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ABSTRACT

Sensory data profoundly influences the quality of detected events

in a distributed complex event processing system (DCEP). Since

each sensor’s status is unstable at runtime, a single sensing as-

signment is often insufficient to fulfill the consumer’s quality re-

quirements. In this paper, we study in the context of AQuA-CEP

the problem of dynamic quality monitoring and adaptation of

complex event processing by active integration of suitable data

sources. To support this, in AQuA-CEP, queries to detect com-

plex events are supplemented with consumer-definable quality

policies that are evaluated and used to autonomously select (or

even configure) suitable data sources of the sensing infrastruc-

ture. In addition, we studied different forms of expressing quality

policies and analyzed how it affects the quality monitoring pro-

cess. Various modes of evaluating and applying quality-related

adaptations and their impacts on correlation efficiency are ad-

dressed, too. We assessed the performance of AQuA-CEP in IoT

scenarios by utilizing the notion of the quality policy alongside

the query processing adaptation using knowledge derived from

quality monitoring. The results show that AQuA-CEP can im-

prove the performance of DCEP systems in terms of the quality

of results while fulfilling the consumer’s quality requirements.

Quality-based adaptation can also increase the network’s life-

time by optimizing the sensor’s energy consumption due to

efficient data source selection.

CCS CONCEPTS

• Computer systems organization → Real-time systems; •

Networks→ Network dynamics; • Software and its engi-

neering → Publish-subscribe / event-based architectures.

KEYWORDS

Complex Event Processing, Stream Processing, Adaptation, Qual-

ity, Internet of Things.
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1 INTRODUCTION

Reacting to unstable situations is a fundamental requirement

in the Internet of Things (IoT) scenarios like traffic monitor-

ing, healthcare systems, and smart homes. Distributed Complex
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Event Processing (DCEP) is a widely employed paradigm to sup-

port efficient situation detection based on a variety of different

sensors and a step-wise transformation from primary events to

situations of interest for consumers in the form of complex events.

The resulting quality, usually expressed in the form of Quality of

Service (QoS) and Quality of Results (QoR), highly depends on

the origin of primary events, especially in IoT scenarios where

the primary events are generated often based on distributed sen-

sor readings from the environment. These sensing deployments

are vulnerable to the immense dynamicity in the environment

(e.g., availability of the sensors), and more than a single sens-

ing deployment is often needed to meet quality requirements

determined by the system or its consumers.

An established solution to react appropriately to environ-

mental dynamics is to adapt the detection logic’s placement to

the available computing resources, which are part of the DCEP

framework. Also, such an adaptation needs to deal with the limi-

tations that the allocated resources might have during the query

execution (cf. [6, 21–23, 31, 33]). This idea provides essential

means to maintain or improve the QoS-related measures, e.g.,

by reducing the imposed end-to-end delay or regulating the

bandwidth consumption. On the other hand, sacrificing QoR to

keep QoS at an acceptable level can already benefit the DCEP

systems by combining these mechanisms with other runtime

approaches such as load shedding techniques [29, 30]. Although

influencing QoR will lead to a degradation in consumer require-

ments’ satisfaction, these techniques find it crucial to impact

QoR as less as possible, e.g., by dropping events from partial

matches in the event streams.

The state-of-the-art approaches decouple the detection pro-

cedure and adaptation strategies from sensing deployment con-

figuration and operate only based on information existing in

the design time. Such an idea limits the system’s capabilities to

react correctly and timely to dynamics in the sensing layer, e.g.,

the quality of sensor readings or their battery level. Hence, the

degradation in QoR can be propagated due to these limitations,

while the DCEP system cannot actively influence and prevent

the consequences of hardwired sensing configuration. Moreover,

even if the sensing deployment adaptation is considered at run-

time, adaptation strategies’ outcome can affect the QoR [14].

For example, in the case of updating the data sources from a

camera to a motion detector, the motion event’s accuracy would

be degraded. In this vein, due to attaining the most elevated

quality grade in the adaptation decisions, the inputs are man-

dated to have an acceptable level of quality. In this regard, the

input data can be assumed of insufficient quality if inaccurate,

precise, fresh, or truthful. Events are also evaluated as inade-

quate quality if they do not hold a certain level of confidence, are

received out of order, are wrongly detected, or are not detected.
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Therefore, measuring to what extent the consumer’s quality re-

quirements are met should be taken into account when applying

any adaptation strategy.

In this paper, we analyze and present concepts on expanding

flexibility and adaptivity by proposing quality-aware event pro-

cessing to enhance QoR and QoS. In particular, AQuA-CEP is a

mechanism that is designed based on the idea of dynamically

exchanging sensing deployment concerning the demarcated re-

quirements by the consumer that influence how sensor data is

processed [19]. We enhance DCEP with the concept of so-called

quality policies and corresponding quality monitoring mech-

anisms. Upon any change occurring in the environment or in

the sensing deployment observed by our designed DCEP sys-

tem, AQuA-CEP will autonomously adapt the current sensing

deployment according to the available sensing infrastructure, if

required. It can be performed by defining sensing configuration

restrictions (e.g., cost constraints) considering quality require-

ments expressed by consumers. Consequently, a utility metric

concerning the defined restrictions performs an efficient sensing

deployment assignment.

For more details, AQuA-CEP provides the following contri-

butions:

(1) We provide a new representation of the quality demands

of a query in DCEP systems by proposing a policy-driven

specification of complex events to boost data process-

ing performance and more promising utilization of IoT

resources.

(2) We devise how qualitymonitoring can be applied in DCEP

by presenting concepts allowing the dynamic reconfig-

uration of appropriate data sources while fulfilling con-

sumer’s quality requirements.

(3) We explore strategies for configuring quality monitoring

agents that trigger adaptation strategies upon any quality

policy violation and address the impacts each configura-

tion might have on the DCEP system’s performance in

terms of QoS and QoR.

(4) We evaluate the performance of our proposed mechanism

with a real-world dataset alongside using synthetic data to

show the ability of AQuA-CEP to boost the performance

of the DCEP system in adapting the sensing deployment

while observing consumer quality requirements.

The remainder of this paper is structured as follows. We

further detail the problem, particularly for an IoT surveillance

scenario, and motivate the need for a mechanism for event

source adaptation in Section 2. We introduce an overview of the

AQuA-CEP systemmodel in Section 3. We elaborate on the prob-

lem statement in Section 4. In Section 5, the detailed overview of

AQuA-CEP is presented. The evaluation results of AQuA-CEP

are exhibited in Section 6. The related work is presented in Sec-

tion 7. Finally, Section 8 concludes our paper and points to our

future work.

2 CASE STUDY: IOT SECURITY
MONITORING APPLICATION

In this section, we introduce an IoT scenario that demonstrates

the applicability of AQuA-CEP in the context of IoT security

surveillance. In this scenario, a state-of-the-art DCEP system

fails to couple the DCEP middleware with the available event

sources by concepts for (i) quality requirement description, (ii)

quality Monitoring, and (iii) sensing deployment adaptation. In

other words, by a hardwired sensing configuration in an IoT

Figure 1: An example of event source adaptation at run-

time in an IoT security monitoring scenario.

environment, most DCEP systems fail to exploit multiple sens-

ing deployments. Consequently, they do not benefit from event

sources adaptation to make a trade-off between QoR and QoS

and react appropriately to the scenario dynamics, e.g., exceeding

the coverage of a sensor due to the user’s mobility. It indicates

that DCEP systems must rethink how switching between event

sources at runtime can benefit the system and improve the gen-

erated results.

We consider a continuous query to detect and warn any per-

son approaching a Dangerous Area (DA) in an industrial zone

depicted in Figure 1. Any consumer, e.g., a factory’s manager,

can issue a query to mark a specific point within the area as

a DA. The query will check different conditions - the current

location of each moving person or object and the list of DAs -

observed within the industrial zone. Suppose a person is located

closer than a predefined threshold to the Central Point (CP) of a

dangerous area (i.e., within the Alarm Region (AR)). In that case,

an alarm is triggered and sent to his device to inform him about

the security violation. The location events are generated by five

distinct sensing deployments, namely RFID, BLE, WIFI, Camera,

and LTE signals available in the IoT infrastructures.

By employing AQuA-CEP, a consumer can specify its quality

requirements, e.g., high accuracy of location detection close to

DA. The location tracking of each target is performed by ac-

tively integrating the selected event source (i.e., turning on the

mobile data to receive the LTE signals). Therefore, the assign-

ment of any sensing deployment influences the battery life of

each target’s cellphone. On the other hand, due to the quality

levels of each sensing deployment, the location events can be

generated with various quality levels that might not satisfy the

consumer’s expected quality of results. Hence, the DCEP system

can monitor the quality and trade the QoR against QoS, e.g.,

reduce the accuracy of location detection in places far from the

DA to achieve energy efficiency. Such a goal can be achieved

by adapting the assigned sensing deployment, e.g., switching

from highly accurate location sensors like LTE signals to WIFI

signals at locations far from DA.

3 SYSTEM MODEL

In this section, we present the system model by introducing

AQuA-CEP components, the model of IoT devices, and the pro-

vided adaptation models.

3.1 AQuA-CEP Model

We consider a DCEP system to consist of multiple producers (e.g.,

mobile phones, etc.) that generate streams of primary events
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from the received sensory data and announce them to the sys-

tem as their advertisements. Correspondingly, consumers (e.g.,

users, applications, services, etc.) create situations of interest

as subscriptions and submit them to the system as continuous

queries where the set Q = {𝑞1, . . . , 𝑞𝑛} denotes the set of cur-
rently deployed queries. Moreover, a group of brokers (i.e., CEP

engines) performs computational tasks (e.g., filter, join, etc.) by

hosting a set of operators and forward the result to the next step

that can be another operator or the consumers.

A query 𝑞𝑖 explains the logic by which a complex event can

be detected over primary event streams. It can be performed by

applying standard CEP operators like pattern matching, aggre-

gation, or windowing over primary events or their attributes.

To do so, the imposed complex event detection logic should be

applied to the specific brokers for execution. In the meantime,

consumers are also allowed to specify their quality requirements

as part of the query (e.g., the location accuracy of less than one

meter). We denote the set of consumer-side constraints of all

deployed queries in Q by G = {𝑔1, 𝑔2, ..., 𝑔𝑘 }. Once the query
registration is completed, AQuA-CEP is able to run a lookup

service over the producers to discover those sensor(s) whose

attributes conform to the query’s quality requirements. A data

source is considered an eligible candidate to feed the system if

it can meet all related consumer-side constraints.

3.2 IoT Resource Model

In AQuA-CEP, sensors are the origin of data that measure a

specific phenomenon (e.g., temperature) in the environment.

The sensory data sources (e.g., Bluetooth) that are used at a

given time 𝑡 form the set of active sensing deployments SD =
{𝑠𝑑1, ..., 𝑠𝑑 𝑗 }. Here, 𝑠𝑑𝑖 refers to a specific data source among all

available options in the environment that can be participated

reliably in the process of sensor assignment for a deployed query.

The availability of data sources is dynamic, meaning the set

SD might change over time. In the IoT environment, a data

source can be mobile (e.g., sensors embedded in a smartphone)

or stationary (e.g., a surveillance camera). We assume that the

mobility status of data sources does not negatively or positively

affect the quality of their readings.

In our scenario, IoT devices (e.g., smartphones carried by

query targets) are interconnected to the system over a wireless

sensor network and demanded to register their sensing deploy-

ment in the AQuA-CEP in advance. These devices represent

the CEP producers who generate primary event streams from

sensory data. Also, some of these devices are eligible to issue

queries acting as CEP consumers. Moreover, CEP operators can

be placed on IoT resources with sufficient computing capabilities,

e.g., on the cloud or fog nodes.

3.3 Adaptation Model

For coordinating adaptation and selecting its correct triggers,

AQuA-CEP needs to monitor the quality of produced events as

well as the state of the sensing infrastructure. In this regard, we

build on a sensing middleware (e.g., [1]) that offers the possibil-

ity to identify, configure, and access the physical sensors. The

system samples the quality level for a subset of the produced

events and evaluates potential alternative configurations.

In AQuA-CEP, the adaptation decisions need to serve mul-

tiple objectives, e.g., the cost for fulfilling the query’s quality

policies includes the expenses for utilizing the sensing infras-

tructure and completing reconfigurations. Besides, adaptation

should guarantee a level of stability, which means how often the

achieved quality of the detected event stays inside a predefined

threshold region after applying the adaptation strategy. It would

avoid oscillation and inessential switching costs. Also, with

AQuA-CEP, we are looking to adapt the event processing to the

environmental dynamics by switching the sensing deployment.

For example, given a new set of sensors registered in the net-

work by which some of the currently running queries would be

answered. In this case, AQuA-CEP generates new query models

considering these new sensors and checks for the costs imposed

by transitioning from the current sensing deployments to the

newly selected deployments.

4 PROBLEM STATEMENT

Consider the dynamic availability andmultitude of event sources

for the mentioned use case in Section 2. Due to the mobility of

each target or the environmental changes (e.g., a blocked cam-

era), the quality of captured simple events changes over time;

thereby, the quality of detected complex events (e.g., alarms)

is different. Adapting event sources as a solution to fulfill the

required QoR imposes costs that should be considered in adap-

tation strategies.

In this work, AQuA-CEP selects suitable data sources, i.e., a

sensing deployment 𝛼 (SD) ⊂ SD, where 𝛼 determines which

members of SD will be used. AQuA-CEP is required to meet

the consumer constraints (e.g., high accuracy close to DA) or no-

tify consumers when no proper sensing deployment is feasible.

Furthermore, each sensor source 𝑠𝑑𝑖 of a sensing deployment

imposes a System-Side Cost (SSC) denoted by 𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 ) as well
as the cost for performing Quality Monitoring (QM) for every

query 𝑞𝑘 denoted by 𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 ). 𝐶𝑆𝑆𝐶 includes those quality

metrics that are more important for the system (i.e., energy con-

sumption, reusability, resource utilization, etc.). 𝐶𝑄𝑀 is the cost

imposed by the configuration model of the monitoring agent in

terms of time (i.e., the delay related to the processing events in

the operator and delay for performing the transition between

sensing deployments) and computation (i.e., the required com-

putation resources to conduct monitoring process).

More formally, AQuA-CEP aims to find 𝛼 which minimizes

the cost factors imposed by system-side costs and quality mon-

itoring costs subject to the quality constraints of consumers,

i.e.,

min 𝑤𝑠

∑

𝑠𝑑𝑖 ∈SD

𝛼 (𝑠𝑑𝑖 )𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 )

+ 𝑤𝑞

∑

𝑠𝑑𝑖 ∈SD

𝛼 (𝑠𝑑𝑖 )
∑

𝑞𝑘 ∈Q

𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 )

𝑠 .𝑡 . 𝛼 (SD) satisfies constraints in G

𝛼 (𝑠𝑑𝑖 ) = 1 iff 𝑠𝑑𝑖 is selected.

𝛼 (𝑠𝑑𝑖 ) ∈ {0, 1}

Here, 𝑤𝑠 indicates the weight related to system-side costs,

and 𝑤𝑞 is the weight associated with monitoring costs.

5 THE AQUA-CEP SYSTEM DESIGN

In Figure 2, we depict the foundational components employed in

AQuA-CEP. By utilizing Software-Defined Networking (SDN),

wemake use of a controller to function as the coordinator module

and enforce a quality-driven DCEP. This component is logically

3

Majid Lotfian Delouee, Boris Koldehofe, Viktoriya Degeler. AQuA-CEP: Adaptive Quality-Aware Complex Event Processing in the Internet of
Things. In Proceedings of the 17th ACM International Conference on Distributed and Event-Based Systems (DEBS ’23), 12 pages, ACM press.



Data/Event Flow

Io
T 

De
vi

ce
s

AQuACEP

Data Source
Database

Look-up 
Service

Data Source 
Assignment Engine

Query 
Optimizer

DC
EP

 La
ye

r  
   

 C
on

tr
ol

le
r

Quality Monitoring

QMA Feedback System

Sensing Deployment 
Performance Analyzer

ω

ω ω

Control Flow

Figure 2: The AQuA-CEP System Design.

centralized but physically distributed and is in charge of ex-

changing control messages to synchronize the event detection

procedure. To do so, the controller owns the principal role in

matching the subscriptions to advertisements. A query optimizer

component receives consumer queries, transforms the query de-

scription into a set of event types, and passes the list of required

data sources to the data source assignment engine. A look-up ser-

vice is triggered by the engine to explore the potential candidates

for each event type in data source database, where the currently

available data sources are previously registered themselves. The

records in this database are dynamic and can be registered or

canceled at runtime.

Moreover, the controller’s functionality is enriched by em-

ploying quality monitoring agents in the DCEP layer. Upon any

predefined situation (e.g., data source disconnection), a so-called

control event is created by the responsible agent. It notifies the

controller to execute corresponding steps as adaptation scenar-

ios in order to maintain the QoR. To do so, a sensing deployment

performance analyzer investigates the current state of assigned

data sources using information acquired by quality monitoring

agents and updates the assignment engine to reconfigure sensing

deployment, if necessary. The performance analyzer component

also updates the data source database’s records based on the

quality monitoring results. It influences the characteristics of

data sources or their availability.

Besides, parts of our system are built on existing concepts for

the flexible execution of event processing operators, as proposed

in TCEP [22] and CEPLESS [20]. This allows AQuA-CEP to mod-

ify the deployment and configuration of operators and integrate

a wide range of additional event processing engines, e.g., Apache

Flink. With such flexibility, AQuA-CEP can revise the operators’

deployment and influence QoS metrics, e.g., bandwidth usage.

5.1 Quality Requirement Description

The foremost step in acquiring the consumers’ expectations in

terms of quality is the technique by which they can elaborate

on their requirements. Such a method must be not only easy to

use for the consumers, but also sufficiently comprehensive to

cover all aspects and flexible to fit different types of consumers’

quality requirements. Hence, we enable consumers to express

their specific requirements related to a given query in the form

of quality policy.

Quality Policy (QP). AQuA-CEP extends traditional query

specification of event processing systems by providing the pos-

sibility to specify quality requirements. A quality policy can

determine various quality metrics essential for the consumers,

e.g., the accuracy of delivered values as part of the event de-

tection process. Also, a quality policy might comprise thresh-

old levels and priorities that can be exploited to optimize and

trade between conflicting demands of multiple deployed queries.

According to the type of thresholds, the quality policy can be

categorized as static or dynamic.

Quality requirements in the static type of quality policies

are specified based on static thresholds as the exact amounts

stated clearly in the query, e.g., the temperature data is requested

to be delivered with an interval of 10 seconds. Only one type

of quality metric can be involved in each static quality policy.

Therefore, one expression is required in the query definition to

assess multiple aspects of each event. For each data type, the

system needs to provide a manner for the consumers to define

acceptable values. For instance, to determine the resolution of

images, the consumer should have the possibility to specify the

thresholds based on PPI (i.e., pixels per inch). Thus, expressing

quality policies for consumers will be as easy as possible.

Consider a situation in which a consumer is willing to spec-

ify various but related quality requirements based on a second

parameter, e.g., various location accuracy thresholds based on

the distance to DA for the same query in our use case. In those

circumstances, defining multiple static quality policies will en-

large the list of consumer constraints, increasing our problem’s

complexity. Since the system needs to fulfill only one of those

multiple but related static quality policies at a time, we define

a dynamic threshold that varies depending on a second factor

which can be time or a context-related parameter.

For instance, a dynamic threshold based on the location factor

looks like "the location accuracy of an object should be less than

2 meters if it is within 100 meters of a particular area. Otherwise,

10-meter accuracy would be sufficient". By utilizing dynamic

thresholds, more intricate descriptions for quality requirements

can be explainable, enhancing the flexibility of query definition.

Such sort of flexibility will improve consumer satisfaction while

optimizing our data analytic system to avoid utilizing more

complex procedures to fulfill quality requirements.

In order to validate the admissibility of thresholds, the con-

troller inspects the capability of the data sources and adjusts

their characteristics based on the requested thresholds in the

query, if applicable. In case there are no appropriate data sources

available in the environment concerning the quality require-

ments, the controller revises the query model with the accept-

able thresholds and notifies the consumer about the new query

model. Then, based on the feedback obtained from the consumer,

the controller will deploy the newly produced query model or

cancel the query processing. On the other hand, priorities can

also be determined in the query definition. It is worth noticing

that a higher query priority will impose higher costs for the

query issuer. Such costs can be defined by the system designer

depending on the use case.

Moreover, the data source conditions and consumer’s quality

requirements might be varied over time. That is why the quality

policies have to be revised during the runtime. For example,

the consumer may need the result of a running query very

urgently, such as the current blood pressure of a patient who

may have an acute condition with lower intervals. Therefore,

the consumer needs to inform the system about this change

by raising the query’s priority as well as changing the sensing

interval’s threshold. To do so, AQuA-CEP employs a feedback

process for maintaining and updating the quality policies and

4

Majid Lotfian Delouee, Boris Koldehofe, Viktoriya Degeler. AQuA-CEP: Adaptive Quality-Aware Complex Event Processing in the Internet of
Things. In Proceedings of the 17th ACM International Conference on Distributed and Event-Based Systems (DEBS ’23), 12 pages, ACM press.



renewing the policies whenever the quality requirements or the

data sources’ status is altered.

5.2 Quality Monitoring

Quality observation should be performed with the lowest pos-

sible delay to ensure the expressed quality requirements can

be met and adaptation decisions are conducted timely. On the

other hand, the available resources for computation are usually

bounded. Thus, an event monitoring process must ponder both

of these aspects simultaneously.

5.2.1 Quality Management Agent (QMA). One of the novel

traits of AQuA-CEP is to employ QMAs that are liable for in-

specting the predefined quality metrics over the event streams

and triggering warnings in the matter of quality degradation. On

the other hand, the utilization of QMA and where it is hosted in

the data plane might influence the quality of service. So, we de-

fined the concept of QMA’s configuration model and discussed

how it improves the quality in various processing stages.

5.2.2 QMA Configuration Models. As we discussed earlier,

the form of QMA configuration in the DCEP layer can yield

different results. There are two kinds of configuration models;

sequential and parallel as shown in Figure 3. In a sequential

configuration model, the events from all producers that fulfill

the requirements of a specific query are aggregated into one

joint event stream and fed into the corresponding QMA for

quality evaluation. In this case, QMA is in charge of filtering

events and allows those events that possess the required level

of quality to be delivered to the respective CEP engine. The

primary advantage of this model is that the transition time (i.e.,

handover), the time required to swap data sources, is ensured to

remain small, i.e., in the order of milliseconds. Moreover, joining

events from two ormore producers is feasible to boost the quality

by utilizing redundancy. On the other hand, processing all events

from the producers indeed imposes considerable latency in query

processing that should be taken into account.

The parallel configuration model will impose the minimum

possible latency in processing since QMA analyzes the event

attributes’ quality in parallel. However, connecting one producer

to the respective operator is only possible. Thus, if the quality

of the event produced by this data source degrades, it takes time

for the QMA to trigger an alert and request the controller to link

another data source to the CEP engine that fulfills the quality re-

quirements. Such a transition undoubtedly imposes a noticeable

overhead on the event processing system. Nevertheless, both

processing and transition delay should be considered as the ma-

jor costs when the system wants to decide on the configuration

model of QMAs.

Moreover, the QMA costs for monitoring each data source can

be reviewed based on time and computation, directly dependent

on the QMA’s configuration model. In terms of time, if the par-

allel configuration model is chosen, the cost is the delay related

to switching between the current data source (i.e., 𝑠𝑑𝑖 ) and the

next option (i.e., 𝑠𝑑𝑙 ) as (𝐶𝑠 (𝑠𝑑𝑖 , 𝑠𝑑𝑙 , 𝑞𝑘 )). On the contrary, if the

sequential configuration model was chosen, the time overhead

is the delay caused by quality analysis (𝐶𝑎 (𝑠𝑑𝑖 , 𝑞𝑘 )). In terms of

computation costs, the overhead in both parallel and sequential

models is almost the same. We called this (𝐶𝑤 (𝑠𝑑𝑖 , 𝑞𝑘 )) includes
the required resources for analyzing an event stream using slid-

ing windows and the computing resources for the data source

assignment (𝐶𝑎𝑑𝑠 (𝑞𝑘 )). Therefore, the total cost of monitoring
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Figure 3: QMA Configuration Models.

the data source 𝑠𝑑𝑖 using a QMA is as follows.

𝐶𝑄𝑀 (𝑠𝑑𝑖 , 𝑞𝑘 ) = 𝑤𝑠𝑒𝑞 𝐶𝑠 (𝑠𝑑𝑖 , 𝑠𝑑𝑙 , 𝑞𝑘 )

+ 𝑤𝑝𝑎𝑟 𝐶𝑎 (𝑠𝑑𝑖 , 𝑞𝑘 )

+ 𝐶𝑤 (𝑠𝑑𝑖 , 𝑞𝑘 ) +𝐶𝑎𝑑𝑠 (𝑞𝑘 )

𝑠 .𝑡 . 𝑤𝑠𝑒𝑞 = 1 iff ’Sequential mode is selected.’

𝑤𝑝𝑎𝑟 = 1 iff ’Parallel mode is selected.’

𝑤𝑠𝑒𝑞 ∈ {0, 1} and 𝑤𝑝𝑎𝑟 ∈ {0, 1}

5.3 Sensing Deployment Adaptation

Adaptation decisions in AQuA-CEP are performed following the

MAPE-K feedback loop model [4] building on the previous two

steps (i.e., quality description and monitoring). Consequently,

the monitoring outcomes are analyzed within every loop to

determine adaptation decisions and finally apply them to the

stream processing infrastructure.

5.3.1 Controller. In Algorithm 1, we represent the controller’s

core functionality in AQuA-CEP.

The first step of query processing is to initialize the corre-

sponding variables, i.e., the set of event types, their quality poli-

cies, and their thresholds. When the consumer with ID 𝐶𝑐𝑖𝑑
registers the query (e.g., security monitoring of DA), the con-

troller initiates a subscription for each query’s simple event

(e.g., location event for each query’s target). Such a subscription

comprises details regarding the event type of simple event (i.e.,

𝑒𝑡𝑖 ) and the respective query (i.e., 𝑄𝑖𝑑). On the other hand, a

producer 𝑃𝑝𝑖𝑑 registers its available sensing deployments (i.e.,

SD(𝑃𝑃𝑖𝑑 )), e.g., LTE signals for location tracking. Then, the con-
troller generates an advertisement for each sensing deployment

of the producer. It includes information about the respective

data source and the ID of the producer. Finally, the controller

investigates possible solutions to match current advertisements

to subscriptions (Refer to Algorithm 2).
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Algorithm 1 Controller Functionality

1: Initialization:

𝑄𝑄𝑖𝑑 = 𝑒𝑡1, ...,𝑒𝑡𝑙 ← User Query Qid;

𝑄𝑃 ← {𝑞𝑝1, ..., 𝑞𝑝𝑛 };
𝑆𝑈 𝐵 ←∅;

𝐴𝐷𝑉 ←∅;

2: upon (𝐶𝐶𝑖𝑑 .Submit(𝑄𝑄𝑖𝑑 )) do

3: for 𝑒𝑡𝑖 ∈ 𝑄𝑄𝑖𝑑 do

4: 𝑆𝑈 𝐵 ← 𝑆𝑈 𝐵 ∪ 𝑠𝑢𝑏𝑒𝑡𝑖
𝑄𝑖𝑑

;

5: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵); ⊲ Algorithm 2

6: upon (𝑃𝑃𝑖𝑑 .Register(SD(𝑃𝑃𝑖𝑑 ))) do

7: for 𝑠𝑑𝑖 ∈ SD(𝑃𝑃𝑖𝑑 ) do

8: 𝐴𝐷𝑉 ← 𝐴𝐷𝑉 ∪ 𝑎𝑑𝑣𝑠𝑑𝑖
𝑃𝑖𝑑

;

9: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵); ⊲ Algorithm 2

10: upon (QMA.Alarm) do

11: ProcessAlarm(QMA.Alarm); ⊲ Algorithm 3

5.3.2 Data Source Management. In Algorithm 2, we repre-

sent the process of assigning data sources.

Algorithm 2 Data Source Management

1: function AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵)
2: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈 𝐵 do

3: 𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 ← Related quality policies to 𝑒𝑡𝑖 ;
4: 𝑀𝐴𝐷𝑉 𝑒𝑡𝑖 ←Matching advertisements to 𝑒𝑡𝑖 ;

5: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝑀𝐴𝐷𝑉 𝑒𝑡𝑖 do

6: if 𝑎𝑑𝑣𝑠𝑑𝑖 .MeetAllQP(𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 ) then
7: C𝑠𝑑𝑖 ← 𝐶𝑆𝑆𝐶 (𝑠𝑑𝑖 ) + 𝐶𝑄𝑀𝐴 (𝑠𝑑𝑖 , 𝑞𝑘 );

8: SD(𝑠𝑢𝑏𝑒𝑡𝑖 ) ←SD(𝑠𝑢𝑏𝑒𝑡𝑖 ) ∪ (𝑎𝑑𝑣𝑠𝑑𝑖 , C𝑠𝑑𝑖 );

9: 𝛼𝑡 (SD) ← HACS(SD, G); ⊲ Solution
10: PerformTransition(𝛼𝑡 (SD));

11: function PerformTransition( 𝛼𝑡 )
12: for (𝑠𝑢𝑏𝑒𝑡 𝑗 , 𝑎𝑑𝑣𝑠𝑑𝑘 ) ∈ 𝛼𝑡 do
13: if 𝑠𝑢𝑏𝑒𝑡 𝑗 .𝑠𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 = ∅ then

14: 𝐼𝑚𝑚𝑒𝑑𝑖𝑎𝑡𝑒_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑑𝑘 );
15: else

16: 𝑆𝑒𝑎𝑚𝑙𝑒𝑠𝑠_𝑇𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛(𝑠𝑑𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 , 𝑠𝑑𝑘 )

To match advertisements to subscriptions in Algorithm 2,

the function AssignDataSource looks for potential candidates

for each event type (e.g., location event) in the list of related

advertisements. In this regard, a data source announced by an

advertisement is examined by the MeetAllQP function, which

compares the data source’s current quality characteristics and

the related quality policies’ current thresholds (e.g., the accu-

racy level of fewer than 2 meters). If this data source meets all

related quality policies, the corresponding advertisement will

be considered a qualified candidate for this subscription (e.g.,

LTE signal meets the 2-meter accuracy requirement).

The costs of applying this sensing deployment include systems-

side and monitoring costs (e.g., energy consumption for utilizing

LTE signal) which are calculated for each candidate and paired

with its advertisement to form members of a list showing the eli-

gible sensing deployments for each subscription (i.e.,SD). Then,

a heuristic approach is applied onSD considering satisfying the

constraints in G (i.e., HACS) to realize an approximate solution

for the current situation. This approach checks the currently

available sensing deployments and assigns them to the running

queries considering the optimization parameter (e.g., maximiz-

ing the battery life of targets’ cellphones). According to this

newly generated solution, if the previous sensing deployment is

changed for any query, the transition between data sources can

be done in two ways using the function PerformTransition.

The immediate transition model occurs when the previous

sensing deployment is not available anymore or notably un-

reliable (e.g., target goes out of the coverage of BLE). So, the

controller should perform the transition as fast as possible with

minimum delay (e.g., from BLE to WIFI). On the other hand, in

seamless transition, the previous data source is still available.

Still, it cannot satisfy all quality requirements due to changing

the quality policy threshold (e.g., more accurate location event

close to DA). Therefore, the controller performs the transition

smoothly ( e.g., from WIFI to LTE). For this type of transition,

AQuA-CEP will process both data streams from previous and

current producers concurrently in a period of 𝛽 seconds in which

the transition is happening from its invocation to its completion.

5.3.3 Adaptation Strategies. Algorithm 3 shows the capabil-

ities of the AQuA-CEP to adapt dynamically to the changes in

the environment, in the quality of data streams, or process the

queries based on the dynamic quality policy thresholds. Hence,

a feedback system continuously inspects the conditions in both

the data plane and the control plane to trigger alarms upon any

noteworthy changes. Each QMA alarm has attributes such as

type, corresponding sensing deployment (i.e., 𝑠𝑑), quality policy

(i.e., 𝑞𝑝), and query identifier (i.e., 𝑄𝑖𝑑).

Algorithm 3 Alarm Processing

1: function ProcessAlarm(𝐴)
2: switch (𝐴.𝑡𝑦𝑝𝑒) do

3: case SDUnavailability:

4: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝐴𝐷𝑉 do

5: if 𝐴.𝑠𝑑 == 𝑠𝑑𝑖 then
6: 𝐴𝐷𝑉 ← 𝐴𝐷𝑉 − {𝑎𝑑𝑣𝑠𝑑𝑖 };

7: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵);

8: case ReducedQuality:

9: Wait-Monitor(𝐴.𝑠𝑑);
10: if 𝐴.𝑠𝑑 Not Recovered then

11: for 𝑎𝑑𝑣𝑠𝑑𝑖 ∈ 𝐴𝐷𝑉 do

12: if 𝐴.𝑠𝑑 == 𝑠𝑑𝑖 then
13: Update(𝑎𝑑𝑣𝑠𝑑𝑖 )

14: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵);

15: case ChangedQualityThreshold:

16: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈 𝐵 do

17: if 𝐴.𝑞𝑝 ∈ 𝑄𝑃𝑠𝑢𝑏𝑒𝑡𝑖 then

18: Update(𝑠𝑢𝑏𝑒𝑡𝑖 )

19: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵);

20: case QueryEnded:

21: for 𝑠𝑢𝑏𝑒𝑡𝑖 ∈ 𝑆𝑈 𝐵𝐴.𝑄𝑖𝑑 do

22: 𝑆𝑈 𝐵 ← 𝑆𝑈 𝐵 − {𝑠𝑢𝑏𝑒𝑡𝑖 };

23: AssignDataSource(𝐴𝐷𝑉 , 𝑆𝑈 𝐵);

Upon the arrival of a QMA alarm, if the alarm’s type indi-

cates that the connection to a data source is lost and this sensing

deployment is not available anymore (i.e., SDUnavailability), the

controller removes all the related advertisements and performs
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data source re-assignment using the global optimizer. The next

type of alarm is triggered by a reduction in the quality of data

streams concerning the current thresholds of quality policies

(i.e., ReducedQuality), e.g., when an obstacle blocks part of a mo-

tion detector’s vision. In this case, the system performs a Wait-

Monitor procedure in a specific period, in which AQuA-CEP

checks the quality of produced events. If the data source can

recover from this situation timely, our mechanism will continue

with the current sensing deployment. Contrarily, suppose the

lack of sufficient quality remains for the event stream. In that

case, firstly, the related advertisements to this sensing deploy-

ment will be updated with the new quality characteristics, and

then, a re-assignment procedure will start. The main goal of

the Wait-Monitor procedure is to prevent oscillation between

data sources since it will lead to more switching costs and might

produce a worse global solution.

Since the consumer is able to adjust the quality policy thresh-

old at runtime, various ranges are possible for thresholds ac-

cording to the query model. In such cases, an alarm is triggered

(i.e., ChangedQualityThreshold) to indicate that a new threshold

should be taken into consideration. Hence, each subscription

related to the changed quality policy has to be updated, and

a new global re-assignment should be performed. Finally, if a

query is finished on time or even ahead of time manually, the

corresponding subscriptions will be removed from the set of

subscriptions. In addition, the producers and CEP operators

should disconnect from each other. Since the absence of those

subscriptions may change the global solution, executing the

AssignDataSource function on the available advertisements and

subscriptions is necessary.

6 EVALUATION

In this section, we experiment with different ways of monitoring

the quality of event detection and its corresponding adaptation

strategies. The main goals of the evaluation are to figure out

1) can dynamic event source assignment provide a trade-off

between QoR (i.e., fulfilling consumer constraints) and QoS (i.e.,

minimizing the system-side costs) and 2) what limitations are

involved in performing a transition among sensing deployments.

6.1 Simulation Setup

We created a single Virtual Machine (VM) in Oracle VM Virtual

Box Manager [8] in which we installed Ubuntu version 20 OS.

We allocated 6 CPU cores with 100 percent execution capacity

and 24 GB of main memory to the VM. We run complex event

processing with multi-threading in this machine and create a

thread for each of the issued queries; thereby, we could manage

them simultaneously using Java. For future work, for making

performance-related studies, we would need indeed to imple-

ment all components over separate computational resources.

For publish/subscribe communication of AQuA-CEP, we build

on Apache Kafka [10] as a distributed platform. Furthermore, for

detecting complex events, we build on FlinkCEP [7], which is a

library implemented on top of Apache Flink. In our simulation1,

a Kafka server acts as an event broker that serves both data

events and control events, as depicted in Figure 4. We monitor

the quality of produced event streams in the QMA, which is

located as an Apache Flink operator using the parallel QMA

configuration model in the scenarios described below.

1https://github.com/majid-lotfian/AQuA-CEP-code
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Figure 4: The evaluation model of AQuA-CEP.

Figure 5: Modified Coverage Problem with Static Quality

Policy.

6.1.1 Static Quality Policy Scenario. Consider an area where

several temperature sensors are embedded in different locations

shown in Figure 5. In such a scenario, the temperature in some

locations can be captured by multiple sensors. Each of these

sensors has its own characteristics (e.g., sensing accuracy, cov-

erage, etc.) that influence the generated data. We consider a set

of continuous queries, each detecting a high temperature in a

specific location. We also generated random variations in each

sensor’s attributes, which simulate the environmental dynamics.

To make our motivation clear in this scenario, we began with

a coverage problem scenario [28], in which the objective is to

solve the sensing placement problem to maximize the coverage

of𝑚 important points using𝑛 sensors. To adequately capture the

capabilities of AQuA-CEP, we modified the coverage problem

so that sensors are already located in the environment, and

their location cannot be changed. Moreover, instead of a set

of𝑚 critical points, we have a dynamic group of queries to be

answered. The goal is to optimize the total energy consumption

by activating the set of sensors that can cover all queries.

We analyze the performance of AQuA-CEP in terms of the

event loss rate since assumed dynamics directly influence this

quality metric. We compared our approach with two baseline

mechanisms. The first approach is called Optimal Dynamic Loss
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Table 1: Applied Queries in the Static Quality Policy Sce-

nario

Q# Location Temp Threshold Loss Rate Threshold

Q1 42:18 > 20.8 < 10

Q2 31:7 > 20.1 < 15

Q3 11:6 > 21.1 < 12

Q4 2:11 > 19.1 < 15

Q5 29:21 > 22.5 < 10

Rate (ODLR), which selects the best data source in terms of

Loss Rate at the start of processing a query for each event type.

Then, once the monitored loss ratio for produced event stream in

runtime goes above its predefined characteristic, the controller

first updates this feature with the new assessment and then

performs a reassignment check. The second approach is called

Optimal Static Loss Rate (OSLR), which selects the best data

source in terms of the event loss rate again. But, it stays with

this data source until the end of the query and does not switch

to another data source even in the case of an event loss ratio

increase of its event stream.

We applied the same query with different threshold values,

detailed in Table 1, on each approach with the same simulation

setup. The points targeted in each query are marked in Figure 5,

and two or more sensors can be hired for each. The query defini-

tion determines the temperature thresholds, and the minimum

required Loss Rate is pinpointed in the respective quality policy.

We acquire the consumer queries utilizing a designed JFrame

on runtime containing the definition and a set of quality poli-

cies. Then, the query is transformed into a CEP-enriched SQL

format. An example of a continuous query is shown in Listing 1,

which aims to collect the temperature in a specific location. We

defined a static quality policy by specifying a threshold value

for the event loss rate characteristics of the sensing deployment

in the PATTERN clause, which will be used in the data source

assignment procedure.

1 SELECT event .*

2 FROM

3 // Selecting event stream

4 SELECT ds.stream

5 FROM DS

6 PATTERN

7 lossrate < QualityPolicy.threshold

8 Within window_size

9 WHERE

10 ds.type = 'Temperature ' AND

11 ds.coverage(target_location) = True

12 WHERE event.value > Query.value

Listing 1: Applied query with static quality policy.

In addition, the temperature data in [3] is used, which contains

two datasets. We chose one that includes the sensory data about

temperature, pH, and turbidity from 30 cm below the water

surface. We utilized this dataset because it has a real-world

distribution of temperature data that makes our calculation more

realistic. In our mechanism, each functioning sensor takes the

data from this dataset and transmits its own transformed data

according to its predefined quality characteristics. It means that

each sensor will produce a unique temperature data stream

according to its own features.

In addition, we estimated the amount of energy consumed

by each sensor as described in [13]. This includes the energy for

sensing the phenomena, processing the measurement, logging

Table 2: Sensing Configurations and Their Characteristics

Name Range (m) EC (mW) Accuracy (m)

BLE 70 - 100 426 1 - 3

RFID 1 - 12 375 0.1 - 2

WIFI 50 - 100 817 1 - 5

Camera N/A 374 < 1

LTE > Km 1634 < 1

(i.e., reading data and writing it into the memory), communica-

tion, and transient energy (i.e., the transition energy to go from

the idle state to the active state, and vice versa). We presumed

that the distance between sensors to the gateway is the same,

and they transmit packets of the same size.

6.1.2 DynamicQuality Policy Scenario. Consider the mentioned

use case in section 2 where the specified dynamic quality policy

is "the quality of the person’s location can degrade, as the person

moves away from the borders of the dangerous area, but it should

be as much accurate as possible when it is in a proximity of the

target location". In this policy, the quality metric is the location

accuracy, and the second parameter is the target’s location (i.e.,

the accuracy level is determined according to the target’s current

location). In this scenario, the consumer in the factory needs

to submit a query to control people’s access to the dangerous

area. To do so, the query should consist of the dangerous area’s

details and the alarm region.

AQuA-CEP can access a sensing infrastructure based on a

multitude of sensors deployed on a target’s devices (e.g., smart-

phones), such as Bluetooth Low Energy (BLE), LTE, WiFi, and

RFID sensors. Moreover, the system can also benefit from other

positioning infrastructure embedded in the environment, like

cameras. Each of these sensing deployments has its own char-

acteristics, and in order to estimate the Energy Consumption

(EC) in this scenario, we reuse the measurements collected from

[9, 17, 26, 32, 36], as indicated in Table 2. Among all sensors,

only Camera does not utilize the mobile phone’s battery since it

is a separate camera placed on the wall. Therefore, we assumed

this sensor’s energy consumption is equal to placing a target’s

mobile phone in airplane mode.

Since a publish/subscribe mechanism is used to manage peo-

ple in this factory, a notification event of prohibition to approach

a dangerous area is generated. All targets within the factory

will be notified of the prohibition. That’s because all targets in

AQuA-CEP have already subscribed to these notification events

when performing the admission process. Moreover, during ad-

mission, each target explains its attributes, including its identity

and role in the factory. Also, it describes its carrying devices

with their sensing capability (e.g., smartphones, tablets, smart-

watches, wearables, etc.). In addition, it should be clearly detailed

what type of data each device can produce and what sensing and

communication technologies it can provide. Also, we assume

that each target will give continuous access to their registered

sensing deployments and not deliberately block the connection.

The query correlates specific conditions - the target’s posi-

tion, the boundaries of the dangerous area, the alarm region, and

the authorization status of the target - to detect a complex event

of dangerous area violation. For this case, the perception of a

location event could use different sensors to get an approximate

position with the required quality level specified in the query’s

quality policies while optimizing the energy consumption of
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Table 3: An example of applied queries with dynamic qual-

ity policy

Q#
Definition Quality Policies

CP AR(m) Q-Metric Condition

Q1 60 : 185 70

Accu < 2m 0 < DTDA < 100

Accu < 5m 100 < DTDA < 200

Accu < 10m 200 < DTDA < 1000

the application installed in the smartphone. Dependent on var-

ious aspects like coverage, location uncertainty, and sensing

frequency, various query models can be utilized to meet the QoR

and QoS trade-off requirements. In this specific use case, since

we do not need a very accurate position when the person is far

from the dangerous area, AQuA-CEP uses the sensor, which first

meets the quality level of the query and then has the smallest

amount of energy consumption for the smartphone.

Alike to the static quality policy scenario, we applied the

query to the simulation environment multiple times considering

the dynamic quality policy and analyzed the results to gain more

insights. With a fixed route for a target person, we randomly

generated coordination for the dangerous area, including the de-

tails for CP and AR. That means if a person nears CP by less than

AR meter, a violation will happen. Besides, such a location esti-

mation should be done using a sensor with the accuracy (Accu)

level denoted in Table 3, considering the conditions related to

the Distance To the Dangerous Area (DTDA).

The CEP-enriched SQL format of the applied query with a

dynamic quality policy is represented in Listing 2.

1 SELECT event .*

2 FROM

3 // Selecting Event Stream

4 SELECT ds.stream

5 FROM DS

6 PATTERN

7 Accuracy < CurrentQualityPolicy.threshold

8 Within window_size

9 WHERE ds.type = 'Location '

10 AND

11 // Selecting Current Quality Policy

12 CurrentQualityPolicy = (

13 SELECT qp

14 FROM Query.QP

15 WHERE qp.InRange(target_loc))

16 WHERE Distance(event.loc , Query.DA) < Query.AR

Listing 2: Applied query with dynamic quality policy.

In the firstWHERE clause (line 9), the current quality policy is

determined based on the target’s location from the list of quality

policies. Based on the threshold of the chosen quality policy, the

candidate streams (e.g., LTE signals) are listed and delivered as

possible options for this query to a constraint satisfaction global

optimization algorithm.

In our simulation, we chose to apply Choco-solver [24], an

open-source Java library for constraint programming. By em-

ploying this library, we are able to solve our optimization prob-

lem while considering consumer-side constraints. We expressed

the event source assignment task as a variable where the domain

of all variables is the available sensing deployments. Therefore,

the Choco-solver considers the constraints to find a global so-

lution covering all variables. This optimization solution will

determine which stream from the list of candidates should be

assigned to each query.
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Figure 6: Event loss rate ratio during the execution for

query 1 with the static quality policy.

6.2 Simulation Results

In this section, we will analyze our findings compared to the

other two mentioned baseline strategies in both categories of

static and dynamic quality policies. It should be noted that the

results regarding energy efficiency and quality of results do not

depend on the number of consumers, but indeed on the number

of queries only since a consumer can issue multiple queries.

That’s why increasing the number of involved queries can help

evaluate the scalability of each approach.

6.2.1 StaticQuality Policy. The static quality policy scenario

results have been illustrated in Figure 6 and Figure 8. We exe-

cuted the simulation ten times for each query, and the results

were approximately similar. To challenge our approach, we se-

lected the results with AQuA-CEP’s worst performance.

Regarding the event stream loss rate in Figure 6, the chart

displays the event loss rate for each approach in one execution.

It can be seen that the OSLR approach shows the worst per-

formance and proves the idea that each mechanism requires

adapting to the dynamics. Both AQuA-CEP and ODLR select

those sensing deployments meeting the threshold, which is il-

lustrated as a green dashed line. Only two times our approach

exceeds the threshold of the event loss rate highlighted by the

gray circles.

In the first quality policy violation, at the start of query exe-

cution, we must wait for the window to be completed since we

are employing a 50-sec window size over the event stream. So,

we can not rely on the monitoring results, and we called this

period as Blind Monitoring (BM) period. Such a period started

once we chose a new sensing deployment. We masked this pe-

riod with data from the characteristic of the new sensor for all

three approaches and showed the simulation values with dashed

lines. The second gray oval indicates the sensing deployment

switching time for AQuA-CEP. Again, we showed the simula-

tion results with the red dashed line. We cannot rely on this

window information because the window comprises events that

partially belong to the previous sensor, and the rest belongs to

the newly selected sensor until the BM period is ended. We can

not perform adaptations within this period since the outputs are

unreliable. Therefore, the event loss rate results can go above

the predefined threshold, and no sensing deployment switching

would be triggered.

Hence, a lower number of BM periods results in a higher

percentage of query duration being monitored. Having this fact

in mind, AQuA-CEP achieves better results than the ODLR since
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Figure 7: Switching counts between sensing deployments

for different sets of queries with the static quality policy.
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Figure 8: Total energy consumption for different sets of

queries with the static quality policy.

it has fewer switching counts. To better portray this advantage

of AQuA-CEP, more queries are involved in the comparison,

and the results for the number of sensing deployment switching

are depicted in Figure 7. The chart shows that the difference

between AQuA-CEP and ODLR is escalated considerably once

more queries come to the system. That means the number of BM

periods is increased significantly, leading to less reliability in

quality monitoring that also influences the adaptation decisions.

In addition, a higher number of sensing deployment switching

results in taking more actions to activate or deactivate sensors.

This means that in the ODLR approach, more time overhead

is imposed due to stopping the analysis of event streams and

monitoring the event quality on the previous sensor. Moreover,

initializing these two functionalities over the event stream of

the new sensing configuration increases the time overhead.

From the energy consumption point of view, there is also a

remarkable dissimilarity between these two approaches exhib-

ited in Figure 8. The graph shows that the amount of energy

consumed in AQuA-CEP is less than the ODLR approach. From

four queries onward, the total consumed energy seems equal.

The reason is one or more queries in ODLR stopped processing;

thereby, the consumed energy for them was equal to zero. On

the other hand, queries in AQuA-CEP keep being answered until

the end of simulation time. To be fair, we illustrated the results

for both approaches until 250 sec of execution, when all queries

were still active. Hence, the consumed energy for all sensors

in AQuA-CEP is dramatically lower than the ODLR approach,

respectively, proving the ability of our approach to optimize the
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Figure 9: Total energy consumption for different sets of

queries enriched by the dynamic quality policy.
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Figure 10: Sum of FP and FN for different sets of queries

enriched by the dynamic quality policy.

server-side costs. It also can be seen that the difference between

the two approaches is increasing by involving more queries in

the execution. This confirms that AQuA-CEP is more reliable

than ODLR in dealing with involving more queries.

6.2.2 DynamicQuality Policy. Figures 9 and 10 exhibit the

simulation’s outcome in the case of applying dynamic quality

policy over the query processing.

With energy consumption in mind as the comparison param-

eter, one can observe from Figure 9 that there is a dramatic

distinction between AQuA-CEP and ODA. The rationale is ODA

prefers the LTE sensor at all times for location tracking since it

delivers the most accurate results while consuming the highest

amount of energy among all sensing deployments. From this

point of view, it can be concluded that employing the ODAmech-

anism can quickly lead to the phone’s battery exhaustion. On

the other hand, although the ODE approach is assumed to be the

optimal approach in terms of energy, it consumes slightly less en-

ergy than AQuA-CEP. That’s why we can claim the performance

of AQuA-CEP regarding energy consumption is near-optimal.

The discrepancy between the results of the ODE approach and

our mechanism is increasing slightly by initiating more queries,

but it is still negligible.

In event-based systems, False Positives (FP) and False Nega-

tives (FN) are widely used to compare detection accuracy. In our

example, an FN denotes a violation by entering a red-flagged

area that occurred in the real world, but the event processing

system could not catch it. Besides, an FP indicates a violation

wrongly detected by the system. Since both of these errors are
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feasible in our use case with small counts, we form a single

number of their summation that makes the differences more

distinguishable, as illustrated in Figure 10.

Since ODA permanently answers queries with the most ac-

curate sensors, it serves better than other methods. It could

catch all the complex events without any FP or FN, but with

the cost of draining the phone’s battery. With fewer queries,

ODE acts nearly the same as AQuA-CEP. But once more queries

are involved, the situation becomes worse for this approach. It

probably happens because of the lower detection capacity of

data sources with minor energy consumption when the danger-

ous area is located in their close vicinity. The sensors with less

energy consumption level have less room for consumers and

might deliver less accurate data leading to more FPs and FNs.

Similar to FN and FP, F-score is a well-known performance

measure in machine learning approaches that combines the

other two measures, precision and recall, which are mainly em-

ployed to distinguish between classifiers [18] in terms of ac-

curacy. Therefore, F-score can be used in stream processing

to compare mechanisms in terms of accuracy. Analyzing the

F-score shows an ascending trend in the reports, while the out-

come for ODE displays a descending trend. This proves the ability

of AQuA-CEP to deal with involving more queries while main-

taining the accuracy of event detection. The possible reason

is that involving more queries increases the overlap in data

sources; thereby, multiple queries can benefit from our proposed

switching mechanism. Consequently, the F-score values for our

approach become better.

7 RELATEDWORK

Responding to environmental dynamics is highly important

while using DCEP systems in IoT scenarios for maintaining

the QoR and QoS at a satisfactory level based on consumers’

quality requirements. To select the suitable sensing deployments

for each query, AQuA-CEP performs a global optimization in

sensing deployment configuration that takes into account the

consumer-side constraints as their quality requirements and

monitors the quality of produced events to assess and make

adaptation decisions to maintain the quality of the produced

outcomes. In this section, we compare our work to the related

work in two key areas, sensor selection and quality monitoring.

7.1 Sensor Selection

In the context of IoT networks, the Sensor Selection Problem

(SSP) is a leading research direction to select the best set of

sensors to achieve energy efficiency due to power limitations

in sensor nodes [12, 34, 35]. More precisely, the selection in

SSP-oriented research works is performed by picking a set of

homogeneous sensors and executing the sensor aggregation. In

the context of stream processing (e.g., DCEP systems), most run-

time adaptive approaches concentrate on the operator networks,

including adaptation on topology, deployment, processing, over-

load, fault tolerance, and infrastructure [6]. There are a few

approaches similar to AQuA-CEP which are called data source

switching mechanisms [5, 16] and most of them only applied to

video streaming applications [25].

Although both of the mentioned related approaches study

the dynamic selection of sensors in an IoT environment to op-

timize the QoR, such optimizations are performed respecting

specific data attributes or a set of specific fused sensor sources.

However, integrating such methods in the context of DCEP re-

quires linking them dynamically to different configurations of

heterogeneous sensors. Only in this way, the flexibility of cur-

rent DCEP systems in reconfiguring and rewriting the detection

logic of complex events can be used to optimize for QoR.

7.2 Quality Monitoring

In DCEP systems, quality assessment has been primarily studied

in the placement of detection logic over the available computing

resources (e.g., [22]), and only a few research works focus on

the adaptation of sensing deployment to react dynamics. Al-

though these mechanisms are quite similar in performance to

our proposed approach, they are focused only on one aspect of

the system (e.g., CEP query language in [33]).

In the IoT environment, the service composition mechanisms

consider the sensory data streams as services provided by the

connected objects to be analyzed and deliver results to the

corresponding applications and allow the interaction between

consumers and smart objects of IoT environment [2, 11, 15].

Considering the vulnerability of IoT service quality to environ-

mental dynamics, service composition techniques try to spec-

ify a set of quality metrics to analyze the quality of delivered

streams to target applications. By employing heuristic and meta-

heuristic techniques (e.g., [27]), several approaches attempt to

find a global service composition solution while fulfilling QoS

demands. These mechanisms tend to monitor and assess the

quality of IoT services and adapt the system to maintain the

quality, e.g., by training the Hidden Markov Models (HMM)

to predict QoS. However, their quality expressivity is limited

to defining the static thresholds causing inflexibility in acquir-

ing more complex consumers’ quality requirements. Moreover,

AQuA-CEP is more efficient in energy consumption since it en-

deavors to minimize the number of active sensing deployments

and eventually fulfills the requested quality requirements.

8 CONCLUSION AND FUTUREWORK

In this work, we proposed AQuA-CEP, which represents how

to enable dynamic adaptation of sensing deployment configura-

tion while observing the quality of produced events and their

data sources. In addition, by proposing optimization criteria

for the dynamic activation of sensors, our mechanism can help

save resources in the sensing infrastructure. Our evaluation re-

sults demonstrated that AQuA-CEP outperforms two baseline

approaches in switching counts between sensing deployment

and performed near-optimal concerning the total energy con-

sumed by the sensing network in static quality policy scenario.

Moreover, by applying a dynamic quality policy, AQuA-CEP

achieved near-optimality in terms of energy consumption and

quality measured in the form of FP and FN. Moreover, the F-

score results proved that AQuA-CEP has sufficient capabilities

to fulfill consumers’ quality requirements when more queries

are involved.

In our future work, we will consider priority in the quality pol-

icy definition and investigate its impacts to support concurrent

queries. Estimating the switching overhead is another point of

interest that requires further research. In addition, minimizing

the blind monitoring periods can be attainable by predicting the

data source switching time. We believe building on a statistical

analysis of the data sources’ performance will be a promising

direction. Finally, we plan to extend our proposed research by
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taking into account dynamic factors like quality degradation of

data sources over time in dynamic quality policies.
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