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A B S T R A C T   

Employing customer information from one of the world’s largest airline companies, we develop a price elasticity 
model (PREM) using machine learning to identify customers likely to purchase an upgrade offer from economy to 
premium class and predict a customer’s acceptable price range. A simulation of 64.3 million flight bookings and 
14.1 million email offers over three years mirroring actual data indicates that PREM implementation results in 
approximately 1.12 million (7.94%) fewer non-relevant customer email messages, a predicted increase of 72,200 
(37.2%) offers accepted, and an estimated $72.2 million (37.2%) of increased revenue. Our results illustrate the 
potential of automated pricing information and targeting marketing messages for upselling acceptance. We also 
identified three customer segments: (1) Never Upgrades are those who never take the upgrade offer, (2) Upgrade 
Lovers are those who generally upgrade, and (3) Upgrade Lover Lookalikes have no historical record but fit the 
profile of those that tend to upgrade. We discuss the implications for airline companies and related travel and 
tourism industries.   

1. Introduction 

A crucial business technique for increasing revenue is upselling [1], 
which in the airline industry means enticing customers who already 
have tickets to purchase upgraded, premium tickets (e.g., economy to 
business). Upselling from a basic to a premium category is difficult 
because many customers tend to be price-sensitive [2,3]. Therefore, 
inherent in upselling is the price elasticity of demand (a.k.a. price 
sensitivity), involving the decision of what price points to recommend 
for upgraded premium tickets to maximize both the customers’ accep
tance rate and the revenue from dynamic marketing offers. Price elas
ticity of demand is a measure of the sensitivity of demand to a change in 
price [4–6]. Practically, this must often be achieved with sparse 
customer information and with datasets of high cardinality [7], which is 
true for the research reported here. 

In this research, in collaboration with one of the world’s largest 
airline companies, we developed the PRice Elasticity Model (PREM), a 
machine learning (ML) implementation for this challenging upselling 
context. PREM is aimed at (a) identifying customers who are most likely 

to accept offers for seat upgrading and (b) determining the optimal 
pricing for these offers. In a competitive, tight-margin vertical like the 
travel industry, rival companies are perpetually evaluating various 
strategies to alter customer behavior for long-term engagement [8], 
forecast demand, and revenue generation, which are common goals for 
businesses [9] across many industries. The company’s current upselling 
approaches are rule-based (i.e., number of prior upgrade offers, the time 
between offers sent, status level, etc.) and not data-driven, so the heu
ristics involved lack the needed customer context [10]. With PREM, the 
current research shows empirical evidence of more effective customer 
targeting while demonstrating sophisticated algorithmic techniques to 
enhance upselling performance by employing complex customer de
mographics and behavioral attributes [11]. 

Specifically, we use a rich dataset consisting of more than 64.3 M 
flight records, more than 14.1 M sent email offers, and about 194,000 
purchased upgrades during three years from 2017 to 2019. Using the 
methodology discussed below, PREM (i) identifies customers who will 
most likely decline an upgrade offer, (ii) identifies customers who will 
most likely accept an upgrade offer, and (iii) determines the optimal 
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price range for those customers who are most likely to accept an offer. 
This task is challenging as the acceptance or rejection of upgrade 

offers relies on complex interactions among the offer, the customer, the 
booking, and the destination (as shown in Fig. 1). 

Our premise was based on the constructs as shown in Fig. 1, taken 
from discussions with experts on revenue, customer experience, and e- 
commerce within the company, using semi-structured interviews [12]. 
These dimensions provide a theoretical and practical paradigm for 
PREM [13,14] concerning the customer and the product. Prior work has 
also shown the influence of these three constructs in the airline industry 
[15], with each construct having subattributes such as departure date 
and price of the booking. Prior work has also shown that whether the 
customer is, for example, a leisure or business traveler affects the offer 
acceptance [16] and also the destination [16,17]. Customer perceptions 
of the airline service have also been noted as important for continued 
bookings [17]. While booking is often the only primary preference 
known about the customer [18], it can also involve subattributes such as 
the quality of the airline website [19]. As discussed later, our premise of 
the constructs of customer, booking, and destination can be seen to 
affect the decision to accept or reject the upgrade offer. 

Consequently, implementing PREM requires overcoming several 
technical and practical challenges, making the research novel relative to 
ML work in the airline industry and the price elasticity of demand do
mains. First, as typical for large-scale customer datasets [20,21], airline 
booking data is sparse, meaning that most customers are not exposed to 
most of the available products [22]. Second, the data is imbalanced, 
which is typical for online marketing datasets in which a conversion is a 
rare event as the vast majority of customers exposed to an offer do not 
take the offer [23]. For example, in the current dataset, the airline sent 
about 14.1 M upgrade offers, of which less than 194 K (1.43%) were 
accepted, which is about 0.3% of all flight bookings. Third, as customary 
in large-scale customer datasets in various fields [24], the dataset 
required is highly noisy, with countries and airport codes specified in 
different notations and customer demographics often unreliable or 
missing. These factors make building and implementing a robust ML 
model a challenging task. However, our model directly addresses these 
challenges. Additionally, human factors and corporate realities affect 
revenue generation; as a consequence, the PREM model is designed with 
these multiple variate factors in mind. 

Several motivational factors for this research in the upselling domain 
are common to large-scale customer datasets in various industries. Thus, 
addressing these issues has wide-reaching implications beyond the 
context chosen for this study. The company data used for this study is 
standard for most major airline companies with customers, flights, 
dates, destinations, prices, and associated information. As such, it may 
be seen as representative of many major airline companies, of which 

there are hundreds, that offer international bookings. These factors 
include improving the currently employed heuristics approach to 
upselling, working with sparse and noisy data, and deriving business 
value from ML modeling. According to our understanding, these pre
dicaments are commonly encountered in many companies provisioning 
upselling offers to their existing customers, so our research broadly 
impacts multiple industry domains. The current research provides 
theoretical and practical implications for understanding upselling in the 
travel domain [25]. 

2. Literature review 

Pricing is an essential decision task of many industries [26], 
including the travel and tourism sector. Prior work on ticket purchasing 
[27,28] and related work [29] has identified appropriate timing as a key 
factor for purchasing airline tickets [30,31]. Typical approaches apply a 
regression model and a carefully chosen threshold to determine whether 
to buy based on estimated price increases. Prior work has used various 
features such as price information, related itineraries, summary statistics 
of price, and trip-related features such as holiday travel [32], and 
incorporating these aspects for customer engagement and trust is 
essential for information systems in the e-commerce sector [33]. While 
pricing is a complex issue, upselling [34] to premium products has 
further nuanced customer aspects involving service, quality, and price 
among product levels. 

Companies in the airline industry are motivated to identify optimal 
pricing, as doing so can increase profit, assist in acquiring new cus
tomers, and support retaining customers [35]. Airline companies are 
also interested in developing long-term engagement by providing offers 
that are cognitively, emotionally, behaviorally, and socially relevant 
[36] to their customers. Prior research has shown that companies focus 
on long-term value and not just the revenue generated by customers for 
each transaction [37]. Therefore, it is practical for businesses to target 
their upselling efforts [38] only to those who are most likely to accept 
the offer without diluting the premium service [39] with too many 
discounts. As such, dynamic pricing strategies are increasing in popu
larity [40]. Dynamic pricing aims to adjust ticket prices based on de
mand, customer price sensitivity, seasonality, and destination [41]. 
However, we are unaware of any existing work determining pricing for 
the personalized upgrade offers to a company’s targeted customers. 
Thus, upselling research is novel and impactful for the airline travel 
industry and related verticals such as hotels and cruises. 

An airline company is typically incentivized to categorize customers 
[42] based on price sensitivity [43]. In practice, airlines charge different 
prices for tickets, including efforts to upsell in economy class [44]. This 
is often done based on static criteria such as trip purpose (business vs. 

Fig. 1. Constructs of PREM. Acceptance may be seen as the interaction among the customer, booking, and destination when given an upgrade offer. These di
mensions were proffered by domain experts and provided a theoretical and practical paradigm for PREM. 
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leisure), passenger income estimate, type of traveler (tourist vs. regular), 
and so on. This price discrimination shows that the price varies after 
controlling for ticket price factors [45]. Furthermore, other work shows 
that customers making purchases on the weekend are likely to be more 
price sensitive [46]. Although there is prior work on customer segments 
[47], little research focuses on premium upselling efforts or repeating 
customer loyalty. 

Big data is increasingly being leveraged in travel research [48]. 
However, a particular issue with the upselling of bookings is that 
customer engagement data is sparse and often focuses on minute be
haviors [49,50]. Data sparsity is a common aspect of online customer 
data, and while data sparsity is challenging in itself, in an operational 
environment in the travel domain, there are additional challenges to 
finding solutions that are workable with customer-facing and real-time 
business systems. 

While there has been previous work on related topics [51,34,52], 
most of these studies utilize either a small amount of data or customer 
samples that are not representative of many companies in the travel 
industry. For example, the U.S. Department of Transportation provides 
ticket price information for a small subset (10%) of itineraries for U.S. 
domestic flights. Other works have obtained data through scraping 
websites [53]. However, these datasets tend to cover short periods, 
resulting in findings that may either not represent particular segments 
[54] or posit models unsuitable for larger datasets. To our knowledge, 
there has been limited analysis of upselling (including the pricing of 
offers) in the travel industry, and the lack of benchmark data is identi
fied as a critical issue in developing ML models for pricing [15]. 

In contrast to the limited datasets utilized in prior work in the 
upselling field [55], the research presented here was conducted in 
collaboration with one of the largest airlines in the world, with sub
stantial real-world relevance. We leverage a substantial amount of 
booking data covering millions of bookings over three years, so the 
dataset is extensive. However, this real-world data raised several prac
tical challenges prohibiting the use of prior work, which necessitated 
PREM’s novel architecture design. Consequently, this research offers an 
innovative contribution to the information and management domain. 

3. Research goals 

In this research, we pursue two research objectives (ROs): RO1: (a) 
Identify customers who are likely to accept a premium upgrade offer, and (b) 
identify customers who are likely to decline an upgrade offer; RO2: Identify 
the price elasticity of those customers likely to accept an upgrade offer. 

These ROs are critical to the airline business regarding revenue, 
customer retention, and segmentation. Because most customers book 
economy class and few book premium class, upselling can benefit airline 
companies and passengers if some of their customers are exposed to 
upgrade offers. Intuitively, there are three customer categories: (a) the 
frugal travelers who are likely to decline even the cheapest reasonable 
upgrade offer; (b) the bargain hunters who will almost always accept the 
upgrade offer as they do not have to pay the full price; (c) and the messy 
middle who would generally not book business class, but could be 
persuaded with an appealing offer. Based on our analysis of historical 
data, most travelers (as much as 82%) routinely decline the upgrade 
offers, and only a very tiny sliver (less than 1%) routinely accepts them. 

We model RO1 as a binary classification (i.e., yes/no) with a prob
ability for each outcome (e.g., Customer X will accept/decline an upgrade 
offer with a probability of 0.9). Despite their seeming similarity, RO1a and 
RO1b are not mirror images of each other. If we consider three hypo
thetical upgrade offers for a given booking, which features Low Offer for 
$500, Middle Offer for $1000, and a High Offer for $1500: RO1b esti
mates the probability of a customer declining the Low Offer, the 
cheapest upgrade offer. On the other hand, RO1a seeks to estimate the 
probability that a customer will accept the High Offer, the most 
expensive offer. These customers and customer decisions are of interest 
to the airline for different reasons. However, airlines often have business 

rules within their organization to avoid cannibalization, such as if a 
customer who has recently accepted an upgrade offer, then do not send 
another offer to the customer even if they are likely to accept it, with the 
rationale that this incentivizes the customer to pay full price in the 
future. 

By clearly segregating customers who routinely decline or accept an 
upgrade offer, we derive subsets of the population of interest. In order to 
then customize upgrade offers for these customers, it is essential to 
understand their price sensitivity, which is the goal of RO2. The outcome 
of RO2 will be a set of probabilities for different upselling revenue 
ranges (e.g., Customer X will accept an upgrade offer of $500 with a 
probability of 0.6, $1000 with a probability of 0.3, and $2000 with a 
probability of 0.2). The output of RO2 can be used to map an optimal 
strategy for targeted upgrade offers that maximize revenue for the 
customer. 

4. Methodology for model development 

4.1. Heuristic upselling process by the company 

Our collaboration airline company has more than 100 flights to more 
than 100 destinations on all major continents. The company serves more 
than 25 million customers annually, and our data covers a significant 
proportion of these customers over multiple years. The company uses a 
hub-and-spoke model (where flight routes are organized as a series of 
routes connected by a single hub airport), has international flights, 
competes on service and revenue, faces governance issues common in 
the industry, has a frequent flyer program, and is a member of a major 
airline alliance. As such, it represents a typical major airline company 
that offers bookings to multiple destinations to an international 
customer base. Fig. 2 illustrates the company’s rule-based process for 
upselling offers via email marketing channels. 

In Fig. 2, the customer books a ticket in economy class. The company 
determines if the customer is eligible to receive an upgrade offer, which 
is sent via an email message containing the booking details and the 
upgrade offer price. Upon receiving the offer, the customer either ac
cepts or ignores the proposed offer. Fig. 3 offers an example of an up
grade offer email message (branding removed). 

4.2. Airline booking and upgrade data 

The dataset used for PREM development consists of more than 64 
million trip booking records of customers traveling between 2017 and 
2019. The dataset contains information concerning the price of the 

Fig. 2. Overview of upselling offer ticket purchasing flow for the airline.  
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upgrade offer, which customers were sent upgrade offers, and which 
customers did or did not accept the update offers. This data is valuable 
for analyzing customer upselling and price elasticity dynamics in a 
major and competitive industry, and findings have implications for 
other travel-related domains. More than 14 million customers received 
upgrade offers (with a reach rate of 22%), and over 194,000 customers 
accepted the upgrade (with a conversion rate of 1.43%), as shown in 
Table 1. 

The PREM model relies on variables available to most airline com
panies, allowing the model to be reused. The original dataset consists of 
23 variables, including customer demographics and booking informa
tion detail. The key variable categories are as follows:  

• Booking information: cabin class, booking class (granular categories 
within cabin class), family fare, flight date, and booked date  

• Customer demographics: age, gender, and nationality  
• Trip information: airport code, city, and country of source and 

destination  
• Upgrade details: original and upgraded cabin, offer acceptance, and 

the offer price 

When working with this data, three significant challenges were 
imbalance, sparsity, and noise. Regarding data imbalance, as shown 
in Table 1, fewer than 194,000 (1.43%) of more than 14 M contacted 
customers accepted the upgrade offers. Concerning sparsity, there is 
a severe lack of travel information, even in this large dataset. For 
example, in the data, more than 90% of customers take fewer than 
three trips per year, which reduces the customer information needed 

for sophisticated targeting. Also, the same customer could behave 
differently to the same upgrade offer based on the destination and/or 
the booking (e.g., the travel month of the year, whether they are 
traveling with a companion or family, etc.). Finally, the data was 
noisy, with inconsistent codes and missing values for nearly all at
tributes. We conducted a limited data preprocessing involving a 
value standardization of codes representing the airports and coun
tries. Addressing these data noise issues is a key component of our 
work. 

4.3. PREM model development 

A common approach to addressing this topic of upselling would be to 
tackle this as a straightforward ML classification problem where, given a 
particular customer, the model predicts the likelihood that they will 
accept an upgrade offer. Then, upgrade offers could be sent to customers 
with the highest likelihood of accepting the offer. Our preliminary in
vestigations found that directly applying state-of-the-art ML techniques, 
such as supervised or semi-supervised learning, gives poor results. A key 
challenge is that a single-stage model must tackle various challenges, 
such as data sparsity, fragmentation, noise, and a severe imbalance 
between accepted and declined upgrade offers. As we show later in our 
experimental results section, this produces a lower degree of accuracy 
and would result in a significant revenue loss. 

A further consideration is that the airline company is more focused 
on impactful metrics such as revenue and customer retention [56,57] 
than on the traditional objectives of ML models, such as accuracy [58]. 
ML models often do not account for these business objectives [55]. For 
example, a model could obtain a very high conversion rate through very 
cheap upgrade offers, which is an excellent algorithmic performance but 
not a good revenue performance for the company. Relatedly, an ML 
model could be built whose output could be modified by airline em
ployees, but as addressed in previous work, algorithmic selection for 
various business goals is seen as a challenging undertaking [59]. 

These observations led us to design a staged pipeline architecture for 
PREM. Our proposed approach consists of five components. The first 
component consists of feature engineering, where we construct a wide 
variety of features based on three dimensions – the customer, the trip, 
and the upgrade offer. Our second component constructs feature 
embedding using denoising autoencoders [60]. We found that produc
tion data obtained by federating multiple sources is often quite noisy and 

Fig. 3. Example of an upgrade offer email sent to a passenger, with branding removed.  

Table 1 
Upselling dataset with bookings, upgrade offers sent, and accepted.  

Year Bookings Offers sent Offers 
accepted 

Reach 
rate 

Conversion 
rate 

2017 15.2 M 
(23.6%) 

2.5 M 
(17.7%) 

42 K 
(21.1%) 

16% 1.67% 

2018 30.9 M 
(48.1%) 

7.5 M 
(53.2%) 

99 K 
(510%) 

24% 1.32% 

2019 18.2 M 
(28.3%) 

4.1 M 
29.1%) 

53 K 
(27.3%) 

23% 1.29% 

All 64.3 M 
(100%) 

14.1 M 
(100%) 

194 K 
(100%) 

22% 1.43%  
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requires extensive reconciliation to obtain clean data. Data cleaning 
would be a recurring expense, as the airline data would not be stan
dardized. So, instead, our novel approach is resilient to various data 
errors, which we believe would be of interest to practitioners. Our third 
component is a cost-sensitive classifier based on our observation that 
misclassification cost is asymmetric. Missing a customer who would 
have upgraded is much more expensive than sending an upgrade offer to 
a customer who ignores it. Our proposed approach is based on Elkan’s 
cost-sensitive thresholding approach [61]. Once potential customers are 
obtained, the fourth component of a personalized upgrade offer model is 
used to understand their price sensitivity. The final component is the 
revenue maximizer, which selects appropriate customers and offers 
prices that are likely to appeal to them while maximizing the revenue for 
the airline. 

A key appeal of our proposed approach is that it is extensible and also 
permits extensive interventions by human decision makers [62] in the 
airline company, which in this context is the addition or removal of 
customers from the eligible list. Although our method does not require 
human intervention, our partners require multiple avenues for 
customizing PREM outputs. For example, the airline might want to 
add/remove some customers from the output of the third stage of PREM 
(the cost-sensitive classifier) in order to incentivize new customers or 
penalize repeated users of upgrade offers. Also, the airline might want to 
use an alternate segmentation instead of the one provided by the fourth 
component of PREM or add some business constraints in the integer 
program-based optimization formulation. This customization and the 
integration of business requirements are not possible in a single-stage 
model. We also note that the revenue maximizer combines ideas 
derived from decision theory (i.e., expected revenue) and optimization 
theory (i.e., linear assignment problem). As we empirically show in the 
experiments, the multistage approach provides better results than a 
single-stage end-to-end approach using multiobjective optimization 
with a constraints-based approach. The overall PREM process and 
components are presented in Fig. 4. 

As an overview of Fig. 4, the three most critical problems are noise, 
sparsity, and imbalance. We tackle each of these problems through two 
components – feature embeddings and cost-sensitive classification. 

First, we use denoising autoencoders for learning the embeddings. 
Specifically, we train the encoder by artificially injecting noise and 
penalizing the model if it does not produce an accurate embedding. This 
ensures that, during testing time, even if the data is noisy (such as with 
missing or incorrect values), the embeddings will be more robust. 

Second, we again use embeddings for handling sparsity. Recall from 
Section 5.1 that we used 100 features. However, when we represent 
them in a format that can be fed to an ML model, each trip becomes 
(approximately) 2000 dimensional vector. To see why, consider two 
essential features – source and destination. If the airline flies to 250 
destinations, we need a 250+250 one-hot encoded vector to represent 
these two factors. Similarly, we bucketed age into eight categories. So, 
age is represented as an eight-dimensional vector and so on. By per
forming an embedding, we reduced the dimensionality from ~2000 to 
256 and ensured that similar trips were closer to each other in the 
embedding space. 

We did evaluate other encoding approaches, including dimension
ality reduction techniques such as PCA. As discussed below in Table 2 
(Results of feature embedding analysis), our embedding algorithm out
performs other approaches. While we did not invent this embedding 
algorithm, we are the first, to our knowledge, to apply it to airline data 
to tackle noise and sparsity issues. This applied study draws from 
computer science to solve a problem with real-world impact. 

Finally, we used the cost-sensitive classification approach for 
handling class imbalance. Given that similar trips are closer to each 
other in the embedding space, we observed that using traditional cost- 
sensitive classification is sufficient for handling class imbalance. In 

Fig. 4. Price Elasticity Model (PREM) visualization, from data input, to offer acceptance prediction, to output, showing the major steps and processes performed at 
each stage. 

Table 2 
Results of feature embedding analysis.  

Feature embedding F1 score Revenue capture 

Denoising AutoEncoder 83.9 100% 
Traditional AutoEncoder 77.2 93% 
One-Hot Encoding 44.3 62% 
Label Encoding 47.8 56% 
PCA 53.8 66%  
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Table 4 (Results of classifier/feature analysis), we also see that this 
approach outperforms other major approaches for handling class 
imbalance. Specifically, two approaches (SMOTE and GAN) work by 
generating synthetic data. 

5. PREM components 

5.1. First component – feature engineering 

We performed feature engineering (see Fig. 4) to identify more than 
100 derived features. These features are common to most major airline 
companies or available via open application programming interfaces 
(APIs). Here, we highlight some of the more useful derived features.  

• Booking-based features: Number of stops, the distance between the 
source-destination, total time taken, the number of passengers in the 
booking, whether traveling with a family, the number of children 
traveling in the booking, the number of days between booking and 
flight dates, and whether the flight is to/from the home country of 
the passenger.  

• Competitor-based features: Number of flights between source and 
destination on the same day from the same airline company and its 
competitors.  

• Discretization-based features: We partitioned customer ages into U.S. 
census groupings (i.e., 13 and younger, 13–17, 18–24, 25–34, 35–44, 
45–54, 55–64 years, and 65 years and older). We also unified the 
cabin class values from a single letter code to the equivalent cabin 
class.  

• Flight date–based features: weekday or weekend flight, holiday flight 
based on whether the date is adjacent to a holiday according to the 
nationality of the customer, or an overnight flight or not.  

• History-based features: number of trips and upgrades from prior trips.  
• Segment-based features: proportion of the segment that upgraded. For 

example, if the customer is a male from the USA aged 40–50, there is 
an average acceptance rate for passengers who are (a) male, (b) aged 
40–50, and (c) from the U.S., overall and for each attribute. 

• Statistical price metrics-based features: average price of the same itin
erary during different periods (one month, one week, and one day 
before the flight date), the average price of competitors, and 
maximum and minimum price. These features were computed using 
the Rakuten SkyScanner API.1  

• Trip Purpose-based features: inferred personal or business trip: For 
determining the purpose of the trip, we used a heuristic provided to 
us by the airline. One of the features of the trip is the POS (point of 
sale). Often, leisure-based trips are booked by individuals or through 
travel agencies. On the other hand, business trips are booked by the 
travel departments within the organization. Often, these de
partments use special tokens to obtain favorable enterprise rates. 
Hence, by using this heuristic, we could plausibly infer the purpose of 
the trip. Of course, this heuristic is not foolproof but offers a 
reasonable assumption. 

These features cover different data types (i.e., categorical, ordinal, 
numerical), which poses an additional challenge when passing the data 
as input to an ML classifier. 

5.2. Second component – feature embedding using denoising autoencoders 

Popular machine classifiers accept the trip input as a real-valued 
vector. Common approaches for converting a vector of mixed data 
types to a real-valued vector, such as one-hot encoding and label 
encoding, were not effective with our dataset. One-hot encoding 
dramatically increases the dimensionality of the data [63], thus 

exacerbating the data sparsity and scarcity problems. Specifically, when 
representing the trip information using one-hot encoding, each trip be
comes (approximately) a 2000-dimensional vector. To see why it is 
important to consider the two key features of source and destination. If 
the airline flies to 250 destinations, then we need a 250+250=500 
one-hot encoded vector to represent just these two factors. Additionally, 
we bucketed age into eight categories. So, age is represented as an 
eight-dimensional vector and so on. Label encoding induces the model to 
artificially learn an order among the values of a categorical attribute, 
which is inappropriate for our scenario. We evaluated other methods, 
such as a dimensionality reduction of the one-hot encoded data using 
PCA. The Results section of this paper shows that such approaches are 
sensitive to categorical attributes with large domain cardinality. 

PREM uses an alternative approach based on feature embedding (see 
Fig. 4). Given a mixed data type vector, we output a corresponding 
embedding as compact, low-dimensional, dense, and real-valued rep
resentations of the original tabular data. PREM converts over 100 fea
tures (which required ~2000 dimensions in one-hot encoding) into a 
256-dimensional embedding vector that can be fed into any machine 
classifier. Embeddings also have an additional desirable property, where 
if two bookings are similar in the raw tabular format, the distance be
tween corresponding real-valued embeddings will be small. The Results 
section shows that this property improves the classifier’s generalization 
capability. 

PREM uses denoising autoencoders to obtain the embedding-based 
representations. Autoencoders [64] are used for learning effective 
encoding for data in a purely unsupervised manner. One can think of 
autoencoders as a form of dimensionality reduction. Given an input 
vector x, the autoencoder learns an intermediate representation that 
could be used to reconstruct x. Autoencoders consists of two compo
nents—an encoder and a decoder. The encoder converts the input vector 
x into a latent representation h(x). The decoder takes the latent repre
sentation and reconstructs the original vector. The dimensionality of the 
latent representation h(x) is smaller than that of x, so any essential in
formation needed to reconstruct x from h(x) is learned. One could train 
an autoencoder that takes raw tabular input (that could require ~2000 
dimensions), converts it to an embedding of 256 dimensions, and re
constructs it (approximately) to the original vector. Accordingly, we see 
that one could use the intermediate representation h(x) as input to ML 
classifiers instead of x. 

We use a variant of autoencoders called denoising autoencoders [65, 
66]. Denoising autoencoders take as input a corrupted version of the 
input vector x denoted as x’. It encodes it to an intermediate represen
tation in order to decode it (approximately) as the uncorrupted version 
of x. The key insight is that if the decoder can reconstruct an approxi
mately correct version of x from the latent representation h(x’) of the 
corrupted input, then it has learned the “essential” information about x 
and is not fooled by the corruption. The rationale for using a denoising 
autoencoder is that it is more robust to the errors inherent in real-world 
data, such as data that is often obtained by integrating multiple systems 
of customer analytics, flights, revenue management, and so on. 

Hence, it is helpful to learn a robust embedding method for dealing 
with such noise. Accordingly, we use swap noise for categorical data. For 
example, suppose that Attribute A has three possible values: X, Y, and Z. 
Consider a tuple t that has Y as the value for A. We will replace its value 
under the swap noise model with another value (such as X or Z). A noise 
swap parameter controls the number of categorical cells that are cor
rupted. Empirically, we found that 15% seems to perform well in prac
tice. Hence, we randomly pick 15% of the training dataset’s categorical 
attributes and replace them with some other attribute domain values for 
implementation. Naturally, this process was not conducted on the test 
set to avoid information leakage. Furthermore, embedding learning is an 
unsupervised method that does not require any labeled data. Hence, we 
use all the bookings in our dataset to learn an effective embedding 
method. Once the denoising autoencoder has been trained, it can be 
used to obtain the embeddings for arbitrary bookings. 1 https://english.api.rakuten.net/skyscanner/api/skyscanner-flight-search 
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Our approach might initially seem to be counter intuitive as we add 
more noise during training. As we show later in the experiments, this 
approach results in a robust classifier for various types of errors and 
recovers from them. This approach aligns with the emerging paradigm 
of robust learning that seeks to build models that do not assume that the 
input is clean. Furthermore, the denoising autoencoder has been widely 
used in tasks such as inpainting that can repair damaged photographs. 
PREM follows in those footsteps and develops similar techniques for 
tabular datasets. We strongly believe that approaches similar to ours and 
robust to errors will become increasingly widely used. To the best of our 
knowledge, in the context of the presented paper, we are the first to 
apply it to airline data to tackle noise and sparsity issues. 

5.3. Third component – cost-sensitive classification 

We then trained an ML model to predict whether the customer would 
accept an offer or not. A challenge that needs to be tackled is the 
asymmetry in cost, wherein this model should conservatively perform its 
classification. In other words, predicting a customer who could have 
upgraded as one who would not upgrade must be penalized more than 
sending an offer to a customer with a low probability of upgrading. We 
achieved this penalty through cost-sensitive classification [61] (see 
Fig. 4 above). 

A key notion for the effective implementation of PREM is identifying 
and filtering out customers who are unlikely to upgrade. By eliminating 
these customers upfront, the later PREM stages can focus on more 
promising customer candidates using the model components described 
in the following sections. This approach might again seem counterin
tuitive (i.e., identifying customers to eliminate rather than to keep). 
However, this approach is an integral part of the success of PREM. In 
practice, customers who rarely upgraded vastly outnumber those who 
nearly always upgraded, which is only about ~0.3% of customers in the 
dataset. Identifying these customers can be done more effectively using 
ML than identifying customers with a high probability of accepting an 
offer. 

We computed the cost of prediction for each booking in the training 
data using a cost function heuristic. Note that there are four possible 
cases for upselling prediction accuracy: True positive (T.P.), True 
negative (T.N.), False positive (F.P.), and False negative (F.N.). Consider 
a customer who had an upgrade with an offer of 1000 USD. If the model 
correctly predicted this, the action is provided with a 1000 (T.P.) 
reward, but if it does not, it is penalized by 1000 (F.N.). Alternatively, 
suppose that the customer did not upgrade. Then, correctly predicting 
the actions gets a reward of 1 (T.N.), whereas incorrectly predicting it 
gets a 50 (F.P.) penalty. This penalty is needed to prevent the model 
from predicting everyone as possibly upgrading, and the penalty value 
trades off the cost of sending a spurious email and can be varied based on 
an organization’s preferences. Assigning different penalties for 
misclassification costs could produce different classifiers. By default, our 
misclassification cost for a false negative is $1000. We computed the 
upgrade premium as the difference between the upgrade offer and the 
economy price for all successful upgrades. For example, if the economy 
price was $500 while the upgrade offer was $1500, the premium is 
$1000. We analyzed the historical data, finding that the median of a 
successful upgrade was $1089, which we rounded to $1000 for ease of 
communication with stakeholders. 

A three-layer-deep learning (DL) model provided the highest accu
racy. The classifier outputs a value between 0 and 1, with higher values 
indicating a higher likelihood of accepting the offer. By default, we set 
the cutoff to 0.5, so that all customers above this threshold are passed on 
to the next stage. We also provide this list to the airline company’s 
human decision makers so that they can apply other thresholds. For 
example, the airline could have a policy that a customer could not be 
offered multiple upgrades within a given period. 

Notice that we use a threshold of 0.5 to filter out customers who are 
unlikely to upgrade. This threshold is appropriate as we use a cost- 

sensitive variant calibrated based on different costs for false positives 
and negatives. This recalibration ensures that 0.5 of a cost-sensitive 
classifier is equivalent to some arbitrary threshold domain experts 
must manually identify for the traditional variant. Such a threshold also 
ensures that we avoid accidentally eliminating customers who could 
have potentially upgraded. Additionally, the output of this stage could 
be postprocessed by humans to achieve higher reliability. 

5.4. Fourth component – personalized upgrade offer 

From the classifier, we are given a list of candidate customers who 
could accept an upgrade offer, and we know how to personalize the 
upgrade offer within the price buckets that the customers will accept. 
The personalized upgrade component predicts the customer’s likelihood 
of upgrading for each of these buckets (i.e., convert). We achieve this by 
hashing the booking through binary autoencoders (see Fig. 4). 

There are two challenges in estimating the conversion likelihood: (a) 
multiple possible labels for customers and (b) a lack of information 
about individual customers. For the first issue, superficially, estimating 
the likelihood might seem to be a multiclass classification problem 
where the goal is to predict a single label for the input tuple among K 
classes. However, it is possible that the same customer would have a 
nonzero likelihood for different buckets in our case. Consider a customer 
who is potentially offered three upgrade offers, which are a Low Offer at 
$251–$500, a Middle Offer at $501–$1000, and a High Offer at $1001– 
$1500. If the customer is willing to take any offer of less than $1000, this 
individual will accept Low Offer and Middle Offer. Thus, our personal
ized model gives a score of Low Offer: 1.0, Middle Offer: 1.0, and High 
Offer: 0.0. We can see that the scores need not add up to 1.0. The rev
enue maximizer takes this information and sends the Middle Offer to 
Customer A. 

The second issue is a lack of information about individual customers 
means that most customers (more than 90%) took less than three trips 
per year and less than ten times over the three years. The fraction of 
times they accepted an upgrade offer was even smaller than the number 
of trips. Therefore, one cannot predict that any given customer would 
accept the offer as the data is insufficient for this granular analysis. 

A way out of this conundrum is to split the customers into a set of 
segments in order to measure the likelihood that a customer would 
accept an offer. For example, a simplistic segmentation could be based 
on gender. We could group all the bookings based on gender and 
compute the proportion of times that customers from each bucket 
upgraded when offered one of the five upgrade offers. Our evaluation 
found that demographic-based segmentation is promising but not 
optimal, as these approaches do not leverage many factors drawn from 
the booking-related features. Of course, one could perform a more 
granular analysis using additional demographic attributes such as age 
group, nationality, source, destination, etc. However, in our initial trials, 
naïvely including such attributes sparsified the segmentation and 
reduced the accuracy. This suggests a trade-off between the granularity 
of the segment and the number of customers that fall into each of these 
buckets. Notably, increasing the granularity decreases the number of 
customers (especially for rare segments) and vice versa. Our experi
ments evaluate different segmentation techniques and show their effi
cacy, which we discuss in the Results section. 

Intuitively, a binary encoder takes a tabular data input x and con
verts it into a latent representation h(x). At this stage, we ensure that the 
vector h(x) is binary. For example, if we set the size of the latent 
dimension to two, then each tuple is represented as a two-dimensional 
binary vector with a value of 00, 01, 10, or 11. We can see that the bi
nary encoding of the tabular data plays a role in customer segmentation. 
We found that this approach is superior to naïve customer 
demographics-based segmentation as it uses more than 100 features for 
identifying the binary encoding. Hence, if two customers are very 
similar, they would likely have the same binary encoding. Our experi
ments set the latent dimension to eight, splitting the customers into 256 
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data-driven segments. Given a set of customers, we can partition each 
into one of 256 distinct buckets using the binary autoencoder. Once the 
segmentation is done, we can compute the likelihood of arbitrary up
grade offer buckets for customers using binary encoding. Then, we can 
estimate the fraction of customers who will upgrade, given an upgrade 
price offer. 

We use three different binary autoencoders with different initiali
zations that result in three different binary encodings in practice. 
Therefore, we compute the likelihood for each of the three encodings 
and compute the average. For example, the first autoencoder assigns the 
same binary encoding for Customer A and Customers B, C, and D. For the 
second autoencoder, Customer A has the same encoding as, say, Cus
tomers C, X, and Y. For the third autoencoder, let the other Customers be 
B, X, and Z. Let the likelihood of customers accepting the offer be 0.50, 
0.25, and 0.25. Then, the average likelihood for Customer A to accept 
the offer is 0.33. 

To do this, we must define a set of mutually exclusive upgrade offer 
buckets. Suppose the economy class ticket is $500, and the potential 
upgrade offer buckets are $501–$1000, $1001–$1500, and so on. A key 
preprocessing step for PREM is to normalize the buckets based on the 
economy class ticket price. Specifically, we compute the ratio of a 
bucket’s lower and upper bounds to the economy class ticket. Hence, the 
normalized upgrade offer bucket could be (($501/$500)– ($1000– 
$500)), (($1001/$500) – ($1500 – $500)), and so on. The normalized 
prices allow us to use the same binary autoencoders for different flights, 
where the price of an economy class ticket and upgrade offers could be 
very different. In practice, we computed the ratio using an equi-depth 
histogram [67] of overall accepted-offer prices. In other words, for 
each of the 194 K offers that were upgraded, we computed the ratio of 
the upgraded price to the economy class price. We then partitioned these 
values into five distinct bucket ranges so that the number of accepted 
offers in each bucket is approximately equal. Increasing the bucket sizes 
results in a more granular analysis and is orthogonal to the algorithm 
design. While the airline could set the number of buckets to any number, 
we found that the value of five provided the highest accuracy for the 
model. 

5.5. Fifth component – revenue-maximizer 

This component of PREM sends upgrade offers to customers so that 
the expected revenue is maximized (see Fig. 4). Suppose that there are N 
candidate customers. The personalized upgrade-offer model produces 
the likelihood of each of these N customers accepting a set of K upgrade 
offers (such as $501–$1000, $1001–$1500, etc.). Suppose there are M 
available business class seats; hence, the airline wants to send out the 
email to C × M for some constant C. If there are five business class 
tickets, the airline may want to send out an email to 50 customers at 
most. These 50 customers need to be chosen in a way that maximizes the 
expected revenue. 

To do this, PREM computes the expected revenue for each customer 
as the product of the likelihood and the median value of the range. For 
example, if the customer accepts [$501–$1000], with a likelihood of 
0.9, then the expected revenue of $750 × 0.9 = $675. Of course, the 
airline company can optionally select a scalar upgrade offer within each 
of these buckets. Regardless, if there are N customers and K upgrade 
offer buckets, this results in N × K different assignments. We must 
choose a subset of C × M customers to send emails to. Another constraint 
is that each customer can be sent only one upgrade email. Otherwise, the 
customer will always use the cheapest offer to upgrade. We can see that 
this corresponds to a classic assignment problem [68] in which we need 
to assign customers to each of the C × M slots, with the additional caveat 
that each customer can be chosen only once. We formulate this as an 
integer linear programming (ILP) problem in which the objective 

function is to maximize the cumulative expected revenue for each of the 
selected C × M customers. We solve this formulation using the GLPK 
library.2 The output is a set of C × M customers and their corresponding 
upgrade offers. 

6. Results of PREM evaluation 

We use two metrics to evaluate the PREM experimental results, the 
F1 score and Revenue Capture. We use these measures for individual 
component ablation analysis and then for overall model performance. 
The F1 score is the harmonic mean of precision and recall. Precision refers 
to the proportion of customers who upgraded compared to those whom 
the model identified as potential upgraders. We use a strict definition of 
a match where the customer and upgrade offer range must match. Recall 
measures the proportion of customers who upgraded and were identified 
by our model. The F1 score provides holistic information about both of 
these measures. 

As the second parameter used for evaluation, Revenue Capture mea
sures the ratio of the revenue obtained by the airline’s current heuristic 
model to PREM. This is an appropriate metric for our evaluation that 
was constrained to be conducted on a historical dataset. Hence, our 
primary goal was to show that PREM would not result in the loss of any 
income. A ratio of 100% means that PREM would have obtained at least 
the same revenue as the current approach and potentially much more 
due to better targeting. We evaluate PREM’s architectural components 
through an ablation analysis, showing that these components are critical 
for enhanced performance results. 

6.1. Ablation analysis 

6.1.1. Quality of feature embeddings 
We evaluate the quality of the embeddings produced by denoising 

autoencoders. We benchmark with alternative approaches for obtaining 
the embeddings of traditional autoencoders that do not apply the 
denoising of swap noise and one-hot and label encoding, as shown in 
Table 2. 

The results presented in Table 2 indicate that denoising autoencoders 
provide the best results. This is because this approach increases the 
robustness of the learned embeddings when compared to traditional 
embeddings. The swap noise increases the accuracy of the model by as 
much as 7%. The compactness of the embeddings (of both denoising and 
traditional autoencoders) is a key driver of performance. This can be 
seen by comparing the autoencoder output to traditional feature 
encodings, such as one-hot and label encoding, that exhibit a steep drop. 
The one-hot encoding suffers from an underfitting problem due to the 
large feature size. On the other hand, label encoding gives poor results 
because the values from the domain of categorical attributes do not have 
any inherent order. We also evaluated the use of Principal Component 
Analysis (PCA) for representing the mixed data in a compact vector to 
PREM’s denoising autoencoder, as PCA represents a standard method 
for converting high-dimensional data to a more compact, low- 
dimensional representation. From Table 2, we can observe that the 
quality of the denoising autoencoder embeddings is superior to this 
approach, and the most likely reason is that we use a nonlinear model for 
learning the embeddings, whereas PCA is a linear model. 

6.1.2. Impact of embedding size 
A key hyperparameter is embedding in size, which determines the 

vector outputted size by the autoencoder, representing the trip infor
mation as a fixed-length vector. We evaluate its impact in the next 
experiment. When using the autoencoder, one could set the size of the 
latent representation to an arbitrary number. Traditionally, this size is 
often set as a power of two. Table 3 shows the results of PREM for 

2 https://www.gnu.org/software/glpk/ 
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different embedding sizes. We can see that an embedding size of 256 
represents a sweet spot. Reducing the size results in lesser accuracy and 
revenue capture, while increasing it could potentially result in over
fitting the model. 

6.1.3. Impact of the classifiers 
In the next experiment, we vary the classifier used for learning the 

offer acceptance model. The goal of this experiment is twofold. First, we 
wish to show that our learned embeddings are of high quality and give 
good results, regardless of the classifier. Second, we wish to show that 
the improved performance is (mostly) due to the embeddings. 

From Table 4, we can see that a DL model using embeddings provides 
the best results. However, one could also use other traditional classifiers, 
such as logistic regression, support vector machine, or random forest, 
and pay only a minor penalty in the F1 score and almost none in revenue 
capture. Using the original data without the embeddings shows a steep 
drop in the F1 score for both DL-based and non-DL-based methods. 

As shown in Table 4, we evaluated alternate approaches for handling 
imbalanced data [69], such as the Synthetic Minority Oversampling 
Technique (SMOTE), oversampling, and the use of generative models 
such as Generative Adversarial Networks (GANs). We used random 
forests as the downstream classifier. From Table 4, we can see that 
traditional approaches such as oversampling are outperformed by the 
GAN, where we generate synthetic data for the rare classes so that the 
training data is balanced. Our embedding-based approach outperforms 
each of these approaches. 

6.1.4. Personalized upgrade model 
The personalized upgrade model uses a binary autoencoder to 

segment customer bookings into K segments so that similar customers 
have similar embeddings. Once the segmentation is obtained, PREM 
estimates the response rate for each upgrade offer bucket. We consider 
two other segmentation approaches that also result in K segments. The 
first is based on K-Means that cluster all bookings into K distinct clusters, 
with K = 7. Our other baseline is a decision tree that tries to partition 
bookings using the Gini criterion. As shown in Table 5, our approach 
gives the best results. 

We ran K-Means for various K and chose the optimal one using the 
Elbow method. We observed that K = 7 provided the best results. Among 
the baselines, K-Means outperforms the decision tree-based approach. 
This is not surprising as K-Means computes the distance between two 
tuples based on all features, while its depth limits the decision tree. For 

example, if the decision tree has a depth of two, it uses, at most, two 
attributes (e.g., gender = M and nationality = USA). 

6.1.5. Revenue maximizer 
Next, we evaluate the revenue maximizer component. Recalling that 

we use an integer programming approach to select the best customers 
and the corresponding offers, a natural alternative is to use a greedy 
baseline that works as follows. First, the greedy algorithm computes 
each customer’s expected revenue for each offer. Then, the Revenue 
Maximizer picks the best among them. For example, if Customer A ac
cepts an offer of $500 with a 0.5 probability and $1000 with a 0.2 
probability, then the expected revenues are $250 and $200, respec
tively. So, the Revenue Maximizer identifies that the best offer for 
Customer A is $500, with expected revenue of $250. Suppose there is 
another customer, Customer B, whose expected revenue is $300, and the 
model needs to select one customer. Here, the greedy algorithm will pick 
Customer B. As shown in Table 6, the revenue maximization of PREM 
(ILP) outperforms the greedy algorithm baseline. 

6.1.6. PREM overall 
We propose a novel multistage approach based on feature develop

ment, the offer acceptance model, a personalized upgrade model, and a 
revenue maximizer. It is worth investigating if one needs such a multi
stage model in the first place. Specifically, two questions are of interest: 
(a) What would have happened if PREM used a single-stage classifier? and 
(b) What would have happened if PREM skipped the offer cost classification 
component or the revenue maximizer? The results presented in Table 7 
address these questions. 

As shown in Table 7, the proposed PREM approach containing 
separate and sequential stages provides the best results. If one squeezes 
all of these stages into a single stage (i.e., if one trains a single classifier 
that takes all the bookings of a flight as input and returns the list of users 
and upgrade offers as output), then that gives the worst result. Splitting 
tasks into the different stages of an ML system clearly improves the 
performance in this context. Instead of the classifier trying to handle 
multiple objectives, each classifier in the PREM approach is targeted and 
focused on a single task, resulting in superior overall performance. 

Table 7 also indicates that all three components contribute posi
tively. If one skips the revenue maximizer, then the accuracy drops 
marginally, but there is a steeper drop in revenue capture. Similarly, if 
one skips the offer classification and runs the upgrade offer determina
tion for every user on the flight, there is a steep drop in accuracy but a 
smaller drop in revenue capture. 

7. Discussion and implications 

7.1. Discussion 

For this research, we developed PREM as an ML information system 
for modeling upselling in an international airline company. The PREM 
model provides several advantages. It uses a multistage approach, 

Table 3 
Results of embedding size analysis. As shown, 256 embeddings perform the best.  

Embedding size F1 score Revenue capture 

256 83.9 100% 
512 81.8 100% 
128 79.1 92% 
64 70.2 77% 
32 68.2 73%  

Table 4 
Results of classifier/feature analysis. Deep learning/embeddings perform the 
best.  

Classifier/Feature F1 score Revenue capture 

DL / Embeddings 83.9 100% 
Logistic Regression / Embeddings 74.7 97% 
Support Vector Machines / Embeddings 78.3 98% 
Random Forest / Embeddings 79.4 98% 
Random Forest / Original data 56.3 73% 
DL / One-hot encoding of original data 44.3 62% 
Random Forest / SMOTE 53.4 46% 
Random Forest / Oversample 1:10 30.2 48% 
Random Forest / Oversample 1:100 42.3 59% 
Random Forest / GANs 56.4 62%  

Table 5 
Results of customer segmentation analysis.  

Customer segmentation F1 score Revenue capture 

Binary AutoEncoder 83.9 100% 
K-Means 64.9 79% 
Decision tree 53.6 73%  

Table 6 
Results of revenue maximization analysis using ILP.  

Revenue maximization F1 score Revenue capture 

ILP 83.9 100% 
Greedy 49.2 56%  

S. Thirumuruganathan et al.                                                                                                                                                                                                                  



Information & Management 60 (2023) 103759

10

employing a novel unsupervised embedding based on denoising 
autoencoders that are robust to various data errors. PREM also estimates 
the probability of a customer accepting many mutually exclusive up
grade offers. Estimating this probability is nontrivial and advantageous 
as it relies on customers’ demographics and booking behavior, sub
stantiating our initial premises. Furthermore, PREM uses an innovative 
binary autoencoder for reliably segmenting the customers in the pres
ence of errors. Finally, PREM uses an ILP formulation to determine the 
subset of customers to send an offer and maximize the revenue. 

A key design principle of PREM was to avoid relying on company- 
specific details of the airline’s behavior. Each PREM component is 
designed to be generic and applicable to any airline company. The 
constructed features are based on data present with every airline com
pany has or that can be obtained via publicly available APIs. PREM is 
also designed to be modular and extensible. Each component can be 
transparently upgraded with minimal impact on other components. 
Furthermore, the output of each component can be postprocessed (if 
necessary) by the airline employees to encode additional dynamic 
business requirements. 

Returning to our research objectives, for RO1 (Identify customers 
who are likely to accept/decline a premium upgrade offer) and RO2 
(Identify the price elasticity of those customers likely to accept an up
grade offer), the personalized selection of upgrade prices and marketing 
messages allows a much more granular way to target customers than 
simple rule-based approaches that a company often takes. Our experi
mental results show that PREM can successfully identify customers who 
are unlikely to accept upgrade offers, which is in itself a customer 
satisfaction enhancement [70], by not sending them unwanted emails. 
An analysis of historical data shows that PREM would have sent 
approximately a million fewer nonrelevant customer email messages, 
increased accepted offers, and possibly have significantly improved 
revenue. The results from PREM show promising outcomes for using ML 
to effectively leverage customer information [71] to increase company 
revenue by improving the offer-targeting process. We believe that this 
research stimulates a more rigorous understanding of customer upsell
ing behavior in the airline industry and other fields. 

Our analysis shows several nonobvious relationships among PREM 
factors that impact a customer’s upgrade behavior [72], which has im
plications in a wide range of airline industry-related domains and situ
ations, such as hotels or cruise bookings. The approach is suitable for 
upselling scenarios in any business domain that deals with multifaceted 
data such as customer attributes (i.e., different gender, age, and income 
levels) and destination attributes (i.e., different cities or countries). The 
complexity of this data can be handled with PREM while maintaining 
the business objective of maximizing revenue. Similar application do
mains can include, for example, hotels (e.g., businesses such as Hotels. 
com or Airbnb), experienced service providers, event ticket sellers (e.g., 
concerts or sports), and other service industries that provide tiered or 
dynamic pricing. The basic requirements would be (a) multifaceted data 
about customers and goods/services and (b) the need for upselling. 

The results showcased so far are based on historical data. However, 
we also conducted a simulation exercise to understand the potential of 
PREM. Our partner airline currently contacts around 22% of its cus
tomers, with a conversation rate of 1.4%. So, we are interested in two 
key metrics: (a) the approximate increase in accepted upgrade offers and 
(b) the revenue improvement in conversion rate by reducing the number 
of contacts to customers who would decline and identifying customers 

who would have upgraded but who had been missed by the heuristic 
currently used by the partner airline. One critical insight is that the 
denoising autoencoder used by PREM is also a generative model [73]. As 
an autoencoder learns to capture the structure of the data-generating 
density, one can generate samples from a trained model in an unbi
ased manner. The generated synthetic booking information from the 
autoencoder reflects real data. We generated 64.3 M synthetic trips 
commensurate with the statistics from Table 1. We used PREM to esti
mate the upgrade offers. The contacted customers probabilistic accepted 
or declined upgrade offer was examined in line with the behavior of 
their corresponding segmentation. As stated in Section 5.4, we used 
binary autoencoders to segment the customers and obtain the proba
bility of acceptance within each segment. Then, we assumed that our 
synthetic customer would have a similar acceptance probability. PREM 
implementation results in 1.12 M (7.94%) fewer nonrelevant email 
messages being sent to customers who most likely would not upgrade. 
PREM also produces a 72.2 K (37.2%) increase in the number of 
upgrade offers accepted by sending them to customers who would 
have most likely accepted but did not receive the offer. Finally, given the 
median upgrade offer of $1000, we can estimate an increase in reve
nue of $72.2 M (37.2%) for the company. 

7.2. Takeaways 

7.2.1. Identification of upselling customer groupings 
In this research, we identified three generic behavioral segments 

concerning customers’ upgrade acceptance. These segments are as 
follows:  

a) Never Upgrades: Customers usually never take an upgrade offer, 
and therefore the company should never send them an upgrade offer 
as it is nonrelevant for the customer in this segment. Approximately 
84% of customers receiving offers are in this segment. A naïve 
approach to upgrade offers could send indiscriminate emails being 
sent to this group. PREM avoids such emails, resulting in a reduction 
of 1.12 million emails (38%) annually that can be used for other 
offers. The impact on revenue is unknown as it depends on other 
offers sent to these customers and the return on those offers. One 
would expect an increase in customer experience with fewer irrele
vant emails. 

b) Upgrade Lovers: Customers who usually never book premium un
less offered an upgrade and almost always take an upgrade. Thus, the 
company should always target this segment as it is revenue 
enhancing and the upgrade offers are relevant to this segment. 
Approximately 1.3 percent of customers (receiving offers or not) are 
in this segment.  

c) Upgrade Lovers Lookalikes: New customers without an upgrade 
offer history but who fit the profile of those customers who usually 
accept upgrade offers. These customers should most likely be iden
tified upon booking, and a decision made whether or not to send 
them an upgrade offer. The impact on revenue is unknown as it de
pends on the number of customers in these segments and the number 
of offers sent. However, the majority of new customers will be Never 
Upgrades Lookalikes. 

PREM can use these customer segments in the following ways. Using 
our feature vector, our classification stage component identifies and 
filters the Never Upgrades customers. Since they greatly outnumber the 
Upgrade Lovers customers, identifying them is often a comparatively 
easier task. However, we designed a conservative cost-sensitive 
approach that seeks not to miss any potential Upgrade Lovers cus
tomers. Missing out on a potential customer is economically much worse 
than sending an upgrade offer to a customer who is unlikely to accept it. 
The output of the classification stage is a superset of primarily Upgrade 
Lovers customers. PREM uses the upgrade offer component to estimate 
the likelihood for the Upgrade Lover customers to respond to various 

Table 7 
Results of ablation analysis.  

PREM variant F1 score Revenue capture 

PREM (All components) 83.9 100% 
PREM (1 component) 42.1 65% 
Only Classification and Upgrade 80.3 74% 
Only Upgrade and Revenue Maximizer 62.3 82%  
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upgrade offers and uses the revenue maximizer to choose the best up
grade offer for revenue-boosting. A key insight is that we use an ILP- 
based approach for identifying the best Upgrade Lovers customers. 
Finally, the Lookalikes can be considered in the same way that the cold- 
start problem is recognized in recommender systems. By creating com
bined demographic-behavioral segmenting through denoising and bi
nary autoencoders, PREM can match these customers to one of the 
existing segments in order to make meaningful upgrade offers. 

7.2.2. Developing robust ml models 
A key challenge with real-world data is that it is often noisy and 

replete with errors. A common approach would be to expend a consid
erable amount of time on data cleaning. However, we found that the 
sources of data error are very complex, resulting in a combating rear- 
guard action. In many cases, many data errors were not fixable, such 
as errors in customer demographics. However, rather than expend futile 
effort on data cleaning, we sought to build a robust ML model for these 
errors. Specifically, we relied on three insights. First, most airline 
companies have a large amount of historical data. Instead of using them 
directly, we learn a more generic embedding model. Second, we inten
tionally built the model to be robust to various noises. Third, we used 
limited supervised data, such as those who accepted offers, to improve 
the embedding of important customers preferentially. 

7.2.3. Building business-aware ml models 
As typical for companies deploying customer information systems 

[7], the airline company is more interested in optimizing revenue that 
cannot be meaningfully mapped to traditional ML metrics, such as ac
curacy. Our final PREM component is not an ML model. Instead, it is an 
ILP-based optimization formulation that uses the output of ML models to 
make decisions according to business constraints. Therefore, the PREM 
architecture demonstrates how hybrid approaches that combine ML 
with optimization models allow us to get the best of both worlds by 
modeling customer behavior through ML models and then making 
appropriate decisions subject to business constraints using traditional 
optimization techniques. 

Also, ML models such as PREM do not operate in a vacuum. Most 
companies have an existing workflow, and any upselling ML model must 
integrate well with that workflow. Hence, PREM cannot operate as a 
monolithic system that just outputs a set of customers to contact. It is 
much preferable to output intermediate results that the end-user could 
modify. We found that building a single model to predict the best cus
tomers to send upgrade offers to is suboptimal as this approach has 
lower accuracy and is not modular enough to accommodate the work
flow of airline operations. The stage-by-stage approach used by PREM 
often results in simpler models that are easier to maintain, understand, 
and, if necessary, replace. The staged approach is also beneficial for 
iterative improvement during development and faster debugging during 
the deployment stage. 

8. Limitations, strengths, and future research 

As with all research, some limitations must be acknowledged. First, 
we use data from one company for one specific upselling product, so the 
findings may not transfer directly to other domains and products. 
However, the airline company is international, and the dataset is quite 
large and robust, spanning multiple years, which is a strength of the 
current study. Obtaining several datasets (especially from rival firms) 
would be nearly impossible for one research team. Nevertheless, given 
the system’s nondependency on company-specific variables, we suspect 
the PREM model is transferable to other companies (i.e., other airline 
companies), domains (i.e., hotels, cruise, tourism), and products (i.e., 
rooms, experiences). However, future research would need to be carried 
out to investigate this premise. 

Second, there might be cannibalization aspects inherent in the 
implementation, which is a potential downside of discounted upselling 

offers [74]. Cannibalization occurs when customers start to expect a 
discount offer and therefore do not directly purchase the premium 
product. In our exploratory analysis, we investigated the possibility of 
this effect. Based on the low acceptance rate of these upselling offers, 
perhaps because economy travelers consider the offers risky [75], 
cannibalization is not an issue. However, this aspect needs further 
investigation, as prior research has reported that companies can 
over-promote offers [76]. Naïvely sending more upgrade offers to 
certain customer segments could result in potential cannibalization, 
where the customers learn to game the system. If these customers figure 
out that they will get an upgrade offer, they might wait rather than 
directly purchase the business class seat. These results in an intriguing 
consumer dynamic that we plan to investigate in future research. 

Third, we examined the acceptance or nonacceptance of the upgrade 
offer as a binary classification problem, which poses a limitation as we 
know that customer behavior may be more complex. Although binary 
classification is a good starting point, future research could explore 
multiple classes for this problem and other techniques [77], including 
causal models to estimate the individual treatment effect (ITE) of price 
on acceptance. For example, future research could explore the effects of 
only offering upgrades to specific customers at specific times, leveraging 
the limited-quantity scarcity (LQS) and limited-time scarcity (LTS) as
pects of customer behavior [78]. Finally, we did not consider the impact 
of email marketing messages’ attributes in great detail, which would be 
a good element to explore in conjunction with a complete field study of 
PREM. Although we did consider the offer price that is contained in the 
marketing messages, future research could investigate the impact of the 
email marketing message on upselling offers. 

9. Conclusion 

Upselling acceptance consists of the interplay among booking, 
customer, and destination. To investigate upselling acceptance at scale, 
we tackled the problem of predicting upgrade willingness in the airline 
industry in relation to revenue. We developed a modular machine 
learning architecture that achieved substantial performance gains over 
the currently used rule-based approach using real customer data rep
resenting millions of bookings over three years. The empirical findings 
on our dataset indicate that customer populations can be divided into 
three segments based on their likeliness to accept the upgrade offer or 
not. Our work has implications for enhancing conversion rates and 
revenue via automated pricing and targeting. 
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[18] Alejandro Mottini, Alix Lhéritier, Rodrigo Acuna-Agost, and Maria A. Zuluaga. 
2018. Understanding customer choices to improve recommendations in the air 
travel industry. Vancouver, Canada., 28–32. 

[19] Mary Magdaline EnowMbi Tarkang, Uju Violet Alola, Ruth Yunji Nange, 
Ali Ozturen, Investigating the factors that trigger airline industry purchase 
intention, Curr. Psychol. (2020), https://doi.org/10.1007/s12144-020-00815-z 
(May 2020). 

[20] Yang Wang, Lixin Han, Adaptive time series prediction and recommendation, Inf. 
Process. Manag. 58 (3) (2021), 102494 (May 2021). 

[21] Yanwu Yang, Panyu Zhai, Click-through rate prediction in online advertising: a 
literature review, Inf. Process. Manag. 59 (2) (2022), 102853, https://doi.org/ 
10.1016/j.ipm.2021.102853 (March 2022). 

[22] Hee-Woong Kim, Atreyi Kankanhalli, Hyun-Lyung Lee, Investigating decision 
factors in mobile application purchase: a mixed-methods approach, Inf. Manag. 53 
(6) (2016) 727–739, https://doi.org/10.1016/j.im.2016.02.011 (September 
2016). 

[23] Bernard J. Jansen, Theresa B. Clarke, Conversion potential: a metric for evaluating 
search engine advertising performance, J. Res. Interact. Mark. 11 (2) (2017) 
142–159 (January 2017). 

[24] Paul Covington, Jay Adams, Emre Sargin, Deep neural networks for YouTube 
recommendations, in: Proceedings of the 10th ACM Conference on Recommender 
Systems (RecSys ’16), Association for Computing Machinery, New York, NY, USA, 
2016, pp. 191–198, https://doi.org/10.1145/2959100.2959190. Retrieved May 
30, 2021 from. 

[25] Sami Khenissi, Boujelbene Mariem, Olfa Nasraoui, Theoretical modeling of the 
iterative properties of user discovery in a collaborative filtering recommender 
system. Fourteenth ACM Conference on Recommender Systems, Association for 
Computing Machinery, New York, NY, USA, 2020, pp. 348–357. 

[26] Hoon S Choi and Charlie Chen. 2019. The effects of discount pricing and bundling 
on the sales of game as a service: an empirical investigation. 20, 1 (2019), 21–34. 

[27] Eyal Biyalogorsky, Eitan Gerstner, Dan Weiss, Jinhong Xie, The economics of 
service upgrades, J. Service Res. 7 (3) (2005) 234–244, https://doi.org/10.1177/ 
1094670504271148 (2005). 

[28] Saravanan Thirumuruganathan, Soon-gyo Jung, Dianne Ramirez Robillos, 
Joni Salminen, Bernard J. Jansen, Forecasting the nearly unforecastable: why 
aren’t airline bookings adhering to the prediction algorithm? Electron. Commerce 
Res. 21 (1) (2021) 73–100 (2021). 

[29] William Groves and Maria Gini. 2013. Optimal airline ticket purchasing using 
automated user-guided feature selection. In Twenty-Third International Joint 
Conference on Artificial Intelligence. 

[30] Chih Chien Chen, Zvi Schwartz, Timing matters: travelers’ advanced-booking 
expectations and decisions, J. Travel Res. 47 (1) (2008) 35–42 (2008). 

[31] Chih Chien Chen, Zvi Schwartz, Room rate patterns and customers’ propensity to 
book a hotel room, J. Hosp. Tour. Res. 32 (2008) 287–306 (April 2008). 

[32] Konstantinos Tziridis, Th Kalampokas, George A. Papakostas, Kostas 
I. Diamantaras, Airfare prices prediction using machine learning techniques, in: 
2017 25th European Signal Processing Conference (EUSIPCO), IEEE, 2017, 
pp. 1036–1039. 

[33] Shu-Hsien Liao, Yu-Chun Chung, Wen-Jung Chang, Interactivity, engagement, 
trust, purchase intention and word-of-mouth: a moderated mediation study, Int. J. 
Services Technol.Manag. 25 (2) (2019) 116–137 (January 2019). 

[34] Liyin Jin, Yanqun He, Haiyan Song, Service customization: to upgrade or to 
downgrade? An investigation of how option framing affects tourists’ choice of 
package-tour services, Tour. Manag. 33 (2) (2012) 266–275, https://doi.org/ 
10.1016/j.tourman.2011.03.005 (April 2012). 

[35] Raditha Hapsari, Michael D. Clemes, David Dean, The impact of service quality, 
customer engagement and selected marketing constructs on airline passenger 
loyalty, Int. J. Qual. Service Sci. 9 (1) (2017) 21–40 (January 2017). 

[36] Shiri D. Vivek, Sharon E. Beatty, Robert M. Morgan, Customer engagement: 
exploring customer relationships beyond purchase, J. Mark. Theory Practice 20 (2) 
(2012) 122–146, https://doi.org/10.2753/MTP1069-6679200201 (April 2012). 

[37] V. Kumar, Lerzan Aksoy, Bas Donkers, Rajkumar Venkatesan, Thorsten Wiesel, 
Sebastian Tillmanns, Undervalued or overvalued customers: capturing total 
customer engagement value, J. Service Res. 13 (3) (2010) 297–310 (August 2010). 

[38] Steven M. Shugan. 2018. Strategic use of product enhancements: upgrades, add- 
ons, extras, and accessories. In Handbook of Research on New Product Development. 
207–226. 

[39] Devon Delvecchio, Sanjay Puligadda, The effects of lower prices on perceptions of 
brand quality: a choice task perspective, J. Prod. Brand Manag. 21 (6) (2012) 
465–474, https://doi.org/10.1108/10610421211264946 (2012). 
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