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Chapter 1

Introduction

1.1 General introduction

“Everything in the world is connected with something else” and “Every qualit-
atively defined system has a special type of interaction” (Spirkin, 1983, p. 84).
In social science, social and economic interactions play an indispensable role in
the spread of diseases, the personal employment options, the trade flows of many
goods and services, etc. Spatial econometric models provide possibilities to explain
the spatial, economic, and social interactions among individual units in a system.
Three different types of interaction effects are considered in the spatial econometric
literature: endogenous interaction effects among the dependent variable (y,), exo-
genous interaction effects among the regressors (X;), and interaction effects among
the error term (v¢) for individual units at time t where t = 1,...,T. Correspond-
ingly, a spatial econometric model may contain one spatial lag in the dependent
variable (Wy,), K spatial lags in the regressors (WX};), and one in the error term,
where W is the N x N spatial weight matrix capturing the connection between
units, which is an essential part of each spatial econometric model.

Spatial interactions, which is the main focus of spatial econometrics, obviously
depend on the specification of the spatial weight matrix W. However, an often-
criticized aspect of using spatial econometric models in empirical research is that
W is specified in advance rather than being estimated along with the paramet-
ers in the model (Corrado and Fingleton, 2012). Question (I) in the spatial econo-

metric literature is therefore the specification of the corresponding spatial weight
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matrix. Issues about the specification of W are the following. First, whether the
spatial weight matrix should take a sparse binary contiguity form or a dense dis-
tance decay form and whether the spatial weight matrix is pre-specified, selected
according to posterior test statistics, or directly estimated. Second, how to normal-
ize the spatial weight matrix. Common approaches are normalization by the row-
sums, column-sums, the maximal or minimal row-sum, or the largest eigenvalue
of W. Among them, normalization by the row-sums or the largest eigenvalue are
the most popular ones and they are also known as row normalization and scalar
normalization, respectively. Row normalization can be achieved by dividing each
element by the corresponding row-sum and this normalization ensures that the
weighting operation can be interpreted as an averaging of the values of other in-
dividual units. Scalar normalization can be realized by dividing each element by
the largest eigenvalue of W and this normalization ensures that economic inter-
pretation in terms of distance decay is valid when the spatial weight matrix has
a distance decay structure. Third, whether different spatial lags should share the
same or different spatial weight matrices. In theory, each of the K + 2 spatial lags,
if included, may have its own W. The reality is that almost every empirical study
and each Monte Carlo simulation experiment in an econometric-theoretical study
investigating the finite sample properties of a newly proposed spatial econometric
model estimator or test statistic, adopts one common specification of W for all spa-
tial lags. One common pre-specified spatial weight matrix for all spatial lags may
cause identification problems. We will discuss the identification problem later in
the second following paragraph. The parameterization of the spatial weight matrix

turns out to be a simple and effective solution.

Question (II) emerging from the spatial econometric literature is how to spe-
cify the spatial lags. Specifically, this question focuses on the specification of the
spatial lag in the error term. This lag captures unobserved shocks following a spa-
tial pattern other than those covered by time fixed effects and thus improves the
efficiency of the estimator if accounted for. The representative model is the spa-
tial error model (SEM) in the spatial autoregressive (AR) form, while econometric-
theoretical and empirical research on models with spatial moving average (MA)
errors have received limited attention. These two forms of spatial errors can re-

flect different types of shocks. Shocks captured by AR errors are global and those
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captured by MA errors are local (Fingleton, 2008b). To distinguish global and local
shocks, sparse weight matrices which contain many zero elements are generally
taken as examples. Shocks in the AR form are global because they rebound and
diffuse multiple rounds to all units even for the units which are not directly con-
nected, while shocks in the MA form are local since they only diffuse one round to
the units which are connected (Fingleton and LeGallo, 2007). The latter implies that
for spatial weight matrices which are dense, the shocks spread likewise to all units
when captured by the MA form. Therefore, the interpretations of the AR and MA
errors should be considered together with the specification of the spatial weight

matrices.

Question (III) standing in the spatial econometric literature is the identification
problem. It needs to be noted that there are different identification problems in
spatial econometrics. The one that we pay attention to in this thesis is that the para-
meters to be estimated of a model cannot be recovered from its reduced form. This
identification problem has been discussed in section 3 of Gibbons and Overman
(2012) and also mentioned as one of the identification problems by Halleck Vega
and Elhorst (2015). The inclusion of WX}, which are also known as Durbin term,
has the advantage that it generates fully flexible indirect effects. The indirect ef-
fects are often the main interest of applied spatial econometric studies since they
measure the marginal impact of changes in the explanatory variables of other units
on the dependent variable of the focal unit. Attempts to identify the parameters
of models with Durbin term have been made. Bramoullé et al. (2009) investig-
ate the identification of the parameters of the linear-in-means model, which is also
known as the spatial Durbin (SD) model. Lee, Liu, and Lin (2010) propose a specific
network structure providing information on how units are connected to each other.
This structure helps to solve the identification problem of various interaction effects
in the general nesting spatial (GNS) model. Similarly, specific functional forms of
the spatial weight matrix can help solving the identification problem. By impos-
ing exponential or inverse distance decay functional forms of the spatial weight
matrix, which exploits the geographical arrangement of the units in the sample,
the distance decay parameter of the spatial weight matrix of each spatial lag can
be estimated, thereby avoiding that this matrix is completely pre-specified and the

same for all spatial lags. Using this simple parametric method, each regressor can
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interact with a different spatial weight matrix and exhibit a different distance decay

pattern. This extension helps to identify the unknown parameters.

In spatial panel models, the inclusion of fixed effects, for both individual units
and time periods, is important. The individual fixed effects are often incorpor-
ated in the model to control for time invariant unobserved individual character-
istics which can be correlated with the existing regressors. As for the time fixed
effects, they can control for time-varying unobservables that affect all units in the
sample. However, if the fixed effects are estimated jointly with the other para-
meters, we may encounter incidental parameter problems. Two transformations
can be used to concentrate out these fixed effects. The within transformation uses
Jn = (IN — %LNLIN) and J; = (It — %LTLIT) to eliminate both fixed effects where
ty and 7 are the N x 1 and T x 1 vectors of ones, respectively. The orthogonal
transformation, on the other hand, uses Fy x_1 and Fr _1 to eliminate the fixed
effects, where [Fy n_1, ﬁLN] and [Frr_1, %LT] are the orthonormal eigenvector
matrices of Jy and J;. The within and orthogonal transformation are called dir-
ect and transformation approach in Lee and Yu (2010a). To be consistent with the
panel data literature, we adopt the nomenclature of within and orthogonal trans-
formation. The transformed equations can be subsequently estimated by quasi-
maximum likelihood (QML). Lee and Yu (2010a) prove the consistency and derive
the asymptotic distribution of the QML estimators based on the within and ortho-
gonal transformation for the SAR model with AR errors, which is also called the
SARAR model. They also derive the estimation procedures for two panel data set-
tings: individual fixed effects only and both types of fixed effects. In the former
case, the variance parameter needs to be bias-corrected when T is finite and the
QML estimator based on the within transformation is applied, while the QML es-
timator based on the orthogonal transformation is consistent and properly centred.
For the latter case, the QML estimator based on the within transformation is con-
sistent only when both N and T are large, whereas the QML estimator based on the
orthogonal transformation is consistent when either N or T is large. Bias correction
is needed to remove the non-centrality of the QML estimator based on the within
approach. One limitation of the orthogonal transformation is that it requires W to
be row-normalized when both fixed effects are included and concentrated out. The

QML estimators based on the within and orthogonal transformation are labelled
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the QML within and QML orthogonal estimator for simplicity.

The three studies in this dissertation contribute to the literature by providing
solutions to the three questions mentioned above: (I) the specification of the spa-
tial weight matrix of each spatial lag, (II) the specification of the spatial lag itself,
and (III) the issue of identification. In Chapter 2 we depart from the spatial Durbin
model (SDM), which contains spatial lags in both dependent variable and the re-
gressors, and we allow the dependent variable and each regressor to interact with
different spatial weight matrices by parameterizing them with a distance decay
parameter. These distance decay parameters are estimated together with the re-
sponse parameters of the model. This study extends the literature by answering
Question (I), the specification of W. In Chapter 3 we focus on the estimation of the
spatial autoregressive (SAR) model with spatial MA errors, which is also known
as the SARMA model, with both fixed effects. Different non-parameterized spatial
weight matrices are allowed for the spatial lags in the dependent variable and the
errors. Possible solutions to Question (II), the specification of the spatial lag, are
provided in this study. In the last study of Chapter 4, we consider the estimation of
the general nesting spatial (GNS) model with AR or MA errors, which are known
as GNSAR and GNSMA model, respectively. These two models contain all three
types of spatial lags. The parameterized spatial weight matrices that are different
for each spatial lag under various model settings are also considered in this chapter.
As an extension of the previous two studies, this study not only answers the first
two questions but it also provides a solution to Question (III), the identification

problem. An overview of the content of each chapter is given in Table 1.1.

Table 1.1. Description of the Chapters in the Thesis

. Setting of Parameterization Normalization Method of Concentrating out
Chapter Model  Fixed Effects Nand T of W of W Fixed Effect
Large N, Row normalization o .
Chapter 2 SDM Both . Yes . Within transformation
finite T Scalar normalization
Large N, Row normalization
Chapter3 SARMA Both . g No L. Within transformation
finite T Scalar normalization
GNSAR Large N, - .
Chapter 4 Both Yes Row normalization Orthogonal transformation

GNSMA large T.
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1.2 Outline of the thesis

This dissertation is organized as follows. Chapter 2 provides the QML within es-
timator of the SDM with parameterized spatial weight matrices. Chapter 3 focuses
on the QML within estimator of the panel SARMA model with pre-specified though
different spatial weight matrices. Chapter 4 sets out the GNSAR and GNSMA mod-
els and derives the QML orthogonal estimator of the parameters when the spa-
tial weight matrices are parameterized and it discusses the identification problem.

Chapter 5 concludes.

We start with the prominent spatial Durbin model (SDM), which contains spa-
tial lags in the dependent variable and the regressors. In Chapter 2, we estimate
the common parameters and the distance decay parameters which are imposed
for each spatial weight matrix within the model setting. Although each variable
can have its own spatial weight matrix, practitioners generally adopt one common
pre-specified spatial weight matrix for all of them. This chapter breaks this prac-
tice by parameterizing each spatial weight matrix with a distance decay parameter.
We propose a maximum likelihood approach that estimates the decay parameters
along with the other parameters in the model. We consider negative exponential
and inverse distance decay matrices, and two types of normalization, row normal-
ization and normalization of the weight matrix by its largest eigenvalue. We invest-
igate the performance of the proposed estimation approach in a Monte Carlo sim-
ulation experiment and present the results of an empirical application on military
expenditures. An important finding is that the indirect effects, which are important
for many empirical studies, can be severely biased when one common pre-specified

spatial weight matrix is used.

Chapter 3 advocates the wider use of the spatial autoregressive (AR) model
with spatial moving average (MA) errors, individual and time fixed effects, and
different spatial weight matrices for each spatial lag. We derive and investigate the
asymptotic properties of the QML within estimator of the model when N is large
and T is finite. We also argue and demonstrate that the interpretation of the spatial
MA errors in various empirical applications is more obvious than the spatial AR
errors since most shocks are local rather than global. A Monte Carlo simulation

and an empirical example based on military expenditure data are used to illustrate
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this. The findings also indicate that each spatial lag should interact with different
spatial weight matrices.

Chapter 4 sets out GNS models with individual and time fixed effects, a spatial
AR or spatial MA error process, and distance-based parameterized spatial weight
matrices that are different for each spatial lag in the model. The QML orthogonal
estimator for these two models is developed based on the QML within estimat-
ors in Chapters 2 and 3. The asymptotic distribution of the proposed estimator is
provided and its finite sample properties are investigated by means of Monte Carlo
simulation. To illustrate the benefits of the proposed models in an empirical setting,
the Yang (2021) US house price data set is used.

The final chapter summarizes the main findings, provides discussions, and men-

tions directions for future research.






Chapter 2

Parameterizing spatial weight
matrices in the spatial Durbin

panel data model

“This chapter was written together with M. Kesina and J.P. Elhorst.
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2.1 Introduction

In a spatial econometric model the behaviour of one cross-sectional unit is co-
determined by spatial lags observed on other cross-sectional units. Spatial lags can
be taken with respect to the dependent variable, the explanatory variables, and/or
the error term, known as the spatially lagged dependent variable, spatially lagged
explanatory variables, and the spatially lagged error term, respectively. The de-
gree of co-determination further depends on the mutual relationships among the
cross-sectional units formalized by the spatial weight matrix. In the literature, there
exists a variety of spatial econometric models that contain one or multiple forms of

spatial lags (for an overview see Elhorst, 2014).

One prominent model is the spatial Durbin model (SDM) that contains a spa-
tial lag in the dependent variable and each of the explanatory variables, enabling
estimation of endogenous interaction effects and contextual effects. This model is
advocated by LeSage and Pace (2009), and has been widely applied to study dif-
ferent topics in economics, e.g. energy economics (Feng and Chen, 2018; Li and Li,
2020; Chen et al., 2021, to mention a few), innovations (Tientao et al., 2016; Pan et
al., 2021; Xiao and Mao, 2021, to mention a few), regional and growth economics
(Beer and Riedl, 2012; Koroglu and Sun, 2016; Sabater and Graham, 2019, to men-
tion a few). Furthermore, it is widely used in the peer effects literature, but then
under the label linear-in-means model (Bramoullé et al., 2009, 2020; De Paula et al.,

2020; among others).

One advantage of the SDM in empirical research is its flexibility in modelling
spillovers. The main interest of spatial econometric practitioners are not the point
estimates of the parameters but the marginal impact of changes that explanatory
variables have on the dependent variable. Two marginal effects are of interest: the
direct effect of changing the explanatory variable of one unit on the dependent vari-
able of that unit itself, and the cumulative effect of changing the explanatory vari-
able of one unit on the dependent variable of other units (LeSage and Pace, 2009).
This cumulative effect is known as the indirect effect, the spatial spillover effect, the
indirect spillover effect or the spillover effect. Elhorst (2010) and Halleck Vega and
Elhorst (2015) demonstrate that only models that at least include spatially lagged

regressors are able to produce spillover effects that can take any empirical value.
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In contrast, models that include a spatially lagged dependent variable and/or a
spatially lagged error only are less flexible since they impose restrictions on the

magnitude of spillover effects in advance.

Although the econometric theoretical literature distinguishes different spatial
weight matrices in models with multiple types of spatial lags, empirical applica-
tions and Monte Carlo simulations tend to use one common specification of the
spatial weight matrix for all spatial lags. Especially in the SDM the same spatial
weight matrix is used for all regressors. This is a very restrictive assumption as the
effect and the spatial range of spatial lags are likely to be different for different re-
gressors. One potential solution is to pre-specify different spatial weight matrices
for the spatially lagged dependent variable and each of the spatially lagged re-
gressors, estimate the model for different combinations of spatial weight matrices,
and then select the combination that produces the highest log-likelihood function
value (Leenders, 2002), the highest Bayesian posterior model probability (LeSage
and Pace, 2009, Ch.6), or the best spatial J-test result (Kelejian, 2008). However,
this approach poses several challenges and thus is hardly used. First, the empir-
ical researcher does not know ex-ante which spatial weight matrix to use for the
different types of spatial lags. Second, when multiple spatial weight matrices are
selected, this procedure becomes demanding and time-consuming. Conversely, if
the true spatial weight matrix is not in the choice set because this set is kept small,

the researcher runs the risk of picking a wrong spatial weight matrix.

Another solution is to estimate the spatial weight matrix along with the other
parameters in the model (Ahrens and Bhattacharjee, 2015; Lam and Souza, 2019;
De Paula et al., 2020; Lewbel et al., 2021, to mention a few). However, these studies
either focus on one form of spatial lag only, usually the spatially lagged dependent
variable (the first two cited studies), or use the SDM with one common spatial
weight matrix (the last two cited studies). Furthermore, many studies are based
on the assumption that the number of time units (T) exceeds the number of cross-
sectional units (N), whereas the majority of empirical studies is based on N >>
T. Some approaches limit the number of unknown elements of the spatial weight

matrix, which leads to a sparse spatial weight matrix.

Our study contributes to the literature in the following ways. First, we let the

spatial lag of each regressor have its own spatial weight matrix to allow for differ-
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ent spatial ranges. Furthermore, we parameterize each spatial weight matrix with
a different distance decay parameter and estimate those together with the other
parameters of the model. We consider two frequently used functional forms of dis-
tance decay, the negative exponential and the inverse distance form, and two types
of normalization, row normalization and normalization of the weight matrix by its

largest eigenvalue.!

The proposed maximum likelihood (ML) estimator extends previous work of
Lee and Yu (2010a) by allowing for a parameterization of all spatial weight matrices
in the model without imposing sparsity in advance or requiring a large time dimen-

sion. Our approach is applicable to the common large N and finite T framework.

We also provide mathematical expressions for the direct and indirect spillover
effect. We conduct Monte Carlo experiments and find that our approach works well
in estimating the parameters and direct and indirect spillover effects. Especially the

latter are more sensitive to the choice of the spatial weight matrix.

A Matlab function of the proposed ML estimator will be made available to give
other researchers the opportunity to apply it in their own empirical setting. An
empirical application on military expenditures from Yesilyurt and Elhorst (2017)
is utilized to show the usefulness of the proposed parameterization approach for
applied researchers. We find empirical evidence in favor of both the spatial Durbin
model and spillover effects, and show that this is because we do not adopt the same

pre-specified spatial weight matrix for all regressors in the model.

The remainder of this chapter is organized as follows. In Section 2.2, we review
previous studies that parameterized the spatial weight matrix or suggested altern-
ative estimation approaches. In Section 2.3, we set out the spatial Durbin model
with parameterized weight matrices for each spatial lag and explain how the para-
meters and direct and indirect spillover effects can be estimated. In Section 2.4,
we present the results of a Monte Carlo experiment. In Section 2.5 we discuss the

results of an empirical analysis. In Section 2.6, we draw conclusions.

I Whether or not to row normalize distance decay matrices has been an issue of discussion in the spatial
econometric literature. Furthermore, there is no unifying consensus about which normalization to use.
Therefore, we provide estimators and mathematical expressions for the different types of distance decay
and normalization.
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2.2 Parameterizing spatial weight matrix and alternat-

ive approaches

Specifying the spatial weight matrix has been recognized as difficult and controver-
sial (Bavaud, 1998; Corrado and Fingleton, 2012, among others). Researchers gen-
erally agree that spatial weights should decrease with some generalized distance,
but a univocal specification is still missing. According to Corrado and Fingleton
(2012), the spatial econometric model and the specification of the spatial weight
matrix, commonly symbolized by W, should be theory-driven. While several stud-
ies develop an economic-theoretical model that leads to a certain type of spatial
econometric model supporting the inclusion of spatially lagged dependent vari-

2 research on an economic-theoretical derivation of

ables, regressors and/or errors
the spatial weight matrix is scarce. Bavaud (1998) provides a systematic overview
of the general theoretical properties of spatial weight models, but does not explain
how to apply the theory in practice. The author even apologizes for this omission
(p- 154). Instead, practitioners tend to adopt one of the many popular specifications
and use it for all spatial lags in the model.?

Nevertheless, there are studies that specify a functional form for the elements
of W that depends on one or several measures of distance (e.g. geographical dis-
tance, or economic distance, or combinations thereof) and one or more distance
decay parameters. The two most popular parameterized spatial weight matrices

are the inverse distance matrix and the exponential distance decay matrix based

on geographical distance only.* However, many studies utilizing parameterized

2Studies with derivations leading to SDM or the linear-in-means model are of Ertur and Koch (2009)
on economic growth, of Yesilyurt and Elhorst (2017) on military expenditures, of Heijnen and Elhorst
(2018) on the diffusion of waste disposal taxes, and of Szumilo (2020) on housing prices. Blume et al.
(2015) set up a theoretical model, a social interaction game, in which utility depends on an individual’s
own action and that of member’s actions, from which the linear-in-means model can be derived. Xu and
Lee (2019) provide a similar theoretical foundation for spatial econometric models.

3 Popular choices for the spatial weight matrix are (i) p-order binary contiguity matrices (if p = 1 only
first-order neighbours are included, if p = 2 first and second order neighbors are considered, and so
on); (ii) inverse or exponential distance decay matrices (with or without a cut-off point); (iii) g-nearest
neighbour matrices (where g is a positive integer); (iv) block diagonal or group interaction matrices
where each block represents a group of units that interact with each other but not with observation in
other groups; and (v) weight matrices based on socio-economic variables rather than distance.

4 Examples of more complex forms of parameterizations are Cliff and Ord (1973) who use a W matrix
whose elements are written as a Cobb-Douglas function of the physical distance and the length of the
common border between each pair of units; or Elhorst and Halleck Vega (2017) who use a gravity type
of function based on the distance, and the economic sizes (measured by population or gross product) of
both units.
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spatial weight matrices use pre-specified values for the distance decay paramet-
ers (Murdoch et al., 1993; Fingleton and LeGallo, 2008, among others). The reason
is that parameterizing W leads to an econometric model that is non-linear in its
parameters and thus requires non-linear estimation techniques enhancing the com-
plexity of the analysis.” There are also studies that really estimate the distance de-
cay parameter (Fischer et al., 2009; Dubin, 1988; Kakamu, 2005; and Halleck Vega
and Elhorst, 2015, to mention a few). However, these approaches also have limita-
tions. First, some of them focus on one spatial lag only. Second, the main focus lies
either on the empirical application or the spatial econometric regression model, but
less on the estimation of the distance decay parameter, whose estimation remains

vague.

A more recent strand of literature infers W from the data using various (geo)stati-
stical modelling techniques, provided that the number of observations over time
(T) exceeds the number of observations across space (N) (Ahrens and Bhattacharjee,
2015; Lam and Souza, 2020; also see chapter 4 of Beenstock and Felsenstein, 2019,
for an overview). However, this approach does not address the majority of empir-
ical studies that are based on N >> T.® Even if W is assumed to be symmetric
and the leading diagonal of W is set to zero (since units cannot affect themselves),
the number of unknown elements amounts to %N (N + 1) and are under-identified
when T is not sufficiently large. Recent studies in the social interactions literature
propose to estimate the unknown elements of W, but instead of assuming that T is
sufficiently large and they assume that the number of unknown elements of W is
sufficiently small (De Paula et al. 2020; Lewbel et al., 2021). However, whether this
assumption makes sense cannot be specified in advance and only be determined

by first estimating the strength of the distance decay effect.

One final approach is of Debarsy and LeSage (2018) who investigate a model
with a spatially lagged dependent variable and specify the spatial weight matrix as
a convex combination of several underlying matrices. The contribution of each sub-
matrix to the overall matrix is estimated together with the other model parameters

using Bayesian estimation. One limitation is that only one spatial lag with such

5 This argument is also mentioned in Corrado and Fingleton (2012, p.217): “These could be estimated
alongside other model parameters, but because of the difficulty this would entail, it makes practical
sense to assign values to these coefficients a priori.”

6Lam and Souza (2020) do mention some exceptions in their paper where N is not necessarily small.
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an overall spatial weight matrix is considered. If the number of sub-matrices to
construct the overall matrix is M and the number of spatial lags is extended to
K +1, as in a spatial Durbin model, then M(K + 1) additional parameters need to
be estimated. In contrast, only K 4 1 additional (distance decay) parameters need
to be estimated when adopting a parameterized inverse distance or exponential
distance matrix for each spatial lag in the model.

To the best of our knowledge, there is no paper that proposes an estimation ap-
proach that (i) allows for different spatial weight matrices for all spatial lags of the
model and that (ii) enables estimating all those spatial weight matrices in a unified
framework. We aim to fill this gap with this chapter, where we allow for different
parameterizations (e.g. exponential and inverse distance decay) and normaliza-

tions (row normalization and scalar normalization).

2.3 The methodology of parameterization

2.3.1 The parameterized spatial Durbin model

We focus on the following parameterized spatial Durbin model (SDM)

Yit = Po i w;j(80)yjr + i Xkit Pok + f % Wiij (&ok ) Xkjrok + Coi + @or + vir, (2.1)
j=1 k=1 k=1j=1
wherei =1,...,N,t =1,...,T, N is the number of cross-sectional units, and T is
the number of time periods. We assume a large N, finite T and a balanced panel. y;;
represents the dependent variable of unit i at time ¢, and x;; the kth non-stochastic
explanatory variable with coefficient Bo. The term Z]»I\il wjj(d0)yj+ denotes the spa-
tial lag of the dependent variable of other units than i, and the accompanying coef-
ficient py the impact of this spatial lag. Similarly, the regressors Z]'Z\i1 Wiij (&ok ) Xkt
(k =1,...,K) denote the spatial lags of the explanatory variables, whose impacts
are measured by the coefficients ¢o;. The elements w;;(dp) and wy;;(aox) measure
the relationships between unit i and j. These elements are heterogeneous for the
different types of regressors and are parameterized e.g. depend on additional para-
meters Jyg and ag;. The individual fixed effects cy; (i = 1,..., N) control for unob-

served individual-specific, time-invariant effects. Similarly, the time period fixed
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effects wgs (t =1,...,T — 1)7 control for time-specific, unit-invariant effects. As T
is finite, @(; may just be incorporated in the set of explanatory variables. We write
them out explicitly to make clear that they should not be spatially lagged. We allow
coi and @g; to be correlated with xy;; and Z]-Zil wkij(“otc)xkjt- When the subscript 0
is added to a parameter or a vector of parameters, we denote the true value of this
parameter or vector. Finally, v; is an error term whose properties are specified in

Section 2.3.3.

The main differences of Equation (2.1) compared to the standard SDM in the
literature are twofold. First, we allow each spatial lag to have a different spatial
weight matrix. This provides more flexibility, because the spatial range, e.g. the
distance at which explanatory variables still have an effect on other units, will no
longer be assumed to be the same but different from one explanatory variable to
another. This setup generalizes most previous empirical spatial econometric stud-
ies that employ one common weight matrix for all spatial lags.® Second, instead
of pre-specifying spatial weight matrices, we parameterize them by distance decay
parameters &y and agr (k = 1,..,K), and estimate these decay parameters jointly

with the other parameters of the model.

Model (2.1) can be rewritten in matrix notation. If we stack the individual ob-

servations for each time period ¢, the model reads as

K K
y, = poW(60)y, + Y xiePok + Y, W (aor) Xk ok + co + @ortn + 01, 22
k=1 k=1 .

t=1,...,T,

where y,, xi;, co, v¢ are N x 1 vectors, and ¢y is an N x 1 vector of ones. W (dy)
and W (agy) are N x N matrices describing the connectivity of all N cross-sectional

units in the sample. The corresponding reduced form of Equation (2.2) reads as

K

K
y, = (In —poW ()" <Z xtBok + Y, W (o) Xkeor + co + @oren + vt) .
k=1 k=1 .

t=1,...,T.

7One time dummy is left aside to avoid perfect multicollinearity with the individual fixed effects.

8 For the same reason, it extends the classic linear-in-means model characteristic of the social interac-
tions literature (De Paula et al., 2020; Lewbel et al., 2021), where py captures endogenous interaction
effects and ¢y contextual effects.



The spatial Durbin panel data model 17

2.3.2 The parameterized spatial weight matrix and its normaliza-

tions

Two commonly used parameterized specifications of the spatial weight matrix are
the negative exponential and the inverse distance matrix. For i # j, the ijth element

of the negative exponential matrix in its raw, e.g. unnormalized, form is given by
w;i(00)" = e i, (2.4)
and the ijth element of the inverse distance matrix is
wij(o)" = 1/d, (2.5)

where d;; denotes the distance between units 7 and j and ¢y the distance decay
parameter of the corresponding spatial lag. Importantly, we depart from a hetero-
geneous distance decay structure, i.e., each spatial lag has its own distance decay
parameter g . Both functional forms have the property that w;;(o)" 270 1 and
wij(o)" 7% 0. This implies that, depending on the value gy, the full weight mat-
rix may be sparse or dense, i.e., for large values of gy it has many zeros and hardly
any non-zero elements, while small values of gy lead to a dense matrix without or
hardly any zeros. Note that the diagonal elements of the spatial weight matrix are
assumed to be zero to prevent units from predicting themselves.

In general, elements of the spatial weight matrix are normalized. We consider
two frequently used normalizations: normalization by row-sums and scalar nor-
malization by the largest eigenvalue. Let W' denote the matrix in raw form before
normalization. Row normalization is achieved by w;; = wlf]- / Z}il wl’j and has the
effect that the elements of the resulting weight matrix in every row sum to one.
Row normalization is generally applied for the two following reasons. It facilitates
the interpretation of operations with the weight matrix as an averaging of neigh-
boring values (Anselin and Bera, 1998), and the spatial autoregressive parameter pg
takes values in the parameter space (1/%,,i,, 1), where f,,;, is the smallest negative
eigenvalue of W (Ord, 1981). However, row normalization has also been criticized.
Kelejian and Prucha (2010) demonstrate that normalization of the elements of the
spatial weight matrix by a different factor for each row as opposed to a single factor

is likely to lead to misspecification problems. Elhorst (2014, Section 2.4) explains
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that this especially concerns distance decay matrices, because its economic inter-
pretation in terms of distance decay will then no longer be valid (Anselin 1988, pp.
23-24). The reasons for this are twofold. First, due to row normalization the spatial
weight matrix might lose its property of being symmetric, as a result of which the
impact of unit i on unit j is not the same as that of unit j on unit i. Second, remote
and centrally located units may end up having the same impact, i.e., independent
on their relative location.” To avoid such misspecification problems, Kelejian and
Prucha (2010) propose a normalization procedure where each element of W' is di-
vided by its largest eigenvalue x},,,, to get W = (1/x},,, )W'. When applying this
normalization, py again takes values in the parameter space (1/%,,;,, 1), with the
difference that the smallest negative eigenvalue of this matrix takes another value.
Since some rows will sum up to values greater than one and other to values smal-
ler than one, a scalar normalized weight matrix can no longer be interpreted as an
averaging of neighboring values. In empirical work both types of normalizations
are applied. Therefore we consider both row normalized and scalar normalized
(by its largest eigenvalue) forms of the negative exponential and inverse distance

matrices.

2.3.3 Assumptions

Lee and Yu (2010a) set out the assumptions under which the ML estimator of the
model parameters in Equation (2.1) are identified, consistent, and asymptotically
normal, both when assuming that the error terms are normally distributed or not,
and provided that the W matrices are non-stochastic, i.e., not parameterized. The
regular rate of convergence is v/N, provided that T is finite or fixed. Details are set
out in Appendix 2.A.1. In this section we discuss the assumptions which need to
be adapted, such that the proof by Lee and Yu (2010a) carries over to the model in
this study.

Assumption 2.1. The idiosyncratic errors vy, i = 1,2,..,Nand t = 1,2,..., T are nor-

mally distributed or are i.i.d across i and t with mean zero, variance 03 and finite fourth

9 The following example illustrates this. Consider a centrally located unit and a remote unit that both
have two neighbors. The distance of the first unit to its neighbours is d, while the distance of the second
unit to its neighbours is a multiple of d. Despite this difference in location, the entries in the inverse
distance matrix describing the spatial arrangement of the units in the sample will be 1/2 in both cases,
provided that the spatial weight matrix is row normalized.
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moment.

Assumption 2.2. The matrices W (8y) and W (ay)(k = 1,..K) are exogenous, but
stochastic with diagonal elements equal to zero. Before normalization, the row and column
sums of each spatial weight matrix are uniformly bounded or, alternatively, diverge to in-

finity though at a rate slower than N.

Assumption 2.3. S = Iy — poW(dp) is invertible and uniformly bounded in row and
column sums in absolute value. p is in the interior of I, where IP is an open but bounded

interval. pg is bounded away from zero.
Assumption 2.4. ¢g fork =1, ..., K is bounded away from zero.

Assumption 2.5. For all kPO‘BOkW((SO) + (POkW(‘XOk) #+ 0, and [IN, W((So), W((So)W(OCOk)]

are linearly independent.

Assumption 2.6. The regressors xy; are nonstochastic and bounded uniformly. There is

no multicollinearity among the regressors and their spatially lagged counterparts.

If the error terms are assumed to be normally distributed, the parameters can be
estimated by ML. If they are not truly normally distributed, they can be estimated
by quasi (Q)ML based on the properties specified in Assumption 2.1. Although
we consider both estimators, we only use the term ML. Assumption 2.2 allows for
weak divergence of the spatial weight matrix. In the case of a non-stochastic W,
W is assumed to be uniformly bounded in both row and column sums in absolute
value (Lee and Yu, 2010, Kelejian and Prucha, 2010, among others). We are dealing
with spatial weight matrices that depend on distance decay parameters Jy and «gx
(k =,1,...,,K), which makes the spatial weight matrices stochastic. Gupta (2019)
shows that many established estimation methods also work with an exogenous
stochastic spatial weight matrix.!? However, the fact that the spatial weight matrix
is stochastic, needs to be formalized in the weak divergence assumption, which
requires that the row and column sums of the stochastic spatial weight matrix may

diverge to infinity as long as the sample size N diverges to infinity faster. This is

10 There are also studies that allow for endogenous spatial weight matrices (Qu and Lee, 2015). Endo-
geneity can arise due to feedback effects, e.g. if the spatial weight matrix is based on economic variables,
which also depend on the dependent variable. However, if the spatial weight matrix depends on geo-
graphic distance between countries, counties or cities, such feedback effects do not occur, since distance
is exogenous. This property does not change when distance is parameterized.
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in line with Assumption 2 in Gupta (2019). Assumption 2.2 can be fulfilled when
the spatial weight matrix has a distance decay function form. For an exponential
distance decay matrix the condition of uniformly boundedness corresponds to a
distance decay parameter of g9 > 0, and for an inverse distance matrix to gg > 1
(Elhorst et al., 2021).11 Lee (2004) shows that the row and column sums of the
spatial weight matrix in a cross-sectional setting may also diverge to infinity as
long as the sample size N diverges to infinity faster.'> For this reason, we also
consider and experiment with an inverse distance matrix using a lower bound in

the interval (0, 1].

Assumption 2.3 is a modification of Assumption 3 in Lee and Yu (2010a). The
invertibility of S guarantees that Equation (2.3) is valid. For py we use the interval
(—1,+1), with the exception of pg = 0. If W(Jp) is scalar or row normalized the
upper bound is 1 by construction. The lower bound might be smaller than —1
when scalar normalization is applied, but negative values for pg in models with
only one spatial lag in the dependent variable are considerably less common than
positive ones, let alone negative values smaller than —1 (Elhorst, 2014, Section 2.5).
Therefore, imposing this lower bound is hardly restrictive. pg should be bounded
away from zero. If py equals zero, then the distance decay parameter Jy is not
identified. This follows from the information matrix of the parameters derived in
Appendix 2.A.4.'3 The same non-identification problem occurs for agy if ¢pr = 0
(k=1,...,K), which is excluded in Assumption 2.4.

Assumption 2.5 states further identification assumptions. The first part is differ-
ent and less restrictive than the condition pgBox + Pox # 0 for all k in Bramoullé et al.
(2009, Proposition 1) and Lee and Yu (2016, Lemmas 2 and 3). This is due to the fact

that we have not one common but different weight matrices for each spatial lag. Re-

1 When W is a parameterized exponential distance matrix, the corresponding row or column sum of
this series in a continuous space (to ease calculations) can be calculated as the integral le e 0%y =
(1/00)e"%(1 — e~ N). The row or column sums represented by this integral are upper bounded for
00 > 0if N goes to infinity. Similarly, the integral le x%_odx =1/(1- o) (N~ — 1) is upper bounded
for g9 > 1if N goes to infinity.

12 Although not part of the formal proof in Lee and Yu (2010a), they state that this result also carries
over to a panel data setting. This point occursat 1/(1 — go)(N'7% —1)/N =1/(1 — o) (1/N§ —1/N),
which converges to zero and thus is upper bounded for gy > 0 if N goes to infinity.

131f py equals zero, then the elements in the information matrix that are based on second order derivat-
ives involving &y equal zero (see equations A.35,A.40,A.44,A.47,A.48,A 49). Consequently one row and
column contains zeros only. Thus the information matrix is not invertible and the variance covariance
matrix is not defined.
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writing the reduced form in Equation (2.3) using the fact that (Iy — poW(dp)) ™! =
In+ poW(é()) + p%Wz((So) +...yields

K
y, = (In — poW (&))" [E (xkeBox + W (aor) Xkt Pok) + € + @ortn + Wi
k=1
K )
=) [xktﬁok + [0Bok W (80) + pox W (argi)|[IN + Y pﬁ_lwgl(éo)xkt]]
k=1 8:2
+ (In — poW (60)) " [0 + @orin + 4] 2.6)

This expression shows that the spatial lags W (dp)y, and W (apx)xx: (k = 1,...,K)
cancel each other out if pgBox + ¢ox = O for all k and 6y = ag; = ... = apx. Un-
der these restrictions, the spatial Durbin model (SDM) reduces to the spatial error
model (SEM) (Burridge, 1981), as a result of which the coefficients of the spatial
lags W (do)y; and W (agy)xy (k = 1,...,K) are not identified.!* However, in empir-
ical work we do not expect the estimates for the decay parameters Jy and agy to be

identical. Thus this assumption is not very restrictive.

Bramoullé et al. (2009) and Lee and Yu (2016) show that [, W (8y), W (69) W (agx)]
should also be linearly independent, as stated in the second part of Assumption
2.5. Since the diagonal elements of W (dy) and W (ay) are assumed to be zero for
all k, the identity matrix and W(dy) are independent from each other by construc-
tion. If Jp goes to infinity, the elements of W(dy) go to zero, such that it seems
that we end up with a null matrix that is dependent on the identity matrix. How-
ever, the elements of distant units go to zero much faster than nearby units, as a
result of which the distance decay matrix converges to a binary contiguity matrix,
which is independent of the identity matrix.!> For the same reasons, the product
of two distance decay matrices will not be equal to one of them by construction:
W (o) # W (o)W (o)

As in Lee and Yu (2010a), we assume exogenous and uniformly bounded re-
gressors. Given the exogeneity of the explanatory variables and the weak diver-

gence of the corresponding spatial weight matrices, the spatially lagged regressors

14 We also validated these findings as part of our Monte Carlo simulation experiment in the next section.
15Suppose two elements 1/2 and 1/4 and that both are taken to the power 10. Then the first element
becomes 1024 times as large as the second element. When the matrix is row or scalar normalized sub-
sequently, the first element will dominate the second, i.e., the last element can be set to zero equally well
without changing the structure of the weight matrix.
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are also bounded uniformly. Assumption 2.6 also rules out multicollinearity among

the regressors.

2.3.4 Estimation

Generally, individual fixed effects are concentrated out by demeaning the variables
by their individual-specific means (Baltagi, 2005).!® The dependent variable of this
demeaned model reads as y;; = yi — %2;21 Yit. Similar transformations are ap-
plied to right-hand side elements of the regression equation. The demeaned model

for time period ¢ is

N K K N
Vir = 0 Y wii(00)Fit + Y, XitBoxk + Y Y wij (o) XejePok + Dot + Vi (2.7)
j=1 k=1 k=1j=1
Although this transformation does eliminate ¢, it induces linear dependence of the
transformed errors 7;; over time. Consequently 72“ will be biased when T is small
or fixed. To get an unbiased estimate, Lee and Yu (2010a) propose the following
bias-correction (bc) 72¢~% = ~L-52%_ This correction can be easily carried out after
the parameters of the model have been estimated. When stacking the individual

observations in each time period t, the demeaned spatial Durbin model of Equation

(2.7) can be rewritten as
K K N
Y, = poW(60)¥, + Y XeBok + Y W (o) Xt + Doren +01, t=1,...,T, (2.8)
k=1 k=1

where ¥,, X;, and 9; are N x 1 vectors, and ¢y is an N x 1 vector of ones. When

also xy; and W (g )xy; for each k, the model reads as
Y = poW(d)y, + 52fgo + o, (2.9)

where the N x (2K + 1) matrix X : is the corresponding sorted matrix of all ex-

planatory variables, their spatial lags and dummy variables for time periods, and

16 This is because these fixed effects are not of interest (or not reported), cannot be estimated consistently
when T is small, and might affect the accuracy of parameter estimates when taking them up as part of
the regressors if N grows large.
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is given by
X; = [F1p,. . ¥ty W(o1)F1t, - .., W (o) ¥k, Ln]- (2.10)

To avoid multicollinearity, T — 1 time period dummies are included. Then {, =
! ! ~ ! P . .
(By, ¢, @ot) - The remaining parameters to be estimated are the spatial autore-
gressive parameter py, the distance decay parameters for all spatial lags g = (o, &g 1,
., &og)" and ag. Defining the full set of parameters as 6 = (gl,p, o2, txl)/, the log-

likelihood function of the model is given by

NT
InL?(0) = —Tlog(Zrm )+ Tlog|In — pW (6 2 — th :(0), (2.11)
where
w(0) =7, —pW(0)y, — X . (212)

The ML estimator can be obtained by maximizing the log-likelihood function with
respect to 0.7 The parameter vector { and the scalar o2 can be solved analytically

from their first order conditions, given p and & = (J, a1, ..., & K)/, which yields

Z Xt Xt 2 Xt 5y, (2.13)

~ % *UW

X;7°) (S(p,0)y, — XiT"), (2.14)

a_Zw

MH

-1
P& = T :1
where S(p,8) = Iy — pW(5). By substituting these solutions for 7 and 72* into
Equation (2.11), the concentrated log-likelihood function with respect to the K + 2
remaining estimated parameters p” and a® are obtained. Given the solution of
this maximization problem for p* and &%, we can subsequently determine the un-

2w

conditional ML estimates of ( and 0<%, as well as the bias-corrected outcome

G2w—bc — TzlaZw
We explored two ways to find the ML estimates of p and «. The first is to set

their first order derivatives equal to zero, given Zw and ¢%¥, and to solve this sys-

17 Mathematical expressions for the first and second order conditions and the information matrix, which
will be used to determine the variance-covariance matrix of the parameters, are reported in the ap-
pendix.
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tem of equations numerically. Technically, this is complicated not only because the
parameters appear in multiple equations, but also because we ended up with mul-
tiple solutions, including unbounded solutions. The second way is to maximize the
concentrated log-likelihood function of p and «. The concentrated log-likelihood

within this setup is programmed as

NT

logL¥ (o, 7", 52¢) — fglog(Zm?zw) + Tlog|Iy — pW(3)| ~ o1, (2.15)

where 2%

is programmed as in (2.14), and Zw as part of %% in (2.14) is programmed
as in (2.13). This has the effect that if one or more values of p and « change, the

estimates for (o, &) and 52°(p, &) change accordingly.

One final issue is the estimation of p and ¢ if W(J) is not row but scalar nor-
malized. The issue is that pW(é) = pW'(5)/«},,, is equivalent with p*W*(J),
where p* = cp and W* () = W(J)/c and c denotes any scalar factor (Kelejian and
Prucha, 2010, p.55). For this reason, Ahrens and Bhattacharjee (2015) normalize by
© = 1 and then try to estimate the elements of the spatial weight matrix. We apply
the following approach. First, p is estimated setting § = 1 (the default value) and
W () is scalar normalized, which yields p = piyitiar- This piniriar is then kept fixed
when maximizing the concentrated log-likelihood function for ¢ and the other ay
(k =1,...,K). During this iterative process W (d) is scalar normalized every time
6 changes. Only after the optimal values for §, a; (k = 1,...,K) are found, among
which dyr, p is estimated again to get p = ppr.. We developed an estimation
routine, which enables estimating the proposed model for different normalizations
and distance decay functions. A description of the routine and the expressions for
the variance-covariance matrix of the parameter estimates can be found in the ap-

pendix of this chapter.

2.3.5 Interpretation: direct and indirect spillover effects

A quantitative interpretation of the coefficient estimates in Equation (2.1) is not
advisable, because they do not represent the marginal effects of the explanatory
variables (LeSage and Pace, 2009). These marginal effects are obtained by taking
the first-order derivatives of the reduced form of the SDM in Equation (2.3). This
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yields an N x N matrix ¥} of the form
Y= (In— oW(0)) '(In - Bx + W(ay) - ¢)  for k=1,.. K (2.16)

Since the weight matrices do not change over time, this expression is the same for
each time period t. Every diagonal element of ¥ reflects the impact of changing
the kth explanatory variable of one observational unit i on the dependent variable
of i. Every off-diagonal element reflects the impact of changing the kth explanatory
variable of one observational unit i on the dependent variable of another unit j, j #
i. To suppress the amount of output, LeSage and Pace (2009) suggest two summary
indicators: the direct effect DE; measured as the average of all diagonal elements
of ¥, and the indirect spillover effect IE; measured as the average row or column
sum of the off-diagonal elements excluding the respective diagonal element. Both

effects are calculated as

DE = wtr(¥y) = otr{(Iy — pW(8) Iy B+ Wia) - 90)},  @17)

N
IE, = %LIN‘I’]{LN - %tr(‘l’k)
= N = pW () (I Bt W) - g en—
S = pW(8) 7 (I - B+ W(ag) - i)} .18)

These expressions show two facts. First, the parameters ¢ of the spatial lags of the
explanatory variables contribute to the required flexibility of the indirect spillover
effects, as claimed in the introduction of this paper. This can be seen by imposing
the restriction ¢, = 0 to obtain the SAR model without spatial lags in the explanat-
ory variables. Then the matrix ¥y simplifies to ¥; 4R = (Iy — pW(8)) 1 (In - Br) =
Br(In — pW(8))~! = BiS;, and as a result the direct effect to ﬁ—]\’]‘tr(sl) and the in-
direct spillover effect to %l,NS IIN — %tr(s 7). Consequently, the ratio between the

indirect spillover effect and the direct effect becomes

IE]‘EAR _ %LINSILN — %t?’(sl)
SAR —
DEAR Btr(sy)

= 1SN/t (S)) — 1, (2.19)
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which is independent of the parameter B;. This independence implies that this
ratio is the same for every explanatory variable in the model.'®

The second fact Equations (2.17) and (2.18) show is that parameterizing the spa-
tial weight matrix of every explanatory variable enhances this flexibility by the
decay parameters § and ay. This is because the distance at which explanatory vari-
ables may still have effect on other units, i.e., the spatial range, may also be different
from one variable to another.

To draw statistical inferences on the direct and indirect spillover effects, we use

the delta method since it saves on computation time. Mathematical expressions are

provided in Appendix 2.A.6.

2.4 Monte Carlo simulations

We conduct Monte Carlo experiments to evaluate the performance of our proposed
estimator with the parameterized exponential and inverse distance matrix in row
normalized and scalar normalized form. Therefore we generate separate experi-
ments for each type of spatial weight matrix and normalization and investigate the
performance of our estimator and compare it with other existing approaches.

Our data generating process contains two explanatory variables: x1;; ~ N(1,2)
and xp;; ~ N (—1.5,3.5). The coefficients of the first variable and its spatial lag are
B1 = —1land ¢; = 1.5, and of the second variable and its spatial lag are B, = 0.2
and ¢» = —0.3. The unobserved individual fixed effects and the error terms are
both generated from a normal distribution with mean 0 and variance 1. We set
N = {200,800} and T = 5 and the number of iterations is 1000. To construct
distance matrices between the cross-sectional units, we use the coordinates of N
data points evenly set in a rectangle of 10 x 20 for N = 200 and 20 x 40 for N =
800. By using a rectangle, the row and scalar normalized matrices are different by
construction. These distances are used to calculate the inverse distance and the
exponential distance decay matrix. The decay parameters are 6 = 2, ¥ = 1.5, and
«p = 3. Finally, the parameter of the spatial lag of the dependent variable is set to
o =0.5.

18 Elhorst (2010) is the first who has pointed this out, though only based on a simple numerical ex-
ample, and for this reason advocated the inclusion of spatial lags in the explanatory variables to avoid
unnecessary restrictions on the sign and magnitude of spatial spillovers in empirical research.
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The simulation design described above serves as our basic case and is labelled
Case 1. Additionally, we carry out further experiments, where we vary either the
spatial lag parameter p or one of the distance decay parameters.

We compare the performance of three estimators. We label our proposed ap-
proach where all spatial weight matrices are parameterized as PWFE, where P in-
dicates parameterized, W indicates spatial weight matrix, and FE indicates fixed
effects.

In addition we investigate what would happen if a practitioner replaces all spa-
tial weight matrices by one common spatial weight matrix with a decay parameter
of 1 for all spatial lags. This reflects the most widely used approach applied by
practitioners. Since researchers do not know the true decay parameters and the
true specification of the spatial weight matrices, this investigation may throw more
light on how harmful this can be and is referred to as WFE (one common W and
fixed effects). Finally, we evaluate the performance of an estimator assuming that
the true spatial weight matrices are known to the researcher. Note that this reflects
an ideal, but hypothetical situation. However, this may throw more light on the re-
lative performance of our approach and the associated costs in terms of estimation
errors compared to this ideal estimator which we refer to as TWFE (true T spatial
weight matrices W and fixed effects).

In our analysis we investigate both the parameter estimates and the estimates
of the direct and indirect spillover effects.!* To judge the performance of the estim-
ators, we consider several statistics: the average bias (Bias), the root mean square
error (RMSE), the median bias (Mbias), and the median absolute value of the bias
(Mabias). The latter two are used as they are more robust to outliers. Further-
more, we test for each parameter whether it equals its true value and report mean
and standard deviations of the p-values. If the underlying asymptotic distribution
is true, then under the null the p-values should follow a U(0,1) distribution, and
thus should have a mean p-value of 0.5 and a standard deviation of approximately
0.29.

Table 2.1 reports the Bias, RMSE, Mbias, and Mabias of the parameter estimates;

Table 2.2 reports the same statistics of the direct and indirect spillover effects; and

191eSage and Pace (2018) demonstrate that past studies’ focus exclusively on point estimates may not
provide useful information regarding the statistical properties of the marginal effects, i.e., the direct and
indirect spillover effects obtained from these point estimates.
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Table 2.3 reports mean and standard deviation of the p-values of both parameter

estimates and direct and indirect effects. To save space, we focus on the results of

the negative exponential distance matrix. Results for the inverse distance matrix

can be found in Appendix 2.A.7. When focusing on the proposed estimator PWFE

Table 2.1. Simulation results for Casel: p = 05,0 =2, 01 =1.5,0p =3

Settings Exponential: row Exponential: scalar normalized
T N Bt B02) ¢i(15)  ¢(03) p05) 2N @) «(15) m:0B) | fiED 02 ¢1(5)  $:03) p05) 21 0@ a5 ax6)
WFE 5 200 | Bias 0.037  -0.011 0.327 -0.140 -0.209  0.099 0.032  -0.010 0.309 -0.156 -0.237  0.082
RMSE 0.038 0.015 0.329 0.153 0214 0116 0.033 0.015 0.312 0.171 0.245  0.102
Mbias 0.037  -0.011 0.327 -0.138 -0.207  0.098 0.032  -0.010 0.308 -0.156  -0.236  0.081
Mabias | 0.037 0.011 0.327 0.138 0207 0.098 0.032 0.011 0.308 0.156 0.236  0.081
TWEFE | 5 200 | Bias -0.000 0.000 0.001 0.000 0.002  -0.011 0.000 0.000 0.002 0.000 0.003 -0.011
RMSE 0.008 0.010 0.024 0.025 0.025 0.053 0.008 0.010 0.027 0.027 0.029  0.053
Mbias 0.000 0.000 0.002 -0.000 0.002 -0.013 0.000 0.000 0.002 0.000 0.004 -0.012
Mabias | 0.005 0007 0016 0016 0017 0037 0005 0007 0019 0017 0019 0.037
PWFE | 5 200 | Bias 0001 -0.000 0011 0003 -0.014 -0013 0036 -0014 0156 | 0001 0000 0002 -0003 -0.006 -0.013 0012 -0.004 0189
RMSE 0.010 0.010 0.055 0.036 0.053 0.054 0.268 0.109  0.858 0.008 0.010 0.044 0.038 0.032  0.054 0.283 0.095 0.930
Mbias 0.001  -0.000 0.007 0.000 0.012 -0.016 0.033 0.016 -0.003 0.001 0.000 0.001 0.000 0.005 -0.017 0.013 -0.004 0.029
Mabias | 0.006 0.007 0.034 0.024 0.033 0.038 0.172 0.070  0.490 0.005 0.007 0.028 0.026 0.022  0.038 0.194 0.064 0516
WFE 5 800 | Bias 0.033 0.010 0.359 -0.185 0.200  0.104 0.029 0.010 0.368 0.196 0.196  0.091
RMSE 0.033 0.011 0.360 0.188 0202 0.108 0.029 0.011 0.368 0.199 0.198  0.096
Mbias 0.033 0.010 0.358 -0.183 0.200  0.104 0.029 0.010 0.367 0.194 -0.1951  0.091
Mabias | 0033 0010 0358 0183 0200 0.104 0029 0010 0367 0194 0195 0091
TWFE | 5 800 | Bias 0000 0000 -0.001 0001 -0.0010 0.000 0000 0000 -0.001 0001 -0.001 0.000
RMSE 0.004 0.005 0.014 0.014 0.015  0.026 0.004 0.005 0.015 0.014 0.016  0.026
Mbias 0.000  -0.000 0.001 -0.002 0.001  -0.001 0.000 0.000 0.001 0.002 0.000 -0.001
Mabias | 0.003 0.003 0.009 0.009 0.010  0.017 0.002 0.003 0.011 0.009 0.011  0.017
PWFE | 5 800 | Bias 0.000 0.000 0.000 -0.002 0.002 -0.001 0.013 0.002  0.058 0.000 0.000 0.001 0.002 0.008 -0.001 0.010 0.003  0.064
RMSE 0.005 0.005 0.030 0.020 0.027  0.026 0.135 0.057  0.399 0.004 0.005 0.025 0.021 0.017  0.026 0.137 0.050 0.413
Mbias | 0000 -0000 -0.001 -0.000 -0.002 -0.002 0011 0000 0.006| 00000 -0.000 -0002 -0.000 -0.001 -0001 0004 0000 0.015
Mabias | 0003 0003 0021 0013 0019 0016 0.09 0036 0261 | 0003 0003 0017 0014 0012 0017 009 0034 0.266

Table 2.2. Direct (DE) and indirect (IE) spillover effects of variables x; and x; for Case I
using the parameter estimates in Table 2.1

Settings Exponential: row normalized Exponential: scalar normalized

T N DExy DExp IExy IExp | DEx; DExp IExy; IExp

WEFE 5 200 | Bias 0.001  0.002 0.224 -0.156 | 0.000 0.001 0.165 -0.150
RMSE 0.007 0.011 0242 0.177 | 0.007 0.010 0191 0.170

Mbias 0.001  0.002 0225 -0.155| 0.000 0.001 0.162 -0.150

Mabias | 0.005 0.007 0225 0.155| 0.005 0.007 0.162 0.150

TWFE | 5 200 | Bias 0.000  0.000 -0.005 0.001 | 0.000 0.000 -0.006 0.001
RMSE 0.007  0.010 0.069 0.049 | 0.007 0.010 0.072 0.047

Mbias -0.001 0.000 -0.004 0.001 | -0.001 0.000 -0.008  0.001

Mabias 0.005  0.007 0.048 0.032 0.005 0.007  0.051  0.030

PWFE | 5 200 | Bias 0.000  0.000 -0.001 -0.002 | 0.000 0.000 -0.002 -0.003
RMSE 0.007  0.010 0.088 0.069 | 0.007 0.010 0.095 0.067

Mbias -0.001  0.000 -0.005 0.002 | -0.001  0.000 -0.008 0.001

Mabias | 0.005 0.007 0.058 0.047 | 0.005 0.007 0.062 0.044

WEFE 5 800 | Bias 0.001 0.001 0275 -0.223 0.001 0.001 0271 -0.216
RMSE 0.004 0.006 0282 0.228 0.004  0.006 0.278 0.221

Mbias 0.001 0.001 0.275 -0.220 0.001 0.000 0.268 -0.215

Mabias 0.002 0.004 0.275 0.220 0.002  0.004 0.268 0.215

TWFE | 5 800 | Bias 0.000  0.000 -0.002 -0.002 | 0.000 0.000 -0.001 -0.002
RMSE 0.004 0.006 0.044 0.027 | 0.004 0.005 0.043 0.027

Mbias 0.000  0.000 -0.003 -0.002 | 0.000 0.000 -0.002 -0.003

Mabias | 0.002 0.004 0.031 0.018 | 0.002 0.004 0.030 0.018

PWFE | 5 800 | Bias 0.000  0.000 -0.003 -0.003 | 0.000 0.000 -0.002 -0.003
RMSE 0.004 0.006 0.057 0.039 0.004 0.005 0.056 0.039

Mbias 0.000  0.000 -0.007  0.001 0.000  0.000 -0.003 0.000

Mabias | 0.002 0.004 0.037 0.026 | 0.002 0.004 0.038 0.025
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Table 2.3. Mean and standard deviation of the p-values of the parameters and the direct
(DE) and indirect (IE) spillover effects of variables x; and x;

Settings Negative exponential: row normalized
T N Bi(-1) B2(02) ¢1(15) $2(-03) p(05) 5(2) a;(15) a@ DEx; DEx, IEx; IEx,
WFE 5 200 | Mean | 0.001 0.338 0.000 0.058  0.000 0.496 0486 0.023 0.113
Std 0.009 0.295 0.000 0.152  0.005 0285 0291 0.092 0213
TWFE | 5 200 | Mean | 0.496 0.491 0.495 0.494 0478 0.489 0493 0492 0497
Std 0.288 0.293 0.289 0295 0.288 0279 0292 029 0.295

PWFE | 5 200 | Mean | 0.488 0.487 0.483 0482 0466 0496 0473 0485 0489 0487 0505 0.486
Std 0.302 0.291 0.288 0.286 0.291 0.289 0301 0.284 0279 0294 0.295 0.291

WFE 5 800 | Mean | 0.000 0.167 0.000 0.000  0.000 0.501  0.496 0.000 0.000
Std 0.000 0.233 0.000 0.000  0.000 0298  0.294 0.000 0.005
TWFE | 5 800 | Mean | 0.504 0.502 0.502 0.499  0.492 0505 0495 0488 0.490
Std 0.292 0.289 0.288 0.293  0.294 0.301 0290 0.291 0.294

PWFE | 5 800 | Mean | 0.499 0.503 0.482 0.498 0.480 0.492 0479 0487 0503 0491 0497 0.493
Std 0.298 0.289 0.290 0.290 0.297 0.294 0.300 0.291 0302 0291 0.289 0.289
Negative exponential: scalar normalized

N Bi1(-D)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(0.5) 6(2) ay(1.5) ax(B) DEx; DExy IEx; IEx

WFE 5 200 | Mean | 0.006 0.353 0.000 0.059  0.001 0.496 0489 0.090 0.115
Std 0.027 0.296 0.000 0.152  0.007 0280  0.290 0.205 0.209

TWEFE | 5 200 | Mean | 0.491 0.493 0.489 0.498  0.487 0.490 0493 0479 0.500
Std 0.286 0.293 0.288 0.294  0.293 0279 0292 0286 0.296

PWFE | 5 200 | Mean | 0.520 0.494 0.581 0.494 0.643 0.491 0.538 0.503  0.491 0.489 0.501 0.489
Std 0.284 0.292 0.264 0.284 0.238 0.285 0281 0280 0279 0293 0290 0.288

WFE 5 800 | Mean | 0.000 0.184 0.000 0.000  0.000 0.496  0.498 0.000 0.001
Std 0.000 0.243 0.000 0.001  0.000 0298  0.291 0.000 0.009
TWFE | 5 800 | Mean | 0.510 0.502 0.497 0.497  0.489 0503 0495 0483 0.486
Std 0.296 0.289 0.289 0.290 0.287 0300 0.290 0.289 0.289

PWFE | 5 800 | Mean | 0.528 0.504 0.566 0502 0.644 0500 0526 049 0502 0492 0491 0.500
Std 0.289 0.289 0.273 0.290 0.233 0.281 0273 0.288 0301 0290 0.292 0.292

first, we observe the following patterns. First, the biases are small and acceptable.?
Generally, they are smaller for the coefficients of the variables than for the decay
parameters, and smaller for N = 800 than for N = 200. Similarly, increasing the
sample size leads to a decrease in the RMSE and the median absolute value of the
bias.

In line with the findings from Table 2.1, bias, RMSE, Mbias, and Mabias of the
direct and indirect effects are very low in Table 2.2. While the biases in the coeffi-
cients and decay parameters are already small in Table 2.1, the biases in the direct
and indirect spillover effects in Table 2.2 appear to be even smaller.?! Increasing the
sample size leads to a decrease of bias, RMSE, Mbias, and Mabias.

Table 2.3 shows that for PWFE average p-values and their standard deviation
closely fluctuate around 0.5 and 0.29, respectively. Only for the coefficient p differ-

ences are slightly higher when scalar normalization is used (for the negative expo-

20One exception is the average bias in the decay parameter a;. However, this is driven by a few outliers
as can be seen when comparing with the median bias.

2 The explanation could be that biases in these effects are a nonlinear function of five parameters
(0, Br, P, 6, &g, see Equations (2.17) and (2.18)). Consequently, a bias in one of these parameter may
be compensated by another opposite bias in one of the other parameters, as a result of which the bias in
the indirect spillover effect, the main focus of applied practitioners, remains small.
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nential matrix mean and standard deviation are 0.65 and 0.23, respectively, and for
the inverse distance matrix we have an average of 0.69 and a standard deviation of
0.21). However, this has no adverse effect on the p-values of the direct and indirect

spillover effects derived from p and other coefficients.

As expected, the performance of the model deteriorates when using the WFE
estimator which assumes the same spatial weight matrix with a decay parameter
of 1 for all spatial lags, while the true but unknown values are 2, 1.5 and 3. This
is pronounced in the higher values of bias, RMSE, Mbias, and Mabias in Table 2.1.
Especially, the estimates on ¢1, ¢, and p are severely biased. When investigating
the effect estimates in Table 2.2, we see that the bias in the direct effect estimates is
small, not more that 0.0002 at the maximum, but the bias in the indirect spillover
effects is large. We find biases that exceed 0.5 (in absolute value). This is a cause for
concern and supports the approach advocated in this chapter whereby the decay
parameters of the spatial lags are estimated rather than set at one particular value
for all spatial lags in advance. These biases are also reflected in the p-values in
Table 2.3. Except for the direct effect estimates, the p-values of indirect effects and

the parameter estimates are far off the desired values.

In the exceptional case that researchers would know the true specification of all
spatial weight matrices, the model parameters can be estimated with greater accur-
acy than in the situation where the decay parameters also need to be estimated (see
Table 2.1). This is also evident when comparing the median absolute value of the
bias (Mabias) of the indirect spillover effects of TWFE and PWFE reported in Table
2.2. As expected, in Table 2.3 TWFE’s measures of the p-values are closer to the de-
sired levels. However, TWFE only reflects a hypothetical situation as practitioners
do not know the true values of the decay parameters. In general, the differences
in the results of TWFE and PWFE are rather small compared to the differences and

negative consequences of using wrong pre-specified weight matrices as with WFE.

We conduct similar experiments where we vary p, a3, or a1. An overview of the
different parameter configurations and the results can be found in Appendix 2.A.7.
We summarize the main findings here and focus on the estimates of the direct and

indirect effects in particular.

Changing the p parameter from rather strong (0.5 in Case I) to mild spatial de-

pendence (Case II, p = 0.25), or even to a negative value (Case III, p = —0.25), does



The spatial Durbin panel data model 31

not affect the pattern of results. By contrast, it does change when setting o = 0.01
(Case IV), which simulates the case where a spatial lag hardly matters and its de-
cay parameter is difficult to identify, in line with Assumption 2.3. This is confirmed
in the Monte Carlo simulation results: bias and RMSE of § increase substantially
and to unacceptable levels. In case of the exponential distance matrix, the bias in
o remains more or less the same, while in case of the inverse distance matrix, both
the bias and the RMSE of this parameter increase more. Importantly, this appears
to have no effect on the bias and RMSE of the direct and indirect spillover effects.
This is reassuring news for practitioners mainly interested in direct and indirect

spillover effects estimates of the explanatory variables.

In the remaining experiments, we aim at investigating the parameter space of
distance decay parameter in greater detail. Recall, uniformly boundedness in As-
sumption 2.2 implies the following lower bounds: 0 for the exponential distance
decay matrix and 1 for the inverse distance matrix. Weak divergence in Assump-
tion 2.2 implies a lower bound of 0 for the inverse distance matrix. Thus we invest-
igate the consequences when the distance decay parameter is close to these lower
bounds, e.g. when ay = 1 (Case V) and a; = 0.5 (Case VI). For the exponential
distance decay matrix the bias decreases, especially if x; = 1. At a; = 0.5 the bias
reduction becomes smaller. On the other hand, the median bias always remains
close to zero. For the inverse distance matrix we see no improvement, but a deteri-
oration, although the median bias remains close to zero, especially for the larger
value of N = 800. This implies that the distance decay parameter of an exponen-
tial distance matrix can be estimated with greater accuracy than that of an inverse
distance matrix. This is because of the property that W (o) of the exponential de-
cay matrix is uniformly bounded in both row and column sums in absolute value
for g9 > 0, whereas this is not the case for the inverse distance matrix. Then this
property only holds if o9 > 1. This implies that values of ¢y < 1 need to be handled

with care when employing inverse distance matrices.

Another pattern occurs when increasing the decay parameter to an extremely
high value, i.e., a; = 10 (Case VII). Note this value resembles the case that w;;(o)"
%% 0, as a result of which the spatial weight matrix boils down to a first-order bin-
ary contiguity matrix. Bias and RMSE of & increase substantially, while bias and

RMSE of the corresponding spatial lag parameter ¢ remain largely the same. The
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increased bias and RMSE in the decay parameter «1 appears to have no effect on
the bias and RMSE of the direct and indirect spillover effects. This finding implies
that a practitioner who finds a high value for one of the decay parameters, perhaps
one equal to the upper bound, can still value the direct and indirect spillover ef-
fects of the corresponding explanatory variable or might adopt a first-order binary

contiguity matrix equally well.

2.5 Empirical analysis

The empirical analysis in this section is based on Yesilyurt and Elhorst (YE) (2017),
who investigate military spending measured as a ratio of GDP, also known as the
defense burden, in 144 countries over the period 1993 to 2007. Explanatory vari-
ables are GDP, population, international war, civil war, and political regime. The
dependent variable and the first two explanatory variables are measured in logs,
while the latter three are measured as scores. The scores on the variables inter-
national war and civil war range from 0 (no war) to 10 (greatest). The variable
political regime ranges from -10 to +10, where -10 indicates strongly autocratic and
+10 strongly democratic countries.??

In their paper, YE compare several spatial econometric models and eight po-
tential spatial weight matrices. However, exponential distance decay and inverse
distance matrices have not been investigated. Using Bayesian comparison methods
developed by LeSage (2014, 2015), they find that the SAR model, e.g. the specifica-
tion that only includes a spatial lag in the dependent variable, in combination with
a spatial weight matrix that is specified as a first-order binary contiguity matrix
based on maritime borders produces the highest Bayesian posterior model probab-
ility. YE do not find any (or hardly any) significant indirect spillover effects, also
not when estimating the SDM instead of the SAR model. This finding is typical of
many empirical studies applying SDM: often none or only some of the spatial lags
in the explanatory variables and/or indirect spillover effects appear to be signific-
ant. One potential problem could be that these studies adopt one common spatial
weight matrix for all spatial lags in the model. In the Monte Carlo simulations,

it has been found that the direct effects are less sensitive for selecting the wrong

22 For more details on the data and the variables we refer the reader to Yesilyurt and Elhorst (2017).
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spatial weight matrix. By contrast, the indirect spillover effects, which tend to be
the main focus of empirical studies, appeared to be extremely sensitive to a wrong

choice of the spatial weight matrix.

Therefore we investigate whether using parameterized spatial weight matrices
based on distances alter the results. Specifically, we distinguish different matrices
for each spatial lag in the model. The results of several estimations are reported in
Table 2.4. First column reports the results from an SDM using the preferred binary
contiguity matrix from YE. The coefficient estimate of the spatial autoregressive
parameter p is 0.241 and significant at the 1% level. Three of the five explanat-
ory variables in the model appear to have coefficients and direct effects that are
significant at the 1% level and one at the 10% level. However, only one of their cor-
responding spatial lags and indirect spillover effects, the political regime, appears
to be significant at the 5% level. We also test whether there is empirical evidence in
favor of the SDM, e.g. we conduct a Wald test testing Hy : ¢ = 0. The test statistic
is 7.85 with a p-value of 0.16. Consequently, no empirical evidence in favor of the
SDM is found. The next four columns of Table 2.4 consider two generalizations of
YE.

First, we depart from the binary contiguity matrix and investigate row and
scalar normalized negative exponential and inverse distance matrices when estim-
ating one common decay parameter for all spatial lags in the model. This is the first
step a practitioner can undertake to determine the best performing spatial weight
matrix empirically. The estimated distance decay parameters amount to 2.022 and
2.305 for the row and scalar normalized exponential and to 2.113 and 0.766 for the
row and scalar normalized inverse distance matrices, and are all significant. How-
ever, when comparing the performance of the SDM for these matrices with that
of the binary contiguity matrix, measured in terms of the log-likelihood function
value, these parameterized spatial weight matrices mean no improvement. Just as
for the binary contiguity matrix, no empirical evidence in favor of SDM is found: at
most one spatial lag of the explanatory variables appears to have a coefficient and
one indirect spillover effect that is (weakly) significant; and also the Wald test does

not reject.

In the remainder of the analysis we relax the assumption that all spatial weight

matrices are the same for each spatial lag. We apply the proposed PWFE estimator
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that allows for different distance decay parameters for each spatial weight matrix.
Due to the fact that the row normalized exponential distance decay matrix pro-
duces the highest log-likelihood function value of the previous four options being
considered, the practitioner may use this specification to see whether the perform-
ance of the model can be improved by estimating the decay parameter for each
single spatial lag.?3

Column 6 reports the estimation results of PWFE. The log-likelihood function
value is —1311.0, which is slightly better than the log-likelihood function value of
-1311.4 for the binary contiguity matrix, even though the estimated decay paramet-
ers for the spatial lags of internal war and political regime reach the upper bound.
For comparison, we run another regression, where we use the estimated spatial
weight matrices based on the estimated distance decay parameters from Column 6.
We label this estimator as EWFE and the results are reported in Column 7. When
the decay parameter equals the upper bound of 10, we found out that most of the
elements of the row normalized exponential distance decay matrix are rather small
(smaller than 0.005) and can be replaced by zeros. The results reported in Column
7 confirm that this has hardly any effect on the outcomes. Finally, Column 8 re-
ports the estimation results when the spatial lags for which an upper bound of
10 was found are replaced by the original binary contiguity matrix used by YE
(labeled EWFEBC). In this case the log-likelihood function value increases further
to -1309.23.

The coefficient estimates and the direct and indirect effects do not change when
the spatial weight matrices are pre-specified using the estimated values obtained
for the decay parameters or when the spatial weight matrices for the spatial lags
of internal war and political regime are specified as a binary contiguity matrix. By
contrast, the t-values of the spatial lags and of the indirect spillover effects tend
to go up slightly. This is because the decay parameters are no longer part of the
variance-covariance matrix that is used to determine their significance levels. It
reflects the common approach applied by practitioners who pre-specify the spatial

weight matrices.

23 The reason to limit this to one matrix is because of the necessity to consider different starting values,
which complicates the analysis. By comparing several experimental designs, we find out that the best
option to find the global optimum is to use both a low and a high starting value (0.5 and 3.5) for the
decay parameter of each spatial lag. Since we have K 4- 1 decay parameters (4, a1, . .., ax), this design is
accompanied with 2K+1 different sets of starting values, which is 64 for our empirical illustration.



The spatial Durbin panel data model 35

When comparing the direct effects of YE in Column 1 with those in Columns 6
to 8 we see, in line with the Monte Carlo simulation experiments, that they are not
sensitive for the choice of weight matrix. In contrast, when comparing the indirect
spillover effects, we see different results. For GDP we find a significant indirect
spillover effect in Columns 7 and 8 of about -1.4. The direct effect of this variable
indicates that if the level of GDP in a country increases, the defense burden in that
country also increases though less than proportionally. The spillover effect shows
that it also has a diminishing effect on the defense burden of its neighbours. The
indirect spillover effect of civil war is also (weakly) significant in Columns 7 and
8 and fluctuates around -0.100. This means that a country sharing a border with a
country involved in a civil war does not consider this as a potential threat. Finally,
the indirect spillover effect of the political regime is significant and takes values
that range from -0.012 to -0.035. A similar and significant effect of -0.030 was found
when adopting one common binary contiguity matrix. This outcome demonstrates
that the defense burden does not only increase with a higher level of autocracy in
the own country, but also with higher levels of autocracy in neighbouring countries.

In sum, three indirect spillover effects appear to be significant. This is in contrast
to the model of YE based on one common binary contiguity matrix, where only
one is significant. The magnitudes of the indirect spillover effects also differ, in
line with the Monte Carlo simulation results in Section 4. The same applies to the
coefficients obtained for the spatially lagged regressors, as a result of which the
hypothesis Hy : ¢ = 0 now also needs to be rejected. We find Wald test statistics
with p-values of 0.02.

The overall conclusion of this empirical illustration is that allowing for different
spatial ranges of the explanatory variables affects parameter estimates and indirect
spillover effects. Stronger and significant empirical evidence is found in favour of

SDM and indirect spillover effects.

2.6 Conclusion

The purpose of this chapter is to break the practice of employing one common
and pre-specified spatial weight matrix for all spatial lags by parameterizing each

spatial weight matrix with a distance decay parameter. We investigate two func-
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tional forms of distance decay, the negative exponential and the inverse distance
matrices, and two types of normalization, row normalization and normalization of
the weight matrix by its largest eigenvalue. The spatial Durbin model is taken as
point of departure due to its popularity in empirical research and because its indir-
ect spillover effects are more flexible compared to models that do not contain spatial
lags in the explanatory variables. It is found that the extension with distance decay
parameters helps to further increase this flexibility, because the distance at which
explanatory variables still have an effect on other units, i.e., the spatial range, will
no longer be the same but be different from one explanatory variable to another.

The difficulty of parameterizing spatial weight matrices is that the econometric
model is no longer linear in its parameters. Our literature overview shows that pre-
vious studies were not able to deal with this adequately. We extend the work of Lee
and Yu (2010a) and propose a maximum likelihood approach where the response
parameters of the model and the distance decay parameters are estimated jointly.

Our Monte Carlo simulation experiment shows that our estimation procedure
performs well in terms of bias (average, median, and median absolute value), root
mean square error, and p-values both of the parameters and the direct and indir-
ect spillover effects that can be derived using these parameters. The main finding
of our Monte Carlo simulation experiment and also of our empirical application
is that the performance of an estimator that erroneously assumes a common spa-
tial weight matrix for all spatial lags performs worse. This especially holds for the
indirect spillover effects, which are often the main focus of applied spatial econo-
metric research. This is a cause for concern since it reflects the most widely used
approach applied by practitioners. By contrast, it supports the approach advoc-
ated in this chapter whereby the decay parameters of the spatial lags are estimated
rather than set at one particular value for all spatial lags in advance.

In follow-up research we aim at extending the model and consider a spatial lag

in the error term and and different specification of the spatial errors.
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Table 2.4. Military expenditures according to the binary contiguity matrix (YE), one
common and different parameterized weight matrices

One common decay parameter

Proposed model: ED_n

Determinants/W YE ED_rn ED_sn ID_rn ID_sn PWFE EWFE EWFEBC
0 0.241*+* 0.257** 0.555*** 0.231** 0.454** 0.252%** 0.251** 0.247*+*
(8.69) (5.67) (8.41) (3.74) (5.03) (5.29) (7.93) (7.80)
GDP -0.530*** | -0.514** | -0.506** | -0.534*** | -0.553*** -0.487** -0.487*+* -0.486*+*
(-5.57) (-5.33) (-5.30) (-5.55) (-5.71) (-5.04) (-5.07) (-5.08)
Population 1.184** 1.213%* 0.552 0.816** 0.875** 1.204** 1.204* 1171
(3.18) (2.93) (1.40) (2.07) (2.27) (2.86) (2.98) (2.90)
International War 0.073* 0.085** 0.079* 0.074* 0.068 0.084** 0.084** 0.076*
(1.72) (1.99) (1.83) (1.74) (1.59) (1.97) (1.99) (1.81)
Civil War 0.006 0.007 0.010 0.006 0.002 0.010 0.010 0.007
(0.37) (0.47) (0.65) (0.37) (0.14) (0.66) (0.67) (0.47)
Political Regime -0.016** | -0.018** | -0.017** | -0.017*** | -0.018*** -0.018*** -0.018*** -0.018*+*
(-3.28) (-3.54) (-3.42) (-3.50) (-3.46) (-3.58) (-3.61) (-3.50)
W(a1)*GDP 0.085 -0.041 0.116 0.219 0.712%** -0.944 -0.944* -0.950*
(0.53) (-0.20) (0.53) (1.09) (2.67) (-0.76) (-1.77) (-1.78)
W(az)*Population -0.517 -1.170 3.930* 0.544 -1.399 -1.466 -1.467% -1.389**
(-0.84) (-1.55) (1.75) (0.63) (-0.31) (-1.43) (-1.81) (-1.71)
W(a3)*International War -0.055 -0.110 -0.289 -0.080 -0.221 -0.066 -0.066 -0.032
(-0.70) (-1.13) (-1.15) (-0.93) (-0.43) (-1.17) (-1.46) (-0.40)
W (ay)*Civil War -0.029 -0.081* -0.097 -0.050 0.045 -0.078 -0.078** -0.091**
(-1.03) (-1.81) (-0.89) (-1.39) (0.47) (-1.27) (-2.06) (-2.42)
W(as)*Political Regime -0.019** 0.000 -0.011 -0.016 -0.022 -0.005 -0.005 -0.023**
(-2.06) (0.02) (-0.36) (-1.37) (-0.63) (-0.58) (-0.76) (-2.44)
¢ (Spatially lagged dependent variable) 2.022%** 2.305*** 2.113*** 0.766*** 2.003***
(3.94) (5.36) (4.44) (7.71) (3.56)
ay 0.410
(0.74)
a 1,484
(1.07)
a3 10.00
(0.45)
oy 2,321
(1.12)
a5 10.00
(0.25)
DE_GDP -0.527*** | -0.522%* | -0.510** | -0.529*** | -0.547*** -0.505*** -0.504** -0.509***
(-5.59) (-5.41) (-5.29) (-5.50) (-5.63) (-5.23) (-5.11) (-5.33)
DE _Population 1.170% 1.172% 0.649* 0.852** 0.863** 1.160** 1.180*** 1.124**
(3.11) (2.91) (1.69) (2.22) (2.30) (2.83) (2.92) (2.76)
DE _Internationl War 0.071* 0.080* 0.073* 0.071* 0.066 0.080* 0.079* 0.077*
(1.64) (1.89) (1.72) (1.66) (1.54) (1.89) (1.85) (1.83)
DE_Civil War 0.005 0.003 0.008 0.003 0.003 0.006 0.006 0.003
(0.34) (0.21) (0.50) (0.21) (0.17) (0.40) (0.39) (0.18)
DE Political Regime -0.018*** -0.018*** -0.018*** -0.018*** -0.018*** -0.019*** -0.018** -0.019***
(-3.41) (-3.52) (-343) (-3.62) (-3.48) (-3.61) (-3.51) (-3.85)
IE_.GDP -0.053 -0.224 -0.119 0.120 0.729* -1.406 -1.414% -1.387**
(-0.26) (-0.86) (-0.72) (0.49) (1.59) (-0.85) (-1.96) (-2.00)
IE_Population -0.305 -1.113 3.064* 0.916 -1.585 -1.510 -1.565 -1.446
(-0.40) (-1.21) (1.89) (0.86) (-0.23) (-1.14) (-1.61) (-1.40)
IE_International War -0.046 -0.113 -0.177 -0.078 -0.300 -0.057 -0.060 -0.012
(-0.48) (-0.92) (-0.98) (-0.73) (-0.37) (-0.80) (-1.04) (-0.13)
IE_Civil War -0.034 -0.103* -0.066 -0.061 0.073 -0.097 -0.096* -0.115**
(-0.95) (-1.72) (-0.83) (-1.31) (0.46) (-1.20) (-1.94) (-2.37)
IE Political Regime -0.030** -0.006 -0.015 -0.025* -0.047 -0.012 -0.012* -0.035%+*
(-2.57) (-0.35) (-0.66) (-1.56) (-0.80) (-1.10) (-1.64) (-2.68)
Observations 2160 2160 2160 2160 2160 2160 2160 2160
Log-likelihood function value -1311.39 -1313.66 -1316.37 -1319.19 -1333.49 | -1311.02 -1311.02 -1309.23
R-squared 0.702 0.702 0.701 0.700 0.694 0.702 0.702 0.702
HO: ¢ = 0 (p-value) 7.85(0.16) | 8.39 (0.14) | 6.81(0.23) | 6.57 (0.25) | 8.85(0.12) | 13.21(0.02) | 13.21 (0.02) | 16.52 (0.00)

Notes: YE=Yesilurt and Elhorst (2017), PWFE=Parameterized W matrices and fixed effects, EWFE=Estimated W matrices and fixed effects, EWFEBC=Estimated W or
binary contiguity (BC) matrices and fixed effects, ED=Exponential distance decay, ID=Inverse distance decay, rn=row normalized, sn=scalar normalized; ******
significant at respectively 10%, 5% and 1%.
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2.A Appendix: Derivatives, information matrix, asymp-

totic normality and delta method

2.A.1 First-order derivatives of the spatial weight matrix

To generalize the mathematical expressions in the subsequent sections, i.e., to avoid
that they all need to be repeated for both types of spatial weight matrices and both
types of normalizations, we first introduce the symbol Z(¢) representing the first
order derivative of the row or scalar normalized spatial weight matrix with respect
to g, Z(g) = 252

e d’f

malized. Consequently, we have w ](Q) = ¢ %% and wij(e) = T for the ex-
j €

W' represents the weight matrix in raw form before it is nor-

ponential decay matrix before and after row normalization, respectively. Similarly,

Q
Z d —; for the inverse distance decay matrix
before and after row normalization, respectlvely.

we have wl](g) = d;; ® and w;j(0) =

Under row normalization, the elements of the matrix of first order derivatives

for the exponential and inverse distance matrix are

(Z] le) z]Q (Z e z]Q) dij@

zij(0) = (e )2 , (2.A.1)
(X In(dij)d;; )iy — (S di~°)In(dyj)dij
zij(0) = ——- U ](Zj di]-—ej)zj e 2.A2)
respectively.

If the matrices are scalar normalized by the largest eigenvalue, we respectively
have w;; = e~ %i?/x" (o) and wij = dij”° /Ky (@) In this case, the matrix Z(g) of

first order derivatives is easier expressed in full form.

Since W' () is real and symmetric, it has distinct eigenvalues «] and eigen-
vectors T} (i = 1,...,N) with properties T;/ T/ = 1and ox; = r;/aw7(g)ri (Mag-
nus, 1985, Equation 4). Using these properties for the largest eigenvalue and cor-
responding eigenvector of W' (o), the matrix of first order derivatives for the expo-
nential and inverse distance decay matrices are

oW’ (o) K" " oW’ (o) T w’
Z(o) = ™ max(€) — " (0) K (e) (Q)’ 2A3)
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(@) — T () M52 T (@)W (o)

Z(o) = , (2.A4)
[Khuax (0)]?
respectively, where the typical element of BWT;(Q) = —d,'jefgd"f for the exponential
and aWT;(Q) = -1 n(dij)di;g for the inverse distance decay matrix.

2.A.2 First-order derivatives of the parameters

Without loss of generality, the presentation with respect to the distance decay para-
meters is limited to J, #1 and a. This also implies that only two explanatory vari-
ables are considered (K = 2). For the same reason, time dummies are left aside. The

first-order derivatives are

olnL® (@ AR R e
AnL7(6) == ZXt Ut = — ZXt [y, — oW (o)y, — X, T], (2.A.5)
ol ) )
olnL™ (0 | N N
"0 _ ruie)+ L Y [(6X(D) 5+ 5,63, (2.A.6)
dp |
anL(@)  NT L o5
e Z oy .A.7)
olnL™ (6 L
nL”(8) = —pTtr(A +% Y (A th vt‘f‘UtA(‘S) tl, (2.A.8)
90 o5
olnL®(6) _ i 52 (w1) ¥y _ i (¥ — oW (O)¥, — X;§) Z(w1)¥nn
oy = o? = o2 ’
(2.A.9)

7

AnL(0) _ i%@zmz)%tz@ _y G WO~ KiD) Z(e) g

o2

—_

=
(2.A.10)

wherev; =y, — pW(9)y, — X 7. To shorten notation, we further use G = W(5)S~1(p, 6)
and A(8) = Z(8)S 1(p, 9).

2.A.3 Second-order derivatives of the parameters

In line with 6 = (g’, 0, a2, a/)/, the Hessian matrix can be partitioned into a block-
matrix consisting of six rows and column groups with respect to g’, p, 02,8, &,

and . Since the Hessian matrix is symmetric, we provide the expressions for the
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diagonal and upper-diagonal blocks of this matrix only.

The submatrices in the first row group of the Hessian matrix are

2 w
FInLT(O) _ y X ff, (2.A.11)
el =1 7
2InL® () T X W), T X GX [+ X Go
_ _ ) 2.A.12)
agdp t:zl o? t:Zl o?
92InL® () T %%
—_— = — 2.A1
aCoo? = ( 3)
PInL®(0) i pX; Z(0)y, _ i pX; A(O)X, T+ pX; A(O)T;
ogos = o? A o? ’
(2.A.14)
PinL®(0) L (Z(w)¥n) D — X ,Z(“l)%tlﬁbl
—_— = 2.A1
agatxl t; o2 ’ ( 5)
azli’le T 0(2 xtz ZJt — X*,Z(l)@)itzqh
ag,sz - : 0_2 7. (2¢Ao16)
The submatrices in the second row group are
2 w T
9 InL(0) _ ~Ttr(G?) - Y (X 7+9) G G(X t€+7’t) (2.A.17)
dp? ~ o?
P*InL® (6) (W(O)g) 5t _ (GX,§)51 + thvt
— == - 2.A.18
9pdo2 t; ot t; ot ( )
9%InL™(9)
o0 —Ttr(A(S)) — pTtr(GA()))
1y (BOXT+80)2) 5 = p(CX, L+ 6o (AOX T +ACG)D)
=1 o?
(2.A.19)
92InLv () i Z(aq)xﬂcpl _ i (GX, T+ Go;)' Z(a1)Zn 1
dpdny = = o? !
(2.A.20)
RnL(0) __ g (WO)G) )%ty _ _ g (GXiL+ GO Z(aa)ngy
dpdny = 2 = o2 ’

(2.A.21)
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The submatrices in the third row group are

RinLe(0)  NT L 5,0
9022 208 t; 6 (2.A.22)
02InL™(0) B 9%InL () - ZW o i P(A(5))~(:§+A(5)5t)’5t
d0205 %oz M~ o4 T L A ’
(2.A.23)
P*InL®(0) _ 9*InL”(6) L %, Z(0)¥n ¢
aazaal - aleaaz - t:Zl P S (2.A.24)
’InL®(0)  *InL®(8) T 3,Z(a)¥po
- =— X 4 2.A2
9020a; 02002 t; o4 ( 5)

The submatrices in the fourth row group are

2 w
w — —pTte(G) — *Ttr(A(5)A(6))
Ly P(GXI T+ GB) B — p* (A(9) X T+ A(9)51) (A(D) X T+ A(9)5r)
=1 o? ,
(2.A.26)
PInL®(0) - p(A(8)X, T+ A(0)Dr) Z(w1) ¥y
i t; = , (2.A.27)
PILY(0) L p(AD)X T+ AWD)F) Z (1) Fagn 2.A28)
969, = o? ’ o
The submatrices in the fifth row group are
12 — —~ ! ~
Rl (8) XT: 9, Eﬂ%”‘”xn% — (Z(@1)xn¢1) Z(a1)xn 2.A29)
TE S 7 ' o
PILY(0) _  (Z(a2)%ng2) Z(a1)Fn (2.A.30)
o190y o2 ' o

Finally, the submatrix in the sixth row group is

132

PmLe(e) L vta‘;vT(fZ)'ftzd?z — (Z(a2)%22) Z(2) %2
e Y : 5 : (2.A.31)
%3 =1 v
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2.A.4 Information matrix
The submatrices in the first row group of the information matrix Zg_ are
[52 w T T il e
—E M = iz Y X X, (2.A.32)
| 9007 | 75
[02InL™(0)] 1 & o' o
~E o | ﬁt;Xt GX,l, (2.A.33)
[9%InL®(0) ]
—E 507 | =0, (2.A.34)
[02InL%(0)] 0 & o\ oo
—E “ores | ptzzlxt A()X, T, (2.A.35)
_p [Pl _ 1 ii*/Z(zx E (2.A.36)
agaal - 0,2 = t 1 xtl‘Pl/ A
[2ILP(0)] 1 & o .
—E olom, |~ ﬁt;Xf Z(ap)Xp¢n. (2.A.37)
The submatrices in the second row group of Zg_ are
(92w 7 T
~E ap2(6) = Ttr[G(G+G) 12 Z X/7) G GX;, (2.A.38)
[92L“(0)] T
—E _ apaaT | ﬁtr(c) (2.A.39)
'aZLw(e)' B o T
—E o095 | = pTtr[A(5)(G + G')] + ﬁt; X;0)G'AX; T, (2.A.40)
[02L7(0)] 1 & ks _
—E I apalxl ] - ﬁ;(xt g) G Z(“l)xtl(Pl/ (2A41)
_p[FLeO] _ 1 i(f{*g)’c’zm )% (2.A.42)
| 0pday | 02 o f 2)¥n¢2- o
The submatrices in the third row group of Ly are
[9°L“(6)] _ NT
_E S2e | = 2ot (2.A.43)
2LY(6)] _ pT
—E 507 | T ?tr(A(é)), (2.A.44)
[9%L%(0) ]
—E ot | 0, (2.A.45)
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—E PLUO) | _ (2.A.46)
0020ny | o

The submatrices in the fourth row group of Ly are

'aZ w T / 5

-k _1552(9)_ = p°Ttr[A(5)(A(6) + A(8) )] + 5
[921%(0) ] T, / N

-k I 8(58051)_ - % t;(xt ) A(0) Z(a1)xXn ¢,
_aZLw 0 b T e , N

-k I 858052)_ - % ;(Xt 0) A(9) Z(a2)Xn¢2-

The submatrices in the fifth row group of L are

w T
. [BZL <e>] = LS (Z(a)Rag) Z(a))Fadr,

dag o 5
92L™(8) 1 & o .
—E [ T ] =2 t;(z(lxz)xtquz) Z(a1)Xp1 1.

Finally, the submatrix in the sixth row group is

27w T /
—E |f9 Sag(e)‘| _ % t:Zl(Z((Xz)E}ngz) Z(“Z)%tij}

2.A.5 Asymptotic normality

P d I ! S*
5 ;(Xt ) A0) A(6)X,,

(2.A.47)

(2.A.48)

(2.A.49)

(2.A.50)

(2.A.51)

(2.A.52)

Lee and Yu (2010a) show in Theorem 2(1) and Lemma A .4 that the asymptotic dis-

tribution of the ML estimator (see Section 2.3.4) is given by

VNT(8" —0) &5 N'(0,Y}),

(2.A.53)

where Yy = nm%(%zgg)*l(%zg; + Q) (%Z?T)’l, and Ly is specified in

Appendix 2.A.4. The matrix (g reads as

(T—1) pg — 303
T %

w o _
QHT—
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02k x2K * * * *
012K LYN.(6)% * * *

= | O1x2k ﬁtr(G) # * « |, (2.A.54)
0ok FINL(GBE)i  Hyt(A0) &IN B}
0252k 02x1 0251 0251 0252

where p4 is the fourth moment of the error term. If the error terms are assumed to
be normally distributed, the matrix Qg cancels out since pi4 — 304 = 0 under this

circumstance. This yields Yg = lim 713 (grZg ) ™.

2.A.6 Direct and indirect spillover effects: the delta method

To draw statistical inferences on the direct and indirect spillover effects, expressions
for standard errors are needed. Two methods can be used: bootrapping or the delta
method. To save computation time, we use the delta method which is an extension
of the method described in Arbia et al. (2020). We depart from v/ NT (8" — 6) LN
N(0, Yf,"T), derived in Appendix A.5, but instead of 6 and YwT, we consider ¢ =
(,B/, ¢/,p, ocl)/ and Y(Z;,’T, i.e., after rows and columns for the time dummies and ¢?
have been removed since they are not needed to determine the direct and indirect
spillover effects. Applying propositions 1 and 2 and remark 2 in Arbia et al. (2020),

we get

VN[DE(@") — DE(9)] > N[0, APE () (Yes. ) APE (9)'], (2.A.55)

VNIIE(@) — IEx(g)] 4 N[0, Al (9) (Y& ) AL () ), (2.A.56)

where AP (@) = aDaE (;/((P)

the direct effects take the form

and AjE(¢) = 3157;;4’)‘ These first order derivatives for

aljei;,((q)) = %”(571(9"”)/ (2.A.57)
D) _ Lir(s (0.0 Wlae), 2A59)
am;z(q;) - %”{5_1(@5)W(5)5_1(P/5)H}, (2.A.59)
ngf;(‘”) = %”{Ps_l(@ 8)Z(6)S (o, 6)IT}, (2.A.60)
waifk(@ = %”{5_1(@5)2(%)%}, (2.A.61)
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and for the indirect effects take the form

alggirp) _ %L/Ns—l(p,(g)w _ %tr(S‘l(p,KS)), 2.A.62)
D) S Wby — (S pOW @), A
2 ’
) S WS o MMy — (S WS I,
(2.A.64)
a’%k(s("’) - %L/N{ps_l(p, 8)Z(5)S (o, 5) T}y — %tr{pS‘l(p, 5)Z(6)™(p, 8)I1},
(2.A.65)
JIEi (o) 1

o P = NS 0 )29 — (S 0, OZ(w), A6

where IT = Iy - Bx + W (k) - ¢ Contrary to Arbia et al. (2020), our effect estimates
contain the terms Z(ay), which represent the first order derivative of the spatial
weight matrices with respect to ;. The mathematical expressions of this derivative
for the inverse distance and exponential decay matrix and for both normalizations

can be found in Appendix 2.A.1.

2.A.7 Matlab routines and additional simulation results

Appendix 2.A.7 contains a description of the developed estimation routine and ad-
ditional simulation results.

PWEE: A routine for practitioners

To be able to estimate the parameters of the model set out in this paper, we de-

veloped a Matlab routine entitled PWFE with the following options:

1. Type of spatial weight matrix: exponential distance decay matrix (Edist) or

inverse distance matrix (Idist).

2. Type of normalization of the spatial weight matrix: row normalization (rsn)

or scalar normalization by the largest eigenvalue (men).

3. Type of model: different distance decay parameters for each spatial lag (multi),

one common distance decay parameter for all spatial lags (same), and one
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common distance decay parameter for all spatial lags in the explanatory vari-

ables, but not the dependent variable (one).

4. Method to determine significance levels of the direct and indirect spillover
effects: the recommended delta method (del) or the bootstrap method based
on LeSage and Pace (2009) (bt).

5. gamma0, Ib and ub are respectively the starting values, the lower bounds
and the upper bounds on p and the distance decay parameters when using
row normalization, and on the distance decay parameters when using scalar

normalization by the largest eigenvalue.

Additional simulation results

Case I represents the basic run: 1 = —1,5 = 02,¢; = 1.5,¢p = —03,p =
05,02 = 1,6 = 2,01 = 1.5,0p = 3. The main text contains the results for the ex-
ponential distance decay matrix. The section also reports the results for the inverse
distance matrix. In general, the results are similar to the results of the exponential

distance decay matrix.
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Table A.2. Direct (DE) and indirect (IE) spillover effects of variables x; and x; for Case I
using the parameter estimates in Table A.1

Settings Inverse di row normalized | Inverse dis| : scalar normalized
T N DEx; DEx, IEx; IE xy DEx; DEx, IEx; IE x,
WEFE 5 200 Bias 0.0003  0.0017 0.1813 -0.2062 | 0.0001 -0.0001 0.0911 -0.2898

RMSE 0.0074  0.0102 04750 02716 | 0.0073 0.0099 04091  0.3377
Mbias | -0.0001  0.0018 0.1251 -0.2176 | -0.0002 -0.0001  0.0463 -0.3015
Mabias | 0.0050 0.0066 0.2714 0.2214 | 0.0050 0.0066 02583  0.3017

TWEFE | 5 200 Bias -0.0004  0.0003 -0.0153  0.0028 | -0.0004 0.0002 -0.0168  0.0023
RMSE 0.0071  0.0099 02134 0.0668 | 0.0071 0.0099 0.2094  0.0649
Mbias | -0.0007  0.0003 -0.0281  0.0032 | -0.0008 0.0001 -0.0310  0.0024
Mabias | 0.0049 0.0066 0.1434 0.0442 | 0.0049 0.0065 0.1387  0.0442
PWFE | 5 200 Bias -0.0003  0.0004 0.0122 -0.0033 | -0.0002  0.0004 0.0229 -0.0037

RMSE 0.0073  0.0099 04117  0.1402 | 0.0073  0.0099 0.3950  0.1295
Mbias | -0.0005 0.0003 -0.0061 0.0117 | -0.0004 0.0003 -0.0020  0.0050
Mabias | 0.0051 0.0065 0.2695 0.0957 | 0.0051 0.0064 0.2606  0.0925
WFE 5 800 Bias -0.0005  0.0008 -0.0591 -0.5646 | -0.0005 0.0006 -0.0455 -0.5470
RMSE 0.0037  0.0053 0.2479  0.5820 | 0.0037 0.0053 0.2393  0.5649
Mbias | -0.0005 0.0005 -0.0712 -0.5649 | -0.0005 0.0003 -0.0555 -0.5480
Mabias | 0.0024 0.0035 0.1786  0.5649 | 0.0024 0.0035 0.1671  0.5480
TWFE | 5 800 Bias 0.0000  0.0000 -0.0126 -0.0024 | 0.0000 0.0000 -0.0124 -0.0025
RMSE 0.0036  0.0052 0.1615 0.0392 | 0.0036 0.0052 0.1617  0.0389
Mbias 0.0000 -0.0003 -0.0169 -0.0010 | 0.0000 -0.0002 -0.0175 -0.0027
Mabias | 0.0024 0.0035 0.1077 0.0271 | 0.0024 0.0035 0.1111  0.0274
PWFE | 5 800 Bias 0.0000  0.0000 -0.0217 -0.0060 | 0.0000  0.0000 -0.0208 -0.0073
RMSE 0.0036  0.0053 02365 0.0873 | 0.0036 0.0052 0.2314  0.0867
Mbias 0.0000 -0.0002 -0.0275 -0.0025 | 0.0000 -0.0002 -0.0225 -0.0037
Mabias | 0.0024 0.0036 0.1624  0.0580 | 0.0024 0.0035 0.1559  0.0586

Table A.3. Case I: Mean and standard deviation of the p-values of the parameters (Table
A.1) and the direct (DE) and indirect (IE) spillover effects of variables x; and x, (Table
A2)

Settings Inverse distance: row normalized
T N B1(-1)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(0.5) 5(2) a1(1.5) ay(3) DEx; DEx; IEx; IEx
WFE | 5 200 | Mean | 02133 0.4387 0.0308 0.1919 0.0708 04917 04908 0.2685 0.2430
Std 02483 0.3019 0.1153  0.2767 0.1740 0.2866 0.2877 0.2968 0.2947
TWFE | 5 200 | Mean | 04918 04938 0.4845 0.4896 0.4800 04961 04935 0.4945 0.5010
Std 02814 0.2925 02906  0.2920 0.2938 0.2807 0.2926 0.2939  0.2929

PWFE | 5 200 | Mean | 0.4905 0.4887 04620 0.4494 0.4348 04785 0.4382 0.4759 0.4961 0.4941 04593 0.4428
Std 0.2960 0.2916 0.2970  0.3022 0.3109 0.2839 0.2984 0.2915 0.2897 0.2942 0.3092 0.3056

WFE | 5 800 | Mean | 0.2788 0.3707 0.0208  0.0005 0.0031 0.5069 0.5073 0.2514 0.0015
Std 0.2867 0.2987 0.0903  0.0079 0.0218 0.2997 0.2910 0.2975 0.0170
TWFE | 5 800 | Mean | 0.5092 0.5015 0.4953  0.4996 0.4881 0.5045 0.4990 0.4951 0.4932
Std 0.2979  0.2903 0.2917  0.2909 0.2877 0.3001  0.2902 0.2943 0.2853

PWFE | 5 800 | Mean | 04996 0.5008 0.4686 04834 0.4518 04792 04587 0.4848 0.5026 04983 0.4731 0.4837
Std 0.2953 0.2893 0.2978  0.2924 0.3016 0.2873 0.3025 0.2911 0.3009 0.2900 0.3018 0.2973
Inverse distance: scalar normalized

N B Ba(0.2) §1(15) ¢2(-03) p0.5) 6(2) (15 @@ DEx; DEx, IEx; IEx,
WFE | 5 200 | Mean | 02308 04224 00796 01372 0.0548 04909 04961 02698 01579
Std | 0250 03013 01868 02382 0.1476 02848 02876 02983 0.2520
TWFE | 5 200 | Mean | 04920 04955 04836 04917 04819 04948 04936 04814 0499
Std | 02817 02927 02893 02914 02963 02806 02911 02926 0.2936

PWFE | 5 200 | Mean | 0.4990 0.4928 0.5032  0.5060 0.6553 0.5232 0.4724 0.5393 0.4996 0.4923 0.4858 0.4813
Std 0.2853 0.2906 0.2879  0.2904 0.2248 0.2745 0.2907 0.2637 0.2903 0.2900 0.3020 0.2984

WFE | 5 800 | Mean | 0.3138 0.3923 0.0431  0.0011 0.0039 0.5052  0.5059 0.2546  0.0022
Std 0.2888 0.2999 0.1344  0.0165 0.0296 0.2998 0.2895 0.2955 0.0250
TWFE | 5 800 | Mean | 0.5093 0.5011 0.4871  0.5006 0.4859 0.5042 0.4990 0.4848 0.4909
Std 0.2980 0.2908 0.2920  0.2911 0.2916 0.3000 0.2900 0.2991 0.2832

PWFE | 5 800 | Mean | 0.5065 0.5024 0.5430 0.4966 0.6897 0.5617 0.5189 0.4989 0.5025 0.4988 0.4823 0.4859
Std 0.2946 0.2901 02785 0.2893 0.2065 0.2694 0.2880 0.2835 0.3007 0.2896 0.3029 0.2893

We also run several simulations to investigate the parameter spaces of the spa-

tial autocorrelation parameter and the distance decay parameters in greater detail.



The spatial Durbin panel data model 49

Specifically, we modify p, , a1, and a. This yields 6 additional parameter config-
urations, which are summarized in Table A.4. Changes with respect to Case I are
Case II: p = 0.25, Case III: p = —0.25, Case IV: p = —0.01, Case V: a; = 1, Case VI:
apy = 0.5, and Case VIIL: a1 = 10.

Table A.4. Summary of cases

p 0 w1 4
Casel 05 2 15 3
Case II 025 2 15 3
Caselll] -025 2 1.5 3
Case IV 001 2 15 3
Case V 05 2 15 1
Case VI 05 2 15 05
Case VII 05 2 10 3
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Table A.14. Case II: Mean and standard deviation of the p-values of the parameters (Table
A.5) and the direct (DE) and indirect (IE) spillover effects of variables x; and x; (Table

A.11, upper panel)

Settings Negative exponential: row normalized
T N Bi(-1)  B2(0.2)  $1(1.5)  ¢2(-0.3) p(0.25) 4(2) «1(1.5) ay(3) DEx; DExp IEx; IEx
WFE | 5 200 | Mean | 0.0000 0.2838 0.0000  0.0508  0.0000 0.5071 0.5026 0.0834 0.1383
Std 0.0002  0.2849  0.0000  0.1438  0.0000 0.2854  0.2899 0.1988 0.2260
TWEFE | 5 200 | Mean | 04960 0.4909 0.4951 04945 0.4780 0.4920 0.4944 0.4901 0.4952
Std 0.2881 0.2929 02919  0.2950 0.2861 0.2806 0.2935 0.2874 0.2940
PWFE | 5 200 | Mean | 04805 0.4868 0.4866 0.4837 04644 0.5106 04746 04869 04920 04917 05022 0.4855
Std 0.3035 0.2909 0.2825 0.2864 0.2965 0.2864 0.2998 0.2830 0.2807 0.2926 0.2925 0.2895
WFE | 5 800 | Mean | 0.0000 0.1271 0.0000  0.0000  0.0000 0.5124 0.5062 0.0022 0.0009
Std 0.0000  0.2023  0.0000  0.0001  0.0000 0.2939 0.2943 0.0339 0.0124
TWEFE | 5 800 | Mean | 0.5009 0.5017 0.5007  0.4983 0.4912 0.5069 0.4991 0.4889 0.4925
Std 0.2887 0.2883 02881  0.2924  0.2940 0.3000 0.2907 0.2914 0.2920
PWFE | 5 800 | Mean | 04949 05028 0.4857 0.4983 04807 0.5016 0.4794 04870 05054 0.4982 0.4994 0.4952
Std 0.2971 0.2890 0.2900  0.2902 0.2966 0.2918 0.2981 0.2906 0.3003 0.2909 0.2917 0.2896

Negative exponential: scalar normalized
N Bi1(-1)  B2(0.2)  ¢1(1.5)  ¢2(-0.3) p(0.25) 4(2) «1(1.5) ay(3) DEx; DExp IEx; IEx
WFE | 5 200 | Mean | 0.0003 0.2902 0.0000  0.0353  0.0000 0.5058 0.5000 0.1564 0.1088
Std 0.0026 0.2880 0.0000  0.1144  0.0000 02790 0.2901 0.2450 0.2055
TWFE | 5 200 | Mean | 04918 0.4925 0.4863 0.4983 0.4897 0.4924 0.4937 0.4806 0.5003
Std 0.2874 0.2937 02867  0.2948 0.2913 0.2808 0.2926  0.2867 0.2969
PWFE | 5 200 | Mean | 0.5304 04933 0.5668 0.4931 0.6880 0.5123 0.5431 0.5018 0.4925 0.4922 0.5009 0.4887
Std 0.2820 0.2906 0.2687  0.2851 0.2126 0.2848 0.2870 0.2804 0.2804 0.2910 0.2863 0.2884
WFE | 5 800 | Mean | 0.0000 0.1307 0.0000  0.0000 0.0000 0.5063 0.5097 0.0010 0.0017
Std 0.0000  0.2051  0.0000  0.0004  0.0000 0.2940  0.2887 0.0149 0.0215
TWEFE | 5 800 | Mean | 0.5076 0.5015 0.4949  0.4959 0.4894 0.5065 0.4993 0.4851 0.4890
Std 0.2947 0.2881 0.2898  0.2896  0.2887 0.2996 0.2905 0.2901 0.2884
PWFE | 5 800 | Mean | 0.5451 0.5055 0.5615 0.5018 0.6856 0.5241 0.5372 0.4900 0.5050 0.4987 0.4945 0.5010
Std 0.2839 0.2883 0.2792  0.2903 0.2134 0.2753 0.2702 0.2879 0.2999 0.2906 0.2944 0.2923

Inverse distance: row normalized

N B1(-1)  B2(0.2) ¢1(1.5)  ¢(-0.3) p(0.25) 4(2) a1(1.5) ay(3) DEx; DEx, IEx; IEx
WFE | 5 200 | Mean | 0.0969 0.4300 0.0125 0.1316 0.0022 0.5006 0.5018 0.2903 0.2185
Std 0.1831 0.3025 0.0673  0.2356 0.0132 0.2786 0.2887 0.3146 0.2902
TWEFE | 5 200 | Mean | 04912 04930 04874 04900 0.4853 0.4951 0.4937 0.5074 0.4976
Std 0.2811 0.2925 02911  0.2927 0.2955 0.2806 0.2921 0.2900 0.2948
PWFE | 5 200 | Mean | 0.4487 0.4856 0.4323 0.4511 04100 04739 0.3696 0.4727 0.4976 0.4957 0.4627 0.4398
Std 0.3062 0.2925 0.3039 0.3055 0.3378 0.3062 0.3161 0.2954 0.2873 0.2917 0.2996 0.3114
WFE | 5 800 | Mean | 0.0975 0.3784 0.0003  0.0007  0.0000 0.5130 05074 0.2054 0.0058
Std 01717  0.2996 0.0054  0.0111  0.0000 02961 0.2882 0.2789 0.0521
TWEFE | 5 800 | Mean | 0.5103 0.5016 0.4980  0.4992 0.4939 0.5063 0.5011 0.5014 0.4938
Std 0.2981  0.2900  0.2931 0.2904 0.2888 0.2995 0.2909 0.2930 0.2843
PWFE | 5 800 | Mean | 0.4817 0.4951 04514 0.4808 0.4421 04993 04399 04788 0.5047 0.5007 0.4724 0.4791
Std 0.2957 0.2931 0.3070  0.2945 0.3138 0.2829 0.3133 0.2930 0.3000 0.2912 0.2977 0.2988

Inverse distance: scalar normalized
N B1(-1)  B2(0.2) ¢1(1.5)  ¢(-0.3) p(0.25) 4(2) a1(15) ay(3) DEx; DEx, IEx; IEx
WFE | 5 200 | Mean | 0.1202 0.4106 0.0478  0.0866 0.0031 0.5000 0.4996 0.2646 0.1238
Std 0.2045 0.3001 0.1464  0.1933 0.0181 0.2804 0.2888 0.2989 0.2277
TWEFE | 5 200 | Mean | 04909 0.4945 04846 04928 0.4884 0.4940 0.4941 0.4848 0.4976
Std 0.2807 0.2923 02892  0.2921  0.2981 0.2809 0.2915 0.2915 0.2952
PWFE | 5 200 | Mean | 0.5037 0.4931 0.4984 05014 0.6917 0.5846 0.4611 0.5351 0.4971 0.4953 0.4844 0.4801
Std 0.2886 0.2908 0.2881  0.2924 0.2220 0.2477 0.2918 0.2664 0.2871 0.2903 0.3015 0.2985
WFE | 5 800 | Mean | 0.1363 0.4035 0.0016  0.0013  0.0000 0.5117 0.5065 0.2216 0.0053
Std 0.2078 0.3001 0.0185  0.0200  0.0000 0.2966 0.2888 0.2951 0.0459
TWEFE | 5 800 | Mean | 0.5101 0.5010 0.4890  0.4999 0.4921 0.5062 0.5010 0.4881 0.4925
Std 0.2977 02904 02921  0.2901  0.2938 02996 0.2908 0.2972 0.2835
PWFE | 5 800 | Mean | 0.5078 0.5026 0.5325 0.4955 0.7349 0.6102 0.5183 0.4983 0.5045 0.5007 0.4831 0.4856
Std 0.2927 0.2805 0.2800 0.2886 0.1862 0.2485 0.2860 0.2838 0.2998 0.2910 0.3005 0.2885
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Table A.15. Case III: Mean and standard deviation of the p-values of the parameters (Table

A.6) and the direct (DE) and indirect (IE) spillover effects of variables x; and x;

A.12, lower panel)

(Table

Settings Negative exponential: row normalized
T N B1(-1)  B2(0.2) (1.5  ¢2(-0.3) p(-0.25) 4(2) a1(1.5) ay(3) DEx; DEx, IEx; IEx
WFE | 5 200 | Mean | 0.0000 0.2803 0.0000  0.0580  0.0000 04947 04973 0.0131 0.2076
Std 0.0000 0.2801 0.0000 0.1549  0.0000 0.2980 0.2832 0.0593 0.2657
TWFE | 5 200 | Mean | 04962 04911 04937 04941  0.4855 0.4966 04955 0.4934 0.4947
Std 0.2869 0.2935 0.2910  0.2944  0.2925 0.2852  0.2924 0.2888 0.2952
PWFE | 5 200 | Mean | 04832 04858 0.4951 04863 04582 04930 04856 04902 04976 0.4939 0.5016 0.4871
Std 0.3060 02919 0.2882 0.2874  0.2937 0.2945 0.2907 0.2844 0.2856 0.2905 0.2878 0.2889
WEFE | 5 800 | Mean | 0.0000 0.2101  0.0000  0.0000  0.0000 0.4386  0.5309 0.0000 0.0008
Std 0.0000 0.2534 0.0000  0.0001  0.0000 0.2953  0.2864 0.0000 0.0094
TWFE | 5 800 | Mean | 04980 0.5018 0.5002  0.4976  0.4886 0.5084 0.5056 0.4936 0.5007
Std 0.2879 0.2880 0.2899  0.2922  0.2936 0.2976 0.2926 0.2893 0.2935
PWFE | 5 800 | Mean | 04909 05040 0.4904 04982 0.4806 04961 04826 0.4861 0.5070 0.5042 0.4934 0.4963
Std 02938 0.2895 0.2910 0.2901  0.2943 0.2882 0.2967 0.2886 0.2973 0.2925 0.2893 0.2879

Negative exponential: scalar normalized
T N B1(-1)  B2(0.2)  ¢1(1.5)  ¢2(-0.3) p(-0.25) 4(2) «1(1.5) ay(3) DEx; DEx, IEx; IEx
WFE | 5 200 | Mean | 0.0001 0.3240 0.0000 0.0431  0.0000 0.5155 0.4979 0.0097 0.1595
Std 0.0005 0.2871  0.0000  0.1306  0.0000 0.2860 0.2845 0.0497 0.2372
TWEFE | 5 200 | Mean | 0.4929 04927 04835 04987  0.4948 0.4959 04955 0.4818 0.4981
Std 02879 0.2942 0.2852  0.2955  0.2917 0.2842  0.2925 0.2869 0.2942
PWFE | 5 200 | Mean | 0.5568 0.4988 0.5477 04942 07449 0.5834 0.5631 0.5055 04954 0.4934 0.5036 0.4933
Std 02775 02921 02760 02827 0.1762 0.2623 0.2810 0.2795 0.2842 0.2893 0.2838 0.2856
WFE | 5 800 | Mean | 0.0000 0.2202 0.0000  0.0000  0.0000 04313 05229 0.0000 0.0012
Std 0.0000 0.2586 0.0000  0.0001  0.0000 0.2954 0.2853 0.0000 0.0148
TWFE | 5 800 | Mean | 0.5038 0.5017 04942  0.4946  0.4898 0.5085 0.5054 04875 0.4971
Std 0.2938  0.2883 0.2913  0.2889  0.2904 0.2972  0.2924 0.2878 0.2907
PWFE | 5 800 | Mean | 0.5787 05083 0.5386  0.5017  0.7505 0.5843 0.5529 0.4900 0.5072 0.5047 0.4923 0.5014
Std 02741 0.2882 0.2852 02906  0.1781 0.2546 0.2693 0.2888 0.2973 0.2928 0.2947 0.2895

Inverse distance: row normalized

T N Bi(-1)  B2(0.2)  ¢1(1.5)  ¢2(-0.3) p(-0.25) 4(2) «1(1.5) ay(3) DEx; DExp IEx; IEx
WFE | 5 200 | Mean | 02354 0.5114 0.0000 0.3808  0.0000 0.5073 05152 0.0003 0.4129
Std 0.2482  0.2903  0.0000  0.2983  0.0000 0.2899 0.2886 0.0038  0.2959
TWFE | 5 200 | Mean | 04920 0.4922 04907 0.4902  0.4880 04957 0.4948 04955 0.4953
Std 02839 0.2925 0.2911  0.2940  0.2961 0.2837 02925 0.2885 0.2981
PWFE | 5 200 | Mean | 0.4726 0.4863 0.4547  0.4589 0.4080 0.4282 0.4195 04714 0.4965 0.4989 0.4564 0.4514
Std 0.3058 0.2903 0.2979  0.3047 03075 0.3254 0.3065 0.2963 0.2858 0.2912 0.3149 0.3101
WFE | 5 800 | Mean | 0.3968 0.5207 0.0000 0.0267  0.0000 04623 05171 0.0000 0.0636
Std 0.2923  0.2890  0.0000  0.0983  0.0001 0.2946  0.2860 0.0000 0.1542
TWEFE | 5 800 | Mean | 0.5117 0.5016 04982  0.4984  0.5000 0.5077 0.5040 0.4981 0.4977
Std 0.2980 0.2896 0.2915  0.2893  0.2917 0.2983 02920 0.2909 0.2846
PWFE | 5 800 | Mean | 04765 0.4965 0.4611 04821 04197 04572 0.4421 04796 05059 0.5028 0.4741 0.4842
Std 02954 0.2886 03001  0.2909 03120 0.3089 0.3111 0.2883 0.2983 0.2923 0.3044 0.2978

Inverse distance: scalar normalized
T N Bi1(-1)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(-0.25) 4(2) «1(1.5) ay(3) DEx; DExp IEx; IExp
WEFE | 5 200 | Mean | 02183 0.5113 0.0000  0.2956  0.0001 04974 05121 0.0011 0.3463
Std 02421  0.2861 0.0000  0.3013  0.0000 0.2976  0.2880 0.0076 0.3074
TWFE | 5 200 | Mean | 04908 0.4936 04877  0.4935  0.4948 04952 0.4951 0.4882 0.4942
Std 02826  0.2922 02906  0.2932  0.2981 0.2832  0.2923 0.2902 0.2933
PWFE | 5 200 | Mean | 0.5329 0.4967 0.5108 0.5031 0.7507 0.6634 0.5091 0.5342 04962 0.4975 04902 0.4832
Std 0.2830 0.2905 0.2901  0.2931  0.1830 0.2326 0.2881 0.2708 0.2845 0.2904 0.3028 0.2999
WFE | 5 800 | Mean | 0.3977 0.5165 0.0000 0.0210  0.0000 04731 05194 0.0000 0.0410
Std 02930  0.2910  0.0000  0.0884  0.0000 0.2942  0.2884 0.0000 0.1267
TWFE | 5 800 | Mean | 0.5114 0.5009 04891  0.4991  0.4952 0.5079 05039 0.4897 0.4973
Std 0.2980 0.2896 0.2897  0.2893  0.2910 0.2983 0.2921 0.2936 0.2852
PWFE | 5 800 | Mean | 0.5159 05036 0.5178 04957  0.7922 0.6830 0.5245 04993 05060 0.5031 0.4816 0.4882
Std 0.2893 0.2889 0.2901  0.2877  0.1552 0.2093 0.2878 0.2834 0.2982 0.2926 0.3013 0.2890
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Table A.16. Case IV: Mean and standard deviation of the p-values of the parameters (Table
A.7) and the direct (DE) and indirect (IE) spillover effects of variables x; and x; (Table
A.14, upper panel)

Settings Negative exponential: row normalized
T N Bi(-D)  Ba(0.2) ¢(15) ¢,(-03) p(0.01) 52  «(1L5) a@ DEx; DEx; IEx; IEx
WFE | 5 200 | Mean | 0.0000 0.2272 0.0000  0.0503  0.0000 0.5113 0.5045 0.1522 0.1736
Std 0.0000 0.2680  0.0000  0.1456  0.0000 0.2886 0.2878 0.2498 0.2471
TWEFE | 5 200 | Mean | 0.4964 04910 0.4944 0.4944  0.4809 0.4948 0.4947 0.4901 0.4947
Std 0.2880 0.2932 02919  0.2949 0.2882 02835 0.2924 0.2862 0.2944

PWFE | 5 200 | Mean | 0.4308 0.4824 0.4433 0.4862 04053 0.5976 0.4258 0.4864 0.4948 0.4927 0.5282 0.4876
Std 0.3027 0.2922 02898  0.2864 0.2557 0.3575 0.2990 0.2810 0.2837 0.2906 0.2786 0.2915

WFE | 5 800 | Mean | 0.0000 0.0343 0.0000  0.0000  0.0000 0.5113  0.5067 0.0195 0.0002
Std 0.0000 0.0914 0.0000  0.0000 0.0000 0.2820 0.2806 0.0890 0.0023
TWEFE | 5 800 | Mean | 04955 0.5053 0.4963  0.4929 0.4964 0.4991 0.5010 0.4963 0.4945
Std 0.2927 0.2820 0.2902  0.2934  0.2891 0.2863  0.2804 0.2910 0.2949

PWFE | 5 800 | Mean | 0.4684 05027 0.4692 0.4970 04809 0.7440 0.4521 0.5005 0.4975 0.5010 0.5040 0.5056
Std 0.2947 0.2859 0.2888  0.2817 0.2875 0.2948 0.2966 0.2922 0.2868 0.2802 0.2852 0.2859
Negative exponential: scalar normalized

N B B0.2) ¢1(15) ¢(-03) p0.01 @) (15 @ DEx; DEx; IEx; IEx
WFE | 5 200 | Mean | 0.0000 02206 00000 00244 0.0000 05138 04970 02378 0.1108
Std | 00001 02652 00000 0.0917 0.0000 02797 02883 02966 0.2073
TWEFE | 5 200 | Mean | 04924 04926 04847 04987 04917 04946 04943 04816 0.4994
Std | 02880 02940 02860 02955 0.2906 02832 02921 02876 0.2958

PWFE | 5 200 | Mean | 0.5529 0.4948 0.6175 0.4913 0.6534 0.7695 0.7071 0.5051 0.4941 0.4939 0.5579 0.4898
Std 02706 0.2884 0.2545 0.2822 02126 0.2461 0.2146 0.2761 0.2831 0.2896 0.2652 0.2860

WFE | 5 800 | Mean | 0.0000 0.0558 0.0000  0.0000 0.0000 0.5094 0.5090 0.0200 0.0007
Std 0.0000 0.1238 0.0000  0.0000  0.0000 0.2823 0.2787 0.0947 0.0072
TWFE | 5 800 | Mean | 04992 0.5044 0.4899 04964 0.4994 0.4990 0.5011 0.4876 0.4981
Std 0.2956 0.2819 02842  0.2953  0.2952 0.2862 0.2804 0.2805 0.2963

PWFE | 5 800 | Mean | 0.5525 05093 0.6048  0.5030 0.6667 0.7423 0.6908 0.5068 0.4975 0.5009 0.5705 0.5142
Std 02742 02819 02511 0.2841 02151 0.2576 0.2193 0.2809 0.2866 0.2801 0.2596 0.2826
Inverse distance: row normalized

T N BiD)  Br(02) $1(15) $2(-0.3) p(001) 52  a;(15) ay(3) DEx; DEx; IEx; IEx

WFE | 5 200 | Mean | 00704 04715 00001 0.1569  0.0000 05073 05084 0.2439 0.2680
Std | 01414 02933 0.0011 02465 0.0000 02802 02888 0.2676 0.3029

TWEE | 5 200 | Mean | 04917 04925 04895 04900 0.4869 04951 04942 05000 0.4972
Std | 02827 02924 02916 02933 0.2953 02826 02921 0.2905 02972

PWFE | 5 200 | Mean | 04569 0.4911 04600 0.4508 0.3345 04362 04324 04649 04948 04969 04755 0.4438
Std 0.2975 0.2942 02921 03025 0.2360 0.3423 0.2948 0.2979 0.2842 0.2913 0.3084 0.3090

WFE | 5 800 | Mean | 0.1235 0.3991 0.0000  0.0000 0.0000 0.4928 0.5038 0.0002 0.0000
Std 0.1985 0.3044 0.0000  0.0000  0.0000 0.2866 0.2788 0.0027  0.0000
TWEFE | 5 800 | Mean | 04993 0.5035 0.4801 04936 0.4866 0.4990 0.5009 0.4862 0.5021
Std 0.2908 0.2818 0.2983  0.2899  0.2931 0.2862 0.2803 0.2980 0.2949

PWFE | 5 800 | Mean | 04789 05013 0.3992 04997 0.3828 04601 0.3754 0.5015 04969 05007 0.4667 0.4933
Std 02967 0.2820 0.2914 0.2833 0.2595 0.3394 0.2905 0.2905 0.2866 0.2805 0.2921 0.2979
Inverse distance: scalar normalized

N Bi1(-1)  B2(0.2)  $1(1.5)  ¢»(-0.3) p(0.01) 4(2) «1(1.5) ay(3) DEx; DExp IEx; IExp

WFE | 5 200 | Mean | 0.0876 0.4496 0.0015  0.0793  0.0000 0.5049 05042 0.3256 0.1394
Std 0.1631 0.2956 0.0133  0.1760  0.0004 0.2828 0.2893 0.3031 0.2317

TWFE | 5 200 | Mean | 04911 0.4940 0.4860 04933 0.4922 0.4946  0.4947 0.4856 0.4963
Std 02821 02922 0.2895  0.2926  0.2983 0.2824 02921 0.2910 0.2952

PWFE | 5 200 | Mean | 0.5189 0.4954 0.5622  0.4969 0.6057 0.7405 0.5927 0.5292 0.4954 0.4961 0.5346 0.4748
Std 0.2792 0.2889 02744 0.2939 0.2213 0.2247 0.2480 0.2711 0.2831 0.2896 0.2908 0.2998

WFE | 5 800 | Mean | 0.1666 0.4761 0.0000  0.0032  0.0000 0.5033 0.5112  0.0250 0.0113
Std 0.2305 02860  0.0000  0.0335  0.0000 0.2927  0.2893 0.0817 0.0707
TWEFE | 5 800 | Mean | 0.5107 0.5010 0.4891 04995 0.4946 0.5071 0.5026 0.4893 0.4947
Std 0.2977 0.2899 02906  0.2896  0.2929 0.2988 0.2916 0.2949 0.2843

PWFE | 5 800 | Mean | 0.5162 05016 0.5816 04935 0.6249 0.7361 0.6021 0.4984 0.5053 0.5018 0.5103 0.4808
Std 0.2924 02901 02681 0.2878 0.2257 0.2185 0.2563 0.2838 0.2988 0.2918 0.2971 0.2870
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Table A.17. Case V: Mean and standard deviation of the p-values of the parameters (Table
A.8) and the direct (DE) and indirect (IE) spillover effects of variables x; and x; (Table
A.13, upper panel)

Settings Negative exponential: row normalized
T N Bi1)  Ba(0.2) ¢1(15) ¢5(-03) p(0.5) 6(2) ay(15) a() DExy DEx; IEx; IEx
WFE | 5 200 | Mean | 0.0046 0.4891 0.0000 0.2841 0.0054 0.4899 0.4755 0.0032 0.1836
Std 0.0224 0.2926  0.0000  0.2975 0.0277 0.2901 0.2938 0.0318 0.2616
TWFE | 5 200 | Mean | 04952 0.4923 04934 04820 0.4811 0.4893 0.4912 0.4926 0.4863
Std 0.2887 0.2920 0.2905  0.2936 0.2897 0.2797 0.2914 0.2918 0.2942

PWFE | 5 200 | Mean | 0.4878 0.4924 04779  0.4443 0.4571 0.4983 0.4643 0.4692 04883 0.4962 0.5058 0.4443
Std 0.3058 0.2937 0.2913  0.2934 0.2944 0.2869 0.3000 0.3012 0.2801 0.2923 0.3002 0.2937

WFE | 5 800 | Mean | 0.0000 0.4556 0.0000  0.2594 0.0000 04839  0.4953 0.0000 0.0983
Std 0.0000  0.2909  0.0000  0.2872  0.0000 0.2977 0.2926  0.0000 0.1956
TWFE | 5 800 | Mean | 0.5054 0.5024 0.5026  0.4983 0.4910 0.5049 0.4969 0.4885 0.4937
Std 0.2927 0.2909 0.2880  0.2858 0.2927 0.3011  0.2898 0.2906 0.2859

PWFE | 5 800 | Mean | 0.4981 0.5027 04840 0.4812 0.4783 0.4932 0.4827 0.4933 0.5039 0.4990 0.4976 0.4825
Std 0.2963 0.2917 0.2899  0.2915 0.2941 0.2923 0.3018 0.2941 0.3023 0.2897 0.2892 0.2940
Negative exponential: scalar normalized

N B Ba(0.2) ¢1(15) ¢2(-03) p(0.5) o6(2) (15 a)) DEx; DEx, IEx; IEx;
WFE | 5 200 | Mean | 00197 04927 00000 02838 0.0292 04898 04766 0.0042 0.1957
Std | 00726 02925 0.0000 03028 0.0903 02930 02932 0.035 0.2670
TWFE | 5 200 | Mean | 04912 04930 04870 04811 0.4868 04904 04906 04765 04835
Std | 02868 02922 02909 02902 0.2937 02791 02899 02867 0.2884

PWFE | 5 200 | Mean | 0.5218 0.4937 0.5617  0.4790 0.6493 05010 0.5285 05102 0.4914 0.4977 04990 0.4697
Std 02855 0.2914 0.2716  0.2920 0.2338 0.2805 0.2826 0.2899 0.2802 0.2917 0.2916 0.2956

WFE | 5 800 | Mean | 0.0000 0.4549 0.0000  0.2503 0.0000 0.4823 0.4934 0.0000 0.1154
Std 0.0001  0.2917  0.0000  0.2827  0.0004 0.2983  0.2893 0.0000 0.2110
TWFE | 5 800 | Mean | 0.5098 0.5025 0.4969  0.5031 0.4877 0.5034 0.4965 0.4821 0.4980
Std 0.2963  0.2909 0.2897  0.2898 0.2873 0.2996 0.2883 0.2869 0.2891

PWFE | 5 800 | Mean | 05273 05025 0.5677 04855 0.6477 05017 0.5309 0.5031 0.5024 0.4985 0.4943 0.4811
Std 02875 02913 0.2735 0.2865 0.2304 0.2794 0.2745 0.2906 0.3008 0.2890 0.2938 0.2889
Inverse distance: row normalized

N Bi(-1)  B2(0.2) (L5  ¢2(-0.3) p(0.5)  4(2) a1(1.5) ay(1) DEx; DEx, IEx; IEx

WFE | 5 200 | Mean | 0.3237 0.4890 0.0002  0.1379 0.4117 0.3332  0.4681 0.0179 0.1219
Std 02915 02941 0.0037  0.2272 0.3143 0.2957  0.2966 0.0795 0.2080

TWFE | 5 200 | Mean | 04935 0.4943 04772 04722 0.4736 0.4964 0.4910 0.4862 0.4730
Std 0.2828 0.2924 0.2906  0.2957 0.2913 0.2814 0.2905 0.2974 0.2913

PWFE | 5 200 | Mean | 04891 04974 04473 04579 04258 04742 04329 05445 04921 0.5005 0.4428 0.4545
Std 0.2947 0.2919 02975 0.3080 0.3171 0.2769 0.3026 0.2528 0.2886 0.2916 0.3093 0.3117

WFE | 5 800 | Mean | 0.3505 0.5021 0.0000 0.1760 0.3167 0.4991 0.5003 0.0139 0.1276
Std 0.2917  0.2913  0.0003  0.2554 0.2983 0.2959  0.2907 0.0692 0.2149
TWFE | 5 800 | Mean | 0.5088 0.5027 0.4872  0.4962 0.4894 0.5055 0.5011 0.4842 0.4964
Std 02977 0.2919 0.2921  0.2926 0.2936 0.3007 0.2905 0.2908 0.2928

PWFE | 5 800 | Mean | 04992 05018 04543 04534 04363 0.4690 0.4439 0.5071 05029 0.5001 0.4533 0.4494
Std 0.2955 0.2923 0.2996  0.2999 0.2987 0.2877 0.3017 0.2735 0.3017 0.2901 0.3043 0.3043
Inverse distance: scalar normalized

N Bi1(-1)  B2(0.2) ¢1(15)  ¢2(-0.3) p(0.5)  4(2) a1(1.5) ay(1) DEx; DEx; IEx; IExp

WFE | 5 200 | Mean | 0.3386 0.4927 0.0012 02349 04318 0.3734 0.4797 0.0330 0.2146
Std 0.2966 0.2923 0.0119  0.2874 0.3012 0.3031 0.2922 0.1189 0.2761

TWFE | 5 200 | Mean | 04928 0.4949 04708 0.4684 0.4668 0.4957 0.4920 0.4732 0.4726
Std 0.2826 0.2918 0.2905  0.2936 0.2942 0.2814 0.2895 0.2987 0.2935

PWFE | 5 200 | Mean | 0.4950 0.4964 04721 0.5164 0.6459 05690 0.4584 0.5873 0.4949 0.4991 04794 0.4946
Std 0.2881 0.2898 0.2937  0.2954 0.2286 0.2662 0.2990 0.2392 0.2886 0.2886 0.2955 0.3020

WFE | 5 800 | Mean | 0.3664 0.5013 0.0001  0.2013 0.2871 0.4968 0.4996 0.0201 0.1511
Std 0.2933  0.2905 0.0016 ~ 0.2678 0.2870 0.2962  0.2899 0.0901 0.2319
TWFE | 5 800 | Mean | 0.5092 0.5025 0.4814  0.4963 0.4861 0.5049 0.5010 0.4687 0.4972
Std 0.2979  0.2921 0.2953  0.2901 0.2949 0.3004 0.2906 0.2885 0.2914

PWFE | 5 800 | Mean | 0.5067 0.5017 0.5062 04872 0.6935 0.5738 0.4964 0.5415 05029 0.5001 0.4719 0.4720
Std 0.2950 0.2921 0.2898  0.2917 0.2007 0.2654 0.2916 0.2648 0.3010 0.2895 0.3013 0.2974
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Table A.18. Case VI: Mean and standard deviation of the p-values of the parameters (Table
A.9) and the direct (DE) and indirect (IE) spillover effects of variables x; and x; (Table
A.13, lower panel)

Settings Negative exponential: row normalized
T N Bi(-1)  B(0.2) ¢1(15)  ¢2(-0.3) p(0.5) 4(2) a1(1.5) ay(0.5) DEx; DEx, IEx; IExp
WEFE | 5 200 | Mean | 0.0081 0.4917 0.0000  0.0041 0.0234 0.4876  0.4807 0.0010 0.0009
Std 0.0360  0.2930 0.0000  0.0248 0.0762 0.2947 0.2921 0.0172  0.0062
TWFE | 5 200 | Mean | 04960 04938 0.4920 0.4697 0.4824 04890 0.4899 0.4896 0.4739
Std 0.2892 02923 02904  0.2906 0.2893 02799 0.2910 0.2932 0.2927
PWFE | 5 200 | Mean | 0.4907 0.4935 04860 0.5077 0.4893 0.4967 04795 0.7983 04891 0.5095 0.5096 0.5023
Std 0.3000 0.2928 0.2892  0.2874 0.2978 0.2846 0.2999 0.2802 0.2800 0.2909 0.2954 0.2875
WFE | 5 800 | Mean | 0.0000 0.5046 0.0000  0.0000 0.0000 04755 0.4950  0.0000 0.0000
Std 0.0000  0.2921  0.0000  0.0000 0.0001 0.2966  0.2905 0.0000  0.0000
TWEFE | 5 800 | Mean | 0.5062 0.5028 0.5022  0.4955 0.4897 0.5051 0.4999 0.4882 0.4930
Std 02933 02920 0.2877  0.2931 0.2920 0.3013  0.2898 0.2908 0.2922
PWFE | 5 800 | Mean | 0.4997 0.5017 04879  0.5553 0.4835 0.4960 0.4847 0.7459 0.5044 0.5178 0.5059 0.5509
Std 02959 02918 02958  0.2870 0.2916 0.2923 0.3008 0.3105 0.3020 0.2832 0.2912 0.2862

Negative exponential: scalar normalized
T N Bi1(1)  B2(0.2)  ¢1(15)  ¢(-0.3) p(0.5) 4(2) a1(L.5) ay(0.5) DEx; DEx, IEx; IExp
WFE | 5 200 | Mean | 0.0333 0.4894 0.0000 0.0063 0.1120 04814 04771 0.0004 0.0018
Std 0.1037  0.2955 0.0000  0.0404 0.1988 0.3018 0.2934 0.0039  0.0140
TWFE | 5 200 | Mean | 04929 04939 0.4836  0.4698 0.4842 04902 0.4903 0.4744 0.4736
Std 0.2885 0.2922 02905  0.2889 0.2952 02795 0.2904 0.2863 0.2893
PWFE | 5 200 | Mean | 05203 0.4940 0.5645 0.5113 0.6447 05062 0.5231 0.7955 0.4913 0.5087 0.5020 0.5124
Std 02856 0.2920 02749  0.2858 0.2348 0.2783 0.2836 02709 0.2796 0.2907 0.2891 0.2870
WFE | 5 800 | Mean | 0.0000 0.5039 0.0000  0.0000 0.0002 0.4751  0.4894 0.0000 0.0000
Std 0.0001  0.2903  0.0000  0.0001 0.0016 0.2975 0.2891  0.0000 0.0000
TWFE | 5 800 | Mean | 0.5100 0.5029 0.4964  0.4955 0.4892 0.5035 0.5001 0.4817 0.4928
Std 02964 02921 02899  0.2907 0.2892 02997 0.2891 0.2848 0.2898
PWFE | 5 800 | Mean | 05264 0.5016 0.5663  0.5613 0.6504 0.5121 0.5301 0.7461 0.5028 0.5149 0.5014 0.5568
Std 02874 02921 02746 0.2880 0.2297 0.2806 0.2757 0.3061 0.3007 0.2828 0.2957 0.2886

Inverse distance: row normalized

T N B1(-D)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(0.5) (2 «1(1.5) a»(0.5) DEx; DExp IEx; IExp
WFE | 5 200 | Mean | 0.3462 0.4854 0.0001 0.0366 0.3014 0.2658 0.4615 0.0073 0.0363
Std 02986 02955 0.0012  0.1112 0.3035 02787 0.2982 0.0368 0.1020
TWFE | 5 200 | Mean | 04937 04950 0.4810 04701 04717 0.4968 0.4915 0.4861 0.4775
Std 0.2826  0.2925 02974  0.2889 0.2947 0.2818 0.2905 0.3026 0.2921
PWFE | 5 200 | Mean | 04874 0.4980 04310 04586 04417 04558 0.4220 0.7921 0.4822 0.4990 0.4294 0.4539
Std 0.2947 02926 03023 03117 0.3072 0.2841 0.3081 0.2904 0.2892 0.2911 0.3143 0.3148
WFE | 5 800 | Mean | 0.3634 0.5017 0.0000  0.0301 0.4385 0.4945 0.5004 0.0042 0.0210
Std 0.2933  0.2939 0.0000  0.0972 0.3071 0.2958 0.2911  0.0339  0.0769
TWEFE | 5 800 | Mean | 0.5084 0.5027 0.4893  0.4874 0.4899 0.5062 0.5018 0.4881 0.4878
Std 02977 02921 02940  0.2892 0.2928 03013 0.2910 0.2931 0.2884
PWFE | 5 800 | Mean | 05019 0.5017 04535 04668 0.4673 04755 04482 0.7494 05023 05024 04594 0.4613
Std 02967 02919 02962 0.2982 0.2973 0.2906 0.3016 0.3301 0.3010 0.2902 0.3005 0.3009

Inverse distance: scalar normalized
T N B1-D)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(0.5) 4(2) «1(1.5)  ay(0.5) DEx; DExp IEx; IExp
WFE | 5 200 | Mean | 0.3646 0.4904 0.0005 0.0884 0.3804 03161 0.4744 0.0137 0.0783
Std 0.3025 0.2952 0.0049  0.1811 0.3200 0.2889 0.2951 0.0575 0.1626
TWFE | 5 200 | Mean | 04930 04953 04718 0.4654 0.4615 04964 04926 04715 0.4703
Std 02826 02921 02951  0.2888 0.2945 02822 0.2902 0.3024 0.2864
PWFE | 5 200 | Mean | 0.4913 0.4965 04483  0.5001 0.6305 0.5581 0.4347 0.7604 0.4887 0.4988 0.4561 0.4832
Std 0.2882 02903 0.2995  0.3080 0.2365 0.2743 0.3025 0.2990 0.2895 0.2885 0.3026 0.3119
WFE | 5 800 | Mean | 0.3785 0.5016 0.0000  0.0412 0.4241 04921 04997 0.0050 0.0287
Std 0.2947 02929 0.0002  0.1170 0.3043 0.2965 0.2903 0.0333  0.0975
TWFE | 5 800 | Mean | 0.5088 0.5026 0.4845 0.4891 0.4876 0.5055 0.5016 0.4765 0.4894
Std 0.2978 0.2922 02971  0.2883 0.2949 0.3008 0.2912 0.2916 0.2879
PWFE | 5 800 | Mean | 05064 0.5018 0.5052 04866 0.6909 0.5793 04929 0.7311 0.5020 0.5025 0.4690 0.4757
Std 02942 02921 02882  0.2904 0.2060 0.2667 0.2952 0.3332  0.3000 0.2902  0.2970 0.2935
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Table A.19. Case VII: Mean and standard deviation of the p-values of the parameters (Table
A.10) and the direct (DE) and indirect (IE) spillover effects of variables x; and x; (Table
A.13, lower panel)

Settings Negative exponential: row normalized
T N Bi1)  By(02) $1(15) ¢p(-0.3) p(05) ()  a;(100 @ DEx; DEx, IEx; IEx,
WFE | 5 200 | Mean | 0.0000 0.0331 0.0000 0.1792 0.0000 0.4215 0.6258 0.0021 0.2719
Std 0.0000 0.0642 0.0000  0.2559 0.0000 0.2522  0.2407 0.0221 0.2955
TWEFE | 5 200 | Mean | 0.5008 0.4914 0.4919 0.4951 0.4852 0.4893 0.4934 0.4878 0.5015
Std 0.2958 0.2918 0.2840  0.2945 0.2913 02792 0.2923 0.2921 0.2967

PWFE | 5 200 | Mean | 04990 0.4882 0.4780 0.4837 0.4823 05114 0.6105 0.4903 04881 0.4912 04971 0.4871
Std 0.2866 0.2889 0.2880  0.2872 0.2936 0.2944 0.3225 0.2825 0.2792 0.2917 0.2935 0.2896

WFE | 5 800 | Mean | 0.0000 0.0027 0.0000  0.0029 0.0000 0.0804 0.6600 0.0000 0.3796
Std 0.0000  0.0103  0.0000  0.0333 0.0000 0.0960 0.2337  0.0000 0.3084
TWEFE | 5 800 | Mean | 0.5081 0.5027 0.4957 0.4996 0.4884 0.5042 0.4946 0.4898 0.4932
Std 0.2926  0.2899 0.2860  0.2934 0.2927 0.2999  0.2902 0.2920 0.2964

PWFE | 5 800 | Mean | 0.4924 05042 0.5044 0.4986 0.4956 0.5038 0.5530 0.4854 0.5031 0.4954 0.4928 0.4937
Std 0.2888 0.2894 0.2855 0.2892 0.2944 0.2892 0.2702 0.2867 0.3010 0.2901 0.2881 0.2896
Negative exponential: scalar normalized

N B1-1)  B(0.2) ¢1(L5) ¢2(-03) p0.5 6(2) ay(10) @ DEx; DEx, [Ex; IEx,
WFE | 5 200 | Mean | 00000 00511 0.0000 0.1382 0.0000 06342 06050 0.0000 03511
Std | 0.0000 00866 0.0000 0.2242 0.0000 02458 02463 0.0000 03067
TWEE | 5 200 | Mean | 04964 04927 04852 04981 04743 04903 04927 04723 05040
Std | 02968 02933 02836 02944 02894 02794 02922 02889 0.2963

PWFE | 5 200 | Mean | 0.5140 0.4908 0.5620  0.4894 0.6074 0.7000 0.6866 0.4985 0.4895 0.4909 0.5346 0.4869
Std 02929 02886 0.2628  0.2802 0.2516 0.2298 0.3791 0.2853 0.2797 0.2892 0.2688 0.2897

WFE | 5 800 | Mean | 0.0000 0.0046 0.0000  0.0003 0.0000 0.4872  0.6715 0.0000 0.2423
Std 0.0000 0.0123  0.0000  0.0061 0.0000 0.2538 0.2269 0.0000 0.2866
TWEFE | 5 800 | Mean | 04974 0.5029 0.4964 04957 0.4941 0.4958 0.5068 0.4913 0.5000
Std 0.2947 0.2806 0.2912  0.2946 0.2896 0.2881 0.2842 0.2867 0.2958

PWFE | 5 800 | Mean | 0.5140 05035 0.5928 0.5014 0.6186 0.7314 0.7161 0.5010 0.4939 0.5086 0.5459 0.5143
Std 02860 0.2814 0.2593  0.2842 0.2448 0.2087 0.3574 0.2859 0.2880 0.2853 0.2687 0.2875
Inverse distance: row normalized

T N BiD)  Br(02) $1(15) $p(-0.3) p(05) () (10 ay@ DEx; DEx, IEx IEx

WFE | 5 200 | Mean | 00000 07403 0.0000 0.0013 0.0000 03045 07016 0.0000 0.0001
Std | 0.0000 0.1839 0.0000 0.0114 0.0000 01721 02014 0.0000 0.0008

TWEE | 5 200 | Mean | 04934 04923 04897 04910 0.4933 04915 04944 04950 05069
Std | 02880 02918 02818 02946 0.2961 02799 02937 02957 02942

PWFE | 5 200 | Mean | 04895 0.4902 04822 04636 04680 0.4903 0.5192 04862 04912 04934 04650 0.4529
Std 0.2906 0.2919 0.2819  0.3068 0.3022 0.2832 0.2788 0.2895 0.2802 0.2925 0.3039 0.3060

WFE | 5 800 | Mean | 0.0078 0.4196 0.0007  0.0000 0.0585 0.5073  0.7985 0.0004 0.0000
Std 0.0504 0.1798 0.0113  0.0000 0.1219 0.1752  0.1418 0.0071  0.0012
TWEFE | 5 800 | Mean | 04911 0.5026 0.4929  0.4916 0.4905 0.4982 0.5030 0.4915 0.5013
Std 0.2929 0.2804 0.2923  0.2879 0.2954 0.2882 0.2809 0.2967 0.2913

PWFE | 5 800 | Mean | 0.5003 05041 0.5035 0.5059 0.4876 0.4999 04949 0.5095 04959 0.5028 0.4862 0.5050
Std 0.3015 0.2810 0.2881  0.2889 0.2975 0.2813 0.2844 0.2878 0.2883 0.2803 0.2980 0.2918
Inverse distance: scalar normalized

N B1(-1)  B2(0.2) ¢1(1.5)  ¢2(-0.3) p(0.5)  5(2) «1(10) ay(3) DEx; DEx; IEx; IEx

WFE | 5 200 | Mean | 0.0000 0.7411 0.0000  0.0108 0.0000 0.2601  0.7262  0.0000 0.0014
Std 0.0000 0.1816 0.0000  0.0505 0.0000 0.1632  0.1935 0.0000 0.0119

TWFE | 5 200 | Mean | 04909 0.4936 0.4851 04916 0.4821 0.4921 0.4935 0.4785 0.5051
Std 02910 02929 0.2827  0.2940 0.2933 0.2800 0.2926 0.2884 0.2934

PWFE | 5 200 | Mean | 0.5149 0.4932 0.5323 0.5221 0.6780 0.7172 0.6879 0.5385 0.4939 0.4946 0.6589 0.4852
Std 0.2901 0.2908 02719  0.2775 0.2207 0.2202 0.3720 0.2702 0.2799 0.2906 0.2279 0.2891

WFE | 5 800 | Mean | 0.0036 0.3993 0.0002  0.0001 0.0361 0.5395 0.7829 0.0001 0.0003
Std 0.0329 0.1788  0.0055  0.0024 0.0888 0.1827  0.1510  0.0026  0.0062
TWEFE | 5 800 | Mean | 04909 0.5025 0.4914 0.4988 0.4858 0.4980 0.5034 0.4849 0.5076
Std 0.2909 0.2806 0.2905  0.2958 0.2903 0.2882 0.2816 0.2869 0.2938

PWFE | 5 800 | Mean | 0.5276 05031 0.5621  0.5103 0.6663 0.7880 0.7144 0.5093 0.4960 0.5043 0.6509 0.5251
Std 0.2776  0.2807 02725 0.2895 0.2240 0.1804 0.3479 0.2854 0.2887 0.2818 0.2266 0.2831
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3.1 Introduction

The spatial autoregressive (SAR) model, the spatial error (SE) model, and the so-
called SARAR model combining these two specifications are the most widely used
spatial econometric models to introduce new methods of estimation. Leading ex-
amples focusing on cross-sectional data are Ord (1975), who introduces the max-
imum likelihood (ML) estimator of SAR and SE models; Anselin (1988, pp.82-86)
and Kelejian and Prucha (1998, 1999), who develop instrumental variables (IV) and
generalized method-of-moments (GMM) estimators of SAR, SE, and SARAR mod-
els; and Lee (2004) who derives the quasi maximum likelihood (QML) estimator
of the SAR model. Leading examples focusing on spatial panel data are Elhorst
(2003), who introduces the ML estimator of several SAR and SE models with fixed
and random effects; Lee and Yu (2010a) who derive the QML estimators of the
SARAR model with fixed effects; and Lee and Yu (2012) who derive the QML es-
timator of a general spatial panel model with fixed and random effects, which nests
various spatial panel specifications existing in the literature. In addition to these
econometric-theoretical studies, the SAR, SE, and SARAR models are also widely

used in all kinds of empirical applications.

A spatial econometric model that received limited attention in both the econometric-
theoretical and empirical literature is the SAR model with spatial moving average
(MA) errors, hereinafter abbreviated to SARMA. The main reason to draw atten-
tion to this model is that in many empirical applications it is not likely that an
unobserved shock in the error term of one unit is able to reach every other unit of
the study area. Most shocks are local and only have a limited spatial range. Sev-
eral spatial econometric researchers (Anselin, 2003; Fingleton and LeGallo, 2008;
Elhorst, 2010) have pointed out that shocks captured by an AR error process are
global since they diffuse among all the units, also when they are not connected
according to the specification of the spatial weight matrix. Conversely, shocks cap-
tured by an MA error process are local since units can only affect each other when
they are connected according to the spatial weight matrix. This finding indicates
that the distinction between local and global shocks, and therefore the difference
between spatial AR and MA errors and their relationship with the spatial weight

matrix describing the spatial arrangement of the units in the sample deserves more
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attention. Two important properties of spatial weight matrices in this regard have
emerged from the existing literature (Kelejian and Prucha, 1998, 1999; Lee, 2004).
The proportion of elements that is zero and whether the row and column sums
are upper bounded in absolute value or diverge to infinity though slower than the
sample size N. To investigate the relevance of these properties, we consider three
different spatial weight matrices in this chapter. A first-order binary contiguity
matrix which is sparse and whose row and column sums are uniformly bounded,
an inverse distance decay matrix which is dense and whose row and columns sums
are unbounded but go to infinity slower than the sample size N, and an exponen-
tial distance matrix which is dense but whose row and column sums are again
uniformly bounded. A detailed overview of previous studies, which considered
spatial MA errors, the difference between local and global shocks, the specification
and properties of the three proposed matrices, and the relationship between local
or global shocks and the sparsity or density of these matrices is the topic of the
next section in this chapter. This detailed overview is also the first contribution of
this chapter to the existing literature. Although spatial weight matrices of different
spatial lags can be different, they are generally treated to be the same in empir-
ical applications. The downside of this simplification will also be examined in this

chapter.

The second contribution of this chapter to the existing literature is the derivation
of a QML within estimator of the SARMA model including fixed effects in both
the cross-sectional and time domain, and a proof that this estimator is consistent
and asymptotically normal for the dominating panel data setting in applied spatial
econometric research: N is large and T is finite. We show that time fixed effects, if
included, are better treated as regular regressors, since the QML within estimator
then also offers the opportunity to consider spatial weight matrices normalized by
a scalar, such as the largest eigenvalue, as an alternative to row normalization. This
is an advantage because row normalization is not always harmless (see Kelejian
and Prucha, 2010), especially when working with inverse or exponential distance
decay matrices. Our QML within estimator also explains why the popularity of
the SARMA model has lagged behind the SARAR model. It is computationally

more demanding and software for spatial MA error models have not or hardly
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been made available to practitioners.!

This chapter is organized as follows. In Section 3.2 we introduce the SARMA
model and its main competitor the SARAR model, give an overview of previous
studies that focused on spatial moving average errors, provide a detailed explana-
tion of global versus local interpretations, and explain the link with the two men-
tioned properties of spatial weight matrices. In Section 3.3 we set out the QML
within estimator of the SARMA model. In Section 3.4 we report and discuss the
results of a Monte Carlo (MC) simulation experiment evaluating the performance
of the proposed estimator. We also show which biases occur when data generated
by a SARMA model with different spatial weight matrices for each spatial lag is es-
timated by the SARAR model, or when one common spatial weight matrix is used
for all spatial lags in the SARMA model. Section 3.5 contains an empirical applica-
tion on military expenditures taken from Yesilyurt and Elhorst (2017) in which the
SARMA and SARAR models are compared to each other. Finally, we draw conclu-

sions and suggest topics for further research in Section 3.6.

3.2 Spatial MA and AR error processes

3.2.1 Specifications

The SARMA model for panel data reads as

Yy, = pOWyt + Xt,B() + cg + @ortN + U, ur = v — AgMuoy, (3.1)
and the SARAR model as
y; = poWy, + Xt By + co + @ortn + 1, ur = AgMuy + oy, (3.2)

where the N x 1 vector y, = (y11, Yot --.s yn:) reflects the dependent variable of
units 1 to N at time ¢ (t = 1,...,T). Wy, represents the spatial lag of y, and pg
the spatial autoregressive coefficient of this variable. X; is an N x K matrix of non-
stochastic time-varying regressors and f, the associated K x 1 vector of coefficients.
ur = (uyy, oy, ...,uNt), is an N x 1 vector of error terms, which follows a spatial

moving average (MA) error process in (3.1) or a spatial autoregressive error process

! The routines developed for the purpose of this chapter will be made available upon request.
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in (3.2) with parameter Ag. The elements v;; of the disturbance term vector v; are
i.i.d across i and t with zero mean, variance Ug, and finite fourth moment. W and
M are N x N spatial weight matrices generating spatial dependence among the
cross-sectional units in the dependent variable and the error terms, respectively.
Although W and M can be different, they are generally treated to be the same
in empirical applications. This simplification will be expressly examined in this
chapter. ¢ is an N x 1 vector of individual fixed effects, ¢ is a time fixed effect,

and iy is an N x 1 vector of ones.

3.2.2 Previous studies on spatial MA errors

Previous studies focusing on spatial moving average errors in spatial econometric
models providing econometric-theoretical proofs that their estimators are consist-
ent or that implement these type of errors in their empirical application are scarce.
Table 3.1 provides an overview. Haining (1978) proposes a spatial MA model and
investigates its stationarity, assuming that the spatial weight matrix takes the form
of a square lattice. Huang (1984) derives the ML estimator and its asymptotic prop-
erties of a SARMA(p,q) model for cross-sectional data. Hepple (2003) sets out the
ML estimator of the spatial MA model for cross-sectional data. In addition, she
briefly pays attention to the Bayesian estimator of this model and the ML estimator
when this model is extended with a spatial lag in the dependent variable, yielding
the SARMA model. Fingleton and LeGallo (2007, p.44) modify the feasible general-
ized spatial two-stage least squares (FGS2SLS) estimator developed by Kelejian and
Prucha (1998) for the cross-sectional SARAR model, such that it can be used to es-
timate a linear regression model not only with exogenous but also with endogenous
explanatory variables and a spatial MA error term. In a series of follow-up studies,
Fingleton (2008a,2008b) and Fingleton and LeGallo (2008) further explore the finite
sample properties of this estimator, extend this model to spatial panels with unob-
served unit-specific random effects, and illustrate their models and estimators with
the results of some empirical studies. Baltagi and Liu (2011) improve Fingleton’s
(2008a) FGS2SLS by taking into account that the moment conditions that are based
on OLS residuals rather than the true disturbances. Instead of the FGS2SLS estim-
ator developed by Kelejian and Prucha (1998), Dogan and Taspinar (2013) modify
the one-step GMM estimators developed by Lee (2007) and Liu et al. (2010) for the
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Table 3.1. Studies on spatial moving average errors

Study Spatial lags  Data Matrix form Estimation
method
Haining (1978) Mo CS Squared lattice MLE
Huang (1984) Wy, Mo CSs Not mentioned MLE
Hepple (2003) Wy, Mo CSs Not mentioned MLE,
Bayesian
Fingleton and LeGallo Mv CSs Contiguity FGS2SLS
(2007)
Fingleton (2008a) Mo CSs Contiguity FGS2SLS
Fingleton (2008b) Wy,, Mv; PD Contiguity FGS2SLS
Fingleton and LeGallo Wy, Mv CSs Negative exponen- FGS2SLS
(2008) tial
Baltagi and Liu (2011) Mv CSs Contiguity GMM (OLS
residuals)
Lee and Yu (2012) Wy,, Mv; PD Not mentioned OMLE-FD
Dogan and Taspinar Wy, Mo CSs Group interaction =~ GMM
(2013)
Fingleton et al. (2018) Wy,, Mv; PD Group interaction =~ FGS3SLS
Baltagi et al. (2019) Wy,, Mo, PD Contiguity FGS4SLS
This study Wy,, Mo, PD Contiguity, negat- QMLE-

ive exponential, in- within
verse distance, row

and scalar normal-

ized

CS: cross-sectional data; PD: panel data. (Q)MLE=(Quasi) maximum likelihood estimator,
FGS2SLS=Feasible generalized spatial two-stage least-squares, FGS3SLS=Extension of FGS2SLS,
FGS4SLS=Extension of FGS3SLS.
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cross-sectional SARAR model, such that it can be used to estimate the spatial MA
and the SARMA models. The FGS2SLS estimator developed by Fingleton and oth-
ers is also used in later work of Fingleton et al. (2018) to estimate a spatial panel
SARMA model with hierarchical random effects in the spatial domain, i.e., for indi-
vidual units and individual units within groups. They also rename their estimator
FGS3SLS because the parameters are determined in three stages. In their empirical
application, they specifically focus on regions across EU member countries and a
spatial weight matrix which is specified as a group interaction matrix. Baltagi et al.
(2019) further extends this model with dynamic effects in space and time, i.e., cap-
turing a spatial, a time, and a space-time lag in the dependent variable, as well as a
spatial lag, a time lag, and a spatial MA process in the error term, and to a FG54SLS
estimator to account for these additional dynamic effects. Lee and Yu (2012) derive
the QML estimator of a general spatial panel model with fixed and random effects,
which nests various spatial panel specifications, among which the SARMA model
in Equation (3.1) of this chapter. However, due to its general character and the fo-
cus on the properties of their derived estimators, this model specification and its
properties relevant for empirical studies, the subject of this study, do not get the at-
tention they deserve. Another issue is that they take first-differences to concentrate
out the individual effects rather than the commonly used within transformation.
In addition to these journal papers, the spatial MA error specification is briefly dis-
cussed in several overview chapters (Anselin and Bera, 1998) or spatial econometric

textbooks (Haining, 1990; LeSage and Pace, 2009).

The conclusion from this overview of previous studies is that estimation meth-
ods, which are first developed to estimate models with spatial autoregressive er-
rors, are subsequently also developed for models with spatial moving average er-
rors. The focus has been on ML, IV/GMM, and Bayesian estimators of the cross-
sectional SARMA model, and on the feasible generalized spatial two-stage least
squares (FGS2SLS) estimator of its panel data counterpart with at most random ef-
fects for the cross-sectional units. Fixed effects in space and especially time have
not been considered in these studies, while the degree of local spatial dependence
in the dependent variable and/or the error term when time fixed effects are left
aside tends to be overestimated, an issue that is overlooked in all studies reported

in Table 3.1. One exception is Lee and Yu (2012), but they do use first-differences
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rather than the standard within approach to concentrate out the individual effects.
For these reasons, we provide the quasi ML (QML) within estimator of the panel
data SARMA model with individual and time fixed effects. The term quasi is used
since this estimator does not require any specification of the distribution function
of the error terms, except that they have zero mean, variance o2, and finite fourth
moment. We focus on the large N and finite T panel data setting since it is repres-
entative for most empirical studies in spatial econometrics. The problem of N being
large is the incidental parameter problem; if N is large so will be the number of in-
dividual fixed effects, which furthermore cannot be estimated consistently if T is fi-
nite. Generally, they are concentrated out by the demeaning procedure IT — %LTL’T,
which is the standard within transformation in the panel data literature (Arellano,

2003, Section 2.2; Baltagi, 2005).

3.2.3 Local versus global shocks

The spatial MA error of the SARMA model in (3.1) can be rewritten as
up = (Iy — AoM) vt = vt — AgMy, (3.3)

and the spatial AR error of the SARAR model in (3.2) as

uy = (IN — /\0M)_117t = (Z A6M1> (!
i=1

= v + AoMo; + A3M?v; + ASMPo; + ..., (3.4)

where we used the property that M = I. These two spatial error specifications
have different economic interpretations. Spatial interaction effects among the error
terms may occur if unobserved shocks follow a spatial pattern other than those
covered by time fixed effects, which may cause the parameters of the model to be
inefficient. This inefficiency may be avoided or reduced by accounting for these
spatial interaction effects through estimating A,.

Several studies paid attention to the economic interpretation of spatial AR versus
MA errors (Anselin, 2003; Fingle’con2 and LeGallo, 2008; Elhorst, 2010). If a shock

occurs at a particular unit, a spatial MA error term will have the effect that this

2 See also several follow-up studies of this author.
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shock is transmitted to those units which belong to its neighbourhood set accord-
ing to the specification of M. If this matrix is sparse, it will only be transmitted to
a limited number of units, mainly nearby units. If this matrix is dense, it will be
transmitted to more units, whereby units located nearby, in accordance with To-
bler’s first law, will be more strongly influenced than units farther away. In other
words, the sparser (denser) the spatial weight matrix, the smaller (greater) will be
the spatial range of the area that is affected by this shock. Since the right-hand
side of (3.3) only contains the first-order effect Mv;, the impact of the shock may be

termed a local effect.

By contrast, if a shock occurs at a particular unit and the error term follows
a spatial AR process, then the right-hand side of (3.4) not only contains the first-
order effect Mv; but also higher-order effects. Just as the spatial MA error term,
the first-order effect is limited to those units of which the elements of M are non-
zero. However, due to the second and higher-order effects, units that do not belong
to the neighbourhood set of a unit that instigates the shock will also be affected.
Such higher-order effects may also arise as a result of feedback effects, i.e. impacts
passing through neighbouring units and back to the unit itself (e.g. 1 — 2 — 1
and 1 -+ 2 — 3 — 2 — 1). Since this multi-round diffusion effect ultimately
affects all units by the shock that occurred at one location, such a shock may be
termed a global effect. To explain this principle, all three cited studies (Anselin,
2003; Fingleton and LeGallo, 2008; Elhorst, 2010) adopt a sparse matrix, i.e., the
first-order binary contiguity (BC) matrix whose elements are 1 if two units share a
common border, and 0 otherwise. This is understandable because it is not plausible
that the spatial matrix is dense when adopting a spatial AR process. If this matrix
would be dense, it is not necessary to consider higher-order terms. Then it would be
sufficient and more efficient to specify a spatial MA error term in combination with
a spatial matrix that is dense. In many empirical applications it is also not likely to
assume that an unobserved shock in one unit is able to reach any corner of the study
area. Most shocks are local and only have a limited spatial range. Furthermore,
external shocks that are shared by all units in the sample, such as business cycle
effects, can be modelled by time fixed effects. Besides, the SARMA model also
contains a spatial lag in the dependent variable (Wy,). Consequently, the impact of

a local shock on the dependent variable of a particular unit may also spread further
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due to endogenous interaction effects among the dependent variables of the units

across the study area.

Finally, it should be emphasized that AR and MA error processes are not nested.
Equation (3.4) seems to simplify to Equation (3.3) when the second and higher-
order terms in (3.4) are zero, i.e., when Ag = 0. However, when this parameter is
zero, the first-order term AgMv; is also dropped, resulting in the SAR instead of the
SARMA model.

3.2.4 Spatial weight matrices

The previous section has made clear that the choice between a spatial AR or MA
process is also related to the spatial range of the spatial weight matrix. The spatial
econometric literature has pointed out that this range depends on the properties
which percentage of the elements is zero and whether or not their row and column
sums are upper bounded in absolute value or diverge to infinity though slower than
the sample size N. Assuming that M (note: the same holds for W) is non-negative
and in raw form a non-normalized matrix of known constants with zero diagonal
elements (to prevent units from explaining themselves) either of the two additional
assumptions is needed for the consistency of the QML/IV/GMM estimators set out
in Kelejian and Prucha (1998, 1999), Lee (2004), and Lee and Yu (2010a):

I:0 <limy_ oo i imji| <c, (3.5)
j=1

where mij denotes an element of M and ¢ is a constant. This is known as the
boundedness condition and will be satisfied when the spatial weight matrix takes
the form of a BC matrix, since the number of neighbours of each unit is less than
the unit with the largest number of neighbours. This condition is not satisfied
when the spatial weight matrix takes the form of an inverse distance (ID) matrix:
m; = 1/dy,

all off-diagonal elements of this matrix non-zero, the row and column sums of this

where d;; denotes the distance between units i and j. Not only are

matrix also diverge to infinity. For example, if the distance to the first neighbour
is 1, to the second is 2, to the third is 3, and so on, the corresponding row sum of

this unitamountsto1/1+1/2+1/3+ ..., representing a series which is not upper
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bounded. By contrast, the second assumption

N
Zj:l Mij

IT: limpy s 400 N ,

(3.6)

is satisfied since limy_, 1o0(1/1+1/24+1/3+...)/N — 0. This is known as the
weak convergence condition. A more detailed mathematical explanation is avail-
able in Elhorst et al. (2021). The exponential distance (ED) matrix, whose ele-
ments are defined as m;; = exp(—d;;), takes a position in between. Just as the
ID matrix, all off-diagonal elements of this matrix are non-zero, but in contrast to
the ID matrix it does satisfy condition I that its row and column sums are upper
bounded. Using the same example as for the ID matrix, the row sum amounts
1/e+1/e>2+1/¢3 + ..., whichis upper bounded by 1/ (e —1).

In sum, while the off-diagonal elements of both the ED and the ID matrix are
non-zero, the correlation between any two units of the ED matrix converges so
much faster to 0 with distance in contrast to that of the ID matrix that its row and
column sums are upper bounded. We will utilize these properties when testing the
SARMA and SARAR models against each other.

3.3 Estimation of the SARMA panel data model

In this section, we derive the ML and QML within estimator of the SARMA model
when using the within transformation to concentrate out the individual fixed ef-
fects, and we investigate the asymptotic properties of the estimator when N is large
and T is finite.

The SARMA model in (3.1) contains both individual and time fixed effects. Im-
portantly, when T is finite, these time fixed effects do not have to be concentrated
out; they can also be taken up as part of the regressors X;. For this reason, we

depart from the model
Y; = oWy, + XeBy + co +ur, ur = v — AgMuy, (3.7)

in this subsection and do no specify the time fixed effects separately. This model
therefore covers both the possibility that a researcher includes time fixed effects or

does not want to include time fixed effects, for example, because some regressors
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do not vary over time.

In general, elements of the spatial weight matrix are row-normalized because it
facilitates the interpretation of operations with the weight matrix as an averaging
of neighbouring values (Anselin and Bera, 1998). However, row-normalization has
also been criticized. Kelejian and Prucha (2010) demonstrate that normalization
of the elements of the spatial weight matrix by a different factor for each row as
opposed to a single factor is likely to lead to misspecification problems. To avoid
such misspecification problems, they propose an alternative normalization proced-
ure where each element of the spatial weight matrix in raw form is divided by its
largest eigenvalue. Important, the QML within estimator set out in this section also
covers the possibility to consider this kind of normalized matrices, which is useful
especially when working with inverse or exponential distance decay matrices. In
sum, since the majority of empirical studies is characterized by this panel data set-
ting and the spatial weight matrix does not necessarily have to be row-normalized,
the findings in this section are relevant for a broad range of empirical studies.

Let S(p) = Iy — pW, R(A) = Iy — AM, B = (B,p,A,0%), and = (B,p,A)"
When the subscript 0 is added to a parameter or a vector of parameters below, we
denote the true value of this parameter or vector. J; = It — %lTL,T is used to con-
centrate out the individual fixed effects, which is known as the within transforma-
tion in the panel data literature (see Arellano, 2003; Baltagi, 2005). This technique
readsasy, = y, —y, fort = 1,2,...,T, where the elements of y, are defined by
Yy = %ZtT:l Yit. Similar transformations apply to the explanatory variables and

the error term of the model, yielding X;, 9, and ;.

Assuming as if the error terms are normally distributed, we will change this
later when investigating the asymptotic properties based on the variance-covariance
matrix of the proposed estimator, the log likelihood after ¢ is concentrated out us-

ing the within transformation (indicated by the superscript w) is given by
» NT ) 1T &
InL®(6) = — 1 in(270?) + TlinlS(p)| ~ R[] ~ 57 3~ 81(0)5(0),
t=1
(3.8)

where () = R™1(A)[S(0)¥, — X:B]. Two important differences between the
SARMA and SARAR model are that the matrix R(A) needs to be inverted when
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calculating v¢({) and that the Jacobian term In|R(A)| does have a negative rather
than a positive sign. The first and second order derivatives of (3.8) are given in

(3.A.1) and (3.A.3) of the Appendix 3.A.1, respectively.
Next, we also concentrate out § and ¢? to focus on (p, A), whose QML within
estimators, given A and p, are

~w T ’ ~ T ’
B (p.A) = [ X, RV MR A)X] Y XR™T (AR (A)S(0)7,], (39)
t=1 t=1
T ~ AW ’ / 5 Sw
7o, 2) = g LIS@F, ~ X8 (o, ) R (R Q) (5005, ~ X (o, W), (3.10)
=

as a result of which the corresponding concentrated log likelihood function of
(o, A) is

InL¥(p, A) = fg(ln(%t) +1)— glnﬁzw(p, A) + T[In|S(p)| — In|R(A)|].
3.11)

One problem of the within transformation is that the resulting error terms are lin-
early dependent over the time dimension. Consequently, the estimate 7% of 0
using the within transformation will be consistent only when T is large. When T
is finite, 72 should be bias-corrected by %32”’ to obtain a consistent estimate
of o2. This is demonstrated by Arellano (2003, p.24) for non-spatial panel models
and by Lee and Yu (2010a) for a SARAR panel data model. This can be effected by
replacing T in (3.11) with T — 1.

To investigate the asymptotic properties of the proposed QML within estimator
of the SARMA model, we make eight assumptions and prove two theorems. As-
sumptions similar to Lee and Yu (2010a) are labelled by (LY) and those that are
different due to considering a spatial MA error process are labelled by (MA). The

assumptions are

Assumption 3.1 (LY). The spatial weight matrices W and M are non-stochastic and have

zero diagonal values.

Assumption 3.2 (LY). The disturbances vj; are i.id fori =1,2,..,Nandt =1,2,..,T,

and have zero mean, variance (Tg, and E|vj |4+’7 < oo for some 1.

Assumption 3.3 (LY). S(p) and R(A) are invertible for all p and A in compact intervals
P and A, respectively. pg is the interior of IP and A is the interior of A.
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Assumption 3.4 (MA). The elements of X; are non-stochastic and bounded uniformly
in N and T in absolute value and the limit of % Y X tR_l/R_l}N( ¢ exists and is non-

singular.

Assumption 3.5 (LY). W and M are uniformly bounded in both row and column sums
in absolute value, and so are S~ (p) and R™V(A) forp € Pand A € A.

Assumption 3.6 (MA). N is large and T is finite.

Assumption 3.7 (MA). Either (a) the limit of
(1RSSR — < [o¥ (0, VR (V)5 ()5~ (9)R(V))

is not zero for (p,A) # (po, Ao), as N tends to infinity; or (b) the limit of H(A) is non-
singular for each possible A in A, and the limit of %|0§R/R\ - %|02*()\)R( (MR(A)] is
not zero for A # Ag.

Assumption 3.8 (MA). The limit ofﬁ [tr(C3C%)tr(D*D?) — tr?(CSD®)] is strictly pos-
itive as N tends to go infinity.

We denote G = WS™!, 6 = R'GR,K = R"'M, C = G — &Iy, and D =
K- %I N- We further have

T
HO = gy L G R R (%, 6Xify), 612
() = D(RTINR) (RN,
2
7 (p,4) = Btr{(R71(0)S(0)S'R) (R} (M)S(0)S 'R,

Assumptions 3.1, 3.2, 3.3, and 3.5 have been discussed in Lee and Yu (2010a), al-
though a few comments from a practitioner’s point of view are in order. Assump-
tion 3.1 can be relaxed by allowing the spatial weight matrices to contain non-zero
diagonal elements. Generally, their diagonal elements are set to zero to avoid that
units can affect themselves. However, there are also applications in which this as-
sumption is not made, for example, when explaining self-flow data in trade flow
models (Balaszi et al., 2018). Even though the elements of spatial weight matrices
are generally assumed to be non-negative from an economic viewpoint, negative

elements do not have to be excluded either (Bailey et al., 2016). This explains the
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addition in absolute value in Assumption 3.5. Furthermore, even if all elements
are non-negative, this does not guarantee that all elements of S~!(p) and R™1(A)
are also non-negative, which explains the terminology uniformly bounded in abso-
lute value in general. Assumption 3.5 might also be relaxed; the row and columns
sum may also diverge to infinity, but only to a lesser extent than the sample size
N (see Lee, 2004; Lee and Yu, 2010a, footnote 14). Commonly it is assumed that
po and A take values in the interval (—1, +1) to fulfill Assumption 3.3. Theoretic-
ally it is possible that py is smaller than -1, since the lower bound is defined by 1
divided by the smallest eigenvalue of W. The result will be smaller than -1 since
this smallest eigenvalue will be in the interval (-1,0) when W is non-negative and
normalized (Ord, 1978). However, negative values for pg in models with a spatial
lag in the dependent variable are considerably less common than positive ones, let
alone negative values smaller than —1 (Elhorst, 2014, Section 2.5). Therefore, im-
posing this lower bound is hardly restrictive. A similar argument applies to the
coefficient of the MA error term.

Assumptions 3.4, 3.6, 3.7, and 3.8 are modified for the model with MA errors;
if the inverse of the matrix R(A) is taken when considering a spatial AR error pro-
cess, it is not when considering a spatial MA process, or vice versa. Assumption
3.6 focuses on the large N and finite T panel data setting, representative for the
majority of spatial econometric studies. This assumption allows researchers the
opportunity to include time fixed effects as regular regressors without facing an in-
cidental parameter problem due to T being large, and the opportunity to consider
spatial weight matrices that are not row normalized but normalized by a scalar. As-
sumption 3.7 provides the identification conditions of the model with spatial MA
errors. Assumption 3.7(a) globally identifies (pg, Ag), provided that W # M. In
case W = M, (po, Ag) and (Ao, po) cannot be distinguished from each other based
on 3.7(a). Instead, identification relies on Assumption 3.7(b). The non-singularity
of H(A) for each A in the first part of Assumption 3.7(b) guarantees that py and B,
are identified. The second part of Assumption 3.7(b) provides the identification of
Ag for A # Ag.3 These identification assumptions have been discussed in Lee and
Yu (2010a) for the SARAR model and have been transformed here for the SARMA

3In Assumption 3.7, the equations in (3.12), and the proofs of Theorems 1 and 2 in the appendix, the
notations R(A) and R are used to denote this matrix evaluated at respectively the estimate of A and the
true value of A = Aq.
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model.

Theorem 1. Under Assumptions 3.1-3.7, B, is identified and for 0" based on (3.9)-(3.11)

of the within transformation, 0" — 01 - 0, where 07 = 0, — (01 (k+2)/ Lo)

Proof. See Appendix 3.A.2.

From this theorem it follows that 02 = 02 — .02, which implies that the true value

2_ T 2
of 0y = 707

Theorem 2. Under Assumptions 1-6 and 7(a) (W # M); or Assumption 1-6, 7(b), and 8

(W - M)/
VNT(@" - 07) % A (0, zim%(za)-l(zgﬂ + Qg;)(zg;)—l) , (3.13)

where ZZ’T and QS’T are given in (3.A.4) and (3.A.5) of Appendix 3.A.1;

Proof. See Appendix 3.A.3.

Importantly, the addition of the matrix Q) in (3.13) of this theorem, see Equation
(3.A.5) for its detailed specification, covers the correction that is needed when the
error terms are not assumed to be normally distributed. Only if they are, this mat-
rix reduces to the null matrix and drops out. This correction affects the efficiency of
the parameter estimates but not their consistency.

To determine the parameters of the SARMA model numerically based on the
proposed QML within estimator, a routine has been developed where the researcher
needs to specify the N x 1 vector y,, the N x K matrix X;, and the two N x N spa-
tial weight matrices W and M. The researcher also has the opportunity to specify
whether or not to include time fixed effects and whether or not to depart from
normally distributed error terms. The routine first concentrates out the individual
fixed effects and then maximizes the concentrated log-likelihood function in Equa-
tion (3.11), such that if the values of p and/or A change, the estimates for Bw (p,A)
and 72“(p, A) in Equations (3.9) and (3.10) change accordingly. When this max-
imum is found, the estimate for 72 is bias-corrected. A similar routine has been de-

veloped for the SARAR model. By comparing these two routines, it appeared that
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the SARMA model is computationally more demanding than the SARAR model
and thus requires more computation time. This is because the matrix R when de-
termining B (o, A) and 52%(p, A) needs to be inverted every time the concentrated
log-likelihood function is determined for a particular pair of values (p,A) in the
maximization process, which is not needed when estimating the parameters of the
SARAR model. This may have been an obstacle in the past when computing fa-
cilities were relatively limited and might explain why the SARAR model received
more attention than the SARMA model. Another explanation might be that re-
searchers may find it more difficult to work with different structures for the spatial
lag in the dependent variable and in the error term. For the same reason and due to
lack of economic-theoretical knowledge how to specify the spatial weight matrix,
they also often consider one common spatial weight matrix for all spatial lags in the
model. This chapter attempts to break this practice by considering both the SARMA
and the SARAR model, by considering the opportunity to consider different spatial

weight matrices for each spatial lag, and by making both routines available.

The routines are based on Assumption 3.6 that N is large and T is finite. Given
that T is finite in most empirical spatial econometric studies, there is no obstacle to
treat time fixed effects, if included, as regular regressors. When T grows large, it
is nonetheless tempting not only to concentrate out the individual effects but also
the time fixed effects. However, this requires more complicated transformations
than the within approach and spatial weight matrices that are row normalized, or
alternatively a more complicated bias correction procedure of the within estimator.
Details are available in Lee and Yu (2010a, Section 3) and Elhorst (2014, Section
3.3.3), though only for the SARAR model. To illustrate the minor significance of
this extension, we refer to the xsmle command in Stata. This routine offers the op-
portunity to estimate the SARAR model with individual and/or time fixed effects
(ind, time or both), as well as to activate the “leeyu” suboption to concentrate out
the fixed effects using the transformations developed by Lee and Yu (2010a). How-
ever, when both individual and time fixed effects are included and the “leeyu”
suboption is activated, the following warning is given “Suboption -both- will be

replaced with -ind-".
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3.4 Monte Carlo simulations

We conduct a Monte Carlo experiment to examine the finite sample properties of
the proposed QML within estimator of the SARMA model under different N and
T settings. We consider N = (200,800) and T = (5,10) because these panel data
settings are representative for applied studies in spatial econometrics. We gener-
ate the data using the SARMA model with a binary contiguity (BC) matrix for the
dependent variable and a negative exponential (ED) distance decay matrix for the
error term. To construct these matrices, we use the coordinates of the N data points
evenly set in a rectangle of 10 x 20 for N = 200 and 20 x 40 for N = 800. The BC
matrix is based on the rook principle. Row-normalization is performed for both
matrices. The data generating process further contains one explanatory variable x;
with coefficient By = 1, while ¢y, @or = (@1, @02, .., @oT), and v; are all generated
from independent standard normal distributions, where 03 = 1. Two settings of
spatial dependence in the dependent variable and spatial dependence in the error
are considered, which are (pg, Ag) = (0.2,0.5) and (pg, Ag) = (0.5,0.2). The degree
of spatial dependence in the dependent variable in the first setting is relatively mild
(0.2) and the spatial dependence in the error term relatively large (0.5), while in the
second setting this is turned around. The number of iterations is set to 1000. The

R? of the DGP ranges from 30% to 50%.

We first estimate the model “correctly”; the SARMA model with BC matrix for
the dependent variable and ED matrix for the errors are used both in the DGP and
estimation of this model. We consider the QML within estimator before and after
bias correction (bc), respectively. When bias correction is performed, 0 is labelled
as 02.. Next, we investigate respectively what happens if a practitioner would
estimate the SARMA model by one common spatial weight matrix, the BC mat-
rix, for the two spatial lags (“wrong” matrix), would estimate the SARAR model
with the BC matrix for the dependent variable and the ED matrix for the error
terms (“wrong” model), or would estimate the SARAR model by one common spa-
tial weight matrix, the BC matrix, for the two spatial lags (“wrong” matrix and
“wrong” model). In each of these additional cases, we only consider the bias cor-

rected (756. Time fixed effects are included and treated as regular explanatory vari-

able in all cases, but their coefficient estimates are not reported for reasons of space
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and simplicity. For each panel data setting and estimated model, the empirical bias
(Bias), the empirical standard deviation (E-SD), the empirical root mean square er-
ror (RMSE), and the empirical median bias (Mbias) are reported. In addition, we re-
port the direct and indirect spillover effect of the explanatory variable in the model
(denoted by DE_x and IE_x). The direct effect measures the impact of changing the
explanatory variable of one unit on the dependent variable of that unit itself, and
the indirect spillover effect the cumulative effect of changing the explanatory vari-
able of one unit on the dependent variable of other units (LeSage and Pace, 2009).
LeSage and Pace (2018) demonstrate that past studies’ focus exclusively on point
estimates may not provide useful information regarding the statistical properties
of the marginal effects, i.e., the direct and indirect spillover effect of each variable
obtained from these point estimates.

Tables 3.2 and 3.3 report the simulation results for (pg,Ag) = (0.2,0.5) and
(po, Ao) = (0.5,0.2), respectively. Both cases show similar patterns. The simula-
tion results in the first panel “SARMA BC_ED” of these tables unequivocally show
that the within approach without bias correction should be rejected. As expec-
ted, the estimate for o is severely biased in small samples, even though it halves
when T increases from 5 to 10. The biases in §, p, A, (szc, and the direct and in-
direct spillover effects are all small and acceptable and tend to fall as T increases
but above all when N increases. Largely similar results are found for the E-SD,
RMSE, and Mbias. Overall, the simulation results appear to be consistent with the

theoretical predictions.
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Figure 3.1. Bias of A
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Since the spatial moving average parameter A is our point of our interest, Fig-
ure 3.1 graphs the bias that occurs in this parameter when adopting a wrong spatial
weight matrix, a wrong model, or both. These biases are taken from Tables 3.2 and
3.3. The numbers 1 to 4 on the x-axis indicate the panel data settings of N and T,
respectively (N, T) = (200,5), (200, 10), (800,5), (800,10), and the values on the y-
axis the magnitude of the biases. When the model is estimated correctly, the bias
of p decreases as N, T, or both increase, and especially if N increases. Further-
more, the bias is smallest compared to the other cases. Nevertheless, the bias is
relatively large compared to that of the other parameters and marginal effects in
the panels “SARMA BC_ED” of Tables 3.2 and 3.3. When the wrong model is es-
timated, namely the SARAR model, Figure 3.1 shows that the bias in A increases,
but that the downward pattern relative to N and T remains. By contrast, when
one common spatial weight matrix is adopted for all spatial lags, both in the right
model (SARMA) and in the wrong model (SARAR), not only the bias in A further in-

creases, but also the downward pattern relative to N and T completely disappears.
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This finding demonstrates that the selection of the right spatial weight matrix and
considering different spatial weight matrices for different spatial lags in the model
is of crucial importance and perhaps even more important than the selection of the

right spatial econometric model.

3.5 Empirical application: Military expenditures

The empirical analysis in this section is based on Yesilyurt and Elhorst (2017) (YE).
YE investigate (the log of the level of) military spending measured as a ratio of
GDP, also known as the defense burden, in 144 countries over the period 1993 to
2007. Consequently, T = 15 may be considered finite. Explanatory variables are
GDP, population, international war, civil war, and political regime.* The first two
explanatory variables are measured in logs, while the latter three are measured as
scores, of which the scores on international war and civil war range from 0 (no
war) to 10 (greatest, and on political regime from -10 (strongly autocratic) to +10
(strongly democratic).?

YE compare the performance of different spatial econometric models, among
which the SAR model, but not the SARMA and the SARAR models, and eight po-
tential specifications of the spatial weight matrix, among which a binary contiguity
matrix, but not an exponential or distance decay matrix. Using Bayesian compar-
ison methods developed by LeSage (2014, 2015), they find that the SAR model, the
specification that only includes a spatial lag in the dependent variable, in combin-
ation with a spatial weight matrix specified as a row-normalized binary contiguity
(BC) matrix based on maritime borders produces the highest Bayesian posterior
model probability. It makes this study interesting for further research because the
SARMA and SARAR models are not considered and LeSage’s Bayesian comparison
approach does not give any other option than to depart from one common spatial
weight matrix for all spatial lags in the model. We investigate whether extending

the SAR model with a spatial MA or AR error process and whether utilizing the

4Due to linking several data sources, YE were able to collect data on many countries from multiple
continents (Europe, Asia, Africa, North and South America, and Australia). The number of 144 coun-
tries is also greater than any other study on military expenditures, and also covers countries frequently
engaged in tensions (Cuba, Israel, Lebanon, Iran, Syrian, Kuwait, Vietnam, Mali, Ethiopia, both Congos,
and Columbia).

5 For more details on the data and the variables we refer the reader to Yesilyurt and Elhorst (2017).
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opportunity to use different spatial weight matrices for each spatial lag improve
the results. We consider row-normalized BC, ED, and ID spatial weight matrices,
which differ in their degree of sparsity and boundedness, but for reasons explained
in Section 3.2.3, we exclude the ID matrix when modelling AR spatial lags and the
BC matrix when modelling MA spatial lags. We also consider scalar normalization

by the largest eigenvalue of the distance-based spatial weight matrices.

Table 3.4 reports the estimation results using the QML within estimator with
bias correction. The individual fixed effects are included but concentrated out and
the time fixed effects are captured as year dummies and estimated as regular ex-
planatory variables. One year dummy is dropped to avoid multicollinearity. Just
as YE, the direct and indirect spillover effects of each variable are also determined.
The delta method introduced in Arbia et al. (2020) is used to calculate the signi-
ficance levels of these effects. Columns (1) and (2) report the estimation results of
the SAR model using either the row-normalized BC or the row-normalized ED spa-
tial weight matrix, respectively. Although the ED matrix was not part of the eight
matrices considered by YE, it is clear that when this matrix were added to their
choice set, the results would not have changed. The log likelihood function value
when adopting the BC matrix is higher than that of the ED matrix. The coefficient
estimate of the spatial autoregressive parameter p is 0.2368 and significant at the
1% level. Four of the five explanatory variables in the model appear to have coeffi-
cients, direct and indirect spillover effects that are significant at the 1%, 5% or 10%
level. When adopting the row-normalized ED matrix, only three explanatory vari-
ables have this property. For this reason and the fact that its log likelihood function
value is lower, we reject the ED matrix and stick to the BC matrix when modelling

the spatial lag in the dependent variable in the next steps.

Columns (3) and (4) report the results when the SAR model using the row-
normalized BC matrix is extended with a spatial AR error process based on either
the row-normalized BC or the row-normalized ED matrix. The results demonstrate
that the common practice to use one common spatial weight matrix for the spatial
lag in the dependent variable and the spatial lag in the error term needs to be rejec-
ted. The log likelihood function value when adopting the row-normalized BC mat-
rix also in the error term is lower than that of the ED matrix. Furthermore, while the

spatial autoregressive parameter is close to zero and insignificant (-0.0162, t-value
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Table 3.4. Military expenditures according to different combinations of spatial
weight matrices

odel | SAR \ SARAR \ SARMA \
| Var W | (1)BC (2ED | 3)BC.BC  (4)BCED | (5)BC.ED (6)BCID  (7)BCID* |
GDP 049004 -0.4982%%% | -0.4770**  -0.4845*** | -0.4838**  -0.5003***  -0.4812**
(-5.27) (-5.34) (-5.05) (-5.15) (-5.14) (-5.32) (-4.95)
Pop 0.3437 02804 04667+  -03537* | -0.3596*  -0.3396*  -0.3604**
(-2.02) (-1.64) (-2.32) (-1.91) (-1.92) (-1.83) (-1.96)
Int. War 0.0733* 0.0725* 0.0785* 0.0751* 0.0758* 0.0749* 0.0759*
(1.82) (1.80) (1.93) (1.85) (1.86) (1.85) (1.81)
Civil War | 0.0092 0.0085 0.0101 0.0098 0.0098 0.0072 0.0069
(0.63) (0.58) (0.70) (0.68) (0.68) (0.50) (0.46)
PR 20.01474%  -0.0156*** | -0.0137+**  -0.0152*** | -0.0153**  -0.0143***  -0.0145***
(-3.07) (-3.26) (-2.89) (-3.18) (-3.20) (-3.03) (-2.96)
) 02368+  0.3389*** | -0.0162 0.1649%* | 0.1530%*  0.1762***  0.2880***
(842) (8.35) (-0.51) (5.54) (5.11) (5.97) (6.44)
A 0.2587%*%  0.1744** | -0.2235**  -0.3426***  -0.2918**
(9.01) (3.50) (-3.50) (-3.40) (-2.74)
dir GDP | -0.4962**  -0.5035** | -0.4770**  -0.4874*** | -0.4863**  -0.5037+**  -0.4853**
(-5.27) (-5.34) (-5.05) (-5.15) (-5.14) (-5.32) (-4.95)
dir_Pop 0.3481%  -0.2835 04667+ -03557* | -0.3614*  -0.3419*  -0.3635**
(-2.02) (-1.64) (-2.32) (-1.91) (-1.92) (-1.83) (-1.96)
dir_Int. War | 0.0742* 0.0733* 0.0785* 0.0755* 0.0762* 0.0754* 0.0765*
(1.82) (1.80) (1.93) (1.85) (1.86) (1.85) (1.81)
dir_Civil War | 0.0093 0.0086 0.0101 0.0099 0.0099 0.0072 0.0070
(0.63) (0.58) (0.70) (0.68) (0.68) (0.50) (0.46)
dir PR 0.0148%  -0.0158*** | -0.0137+**  -0.0153*** | -0.0154**  -0.0144**  -0.0147%**
(-3.07) (-3.26) (-2.89) (-3.18) (32) (-3.03) (-2.96)
ind GDP | -0.1448**  -0.2500** | 0.0076 -0.0921%* | -0.0843**  -0.1029**  -0.1172%**
(-4.12) (-3.86) (0.52) (-3.49) (-3.35) (-3.66) (-3.49)
ind_Pop 20.1016*  -0.1407 0.0074 0.0673* | -0.0627%  -0.0698*  -0.0878*
(-1.93) (-1.58) (0.51) (-1.77) (-1.76) (-1.72) (-1.82)
ind_Int. War | 0.0217* 0.0364* -0.0012 0.0143* 0.0132* 0.0154* 0.0185*
(1.75) (1.71) (-0.50) 1.72) 1.72) (1.73) (1.70)
ind_Civil War | 0.0027 0.0043 -0.0002 0.0019 0.0017 0.0015 0.0017
(0.63) (0.58) (-0.42) (0.67) (0.67) (0.49) (0.46)
ind_PR -0.0043**  -0.0078*** | 0.0002 -0.0029%* | -0.0027*+*  -0.0029***  -0.0035***
(-2.79) (-2.82) (0.51) (-2.64) (-2.60) (-2.60) (-2.53)
logL -1390.2946 -1394.6256 | -1389.5789 -1387.5085 | -1387.1566 -1387.0925 -1394.7790
rsqr 0.7003 0.6984 0.6861 0.6975 0.6970 0.6980 0.6970

***significant at 1% level **significant at 5% level *significant at 10% level
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-0.51) when using the BC matrix, it is positive and significant (0.1649, t-value 5.54)
when using the ED matrix. The estimates of A indicating the spatial dependence in
the error terms are significant in both settings. This makes sense. It is likely that
the spatial pattern of unobserved shocks in the error term go beyond the first-order
neighbours of each country. When modelling the AR error process by the same BC
matrix as for the spatial lag in the dependent variable, it finally appears that none

of the indirect spillover effects is significant any more.

Columns (5) and (6) report the results when estimating the SARMA model, in
particular the SAR model using the row-normalized BC matrix extended with a
spatial MA error process based on spatial weight matrices that are denser than the
binary contiguity matrix, either the row-normalized ED or the row-normalized ID
matrix. In line with the purpose of this chapter, it first appears that the log likeli-
hood function value of the SARMA model compared to the SARAR model when
using the same two spatial weight matrices, the row-normalized BC matrix for the
spatial lag in the dependent variable and the row-normalized ED matrix for the
spatial lag in the error term, appears to be higher. The difference is nonetheless
small: -1387.1566 versus -1387.5085. This is because they yield largely similar res-
ults in terms of magnitude and significance. Second, it appears that the perform-
ance of the SARMA model in terms of the log likelihood function value can be
improved further to -1387.0925 by replacing the row-normalized ED matrix by the
row-normalized ID matrix. This finding supports the hypotheses that shocks are
local because the spatial pattern of unobserved shocks in the error term go beyond
the first-order neighbours of each country, that these shocks for this reason are bet-
ter modelled by a spatial MA error process than by a spatial AR process, and that
a spatial weight matrix denser than the binary contiguity matrix used to model the
spatial lag in the dependent variables is the appropriate matrix to model this MA
error process. The estimated spatial moving average parameter of the error term
is -0.3426 and significant at the 1% level; it turns out to have a downward effect
on the estimated autoregressive parameter in that it decreases from 0.2368 in the
SAR model to 0.1762 in the SARMA model. This finding implies that if a particu-
lar country increases its military expenditure as a ratio of GDP (say by 1% point),
neighbouring countries will follow (by 0.18% points), though to a lesser extent than

is found when estimating the SAR model without a spatial lag in the error term.
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Column (7) of Table 3.4 finally reports the estimation results when the row nor-
malized inverse distance matrix is replaced by its scalar normalized counterpart.
Since the log likelihood value does not increase, this alternative specification of the
inverse distance matrix appears not to be fruitful.®

When comparing the parameter estimates, the direct effects, and the indirect
spillover effects in the different columns with each other, it initially seems as if
the differences are rather small. Especially, the signs, magnitudes, and significance
levels of the parameters estimates and the direct effects do not differ to any great
extent from each other, no matter which model is used (SAR, SARAR, or SARMA)
and which specification of the spatial weight matrix is used (BC, ED, or ID). How-
ever, a different conclusion emerges considering the indirect spillover effects when
a model is estimated with the “wrong” spatial weight matrix, such as the SAR
model with an ED matrix in Column (2), or when one common spatial weight mat-
rix is used for all spatial lags in the model, such as the SARAR model with a BC
matrix in Column (3). Then both the signs and significance levels tend to be differ-
ent. This is an important finding since indirect spillover effects are often the main
focus of applied practitioners. They want to know whether changing a variable in
one country has an effect on other counties. Our search for the most likely model
and the most likely spatial weight matrix for the different spatial lags in the model
show that this can really make a difference. The results of the SARMA models are
more robust when different spatial weight matrices are used. The results found for
the best performing model, the SARMA model with a spatial lag modelled by the
BC matrix and a spatial MA error process modelled by the ID matrix, show that a
focal country surrounded by countries with higher levels of GDP, countries with
larger population, countries involved in an international war, and countries with
an autocratic regime have a significant upward effect on the military expenditures

of that country.

3.6 Conclusion

The SARMA model received considerably less attention in the theoretical and ap-
plied econometric literature than the SARAR model. We identify two reasons for

6 The estimated results of the full set of models with scalar normalized spatial weight matrices can be
obtained upon request.
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this. First, the estimation of the spatial MA autocorrelation parameter is computa-
tionally more demanding than of spatial AR autocorrelation parameter since the
matrix R(A) needs to be inverted multiple times when estimating the SARMA
model, while this inversion is not needed when estimating the SARAR model. This
may have been an obstacle in the past when computing facilities were relatively
limited. Second, estimation routines of the SARMA model have not been made
available to practitioners. This chapter attempts to break this practice along four
ways.

First, we develop the QML within estimator with bias correction to estimate the
parameters of the SARMA model when N is large and T is finite. We investigate its
asymptotic sample properties from an econometric-theoretical viewpoint and their
finite sample properties from an empirical viewpoint using Monte Carlo simula-
tions. The QML within estimator appears to be consistent, asymptotically normal,
and due to the bias correction properly centred, while its finite sample properties
appear to be acceptable and to improve as T increases but above all when N in-
creases. The QML within estimator without bias correction needs to be rejected. We
also investigate what happens when the data is generated by a SARMA model with
different spatial weight matrices for each spatial lag but estimated by the SARMA
model with one common spatial weight matrix, the SARAR model with similar spa-
tial weight matrices, or the SARAR model with one common spatial weight matrix.
This simulation experiment shows that the selection of the right spatial weight mat-
rix and considering different spatial weight matrices for different spatial lags in the

model is of crucial importance.

Second, the proposed estimator offers the opportunity to consider different spa-
tial weight matrices for the spatial lags in the model, as well as spatial weight
matrices that are normalized by its largest eigenvalue rather than row normalized.

We have shown that this improves empirical applications.

Third, a Matlab routine of the proposed QML estimators will be made available

to give other researchers the opportunity to apply it to their own data sets.

Fourth, we describe and compare the econometric and economic properties of
spatial moving average errors and spatial autoregressive errors with each other in
relation to the degree of sparsity and boundedness of three spatial weight matrices,

and demonstrate that the interpretation of spatial moving average errors in various
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empirical applications, among which our empirical application based on military
expenditures, is more obvious than spatial autoregressive errors since most shocks
are local rather than global.

In follow-up research we aim at extending the SARMA and SARAR models
further with spatial lags in the explanatory variables, leading to so-called general
nesting spatial models, and with parameterized specifications of distance decay
spatial weight matrices to further increase the flexibility with which these matrices

can be specified.
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3.A Appendix: QML within estimator with bias cor-

rection

3.A.1 First and second order derivatives of the log likelihood in
(3.8)

The first order derivatives are

LAY (R )X) Q)
FEL R Wi @) e |
Bl K7 H(£))F(D) + K ()]

b = T (B30 — Ne?)

1 anL®(0) | sz
VNT 90 ;2

T\ T\

where S(p) = Iy — pW, G(p) = WS~ 1(p), R(A) = Iy — AM, H(A) = MR }(A),
and K(A\) = R"}(A\)M.
The score of the log likelihood function evaluated at 07, where 6 = 6y —

(01 (K+2)/ T (70) is defined in Theorem 1, is

1

1 T =
g VNT Zt:1 Xtvt

1 olnL®(67) éﬁzle(éfﬁﬁo) vt + zFZt 1(th o — 02trG)

VNT 90 %%ﬁ Y7 (=5,K'5 + 02trK)
ﬁﬁ Ll (331 - No})

(3.A.2)

where W = RT'WR, G = W(Iy — pW)~! = R"!GR, and X; = R"'X;.

The second order derivatives are

7
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Given the second order derivatives, the score of the log likelihood at 87, and

Lemma A.4 of Lee and Yu (2010a), the information matrix ZS’T takes the form

wo_

= 9’InL¥(07)

o = UNT 9000
H * %
1
2 O1xxk+1) 0 =
Ox(xy1) 0 O
Oxxk * * *
01«x ltI‘ GSG * *
b O B : (B.A4Y)
01><K —Ntr(KSG) Ntr(KSK) *
014K U%LNtr(G) —U%LNtr(K) ﬁ

where H = g7 YL, (X, GX, ,30)’ (Xt, GX1B,). A matrix with superscript s is defined
by A® = A"+ A (A = G°,K®). The matrix Q. in Theorem 2 reads as

g =Ll
0
Oxxk * * *
Ok HXN,Gh * *
Ok —n oy GiKii & I K,

1 - 1
01«x 202N trG — 202N trK

(3.A.5)

.
g o«

This matrix captures the correction that is needed to the information matrix when

the error terms are not assumed to be normally distributed.

3.A.2 Proof of Theorem 1 (Consistency)

The proofs closely follow the steps and notations used in Lee and Yu (2010a), but
we do make modifications for using the SARMA rather than the SARAR model.
We present the analysis under the asymptotic setting that N tends to infinity and T
is finite.

As pointed out in Section 3.3, one problem of the within transformation is that
the resulting error terms are linearly dependent over the time dimension. Con-

sequently, the estimate 72% of 02 using the within transformation will be consistent
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only when T is large. When T is finite, 72 should be bias-corrected by +-502“ to
obtain a consistent estimate of o3. This is demonstrated by Arellano (2003, Section
2.2) for non-spatial panel models, by Lee and Yu (2012) for spatial panel data mod-
els, and by Lee and Yu (2010a) for the SARAR model. One major difference between
the last two studies is that Lee and Yu (2012) concentrate out individual specific
effects by taking first-differences, while Lee and Yu (2010a) concentrate them out
by an orthogonal transformation. However, all three studies conclude that the re-
quired bias correction can be effected by replacing T in (3.11) with T — 1,7 to get the
adjusted log likelihood (not indicated by a symbol)

InL(8) = — @m(zmz) + (T =1)[In|S(p)] — In|R(A)]]
T-1
~ 5 Lo 08(0) 6.A6
=

where v} () = R™1(1)[S(0)y; — X;B]. To be able to compare this log likelihood

with that of the within transformation in Equation (3.8), we use the property that

ZtT;ll v;‘,v;‘ = (7;’1, .y vlT) (Jr@1In)(v1,..,07) = L1, E;Et,where Jr=1Ir— %LTL/T,

and rewrite (3.A.6) as

N(T -1)
2

1 &
— 575 2 0()u(Q). (3.A.7)

t=1

InL(0) = — In(27t02) + (T — 1) [In|S(p)| — In|R(A)]]

The QML estimators of B and ¢?, given p and A, starting from this log likelihood

T / ’ . ! ’
Blo,A) = [ X R V(MR TN)X] L XR Y (MRS(0)7,], (3.A.8)
t=1 t=1
P20, ) = ypr ) LIS@F ~ %o, )]
x RV (V)RYA)[S(0)7, — X:Blo, A)], (3.A.9)

7 A detailed explanation is provided by Lee and Yu (2012, p.1373).
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as a result of which the concentrated log likelihood function of (p, A) is

InL(p,A) = —w(ln@n) +1)— wlnﬁz(p,)ﬂ
+ (T —1)[In|S(p)| — In|R(A)|]. (3.A.10)

By comparing (3.9)-(3.10) with (3.A.8)-(3.A.9), it appears that B(p,A) = B' (0, A)
and 6% (p, A) = 202" (p, A). Hence, after plugging in the estimates from the adjus-
ted log likelihood into the concentrated log likelihood of the within transformation,

(3.11) can be rewritten as

T8+ 1) - Bhind(p,0)

+ T[In|S(p)| — In|R(A)]]. (3.A.11)

InL¥(p, ) fg(ln@n) +In(

The expressions in (3.A.7) and (3.A.11) show that the difference between T — 1 and
T has no effect and that the maximum for  and A of both transformations will be
the same. Therefore, B (p,A) and B(p,A) using the log likelihood of the within
transformation and its adjustment will also be the same. By contrast, the estimate
of U'g using the within transformation will be different and consistent only when
T is large. However, departing from the expressions for 02“(p,A) and ¢2(p, A),

G2%(p, A) can be easily be bias-corrected by %frzw , which is numerically equal to

2(p, \).

Global identification of (po, Ag)

Corresponding to ﬁlmL(p, A)in (3.A.7), define Q(p,A) = maxﬁ’UzEﬁlnL(G)

and let Hy, (A) = Hz(A) — H;(A)"Hfl()t)%z()\). where H;(A) fori = 1,2,3 are the
corresponding components of H(A) in (3.12). We have

Qlp,A) = ~(In(@m) +1) ~ 20 (p, ) + 5 S(p) ~ IRV, (BA12)
where

2(p, 1) = (po — PV My (V) + 0% (p, 1)
= (00— P)Hp(V) + B35, tr(R'S 18 (0)R ()R (W)S(p)'R).
(3.A.13)
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At the true parameters, Q(po, Ag) = — 3 (In27r + 1) — JIno + 41n|S(po)| — 2In|R(Ao)|.
We need to prove that imQ(p, A) < limQ(pg, Ag) forany (p, A) # (po, Ao). We have

Q(p, A) — Q(po, Ao) =
— 3 00"2(0,3) ~Ingg] + In[S (o) — <-InlS(po)] + [ (xIn[R(V)| — L InlR(Ao) )]
= Ti(p, 1)~ Ta(p, 1),

where

Ty(p,A) = — 5 In02(p, 1) ~ Ingg] + . In[S (o) — x:InlS(po)] + [~ (IR — LIn[R(A0)])],

—0)2 _q —1
and Ty(p,A) = 3In(1+ (po—r) (H“A)aﬁi@%ﬂl (A)HZ(A))).

Consider the spatial process y, = poWy, + u; without explanatory variables

and the spatial MA error process u; = vy — AgMwv; in period t. The log likelihood

of this process is
2 N N, 1
InLy(p,A,0%) = —Eln27r - Elna +1In|S(p)| —In|R(A)| — ﬁvt(p,A)]Nvt(p,A),

where v; = R71(1)S(p)y,. Let Qy(p,A) = maxE&InLy(p,A,02) and Qp(p0, Ao)
be Qy(p, A) evaluated at (g, Ag). It follows that Q, (0, A) — Qp(po, Ao) = Ti(p, A).
Due to the information inequality Qp(p,)\) — Qp(po,Ao) <0, we have Ty(p,A) <0
for any (p,A). By contrast, as (pg — p)*(Hz(A) — 7—[/2()1)7-[1_1(/\)7-[2()\)) is a quad-
ratic function of p, given A, and 0t (p, A) is bounded away from zero, T>(p,A) > 0.

The finding that Q, (o, A) — Qp(po, Ag) < 0forany (p, A) implies that —1Inc?*(p, A) <
~4in? + JIn[S(p) |~ AnlS(p0)| + [~(HIIR(Y)] ~ In|R(A)])]. As in[s(p)] -
£In[S(po)| and FIn|R(A)| — L1In|R(Ag)| and thus — (& In|R(A)| — LIn|R(Ag)]) are
all O(1) uniformly in (p, A), —Ino?*(p, A) is bounded from above as 03 is bounded
away from 0. Hence, 0'2+(p, A) is is bounded away from 0.

Under Assumption 3.7(b), Hz(A) — ’H;(A)’Hl_l (A)Hz(A) is positive, so that T (p, A) >
0 for p # po for any given A. Given py, Ag is the unique maximizer of imT; (p, A)

under
. 1 / 1 /
lim (|3 R R| = [0 (p, )R ()R(A)]) £0,

for A # Ap. Hence, both pg and A are identified. When Assumption 3.7(b) does not
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hold, identification requires that T;(p,A) < 0. Under Assumption 3.7(a), we will
have T;(p,A) < 0 whenever (p,A) # (po, Ao). Hence, im[Q(pp, Ao) — Q(p,A)] > 0
if (0, A) # (po, Ao)- This proves global identification of (pg, Ag).

Uniform convergence of N{T= l)lnL(p, ) —Q(p,A)
As rInL%(p, A) — Q¥(p,A) = mlnL(p,/\) —Q(p, A), where
Q%(p,A) = max ﬂ,UzE%lan(G), we also prove the latter for simplicity. Denote

Foi(A) = RTA)(GXHT (V) Ha (M)

and

We have

(0, A) = (00— 0)*Hpy (1)
1

T
mz GRS 'S (0)R (AR (A)S(p)S ' Ray

t=1

+

i Xyt (MR AR (A)S(0)S ' Ry

+2(po — P)m L

/

— Vi (MHTH AV (A), (3.A.14)

as a result of which
~ 1 o
7% (po, Ao) = 0p + Op(ﬁ) and 7*2(pg, o) = 0p. (3.A.15)

From (3.A.10) and (3.A.12), 1; )lnL(p, )—Q(p,A) = Inc*2(p, A) — Ing? (p, A).
By the mean value theorem, N(T 1)lnL(p, ) —Q(p,A) = —%m(&ﬂ(p,/\) —
c*2(p,A)), where 7%(p, A) lies between ¢%(p,A) and c*2(p,A). We need to show
that (1) 32(p, A) — 0*?(p, A) 50 uniformly in p and A and (2) %(p, A) is bounded
away from zero uniformly in p and A in probability.

To prove Theorem 1: We have ¢%(p,A) and ¢*?(p, A) in (3.A.14) and (3.A.15).

When N is large and T is finite, using Lemma A.12 in Lee (2004), 72(p, A) — 0*%(p, A) —

P
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0 uniformly in p and A. As?%(p, A) —*%(p, A) 50 uniformly in p and A, we have
p . .

ﬁlmL(p, A) —Q(p,A) — 0 uniformly in p and A.

Uniform equicontinuity of Q(p, A)

From (3.A.12) and (3.A.13), Q(p, A) is uniformly equicontinuous in p and A due

to the facts: (1) In|S(p)| and 4In|R(A)| uniformly equicontinuous in p and A;

(2)(p — po)*Hp,(A) is uniformly equicontinuous in p and A; (3) 0*'(p, A) is uni-

formly equicontinuous in p and A.

Combining global identification, uniform convergence and equicontinuity, the con-

sistency of (5%, A?), which is equivalent to (3, 1), follows.

Consistency of other parameters

From (3.9) and our comparison of QML estimators based on those two transform-
ations, we know that (B", 5, A¥) is numerically the same as (8,7, ). From (3.10)
and (3.A.9), we also know that +152%(p%, AV — o} 7 0and 32 (p%, A®) — o3 SN

0. Hence, Bw(ﬁ‘w,ﬁw ) is consistent.

3.A.3 Proof of Theorem 2 (Asymptotic Distribution)

For the within transformation, according to the Taylor expansion,

~w 7 1 0’InL¥(8"). ;4
VNT(0 —07) = (—mw) x (

1 9lnL®(01)
VNT 90

),

where 6 lies between 67 and 9", As we have

1 9’ InL¥(8%) . 1 9*InL”(8") 1 9*InL”(67)

NT 9606 = N7 2000  NT 9606 )
1 9’InL¥(6%)
CNT apay o) T

where the first term is ||8” — 07| - O, (1) and the second term, by using Lee and Yu
isO, (L) — 1 #InL*(6") _ pgw_ g 1. 1
(2010a, Lemma A.3), is O, ( m), NT agsg ~ = 116 —67[]-Op(1) +Op( \/ﬁ) +
zy .
T

Under Assumptions 3.7 and 3.8, £ in (3.A.4) is non-singular. We can prove
p or g p

the non-singularity of the limiting information matrix by using an argument by
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contradiction. We need to prove that Zy’ ¢ = 0 implies that ¢ = 0, where ¢ =

! ! o
(€q,c2,¢3,¢4) , 2, c3,¢4 are scalars and ¢ is K x 1 vector.

With C = G — %IN and D = K — 2XTy, we have %tr(("?s(";) —2(%)2 =
Ftr(C°C%), Htr(K°K) —2(2K)2 = L tr(DSD?), and £tr(K°G) —2(8KEC) = L tr(C°D?).
Furthermore, we have Hg = %ZL X, X, Hg, = %ZL X,GX1By, Ho =
Nt Lim1(GXiBy) GXiBy, and Hyp = Hy,. The detailed proof of Zf ¢ = 0 is as

follows:

1 1
— Hger + 5 Hgpea =0,
of of

1
2
or

1 1 .. 1 .. 1 ..
— —trG G)cy; — —tr(K°G ——trGeg =0,
Hoper + (U%’Hp +ot )co N r(K°G)c3 + 22N rGey

1 .. 1 1
——tr(K°G —tr(K°K)c3 — ——trKcy =0,
N r( Jeo + N r( )c3 U’%N rKcy

1 . 1 1
——trGcy — ———trKc3 + —c4 = 0.
2N 2N g™

By solving the third and fourth equations, we get

o = tr(Cst)c2
tr(D°D®)
1 2 trKtr(C°D?) 2 &
AN T N w(DD) 2T N2

as a result of which ¢y, c3, and ¢4 can all be expressed in terms of c;. Substituting
these results in the second equation yields

2(0ST)S
1 0?(C°D°) _o,

1 - 1 .
— (Hp = Hoo(Ho) " Hop)ca + 5 tr(C°C*)er — 2N w(D°D?) 2

o 2N

as a result of which Ly ¢ = 0 implies that

{lim( % (D D) (Hy — Hop(Hp) " Hgy) + @)},

or

where @ = ﬁ[tr(CSCs)tr(Dst) — tr?(C°D*)] and H, — H,o5(Hp) g, are non-
negative by the Cauchy-Schwarz inequality. Hence, the non-singularity of imXg_

follows from Assumption 3.7.

Since the score of the log likelihood function evaluated at 6 is a linear and
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. —~ . )~ o o .
quadratic form of 7, which has zero mean and Ev,7; = %N(Tg =N (7%, and X; is

uncorrelated with 7, using Lee and Yu (2010a, Lemma A.4), we have

1 olnL¥(67) 1 alnL¥(67) 1 0lnL®(6r) 1 alnL¥(67)

E . ; = o , ;
(\/NT 00 VNT 096 ) V(\/NT 20 VNT 96
T-1
= (T4, + OF),

),

where XY is given in (3.A.4) and Qf is given in (3.A.5). When v; are normall
or 158 or 158 y

distributed, Q. = 0(x,3)x (k+3) because py — 304 = 0. By using the central limit

theorem in Lee and Yu (2010a, Lemma A.1), —— %6(%) LN (0, lim$ (ZE’T +

VNT
w
BT))'
As ||6” — 07|| = 0p(1) and ¥  is non-singular in the limit (—LM)_1
e o7 "t NT 3696’
is Oy (1). It follows that 8 — 67 = O,(57) and thus
~ 1 1 dInL®(87)
VNT(8" - 87) = (2§ + Op(——=)) " x .

( T) ( 07 P(m)) (m 20 )

Using the fact that

(B, + Op =) = () + 0y

we eventually have

1
VNT”

il w . T-1 w o\ — w w w o\ —
VNT(6 —GT)—>N(O,hmT( b)) (e + Q) (Z5) ).






Chapter 4

General nesting spatial panel
models with spatial
autoregressive or moving
average errors and
parameterized distance-based

decay matrices



106 Chapter 4

4.1 Introduction

Spatial econometric models study whether and to which extent cross-sectional units
affect each other. The kind of interactions that are considered can take the form of
endogenous spatial interactions in the dependent variable (Wy,), exogenous inter-
actions in the regressors (WX;), and interaction in the errors, which in turn can take
the form of a spatial autoregressive (AR) structure, given by uy = AMu; + v;, or a
moving average (MA) structure, given by u; = vy — AMwv;. Although there exists a
variety of spatial econometric models that contain one or multiple forms of spatial
interactions (for an overview see Elhorst, 2014), the general nesting spatial (GNS)
model that includes all three forms of spatial interactions, either with AR or MA
errors, hardly received any attention. For example, the GNS model with AR errors
is mentioned on page 53 in the introductory spatial econometric textbook of LeSage
and Pace (2009), but it is not taken seriously given the fact that the specification of
this model in contrast to other models is not numbered. The GNS model with AR
errors is more extensively discussed in the spatial econometric textbook of Kelejian
and Piras (2017). In Chapter 2 they briefly set out the instrumental variables (IV)
and the maximum likelihood (ML) estimators of this model in a cross-sectional set-
ting, specify the assumptions to be made for these estimators to be consistent and
asymptotically normal, and take up a proof for this. However, in spite of many
empirical illustrations, none of them provides the estimation results of this model.
This lack of applications also characterizes the empirical literature. Lin (2015) ad-
opts the GNS model to investigate peer effects among adolescents, though based
on cross-sectional data only. Li and Li (2020) depart from a GNS model with fixed
effects in space and time to investigate energy investment, economic growth, and
carbon emissions, but eventually they only estimate the simpler spatial Durbin (SD)
model. Huang et al. (2021) initially estimate a GNS model with fixed effects in
space and time to explain green innovations for sustainable development in China.
However, because the simpler SD model is not inferior in performance, they inter-
pret all results based on this model. Further below we also discuss studies which

have developed estimators for GNS models.

One major barrier hindering the wide application of GNS models is the identi-

fication problem, the issue that the coefficients of various spatial interactions can-



General nesting spatial panel models 107

not be separately identified from the reduced form of the model. This identification
problem is discussed in several studies. Manski (1993) demonstrates that peer ef-
fects and contextual effects in linear-in-means models, known as spatial lags in the
dependent and independent variables in a spatial econometric model, cannot be
distinguished from each other if the network or spatial weight matrix is specified
as a group interaction matrix in which the diagonal elements just as the off-diagonal
elements are specified as 1/Ng, where N, represents the number of people in each
group g. This identification problem is known as the reflection problem. Bramoullé
et al. (2009) show that identification fails when the linear-in-means model, the
counterpart of a spatial Durbin model in spatial econometrics, simplifies to a model
with correlated effects only, the counterpart of a spatial error model in spatial eco-
nometrics. Gibbons and Overman (2012, Section 3) argue that a weak instrument
problem may occur when a linear-in-means model with peer effects and contextual
effects is estimated by instrumental variables based on second and higher-order
contextual effects. Although Halleck Vega and Elhorst (2015) show that these prob-
lems can be reduced by setting the diagonal elements of spatial weight matrix to
zero, based on the argument that a unit cannot affect itself, by parameterizing the
spatial weight matrix, and by estimating the model by maximum likelihood, they
find that the GNS model might still suffer from identification problems because the
spatial autoregressive parameter of the spatial lag in the dependent variable and
the spatial autocorrelation coefficient of the spatial lag in the error term are easily
interchanged. To break the curse of identification in a GNS model, Lee, Liu, and Lin
(2010) assume a block diagonal network matrix for social interaction models, where
each block represents a group of units that interact with each other but not with it-
self and not with units in other groups. However, just as all the other cited studies,
this study departs from one uniform spatial weight matrix for all spatial lags in the
model. In this chapter, we propose a distance-based parameterized spatial weight

matrix that is different for each spatial lag in the model.

The spatial weight matrix is first specified as a functional form of distance with
a distance decay parameter and then the corresponding distance decay parameter
of each individual spatial lag is assumed to be different and estimated jointly with
the response parameters of the model. The distance decay concept has been well

applied in different fields of economics such as regional science, spatial econom-
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ics, urban economics, and economic geography. Fotheringham (1981) describes the
distance decay parameter as a measure of the relationship between distance and
interaction. Using a simple parametric approach, such as the negative exponential
form e~%%, where dj; is the geographical distance between units i and j, the degree
of interaction between units of observations diminishes with the distance decay
parameter gp. The advantage of allowing the distance decay parameters to be dif-
ferent for different spatial lags is that the problem of weak identification further
diminishes. Generally, one pre-specified spatial weight matrix is used in empirical
studies for all spatial lags in the model, while in this study different distance decay
parameters are estimated. Consequently, more information is extracted from the
data, as the distance decay parameters of the spatial lags of the regressors are likely
to be different from one common distance decay parameter for all of them.

While spatial AR errors dominate the spatial econometric literature focusing on
the GNS model, the errors might also take the form of spatial MA process. An
overview of previous studies in this field is provided in Table 3.1 of Chapter 3. Fin-
gleton and LeGallo (2007) distinguish AR and MA errors from each other in terms
of the shock diffusion process among spatial units. Spatial AR errors represent
global shocks since a shock that occurs in one unit not only spreads to nearby units
to which this unit is connected, but due to its multiple rounds structure also to all
other units farther away. Conversely, spatial MA errors reflect local shocks, as a
shock in one unit only spreads to nearby units in one round and cannot spread fur-
ther. Unlike GNSAR models, GNS models with the MA errors (GNSMA) have, to
our knowledge, not been discussed.

Three types of estimators have been developed to estimate GNSAR models for
cross-sectional data or spatial panels, with and without fixed effects in space and
time: maximum likelihood (ML) (Burridge et al., 2016), quasi-maximum likelihood
(QML) (Lee et al., 2010), two-stage-least-squares (2SLS) or IV (Lee and Yu, 2016;
Kelejian and Piras, 2017), and Bayesian estimators (Hassan, 2017). For spatial eco-
nometric models in a panel data setting, the inclusion of fixed effects, for both spa-
tial units and time periods, is important. Individual fixed effects are incorporated to
control for time-invariant unobserved individual characteristics which can be cor-

related with the existing regressors!, while time fixed effects control for unobserved

! nstead of fixed effects, it also possible to consider random effects (Millo, 2022).
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characteristics varying from one time period to another. Lee and Yu (2010a) point
out that time fixed effects might be important for space-time researches such as
economic growth, convergence, and regional economics to capture business cycle
effects typical for the time-series and macroeconomic literature. Neglecting fixed
effects may thence bias the estimation results (Elhorst, 2003). However, the in-
creased number of parameters due to the inclusion of fixed effects may cause an
incidental parameter problem, as discussed in Neyman and Scott (1948). When
spatial econometric models contain both fixed effects in space and time, two panel
data settings may be distinguished: large N finite T and large N large T. In the
former case, time fixed effects do not have to be included or if included they can
be treated as normal regressors. In the latter case, the inclusion of time effects may
cause an incidental parameter problem when T goes to infinity in addition to the
incidental parameter problem caused by the individual fixed effects when N goes

to infinity.

To estimate the spatial panel models with fixed effects, Lee and Yu (2010a) pro-
pose a QML estimator which uses an orthogonal transformation to concentrate
out both fixed effects in the spatial autoregressive model with AR errors (SARAR
model). Later on Lee and Yu (2012) apply this QML orthogonal estimator to es-
timate a general spatial econometric model which nests the spatial autoregressive
model with MA errors (SARMA model) with both fixed effects. These QML estim-
ators are consistent and properly centered requiring no additional bias correction
procedures. In this study, these QML estimators are modified further to estimate
panel GNS models with AR or MA errors by adding Durbin terms with paramet-
erized spatial weight matrices to the SARAR and SARMA models.

This chapter contributes to the literature in the following ways. First, we are
among the first to consider GNS panel data models with AR or MA errors, indi-
vidual fixed effects and time fixed effects in which the spatial weight matrices are
parameterized. Although GNS models are characterized by identification prob-
lems, these problems are reduced by parameterizing the spatial weight matrices
with a different distance decay matrix for each lag in the model. Second, we derive
QML estimators for these kind of models. Third, as an extension of the work of Lee
et al. (2010) in which the social interaction model with group interaction matrices

and individual fixed effects is estimated, we first show that identification problems
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in the estimation of the GNS models are the same when either spatial AR or MA
errors are used. Then we introduce the rank conditions for the identification when
the spatial weight matrices are parameterized for the GNS models with these two
different types of errors.

This chapter is organized as follows. In Section 4.2 we specify the GNSAR and
GNSMA panel models, introduce the functional form of the parameterized spatial
weight matrices, set out the corresponding QML estimator based on the orthogonal
transformation to concentrate out the fixed effects, and show the rank conditions
for identification. In Section 4.3 we conduct a Monte Carlo experiment to explore
the finite sample properties of the proposed QML estimators. In Section 4.4 we
illustrate the benefits of the GNSAR and GNSMA models by an empirical analysis
using US house price data of Yang (2021). In the last section of this chapter, we

draw conclusions.

4.2 Methodology

4.2.1 The GNSAR and GNSMA models

The GNSAR panel model with parameterized spatial weight matrices and indi-
vidual and time effects consists of a combination of the spatial Durbin (SD) model

in (4.1) and a spatial AR error process in (4.2),

K

y, = poW(60)y, + Xi By + Y, W (aor) xieor + co + @oren + s, (4.1)
=1

uy = /\()W(’)/o)ut +o, t=1,2,..T. (4.2)

The spatial MA error process is given by
ur = vy — AW(y)o, t=1,2,..T. (4.3)

The SD model in (4.1) combined with the spatial MA error process in (4.3) is the
GNSMA panel model with parameterized spatial weight matrices and both fixed
effects. In both models, @ represents a time fixed effect and ¢y an N x 1 vector
of individual fixed effects. 1y is an N x 1 vector of ones. The dependent variable

v, = (Y1t Y2t oo yNt)/ and the disturbances vy = (vy4, vy, ..., th)/ are N x 1 vectors,
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where v;; is i.i.d across i and t with zero mean and variance (73. X;isan N x K mat-
rix of non-stochastic time varying regressors whose kth column is denoted by xy;.
W (dp), W(ag) (k =1,...,K),and W(7y) are N x N parameterized spatial weights
matrices with zero diagonals, which capture spatial dependence in respectively the
dependent variable, the regressors, and the error terms among the cross sectional
units at each moment in time. &y, agx, and 7y are the corresponding distance decay
parameters. pg is the spatial autoregressive parameter for the dependent variable
and Ay is the spatial autocorrelation parameter for the spatial AR or MA error. For
any parameter, the subscript 0 denotes that parameter evaluated at its true value.
The typical element of the parameterized spatial weight matrix, before it is row-
normalized, is e~%%, where djj is the distance between unit i and j and o is the
distance decay parameter. This matrix has three important properties. First, the
degree of interaction between two units diminishes if the distance decay parameter
increases. The elements converge to 1 when gy — 0 and to 0 when g9 — oo. Second,
by allowing the distance decay parameters to be different, the spatial lag of each re-
gressor will have its own spatial weight matrix. Third, even though the off-diagonal
elements of the exponential distance decay matrix are nonzero, this matrix satisfies
the boundedness condition. The boundedness condition requires that both row and
column sums before the spatial weight matrix is row-normalized is upper bounded
when N goes to infinity, which it is as long as the distance decay parameter g is
positive (see Chapter 2). Row normalization of the spatial weight matrices is pop-
ular in empirical studies on spatial interactions. Row normalization is required to

concentrate out time fixed effects by the orthogonal transformation.

4.2.2 QML estimation of the GNSAR and GNSMA models

We take the estimation of the GNSAR model as point of departure since this model
receives more attention in the literature and the method of concentrating out the
fixed effects is basically the same for both the GNSAR and GNSMA models. The
main difference is that the corresponding log-likelihood functions and notations
are different. To estimate the GNSAR model with both fixed effects, we modify
the QML estimator based on the orthogonal transformation set out in Lee and Yu
(2010a). To concentrate out the individual fixed effects as a first step, the matrix

Frr_1 is used, where [Fr1_1, %LT] is the orthonormal eigenvector matrix of the
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time mean operator J; = It — %LTL/T. After reshaping the dependent variable of
dimension NT x 1 into the matrix [y, ¥,, ..., 7] of dimension N x T, it can be post-
multiplied by Fr r_1, to get [y}, v3, ... y7_1] = [Y1, Y5, ..., yp]Fr,7—1. Similar trans-
formations are used to obtain X;*® and v}, where X} = (x4, ..., xxt, W (&g 1)x1¢, ..., W (oK ) Xk¢)
before it is post-multiplied by Frr_1. Due to this transformation, the GNSAR

model given in (4.1) and (4.2) can be re-written as

y; = poW (0o)y; + Xi°Tp + @GN + uf,
u; = /\0W(')’o)ut. + v;, t=1,2,..T—1, (4.4)

where ;, = ( ,86, ¢,) and the actual sample size has become N(T — 1) instead of
NT.

In the second step, the time fixed effects are concentrated out by the matrix
Fn N—1, where [Fy N-_1, ﬁl N] is the orthonormal eigenvector matrix of the cross-
sectional mean operator Jy = Iy — %LNL/N. After concentrating out both fixed

effects using the orthogonal transformation, (4.4) can be re-written as

(X ) ! o0 o0 o0
y:* = po(Fy n_1W(00)FNN-1)y;* + X;°°Ty +ut®,
uf® = Ao(FynaW(r0)Fnn—1)uf® +0f*, t=1,2,..T -1, (4.5)

where y;* = F/N,Nflyt.' Xi*t = F/N,N—lxsz and v;* = F/N,N—lvt.- After this
second-step transformation, the actual sample size decreases to (N — 1)(T — 1).

As we also have

! !

(1%, 07q) = (I11 ® FN,Nfl)(vI s UT_1) = (FT,Tfl ® FN,N71><7)1/""UT) ’
E(0}*, .., 03" ) (03, .., 03" ) = 0g(Frr 1 ®Fyn_1)(Frr-1® Fyn-1)

=0(Ir_1 ®IN_1),

the log-likelihood function of (4.5) reads as

N—1)(T-1)

in(8) =~ Ny 0702) 1 (T - DIy — pFn WO P

/ 1 T_l .., (1]
+ (T — 1)11’1|IN,1 — /\FN,Nflw(’)/)FN,Nfﬂ - @ Z 0y (g)vt (g)
t=1

(4.6)
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Using Lemma A.2 in Lee and Yu (2010a), which requires the spatial weight matrices
to be row-normalized, the corresponding log determinant and inverse of In_1 —

pP,N,N_1W((5)PN,N_1 are

/ 1
In-1—pFyN_1W(6)FnN-1| = HUN—l —pW(9)],

(IN-1 — PPy N_1W(O)Fnn—1) "' = Fy y_1(IN — pW(8)) 'Fyn-1.

The same holds for In_q1 — )\P/N,N_1W('y)13 N,N—1. For every two N-dimensional

column vectors p, and g, we further have

2 p;* P1/ 'p,T)(PT,Tfl ®FnNn-1) X (F,T,Tfl ® F;\I,Nfl)(q,l""' q,T),
! ! ! ! ! T ) ~
= (pr - pp)Ur®IN) Gy, q7) = Z piInNg:
=1

where the element of p, is p;; = pi — %Zthl pit fort =1,2,..,T and ;s = qi —
% YL, gt is the element of q, fort = 1,2,..,T. Consequently, the corresponding
log-likelihood of the GNSAR model after both fixed effects have been concentrated

out is

(N—1)(T—-1

InL(6) = — )ln(27t(72) —(T—-1)[In(1—-p) +In(1—A7)]

T
(T =) InIS(p,0) + RO - 525 L EE@INEE), @)
t=

where 5:(Z) = R(A,7)[S(p,6)y, — X; g] using the following notations: S(p,d) =
IN —pW(8), R(A,7) = Iy — AW(7), 9, contains the element i = iy — + Y./_; yit,
}N(f has the element x;, = x};, — % Zthl x};;, 0t has the element vy = v;; — % Zthl Vi,
0= ((:/,p, A 02,8, a’,'y)/, and ¢ = (g,,p, A, w/,fy),. o = (a1, a2,...,ar). The corres-
ponding ML estimates for the transformed GNSAR model are

th (A, VINRA, 7)S(0,0)y: |,

(4.8)

ZX*tR (A, MINR(A, 1) X ]
=1
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02 = ! Ts )
T W e

t=1

X 'R (A7) INR(A,7)[8(0,6)7, - X, 7).

(4.9)

Turning to the GNSMA model, the log-likelihood after both fixed effects have been

concentrated out is

(N

InL(6) = — #m(mwz) (T =1)[In(1 = p) — In(1 — A)]

1

+(T = 1)[n|S(p,0)] —In[R(A, 7)[] = o 2,

5,(&)IN0i(E),  (4.10)

&MH

where 7 (&) = R™Y(A,7)[S(0,0)¥, — X; : £]. The corresponding ML estimates for the
transformed GNSMA model are

7= th (A, 7)INR™ ] [th (ANINRT A, )S(0, 07 |
(4.11)
T
52— mzl[s@,a)yt—im’le1’<M>INR (A )[S(0,0)7,; — X, 7).
(4.12)

To analyse the asymptotic properties and identification of the proposed estimators,
the following assumptions are needed. These assumptions are extended based on
those in Lee and Yu (2010a) and Chapters 2 and 3 of this thesis. It concerns as-
sumptions for the SARAR model with non-parameterized spatial weight matrices,
the SD model with parameterized spatial weight matrices, and the SARMA model

with non-parameterized spatial weight matrices, respectively.

Assumption 4.1. The spatial weight matrices W (Jy), W (aox), and W (7o) are row-

normalized and have zero diagonals.

Assumption 4.2. The idiosyncratic errors vy fori =1,2,..,Nandt =1,2,..., T arei.id
across i and t with zero mean, variance o3, and finite fourth moment such that E|v; |41 <

oo for some h > 0.

Assumption 4.3. S(p,d) and R(A,y) are invertible for all p, 8, A, and <y in compact
intervals IP1, P2, P2, and Py, respectively. po, do, Ao, and yo should be interior of Py, Py,

Py, and P4, respectively. Furthermore, pg and Ay are bounded away from zero.
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Assumption 4.4 (for AR errors). The elements of X; are non-stochastic and bounded,

uniformly in N and T. The limit of % Y X; R/]NR}NK  exists and is non-singular.

Assumption 4.4' (for MA errors). The elements of X; are non-stochastic and bounded,
uniformly in N and T. The limit of the limit of wr YL, X; RV R 'X] exists and is

non-singular.

Assumption 4.5. Before row normalization, the row and column sums of the spatial
weight matrices W (Jg), W (aox), and W (7o) are uniformly bounded in both row and
column sums in absolute value. S~1(p,5) and R™(A, ) are uniformly bounded in both
row and column sums in absolute value for p, 8, A, and vy in compact intervals P1, Py, Py,
and Py.

Assumption 4.6. ¢y for k =1, ..., K is bounded away from zero.
Assumption 4.7. N is large.

Assumption 4.8 (for AR errors). Given

2
#(0,7) = 22RO, 1R Ty(R(2, 7R
(0,6,A,7) = Ngg SH(R(A,7)S(0,6)8'R™) Ty (R(A,7)S(p,)S 'R ™))

(i) the limit of

T
(a) (A7) = (Nl— ; Xt/GXt go (A/’Y)IN

R(A,7) (X}, GX[Ty)
is nonsingular for each A and the limit of

1 _1/ _ 1 _1/ _
(b) —qMIGR INRT! | = o lnle® (A, 1) RTE (A, 1) InR (A, 7)]

is not zero for A # Ag and y # yo;

(ii) the limit of lln|c70R_1 SV NS IR — ~pinlok(p,6,A,v)R™ V(A7)

s ( 0,0)InS (0, 8)R™Y(A, )| is not zero for (0,8, A,7) # (00,90, Ao, Vo), as N tends
to infinity.
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Assumption 4.8’ (for MA errors). Given

2
#(2,7) = 122 tr(R A 7)R) Ty(RTI (A, 1)R)]
2
H(0,6,0,7) = 5ot (RTH A, 7)8(p,8)ST'R) In(R™H(A,1)S (0, 8)S 7' R)]
(i) the limit of
T
(a) H(A,v) = (Nl—tzzl Xt/Gtho R (A7)

R™'(A,7)(X, GX;Ty)
is nonsingular for each A and the limit of

1 /
(b) < —MmIeFR TR -

1 ’
— 1ln|az+()x, Y)R (A, 7)INR(A,7)|

is not zero for A # Ag and y # yo;
(ii) the limit of '+ 1ln|(70R SVIySTIR| - Elln\alz\,(p,(5,/\,7)R/()\,'y)5*1/(p,(5)
InS Yo, 8)R(A, )| is not zero for (p,8,A,7) # (0,0, Ao, Yo), as N tends to infinity.

For the matrices C and D below and in the appendices, we define A° = A+ A’.
We further use the truncated notations G = W(8y)S™!, H = W(99)R™!,and Q =
R™'W (o).

Assumption 4.9 (for AR errors). The limit of - 1)2 [tr(C°C®)tr(D*D®) — tr2(C°D?)]

is strictly positive, where C = JnyG — t;\{ﬁl Jn. D = JyH — tgﬁ?]N, and G =
RGR™ .
Assumption 4.9’ (for MA errors). The limit of [tr(CSCS)tr(DSDS) tr?(C°D®)]

is strictly positive, where C = JNG — ”]G 1IN, D = ]NQ HIIX?IN, and G = R"1GR.

The row normalization of the spatial weight matrices W(dy) and W(yp) in As-
sumption 4.1 ensures that the orthogonal transformation may be implemented to
concentrate out the time fixed effects. It also causes the parameters p and A to
take values in the interval (—1,1), in line with Assumption 4.3. Note that the spa-
tial weight matrices W («gx) do not necessarily need to be row normalized, but
that this makes most sense given the row-normalization of W (dy) and W (7). As-

sumption 4.2 states the standard regularity assumptions for the disturbance term



General nesting spatial panel models 117

vjt. Assumption 4.3 ensures that the reduced form of the combination of (4.1) and
(4.2) and the combination of (4.1) and (4.3) are valid. The first two parts are ex-
tensions of Assumption 3 in Lee and Yu (2010a). The last part is a modification of
Assumption 2.3 in Chapter 2 to ensure that the distance decay parameters Jp and
7o are identified. Assumption 4.4 is for the GNSAR model and Assumption 4.4" for
the GNSMA model. They not only assume that all regressors are exogenous and
uniformly bounded, but also rule out perfect multicollinearity between any pair
of regressors, including the regressors xj; and W (a)xy;. They extend Assump-
tion 4 in Lee and Yu (2010a) and Assumption 3.4 in Chapter 3 with spatial Durbin
terms. Assumption 4.5 extends Assumption 5 of Lee and Yu (2010a) and modifies
Assumption 2.5 of Chapter 2 in which the boundedness condition also relies on
the distance decay parameters. If ¢or = 0 then ag, = 0 is not identified for each
k =1,..,K, which is excluded by Assumption 4.6 and taken from Assumption 2.5
in Chapter 2. Assumption 4.7, taken from Lee and Yu (2010a), states that the QML
estimator based on the orthogonal transformation is consistent no matter whether
T is large or finite. Assumption 4.8 and Assumption 4.8" are the identification con-
ditions of the QML estimators for the GNSAR and GNSMA models with both fixed
effects, to be discussed below. Assumption 4.9 and 4.9” ensure that the limits of the
information matrices of the GNSAR and GNSMA models are non-singular.? This
is because we exclude that pg, Agx and ¢gx (kK = 1, ..., K) are equal to 0. Assumptions
4.8, 4.8, 4.9, and 4.9" are adapted to GNSAR and GNSMA models in which the

spatial weight matrices are parameterized.

According to Theorem 3 (2) in Lee and Yu (2010a), the asymptotic distribution
of the QML estimator of the GNSAR model when both fixed effects are included,
under assumptions 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8(i) or 4.1, 4.2, 4.3, 44, 4.5,
4.6,4.8(ii), and 4.9, is

V(N =1)(T —1)(8 — 89) - N(0,Y(6)). (4.13)

where Y(8p) = LimZ~1(6;)(Z(80) + Q(60))Z " (8p).

The same holds for the asymptotic distribution of the QML estimator of the

2 Assumptions 4.9 and 4.9’ also ensure that the limits of the information matrices of the models are
non-singular when the QML estimator based on the within transformation is applied.
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GNSMA model when both fixed effects are included.? The first-order derivatives,
second-order derivatives, £(6), and (6y) with respect to the log-likelihood func-
tion of the GNSAR model in the form of (4.7) and the GSNMA model in (4.10) are
given in Appendix 4.A and Appendix 4.B.

4.2.3 Identification

We first show that the rank conditions for the identification of the fixed effects
GNSAR and GNSMA models are the same, provided that the spatial weight matrices
are not parameterized. This extends the work of Lee et al. (2010) in which the
GNSAR model with network matrix only contains group fixed effects.* Then we
generalize the rank conditions for identification when the spatial weight matrices
are parameterized.

Consider the fixed effects GNSAR model given by

Yy, = poWy, + Xt,B() + WX + co + @orin + uy,
uy = /\0Mut + Ut,t = 1,..., T, (414)

where W and M are not parameterized. The identification problem arises if pg 8, +
¢y = 0and W = M. Under these circumstances, 8, ¢,, and py can no longer be
separately identified. To reveal the identification problems when W = M, we take

the reduced form of the GNSAR model with both fixed effects as point of departure
Yt =S X B, + WX ) + S 'R opt, t=1,2,.,T—1, (415

where W*® = F/N,NAWFN,N,L M*® = F;\J,NAMFN,NA and $* ' =TIy 4 — poW?*,
and R*~! = Iy | — A\gM". Lee et al. (2010) show that pg and Ag are identified when
W # M and thus W* # M®, since € = AgM®e; + poW*e; — popAgM*W'e; + v3*®
then follows a higher-order SAR process.” Conversely, oo and Ay cannot be iden-

tified when W = M and thus W* = M?®, since e; then degenerates to e; =

3 Details are provided in a working paper of Lee and Yu (2010c).

4 Group fixed effects should not be confused with individual fixed effects. In principle, they might be
interpreted as time fixed effects.

5Lee and Liu (2010) discuss the identification conditions for higher-order SAR and SARAR models in
detail. Lee (2004) dicusses the identification conditions for higher-order SAR model. If pgB, + ¢, = 0
in a SD model, then it simplifies to a spatial error model (Bramoulle et al., 2009, equation (6)). If this
condition holds in a GNS model with spatial AR or MA errors, one obtains a higher-order spatial error
model.
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(po + Ao)W®e; — poAgW*%e; + v* in which pg and Ag can be switched around
without observing any difference.

The reduced form of the GNSMA model, which is not part of the work of Lee et
al. (2010), reads as

Yt =S (X0 B, + WX ) + S IR 0;Y, t=1,2,.., T —1, (4.16)

Giventhat (Iy_1 —AoM*) "1 =¥, /\6M'i for the GNSMA model, €; = —AgM®e; +
poW*er + porAoM Woe; — (L2, AAM*)er + (252, AbooM* W*)e; + vf* also fol-
lows a higher-order SAR process. This process shows that pg and Ag cannot be
separately identified when W* = M®°.

Three conclusions can be drawn from this overview. First, the identification
problems of the GNSAR and GNSMA model are similar to those of the SD model.
Second, the identification conditions for pg and Ag within the GNSAR and GNSMA
models are the same when the spatial weight matrices are not parameterized. Only
when W # M are pg and A identified, while ¢, is identified via ¢, = poBy.
Third, when the spatial weight matrices are parameterized, then the identification
conditions of the GNSAR and GNSMA models are different because the matrix
R(A,y) of a spatial MA error process is inverted and of a spatial AR error process
is not.

Given that the disturbances v; of the GNSAR and GNSMA models follow dif-
ferent higher-order SAR processes, the rank conditions for the identification of the
GNSAR and GNSMA models with both fixed effects are the same when the spatial
weight matrices are not parameterized. Lemma 4.1 provides a sufficient condition
for the rank condition under Assumption 4.8(i) for GNSAR and Assumption 4.8'(i)
for GNSMA models with both fixed effects when the spatial weight matrices are

not parameterized:

Lemma 4.1. If poB, + ¢, # 0 and [)N(t, WX;, W2}~(t,LN] has full column rank, then
JnR(A) (X}, GX; Q) has full column rank for the GNSAR model and J\yR™(A) (X,
GX, Co) has full column rank for the GNSMA model when both fixed effects are included.

Expression (a) of Assumptions 4.8(i) and 4.8'(i) ensures that pg, B,, and ¢, in
the GNSAR and GNSMA models are locally identified, respectively. Expression (b)
of 4.8(i) and 4.8(i) ensures that A is identified through the SR, process for the
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GNSAR model and SRv; for the GNSMA model. When Expression (a) of Assump-
tions 4.8(i) and 4.8'(i) does not hold, but Assumption 4.8(ii) or 4.8'(ii), then (po, Ao)
is globally identified.

Lemma 4.2 provides a sufficient condition for the rank condition under As-
sumption 4.8(i) for GNSAR and Assumption 4.8’(i) for GNSMA models with both

fixed effects when the spatial weight matrices are parameterized:

Lemma4.2. If poBox W (d0) + pox W (ag) # 0and [X:, W(30) X, W (50)W (&g 1)%1t, ..,

W (80)W (et )Xk, L) has full column rank, then [\ R(A, v) (X}, GX,; Ty) has full column
rank for the GNSAR model and JyR™Y(A, v)(X;, GX; ) has full column rank for the
GNSMA model when both fixed effects are included.

When the spatial weight matrices are parameterized, Expression (a) of 4.8(i)
and 4.8'(i) ensures that pg, o, By, and ¢ are locally identified for the GNSAR and
GNSMA models, respectively. Expression (b) of 4.8(i) and 4.8'(i) ensures that Ag and
7o are identified through the SR™'v; process for the GNSAR model and SRv; for
the GNSMA model. When Expression (a) of Assumptions 4.8(i) and 4.8’(i) does not
hold, but Assumption 4.8(ii) or 4.8'(ii), then (oo, o, Ao, 7o) are globally identified.

The first part of Lemma 4.2 is less restrictive than the first part in Lemma 4.1 due
to employing a different weight matrix for each spatial lag. Lemma 4.2 rules out
two cases: (i) poBr + ¢x = 0 and &y = agy for all k; and (ii) W (dp) = W (o)W (o )-
Under case (i), the GNS models will reduce to a spatial error model which only
contain spatial interactions among the errors, which is shown in Chapter 3. In
empirical studies, however, the estimated distance decay parameters are expected
to be different since individual regressors tend to follow different distance decay
patterns. Under case (ii), the full column rank conditions in Lemma 4.2 are not met.
However, endogenous and exogenous spatial interactions, captured by W(dy)y,
and W (agy)xy, also tend to follow different distance decay patterns. Furthermore,
they do not tend to diverge to infinity,® as a result of which W (dy) = W (o)W (agy)
does not hold, which is the second condition stated in Lemma 4.2. Overall, it can
be concluded that Lemma 4.2 will not be restrictive in empirical applications. A
formal proof of Lemma 4.2, and of Lemma 4.1 as special case of Lemma 4.2, is

given in Appendix 4.C.

61f the distance decay parameter grows large, the spatial weight matrices will converge to binary con-
tiguity matrix as the elements of distant units go to zero faster than nearby units.
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4.3 Monte Carlo simulations

A Monte Carlo experiment is conducted to evaluate the performance of our pro-
posed estimator for the fixed effects GNSAR and GNSMA models in which the
spatial weight matrix is specified as a row-normalized negative exponential (ED)

distance decay matrix.

Data are generated either from the process givenin (4.1) and (4.2) for the GNSAR
model or (4.1) and (4.3) for the GNSMA model. Two regressors are included:
x1t ~ N(=2,5) and xp; ~ N(3,3). The coefficients of xq;; and its spatial lag
are f; = 1 and ¢y = —0.2 and those of x;; and its spatial lag are B = —1.5 and
¢2 = 0.3. cp, wot, and v; are generated from independent standard normal distri-
butions. We set N = (50,200), T = (50,100), and the number of iterations equal
to 1000. To construct distance matrices between the cross-sectional units, we use
the coordinates of N data points evenly set in a rectangle of 5 x 10 for N = 50
and 10 x 20 for N = 200. These distances are used to calculate the exponen-
tial distance decay matrix. The distance decay parameters for the spatial weight
matrices interacting with different spatial lags are set as (6, a1, a2, ) = (2,4,2.5,3).
Row-normalization of the spatial weight matrices is required. Two settings of the
(p,A) are considered. In the first setting (p,A) = (0.2,0.5), such that the degree
of spatial dependence in the dependent variable is relatively mild (0.2) and the
spatial dependence in the error term relatively large (0.5). In the second setting
(p,A) = (0.5,0.2), such that these two degrees of spatial dependence are turned

around.

In our experiments we focus on both the parameter estimates and the estimates
of the direct and indirect effects. The formulas for the direct and indirect effects
are taken from Chapter 2. They do not change when spatial AR or MA errors are
added to the SD model with parameterized spatial weight matrices. To evaluate
the performance of the estimators, four statistics are considered: the empirical bias
(Bias), the empirical root mean square error (RMSE), the median bias (Mbias), and
the median absolute value of the bias (Mabias). Among them, Mbias and Mabias
are used since they are robust to outliers. Besides, the asymptotic distribution of
the estimators is evaluated. Specifically, we test the null hypothesis whether each

parameter equals its true value and report the mean and the standard deviations
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of the p-values. If the underlying asymptotic distribution is true, then the p-values
should follow a U(0,1) distribution, and thus should have a mean p-value of 0.5
and a standard deviation of approximately 0.29.

Table 4.1 reports the simulations results when p = 0.2 and A = 0.5 and Table
42 when p = 0.5 and A = 0.2. These tables show that the simulation results for
both cases exhibit similar patterns. As N, T, or both increase, the biases of the coef-
ficient estimates, direct and indirect effects, and distance decay parameters tend to
go down. The same holds for the RMSE, Mbias, and Mabias. However, there are
some striking differences. First, the biases for the estimates of the GNSMA model
are smaller than those of the GNSAR model for both settings, except for the para-
meter A in the second setting. Second, the biases of the distance decay parameter
estimates are generally larger than the biases of the response parameters. Among
the distance decay parameters, the biases in < in turn are larger than those of the
other distance decay parameters. Third, when comparing the parameters p and A,
it turns out that the biases in A are larger. Fourth, in general, the biases in the coef-
ficients of the spatial lags of the explanatory variables are larger than those of the
explanatory variables themselves. Similarly, the biases of the indirect effect estim-
ates are larger than those of the direct effect estimates of the explanatory variables.
Overall, the biases, RMSE, Mbias, and Mabias of the estimates are nevertheless re-
latively small, except for < in the second case. Only if both N and T are large, do
these four statistics of y take acceptable small values. Table 4.3 reports the average
p-values and standard deviations of the p-values. The simulation results show that
all the estimated parameters and direct and indirect effects are properly centered

for both models and both panel data settings of N and T.

4.4 Empirical application

The empirical application is based on a recent study of Yang (2021), which con-
tains data on house prices, population density, income, and spatial information of
377 Metropolitan Statistical Areas (MSAs) over the period 1975Q1 to 2014Q4 (total
number of time periods is 160). According to the United States Office of Manage-
ment and Budget, the MSA is defined as the core area with a population density

of 50,000 people or more including surrounding territory that has high commuting



General nesting spatial panel models 123
Table 4.1. Simulation results for p = 0.2and A = 0.5
T N B B2 1 ¢ 0 A o2 5 &y a ¥ DEx; DEx, IEx; IEx,
GNSAR
(1 50 50 Bias 0.0015  0.0003 0.0026 0.0041 0.0098 -0.0025 -0.0042 0.3669 0.0736 0.0967 0.1832 0.0000 0.0006 -0.0058 0.0071
RMSE 0.0089  0.0080 0.0184 0.0428 0.0546 0.0466 0.0299 1.3542 02500 05674 09116 0.0047 0.0084 0.0509 0.0552
Mbias 0.0018  0.0002 0.0020  0.0010 0.0028 -0.0032 -0.0038 0.0144 0.0218 0.0065 0.0432 0.0000 0.0005 -0.0009 0.0031
Mabias | 0.0060 0.0054 0.0125 0.0289 0.0357 0.0313 0.0203 04822 0.1268 0.3302 0.4961 0.0032 0.0056 0.0319 0.0380
(2) 100 50 Bias 0.0006  0.0000 0.0018 0.0023 0.0046 0.0004 -0.0020 0.1884 0.0446 0.0400 0.0804 -0.0001  0.0002 -0.0023 0.0039
RMSE 0.0065 0.0053 0.0144 0.0293 0.0401 0.0341 0.0211 0.8158 0.1839 03479 05707 0.0036 0.0056  0.0380 0.0381
Mbias 0.0005  0.0001 0.0017 0.0012 0.0008 0.0009 -0.0018 0.0235 0.0053 0.0052 0.0193 -0.0002 0.0002 0.0003 0.0026
Mabias | 0.0045 0.0036 0.0098 0.0192 0.0275 0.0237 0.0140 03849 0.0978 02282 0.3518 0.0025 0.0038 0.0269 0.0250
(@) 50 200 Bias 0.0004  0.0000 0.0011 0.0021 0.0022 -0.0006 -0.0007 0.0993 0.0256 0.0184 0.0414 0.0000 0.0001 -0.0007 0.0031
RMSE 0.0047  0.0037 0.0101 0.0224 0.0289 0.0241 0.0150 04942 0.1164 02404 0.3807 0.0024 0.0038 0.0259 0.0287
Mbias 0.0004  0.0001 0.0008 0.0001 0.0002 -0.0002 -0.0014 0.0052 0.0144 0.0030 0.0102 0.0000 0.0002 0.0002 0.0008
Mabias | 0.0032 0.0025 0.0067 0.0150 0.0186 0.0156 0.0102 0.2680 0.0714 0.1576 02461 0.0016 0.0026  0.0168 0.0185
(4) 100 200 Bias 0.0001 -0.0001 0.0003 0.0007 0.0020 -0.0011 -0.0008 0.0233 0.0054 0.0032 0.0335 0.0000 -0.0001 -0.0014 0.0013
RMSE 0.0031  0.0026 0.0068 0.0146 0.0205 0.0171 0.0104 02976 0.0717 0.1592 02534 0.0016 0.0027 0.0176 0.0188
Mbias 0.0001 -0.0001 0.0003 0.0005 0.0013 -0.0015 -0.0011 -0.0014 0.0036 -0.0054 0.0207 -0.0001 -0.0001 -0.0007 0.0005
Mabias | 0.0020 0.0018 0.0046 0.0096 0.0145 0.0115 0.0071 0.1934 0.0453 0.1036  0.1603  0.0011  0.0019  0.0117 0.0125
GNSMA
(5) 50 50 Bias 0.0008  0.0003 0.0007 0.0010 0.0037 0.0085 -0.0035 0.1656 0.0470 0.0582 0.1512 0.0000 0.0004 -0.0016 0.0019
RMSE 0.0090  0.0073 0.0090 0.0196 0.0303 0.0431 0.0298 0.8746 0.2405 04186 0.8930 0.0040 0.0070  0.0203 0.0243
Mbias 0.0004  0.0000 0.0006 0.0004 0.0033 0.0071 -0.0037 0.0117 0.0123 -0.0080 0.0007  0.0000 0.0003 -0.0003 0.0014
Mabias | 0.0058 0.0049 0.0064 0.0139 0.0199 0.0276 0.0200 0.3353 0.1371 02649 04832 0.0028 0.0049 0.0126 0.0166
(6) 100 50 Bias 0.0002  0.0000 0.0005 0.0005 0.0013 0.0027 -0.0017 0.0841 0.0269 0.0286 0.0672 -0.0001 0.0000 -0.0003 0.0008
RMSE 0.0064 0.0048 0.0068 0.0131 0.0220 0.0287 0.0210 04883 0.1643 02663 05228 0.0029 0.0047 0.0152 0.0164
Mbias 0.0001 -0.0002 0.0006 -0.0003 0.0009 0.0038 -0.0015 0.0066 0.0143 0.0119 -0.0138 -0.0002  0.0000  0.0008 0.0006
Mabias | 0.0043 0.0033 0.0048 0.0091 0.0158 0.0199 0.0140 0.2701 0.1052 0.1691 0.3081 0.0020 0.0033  0.0098 0.0115
(7) 50 200 Bias 0.0002 -0.0001 0.0003  0.0007 0.0010 0.0023 -0.0005 0.0385 0.0141 0.0129  0.0200 0.0000  0.0000 -0.0003 0.0010
RMSE 0.0047  0.0035 0.0053 0.0098 0.0159 0.0201 0.0150 0.3164 0.1092 0.1793 03382 0.0021 0.0034 0.0098 0.0121
Mbias 0.0004 -0.0001 0.0001  0.0009 0.0010 0.0024 -0.0008 0.0006 0.0047 0.0012 0.0041 0.0000 0.0000 0.0000 0.0011
Mabias | 0.0031 0.0022 0.0034 0.0066 0.0114 0.0132 0.0102 0.1909 0.0709 0.1152 02140 0.0014 0.0022  0.0067 0.0080
(8 100 200 Bias -0.0001 -0.0001 0.0001  0.0003 0.0005 0.0012 -0.0007 0.0055 0.0012 0.0019 0.0009 0.0000 -0.0001 -0.0004 0.0004
RMSE 0.0032  0.0025 0.0035 0.0063 0.0107 0.0144 0.0103 0.1996 0.0721 0.1186 0.2189 0.0014 0.0024 0.0064 0.0078
Mbias | -0.0002 -0.0001 0.0001  0.0004 0.0007 0.0019 -0.0008 -0.0079 -0.0014 -0.0084 -0.0068 0.0000 0.0000 -0.0004 0.0008
Mabias | 0.0020  0.0017 0.0025 0.0041 0.0071  0.0097 0.0071 0.1345 0.0473 0.0794 0.1420  0.0009 0.0016 0.0044 0.0052
Table 4.2. Simulation results for p = 0.5and A = 0.2
T N B1 B2 $1 P 0 A o2 [ 5 %) v DEx; DEx;, IEx IE x»
GNSAR
(1 50 50 Bias -0.0001  0.0001  0.0009 0.0036 -0.0033 0.0135 -0.0038 0.0570 0.0349 0.0538 1.0644 0.0000 0.0002 0.0042  0.0064
RMSE 0.0077  0.0072  0.0135 0.0340 0.0340 0.0634 0.0297 02778 0.1964 0.4851 29620 0.0048 0.0083 0.0636 0.0683
Mbias | -0.0003  0.0001 0.0006 0.0005 -0.0031 0.0050 -0.0032 0.0320 0.0152 0.0035 0.0563 0.0000 0.0000 0.0080  0.0033
Mabias | 0.0055 0.0049 0.0090 0.0211 00233 0.0382 0.0194 0.1693 0.1280 02969 1.1885 0.0032 0.0057 0.0448 0.0421
(2) 100 50 Bias -0.0001  0.0001  0.0001 0.0003 -0.0026 0.0061 -0.0029 0.0379 0.0195 0.0485 0.6605 0.0001 0.0000 0.0026  0.0002
RMSE 0.0059  0.0048 0.0101 0.0225 0.0273 0.0464 0.0203 02116 0.1452 03159 22097 0.0036 0.0054 0.0524 0.0454
Mbias | -0.0002  0.0001  0.0003 -0.0004 -0.0016 0.0025 -0.0031 0.0119 0.0090 0.0226 0.0128 0.0001  0.0000 0.0047 -0.0011
Mabias | 0.0038 0.0032 0.0066 0.0155 0.0185 0.0296 0.0136 0.1338 0.0866 0.1967 0.8314 0.0024 0.0036  0.0357  0.0305
() 50 200 Bias 0.0004 -0.0001  0.0001 0.0000 0.0002 0.0005 -0.0013 0.0190 0.0158 0.0240 0.2605 0.0000 -0.0001 -0.0005  0.0001
RMSE 0.0042  0.0035 0.0074 0.0167 0.0176 0.0313 0.0144 0.1415 0.1004 02235 11759 0.0023 0.0039 0.0323  0.0341
Mbias 0.0005 -0.0001  0.0003 -0.0006 0.0005 -0.0014 -0.0013 0.0047 0.0118 0.0100 0.0951  0.0000 -0.0001  0.0010 -0.0007
Mabias | 0.0028 0.0024 0.0051 0.0109 0.0122 0.0203 0.0097 0.0966 0.0664 0.1406 0.6055 0.0016 0.0027 0.0211  0.0225
(4 100 200 Bias 0.0000  0.0000 -0.0002 0.0001 -0.0005 0.0001 -0.0008 0.0077 0.0038 0.0043 0.1369 0.0000 0.0000 0.0000  0.0001
RMSE 0.0029  0.0025 0.0051 0.0111 0.0131 0.0219 0.0100 0.0957 0.0687 0.1441 07205 0.0016 0.0027 0.0245 0.0227
Mbias 0.0001  0.0000 -0.0002 -0.0002 -0.0002 -0.0007 -0.0013 0.0005 0.0022 -0.0007 0.0294 0.0000 0.0000 0.0004 -0.0001
Mabias | 0.0020 0.0017  0.0035 0.0072 0.0086 0.0143 0.0071 0.0616 0.0480 0.0949 04303 0.0011 0.0018 0.0163  0.0144
GNSMA
(5 50 50 Bias -0.0002  0.0001  0.0010 0.0024 0.0020 0.0228 -0.0039 0.0058 0.0126 0.0401 0.8152 -0.0002 0.0001 -0.0048  0.0060
RMSE 0.0078  0.0070  0.0112 0.0263 0.0280 0.0774 0.0298 02398 0.1998 04501 27562 0.0043 0.0073 0.0494 0.0522
Mbias | -0.0004 0.0002 0.0014 0.0008 0.0018 0.0112 -0.0034 -0.0117 -0.0075 0.0002 -0.0664 -0.0002  0.0000 -0.0026  0.0030
Mabias | 0.0055 0.0047 0.0072 0.0163 0.0190 0.0397 0.0193 0.1587 0.1277 02835 1.2383 0.0028 0.0051 0.0338  0.0329
(6) 100 50 Bias -0.0001  0.0000 0.0001 0.0000 0.0002 0.0105 -0.0028 0.0096 0.0073 0.0380 0.4953 0.0000 0.0000 -0.0020  0.0005
RMSE 0.0058  0.0048 0.0084 0.0174 0.0217 0.0464 0.0203 0.1808 0.1441 0.2924 2.0059 0.0031 0.0049 0.0393  0.0345
Mbias 0.0000  0.0001  0.0003 -0.0003 0.0003 0.0076 -0.0030 -0.0036 0.0028 0.0129 -0.0227 0.0000  0.0002  0.0007  0.0002
Mabias | 0.0038 0.0032 0.0055 0.0120 0.0149 0.0278 0.0137 0.1189 0.0919 0.1884 0.8049 0.0021 0.0033 0.0262  0.0233
(7) 50 200 Bias 0.0002 -0.0001  0.0004 -0.0001 0.0014 0.0066 -0.0010 0.0036 0.0085 0.0181 0.1999  0.0000 -0.0001 -0.0023  0.0004
RMSE 0.0042  0.0034 0.0063 00129 0.0141 0.0311 0.0144 0.1283 0.1019 0.2085 1.1978 0.0021  0.0035 0.0238  0.0259
Mbias 0.0004 -0.0001  0.0005 -0.0002 0.0010 0.0058 -0.0009 -0.0007 0.0067 0.0007 -0.0443 0.0000 0.0000 -0.0011 -0.0006
Mabias | 0.0027 0.0024 0.0043 0.0087 0.0097 0.0199 0.0096 0.0878 0.0681 0.1322 0.5430 0.0015 0.0024 0.0158 0.0170
(8) 100 200 Bias -0.0001  0.0000 -0.0001 0.0001 0.0002 0.0032 -0.0006 -0.0002 -0.0002 0.0003 0.0599 0.0000 0.0000 -0.0010  0.0004
RMSE 0.0029 0.0024 0.0043 0.0084 0.0103 0.0210 0.0100 0.0864 0.0703 0.1329  0.6639 0.0015 0.0025 0.0178  0.0168
Mbias 0.0000  0.0000 -0.0001 -0.0003 0.0004 0.0028 -0.0011 -0.0051 -0.0013 -0.0029 -0.0409 -0.0001 0.0001 -0.0011  0.0005
Mabias | 0.0019 0.0016  0.0030  0.0054 0.0072 0.0135 0.0071  0.0568 0.0491 0.0900 0.4168 0.0010  0.0017 0.0116  0.0108
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Table 4.3. Simulation results of the means and the standard deviations of the p-

values

T N B1 B2 P1 023 4 A o 51 ) ¥ DEx; DEx, IEx; IEx

0:0.2. A: 0.5 GNSAR
) 50 50 Mean | 0.5060 0.4883 0.5015 0.4893 0.5012 0.5293 0.5093 0.5029 0.4916 0.5282 0.5014 0.4864 0.5064 0.4885
Std 0.2810 0.2931 0.2881 0.2935 0.3034 0.2886 0.2880 0.2876 0.2806 0.2784 0.2882 0.2934 0.2952 0.2922
(2) 100 50 Mean | 05029 0.5046 0.5006 0.5021 0.4967 0.5287 0.5003 0.4922 0.5045 0.5317 0.4955 0.4954 0.4966 0.5026
Std 0.2893 0.2842 0.2885 0.2849 0.2938 0.2793 0.2959 0.2880 0.2872 0.2912 0.2897 0.2828 0.2848 0.2884
3) 50 200 Mean | 04891 0.5108 0.5075 0.4945 0.5289 0.5553 0.5189 0.4959 0.5045 0.5409 0.5031 0.5012 0.5207 0.4988
Std 0.2978 0.2873 0.2933 0.2917 0.2901 0.2785 0.2939 0.2886 0.2887 0.2854 0.2914 0.2832 0.2836 0.2936
(4) 100 200 Mean | 0.5057 04950 04988 0.5144 05236 05510 0.5217 0.5233 0.5081 0.5598 0.5081 0.4955 0.5268 0.5105
Std 0.2883 0.2854 0.2935 0.2979 0.2793 0.2706 0.2850 0.2882 0.2857 0.2729 0.2992 0.2832 0.2801 0.2960

0:0.2. A: 0.5 GNSMA
(5) 50 50 Mean | 0.5074 0.4891 0.5021 0.4849 0.5101 0.4966 0.5217 0.5039 0.4923 0.4901 04979 0.4908 0.5086 0.4863
Std 0.2913 0.2894 0.2888 0.2864 0.2855 0.2980 0.2857 0.2905 0.2779 0.2850 0.2908 0.2948 0.2936 0.2884
(6) 100 50 Mean | 05015 0.5012 04931 0.5072 05157 0.4944 0.5039 04908 0.5074 0.5015 0.4990 0.4991 0.5011 0.4988
Std 0.2894 0.2802 0.2803 0.2859 0.2831 0.2765 0.2857 0.2857 0.2867 0.2850 0.2919 0.2817 0.2886 0.2827
7) 50 200 Mean | 04836 0.5093 0.5070 0.4956 0.4866 0.5051 0.4966 0.4953 0.5061 0.4971 04961 0.5054 0.4934 0.4934
Std 0.2931 0.2868 0.2992 0.2923 0.2862 0.2927 0.2867 0.2951 0.2849 0.2900 0.2902 0.2861 0.2885 0.2907
®8) 100 200 Mean | 0.5068 0.4980 0.5018 0.5095 0.5036 0.4930 0.5053 0.5100 0.5079 0.5139 0.5019 0.4999 0.4983 0.5020
Std 0.2908 0.2888 0.2858 0.2890 0.2875 0.2868 0.2875 0.2864 0.2846 0.2837 0.2922 0.2891 0.2876 0.2868

0:0.5. A: 0.2 GNSAR
) 50 50 Mean | 0.5140 04972 0.5094 05093 0.5110 0.5293 0.5119 05190 05030 0.5546 0.5059 0.4922 0.5058 0.5096
Std 0.2841 0.2957 0.2900 0.2877 0.2858 0.2839 0.2775 0.2919 0.2895 0.2915 0.2966 0.2909 0.2838 0.2869
(10) 100 50 Mean | 0.5060 0.5101 0.5100 0.4976 0.4948 0.5100 0.4951 0.5038 0.4989 0.5558 0.5065 0.5171 0.4883 0.4948
Std 0.2903 0.2853 0.2918 0.2922 0.2905 0.2867 0.2923 0.2948 0.2818 0.2782 0.2860 0.2842 0.2890 0.2911
(11) 50 200 Mean | 05062 0.5007 0.4968 0.5098 0.5066 0.5239 04904 04922 0.5040 0.5305 0.4892 05012 0.5069 0.5126
Std 02920 0.2873 0.2869 0.2850 0.2883 0.2919 0.2881 0.2889 0.2889 0.2794 0.2902 0.2888 0.2885 0.2893
(12) 100 200 Mean | 0.5062 0.4966 0.5109 0.5149 0.5003 0.5169 0.5161 0.4993 0.5130 0.5142 0.4967 0.4968 0.5005 0.5146
Std 0.2822  0.2934 0.2861 0.2904 0.2862 0.2842 0.2893 0.2805 0.2833 0.2749 0.2846 0.2936 0.2911 0.2927

p: 0.5. A: 0.2 GNSMA
(13) 50 50 Mean | 0.5058 04979 0.5098 0.5016 0.5057 0.4998 0.5038 0.5097 0.4988 0.5207 0.4994 0.4930 0.4986 0.5019
Std 0.2828 0.2910 0.2899 0.2907 0.2912 0.2897 0.2870 0.2944 0.2943 0.3042 0.2897 0.2906 0.2835 0.2921
(14) 100 50 Mean | 0.5017 0.5034 0.5097 0.4908 0.4968 0.4973 04884 04979 04972 05411 05025 05141 0.4895 0.4899
Std 0.2890 0.2838 0.2950 0.2892 0.2905 0.2836 0.2906 0.2909 0.2792 0.2889 0.2861 0.2835 0.2927 0.2905
(15) 50 200 Mean | 0.5006 0.4997 0.4938 0.5007 0.4976 0.4940 0.4887 0.4934 0.4944 0.5171 0.4883 0.4968 0.4976 0.5004
Std 02920 0.2862 0.2849 0.2827 0.2898 0.2910 0.2949 0.2928 0.2876 0.2896 0.2903 0.2852 0.2926 0.2829
(16) 100 200 Mean | 05075 04937 05102 0.5141 0.4901 05026 0.5106 04974 0.5131 0.4999 0.4939 0.4916 0.4935 0.5159
Std 0.2868 0.2916 0.2892 0.2869 0.2876 0.2879 0.2890 0.2827 0.2840 0.2885 0.2841 0.2897 0.2917 0.2887
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ties with the core. The dependent variable, the real house price change, is construc-
ted as log(P;;/CPI;;) — log(P;;—1/CPIi;_1), where Pj is the Freddie Mac House
Price Index (FMHPI) and CPI;; is Consumer Price Index (CPI). Explanatory vari-
ables are the percentage changes in population (pop) and real per capita income
(income). Both variables are calculated as first-differences of these variables ex-
pressed in natural logarithms and thus can be interpreted as growth rates. Due to
taking first-differences, the actual number of time periods reduces to 159. The CD
statistic of Pesaran (2015) on the residuals of several specifications investigated by
Yang (2021) suggest that there might still be some remaining spatial dependence in
the residuals, indicating the need to examine other spatial weight matrices, para-
meterize them, and to include spatial errors. The CD statistics is -6.365 when the SD
model is applied in combination with the regional national common factors, indi-
vidual fixed effects, seasonal dummies, and the row-normalized binary contiguity
matrix with cut-off point at 100 miles (W100), which is the best performing spatial

weight matrix in her study.

For this purpose, we first estimate the GNSAR and GNSMA models when each
spatial lag in the model is pre-specified by the same spatial weight matrix: the
W100 used in Yang (2021) and a non-parameterized negative exponential matrix
(ED), respectively. We further estimate the GNSAR and GNSMA models when
the negative exponential matrices are parameterized. Three cases are considered:
(i) all spatial lags share the same estimated distance decay parameter (ED-same);
(if) the estimated distance decay parameters are different for the spatial lag in the
dependent variable and the error tern, but not for the spatial lags in the explanatory
variables (ED-one); and (iii) the estimated distance decay parameters are different
for all spatial lags (ED-multi). All models include spatial and time fixed effects and
all spatial weight matrices are row-normalized. The results are reported in Table
4.4 by which Columns (1) - (5) capture the results of GNSAR models and Columns
(6) - (10) of the GNSMA models.

The estimated values of the spatial autoregressive parameter p are all positive
and highly significant across the different models; they take values in the range
(0.6, 0.8). This result indicates that house prices in each individual MSA are highly
dependent on those in neighbouring MSAs. Population and income growth rates

are found to have an upward effect on house prices. The magnitudes of the estim-
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ated coefficients and the corresponding direct effects, which fluctuate around 0.3
(coefficient) and 0.4 (direct effects) for population, and below or around 0.1 (coeffi-
cient and direct effect) for income, are similar to those in Yang (2021). By contrast,
the estimated coefficients of the spatial lags and the indirect effects of these two ex-
planatory variables differ across the equations. The coefficient of the spatial lag of
population tends to be positive and significant in most cases, except when adopting
Yang’s W100 matrix, while its indirect effect is positive and significant in all cases,
even though the magnitude of this effect is quite different across the equations. The
indirect effect of income is found to be positive and significant in all cases, while its
magnitude seems to increase as more distance decay parameters are estimated sep-
arately (Columns (9) and (10)). Although the estimated coefficients of the spatial
errors A are all highly significant, they also differ in terms of signs and magnitudes.
Note that due to the specification of spatial AR and MA errors in Equations (4.2)
and (4.3), a positive spatial autocorrelation coefficient in a spatial AR error process
corresponds with a negative spatial autocorrelation coefficient in a spatial MA er-
ror process. The estimated A’s take large negative values in the GNSMA models the
moment that more distance decay parameters are estimated separately (Columns
(9) and (10)). Importantly, the distance decay parameter of the spatial AR errors
appears to be large and of the spatial MA errors to be small. This is line with the
Fingleton and LeGallo’s (2007) statement that spatial AR errors represent global
shocks and spatial MA errors represent local shocks. Due to its multiple rounds
structure, a shock reaches every corner of the research area even if the spatial range
of AR errors is small, while a shock in MA errors due to its one round structure
can only reach areas located farther away if the spatial range of MA errors is large.
Overall, the estimated distance decay parameters appear to be significant, except
for the distance decay parameter of income (a7) of the GNSMA model in Column
(1). Moreover, since the estimated values of the distance decay parameters are quite
different, the conclusion must be that each spatial lag, as expected, exhibits a dif-

ferent distance decay pattern.

For both the GNSAR and GNSMA models, the log-likelihood values increase
when the non-parameterized ED matrix replaces the binary contiguity matrices
with a cut-off point (W100) used by Yang (2021). Importantly, the log-likelihood

values further increase when the ED matrix is parameterized, also if all spatial lags
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share the same parameterized ED matrix. However, the log-likelihood values reach
their maximum when the estimated distance decay parameters are assumed to be
different for each spatial lag. Eventually, the log-likelihood value of the GNSAR
model (193194.3107), reported in Column (6), turns out to be the largest across all
models being considered. For this reason, the GNSAR model with different spatial
weight matrices for each spatial lag may be labelled as the best performing model.
Population shows a strong distance decay effect within this model (¢; = 4.6185).
This finding implies that the spatial range of population, the distance at which it
still has effect, is limited. The spatial AR error shows a milder distance decay ef-
fect (A = 2.2365), while the distance decay effects exhibited by income and the
house price change in neighbouring units are relatively small (x; = 0.9608 and
6 = 0.4893). According to the estimated direct and indirect effects reported in
Column (5), a one percentage point increase in population growth in one partic-
ular MSA is predicted to lead to an average 0.3479 percentage point increase in
house prices in the own MSA, and a 2.2652 percentage point increase in house
prices in neighbouring MSAs. By contrast, a one percentage point increase in in-
come growth has much smaller direct and indirect effects on house prices, respect-
ively 0.0912 and 0.7179 percentage points. The estimated indirect effects are larger
than those in Yang (2021). There are two possible explanations for this finding.
The larger indirect effects in our study might be due to modelling strong cross-
sectional dependence by time fixed effects rather than the more general common
factors considered in Yang (2021). On the other hand, there is evidence of mild (or
weak) cross-sectional dependence captured by the spatial AR error in that the spa-
tial autocorrelation coefficient is strongly significant (A = 0.5286 is significant at
the 1% significance level). This has been ignored in Yang (2021). The inclusion of
the spatial error is important since an improperly specified error term may result in
misleading conclusions concerning the statistical significance of the estimated para-
meters. The results in this study favour a spatial AR error process, which is in line
with the complexity of the US housing market. This market has gone through na-
tionwide economic shocks and housing-related policy changes, as a result of which
geographic interactions and spillovers of shocks between cities influence the co-
movement of US house price changes (Choi and Hansz, 2021). Since such shocks

are global and affect all MSAs in the US, they are more likely to diffuse according
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to a multiple rounds structure among the units.
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4.5 Conclusion and discussion

We consider GNS models with individual and time fixed effects, a spatial autore-
gressive or spatial moving average error process, and parameterized spatial weight
matrices that are different for each spatial lag in the model. These spatial weight
matrices, which are specified as exponential distance decay matrices, add more
flexibility to the coefficients of the spatial lags of the explanatory variables in the
model and the direct and indirect effect estimates derived from them. They also
help to reduce the identification problems that plagued the empirical literature es-
timating GNS models.

Consistent and properly centred QML estimators, based on the orthogonal trans-
formation to concentrate out the individual and time fixed effects, are derived to
estimate the distance decay parameters jointly with the response parameters in the
model. The assumptions necessary for asymptotic normality, identification and
consistency have been taken from previous studies, and adapted and extended to
the model at hand. In our Monte Carlo experiment we examine the performance
of the estimators of the response parameters, distance decay parameters, and direct
and indirect effects. An empirical application using US house data taken from Yang
(2021) shows that the GNS model with spatial AR errors and different distance de-
cay parameters for different spatial lags outperforms all the other empirical models
considered in this chapter.

Literature on the selection of spatial econometric models with either AR or MA
errors is scarce. The reasons are that these two models are not nested and models
with MA errors are computationally more difficult to estimate, as shown in Chapter
3. Bayesian posterior model probabilities (LeSage, 2014) or entropy measures (Her-
rera et al., 2019), in addition to log-likelihood values, may be a useful tool to com-

pare the performance of these kind of non-nested models in future research.
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4.A Appendix: The GNSAR model with both fixed ef-
fects
Without loss of generality, the presentation with respect to the distance decay para-

meters in Appendix 4.A and 4.B is limited to two explanatory variables (K = 2)

with distance decay parameters &1 and a5.
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where G = W(6)S~'and H = W(9)R™'. We also denote G = RGR™', Z(5)S™! =

A,A=RAR',and Z(y)R™' = A. Z(0) = ama]iég) and I'(¢) = azaLe"EQ)'
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4.B Appendix: The GNSMA model with both fixed ef-

fects
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where G = W(6)S~'and Q = R™!W(+). We also denote G = R"'GR, Z(5)S~! =

A, A =R AR, and R"'Z(v) = A.
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4.C Appendix: Proofs of Lemma 4.2

We provide proofs of Lemma 4.2, since Lemma 4.1 is a special case of Lemma 4.2
with W(dy) = W(ag,) = W for each k.

For the GNSAR model, we are interested in the sufficient condition that

~ K ~
InR(A,7)G(XtBy + 2 W (aor) Xkt Por )1 + INR(A, 7) Xic2

K
+ INR(A, ) Z (o )%k )c3 = 0, (4.C.1)

for c; = ¢ = c3 = 0, where ¢4, ¢», and c3 are conformable scalars. This is ana-
logous to Equation (G.1) in the proof of Lemma 52 in Lee et al. (2010) for the
social interaction models. Denote k1 = & tyR(A, 1) G(X: By + YK W (aor) ¥ Por ),
Ky = NLNR(/\,’Y)X)}, and k3 = NLNR(/\,’)/)[ (ap1)%1, ..., W(ox ) ¥k¢]. Exploiting
W (8)S~ = ST1W(8,)7, yields

K K
[TNR(A,7)G(XiBy + Z W (@) Zrepor), INR(A, 1) X1, INR(A, ) (kz W (o) %t )]
—1 =1
K

= R(A,7)S {[W(b0)(X:By + Z W (i) X ok ), SXt, S(Y_ W (age) ¥t
k=1 k=1

- SRil (A/ IY)LN(Kl/ K2, K3)}
K

=R(A,7)SH{[W(d) (XtﬁoJrkZW &0k ) Xkt Pok ), SXt,S(k): W (awok ) Xt )]
1 =1

— (x5, 55)), (4.C2)

where «;;, = }:ﬁo

form =1,2,3,and SR~} (AN = . Therefore, (4.C.1)

is equivalent to

_ K _ K
W(bo)(X:By+ Y Wage)Xeor)c1 + SXico + S() | W (aor) ke )3
=1 =1

—in(Kjc1 + K500 +K3C3)

= X102 + W (80) [W (20.1)¥1¢ (o161 — poC3), ..., W ok ) ¥kt (Pokc1 — pocs)]

7‘;‘7(50)571 = W(b0)(In + poW (do) + pgW?(b0) + ) = (In + poW (&) + pgW?>(do) + ) W (o) =
S W((S[))
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_|_

agks

(W (0)XktBokc1 — poW (d0)Xktco + W (g ) Xxec3) — en (K7, k5k3) = 0.

k=1

4.C.3)

As [Xt, W(89)Xt, W(89)W (g1 )1, ..., W(80) W (aox ) ¥k, ] has assumed to have
full column rank for each k, it follows that c; = 0, ¢oxc1 — pocz = 0, and W (Jp) Boxer +
W (agx)c3 = 0. This in turn implies that ¢; = 0 and c3 = —¢gkc1/po = 0 given the
assumptions that poBoxW (do) + poxr W (ax) # 0 and pg # 0. This completes the
proof for the GNSAR model.

For the GNSMA model, we similarly have

~ K ~
INRTY (A, 7)G(XiBy + Y W(aok) X por)c1 + INRTYA, 1) X1

K
+INRTHA, 1) () W(agr)Fie)e3 = 0. (4.C4)
k=1
Denote k1 = 4iyR™1(A,7)G(XiBy + Lhy Wlagr) Tudor), 12 = iyR(A, )X,
and x3 = %LNR’1 (A, 7)[W(ag1)%1s, ..., W(aox ) ¥ke], to get
N K N K
[INRY(A, 1) G(XiBy + 2 W (o) Freor), INR A )X, TNRTH A7) (Y W (gr) Xr)]
- k=1
K
=R (A, 7)S H{[W(d)(X:By + Z W (o )Xo ), SX1, S( Y W (agr ) ¥ir)]
k=1 k=1
- SR(AI’Y)LN(KLKZ/KS)}
N K N K
=RY(A,7)S H{[W(0)(XiBy + Y Wagr)¥erpor), SXt, S(Y W (arp) Xt )]
k=1 k=1
—in(x],%5,%3) }, (4.C.5)

where x;;, = (1 —po)(1 — Ag)km for m = 1,2,3, and SR(A,v)in = (1 —po)(1 —
Ao)tn. Therefore, (4.C.4) is equivalent to

K K
W(30)(XtBy + Y W (o) Xspor)c1 + SXrco + S( Y W () ¥ir)ca
=1

—in(kjc1 + 1500 + K5C3)

= X102 + W (o) [W (20.1)¥1¢ (o161 — poC3), - W (oK) ¥kt (Poxc1 — poc3)]
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K

+ Y (W (80)XxktBokc1 — poW (80)Xkeco + W (aor) Xkees) — en (k5 k3%3) = 0.
p

(4.C.6)

As [Xt, W (30) X1, W (30) W (g 1) %14, .., W(80) W (o )Xk, L] is assumed to have full
column rank for each k, it follows that ¢c; = 0, porc1 — pocs = 0, and W (Jy)Boxcr +
W (o )c3 = 0. This in turn implies that ¢c; = 0 and ¢3 = —¢gkc1/po = 0 given the
assumptions that poBoc W (o) + pox W (agx) # 0 and pg # 0. The desired result for
the GNSMA model follows.
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Conclusion

This dissertation contains three chapters which are linked through their focus on
the specification and estimation of several spatial econometric models and their
spatial weight matrices. The central question of this thesis is threefold: (I) how to
specify the spatial weight matrix or matrices, (II) how to specify the spatial lags, and
(III) how to solve or diminish any identification problems of the model parameters.
To address this central question, models from simple to challenging are considered.
The general context and the more detailed context of each chapter is discussed in
the previous chapters. This chapter summarizes and reiterates the main conclu-
sions of each chapter, mentions some limitations, and provides potential directions

for future research.

In Chapter 2 the prominent spatial Durbin model, which contains spatial lags
in the dependent variable and the regressors, is taken as point of departure. This
model generates more flexible indirect effects than their counterparts without Durbin
terms. We further let each spatial lag and regressor have its own spatial weight mat-
rix by parameterizing each of them with a different distance decay parameter. In
the panel setting, this model can also contain individual and time fixed effects when
N is large and T is finite. The QML estimator based on the within transformation
to concentrate out the individual fixed effects is used to estimate the distance decay
parameters together with the response parameters. In addition to the two func-
tional forms of distance decay structure, the negative exponential and the inverse
distance, two types of normalization, row normalization and scalar normalization,

are considered. The simulation and empirical application results show that, instead



146 Chapter 5

of adopting one common pre-specified matrix, each spatial lag should interact with
a different spatial weight matrix. Therefore, this chapter answers Question (I), the
specification of the spatial weight matrix or matrices, by estimating them within

the SDM framework.

Chapter 3 considers the QML within estimator of the SARMA model with indi-
vidual and time fixed effects, which includes spatial lags in the dependent variable
and the errors. This model has gained less attention in the literature compared
with the widely applied SARAR model. We focus on the popular panel setting in
which N is large and T is finite. We extend the interpretation of local and global
shocks by considering the spatial range of the spatial weight matrices: a spatial
MA error process representing local shocks which tend to go together with a dense
matrix and the spatial AR error process representing global shocks which tend to
go together with a sparse matrix. The simulation results show that the model para-
meters, the direct effects, and the indirect effects are biased when wrong spatial
weight matrices are used. This chapter therefore answers Question (II) regarding
the specification of the spatial lags. Question (I) about the specification of the spatial
weight matrix is also partly answered since the empirical results show that differ-
ent types of spatial lags may interact with different spatial weight matrices in terms

of sparsity or density.

As an extension of Chapter 2 and Chapter 3, Chapter 4 considers the estima-
tion of panel GNS models with spatial AR or MA errors, individual and time fixed
effects, and parameterized spatial weight matrices within the large N and large T
setting. We exploit and modify the QML estimator based on the orthogonal trans-
formation to estimate the distance decay parameters of the spatial weight matrices
and the response parameters of these models. Monte Carlo simulations are con-
ducted to show the acceptable performance of the QML estimators. The empirical
application using US house data taken from Yang (2021) confirms the existence of
global shocks in the US housing market, since the spatial AR error process is found
to outperform its spatial MA counterpart. This chapter answers all three questions
posed in this thesis. It answers Question (I) regarding the specification of the spatial
weight matrix since it shows that distance-based decay matrices can be estimated
along the response parameters of the model. It answers Question (II) regarding the

specification of spatial lags since both MA and AR errors are considered. Finally,



Conclusion 147

it answers Question (III) by taking into account the rank conditions of the GNSAR
and GNSMA models and by showing that the identification of its parameters is

alleviated by parameterizing the spatial weight matrices.

Matlab routines will be made available for the proposed QML estimators for
all the mentioned models; these routines provide opportunities to practitioners for

their own research.

One issue for further research is how to select between spatial AR and MA er-
rors. Besides the economic theory set out in Chapter 3, Bayesian posterior model
probabilities are a powerful and straightforward tool for model selection since the
model with the highest probability should be selected (LeSage, 2014). However,
prior and posterior probabilities need to be derived not only for each model spe-
cification but also for different spatial weight matrices of each spatial lag in these
specifications. These derivations are not yet available and left for future research.
Attempts have also been made for selecting from non-nested spatial economet-
ric models. Liu and Lee (2019) propose a non-degenerate likelihood-ratio test for
model selection between two non-nested spatial econometric models. This test is
based on QML estimators of the matrix exponential spatial specification (MESS)
model and the SARAR model. However, the power of the test for model selection
between models with spatial AR and MA errors is yet unknown. One of the pos-
sibilities is to explore whether AR versus MA tests in the time-series literature (e.g.,

King, 1983) are also applicable to spatial econometric models.

Another step forward of this thesis is to add “dynamic” elements to the spa-
tial panel models. Elhorst (2021) categorizes spatial econometric models into four
generations: the first generation contains models based on cross-sectional data, the
second generation comprises models based on pooled data but with controls for
individual and time fixed or random effects, the third generation captures dynamic
spatial panel data models, and the current fourth generation, from 2021, includes
spatial panel data models with all spatial lags, both fixed or random effects, and
common factors. These models are quite difficult to apply. Parameterizing the spa-
tial weight matrices in these advanced models will make the estimation far more
difficult. Furthermore, they may suffer from additional identification problems.
Lee and Yu (2016) propose identification conditions for dynamic spatial panel mod-

els with Durbin terms. The role of parameterized spatial weight matrix in the iden-
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tification of the parameters in these dynamic models is left for future research.
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Samenvatting

Ruimtelijk econometrische modellen bieden mogelijkheden om ruimtelijke, econo-
mische en sociale interacties tussen transversale waarnemingseenheden te verkla-
ren door verschillende ruimtelijke vertragingen op te nemen. Ruimtelijke gewich-
tenmatrices zijn daarin een essentieel onderdeel, omdat ze weergeven hoe deze
eenheden met elkaar verbonden zijn. Om ruimtelijk econometrische modellen te
kunnen toepassen, dienen drie vragen te worden beantwoord. Het betreft achter-
eenvolgens (I) hoe de ruimtelijke gewichtenmatrix of -matrices te modelleren, (II)
hoe ruimtelijke vertragingen te modelleren, en (III) langs welke weg de parame-
ters van het model zijn geidentificeerd. Dit proefschrift onderzoekt oplossingen en
geeft antwoord op deze drie vragen. De panel structuur en schattingsmethode spe-
len hierbij een belangrijke rol. In ruimtelijke panel data modellen met individuele
en tijdgebonden vaste effecten, worden deze vaste effecten in het algemeen name-
lijk eerst uit het model getransformeerd, middels ofwel de zogenoemde “within”
transformatie of de orthogonale transformatie, waarna het getransformeerde model
wordt geschat, in dit proefschrift op basis van quasi maximale waarschijnlijkheid
(QML).

Hoofdstuk 2 gaat in op eerste vraag door te kijken naar de schatting van het
ruimtelijke Durbin model (spatial Durbin (SD) model) met geparameteriseerde ruim-
telijke gewichtenmatrices. Dit model bevat ruimtelijke vertragingen in de te ver-
klaren variabele en elk van de verklarende variabelen. De kracht van dit model
in empirisch onderzoek is dat het flexibele indirecte spillover effecten genereert,
een maat voor de marginale effecten van veranderingen in één van de verklarende
variabelen van een waarnemingseenheid op de te verklaren variabele van andere

waarnemingseenheden. Deze flexibiliteit wordt opgevoerd door elke ruimtelijke
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gewichtenmatrix te parameteriseren met een andere afstandsvervalparameter en
deze parameters tezamen met de andere parameters van het model te schatten.
De QML-schatter op basis van de within-transformatie wordt gebruikt om het SD-
model te schatten met individuele en tijdgebonden effecten onder de veronderstel-
ling dat N groot en T eindig is. Vanwege deze veronderstelling behoeven alleen de
individuele effecten uit het model te worden getransformeerd, terwijl de tijdgebon-
den effecten kunnen worden behandeld als reguliere regressoren. De Monte Carlo-
simulatieresultaten en empirische toepassing laten zien dat de gangbare praktijk
om met één gemeenschappelijke ruimtelijke gewichtenmatrix te werken voor alle
ruimtelijke vertragingen in het model moet worden verworpen en dat de para-
meterisering van de gewichtenmatrices de flexibiliteit waarmee indirecte spillover

effecten worden gemeten inderdaad verbetert.

Hoofdstuk 3 gaat in op de tweede vraag met betrekking tot de specificatie van
ruimtelijke vertragingen door ruimtelijke moving average (MA) en ruimtelijke au-
toregressieve (AR) processen in de storingstermen met elkaar te vergelijken. We
breiden de interpretatie van lokale en globale schokken uit door rekening te hou-
den met het ruimtelijke bereik van de gewichtenmatrices: het ruimtelijke MA-
proces modelleert lokale schokken en correspondeert met goed gevulde ruimte-
lijke gewichtenmatrices, terwijl het ruimtelijke AR-proces globale schokken vast-
legt en correspondeert met schaars gevulde ruimtelijke gewichtenmatrices. De
QML-schatter op basis van de within-transformatie wordt gebruikt om een ruimte-
lijk econometrisch model te schatten met ruimtelijke vertragingen in de te verklaren
variabele en de storingsterm met vooraf gespecificeerde maar verschillende ruim-
telijke gewichtenmatrices. Dit model, beter bekend als het ruimtelijke autoregres-
sieve (SAR) model met ruimtelijke MA-storingstermen, of kortweg het SARMA-
model, bevat voorts individuele en tijdgebonden effecten en wordt wederom ge-
schat onder de veronderstelling dat N groot en T eindig is. De Monte Carlo-
simulatieresultaten laten zien dat de selectie van de juiste ruimtelijke gewichten-
matrix en het overwegen van verschillende ruimtelijke gewichtenmatrices voor
verschillende ruimtelijke vertragingen in het model van cruciaal belang zijn en
misschien zelfs belangrijker dan de selectie van het juiste ruimtelijk econometri-
sche model. De empirische toepassing op basis van data ontleend aan Yesilyurt

en Elhorst (2017), waarin militaire uitgaven worden verklaard, laat echter zien dat
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het ruimtelijke proces in de storingsterm van dit model het beste gemodelleerd
kan worden volgens een MA structuur en een goed gevulde ruimtelijke gewichten-
matrix, omdat de schokken een lokaal karakter vertonen. Met deze bevindingen
beantwoordt dit hoofdstuk zowel niet alleen de tweede vraag gesteld in dit proef-
schrift, maar ook de eerste.

Hoofdstuk 4 gaat aanvankelijk in op de derde vraag betreffende identificatie
van de modelparameters middels de schatting van het general nesting spatial (GNS)
model met ruimtelijke AR- of MA-storingstermen en geparameteriseerde ruimte-
lijke gewichtenmatrices. Deze modellen bevatten ruimtelijke vertragingen in de
te verklaren variabele, elk van de verklarende variabelen en de storingsterm. De
QML-schatter gebaseerd op de orthogonale transformatie wordt niet alleen ge-
bruikt maar ook afgeleid om deze GNS-modellen te schatten met individuele en
tijdgebonden vaste effecten, in dit hoofdstuk onder de veronderstelling dat zowel
N en T groot zijn. Langs deze weg wordt bewezen dat het parameteriseren van de
ruimtelijke gewichtenmatrices het in de literatuur genoemde identificatieprobleem
verlicht. De Monte Carlo simulatieresultaten laten zien dat de QML orthogonale
schatter acceptabel presteert. De empirische toepassing op basis van een data set
ontleend aan Yang (2021), waarin de stijging van huizenprijzen in Amerikaanse
metropolen wordt verklaard middels veranderingen in inkomens- en bevolkings-
groei, laat zien dat elke van de vier ruimtelijke vertragingen in het model wordt
gekenmerkt door een andere gewichtenmatrix en dat het ruimtelijke proces in de
storingsterm in dit model het beste gemodelleerd kan worden volgens een auto-
regressief (AR) proces en een schaars gevulde ruimtelijke gewichtenmatrix, omdat
de Amerikaanse huizenmarkt wordt gekenmerkt door schokken die een globaal
karakter vertonen. Met deze bevindingen beantwoordt dit hoofdstuk tenslotte alle

vragen die in dit proefschrift gesteld zijn.
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