCT 36 CCAGTTCA 69 AACTCACC 

5 TCCACTGT 37 CCGAAGTA 70 AAGAGATC 

6 GCATTGGT 38 CCGTGAGA 71 AAGGACAC 

7 TGGATCTG 39 CCTCCTGA 72 AATCCGTC 

8 GCTCAAGT 40 CGAACTTA 73 AATGTTGC 

9 CGCTGATC 41 CGACTGGA 74 ACACGACC 

10 ACAAGCTA 42 CGCATACA 75 ACAGATTC 

11 CTGTAGCC 43 CTCAATGA 76 AGATGTAC 

12 AGTACAAG 44 CTGAGCCA 77 AGCACCTC 

13 GTCAACCT 45 CTGGCATA 78 AGCCATGC 

14 TTCCGAGT 46 GAATCTGA 79 AGGCTAAC 

15 TTCGCTTG 47 CAAGACTA 80 ATAGCGAC 

16 GTGACGGT 48 GAGCTGAA 81 ATCATTCC 

17 TAGGTACT 49 GATAGACA 82 ATTGGCTC 

18 GCACAGAG 50 GCCACATA 83 CAAGGAGC 

19 TCAGCAGT 51 GCGAGTAA 84 CACCTTAC 

20 GCCTCCAG 52 GCTAACGA 85 CCATCCTC 

21 ACGCTCGT 53 GCTCGGTA 86 CCGACAAC 

22 ACGTATCG 54 GGAGAACA 87 CCTAATCC 

23 ACTATGCG 55 GGTGCGAA 88 CCTCTATC 



 

 

 

 

24 AGAGTCAT 56 GTACGCAA 89 CGACACAC 

25 AGATCGCT 57 GTCGTAGA 90 CGGATTGC 

26 TGCAGGTG 58 GTCTGTCA 91 CTAAGGTC 

27 AGTCACTG 59 GTGTTCTA 92 GAACAGGC 

28 ATCCTGTG 60 TAGGATGA 93 GACAGTGC 

29 ATTGAGGT 61 TATCAGCA 94 GAGTTAGC 

30 CAACCACA 62 TCCGTCTA 95 GATGAATC 

31 GACTAGTA 63 TCTTCACA 96 GCCAAGAC 

32 CAATGGAA 64 TGAAGAGA 
  

33 CACTTCGA 100 GTCACGAT 
  

  



 

 

 

 

 

Supplement 2: 

SPRI bead solution recipe 

See Vesterinen et al. 2016 for further specifications and references. 

 
Materials 

● Sera-Mag magnetic carboxylate modified particles (Sigma-Aldrich 

GE44152105050250) 

● PEG-8000 (Sigma-Aldrich 89510-250G-F)  

● 0.5 M EDTA, pH 8.0 

● 1.0 M Tris, pH 8.0 

● Tween 20 (Sigma-Aldrich P1379-25ML)  

● 5 M NaCL  

● 50 bp ladder (Thermo Scientific (Life Technologies) SM0371)  

● Rare‐earth magnet stand (Ambion AM10055 or NEB S1506S) 

 

Sera-Mag SPRI bead substitute recipe 

 

2 Mix Sera-mag SpeedBeads and transfer 1 mL to a 1.5 mL microtube. 

3 Place SpeedBeads on magnet stand until beads are drawn to magnet. 

4 Remove supernatant with P200 or P1000 pipetter. 

5 Add 1 mL TE to beads, remove from magnet, mix, and return to magnet. 

6 Remove supernatant with P200 or P1000 pipetter. 

7 Add 1 mL TE to beads, remove from magnet, mix, and return to magnet. 

8 Remove supernatant with P200 or P1000 pipetter. 

9 Add 1 mL TE to beads and remove from magnet. Fully re-suspend and set tube in rack (i.e. 

not on magnet stand). 

10 Add 9 g PEG-8000 to a new 50 mL, sterile conical. 

11 Add 10 mL 5 M NaCL (or 2.92 g) to conical. 

12 Add 500 μL 1 M Tris‐HCL to conical. 

13 Add 100 μL 0.5 M EDTA to conical. 

14 Fill conical to ~ 49 mL using sterile dH20. You can do this by eye, just go slowly. 

15 Mix conical for about 3‐5 minutes until PEG goes into solution (solution, upon sitting, should 

be clear). 

16 Add 27.5 uL Tween 20 to conical and mix gently. 

17 Mix 1 mL SpeedBead + TE solution and transfer to 50 mL conical. 

18 Fill conical to 50 mL mark with dH20 (if not already there) and gently mix 50 mL conical 

until brown. 

19 Test against AMPure XP using aliquots of ladder (Fermentas GeneRuler). I recommend the 

50 bp ladder in place of the ultra-low range ladder. 

20 Wrap in tinfoil (or place in dark container) and store at 4°C. 

21 Test monthly – see Testing, next page. 

 

 

 

 

 

 



 

 

 

 

Supplement 3: 

BioAnalyzer (FFGC) final sequencing library 

 

BioAnalyzer (University of Turku)  

 



 

 

 

 

 

Supplement 4: 

Script (first bash script and second R script) 

 #-------------CSC---------------- 

 

File primers.fst contains these two lines: 

>341_805 

CCTACGGGNGGCWGCAG...GGATTAGATACCCBDGTAGTC 

 

Script file contains these lines (server-specific lines removed): 

 
VSEARCH=vsearch 

USEARCH=usearch11.0.667 

 

trunclen=250 

QC=fastq_maxee 

maxee=2 

maxdiffs=50 

mergeminlen=400 

minlen=350 

primererr=0.20 

uniqsize=2 

 

module load biokit 

 

rm notmerged/ -rf 

mkdir notmerged 

 

for f in $LOCAL_SCRATCH/*_R1*; do 

 

        r=$(sed -e "s/_R1_/_R2_/" <<< "$f") 

        i=$(echo $f | awk 'BEGIN { FS = "/" } ; {print $(NF)}' | cut -

d"_" -f1) 

 

$VSEARCH \ 

--threads $SLURM_NTASKS \ 

--fastq_filter $f \ 

--reverse $r \ 

--fastq_trunclen $trunclen \ 

--fastqout $LOCAL_SCRATCH/$i"_trimmed_R1.fastq" \ 

--fastqout_rev $LOCAL_SCRATCH/$i"_trimmed_R2.fastq" 

 

$VSEARCH \ 

--threads $SLURM_NTASKS \ 

--fastq_mergepairs $LOCAL_SCRATCH/$i"_trimmed_R1.fastq" \ 

--reverse $LOCAL_SCRATCH/$i"_trimmed_R2.fastq" \ 

--fastq_allowmergestagger \ 

--fastq_maxdiffs $maxdiffs \ 

--fastq_minmergelen $mergeminlen \ 

--$QC $maxee \ 

--relabel barcodelabel=$i\; \ 

--fastaout_notmerged_fwd notmerged/$i"_notmerged_fwd.fasta" \ 

--fastaout_notmerged_rev notmerged/$i"_notmerged_rev.fasta" \ 

--fastaout $LOCAL_SCRATCH/$i".fasta" 

 

cat $LOCAL_SCRATCH/$i".fasta" >> $LOCAL_SCRATCH/superfasta.fasta 

 

rm $LOCAL_SCRATCH/$i".fq" -rf 



 

 

 

 

rm $LOCAL_SCRATCH/$i".fasta" -rf 

 

done 

 

cutadapt \ 

--cores=$SLURM_NTASKS \ 

-a file:primers.fst \ 

-e $primererr \ 

--minimum-length $minlen \ 

--too-short-output tooShort.fa \ 

--untrimmed-output noPrimers.fa \ 

-o primertrimmed.fast $LOCAL_SCRATCH/superfasta.fasta 

 

for x in *.fast; do 

 

        g=$(echo $x | awk 'BEGIN { FS = "/" } ; {print $(NF)}' | cut -

d"." -f1) 

 

$VSEARCH --derep_fulllength $x \ 

    --threads $SLURM_NTASKS \ 

    --minuniquesize $uniqsize \ 

    --sizein \ 

    --sizeout \ 

    --fasta_width 0 \ 

    --output $LOCAL_SCRATCH/$g"_uniq.fa" 

 

$USEARCH \ 

 -unoise3 $LOCAL_SCRATCH/$g"_uniq.fa" \ 

    -threads $SLURM_NTASKS \ 

    -minsize 8 \ 

    -unoise_alpha 2 \ 

    -zotus zotus.fa 

 

$VSEARCH \ 

    --usearch_global primertrimmed.fast \ 

    --id 0.97 \ 

    --threads $SLURM_NTASKS \ 

    --db zotus.fa \ 

    --strand plus \ 

    --otutabout zotutab_global.txt \ 

    --biomout biom_zotutab_global.txt 

 

done 

 

# Assign taxonomy 

# Bacteria using RDP database 

vsearch \ 

--sintax zotus.fa \ 

--db 

/projappl/project_2000450/refDB/16S/rdp_16s_v16_sp_plus_ZymoMock.udb \ 

--tabbedout rdp_16s_v16_sp_plus_ZymoMock_out.txt 

 

# Bacteria using SILVA database 

vsearch \ 

--sintax zotus.fa \ 

--db 

/projappl/project_2000450/refDB/16S/silva_16s_v123_plus_ZymoMock.udb \ 

--tabbedout silva_16s_v123_plus_ZymoMock_out.txt 

 

################################################ 

 

 



 

 

 

 

#-------------SUMMARY------------------ 

Job starts 

31Mar2022_0903 

Original reads: 18274368 

Reads that were successfully merged and quality-filtered: 13166863 

Minimum length after primer trimming: 100 

Accepted error rate for primers: 20.00% 

Primer-trimming and filtering summary: 

=== Summary === 

 

Total reads processed:              13,252,416 

Reads with adapters:                13,060,204 (98.5%) 

Reads that were too short:             553,895 (4.2%) 

Reads written (passing filters):    12,694,914 (95.8%) 

 

Total basepairs processed: 5,626,074,837 bp 

Total written (filtered):  5,110,709,874 bp (90.8%) 

=== Adapter 341_805 === 

 

Sequence: CCTACGGGNGGCWGCAG...GGATTAGATACCCBDGTAGTC; Type: linked; 

Length: 17+21; 5' trimmed: 13032718 times; 3' trimmed: 13043350 times 

Unique non-singleton sequences: 1165438 

Number of ZOTUs: 8809 

Vsearch global summary Matching unique query sequences: 7897507 of 

12694914 (62.21%) 

Job efficiency 

Job ID: 11170513 

Cluster: puhti 

User/Group: ekrates/pepr_ekrates 

State: RUNNING 

Nodes: 1 

Cores per node: 4 

CPU Utilized: 00:00:00 

CPU Efficiency: 0.00% of 09:54:44 core-walltime 

Job Wall-clock time: 02:28:41 

Memory Utilized: 0.00 MB (estimated maximum) 

Memory Efficiency: 0.00% of 62.50 GB (15.62 GB/core) 

Job consumed 26.89 CSC billing units based on following used resources 

Billed project: project_2000450 

CPU BU: 9.91 

Mem BU: 15.49 

NVME BU: 1.49 

WARNING: Efficiency statistics may be misleading for RUNNING jobs. 

Time and memory usage: 

    ReqMem     MaxRSS     AveRSS    Elapsed  AllocCPUS  

---------- ---------- ---------- ---------- ----------  

   16000Mc                         02:28:41          4  

   16000Mc                         02:28:41          4  

   16000Mc                         02:28:41          4  

31Mar2022_1203 

Job finished 

 

#----------------SUMMARY END--------------- 

 

#-------------data to my own computer--------- 

 

#-------------- RStudio-------------- 

 

These are the packages I need for the analysis: 

library(BiocManager) 



 

 

 

 

library(microbiome) 

library(ggplot2)# graphics 

library(readxl)# necessary to import the data from Excel file 

library(dplyr)# filter and reformat data frames 

library(tibble)# Needed for converting column to row names 

library(phyloseq) 

library(Biostrings) 

library(tidyverse) 

library(seqinr) 

library(readr) 

library(cli) 

library(vegan) 

library(DESeq2) 

library(plyr) 

library(knitr) 

library(hrbrthemes) 

library(gcookbook) 

library(ggpubr) 

library(knitr) 

library(dplyr) 

library(DHARMa) 

 

In the statistical analysis different online tutorials have been 

used. 

Set working diary. Place where you have all the data files. 

 
path<-("Miseq") 
 
#sample data 
samdf <- read_excel("Miseq/gradu_aineisto_2022A.xlsx") 
samdf <- column_to_rownames(samdf, var = "Sample") 
sampledata = sample_data(data.frame(samdf)) 
physeq <- readRDS(file = "Miseq_final/physeq.rds") 
physeq 

## phyloseq-class experiment-level object 
## otu_table()   OTU Table:         [ 8809 taxa and 94 samples ] 
## tax_table()   Taxonomy Table:    [ 8809 taxa by 7 taxonomic ranks ] 

library("ape") 
random_tree = rtree(ntaxa(physeq), rooted=TRUE, tip.label=taxa_names(p



 

 

 

 

hyseq)) 
 
physeq1 = merge_phyloseq(physeq, sampledata, random_tree) 
physeq1 

## phyloseq-class experiment-level object 
## otu_table()   OTU Table:         [ 8809 taxa and 94 samples ] 
## sample_data() Sample Data:       [ 94 samples by 17 sample variable
s ] 
## tax_table()   Taxonomy Table:    [ 8809 taxa by 7 taxonomic ranks ] 
## phy_tree()    Phylogenetic Tree: [ 8809 tips and 8808 internal node
s ] 

saveRDS(physeq1, file.path(path, "physeq1.rds")) 

  The composition of gut microbiome  

# Data normalization  
pn = transform_sample_counts(physeq1, function(x) 100 * x/sum(x)) 
 
# `tax_glom()` function from phyloseq collapses  OTU table at the Phyl
um level. This takes all OTUs under a given phylum and combines them, 
adding up the total sequence counts. 
phylum = tax_glom(pn, taxrank="phylum") 
 
# Next the average community by sex and not each individual sample:`me
rge_samples()` function to do this.  

pm  = merge_samples(phylum, "Sex") 
 
# this next line of code makes sure that everything will be labelled c
orrectly for the  figures. 
sample_data(pm)$DeRep <- levels(sample_data(pm)$Sample) 
 
# make a sample_data dataframe for future reference 
pm.m = pm %>% sample_data 
 
# Since each 'sample' in this new object is an agglomerate sample, I r
e-normalize the sequence counts for each OTU. 
pm = transform_sample_counts(pm, function(x) 100 * x/sum(x)) 
 
# `plot_bar()` function  
a<-plot_bar(pm, "Sample", fill = "phylum") 
a + ylab("Relative abundance (%)") + (theme_bw(base_size = 20)) 



 

 

 

 

 

#calculate top 20 phylas/class and plot 
top20 <- names(sort(taxa_sums(physeq1), decreasing=TRUE))[1:20] 
ps.top20 <- transform_sample_counts(physeq1, function(OTU) OTU/sum(OTU
)) 
ps.top20 <- prune_taxa(top20, ps.top20) 

Age and top 20 phylas on microbiome 

Age and microbiome 

pn = transform_sample_counts(ps.top20, function(x) 100 * x/sum(x)) 
phylum = tax_glom(pn, taxrank="genus") 
pm  = merge_samples(phylum, "Age") 
sample_data(pm)$DeRep <- levels(sample_data(pm)$Sample) 
pm.m = pm %>% sample_data 
pm = transform_sample_counts(pm, function(x) 100 * x/sum(x)) 
b<-plot_bar(pm, "Sample", fill = "genus") 
b + scale_x_discrete(limits= c("calf", "juvenile", "adult", "senior")) 
+ ylab("Relative abundance (%)")+ (theme_bw(base_size = 20)) 

 



 

 

 

 

Camp and microbiome 

Statistical differences in the microbiome composition between camps 

physeq_Camp = subset_samples(physeq1, Camp != "Na") 
 
# Create a new `phyloseq` object with only the high and low groups 
mb = subset_samples(physeq_Camp, Camp == "West Katha" | Camp == "Kawli
n") %>% 
  filter_taxa(function(x) sum(x) > 0, TRUE) 
 
# Next, check the order of our levels. DESeq2 takes the first level as 
the 'Control' and the second level as the 'Treatment', and this is nee
ded for downstream interpretation of results. 
head(sample_data(mb)$Camp) 

## [1] "Kawlin"     "Kawlin"     "Kawlin"     "West Katha" "Kawlin"     
## [6] "Kawlin" 

#"control":Kawlin, "treatment": West Katha 
#any sequence that is more abundant in the ‘Control’(Kawlin) variable 
will have a negative log2 fold change 
 
# First, convert the sequence count data from phyloseq object into the 
proper format for DESeq2 
mb.dds <- phyloseq_to_deseq2(mb, ~ Camp) 
 
# estimate the size factors for our sequences 
gm_mean = function(x, na.rm=TRUE){ 
  exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)) 
} 
geoMeans = apply(counts(mb.dds), 1, gm_mean) 
mb.dds = estimateSizeFactors(mb.dds, geoMeans = geoMeans) 
 
# rRun the core DESeq2 algorithm 
mb.dds = DESeq(mb.dds, fitType="local") 
 
# Create a new dataframe from the results of our DESeq2 run 
mb.res = results(mb.dds) 
 
# Reorder the sequences by their adjusted p-values 
mb.res = mb.res[order(mb.res$padj, na.last=NA), ] 
 
# Set alpha for testing significance, and filter out non-significant r
esults 
alpha = 0.00000005 #the number needed to be small in order to fit the 
genus in the picture 
#alpha = 0.01 
mb.sigtab = mb.res[(mb.res$padj < alpha), ] 
 
# Add taxonomy information to each sequence 
mb.sigtab = cbind(as(mb.sigtab, "data.frame"), as(tax_table(mb)[rownam
es(mb.sigtab), ], "matrix")) 



 

 

 

 

#OTUs that showed a significant difference in abundance between Camps 
#PLOT 
 
# any sequence that is more abundant in the 'Kawlin' variable will hav
e a negative log2 fold change value, 
#and any sequence more abundant in the 'West Katha' variable will have 
a positive value. 
 
# Set ggplot2 options 
theme_set(theme_bw(base_size = 15)) 
scale_fill_discrete <- function(palname = "Set1", ...) { 
  scale_fill_brewer(palette = palname, ...) 
} 
# Rearrange the order of our OTUs by Phylum. 
x = tapply(mb.sigtab$log2FoldChange, mb.sigtab$phylum, function(x) max
(x)) 
x = sort(x, TRUE) 
mb.sigtab$phylum = factor(as.character(mb.sigtab$phylum), levels=names
(x)) 
 
# Create and display the plot 
p = ggplot(mb.sigtab, aes(x=phylum, y=log2FoldChange, color=genus)) + 
geom_jitter(size=4, width=0.25) + 
  theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5), 
) 
 
p 

 

 

Alpha diversity 

Alpha diversity 

physeq_camp = subset_samples(physeq1, Camp != "Na") 
 
Shannon<- plot_richness(physeq_camp, x="Age", measures=c("Shannon"), c
olor="Camp") +   theme_bw() 
age_ar <- c("calf","juvenile","adult","senior") 



 

 

 

 

Shannon$data$Age <- as.character(Shannon$data$Age) 
Shannon$data$Age <- factor(Shannon$data$Age, levels = age_ar) 
print(Shannon) 

 

#Phyloseq contains the `plot_richness()` function to display multiple 
alpha diversity measures at once. 

plot_richness(physeq_camp, x="Age", measures=c("Observed", "Shannon"), 
color="Camp") +   theme_bw() 

 

Alpha diversity and stress groups 

These plots include statistical analysis to support the results. 

analysis was made using microbiome R package 



 

 

 

 

#H:L 
 
physeq_HL = subset_samples(physeq1, H.L != "Na") 
 
ps1_HL <- prune_taxa(taxa_sums(physeq_HL) > 0, physeq_HL) 
tab <- microbiome::alpha(ps1_HL, index = "all") 
ps1.meta_HL <- meta(ps1_HL) 
kable(head(ps1.meta_HL)) 

ps1.meta_HL$Shannon <- tab$diversity_shannon 
ps1.meta_HL$InverseSimpson <- tab$diversity_inverse_simpson 
 
a <- ggviolin(ps1.meta_HL, x = "H.L", y = "Shannon", 
              add = "boxplot", fill = "H.L", palette = c("#a6cee3", "#
b2df8a", "#fdbf6f"), xlab = "H:L ratio") 
alpha_HL = a+ scale_x_discrete(limits= c("low", "medium", "high")) 
alpha_HL 

 

#FGM 
 
physeq_FGM = subset_samples(physeq1, FGM_values != "Na") 
ps1_FGM <- prune_taxa(taxa_sums(physeq_FGM) > 0, physeq_FGM) 
tab <- microbiome::alpha(ps1_FGM, index = "all") 
kable(head(tab)) 

 
ps1.meta_FGM$Shannon <- tab$diversity_shannon 
ps1.meta_FGM$InverseSimpson <- tab$diversity_inverse_simpson 
 
a <- ggviolin(ps1.meta_FGM, x = "FGM", y = "Shannon", 
              add = "boxplot", fill = "FGM", palette = c("#a6cee3", "#
b2df8a", "#fdbf6f"), xlab = "FGM") 
alpha_fgm = a+ scale_x_discrete(limits= c("low", "medium", "high")) 
alpha_fgm 

 

#SC 
physeq_SC = subset_samples(physeq1, SC != "Na") 
ps1_SC <- prune_taxa(taxa_sums(physeq_SC) > 0, physeq_SC) 
tab <- microbiome::alpha(ps1_SC, index = "all") 
kable(head(tab)) 

ps1.meta_SC <- meta(ps1_SC) 
kable(head(ps1.meta_SC)) 

ps1.meta_SC$Shannon <- tab$diversity_shannon 
ps1.meta_SC$InverseSimpson <- tab$diversity_inverse_simpson 
 
a <- ggviolin(ps1.meta_SC, x = "SC", y = "Shannon", 
              add = "boxplot", fill = "SC", palette = c("#a6cee3", "#b
2df8a", "#fdbf6f"), xlab = "SC") 
alpha_SC = a+ scale_x_discrete(limits= c("low", "medium", "high")) 
alpha_SC 



 

 

 

 

 

par(mfrow=c(3,1)) 
library("ggpubr") 
figure_alpha <- ggarrange(alpha_fgm, alpha_HL, alpha_SC, 
                          labels = c("A", "B", "C"), 
                          ncol = 2, nrow = 2) 
figure_alpha 

 

Statistical analysis to support alpha diversity plots 

GLM 

Alpha diversity, especially the differences in alpha diversity, was tested using 
general linear model (GLM). In the model the dependent variable were observed 
unique sequences representing the alpha diversity. The data were normally 
distributed, and the residuals were tested for over/underdispersion, outliers and 
for normal distribution (Kolmogorov–Smirnov test) using DHARMa package. 

mod1 and mod2 was compared 

ANOVA was used to analyze the GLM results 

physeq.m_camp = sample_data(physeq_camp) 
 
sample_data(physeq_camp)$Age <- as.factor(sample_data(physeq_camp)$Age
) 
adiv <- estimate_richness(physeq_camp, measures = c("Observed", "Shann
on", "Simpson", "Chao1", "InvSimpson")) 



 

 

 

 

mod1 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Camp + ph
yseq.m_camp$Sex + physeq.m_camp$cw) 
summary(mod1) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Camp 
+  
##     physeq.m_camp$Sex + physeq.m_camp$cw) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.94310  -0.09771   0.04545   0.19727   0.42820   
##  
## Coefficients: 
##                               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.517828   0.047236 137.986  < 2e-16 
*** 
## physeq.m_camp$Agecalf         0.002411   0.107760   0.022    0.982     
## physeq.m_camp$Agejuvenile     0.182231   0.099665   1.828    0.071 
.   
## physeq.m_camp$Agesenior      -0.069683   0.096391  -0.723    0.472     
## physeq.m_camp$CampWest Katha -0.319509   0.074829  -4.270 5.12e-05 
*** 
## physeq.m_camp$Sexmale         0.002523   0.073348   0.034    0.973     
## physeq.m_camp$cwwild          0.002148   0.100270   0.021    0.983     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.07716361) 
##  
##     Null deviance: 8.8258  on 90  degrees of freedom 
## Residual deviance: 6.4817  on 84  degrees of freedom 
## AIC: 33.837 
##  
## Number of Fisher Scoring iterations: 2 

# for Anova 
library(car) 
 
# for categorical variables 
#install.packages("emmeans") 
library(emmeans) 

 
Anova(mod1, type="III", test.statistic="F") 

## Analysis of Deviance Table (Type III tests) 
##  
## Response: adiv$Shannon 
## Error estimate based on Pearson residuals  
##  
##                    Sum Sq Df F values    Pr(>F)     
## physeq.m_camp$Age  0.3855  3   1.6652    0.1807     
## physeq.m_camp$Camp 1.4068  1  18.2317 5.119e-05 *** 



 

 

 

 

## physeq.m_camp$Sex  0.0001  1   0.0012    0.9726     
## physeq.m_camp$cw   0.0000  1   0.0005    0.9830     
## Residuals          6.4817 84                        
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

age <- emmeans(mod1, "Age", type="response") 

contrast(age, method = "pairwise", type = "response",adjust="none") 

 

##  contrast          estimate     SE df t.ratio p.value 
##  adult - calf      -0.00241 0.1078 84  -0.022  0.9822 
##  adult - juvenile  -0.18223 0.0997 84  -1.828  0.0710 
##  adult - senior     0.06968 0.0964 84   0.723  0.4717 
##  calf - juvenile   -0.17982 0.1090 84  -1.650  0.1027 
##  calf - senior      0.07209 0.1349 84   0.535  0.5944 
##  juvenile - senior  0.25191 0.1286 84   1.958  0.0535 
##  
## Results are averaged over the levels of: Camp, Sex, cw 

camp <- emmeans(mod1, "Camp", type="response") 

contrast(camp, method = "pairwise", type = "response",adjust="none") 

##  contrast            estimate     SE df t.ratio p.value 
##  Kawlin - West Katha     0.32 0.0748 84   4.270  0.0001 
##  
## Results are averaged over the levels of: Age, Sex, cw 

mod2 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex) 
summary(mod2) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -1.06113  -0.16774   0.08513   0.22284   0.43246   
##  
## Coefficients: 
##                           Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                6.47717    0.04959 130.624   <2e-16 *** 
## physeq.m_camp$Agecalf     -0.22157    0.09877  -2.243   0.0274 *   
## physeq.m_camp$Agejuvenile  0.02142    0.09817   0.218   0.8278     
## physeq.m_camp$Agesenior   -0.13716    0.07863  -1.744   0.0847 .   
## physeq.m_camp$Sexmale     -0.06157    0.07668  -0.803   0.4242     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.09212379) 
##  
##     Null deviance: 8.8258  on 90  degrees of freedom 
## Residual deviance: 7.9226  on 86  degrees of freedom 
## AIC: 48.104 



 

 

 

 

##  
## Number of Fisher Scoring iterations: 2 

model<-anova(mod1, mod2) 
summary(model) 

##    Resid. Df      Resid. Dev          Df        Deviance      
##  Min.   :84.0   Min.   :6.482   Min.   :-2   Min.   :-1.441   
##  1st Qu.:84.5   1st Qu.:6.842   1st Qu.:-2   1st Qu.:-1.441   
##  Median :85.0   Median :7.202   Median :-2   Median :-1.441   
##  Mean   :85.0   Mean   :7.202   Mean   :-2   Mean   :-1.441   
##  3rd Qu.:85.5   3rd Qu.:7.562   3rd Qu.:-2   3rd Qu.:-1.441   
##  Max.   :86.0   Max.   :7.923   Max.   :-2   Max.   :-1.441   
##                                 NA's   :1    NA's   :1 

simulationOutput <- simulateResiduals(fittedModel = mod1) 
plot(simulationOutput) 

 

Alpha diversity and stress measures (GLM) 

Alpha diversity and categorical variables 

mod6 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + phy
seq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$H.L) 
summary(mod6) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$H.L) 
##  



 

 

 

 

## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.52346  -0.14689   0.04474   0.15056   0.44961   
##  
## Coefficients: 
##                              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.43683    0.06011 107.075  < 2e-16 *
** 
## physeq.m_camp$Agecalf         0.21862    0.15669   1.395 0.168444     
## physeq.m_camp$Agejuvenile     0.21188    0.09488   2.233 0.029563 *   
## physeq.m_camp$Agesenior      -0.12232    0.10855  -1.127 0.264571     
## physeq.m_camp$Sexmale        -0.14486    0.08011  -1.808 0.075929 .   
## physeq.m_camp$CampWest Katha -0.28155    0.07630  -3.690 0.000509 *
** 
## physeq.m_camp$cwwild          0.07133    0.11802   0.604 0.548056     
## physeq.m_camp$H.Llow          0.20398    0.07525   2.711 0.008896 *
*  
## physeq.m_camp$H.Lmedium       0.10584    0.07506   1.410 0.164046     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.05641737) 
##  
##     Null deviance: 5.5044  on 64  degrees of freedom 
## Residual deviance: 3.1594  on 56  degrees of freedom 
##   (26 observations deleted due to missingness) 
## AIC: 7.9011 
##  
## Number of Fisher Scoring iterations: 2 

mod7 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + phy
seq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$FGM) 
summary(mod7) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$FGM) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.59286  -0.13430   0.04727   0.16719   0.40182   
##  
## Coefficients: 
##                              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.55434    0.06677  98.168  < 2e-16 *
** 
## physeq.m_camp$Agecalf         0.10945    0.12719   0.861  0.39261     
## physeq.m_camp$Agejuvenile     0.21829    0.09516   2.294  0.02499 *   
## physeq.m_camp$Agesenior      -0.08595    0.08573  -1.003  0.31973     
## physeq.m_camp$Sexmale        -0.05061    0.07901  -0.640  0.52408     
## physeq.m_camp$CampWest Katha -0.24078    0.06858  -3.511  0.00081 *
** 
## physeq.m_camp$cwwild         -0.03645    0.09465  -0.385  0.70138     



 

 

 

 

## physeq.m_camp$FGMlow         -0.01420    0.07388  -0.192  0.84818     
## physeq.m_camp$FGMmedium      -0.03909    0.07258  -0.538  0.59205     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.05410916) 
##  
##     Null deviance: 5.1094  on 74  degrees of freedom 
## Residual deviance: 3.5712  on 66  degrees of freedom 
##   (16 observations deleted due to missingness) 
## AIC: 4.4969 
##  
## Number of Fisher Scoring iterations: 2 

mod8 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + phy
seq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$SC) 
summary(mod8) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$SC) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.64210  -0.13409   0.03667   0.16783   0.43083   
##  
## Coefficients: 
##                               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.524146   0.069087  94.433  < 2e-16 
*** 
## physeq.m_camp$Agecalf        -0.034742   0.170383  -0.204  0.83922     
## physeq.m_camp$Agejuvenile     0.282573   0.110396   2.560  0.01343 
*   
## physeq.m_camp$Agesenior      -0.215935   0.142985  -1.510  0.13705     
## physeq.m_camp$Sexmale        -0.149535   0.087021  -1.718  0.09168 
.   
## physeq.m_camp$CampWest Katha -0.291298   0.086167  -3.381  0.00138 
**  
## physeq.m_camp$cwwild          0.169663   0.149946   1.131  0.26304     
## physeq.m_camp$SClow           0.008974   0.088208   0.102  0.91936     
## physeq.m_camp$SCmedium        0.026599   0.089480   0.297  0.76745     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.06813868) 
##  
##     Null deviance: 5.5538  on 60  degrees of freedom 
## Residual deviance: 3.5432  on 52  degrees of freedom 
##   (30 observations deleted due to missingness) 
## AIC: 19.514 
##  
## Number of Fisher Scoring iterations: 2 



 

 

 

 

simulationOutput <- simulateResiduals(fittedModel = mod6) 
plot(simulationOutput) 

 

simulationOutput <- simulateResiduals(fittedModel = mod7) 
plot(simulationOutput) 

 

simulationOutput <- simulateResiduals(fittedModel = mod8) 
plot(simulationOutput) 



 

 

 

 

  

 

ANOVA for the GLM about stress and alpha diversity 

#H:L 
Anova(mod6, type="III", test.statistic="F") 

## Analysis of Deviance Table (Type III tests) 
##  
## Response: adiv$Shannon 
## Error estimate based on Pearson residuals  
##  
##                     Sum Sq Df F values    Pr(>F)     
## physeq.m_camp$Age  0.43675  3   2.5805 0.0625189 .   
## physeq.m_camp$Sex  0.18448  1   3.2700 0.0759292 .   
## physeq.m_camp$Camp 0.76816  1  13.6156 0.0005093 *** 
## physeq.m_camp$cw   0.02061  1   0.3652 0.5480556     
## physeq.m_camp$H.L  0.41508  2   3.6787 0.0315457 *   
## Residuals          3.15937 56                        
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

HL_anova <- emmeans(mod6, "H.L", type="response") 

contrast(HL_anova, method = "pairwise", type = "response",adjust="none
") 

##  contrast      estimate     SE df t.ratio p.value 
##  high - low     -0.2040 0.0752 56  -2.711  0.0089 
##  high - medium  -0.1058 0.0751 56  -1.410  0.1640 
##  low - medium    0.0981 0.0760 56   1.292  0.2018 
##  
## Results are averaged over the levels of: Age, Sex, Camp, cw 



 

 

 

 

#FGM 
Anova(mod7, type="III", test.statistic="F") 

## Analysis of Deviance Table (Type III tests) 
##  
## Response: adiv$Shannon 
## Error estimate based on Pearson residuals  
##  
##                    Sum Sq Df F values    Pr(>F)     
## physeq.m_camp$Age  0.3959  3   2.4389 0.0721989 .   
## physeq.m_camp$Sex  0.0222  1   0.4102 0.5240818     
## physeq.m_camp$Camp 0.6671  1  12.3279 0.0008099 *** 
## physeq.m_camp$cw   0.0080  1   0.1483 0.7013807     
## physeq.m_camp$FGM  0.0169  2   0.1561 0.8558183     
## Residuals          3.5712 66                        
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

FGM_anova <- emmeans(mod7, "FGM", type="response") 

contrast(FGM_anova, method = "pairwise", type = "response",adjust="non
e") 

##  contrast      estimate     SE df t.ratio p.value 
##  high - low      0.0142 0.0739 66   0.192  0.8482 
##  high - medium   0.0391 0.0726 66   0.538  0.5920 
##  low - medium    0.0249 0.0670 66   0.371  0.7115 
##  
## Results are averaged over the levels of: Age, Sex, Camp, cw 

#SC 
Anova(mod8, type="III", test.statistic="F") 

## Analysis of Deviance Table (Type III tests) 
##  
## Response: adiv$Shannon 
## Error estimate based on Pearson residuals  
##  
##                    Sum Sq Df F values   Pr(>F)    
## physeq.m_camp$Age  0.7672  3   3.7533 0.016270 *  
## physeq.m_camp$Sex  0.2012  1   2.9528 0.091676 .  
## physeq.m_camp$Camp 0.7787  1  11.4286 0.001379 ** 
## physeq.m_camp$cw   0.0872  1   1.2803 0.263039    
## physeq.m_camp$SC   0.0064  2   0.0471 0.954073    
## Residuals          3.5432 52                      
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

SC_anova <- emmeans(mod8, "SC", type="response") 

contrast(SC_anova, method = "pairwise", type = "response",adjust="none
") 

##  contrast      estimate     SE df t.ratio p.value 
##  high - low    -0.00897 0.0882 52  -0.102  0.9194 
##  high - medium -0.02660 0.0895 52  -0.297  0.7675 
##  low - medium  -0.01763 0.0839 52  -0.210  0.8344 



 

 

 

 

##  
## Results are averaged over the levels of: Age, Sex, Camp, cw 

Alpha diversity and continuous stress levels 

mod9 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + phy
seq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$H.L_values) 
summary(mod9) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$H.L_value
s) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.58635  -0.16322   0.06956   0.14405   0.42231   
##  
## Coefficients: 
##                              Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.66923    0.07676  86.879  < 2e-16 *
** 
## physeq.m_camp$Agecalf         0.19879    0.15755   1.262  0.21218     
## physeq.m_camp$Agejuvenile     0.22319    0.09554   2.336  0.02302 *   
## physeq.m_camp$Agesenior      -0.15195    0.10744  -1.414  0.16274     
## physeq.m_camp$Sexmale        -0.16522    0.08035  -2.056  0.04435 *   
## physeq.m_camp$CampWest Katha -0.25977    0.07633  -3.403  0.00122 *
*  
## physeq.m_camp$cwwild          0.10279    0.11724   0.877  0.38433     
## physeq.m_camp$H.L_values     -0.11284    0.05150  -2.191  0.03253 *   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.05783755) 
##  
##     Null deviance: 5.5044  on 64  degrees of freedom 
## Residual deviance: 3.2967  on 57  degrees of freedom 
##   (26 observations deleted due to missingness) 
## AIC: 8.6676 
##  
## Number of Fisher Scoring iterations: 2 

mod10 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + ph
yseq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$FGM_values) 
summary(mod10) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$FGM_value
s) 
##  
## Deviance Residuals:  



 

 

 

 

##      Min        1Q    Median        3Q       Max   
## -0.59745  -0.13081   0.03796   0.17183   0.38847   
##  
## Coefficients: 
##                               Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.464499   0.114908  56.258  < 2e-16 
*** 
## physeq.m_camp$Agecalf         0.110158   0.126068   0.874 0.385348     
## physeq.m_camp$Agejuvenile     0.213825   0.093236   2.293 0.024971 
*   
## physeq.m_camp$Agesenior      -0.092184   0.084511  -1.091 0.279269     
## physeq.m_camp$Sexmale        -0.053618   0.078472  -0.683 0.496792     
## physeq.m_camp$CampWest Katha -0.247365   0.068099  -3.632 0.000545 
*** 
## physeq.m_camp$cwwild         -0.038971   0.092493  -0.421 0.674855     
## physeq.m_camp$FGM_values      0.001181   0.001790   0.660 0.511550     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.05320776) 
##  
##     Null deviance: 5.1094  on 74  degrees of freedom 
## Residual deviance: 3.5649  on 67  degrees of freedom 
##   (16 observations deleted due to missingness) 
## AIC: 2.3648 
##  
## Number of Fisher Scoring iterations: 2 

mod11 <- glm(adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex + ph
yseq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$cortisol) 
summary(mod11) 

##  
## Call: 
## glm(formula = adiv$Shannon ~ physeq.m_camp$Age + physeq.m_camp$Sex 
+  
##     physeq.m_camp$Camp + physeq.m_camp$cw + physeq.m_camp$cortisol) 
##  
## Deviance Residuals:  
##      Min        1Q    Median        3Q       Max   
## -0.63069  -0.12015   0.04529   0.17242   0.42703   
##  
## Coefficients: 
##                                Estimate Std. Error t value Pr(>|t|)     
## (Intercept)                   6.534e+00  8.426e-02  77.547  < 2e-16 
*** 
## physeq.m_camp$Agecalf        -4.521e-02  1.736e-01  -0.260  0.79556     
## physeq.m_camp$Agejuvenile     2.814e-01  1.086e-01   2.592  0.01231 
*   
## physeq.m_camp$Agesenior      -2.203e-01  1.411e-01  -1.561  0.12444     
## physeq.m_camp$Sexmale        -1.478e-01  8.618e-02  -1.716  0.09208 
.   
## physeq.m_camp$CampWest Katha -2.876e-01  8.478e-02  -3.392  0.00132 
**  
## physeq.m_camp$cwwild          1.792e-01  1.458e-01   1.229  0.22432     



 

 

 

 

## physeq.m_camp$cortisol        1.446e-05  2.053e-03   0.007  0.99441     
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
##  
## (Dispersion parameter for gaussian family taken to be 0.06697398) 
##  
##     Null deviance: 5.5538  on 60  degrees of freedom 
## Residual deviance: 3.5496  on 53  degrees of freedom 
##   (30 observations deleted due to missingness) 
## AIC: 17.624 
##  
## Number of Fisher Scoring iterations: 2 

Phyla that differ by stress groups 

Differential Abundance Testing 

H:L ratio 

covariates in the analysis Camp and Age 

physeq_HL = subset_samples(physeq1, H.L_values != "Na") 
physeq_HL_Camp = subset_samples(physeq_HL, Camp != "Na") 
 
# Create a new `phyloseq` object with only the high and low groups 
mb = subset_samples(physeq_HL_Camp, H.L == "high" | H.L == "low") %>% 
  filter_taxa(function(x) sum(x) > 0, TRUE) 
 
 
# First, convert the sequence count data from our phyloseq object into 
the proper format for DESeq2 
mb.dds <- phyloseq_to_deseq2(mb, ~ H.L + Camp + Age) 
 
# Next estimate the size factors for the sequences 
gm_mean = function(x, na.rm=TRUE){ 
  exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)) 
} 
geoMeans = apply(counts(mb.dds), 1, gm_mean) 
mb.dds = estimateSizeFactors(mb.dds, geoMeans = geoMeans) 
 
# Finally, run the core DESeq2 algorithm 
mb.dds = DESeq(mb.dds, fitType="local") 
 
# Create a new dataframe from the results of our DESeq2 run 
mb.res <- results(mb.dds, contrast=c("H.L","high","low")) # by adding 
contrast function I can name which variable  I'm interested in 
 
# Reorder the sequences by their adjusted p-values 
mb.res = mb.res[order(mb.res$padj, na.last=NA), ] 
 
# Set alpha for testing significance, and filter out non-significant r
esults 
alpha = 0.01 
mb.sigtab = mb.res[(mb.res$padj < alpha), ] 



 

 

 

 

 
# Add taxonomy information to each sequence 
mb.sigtab = cbind(as(mb.sigtab, "data.frame"), as(tax_table(mb)[rownam
es(mb.sigtab), ], "matrix")) 
 
 
# Set ggplot2 options 
theme_set(theme_bw(base_size = 20)) 
scale_fill_discrete <- function(palname = "Set1", ...) { 
  scale_fill_brewer(palette = palname, ...) 
} 
# Rearrange the order of  OTUs by Phylum. 
x = tapply(mb.sigtab$log2FoldChange, mb.sigtab$phylum, function(x) max
(x)) 
x = sort(x, TRUE) 
mb.sigtab$phylum = factor(as.character(mb.sigtab$phylum), levels=names
(x)) 
 
# Create and display the plot 
p_hl = ggplot(mb.sigtab, aes(x=phylum, y=log2FoldChange, color=class)) 
+ geom_jitter(size=4, width=0.25) + 
  theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5), 
) 
 
p_hl+theme(plot.title = element_text(size=18)) 

 

FGM 

physeq_FGM = subset_samples(physeq1, FGM_values != "Na") 
physeq_FGM_Camp = subset_samples(physeq_FGM, Camp != "Na") 
physeq_FGM_Camp 

## phyloseq-class experiment-level object 
## otu_table()   OTU Table:         [ 8809 taxa and 75 samples ] 
## sample_data() Sample Data:       [ 75 samples by 17 sample variable
s ] 
## tax_table()   Taxonomy Table:    [ 8809 taxa by 7 taxonomic ranks ] 
## phy_tree()    Phylogenetic Tree: [ 8809 tips and 8808 internal node
s ] 



 

 

 

 

mb = subset_samples(physeq_FGM_Camp, FGM == "high" | FGM == "low") %>% 
  filter_taxa(function(x) sum(x) > 0, TRUE) 
mb.dds <- phyloseq_to_deseq2(mb, ~ FGM + Camp + Age) 
gm_mean = function(x, na.rm=TRUE){ 
  exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)) 
} 
geoMeans = apply(counts(mb.dds), 1, gm_mean) 
mb.dds = estimateSizeFactors(mb.dds, geoMeans = geoMeans) 
mb.dds = DESeq(mb.dds, fitType="local") 
mb.res <- results(mb.dds, contrast=c("FGM","high","low")) 
mb.res = mb.res[order(mb.res$padj, na.last=NA), ] 
alpha = 0.01 
mb.sigtab = mb.res[(mb.res$padj < alpha), ] 
mb.sigtab = cbind(as(mb.sigtab, "data.frame"), as(tax_table(mb)[rownam
es(mb.sigtab), ], "matrix")) 
 
theme_set(theme_bw(base_size = 20)) 
scale_fill_discrete <- function(palname = "Set1", ...) { 
  scale_fill_brewer(palette = palname, ...) 
} 
 
x = tapply(mb.sigtab$log2FoldChange, mb.sigtab$phylum, function(x) max
(x)) 
x = sort(x, TRUE) 
mb.sigtab$phylum = factor(as.character(mb.sigtab$phylum), levels=names
(x)) 
p_fgm = ggplot(mb.sigtab, aes(x=phylum, y=log2FoldChange, color=class)
) + geom_jitter(size=4, width=0.25) + 
  theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5), 
) 
p_fgm+theme(plot.title = element_text(size=18)) 

 

SC 

physeq_SC = subset_samples(physeq1, cortisol != "Na") 
physeq_SC_Camp = subset_samples(physeq_SC, Camp != "Na") 
physeq_SC_Camp 



 

 

 

 

## phyloseq-class experiment-level object 
## otu_table()   OTU Table:         [ 8809 taxa and 61 samples ] 
## sample_data() Sample Data:       [ 61 samples by 17 sample variable
s ] 
## tax_table()   Taxonomy Table:    [ 8809 taxa by 7 taxonomic ranks ] 
## phy_tree()    Phylogenetic Tree: [ 8809 tips and 8808 internal node
s ] 

mb = subset_samples(physeq_SC_Camp, SC == "high" | SC == "low") %>% 
  filter_taxa(function(x) sum(x) > 0, TRUE) 
mb.dds <- phyloseq_to_deseq2(mb, ~ SC + Camp + Age) 
gm_mean = function(x, na.rm=TRUE){ 
  exp(sum(log(x[x > 0]), na.rm=na.rm) / length(x)) 
} 
geoMeans = apply(counts(mb.dds), 1, gm_mean) 
mb.dds = estimateSizeFactors(mb.dds, geoMeans = geoMeans) 
mb.dds = DESeq(mb.dds, fitType="local") 
mb.res <- results(mb.dds, contrast=c("SC","high","low")) 
mb.res = mb.res[order(mb.res$padj, na.last=NA), ] 
alpha = 0.01 
mb.sigtab = mb.res[(mb.res$padj < alpha), ] 
mb.sigtab = cbind(as(mb.sigtab, "data.frame"), as(tax_table(mb)[rownam
es(mb.sigtab), ], "matrix")) 
 
 
theme_set(theme_bw(base_size = 20)) 
scale_fill_discrete <- function(palname = "Set1", ...) { 
  scale_fill_brewer(palette = palname, ...) 
} 
 
x = tapply(mb.sigtab$log2FoldChange, mb.sigtab$phylum, function(x) max
(x)) 
x = sort(x, TRUE) 
mb.sigtab$phylum = factor(as.character(mb.sigtab$phylum), levels=names
(x)) 
 
p_sc = ggplot(mb.sigtab, aes(x=phylum, y=log2FoldChange, color=class)) 
+ geom_jitter(size=4, width=0.25) + 
  theme(axis.text.x = element_text(angle = -90, hjust = 0, vjust=0.5), 
) 
p_sc+theme(plot.title = element_text(size=18)) 



 

 

 

 

 

Beta diversity 

Permanova 

Community similarity (beta diversity) was tested using PERMANOVA Community 
similarity was assessed using normalized sequence counts 

#PERMANOVA: 
library(vegan) 
# First, normalize the sequence counts by converting from raw abundanc
e to relative abundance. This removes any bias due to total sequence c
ounts per sample. 
pn = transform_sample_counts(physeq_camp, function(x) 100 * x/sum(x)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
 
p.adonis = adonis2(p.d ~ Camp + Age  + Sex + cw, p.df) 
p.adonis 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw, data = p.df) 
##          Df SumOfSqs      R2      F Pr(>F)     
## Camp      1   1.4971 0.08266 8.2147  0.001 *** 
## Age       3   0.8908 0.04918 1.6292  0.003 **  
## Sex       1   0.2422 0.01337 1.3287  0.092 .   
## cw        1   0.1733 0.00957 0.9509  0.496     
## Residual 84  15.3087 0.84522                   
## Total    90  18.1120 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 



 

 

 

 

Stress and beta diversity 

First categorical then continuous stress values 

#FGM 
 
physeq_FGM_camp = subset_samples(physeq_camp, FGM != "Na") 
 
pn = transform_sample_counts(physeq_FGM_camp, function(x) 100 * x/sum(
x)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis2 = adonis2(p.d ~ Camp + Age  + Sex + cw + FGM, p.df) 
p.adonis2 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + FGM, data = p.df) 
##          Df SumOfSqs      R2      F Pr(>F)     
## Camp      1   1.1856 0.08365 6.8845  0.001 *** 
## Age       3   0.8633 0.06091 1.6709  0.002 **  
## Sex       1   0.2163 0.01526 1.2558  0.137     
## cw        1   0.1977 0.01395 1.1478  0.231     
## FGM       2   0.3441 0.02428 0.9991  0.451     
## Residual 66  11.3661 0.80195                   
## Total    74  14.1730 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

summary(p.adonis2) 

##        Df           SumOfSqs             R2                F          
##  Min.   : 1.00   Min.   : 0.1977   Min.   :0.01395   Min.   :0.9991   
##  1st Qu.: 1.00   1st Qu.: 0.2802   1st Qu.:0.01977   1st Qu.:1.1478   
##  Median : 2.00   Median : 0.8633   Median :0.06091   Median :1.2558   
##  Mean   :21.14   Mean   : 4.0494   Mean   :0.28571   Mean   :2.3916   
##  3rd Qu.:34.50   3rd Qu.: 6.2759   3rd Qu.:0.44280   3rd Qu.:1.6709   
##  Max.   :74.00   Max.   :14.1730   Max.   :1.00000   Max.   :6.8845   
##                                                      NA's   :2        
##      Pr(>F)       
##  Min.   :0.0010   
##  1st Qu.:0.0020   
##  Median :0.1370   
##  Mean   :0.1644   
##  3rd Qu.:0.2310   
##  Max.   :0.4510   
##  NA's   :2 

physeq_FGM_values_camp = subset_samples(physeq_camp, FGM_values != "Na
") 
 
pn = transform_sample_counts(physeq_FGM_values_camp, function(x) 100 * 



 

 

 

 

x/sum(x)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis3 = adonis2(p.d ~ Camp + Age  + Sex + cw + FGM_values, p.df) 
p.adonis3 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + FGM_values, data = 
p.df) 
##            Df SumOfSqs      R2      F Pr(>F)     
## Camp        1   1.1856 0.08365 6.8787  0.001 *** 
## Age         3   0.8633 0.06091 1.6695  0.002 **  
## Sex         1   0.2163 0.01526 1.2548  0.131     
## cw          1   0.1977 0.01395 1.1468  0.226     
## FGM_values  1   0.1622 0.01145 0.9412  0.505     
## Residual   67  11.5480 0.81479                   
## Total      74  14.1730 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#H:L 
 
physeq_HL_camp = subset_samples(physeq_camp, H.L != "Na") 
 
pn = transform_sample_counts(physeq_HL_camp, function(x) 100 * x/sum(x
)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis4 = adonis2(p.d ~ Camp + Age  + Sex + cw + H.L, p.df) 
p.adonis4 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + H.L, data = p.df) 
##          Df SumOfSqs      R2      F Pr(>F)     
## Camp      1   0.9683 0.07797 5.5053  0.001 *** 
## Age       3   0.7902 0.06363 1.4977  0.002 **  
## Sex       1   0.2622 0.02111 1.4907  0.053 .   
## cw        1   0.1719 0.01384 0.9771  0.464     
## H.L       2   0.3769 0.03035 1.0714  0.281     
## Residual 56   9.8492 0.79310                   
## Total    64  12.4186 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

physeq_HL_values_camp = subset_samples(physeq_camp, H.L_values != "Na"
) 
 



 

 

 

 

pn = transform_sample_counts(physeq_HL_values_camp, function(x) 100 * 
x/sum(x)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis5 = adonis2(p.d ~ Camp + Age  + Sex + cw + H.L_values, p.df) 
p.adonis5 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + H.L_values, data = 
p.df) 
##            Df SumOfSqs      R2      F Pr(>F)     
## Camp        1   0.9683 0.07797 5.5048  0.001 *** 
## Age         3   0.7902 0.06363 1.4976  0.006 **  
## Sex         1   0.2622 0.02111 1.4906  0.046 *   
## cw          1   0.1719 0.01384 0.9770  0.469     
## H.L_values  1   0.2000 0.01611 1.1371  0.232     
## Residual   57  10.0260 0.80734                   
## Total      64  12.4186 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#SC 
 
physeq_SC_camp = subset_samples(physeq_camp, SC != "Na") 
 
pn = transform_sample_counts(physeq_SC_camp, function(x) 100 * x/sum(x
)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis6 = adonis2(p.d ~ Camp + Age  + Sex + cw + SC, p.df) 
p.adonis6 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + SC, data = p.df) 
##          Df SumOfSqs      R2      F Pr(>F)     
## Camp      1   0.9219 0.07806 5.2548  0.001 *** 
## Age       3   0.9907 0.08389 1.8824  0.001 *** 
## Sex       1   0.2094 0.01773 1.1938  0.165     
## cw        1   0.1796 0.01520 1.0235  0.390     
## SC        2   0.3859 0.03268 1.0998  0.236     
## Residual 52   9.1228 0.77244                   
## Total    60  11.8103 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

physeq_SC_values_camp = subset_samples(physeq_camp, cortisol != "Na") 
 



 

 

 

 

pn = transform_sample_counts(physeq_SC_values_camp, function(x) 100 * 
x/sum(x)) 
p.df = as(sample_data(pn), "data.frame") 
p.d = phyloseq::distance(pn, method = "bray") 
p.adonis7 = adonis2(p.d ~ Camp + Age  + Sex + cw + cortisol, p.df) 
p.adonis7 

## Permutation test for adonis under reduced model 
## Terms added sequentially (first to last) 
## Permutation: free 
## Number of permutations: 999 
##  
## adonis2(formula = p.d ~ Camp + Age + Sex + cw + cortisol, data = p.
df) 
##          Df SumOfSqs      R2      F Pr(>F)     
## Camp      1   0.9219 0.07806 5.2318  0.001 *** 
## Age       3   0.9907 0.08389 1.8742  0.001 *** 
## Sex       1   0.2094 0.01773 1.1886  0.179     
## cw        1   0.1796 0.01520 1.0190  0.412     
## cortisol  1   0.1696 0.01436 0.9628  0.508     
## Residual 53   9.3390 0.79075                   
## Total    60  11.8103 1.00000                   
## --- 
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

#cheking of the residuals 
plot(p.d) 

 

Stress measures (H:L, FGM, SC) didn’t have effect on the beta diversity. 



 
 

Supplement 5: 

 

Sample baby sex age birth cw age_capture camp serum_cortisol FGM_values H:L_values FGM H:L SC

2568 N F senior 3.9.1959 captive Kawlin 66,56 76,30464078 1,4375 high high high

2630 N F senior 6.12.1961 captive Kawlin 68,58625547 1,541666667 medium high

3215 N F senior 1.2.1954 wild 17 West Katha 22,49 75,85098039 1,826086957 high high medium

3222 N F senior 30.11.1964 wild 6 Kawlin 26,57 78,01621359 high medium

3258 N F senior 30.11.1968 wild 2 Kawlin 37,95 98,94046712 0,96969697 high medium high

3372 N F senior 1.1.1956 wild 16 West Katha 32,86 60,23137255 0,75 low low medium

3378 N F senior 1.1.1963 wild 9 Kawlin 19,21 66,40156863 1,583333333 medium high low

3589 N F senior 30.11.1958 wild 14 West Katha 76,52156863 0,634146341 high low

3591 N F senior 30.11.1965 wild 7 Kawlin 22,96 69,88846154 1,518518519 medium high medium

3818 N F senior 1.1.1953 wild 20 West Katha 23,73 70,96078431 3,923076923 medium high medium

3855 N F senior 30.11.1968 wild 5 Kawlin 16,13 58,88654902 0,735294118 low low low

3954 N F senior 11.6.1969 captive West Katha 14,84 60,664 0,923076923 medium medium low

4024 N F senior 21.3.1969 captive Kawlin 34,68 45,25148515 1,151515152 low medium high

4129 N F senior 26.11.1969 captive Kawlin 73,57623762 medium

4193 N F adult 30.11.1970 wild 5 Kawlin 85,42100302 high

4196 N F senior 1.1.1966 wild 10 Kawlin 26,66 60,62698462 0,512820513 medium low medium

4365 N F adult 14.10.1973 captive Kawlin 38,55 79,592 0,709677419 high low high

4463 N F senior 30.11.1967 wild 12 West Katha 19,72 67,25098039 1,321428571 medium high low

4616 N F adult 29.12.1976 captive West Katha 58,66 2,117647059 low high

4655 N F adult 11.2.1976 captive Kawlin 23,82 65,95535848 1,36 medium high medium

4717 N F adult 12.5.1977 captive Kawlin 52,61 67,04145088 0,666666667 medium low high

4767 N F adult 7.6.1978 captive Kawlin 29,07 82,5063202 high medium

4811 N F adult 2.1.1978 captive Kawlin 42,87 45,07658824 1,142857143 low medium high

5048 N F senior 30.11.1958 wild 25 Kawlin

5095 N F adult 17.6.1996 captive Kawlin 58,15203307 0,756756757 low low

5098 N F senior 30.11.1958 wild 25 Kawlin 10,05 73,89932673 high low

5102 N F adult 30.11.1978 wild 7 Kawlin 79,95298 high

5733 N F adult 17.8.1987 captive Kawlin 35,62 53,81356939 0,8125 low low high

5844 N F adult 5.3.1988 captive Kawlin 29,75 90,86778218 1,178571429 high medium medium

5955 N F adult 3.10.1989 captive Kawlin 39,16 45,71763952 0,820512821 low low high

5962 N F adult 24.8.1989 captive Kawlin 34,48 79,93333333 1,363636364 high high high

6020 N F adult 15.7.1989 captive West Katha 63,68 medium

6077 N F adult 23.5.1989 captive Kawlin 25,09 47,68 0,666666667 low low medium

6080 N F adult 3.7.1990 captive Kawlin 22,16 42,076 1,03125 low medium medium

6081 N F adult 10.9.1990 captive Kawlin 34,53861386 1,56 low high

6084 N F adult 24.7.1990 captive Kawlin 64,54174757 0,727272727 medium low

6085 N F adult 16.8.1990 captive Kawlin 73,28543689 medium

6092 N F adult 9.3.1991 captive Kawlin 31,09 77,72771493 1,185185185 high medium medium

6100 N F adult 10.10.1991 captive Kawlin 33,99 41,96470588 1,259259259 low medium medium

6101 N F adult 24.9.1990 captive Kawlin 23,17 65,05934936 medium medium

6196 N F adult 24.7.1992 captive 57,01 60,91141026 1,258064516 medium medium high

6260 N F adult 14.9.1992 captive West Katha 16,8 83,42135922 high low

6263 N F adult 1.4.1993 captive Kawlin 21,37 68,53976848 1,133333333 medium medium low

6264 N F adult 4.6.1993 captive Kawlin 70,36625397 1,028571429 medium medium

6383 N F adult 8.9.1993 captive Kawlin 19,28 56,67529703 0,75 low low low

6386 N F adult 15.12.1994 captive Kawlin 80,36 39,17607843 2,181818182 low high high

6388 N F adult 1.1.1995 captive Kawlin 47,78 42,21923077 1,533333333 low high high

6464 N F adult 11.3.1997 captive Kawlin 40,56 52,56698039 0,75 low low high

6465 N F adult 2.4.1997 captive Kawlin 21,8 56,18446602 1,428571429 low high low

6520 N F adult 13.3.1998 captive Kawlin 69,52196117 0,892857143 medium medium

6521 N F adult 1.4.1998 captive Kawlin 13,21 41,76923077 1,947368421 low high low

6525 N F adult 26.6.1998 captive Kawlin 41,66 42,52952381 1,777777778 low high high

6617 N F juvenile 1.6.2000 captive Kawlin 72,2 49,62480769 0,681818182 low low high

6620 N F juvenile 11.11.2000 captive Kawlin 20,73 52,35839643 0,951219512 low medium low

6800 N F juvenile 21.2.2003 captive West Katha 41,29 43,5049505 low high

6818 N F juvenile 10.10.2002 captive Kawlin 2,647058824 high

6852 N F juvenile 6.5.2004 captive West Katha 32,85 84,52038835 0,316666667 high low medium

6853 N F juvenile 24.10.2004 captive West Katha 11,01 62,96470588 0,925925926 medium medium low

6893 N F juvenile 24.10.2004 captive West Katha

6968 N F juvenile 31.12.2006 captive West Katha 4,424 62,42 0,84375 medium medium low

6989 N F adult 30.11.1992 wild West Katha

7028 N F juvenile 10.7.2006 captive Kawlin 15,67 65,50637624 1,172413793 medium medium low

7271 N F calf 27.7.2010 captive West Katha 63,9 46,912 0,47826087 low low high

B4705 Y F calf 22.2.2015 captive West Katha

B4932 Y F calf 1.1.2015 captive West Katha 86,24 high

B5133 Y F calf 26.2.2015 captive West Katha

B5852 Y F calf 3.1.2015 captive West Katha

B5948 Y F calf 18.1.2015 captive West Katha

B6800 Y F calf 1.9.2018 captive West Katha 68,42718447 medium

2888 N M senior 1.1.1963 wild 6 Kawlin 67,57 77,28565327 0,918918919 high medium high

3297 N M senior 30.11.1960 wild 10 West Katha 30,93 78,28420463 0,970588235 high medium medium

3357 N M senior 30.11.1964 wild 7 Kawlin 32,82 86,08067588 1,04 high medium medium

3486 N M senior 30.11.1956 wild 15 West Katha 26,02 82,63366337 0,935483871 high medium medium

3805 N M senior 30.11.1961 wild 11 West Katha 27,91 99,24660194 0,702702703 high low medium

3884 N M senior 30.11.1965 wild 8 Kawlin 24,55 101,645098 2,789473684 high high medium

4017 N M senior 30.11.1967 wild 7 42,13 98,57425743 2,08 high high high

4023 N M senior 30.11.1968 wild 6 West Katha 50,69 46,18431373 1,35483871 low high high

4035 N M adult 30.11.1971 captive 10,92 83,02509804 1,066666667 high medium low

4254 N M adult 30.11.1970 wild 6 Kawlin 20,98 61,89654369 1,5 medium high low

4459 N M adult 22.4.1974 captive Kawlin 8,636 1,375 high low

4921 N M adult 1.1.1973 wild 10 West Katha 86,508 0,75 high low

5393 N M adult 16.2.1984 captive West Katha 22,02 1,275862069 medium low

6566 N M adult 6.5.1999 captive Kawlin

6804 N M juvenile 17.2.2004 captive West Katha 7,4 71,11538462 0,970588235 medium medium low

7070 N M juvenile 12.10.2007 captive West Katha 29,48 64,164 0,842105263 medium low medium

7104 N M juvenile 10.7.2008 captive West Katha 23,64 69,724 0,538461538 medium low medium

7192 N M juvenile 21.4.2009 captive West Katha 13 60,48627451 0,769230769 low low low

7314 N M calf 28.2.2012 captive Kawlin 13,41 29,73137255 1,310344828 low high low

7394 N M calf 22.9.2014 captive West Katha

7593 N M calf 1.7.2014 captive West Katha 0,272727273 low

B4463 Y M calf 3.10.2016 captive West Katha 103,5686275 high

B4517 Y M calf 28.6.2015 captive West Katha

B6020 Y M calf 1.1.2017 captive West Katha 101,48 high

B6627 Y M calf 1.3.2016 captive West Katha


	1. Introduction
	1.1 Gut microbes
	1.1.1 Composition of gut microbiome
	1.1.2 Function of gut microbiome
	1.1.3 Development of gut microbiome

	1.2  Stress and gut microbiome
	1.2.1 HPA axis
	1.2.2 Gut-brain axis
	1.2.3 Stress and the gut microbiome composition

	1.3  Objectives and hypothesis

	2. Material and methods
	2.1 Study population
	2.2 Material
	2.3 Gut microbiome
	2.3.1 DNA extraction
	2.3.2 PCR
	2.3.3 Index PCR
	2.3.4 DNA purification and pooling
	2.3.5 Bioinformatics

	2.4 Stress analyses
	2.4.1 Serum cortisol
	2.4.2 Fecal glucocorticoid metabolites
	2.4.3 Heterophil and lymphocyte ratio

	2.5 Statistical analysis
	2.5.1 Gut microbiome composition
	2.5.2 Stress and gut microbiome composition


	3. Results
	3.1 Gut microbiome composition
	3.1.1 Age and gut microbiome
	3.1.2 Camp and gut microbiome
	3.1.3 Alpha diversity and gut microbiome

	3.2 Stress and gut microbiome composition

	4. Discussion
	4.1 Gut microbiome composition
	4.1.1 Age and gut microbiome composition
	4.1.2 Camp and gut microbiome composition

	4.2 Stress and gut microbiome
	4.3 Strengths and limitations
	4.4 Conclusions

	5. Acknowledgements
	6. References
	The composition of gut microbiome
	Age and microbiome

	Camp and microbiome
	Statistical differences in the microbiome composition between camps

	Alpha diversity
	Alpha diversity
	Alpha diversity and stress groups
	Statistical analysis to support alpha diversity plots
	GLM

	Alpha diversity and stress measures (GLM)
	Alpha diversity and categorical variables
	Alpha diversity and continuous stress levels

	Phyla that differ by stress groups
	Differential Abundance Testing
	H:L ratio
	FGM
	SC


	Beta diversity
	Permanova
	Stress and beta diversity
	First categorical then continuous stress values



