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Scientific goals

e We study whether F/Si data recently published by AMS-02 [Aguilar et al
PhysRev.Lett. 126 (2021) 8] can be reproduced by the same propagation models
which give a best fit of lighter secondary-to-primary ratios, (Li, Be,
B)/C, as derived in Weinrich et al, A&A 639, A131 (2020)

e We investigate whether data allow for primary F component

e We follow the methodology described in Derome et al, A&A 627 (2019) A158

This talk is based on the results presented in E. Ferronato Bueno et al, on arxiv this
week.

NB: CR fluorine is purely composed of (stable) °F
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Cosmic-ray transport in the Galaxy
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K(E): A two-break diffusion coefficient is used
Geénolini et al PRL 119, 241101 (2017), Génolini et al Phys.Rev. D99 (2019)

q,: A single power-law is used for the source term.
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1D model and semi-analytic approach with the USINE code
[ Maurin CPC 247 (2020) 106942, https://dmaurin.gitlab.io/USINE/]



https://dmaurin.gitlab.io/USINE/

Cosmic-ray transport in the Galaxy
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e This equation couples about a hundred CR species (for Z < 30) over a
nuclear network of more than a thousand reactions.

e To solve this diagonal matrix of equations, we start with the heaviest
nucleus, which is always assumed to be a primary species, and then
proceed down to the lightest one.

e We use the propagation scenarios described in [ Génolini et al Phys.Rev. D99 (2019)],
namely BIG, SLIM and QUAINT, which provide an excellent fit to the
lighter species measured by AMS-02.



Methodology

e In order to reduce biases in the transport parameter determination, it is crucial to
use nuisance parameters for the nuclear production cross sections, and a covariance
matrix for the data systematic uncertainties, as described in Derome et al, A&A 627 (2019) A158

e The force-field approximation is used to compute the top-of-atmosphere (TOA)
fluxes, using the Fisk potential as a nuisance parameter.
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e The TOA fluxes are compared to the data using a chi2 minimization procedure that
accounts for several systematic effects (energy correlation, solar modulation and
nuclear x-sections). 6
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Rescaling of F production cross-sections to nuclear data

We follow the procedure presented in Maurin et al 2022 to update the original
GALPROP cross-sections.

We consider both stable isotopes and short-lived nuclei (aka ghosts).
We retrieve production cross-section for the main progenitors of F from
the EXFOR database [0tuka et al Nucl Data Sheets, 120, 272, 2014].
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Progenitors of CR fluorine

Following the methodology described in Génolini et al Phys.Rev.C 98 (2018) 3, 034611

102£||| T T ||l|l|| T T ||||||| T T ||l|||| T T IIIIIII :
C Progenitors (> 1% at 10 GV) ]
\ Ne -
g L 4
<
o3
Bl P e
= 10:— ............................................................. B
B F Fe
=
=
Q
1{ Other progenltors T T T “Al __
2 Na+Ca+Ar+P+Mn+C1+Cr <19% ]
Tlll 1 1 IIII|I| 1 1 L1 | I 1 IIIIII| 1 1 IIIIII| i
1 10 102 10° 10*

R [GV]

Ne, Mg, Si and Fe are the main progenitors of F.



Results: F/Si vs B/C (as pure secondaries)

e The model tuned on (Li, Be, B)/C AMS-02 data [Weinrich et al, A&A 639, A131 (2020)] overshoots
F/Si data by 10% (consistent with XS uncertainties), similar to M. Boschini et al 2022.

e NB: very good chi2 including the covariance matrix of AMS data systematic
uncertainties (correlated low-rigidity data, a priori no need for primary F).
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Results of F/Si+(Li,Be,B)/C fit (allowing
1) Propagation parameters

Propagation parameters —

Very good fit for combined analysis

Diffusion slope consistent with delta=0.5

Slight preference for low rigidity break

Robust result wrt propagation scenarios (see paper)

w)

O 0.481

l0g10K
[kpc® Myr~]

b {}
; 3
End il
S

0910Ko
6 [-] c2Myr-1
2 logiomes [-]
x2/dof 910575 Ll o o RIGV LoLLL
I B | I O OIS N B TP P VN
o N £ w N o U O unn un [ =} w v O Uu o
T T ¥ T R LA BLLRA § | 374 T | R0 | | T T T]

2l N

10



Results of F/Si+(Li,Be,B)/C fit (allowing for qF)

1) Propagation parameters
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Robust result wrt propagation scenarios (see paper)
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Results of F/Si+(Li,Be,B)/C fit (allowing for qF)

1) Propagation parameters

Propagation parameters

Very good fit for combined analysis

Diffusion slope consistent with delta=0.5

Slight preference for low rigidity break

Robust result wrt propagation scenarios (see paper)
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Results of F/Si+(Li,Be,B)/C fit (allowing for qF)

2) Source abundance
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e The best fit value is ~ 1073, and a 1-sigma lower
limit consistent with a null value (no primary F).
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Summary

The transport parameters obtained from the AMS-02 F/Si are compatible with
those obtained from lighter secondary-to-primary ratios.

The combined fit of all these ratios yields an excellent agreement to the data,
with <10% adjustment to the B and F production cross-sections.

We conclude that all secondary species from Li to F can be explained by the same
transport parameters.

Combined analysis_of Li/C, Be/C, B/C and F/Si gives an upper limit on the F
source abundance, indicating that no prlmar%/ F comgonent is needed. Our result
does not reach the sensitiVity needed to test global acceleration models of
cosmic-ray nuclei.
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Dominant processes producing GR fluorine
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e We have identified 5 channels which contribute to the F production for~ 62% .

e We find that 1-step channels contribute to ~ 70% of F production, while 2-step
production contribute to 20% and multi-steps production contribute to ~10%.

e These numbers only marginally depend on the cross-section set considered.



Results: do we need a F primary component ?

e Despite F being mostly secondary, we study the effect of a primary component.

e The best fit value is ~ 1073, which is consistent with a null value, indicating that no
primary contribution is necessary to match the data.

e 1-sigma upper limit on (*°F />'Si)_, ~ 51073 which is significantly higher than the
predictions and does not allow to discriminate between different scenarios.
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Secondary CR production

Relative contributions per production process for elemental fluxes

(at 50 GVand 2 TV) Primary species

Secondary species (1step)

USINE V4.0 (https://lpsc.in2p3.fr/usine) Secondary SpECiES (2steps)
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The species with the highest primary content include H, O, Si, and Fe (black),
while Li, Be, B, F, and Cl to V have the highest secondary component from
both single (red) and multi-step production (blue and green). I



Combined analysis of Li,Be,B/C and F/Si
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Summary

Using = the propagation  parameters which give a_ best fit of lighter
secondary-to-primary ratios, our model overestimates the data by 10% - 15%.
Howe}fe.r,tjchls difference can be explained by the F production cross-sections
uncertainties

We conclude that all secondary species from Li to F can be explained by the same
transport parameters

Combined analysis of Li/C, Be/C, B/C and F/Si gives an upper limit on the F source
abundance

12



Dominant processes producing GR fluorine
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e We have identified 5 channels contribute to ~ 62% of the total.

e While the ranking of the dominant channels is a robust prediction, the individual
numbers are subject to uncertainties due to the cross section and propagation
parameters. 9
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Results: propagation parameters (and more)
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Results: propagation

Effective
diffusion
coefficient
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Results: propagation parameters (and more}
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Results: propagation

Effective
diffusion
coefficient
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