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Chapter 1

Introduction

1.1 General introduction

“Everything in the world is connected with something else” and “Every qualit-

atively defined system has a special type of interaction” (Spirkin, 1983, p. 84).

In social science, social and economic interactions play an indispensable role in

the spread of diseases, the personal employment options, the trade flows of many

goods and services, etc. Spatial econometric models provide possibilities to explain

the spatial, economic, and social interactions among individual units in a system.

Three different types of interaction effects are considered in the spatial econometric

literature: endogenous interaction effects among the dependent variable (yt), exo-

genous interaction effects among the regressors (X t), and interaction effects among

the error term (vt) for individual units at time t where t = 1, . . . , T. Correspond-

ingly, a spatial econometric model may contain one spatial lag in the dependent

variable (Wyt), K spatial lags in the regressors (WX t), and one in the error term,

where W is the N × N spatial weight matrix capturing the connection between

units, which is an essential part of each spatial econometric model.

Spatial interactions, which is the main focus of spatial econometrics, obviously

depend on the specification of the spatial weight matrix W . However, an often-

criticized aspect of using spatial econometric models in empirical research is that

W is specified in advance rather than being estimated along with the paramet-

ers in the model (Corrado and Fingleton, 2012). Question (I) in the spatial econo-

metric literature is therefore the specification of the corresponding spatial weight
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matrix. Issues about the specification of W are the following. First, whether the

spatial weight matrix should take a sparse binary contiguity form or a dense dis-

tance decay form and whether the spatial weight matrix is pre-specified, selected

according to posterior test statistics, or directly estimated. Second, how to normal-

ize the spatial weight matrix. Common approaches are normalization by the row-

sums, column-sums, the maximal or minimal row-sum, or the largest eigenvalue

of W . Among them, normalization by the row-sums or the largest eigenvalue are

the most popular ones and they are also known as row normalization and scalar

normalization, respectively. Row normalization can be achieved by dividing each

element by the corresponding row-sum and this normalization ensures that the

weighting operation can be interpreted as an averaging of the values of other in-

dividual units. Scalar normalization can be realized by dividing each element by

the largest eigenvalue of W and this normalization ensures that economic inter-

pretation in terms of distance decay is valid when the spatial weight matrix has

a distance decay structure. Third, whether different spatial lags should share the

same or different spatial weight matrices. In theory, each of the K + 2 spatial lags,

if included, may have its own W . The reality is that almost every empirical study

and each Monte Carlo simulation experiment in an econometric-theoretical study

investigating the finite sample properties of a newly proposed spatial econometric

model estimator or test statistic, adopts one common specification of W for all spa-

tial lags. One common pre-specified spatial weight matrix for all spatial lags may

cause identification problems. We will discuss the identification problem later in

the second following paragraph. The parameterization of the spatial weight matrix

turns out to be a simple and effective solution.

Question (II) emerging from the spatial econometric literature is how to spe-

cify the spatial lags. Specifically, this question focuses on the specification of the

spatial lag in the error term. This lag captures unobserved shocks following a spa-

tial pattern other than those covered by time fixed effects and thus improves the

efficiency of the estimator if accounted for. The representative model is the spa-

tial error model (SEM) in the spatial autoregressive (AR) form, while econometric-

theoretical and empirical research on models with spatial moving average (MA)

errors have received limited attention. These two forms of spatial errors can re-

flect different types of shocks. Shocks captured by AR errors are global and those
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captured by MA errors are local (Fingleton, 2008b). To distinguish global and local

shocks, sparse weight matrices which contain many zero elements are generally

taken as examples. Shocks in the AR form are global because they rebound and

diffuse multiple rounds to all units even for the units which are not directly con-

nected, while shocks in the MA form are local since they only diffuse one round to

the units which are connected (Fingleton and LeGallo, 2007). The latter implies that

for spatial weight matrices which are dense, the shocks spread likewise to all units

when captured by the MA form. Therefore, the interpretations of the AR and MA

errors should be considered together with the specification of the spatial weight

matrices.

Question (III) standing in the spatial econometric literature is the identification

problem. It needs to be noted that there are different identification problems in

spatial econometrics. The one that we pay attention to in this thesis is that the para-

meters to be estimated of a model cannot be recovered from its reduced form. This

identification problem has been discussed in section 3 of Gibbons and Overman

(2012) and also mentioned as one of the identification problems by Halleck Vega

and Elhorst (2015). The inclusion of WX t, which are also known as Durbin term,

has the advantage that it generates fully flexible indirect effects. The indirect ef-

fects are often the main interest of applied spatial econometric studies since they

measure the marginal impact of changes in the explanatory variables of other units

on the dependent variable of the focal unit. Attempts to identify the parameters

of models with Durbin term have been made. Bramoullé et al. (2009) investig-

ate the identification of the parameters of the linear-in-means model, which is also

known as the spatial Durbin (SD) model. Lee, Liu, and Lin (2010) propose a specific

network structure providing information on how units are connected to each other.

This structure helps to solve the identification problem of various interaction effects

in the general nesting spatial (GNS) model. Similarly, specific functional forms of

the spatial weight matrix can help solving the identification problem. By impos-

ing exponential or inverse distance decay functional forms of the spatial weight

matrix, which exploits the geographical arrangement of the units in the sample,

the distance decay parameter of the spatial weight matrix of each spatial lag can

be estimated, thereby avoiding that this matrix is completely pre-specified and the

same for all spatial lags. Using this simple parametric method, each regressor can
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interact with a different spatial weight matrix and exhibit a different distance decay

pattern. This extension helps to identify the unknown parameters.

In spatial panel models, the inclusion of fixed effects, for both individual units

and time periods, is important. The individual fixed effects are often incorpor-

ated in the model to control for time invariant unobserved individual character-

istics which can be correlated with the existing regressors. As for the time fixed

effects, they can control for time-varying unobservables that affect all units in the

sample. However, if the fixed effects are estimated jointly with the other para-

meters, we may encounter incidental parameter problems. Two transformations

can be used to concentrate out these fixed effects. The within transformation uses

JN = (IN − 1
N ιNι

′
N) and JT = (IT − 1

T ιTι
′
T) to eliminate both fixed effects where

ιN and ιT are the N × 1 and T × 1 vectors of ones, respectively. The orthogonal

transformation, on the other hand, uses FN,N−1 and FT,T−1 to eliminate the fixed

effects, where [FN,N−1, 1√
N

ιN ] and [FT,T−1, 1√
T

ιT ] are the orthonormal eigenvector

matrices of JN and JT . The within and orthogonal transformation are called dir-

ect and transformation approach in Lee and Yu (2010a). To be consistent with the

panel data literature, we adopt the nomenclature of within and orthogonal trans-

formation. The transformed equations can be subsequently estimated by quasi-

maximum likelihood (QML). Lee and Yu (2010a) prove the consistency and derive

the asymptotic distribution of the QML estimators based on the within and ortho-

gonal transformation for the SAR model with AR errors, which is also called the

SARAR model. They also derive the estimation procedures for two panel data set-

tings: individual fixed effects only and both types of fixed effects. In the former

case, the variance parameter needs to be bias-corrected when T is finite and the

QML estimator based on the within transformation is applied, while the QML es-

timator based on the orthogonal transformation is consistent and properly centred.

For the latter case, the QML estimator based on the within transformation is con-

sistent only when both N and T are large, whereas the QML estimator based on the

orthogonal transformation is consistent when either N or T is large. Bias correction

is needed to remove the non-centrality of the QML estimator based on the within

approach. One limitation of the orthogonal transformation is that it requires W to

be row-normalized when both fixed effects are included and concentrated out. The

QML estimators based on the within and orthogonal transformation are labelled
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the QML within and QML orthogonal estimator for simplicity.

The three studies in this dissertation contribute to the literature by providing

solutions to the three questions mentioned above: (I) the specification of the spa-

tial weight matrix of each spatial lag, (II) the specification of the spatial lag itself,

and (III) the issue of identification. In Chapter 2 we depart from the spatial Durbin

model (SDM), which contains spatial lags in both dependent variable and the re-

gressors, and we allow the dependent variable and each regressor to interact with

different spatial weight matrices by parameterizing them with a distance decay

parameter. These distance decay parameters are estimated together with the re-

sponse parameters of the model. This study extends the literature by answering

Question (I), the specification of W . In Chapter 3 we focus on the estimation of the

spatial autoregressive (SAR) model with spatial MA errors, which is also known

as the SARMA model, with both fixed effects. Different non-parameterized spatial

weight matrices are allowed for the spatial lags in the dependent variable and the

errors. Possible solutions to Question (II), the specification of the spatial lag, are

provided in this study. In the last study of Chapter 4, we consider the estimation of

the general nesting spatial (GNS) model with AR or MA errors, which are known

as GNSAR and GNSMA model, respectively. These two models contain all three

types of spatial lags. The parameterized spatial weight matrices that are different

for each spatial lag under various model settings are also considered in this chapter.

As an extension of the previous two studies, this study not only answers the first

two questions but it also provides a solution to Question (III), the identification

problem. An overview of the content of each chapter is given in Table 1.1.

Table 1.1. Description of the Chapters in the Thesis

Chapter Model Fixed Effects
Setting of Parameterization Normalization Method of Concentrating out
N and T of W of W Fixed Effect

Chapter 2 SDM Both
Large N,

Yes
Row normalization

Within transformation
finite T Scalar normalization

Chapter 3 SARMA Both Large N, No Row normalization
Within transformation

finite T Scalar normalization

Chapter 4
GNSAR

Both
Large N,

Yes Row normalization Orthogonal transformation
GNSMA large T.
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1.2 Outline of the thesis

This dissertation is organized as follows. Chapter 2 provides the QML within es-

timator of the SDM with parameterized spatial weight matrices. Chapter 3 focuses

on the QML within estimator of the panel SARMA model with pre-specified though

different spatial weight matrices. Chapter 4 sets out the GNSAR and GNSMA mod-

els and derives the QML orthogonal estimator of the parameters when the spa-

tial weight matrices are parameterized and it discusses the identification problem.

Chapter 5 concludes.

We start with the prominent spatial Durbin model (SDM), which contains spa-

tial lags in the dependent variable and the regressors. In Chapter 2, we estimate

the common parameters and the distance decay parameters which are imposed

for each spatial weight matrix within the model setting. Although each variable

can have its own spatial weight matrix, practitioners generally adopt one common

pre-specified spatial weight matrix for all of them. This chapter breaks this prac-

tice by parameterizing each spatial weight matrix with a distance decay parameter.

We propose a maximum likelihood approach that estimates the decay parameters

along with the other parameters in the model. We consider negative exponential

and inverse distance decay matrices, and two types of normalization, row normal-

ization and normalization of the weight matrix by its largest eigenvalue. We invest-

igate the performance of the proposed estimation approach in a Monte Carlo sim-

ulation experiment and present the results of an empirical application on military

expenditures. An important finding is that the indirect effects, which are important

for many empirical studies, can be severely biased when one common pre-specified

spatial weight matrix is used.

Chapter 3 advocates the wider use of the spatial autoregressive (AR) model

with spatial moving average (MA) errors, individual and time fixed effects, and

different spatial weight matrices for each spatial lag. We derive and investigate the

asymptotic properties of the QML within estimator of the model when N is large

and T is finite. We also argue and demonstrate that the interpretation of the spatial

MA errors in various empirical applications is more obvious than the spatial AR

errors since most shocks are local rather than global. A Monte Carlo simulation

and an empirical example based on military expenditure data are used to illustrate
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this. The findings also indicate that each spatial lag should interact with different

spatial weight matrices.

Chapter 4 sets out GNS models with individual and time fixed effects, a spatial

AR or spatial MA error process, and distance-based parameterized spatial weight

matrices that are different for each spatial lag in the model. The QML orthogonal

estimator for these two models is developed based on the QML within estimat-

ors in Chapters 2 and 3. The asymptotic distribution of the proposed estimator is

provided and its finite sample properties are investigated by means of Monte Carlo

simulation. To illustrate the benefits of the proposed models in an empirical setting,

the Yang (2021) US house price data set is used.

The final chapter summarizes the main findings, provides discussions, and men-

tions directions for future research.





Chapter 2

Parameterizing spatial weight

matrices in the spatial Durbin

panel data model*

* This chapter was written together with M. Kesina and J.P. Elhorst.
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2.1 Introduction

In a spatial econometric model the behaviour of one cross-sectional unit is co-

determined by spatial lags observed on other cross-sectional units. Spatial lags can

be taken with respect to the dependent variable, the explanatory variables, and/or

the error term, known as the spatially lagged dependent variable, spatially lagged

explanatory variables, and the spatially lagged error term, respectively. The de-

gree of co-determination further depends on the mutual relationships among the

cross-sectional units formalized by the spatial weight matrix. In the literature, there

exists a variety of spatial econometric models that contain one or multiple forms of

spatial lags (for an overview see Elhorst, 2014).

One prominent model is the spatial Durbin model (SDM) that contains a spa-

tial lag in the dependent variable and each of the explanatory variables, enabling

estimation of endogenous interaction effects and contextual effects. This model is

advocated by LeSage and Pace (2009), and has been widely applied to study dif-

ferent topics in economics, e.g. energy economics (Feng and Chen, 2018; Li and Li,

2020; Chen et al., 2021, to mention a few), innovations (Tientao et al., 2016; Pan et

al., 2021; Xiao and Mao, 2021, to mention a few), regional and growth economics

(Beer and Riedl, 2012; Koroglu and Sun, 2016; Sabater and Graham, 2019, to men-

tion a few). Furthermore, it is widely used in the peer effects literature, but then

under the label linear-in-means model (Bramoullé et al., 2009, 2020; De Paula et al.,

2020; among others).

One advantage of the SDM in empirical research is its flexibility in modelling

spillovers. The main interest of spatial econometric practitioners are not the point

estimates of the parameters but the marginal impact of changes that explanatory

variables have on the dependent variable. Two marginal effects are of interest: the

direct effect of changing the explanatory variable of one unit on the dependent vari-

able of that unit itself, and the cumulative effect of changing the explanatory vari-

able of one unit on the dependent variable of other units (LeSage and Pace, 2009).

This cumulative effect is known as the indirect effect, the spatial spillover effect, the

indirect spillover effect or the spillover effect. Elhorst (2010) and Halleck Vega and

Elhorst (2015) demonstrate that only models that at least include spatially lagged

regressors are able to produce spillover effects that can take any empirical value.



The spatial Durbin panel data model 11

In contrast, models that include a spatially lagged dependent variable and/or a

spatially lagged error only are less flexible since they impose restrictions on the

magnitude of spillover effects in advance.

Although the econometric theoretical literature distinguishes different spatial

weight matrices in models with multiple types of spatial lags, empirical applica-

tions and Monte Carlo simulations tend to use one common specification of the

spatial weight matrix for all spatial lags. Especially in the SDM the same spatial

weight matrix is used for all regressors. This is a very restrictive assumption as the

effect and the spatial range of spatial lags are likely to be different for different re-

gressors. One potential solution is to pre-specify different spatial weight matrices

for the spatially lagged dependent variable and each of the spatially lagged re-

gressors, estimate the model for different combinations of spatial weight matrices,

and then select the combination that produces the highest log-likelihood function

value (Leenders, 2002), the highest Bayesian posterior model probability (LeSage

and Pace, 2009, Ch.6), or the best spatial J-test result (Kelejian, 2008). However,

this approach poses several challenges and thus is hardly used. First, the empir-

ical researcher does not know ex-ante which spatial weight matrix to use for the

different types of spatial lags. Second, when multiple spatial weight matrices are

selected, this procedure becomes demanding and time-consuming. Conversely, if

the true spatial weight matrix is not in the choice set because this set is kept small,

the researcher runs the risk of picking a wrong spatial weight matrix.

Another solution is to estimate the spatial weight matrix along with the other

parameters in the model (Ahrens and Bhattacharjee, 2015; Lam and Souza, 2019;

De Paula et al., 2020; Lewbel et al., 2021, to mention a few). However, these studies

either focus on one form of spatial lag only, usually the spatially lagged dependent

variable (the first two cited studies), or use the SDM with one common spatial

weight matrix (the last two cited studies). Furthermore, many studies are based

on the assumption that the number of time units (T) exceeds the number of cross-

sectional units (N), whereas the majority of empirical studies is based on N >>

T. Some approaches limit the number of unknown elements of the spatial weight

matrix, which leads to a sparse spatial weight matrix.

Our study contributes to the literature in the following ways. First, we let the

spatial lag of each regressor have its own spatial weight matrix to allow for differ-
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ent spatial ranges. Furthermore, we parameterize each spatial weight matrix with

a different distance decay parameter and estimate those together with the other

parameters of the model. We consider two frequently used functional forms of dis-

tance decay, the negative exponential and the inverse distance form, and two types

of normalization, row normalization and normalization of the weight matrix by its

largest eigenvalue.1

The proposed maximum likelihood (ML) estimator extends previous work of

Lee and Yu (2010a) by allowing for a parameterization of all spatial weight matrices

in the model without imposing sparsity in advance or requiring a large time dimen-

sion. Our approach is applicable to the common large N and finite T framework.

We also provide mathematical expressions for the direct and indirect spillover

effect. We conduct Monte Carlo experiments and find that our approach works well

in estimating the parameters and direct and indirect spillover effects. Especially the

latter are more sensitive to the choice of the spatial weight matrix.

A Matlab function of the proposed ML estimator will be made available to give

other researchers the opportunity to apply it in their own empirical setting. An

empirical application on military expenditures from Yesilyurt and Elhorst (2017)

is utilized to show the usefulness of the proposed parameterization approach for

applied researchers. We find empirical evidence in favor of both the spatial Durbin

model and spillover effects, and show that this is because we do not adopt the same

pre-specified spatial weight matrix for all regressors in the model.

The remainder of this chapter is organized as follows. In Section 2.2, we review

previous studies that parameterized the spatial weight matrix or suggested altern-

ative estimation approaches. In Section 2.3, we set out the spatial Durbin model

with parameterized weight matrices for each spatial lag and explain how the para-

meters and direct and indirect spillover effects can be estimated. In Section 2.4,

we present the results of a Monte Carlo experiment. In Section 2.5 we discuss the

results of an empirical analysis. In Section 2.6, we draw conclusions.

1 Whether or not to row normalize distance decay matrices has been an issue of discussion in the spatial
econometric literature. Furthermore, there is no unifying consensus about which normalization to use.
Therefore, we provide estimators and mathematical expressions for the different types of distance decay
and normalization.
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2.2 Parameterizing spatial weight matrix and alternat-

ive approaches

Specifying the spatial weight matrix has been recognized as difficult and controver-

sial (Bavaud, 1998; Corrado and Fingleton, 2012, among others). Researchers gen-

erally agree that spatial weights should decrease with some generalized distance,

but a univocal specification is still missing. According to Corrado and Fingleton

(2012), the spatial econometric model and the specification of the spatial weight

matrix, commonly symbolized by W , should be theory-driven. While several stud-

ies develop an economic-theoretical model that leads to a certain type of spatial

econometric model supporting the inclusion of spatially lagged dependent vari-

ables, regressors and/or errors2, research on an economic-theoretical derivation of

the spatial weight matrix is scarce. Bavaud (1998) provides a systematic overview

of the general theoretical properties of spatial weight models, but does not explain

how to apply the theory in practice. The author even apologizes for this omission

(p. 154). Instead, practitioners tend to adopt one of the many popular specifications

and use it for all spatial lags in the model.3

Nevertheless, there are studies that specify a functional form for the elements

of W that depends on one or several measures of distance (e.g. geographical dis-

tance, or economic distance, or combinations thereof) and one or more distance

decay parameters. The two most popular parameterized spatial weight matrices

are the inverse distance matrix and the exponential distance decay matrix based

on geographical distance only.4 However, many studies utilizing parameterized

2 Studies with derivations leading to SDM or the linear-in-means model are of Ertur and Koch (2009)
on economic growth, of Yesilyurt and Elhorst (2017) on military expenditures, of Heijnen and Elhorst
(2018) on the diffusion of waste disposal taxes, and of Szumilo (2020) on housing prices. Blume et al.
(2015) set up a theoretical model, a social interaction game, in which utility depends on an individual’s
own action and that of member’s actions, from which the linear-in-means model can be derived. Xu and
Lee (2019) provide a similar theoretical foundation for spatial econometric models.

3 Popular choices for the spatial weight matrix are (i) p-order binary contiguity matrices (if p = 1 only
first-order neighbours are included, if p = 2 first and second order neighbors are considered, and so
on); (ii) inverse or exponential distance decay matrices (with or without a cut-off point); (iii) q-nearest
neighbour matrices (where q is a positive integer); (iv) block diagonal or group interaction matrices
where each block represents a group of units that interact with each other but not with observation in
other groups; and (v) weight matrices based on socio-economic variables rather than distance.

4 Examples of more complex forms of parameterizations are Cliff and Ord (1973) who use a W matrix
whose elements are written as a Cobb-Douglas function of the physical distance and the length of the
common border between each pair of units; or Elhorst and Halleck Vega (2017) who use a gravity type
of function based on the distance, and the economic sizes (measured by population or gross product) of
both units.
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spatial weight matrices use pre-specified values for the distance decay paramet-

ers (Murdoch et al., 1993; Fingleton and LeGallo, 2008, among others). The reason

is that parameterizing W leads to an econometric model that is non-linear in its

parameters and thus requires non-linear estimation techniques enhancing the com-

plexity of the analysis.5 There are also studies that really estimate the distance de-

cay parameter (Fischer et al., 2009; Dubin, 1988; Kakamu, 2005; and Halleck Vega

and Elhorst, 2015, to mention a few). However, these approaches also have limita-

tions. First, some of them focus on one spatial lag only. Second, the main focus lies

either on the empirical application or the spatial econometric regression model, but

less on the estimation of the distance decay parameter, whose estimation remains

vague.

A more recent strand of literature infers W from the data using various (geo)stati-

stical modelling techniques, provided that the number of observations over time

(T) exceeds the number of observations across space (N) (Ahrens and Bhattacharjee,

2015; Lam and Souza, 2020; also see chapter 4 of Beenstock and Felsenstein, 2019,

for an overview). However, this approach does not address the majority of empir-

ical studies that are based on N >> T.6 Even if W is assumed to be symmetric

and the leading diagonal of W is set to zero (since units cannot affect themselves),

the number of unknown elements amounts to 1
2 N(N + 1) and are under-identified

when T is not sufficiently large. Recent studies in the social interactions literature

propose to estimate the unknown elements of W , but instead of assuming that T is

sufficiently large and they assume that the number of unknown elements of W is

sufficiently small (De Paula et al. 2020; Lewbel et al., 2021). However, whether this

assumption makes sense cannot be specified in advance and only be determined

by first estimating the strength of the distance decay effect.

One final approach is of Debarsy and LeSage (2018) who investigate a model

with a spatially lagged dependent variable and specify the spatial weight matrix as

a convex combination of several underlying matrices. The contribution of each sub-

matrix to the overall matrix is estimated together with the other model parameters

using Bayesian estimation. One limitation is that only one spatial lag with such

5 This argument is also mentioned in Corrado and Fingleton (2012, p.217): ”These could be estimated
alongside other model parameters, but because of the difficulty this would entail, it makes practical
sense to assign values to these coefficients a priori.”

6 Lam and Souza (2020) do mention some exceptions in their paper where N is not necessarily small.
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an overall spatial weight matrix is considered. If the number of sub-matrices to

construct the overall matrix is M and the number of spatial lags is extended to

K + 1, as in a spatial Durbin model, then M(K + 1) additional parameters need to

be estimated. In contrast, only K + 1 additional (distance decay) parameters need

to be estimated when adopting a parameterized inverse distance or exponential

distance matrix for each spatial lag in the model.

To the best of our knowledge, there is no paper that proposes an estimation ap-

proach that (i) allows for different spatial weight matrices for all spatial lags of the

model and that (ii) enables estimating all those spatial weight matrices in a unified

framework. We aim to fill this gap with this chapter, where we allow for different

parameterizations (e.g. exponential and inverse distance decay) and normaliza-

tions (row normalization and scalar normalization).

2.3 The methodology of parameterization

2.3.1 The parameterized spatial Durbin model

We focus on the following parameterized spatial Durbin model (SDM)

yit = ρ0

N

∑
j=1

wij(δ0)yjt +
K

∑
k=1

xkitβ0k +
K

∑
k=1

N

∑
j=1

wkij(α0k)xkjtφ0k + c0i +v0t + vit, (2.1)

where i = 1, . . . , N, t = 1, . . . , T, N is the number of cross-sectional units, and T is

the number of time periods. We assume a large N, finite T and a balanced panel. yit

represents the dependent variable of unit i at time t, and xkit the kth non-stochastic

explanatory variable with coefficient β0k. The term ∑N
j=1 wij(δ0)yjt denotes the spa-

tial lag of the dependent variable of other units than i, and the accompanying coef-

ficient ρ0 the impact of this spatial lag. Similarly, the regressors ∑N
j=1 wkij(α0k)xkjt

(k = 1, . . . , K) denote the spatial lags of the explanatory variables, whose impacts

are measured by the coefficients φ0k. The elements wij(δ0) and wkij(α0k) measure

the relationships between unit i and j. These elements are heterogeneous for the

different types of regressors and are parameterized e.g. depend on additional para-

meters δ0 and α0k. The individual fixed effects c0i (i = 1, . . . , N) control for unob-

served individual-specific, time-invariant effects. Similarly, the time period fixed
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effects v0t (t = 1, . . . , T − 1)7 control for time-specific, unit-invariant effects. As T

is finite, v0t may just be incorporated in the set of explanatory variables. We write

them out explicitly to make clear that they should not be spatially lagged. We allow

c0i and v0t to be correlated with xkit and ∑N
j=1 wkij(α0k)xkjt. When the subscript 0

is added to a parameter or a vector of parameters, we denote the true value of this

parameter or vector. Finally, vit is an error term whose properties are specified in

Section 2.3.3.

The main differences of Equation (2.1) compared to the standard SDM in the

literature are twofold. First, we allow each spatial lag to have a different spatial

weight matrix. This provides more flexibility, because the spatial range, e.g. the

distance at which explanatory variables still have an effect on other units, will no

longer be assumed to be the same but different from one explanatory variable to

another. This setup generalizes most previous empirical spatial econometric stud-

ies that employ one common weight matrix for all spatial lags.8 Second, instead

of pre-specifying spatial weight matrices, we parameterize them by distance decay

parameters δ0 and α0k (k = 1, .., K), and estimate these decay parameters jointly

with the other parameters of the model.

Model (2.1) can be rewritten in matrix notation. If we stack the individual ob-

servations for each time period t, the model reads as

yt = ρ0W(δ0)yt +
K

∑
k=1

xktβ0k +
K

∑
k=1

W(α0k)xktφ0k + c0 + v0tιN + vt,

t = 1, . . . , T,

(2.2)

where yt, xkt, c0, vt are N × 1 vectors, and ιN is an N × 1 vector of ones. W(δ0)

and W(α0k) are N × N matrices describing the connectivity of all N cross-sectional

units in the sample. The corresponding reduced form of Equation (2.2) reads as

yt = (IN − ρ0W(δ0))
−1

(
K

∑
k=1

xktβ0k +
K

∑
k=1

W(α0k)xktφ0k + c0 + v0tιN + vt

)
,

t = 1, . . . , T.

(2.3)

7 One time dummy is left aside to avoid perfect multicollinearity with the individual fixed effects.
8 For the same reason, it extends the classic linear-in-means model characteristic of the social interac-

tions literature (De Paula et al., 2020; Lewbel et al., 2021), where ρ0 captures endogenous interaction
effects and φ0k contextual effects.
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2.3.2 The parameterized spatial weight matrix and its normaliza-
tions

Two commonly used parameterized specifications of the spatial weight matrix are

the negative exponential and the inverse distance matrix. For i 6= j, the ijth element

of the negative exponential matrix in its raw, e.g. unnormalized, form is given by

wij($0)
r = e−dij$0 , (2.4)

and the ijth element of the inverse distance matrix is

wij($0)
r = 1/d$0

ij , (2.5)

where dij denotes the distance between units i and j and $0 the distance decay

parameter of the corresponding spatial lag. Importantly, we depart from a hetero-

geneous distance decay structure, i.e., each spatial lag has its own distance decay

parameter $0 . Both functional forms have the property that wij($0)
r $0→0−→ 1 and

wij($0)
r $0→∞−→ 0. This implies that, depending on the value $0, the full weight mat-

rix may be sparse or dense, i.e., for large values of $0 it has many zeros and hardly

any non-zero elements, while small values of $0 lead to a dense matrix without or

hardly any zeros. Note that the diagonal elements of the spatial weight matrix are

assumed to be zero to prevent units from predicting themselves.

In general, elements of the spatial weight matrix are normalized. We consider

two frequently used normalizations: normalization by row-sums and scalar nor-

malization by the largest eigenvalue. Let W r denote the matrix in raw form before

normalization. Row normalization is achieved by wij = wr
ij/ ∑N

j=1 wr
ij and has the

effect that the elements of the resulting weight matrix in every row sum to one.

Row normalization is generally applied for the two following reasons. It facilitates

the interpretation of operations with the weight matrix as an averaging of neigh-

boring values (Anselin and Bera, 1998), and the spatial autoregressive parameter ρ0

takes values in the parameter space (1/κmin, 1), where κmin is the smallest negative

eigenvalue of W (Ord, 1981). However, row normalization has also been criticized.

Kelejian and Prucha (2010) demonstrate that normalization of the elements of the

spatial weight matrix by a different factor for each row as opposed to a single factor

is likely to lead to misspecification problems. Elhorst (2014, Section 2.4) explains
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that this especially concerns distance decay matrices, because its economic inter-

pretation in terms of distance decay will then no longer be valid (Anselin 1988, pp.

23-24). The reasons for this are twofold. First, due to row normalization the spatial

weight matrix might lose its property of being symmetric, as a result of which the

impact of unit i on unit j is not the same as that of unit j on unit i. Second, remote

and centrally located units may end up having the same impact, i.e., independent

on their relative location.9 To avoid such misspecification problems, Kelejian and

Prucha (2010) propose a normalization procedure where each element of W r is di-

vided by its largest eigenvalue κr
max, to get W = (1/κr

max)W
r. When applying this

normalization, ρ0 again takes values in the parameter space (1/κmin, 1), with the

difference that the smallest negative eigenvalue of this matrix takes another value.

Since some rows will sum up to values greater than one and other to values smal-

ler than one, a scalar normalized weight matrix can no longer be interpreted as an

averaging of neighboring values. In empirical work both types of normalizations

are applied. Therefore we consider both row normalized and scalar normalized

(by its largest eigenvalue) forms of the negative exponential and inverse distance

matrices.

2.3.3 Assumptions

Lee and Yu (2010a) set out the assumptions under which the ML estimator of the

model parameters in Equation (2.1) are identified, consistent, and asymptotically

normal, both when assuming that the error terms are normally distributed or not,

and provided that the W matrices are non-stochastic, i.e., not parameterized. The

regular rate of convergence is
√

N, provided that T is finite or fixed. Details are set

out in Appendix 2.A.1. In this section we discuss the assumptions which need to

be adapted, such that the proof by Lee and Yu (2010a) carries over to the model in

this study.

Assumption 2.1. The idiosyncratic errors vit, i = 1, 2, ..., N and t = 1, 2, ..., T are nor-

mally distributed or are i.i.d across i and t with mean zero, variance σ2
0 and finite fourth

9 The following example illustrates this. Consider a centrally located unit and a remote unit that both
have two neighbors. The distance of the first unit to its neighbours is d, while the distance of the second
unit to its neighbours is a multiple of d. Despite this difference in location, the entries in the inverse
distance matrix describing the spatial arrangement of the units in the sample will be 1/2 in both cases,
provided that the spatial weight matrix is row normalized.
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moment.

Assumption 2.2. The matrices W(δ0) and W(α0k)(k = 1, ...K) are exogenous, but

stochastic with diagonal elements equal to zero. Before normalization, the row and column

sums of each spatial weight matrix are uniformly bounded or, alternatively, diverge to in-

finity though at a rate slower than N.

Assumption 2.3. S = IN − ρ0W(δ0) is invertible and uniformly bounded in row and

column sums in absolute value. ρ0 is in the interior of P, where P is an open but bounded

interval. ρ0 is bounded away from zero.

Assumption 2.4. φ0k for k = 1, . . . , K is bounded away from zero.

Assumption 2.5. For all k ρ0β0kW(δ0)+φ0kW(α0k) 6= 0N , and [IN , W(δ0), W(δ0)W(α0k)]

are linearly independent.

Assumption 2.6. The regressors xkt are nonstochastic and bounded uniformly. There is

no multicollinearity among the regressors and their spatially lagged counterparts.

If the error terms are assumed to be normally distributed, the parameters can be

estimated by ML. If they are not truly normally distributed, they can be estimated

by quasi (Q)ML based on the properties specified in Assumption 2.1. Although

we consider both estimators, we only use the term ML. Assumption 2.2 allows for

weak divergence of the spatial weight matrix. In the case of a non-stochastic W ,

W is assumed to be uniformly bounded in both row and column sums in absolute

value (Lee and Yu, 2010, Kelejian and Prucha, 2010, among others). We are dealing

with spatial weight matrices that depend on distance decay parameters δ0 and α0k

(k =, 1, ..., K), which makes the spatial weight matrices stochastic. Gupta (2019)

shows that many established estimation methods also work with an exogenous

stochastic spatial weight matrix.10 However, the fact that the spatial weight matrix

is stochastic, needs to be formalized in the weak divergence assumption, which

requires that the row and column sums of the stochastic spatial weight matrix may

diverge to infinity as long as the sample size N diverges to infinity faster. This is

10 There are also studies that allow for endogenous spatial weight matrices (Qu and Lee, 2015). Endo-
geneity can arise due to feedback effects, e.g. if the spatial weight matrix is based on economic variables,
which also depend on the dependent variable. However, if the spatial weight matrix depends on geo-
graphic distance between countries, counties or cities, such feedback effects do not occur, since distance
is exogenous. This property does not change when distance is parameterized.
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in line with Assumption 2 in Gupta (2019). Assumption 2.2 can be fulfilled when

the spatial weight matrix has a distance decay function form. For an exponential

distance decay matrix the condition of uniformly boundedness corresponds to a

distance decay parameter of $0 > 0, and for an inverse distance matrix to $0 > 1

(Elhorst et al., 2021).11 Lee (2004) shows that the row and column sums of the

spatial weight matrix in a cross-sectional setting may also diverge to infinity as

long as the sample size N diverges to infinity faster.12 For this reason, we also

consider and experiment with an inverse distance matrix using a lower bound in

the interval (0, 1].

Assumption 2.3 is a modification of Assumption 3 in Lee and Yu (2010a). The

invertibility of S guarantees that Equation (2.3) is valid. For ρ0 we use the interval

(−1,+1), with the exception of ρ0 = 0. If W(δ0) is scalar or row normalized the

upper bound is 1 by construction. The lower bound might be smaller than −1

when scalar normalization is applied, but negative values for ρ0 in models with

only one spatial lag in the dependent variable are considerably less common than

positive ones, let alone negative values smaller than −1 (Elhorst, 2014, Section 2.5).

Therefore, imposing this lower bound is hardly restrictive. ρ0 should be bounded

away from zero. If ρ0 equals zero, then the distance decay parameter δ0 is not

identified. This follows from the information matrix of the parameters derived in

Appendix 2.A.4.13 The same non-identification problem occurs for α0k if φ0k = 0

(k = 1, . . . , K), which is excluded in Assumption 2.4.

Assumption 2.5 states further identification assumptions. The first part is differ-

ent and less restrictive than the condition ρ0β0k +φ0k 6= 0 for all k in Bramoullé et al.

(2009, Proposition 1) and Lee and Yu (2016, Lemmas 2 and 3). This is due to the fact

that we have not one common but different weight matrices for each spatial lag. Re-

11 When W is a parameterized exponential distance matrix, the corresponding row or column sum of
this series in a continuous space (to ease calculations) can be calculated as the integral

∫ N
1 e−$0xdx =

(1/$0)e−$0 (1 − e−N). The row or column sums represented by this integral are upper bounded for
$0 > 0 if N goes to infinity. Similarly, the integral

∫ N
1

1
x$0 dx = 1/(1− $0)(N1−$0 − 1) is upper bounded

for $0 > 1 if N goes to infinity.
12 Although not part of the formal proof in Lee and Yu (2010a), they state that this result also carries
over to a panel data setting. This point occurs at 1/(1− $0)(N1−$0 − 1)/N = 1/(1− $0)(1/N$

0 − 1/N),
which converges to zero and thus is upper bounded for $0 > 0 if N goes to infinity.
13 If ρ0 equals zero, then the elements in the information matrix that are based on second order derivat-
ives involving δ0 equal zero (see equations A.35,A.40,A.44,A.47,A.48,A.49). Consequently one row and
column contains zeros only. Thus the information matrix is not invertible and the variance covariance
matrix is not defined.
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writing the reduced form in Equation (2.3) using the fact that (IN − ρ0W(δ0))
−1 =

IN + ρ0W(δ0) + ρ2
0W2(δ0) + . . . yields

yt = (IN − ρ0W(δ0))
−1

[
K

∑
k=1

(xktβ0k + W(α0k)xktφ0k) + c + v0tιN + W t

]

=
K

∑
k=1

[
xktβ0k + [ρ0β0kW(δ0) + φ0kW(α0k)][IN +

∞

∑
g=2

ρ
g−1
0 W g−1(δ0)xkt]

]
+ (IN − ρ0W(δ0))

−1 [c0 + v0tιN + vt]. (2.6)

This expression shows that the spatial lags W(δ0)yt and W(α0k)xkt (k = 1, . . . , K)

cancel each other out if ρ0β0k + φ0k = 0 for all k and δ0 = α0,1 = . . . = α0K. Un-

der these restrictions, the spatial Durbin model (SDM) reduces to the spatial error

model (SEM) (Burridge, 1981), as a result of which the coefficients of the spatial

lags W(δ0)yt and W(α0k)xkt (k = 1, . . . , K) are not identified.14 However, in empir-

ical work we do not expect the estimates for the decay parameters δ0 and α0k to be

identical. Thus this assumption is not very restrictive.

Bramoullé et al. (2009) and Lee and Yu (2016) show that [IN , W(δ0), W(δ0)W(α0k)]

should also be linearly independent, as stated in the second part of Assumption

2.5. Since the diagonal elements of W(δ0) and W(α0k) are assumed to be zero for

all k, the identity matrix and W(δ0) are independent from each other by construc-

tion. If δ0 goes to infinity, the elements of W(δ0) go to zero, such that it seems

that we end up with a null matrix that is dependent on the identity matrix. How-

ever, the elements of distant units go to zero much faster than nearby units, as a

result of which the distance decay matrix converges to a binary contiguity matrix,

which is independent of the identity matrix.15 For the same reasons, the product

of two distance decay matrices will not be equal to one of them by construction:

W(δ0) 6= W(δ0)W(α0k).

As in Lee and Yu (2010a), we assume exogenous and uniformly bounded re-

gressors. Given the exogeneity of the explanatory variables and the weak diver-

gence of the corresponding spatial weight matrices, the spatially lagged regressors

14 We also validated these findings as part of our Monte Carlo simulation experiment in the next section.
15 Suppose two elements 1/2 and 1/4 and that both are taken to the power 10. Then the first element
becomes 1024 times as large as the second element. When the matrix is row or scalar normalized sub-
sequently, the first element will dominate the second, i.e., the last element can be set to zero equally well
without changing the structure of the weight matrix.
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are also bounded uniformly. Assumption 2.6 also rules out multicollinearity among

the regressors.

2.3.4 Estimation

Generally, individual fixed effects are concentrated out by demeaning the variables

by their individual-specific means (Baltagi, 2005).16 The dependent variable of this

demeaned model reads as ỹit = yit − 1
T ∑T

t=1 yit. Similar transformations are ap-

plied to right-hand side elements of the regression equation. The demeaned model

for time period t is

ỹit = ρ0

N

∑
j=1

wij(δ0)ỹjt +
K

∑
k=1

x̃kitβ0k +
K

∑
k=1

N

∑
j=1

wij(α0k)x̃kjtφ0k + ṽ0t + ṽit. (2.7)

Although this transformation does eliminate c0i, it induces linear dependence of the

transformed errors ṽit over time. Consequently σ̂2w will be biased when T is small

or fixed. To get an unbiased estimate, Lee and Yu (2010a) propose the following

bias-correction (bc) σ̂2w−be = T
T−1 σ̂2w. This correction can be easily carried out after

the parameters of the model have been estimated. When stacking the individual

observations in each time period t, the demeaned spatial Durbin model of Equation

(2.7) can be rewritten as

ỹt = ρ0W(δ0)ỹt +
K

∑
k=1

x̃ktβ0k +
K

∑
k=1

W(α0k)x̃ktφ0k + ṽ0tιN + ṽt, t = 1, . . . , T, (2.8)

where ỹt, x̃kt, and ṽt are N × 1 vectors, and ιN is an N × 1 vector of ones. When

also xkt and W(α0k)xkt for each k, the model reads as

ỹt = ρ0W(δ0)ỹt + X̃
∗
t ζ0 + ṽt, (2.9)

where the N × (2K + 1) matrix X̃
∗
t is the corresponding sorted matrix of all ex-

planatory variables, their spatial lags and dummy variables for time periods, and

16 This is because these fixed effects are not of interest (or not reported), cannot be estimated consistently
when T is small, and might affect the accuracy of parameter estimates when taking them up as part of
the regressors if N grows large.
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is given by

X̃
∗
t = [x̃1t, . . . , x̃Kt, W(α0,1)x̃1t, . . . , W(α0K)x̃Kt, ιN ]. (2.10)

To avoid multicollinearity, T − 1 time period dummies are included. Then ζ0 =

(β
′
0, φ

′
0, ṽ0t)

′
. The remaining parameters to be estimated are the spatial autore-

gressive parameter ρ0, the distance decay parameters for all spatial lags α0 = (δ0, α0,1,

...., α0K)
′ and σ2

0 . Defining the full set of parameters as θ = (ζ
′
, ρ, σ2, α

′
)
′
, the log-

likelihood function of the model is given by

lnLw(θ) = −NT
2

log(2πσ2) + Tlog|IN − ρW(δ)| − 1
2σ2

T

∑
t=1

ṽ
′
t(ζ)ṽt(ζ), (2.11)

where

ṽt(ζ) = ỹt − ρW(δ)ỹt − X̃
∗
t ζ. (2.12)

The ML estimator can be obtained by maximizing the log-likelihood function with

respect to θ.17 The parameter vector ζ and the scalar σ2 can be solved analytically

from their first order conditions, given ρ and α = (δ, α1, . . . , αK)
′
, which yields

ζ̂
w
(ρ, α) = [

T

∑
t=1

X̃
∗′
t X̃
∗
t ]
−1[

T

∑
t=1

X̃
∗′
t S(ρ, δ)ỹt], (2.13)

σ̂2w(ρ, α) =
1

NT

T

∑
t=1

(S(ρ, δ)ỹt − X̃
∗
t ζ̂

w
)
′
(S(ρ, δ)ỹt − X̃

∗
t ζ̂

w
), (2.14)

where S(ρ, δ) = IN − ρW(δ). By substituting these solutions for ζ̂
w

and σ̂2w into

Equation (2.11), the concentrated log-likelihood function with respect to the K + 2

remaining estimated parameters ρ̂w and α̂w are obtained. Given the solution of

this maximization problem for ρ̂w and α̂w, we can subsequently determine the un-

conditional ML estimates of ζ̂
w

and σ̂2w, as well as the bias-corrected outcome

σ̂2w−bc = T
T−1 σ̂2w.

We explored two ways to find the ML estimates of ρ and α. The first is to set

their first order derivatives equal to zero, given ζ̂
w

and σ̂2w, and to solve this sys-

17 Mathematical expressions for the first and second order conditions and the information matrix, which
will be used to determine the variance-covariance matrix of the parameters, are reported in the ap-
pendix.
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tem of equations numerically. Technically, this is complicated not only because the

parameters appear in multiple equations, but also because we ended up with mul-

tiple solutions, including unbounded solutions. The second way is to maximize the

concentrated log-likelihood function of ρ and α. The concentrated log-likelihood

within this setup is programmed as

logLw(ρ, α|ζ̂w
, σ̂2w) = −NT

2
log(2πσ̂2w) + Tlog|IN − ρW(δ)| − NT

2
, (2.15)

where σ̂2w is programmed as in (2.14), and ζ̂
w

as part of σ̂2w in (2.14) is programmed

as in (2.13). This has the effect that if one or more values of ρ and α change, the

estimates for ζ̂
w
(ρ, α) and σ̂2w(ρ, α) change accordingly.

One final issue is the estimation of ρ and δ if W(δ) is not row but scalar nor-

malized. The issue is that ρW(δ) = ρW r(δ)/κr
max is equivalent with ρ∗W∗(δ),

where ρ∗ = cρ and W∗(δ) = W(δ)/c and c denotes any scalar factor (Kelejian and

Prucha, 2010, p.55). For this reason, Ahrens and Bhattacharjee (2015) normalize by

ρ = 1 and then try to estimate the elements of the spatial weight matrix. We apply

the following approach. First, ρ is estimated setting δ = 1 (the default value) and

W(δ) is scalar normalized, which yields ρ = ρinitial . This ρinitial is then kept fixed

when maximizing the concentrated log-likelihood function for δ and the other αk

(k = 1, . . . , K). During this iterative process W(δ) is scalar normalized every time

δ changes. Only after the optimal values for δ, αk (k = 1, . . . , K) are found, among

which δ̂ML, ρ is estimated again to get ρ = ρ̂ML. We developed an estimation

routine, which enables estimating the proposed model for different normalizations

and distance decay functions. A description of the routine and the expressions for

the variance-covariance matrix of the parameter estimates can be found in the ap-

pendix of this chapter.

2.3.5 Interpretation: direct and indirect spillover effects

A quantitative interpretation of the coefficient estimates in Equation (2.1) is not

advisable, because they do not represent the marginal effects of the explanatory

variables (LeSage and Pace, 2009). These marginal effects are obtained by taking

the first-order derivatives of the reduced form of the SDM in Equation (2.3). This
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yields an N × N matrix Ψk of the form

Ψk = (IN − ρW(δ))−1(IN · βk + W(αk) · φk) for k = 1, ..., K. (2.16)

Since the weight matrices do not change over time, this expression is the same for

each time period t. Every diagonal element of Ψk reflects the impact of changing

the kth explanatory variable of one observational unit i on the dependent variable

of i. Every off-diagonal element reflects the impact of changing the kth explanatory

variable of one observational unit i on the dependent variable of another unit j, j 6=
i. To suppress the amount of output, LeSage and Pace (2009) suggest two summary

indicators: the direct effect DEk measured as the average of all diagonal elements

of Ψk, and the indirect spillover effect IEk measured as the average row or column

sum of the off-diagonal elements excluding the respective diagonal element. Both

effects are calculated as

DEk =
1
N

tr(Ψk) =
1
N

tr{(IN − ρW(δ))−1(IN · βk + W(αk) · φk)}, (2.17)

IEk =
1
N

ι
′
NΨkιN −

1
N

tr(Ψk)

=
1
N

ι
′
N{(IN − ρW(δ))−1(IN · βk + W(αk) · φk)}ιN−

1
N

tr{(IN − ρW(δ))−1(IN · βk + W(αk) · φk)}. (2.18)

These expressions show two facts. First, the parameters φk of the spatial lags of the

explanatory variables contribute to the required flexibility of the indirect spillover

effects, as claimed in the introduction of this paper. This can be seen by imposing

the restriction φk = 0 to obtain the SAR model without spatial lags in the explanat-

ory variables. Then the matrix Ψk simplifies to ΨSAR
k = (IN − ρW(δ))−1(IN · βk) =

βk(IN − ρW(δ))−1 ≡ βkSI , and as a result the direct effect to βk
N tr(SI) and the in-

direct spillover effect to βk
N ι
′
NSIιN − βk

N tr(SI). Consequently, the ratio between the

indirect spillover effect and the direct effect becomes

IESAR
k

DESAR
k

=
βk
N ι
′
NSIιN − βk

N tr(SI)
βk
N tr(SI)

= ι
′
NSIιN/tr(SI)− 1, (2.19)
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which is independent of the parameter βk. This independence implies that this

ratio is the same for every explanatory variable in the model.18

The second fact Equations (2.17) and (2.18) show is that parameterizing the spa-

tial weight matrix of every explanatory variable enhances this flexibility by the

decay parameters δ and αk. This is because the distance at which explanatory vari-

ables may still have effect on other units, i.e., the spatial range, may also be different

from one variable to another.

To draw statistical inferences on the direct and indirect spillover effects, we use

the delta method since it saves on computation time. Mathematical expressions are

provided in Appendix 2.A.6.

2.4 Monte Carlo simulations

We conduct Monte Carlo experiments to evaluate the performance of our proposed

estimator with the parameterized exponential and inverse distance matrix in row

normalized and scalar normalized form. Therefore we generate separate experi-

ments for each type of spatial weight matrix and normalization and investigate the

performance of our estimator and compare it with other existing approaches.

Our data generating process contains two explanatory variables: x1it ∼ N (1, 2)

and x2it ∼ N (−1.5, 3.5). The coefficients of the first variable and its spatial lag are

β1 = −1 and φ1 = 1.5, and of the second variable and its spatial lag are β2 = 0.2

and φ2 = −0.3. The unobserved individual fixed effects and the error terms are

both generated from a normal distribution with mean 0 and variance 1. We set

N = {200, 800} and T = 5 and the number of iterations is 1000. To construct

distance matrices between the cross-sectional units, we use the coordinates of N

data points evenly set in a rectangle of 10× 20 for N = 200 and 20× 40 for N =

800. By using a rectangle, the row and scalar normalized matrices are different by

construction. These distances are used to calculate the inverse distance and the

exponential distance decay matrix. The decay parameters are δ = 2, α1 = 1.5, and

α2 = 3. Finally, the parameter of the spatial lag of the dependent variable is set to

ρ = 0.5.

18 Elhorst (2010) is the first who has pointed this out, though only based on a simple numerical ex-
ample, and for this reason advocated the inclusion of spatial lags in the explanatory variables to avoid
unnecessary restrictions on the sign and magnitude of spatial spillovers in empirical research.
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The simulation design described above serves as our basic case and is labelled

Case I. Additionally, we carry out further experiments, where we vary either the

spatial lag parameter ρ or one of the distance decay parameters.

We compare the performance of three estimators. We label our proposed ap-

proach where all spatial weight matrices are parameterized as PWFE, where P in-

dicates parameterized, W indicates spatial weight matrix, and FE indicates fixed

effects.

In addition we investigate what would happen if a practitioner replaces all spa-

tial weight matrices by one common spatial weight matrix with a decay parameter

of 1 for all spatial lags. This reflects the most widely used approach applied by

practitioners. Since researchers do not know the true decay parameters and the

true specification of the spatial weight matrices, this investigation may throw more

light on how harmful this can be and is referred to as WFE (one common W and

fixed effects). Finally, we evaluate the performance of an estimator assuming that

the true spatial weight matrices are known to the researcher. Note that this reflects

an ideal, but hypothetical situation. However, this may throw more light on the re-

lative performance of our approach and the associated costs in terms of estimation

errors compared to this ideal estimator which we refer to as TWFE (true T spatial

weight matrices W and fixed effects).

In our analysis we investigate both the parameter estimates and the estimates

of the direct and indirect spillover effects.19 To judge the performance of the estim-

ators, we consider several statistics: the average bias (Bias), the root mean square

error (RMSE), the median bias (Mbias), and the median absolute value of the bias

(Mabias). The latter two are used as they are more robust to outliers. Further-

more, we test for each parameter whether it equals its true value and report mean

and standard deviations of the p-values. If the underlying asymptotic distribution

is true, then under the null the p-values should follow a U(0, 1) distribution, and

thus should have a mean p-value of 0.5 and a standard deviation of approximately

0.29.

Table 2.1 reports the Bias, RMSE, Mbias, and Mabias of the parameter estimates;

Table 2.2 reports the same statistics of the direct and indirect spillover effects; and

19 LeSage and Pace (2018) demonstrate that past studies’ focus exclusively on point estimates may not
provide useful information regarding the statistical properties of the marginal effects, i.e., the direct and
indirect spillover effects obtained from these point estimates.
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Table 2.3 reports mean and standard deviation of the p-values of both parameter

estimates and direct and indirect effects. To save space, we focus on the results of

the negative exponential distance matrix. Results for the inverse distance matrix

can be found in Appendix 2.A.7. When focusing on the proposed estimator PWFE

Table 2.1. Simulation results for Case I: ρ = 0.5, δ = 2, α1 = 1.5, α2 = 3

Settings Exponential: row normalized Exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) σ2(1) δ(2) α1(1.5) α2(3) β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) σ2(1) δ(2) α1(1.5) α2(3)

WFE 5 200 Bias 0.037 -0.011 0.327 -0.140 -0.209 0.099 0.032 -0.010 0.309 -0.156 -0.237 0.082
RMSE 0.038 0.015 0.329 0.153 0.214 0.116 0.033 0.015 0.312 0.171 0.245 0.102
Mbias 0.037 -0.011 0.327 -0.138 -0.207 0.098 0.032 -0.010 0.308 -0.156 -0.236 0.081
Mabias 0.037 0.011 0.327 0.138 0.207 0.098 0.032 0.011 0.308 0.156 0.236 0.081

TWFE 5 200 Bias -0.000 0.000 -0.001 0.000 -0.002 -0.011 0.000 0.000 -0.002 0.000 -0.003 -0.011
RMSE 0.008 0.010 0.024 0.025 0.025 0.053 0.008 0.010 0.027 0.027 0.029 0.053
Mbias 0.000 0.000 -0.002 -0.000 -0.002 -0.013 0.000 0.000 -0.002 0.000 -0.004 -0.012
Mabias 0.005 0.007 0.016 0.016 0.017 0.037 0.005 0.007 0.019 0.017 0.019 0.037

PWFE 5 200 Bias 0.001 -0.000 0.011 -0.003 -0.014 -0.013 0.036 -0.014 0.156 0.001 0.000 0.002 -0.003 -0.006 -0.013 0.012 -0.004 0.189
RMSE 0.010 0.010 0.055 0.036 0.053 0.054 0.268 0.109 0.858 0.008 0.010 0.044 0.038 0.032 0.054 0.283 0.095 0.930
Mbias 0.001 -0.000 0.007 0.000 -0.012 -0.016 0.033 -0.016 -0.003 0.001 -0.000 0.001 -0.000 -0.005 -0.017 0.013 -0.004 0.029
Mabias 0.006 0.007 0.034 0.024 0.033 0.038 0.172 0.070 0.490 0.005 0.007 0.028 0.026 0.022 0.038 0.194 0.064 0.516

WFE 5 800 Bias 0.033 -0.010 0.359 -0.185 -0.200 0.104 0.029 -0.010 0.368 -0.196 -0.196 0.091
RMSE 0.033 0.011 0.360 0.188 0.202 0.108 0.029 0.011 0.368 0.199 0.198 0.096
Mbias 0.033 -0.010 0.358 -0.183 -0.200 0.104 0.029 -0.010 0.367 -0.194 -0.1951 0.091
Mabias 0.033 0.010 0.358 0.183 0.200 0.104 0.029 0.010 0.367 0.194 0.195 0.091

TWFE 5 800 Bias 0.000 0.000 -0.001 -0.001 -0.0010 0.000 0.000 0.000 -0.001 -0.001 -0.001 0.000
RMSE 0.004 0.005 0.014 0.014 0.015 0.026 0.004 0.005 0.015 0.014 0.016 0.026
Mbias 0.000 -0.000 -0.001 -0.002 -0.001 -0.001 0.000 -0.000 -0.001 -0.002 -0.000 -0.001
Mabias 0.003 0.003 0.009 0.009 0.010 0.017 0.002 0.003 0.011 0.009 0.011 0.017

PWFE 5 800 Bias 0.000 0.000 -0.000 -0.002 -0.002 -0.001 0.013 0.002 0.058 0.000 0.000 -0.001 -0.002 -0.008 -0.001 0.010 0.003 0.064
RMSE 0.005 0.005 0.030 0.020 0.027 0.026 0.135 0.057 0.399 0.004 0.005 0.025 0.021 0.017 0.026 0.137 0.050 0.413
Mbias 0.000 -0.000 -0.001 -0.000 -0.002 -0.002 0.011 0.000 0.006 0.0000 -0.000 -0.002 -0.000 -0.001 -0.001 0.004 0.000 0.015
Mabias 0.003 0.003 0.021 0.013 0.019 0.016 0.090 0.036 0.261 0.003 0.003 0.017 0.014 0.012 0.017 0.096 0.034 0.266

Table 2.2. Direct (DE) and indirect (IE) spillover effects of variables x1 and x2 for Case I
using the parameter estimates in Table 2.1

Settings Exponential: row normalized Exponential: scalar normalized
T N DE x1 DE x2 IE x1 IE x2 DE x1 DE x2 IE x1 IE x2

WFE 5 200 Bias 0.001 0.002 0.224 -0.156 0.000 0.001 0.165 -0.150
RMSE 0.007 0.011 0.242 0.177 0.007 0.010 0.191 0.170
Mbias 0.001 0.002 0.225 -0.155 0.000 0.001 0.162 -0.150
Mabias 0.005 0.007 0.225 0.155 0.005 0.007 0.162 0.150

TWFE 5 200 Bias 0.000 0.000 -0.005 0.001 0.000 0.000 -0.006 0.001
RMSE 0.007 0.010 0.069 0.049 0.007 0.010 0.072 0.047
Mbias -0.001 0.000 -0.004 0.001 -0.001 0.000 -0.008 0.001
Mabias 0.005 0.007 0.048 0.032 0.005 0.007 0.051 0.030

PWFE 5 200 Bias 0.000 0.000 -0.001 -0.002 0.000 0.000 -0.002 -0.003
RMSE 0.007 0.010 0.088 0.069 0.007 0.010 0.095 0.067
Mbias -0.001 0.000 -0.005 0.002 -0.001 0.000 -0.008 0.001
Mabias 0.005 0.007 0.058 0.047 0.005 0.007 0.062 0.044

WFE 5 800 Bias 0.001 0.001 0.275 -0.223 0.001 0.001 0.271 -0.216
RMSE 0.004 0.006 0.282 0.228 0.004 0.006 0.278 0.221
Mbias 0.001 0.001 0.275 -0.220 0.001 0.000 0.268 -0.215
Mabias 0.002 0.004 0.275 0.220 0.002 0.004 0.268 0.215

TWFE 5 800 Bias 0.000 0.000 -0.002 -0.002 0.000 0.000 -0.001 -0.002
RMSE 0.004 0.006 0.044 0.027 0.004 0.005 0.043 0.027
Mbias 0.000 0.000 -0.003 -0.002 0.000 0.000 -0.002 -0.003
Mabias 0.002 0.004 0.031 0.018 0.002 0.004 0.030 0.018

PWFE 5 800 Bias 0.000 0.000 -0.003 -0.003 0.000 0.000 -0.002 -0.003
RMSE 0.004 0.006 0.057 0.039 0.004 0.005 0.056 0.039
Mbias 0.000 0.000 -0.007 0.001 0.000 0.000 -0.003 0.000
Mabias 0.002 0.004 0.037 0.026 0.002 0.004 0.038 0.025
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Table 2.3. Mean and standard deviation of the p-values of the parameters and the direct
(DE) and indirect (IE) spillover effects of variables x1 and x2

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.001 0.338 0.000 0.058 0.000 0.496 0.486 0.023 0.113
Std 0.009 0.295 0.000 0.152 0.005 0.285 0.291 0.092 0.213

TWFE 5 200 Mean 0.496 0.491 0.495 0.494 0.478 0.489 0.493 0.492 0.497
Std 0.288 0.293 0.289 0.295 0.288 0.279 0.292 0.290 0.295

PWFE 5 200 Mean 0.488 0.487 0.483 0.482 0.466 0.496 0.473 0.485 0.489 0.487 0.505 0.486
Std 0.302 0.291 0.288 0.286 0.291 0.289 0.301 0.284 0.279 0.294 0.295 0.291

WFE 5 800 Mean 0.000 0.167 0.000 0.000 0.000 0.501 0.496 0.000 0.000
Std 0.000 0.233 0.000 0.000 0.000 0.298 0.294 0.000 0.005

TWFE 5 800 Mean 0.504 0.502 0.502 0.499 0.492 0.505 0.495 0.488 0.490
Std 0.292 0.289 0.288 0.293 0.294 0.301 0.290 0.291 0.294

PWFE 5 800 Mean 0.499 0.503 0.482 0.498 0.480 0.492 0.479 0.487 0.503 0.491 0.497 0.493
Std 0.298 0.289 0.290 0.290 0.297 0.294 0.300 0.291 0.302 0.291 0.289 0.289

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.006 0.353 0.000 0.059 0.001 0.496 0.489 0.090 0.115
Std 0.027 0.296 0.000 0.152 0.007 0.280 0.290 0.205 0.209

TWFE 5 200 Mean 0.491 0.493 0.489 0.498 0.487 0.490 0.493 0.479 0.500
Std 0.286 0.293 0.288 0.294 0.293 0.279 0.292 0.286 0.296

PWFE 5 200 Mean 0.520 0.494 0.581 0.494 0.643 0.491 0.538 0.503 0.491 0.489 0.501 0.489
Std 0.284 0.292 0.264 0.284 0.238 0.285 0.281 0.280 0.279 0.293 0.290 0.288

WFE 5 800 Mean 0.000 0.184 0.000 0.000 0.000 0.496 0.498 0.000 0.001
Std 0.000 0.243 0.000 0.001 0.000 0.298 0.291 0.000 0.009

TWFE 5 800 Mean 0.510 0.502 0.497 0.497 0.489 0.503 0.495 0.483 0.486
Std 0.296 0.289 0.289 0.290 0.287 0.300 0.290 0.289 0.289

PWFE 5 800 Mean 0.528 0.504 0.566 0.502 0.644 0.500 0.526 0.490 0.502 0.492 0.491 0.500
Std 0.289 0.289 0.273 0.290 0.233 0.281 0.273 0.288 0.301 0.290 0.292 0.292

first, we observe the following patterns. First, the biases are small and acceptable.20

Generally, they are smaller for the coefficients of the variables than for the decay

parameters, and smaller for N = 800 than for N = 200. Similarly, increasing the

sample size leads to a decrease in the RMSE and the median absolute value of the

bias.

In line with the findings from Table 2.1, bias, RMSE, Mbias, and Mabias of the

direct and indirect effects are very low in Table 2.2. While the biases in the coeffi-

cients and decay parameters are already small in Table 2.1, the biases in the direct

and indirect spillover effects in Table 2.2 appear to be even smaller.21 Increasing the

sample size leads to a decrease of bias, RMSE, Mbias, and Mabias.

Table 2.3 shows that for PWFE average p-values and their standard deviation

closely fluctuate around 0.5 and 0.29, respectively. Only for the coefficient ρ differ-

ences are slightly higher when scalar normalization is used (for the negative expo-

20 One exception is the average bias in the decay parameter α2. However, this is driven by a few outliers
as can be seen when comparing with the median bias.
21 The explanation could be that biases in these effects are a nonlinear function of five parameters
(ρ, βk , φk , δ, αk , see Equations (2.17) and (2.18)). Consequently, a bias in one of these parameter may
be compensated by another opposite bias in one of the other parameters, as a result of which the bias in
the indirect spillover effect, the main focus of applied practitioners, remains small.
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nential matrix mean and standard deviation are 0.65 and 0.23, respectively, and for

the inverse distance matrix we have an average of 0.69 and a standard deviation of

0.21). However, this has no adverse effect on the p-values of the direct and indirect

spillover effects derived from ρ and other coefficients.

As expected, the performance of the model deteriorates when using the WFE

estimator which assumes the same spatial weight matrix with a decay parameter

of 1 for all spatial lags, while the true but unknown values are 2, 1.5 and 3. This

is pronounced in the higher values of bias, RMSE, Mbias, and Mabias in Table 2.1.

Especially, the estimates on φ1, φ2, and ρ are severely biased. When investigating

the effect estimates in Table 2.2, we see that the bias in the direct effect estimates is

small, not more that 0.0002 at the maximum, but the bias in the indirect spillover

effects is large. We find biases that exceed 0.5 (in absolute value). This is a cause for

concern and supports the approach advocated in this chapter whereby the decay

parameters of the spatial lags are estimated rather than set at one particular value

for all spatial lags in advance. These biases are also reflected in the p-values in

Table 2.3. Except for the direct effect estimates, the p-values of indirect effects and

the parameter estimates are far off the desired values.

In the exceptional case that researchers would know the true specification of all

spatial weight matrices, the model parameters can be estimated with greater accur-

acy than in the situation where the decay parameters also need to be estimated (see

Table 2.1). This is also evident when comparing the median absolute value of the

bias (Mabias) of the indirect spillover effects of TWFE and PWFE reported in Table

2.2. As expected, in Table 2.3 TWFE’s measures of the p-values are closer to the de-

sired levels. However, TWFE only reflects a hypothetical situation as practitioners

do not know the true values of the decay parameters. In general, the differences

in the results of TWFE and PWFE are rather small compared to the differences and

negative consequences of using wrong pre-specified weight matrices as with WFE.

We conduct similar experiments where we vary ρ, α2, or α1. An overview of the

different parameter configurations and the results can be found in Appendix 2.A.7.

We summarize the main findings here and focus on the estimates of the direct and

indirect effects in particular.

Changing the ρ parameter from rather strong (0.5 in Case I) to mild spatial de-

pendence (Case II, ρ = 0.25), or even to a negative value (Case III, ρ = −0.25), does
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not affect the pattern of results. By contrast, it does change when setting ρ = 0.01

(Case IV), which simulates the case where a spatial lag hardly matters and its de-

cay parameter is difficult to identify, in line with Assumption 2.3. This is confirmed

in the Monte Carlo simulation results: bias and RMSE of δ increase substantially

and to unacceptable levels. In case of the exponential distance matrix, the bias in

ρ remains more or less the same, while in case of the inverse distance matrix, both

the bias and the RMSE of this parameter increase more. Importantly, this appears

to have no effect on the bias and RMSE of the direct and indirect spillover effects.

This is reassuring news for practitioners mainly interested in direct and indirect

spillover effects estimates of the explanatory variables.

In the remaining experiments, we aim at investigating the parameter space of

distance decay parameter in greater detail. Recall, uniformly boundedness in As-

sumption 2.2 implies the following lower bounds: 0 for the exponential distance

decay matrix and 1 for the inverse distance matrix. Weak divergence in Assump-

tion 2.2 implies a lower bound of 0 for the inverse distance matrix. Thus we invest-

igate the consequences when the distance decay parameter is close to these lower

bounds, e.g. when α2 = 1 (Case V) and α2 = 0.5 (Case VI). For the exponential

distance decay matrix the bias decreases, especially if α2 = 1. At α2 = 0.5 the bias

reduction becomes smaller. On the other hand, the median bias always remains

close to zero. For the inverse distance matrix we see no improvement, but a deteri-

oration, although the median bias remains close to zero, especially for the larger

value of N = 800. This implies that the distance decay parameter of an exponen-

tial distance matrix can be estimated with greater accuracy than that of an inverse

distance matrix. This is because of the property that W($0) of the exponential de-

cay matrix is uniformly bounded in both row and column sums in absolute value

for $0 > 0, whereas this is not the case for the inverse distance matrix. Then this

property only holds if $0 > 1. This implies that values of $0 < 1 need to be handled

with care when employing inverse distance matrices.

Another pattern occurs when increasing the decay parameter to an extremely

high value, i.e., α1 = 10 (Case VII). Note this value resembles the case that wij($0)
r

$0→∞→ 0, as a result of which the spatial weight matrix boils down to a first-order bin-

ary contiguity matrix. Bias and RMSE of α1 increase substantially, while bias and

RMSE of the corresponding spatial lag parameter φ1 remain largely the same. The
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increased bias and RMSE in the decay parameter α1 appears to have no effect on

the bias and RMSE of the direct and indirect spillover effects. This finding implies

that a practitioner who finds a high value for one of the decay parameters, perhaps

one equal to the upper bound, can still value the direct and indirect spillover ef-

fects of the corresponding explanatory variable or might adopt a first-order binary

contiguity matrix equally well.

2.5 Empirical analysis

The empirical analysis in this section is based on Yesilyurt and Elhorst (YE) (2017),

who investigate military spending measured as a ratio of GDP, also known as the

defense burden, in 144 countries over the period 1993 to 2007. Explanatory vari-

ables are GDP, population, international war, civil war, and political regime. The

dependent variable and the first two explanatory variables are measured in logs,

while the latter three are measured as scores. The scores on the variables inter-

national war and civil war range from 0 (no war) to 10 (greatest). The variable

political regime ranges from -10 to +10, where -10 indicates strongly autocratic and

+10 strongly democratic countries.22

In their paper, YE compare several spatial econometric models and eight po-

tential spatial weight matrices. However, exponential distance decay and inverse

distance matrices have not been investigated. Using Bayesian comparison methods

developed by LeSage (2014, 2015), they find that the SAR model, e.g. the specifica-

tion that only includes a spatial lag in the dependent variable, in combination with

a spatial weight matrix that is specified as a first-order binary contiguity matrix

based on maritime borders produces the highest Bayesian posterior model probab-

ility. YE do not find any (or hardly any) significant indirect spillover effects, also

not when estimating the SDM instead of the SAR model. This finding is typical of

many empirical studies applying SDM: often none or only some of the spatial lags

in the explanatory variables and/or indirect spillover effects appear to be signific-

ant. One potential problem could be that these studies adopt one common spatial

weight matrix for all spatial lags in the model. In the Monte Carlo simulations,

it has been found that the direct effects are less sensitive for selecting the wrong

22 For more details on the data and the variables we refer the reader to Yesilyurt and Elhorst (2017).
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spatial weight matrix. By contrast, the indirect spillover effects, which tend to be

the main focus of empirical studies, appeared to be extremely sensitive to a wrong

choice of the spatial weight matrix.

Therefore we investigate whether using parameterized spatial weight matrices

based on distances alter the results. Specifically, we distinguish different matrices

for each spatial lag in the model. The results of several estimations are reported in

Table 2.4. First column reports the results from an SDM using the preferred binary

contiguity matrix from YE. The coefficient estimate of the spatial autoregressive

parameter ρ is 0.241 and significant at the 1% level. Three of the five explanat-

ory variables in the model appear to have coefficients and direct effects that are

significant at the 1% level and one at the 10% level. However, only one of their cor-

responding spatial lags and indirect spillover effects, the political regime, appears

to be significant at the 5% level. We also test whether there is empirical evidence in

favor of the SDM, e.g. we conduct a Wald test testing H0 : φ = 0. The test statistic

is 7.85 with a p-value of 0.16. Consequently, no empirical evidence in favor of the

SDM is found. The next four columns of Table 2.4 consider two generalizations of

YE.

First, we depart from the binary contiguity matrix and investigate row and

scalar normalized negative exponential and inverse distance matrices when estim-

ating one common decay parameter for all spatial lags in the model. This is the first

step a practitioner can undertake to determine the best performing spatial weight

matrix empirically. The estimated distance decay parameters amount to 2.022 and

2.305 for the row and scalar normalized exponential and to 2.113 and 0.766 for the

row and scalar normalized inverse distance matrices, and are all significant. How-

ever, when comparing the performance of the SDM for these matrices with that

of the binary contiguity matrix, measured in terms of the log-likelihood function

value, these parameterized spatial weight matrices mean no improvement. Just as

for the binary contiguity matrix, no empirical evidence in favor of SDM is found: at

most one spatial lag of the explanatory variables appears to have a coefficient and

one indirect spillover effect that is (weakly) significant; and also the Wald test does

not reject.

In the remainder of the analysis we relax the assumption that all spatial weight

matrices are the same for each spatial lag. We apply the proposed PWFE estimator
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that allows for different distance decay parameters for each spatial weight matrix.

Due to the fact that the row normalized exponential distance decay matrix pro-

duces the highest log-likelihood function value of the previous four options being

considered, the practitioner may use this specification to see whether the perform-

ance of the model can be improved by estimating the decay parameter for each

single spatial lag.23

Column 6 reports the estimation results of PWFE. The log-likelihood function

value is −1311.0, which is slightly better than the log-likelihood function value of

-1311.4 for the binary contiguity matrix, even though the estimated decay paramet-

ers for the spatial lags of internal war and political regime reach the upper bound.

For comparison, we run another regression, where we use the estimated spatial

weight matrices based on the estimated distance decay parameters from Column 6.

We label this estimator as EWFE and the results are reported in Column 7. When

the decay parameter equals the upper bound of 10, we found out that most of the

elements of the row normalized exponential distance decay matrix are rather small

(smaller than 0.005) and can be replaced by zeros. The results reported in Column

7 confirm that this has hardly any effect on the outcomes. Finally, Column 8 re-

ports the estimation results when the spatial lags for which an upper bound of

10 was found are replaced by the original binary contiguity matrix used by YE

(labeled EWFEBC). In this case the log-likelihood function value increases further

to -1309.23.

The coefficient estimates and the direct and indirect effects do not change when

the spatial weight matrices are pre-specified using the estimated values obtained

for the decay parameters or when the spatial weight matrices for the spatial lags

of internal war and political regime are specified as a binary contiguity matrix. By

contrast, the t-values of the spatial lags and of the indirect spillover effects tend

to go up slightly. This is because the decay parameters are no longer part of the

variance-covariance matrix that is used to determine their significance levels. It

reflects the common approach applied by practitioners who pre-specify the spatial

weight matrices.

23 The reason to limit this to one matrix is because of the necessity to consider different starting values,
which complicates the analysis. By comparing several experimental designs, we find out that the best
option to find the global optimum is to use both a low and a high starting value (0.5 and 3.5) for the
decay parameter of each spatial lag. Since we have K + 1 decay parameters (δ, α1, . . . , αK), this design is
accompanied with 2K+1 different sets of starting values, which is 64 for our empirical illustration.
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When comparing the direct effects of YE in Column 1 with those in Columns 6

to 8 we see, in line with the Monte Carlo simulation experiments, that they are not

sensitive for the choice of weight matrix. In contrast, when comparing the indirect

spillover effects, we see different results. For GDP we find a significant indirect

spillover effect in Columns 7 and 8 of about -1.4. The direct effect of this variable

indicates that if the level of GDP in a country increases, the defense burden in that

country also increases though less than proportionally. The spillover effect shows

that it also has a diminishing effect on the defense burden of its neighbours. The

indirect spillover effect of civil war is also (weakly) significant in Columns 7 and

8 and fluctuates around -0.100. This means that a country sharing a border with a

country involved in a civil war does not consider this as a potential threat. Finally,

the indirect spillover effect of the political regime is significant and takes values

that range from -0.012 to -0.035. A similar and significant effect of -0.030 was found

when adopting one common binary contiguity matrix. This outcome demonstrates

that the defense burden does not only increase with a higher level of autocracy in

the own country, but also with higher levels of autocracy in neighbouring countries.

In sum, three indirect spillover effects appear to be significant. This is in contrast

to the model of YE based on one common binary contiguity matrix, where only

one is significant. The magnitudes of the indirect spillover effects also differ, in

line with the Monte Carlo simulation results in Section 4. The same applies to the

coefficients obtained for the spatially lagged regressors, as a result of which the

hypothesis H0 : φ = 0 now also needs to be rejected. We find Wald test statistics

with p-values of 0.02.

The overall conclusion of this empirical illustration is that allowing for different

spatial ranges of the explanatory variables affects parameter estimates and indirect

spillover effects. Stronger and significant empirical evidence is found in favour of

SDM and indirect spillover effects.

2.6 Conclusion

The purpose of this chapter is to break the practice of employing one common

and pre-specified spatial weight matrix for all spatial lags by parameterizing each

spatial weight matrix with a distance decay parameter. We investigate two func-



36 Chapter 2

tional forms of distance decay, the negative exponential and the inverse distance

matrices, and two types of normalization, row normalization and normalization of

the weight matrix by its largest eigenvalue. The spatial Durbin model is taken as

point of departure due to its popularity in empirical research and because its indir-

ect spillover effects are more flexible compared to models that do not contain spatial

lags in the explanatory variables. It is found that the extension with distance decay

parameters helps to further increase this flexibility, because the distance at which

explanatory variables still have an effect on other units, i.e., the spatial range, will

no longer be the same but be different from one explanatory variable to another.

The difficulty of parameterizing spatial weight matrices is that the econometric

model is no longer linear in its parameters. Our literature overview shows that pre-

vious studies were not able to deal with this adequately. We extend the work of Lee

and Yu (2010a) and propose a maximum likelihood approach where the response

parameters of the model and the distance decay parameters are estimated jointly.

Our Monte Carlo simulation experiment shows that our estimation procedure

performs well in terms of bias (average, median, and median absolute value), root

mean square error, and p-values both of the parameters and the direct and indir-

ect spillover effects that can be derived using these parameters. The main finding

of our Monte Carlo simulation experiment and also of our empirical application

is that the performance of an estimator that erroneously assumes a common spa-

tial weight matrix for all spatial lags performs worse. This especially holds for the

indirect spillover effects, which are often the main focus of applied spatial econo-

metric research. This is a cause for concern since it reflects the most widely used

approach applied by practitioners. By contrast, it supports the approach advoc-

ated in this chapter whereby the decay parameters of the spatial lags are estimated

rather than set at one particular value for all spatial lags in advance.

In follow-up research we aim at extending the model and consider a spatial lag

in the error term and and different specification of the spatial errors.
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Table 2.4. Military expenditures according to the binary contiguity matrix (YE), one
common and different parameterized weight matrices

One common decay parameter Proposed model: ED rn
Determinants/W YE ED rn ED sn ID rn ID sn PWFE EWFE EWFEBC
ρ 0.241*** 0.257*** 0.555*** 0.231*** 0.454*** 0.252*** 0.251*** 0.247***

(8.69) (5.67) (8.41) (3.74) (5.03) (5.29) (7.93) (7.80)
GDP -0.530*** -0.514*** -0.506*** -0.534*** -0.553*** -0.487*** -0.487*** -0.486***

(-5.57) (-5.33) (-5.30) (-5.55) (-5.71) (-5.04) (-5.07) (-5.08)
Population 1.184*** 1.213*** 0.552 0.816** 0.875** 1.204*** 1.204*** 1.171***

(3.18) (2.93) (1.40) (2.07) (2.27) (2.86) (2.98) (2.90)
International War 0.073* 0.085** 0.079* 0.074* 0.068 0.084** 0.084** 0.076*

(1.72) (1.99) (1.83) (1.74) (1.59) (1.97) (1.99) (1.81)
Civil War 0.006 0.007 0.010 0.006 0.002 0.010 0.010 0.007

(0.37) (0.47) (0.65) (0.37) (0.14) (0.66) (0.67) (0.47)
Political Regime -0.016*** -0.018*** -0.017*** -0.017*** -0.018*** -0.018*** -0.018*** -0.018***

(-3.28) (-3.54) (-3.42) (-3.50) (-3.46) (-3.58) (-3.61) (-3.50)
W(α1)*GDP 0.085 -0.041 0.116 0.219 0.712*** -0.944 -0.944* -0.950*

(0.53) (-0.20) (0.53) (1.09) (2.67) (-0.76) (-1.77) (-1.78)
W(α2)*Population -0.517 -1.170 3.930* 0.544 -1.399 -1.466 -1.467* -1.389**

(-0.84) (-1.55) (1.75) (0.63) (-0.31) (-1.43) (-1.81) (-1.71)
W(α3)*International War -0.055 -0.110 -0.289 -0.080 -0.221 -0.066 -0.066 -0.032

(-0.70) (-1.13) (-1.15) (-0.93) (-0.43) (-1.17) (-1.46) (-0.40)
W(α4)*Civil War -0.029 -0.081* -0.097 -0.050 0.045 -0.078 -0.078** -0.091**

(-1.03) (-1.81) (-0.89) (-1.39) (0.47) (-1.27) (-2.06) (-2.42)
W(α5)*Political Regime -0.019** 0.000 -0.011 -0.016 -0.022 -0.005 -0.005 -0.023**

(-2.06) (0.02) (-0.36) (-1.37) (-0.63) (-0.58) (-0.76) (-2.44)
δ (Spatially lagged dependent variable) 2.022*** 2.305*** 2.113*** 0.766*** 2.003***

(3.94) (5.36) (4.44) (7.71) (3.56)
α1 0.410

(0.74)
α2 1,484

(1.07)
α3 10.00

(0.45)
α4 2,321

(1.12)
α5 10.00

(0.25)
DE GDP -0.527*** -0.522*** -0.510*** -0.529*** -0.547*** -0.505*** -0.504*** -0.509***

(-5.59) (-5.41) (-5.29) (-5.50) (-5.63) (-5.23) (-5.11) (-5.33)
DE Population 1.170*** 1.172*** 0.649* 0.852** 0.863** 1.160*** 1.180*** 1.124***

(3.11) (2.91) (1.69) (2.22) (2.30) (2.83) (2.92) (2.76)
DE Internationl War 0.071* 0.080* 0.073* 0.071* 0.066 0.080* 0.079* 0.077*

(1.64) (1.89) (1.72) (1.66) (1.54) (1.89) (1.85) (1.83)
DE Civil War 0.005 0.003 0.008 0.003 0.003 0.006 0.006 0.003

(0.34) (0.21) (0.50) (0.21) (0.17) (0.40) (0.39) (0.18)
DE Political Regime -0.018*** -0.018*** -0.018*** -0.018*** -0.018*** -0.019*** -0.018*** -0.019***

(-3.41) (-3.52) (-3.43) (-3.62) (-3.48) (-3.61) (-3.51) (-3.85)
IE GDP -0.053 -0.224 -0.119 0.120 0.729* -1.406 -1.414** -1.387**

(-0.26) (-0.86) (-0.72) (0.49) (1.59) (-0.85) (-1.96) (-2.00)
IE Population -0.305 -1.113 3.064* 0.916 -1.585 -1.510 -1.565 -1.446

(-0.40) (-1.21) (1.89) (0.86) (-0.23) (-1.14) (-1.61) (-1.40)
IE International War -0.046 -0.113 -0.177 -0.078 -0.300 -0.057 -0.060 -0.012

(-0.48) (-0.92) (-0.98) (-0.73) (-0.37) (-0.80) (-1.04) (-0.13)
IE Civil War -0.034 -0.103* -0.066 -0.061 0.073 -0.097 -0.096* -0.115**

(-0.95) (-1.72) (-0.83) (-1.31) (0.46) (-1.20) (-1.94) (-2.37)
IE Political Regime -0.030** -0.006 -0.015 -0.025* -0.047 -0.012 -0.012* -0.035***

(-2.57) (-0.35) (-0.66) (-1.56) (-0.80) (-1.10) (-1.64) (-2.68)
Observations 2160 2160 2160 2160 2160 2160 2160 2160
Log-likelihood function value -1311.39 -1313.66 -1316.37 -1319.19 -1333.49 -1311.02 -1311.02 -1309.23
R-squared 0.702 0.702 0.701 0.700 0.694 0.702 0.702 0.702
H0: φ = 0 (p-value) 7.85 (0.16) 8.39 (0.14) 6.81 (0.23) 6.57 (0.25) 8.85 (0.12) 13.21 (0.02) 13.21 (0.02) 16.52 (0.00)

Notes: YE=Yesilurt and Elhorst (2017), PWFE=Parameterized W matrices and fixed effects, EWFE=Estimated W matrices and fixed effects, EWFEBC=Estimated W or
binary contiguity (BC) matrices and fixed effects, ED=Exponential distance decay, ID=Inverse distance decay, rn=row normalized, sn=scalar normalized; *,**,***

significant at respectively 10%, 5% and 1%.
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2.A Appendix: Derivatives, information matrix, asymp-

totic normality and delta method

2.A.1 First-order derivatives of the spatial weight matrix

To generalize the mathematical expressions in the subsequent sections, i.e., to avoid

that they all need to be repeated for both types of spatial weight matrices and both

types of normalizations, we first introduce the symbol Z($) representing the first

order derivative of the row or scalar normalized spatial weight matrix with respect

to $, Z($) = ∂W($)
∂$ . W r represents the weight matrix in raw form before it is nor-

malized. Consequently, we have wr
ij($) = e−dij$ and wij($) = e−dij$

∑j e−dij$ for the ex-

ponential decay matrix before and after row normalization, respectively. Similarly,

we have wr
ij($) = dij

−$ and wij($) =
dij
−$

∑j dij
−$ for the inverse distance decay matrix

before and after row normalization, respectively.

Under row normalization, the elements of the matrix of first order derivatives

for the exponential and inverse distance matrix are

zij($) =
(∑j dije

−dij$)e−dij$ − (∑j e−dij$)dije
−dij$

(∑j e−dij$)2
, (2.A.1)

zij($) =
(∑j ln(dij)d

−$
ij )dij

−$ − (∑j dij
−$)ln(dij)dij

−$

(∑j dij
−$)2

, (2.A.2)

respectively.

If the matrices are scalar normalized by the largest eigenvalue, we respectively

have wij = e−dij$/κr
max($) and wij = dij

−$/κr
max($). In this case, the matrix Z($) of

first order derivatives is easier expressed in full form.

Since W r($) is real and symmetric, it has distinct eigenvalues κr
i and eigen-

vectors τr
i (i = 1, . . . , N) with properties τr′

i τr
i = 1 and ∂κi = τr′

i ∂W r($)τi (Mag-

nus, 1985, Equation 4). Using these properties for the largest eigenvalue and cor-

responding eigenvector of W r($), the matrix of first order derivatives for the expo-

nential and inverse distance decay matrices are

Z($) =
∂W r($)

∂$ κr
max($)− τr′($) ∂W r($)

∂$ τ($)W r($)

[κr
max($)]

2 , (2.A.3)
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Z($) =
∂W r($)

∂$ κr
max($)− τr′($) ∂W r($)

∂$ τr($)W r($)

[κr
max($)]

2 , (2.A.4)

respectively, where the typical element of ∂W r($)
∂$ = −dije

−$dij for the exponential

and ∂W r($)
∂$ = −ln(dij)d

−$
ij for the inverse distance decay matrix.

2.A.2 First-order derivatives of the parameters

Without loss of generality, the presentation with respect to the distance decay para-

meters is limited to δ, α1 and α2. This also implies that only two explanatory vari-

ables are considered (K = 2). For the same reason, time dummies are left aside. The

first-order derivatives are

∂lnLw(θ)

∂ζ
=

1
σ2

T

∑
t=1

X̃
∗′
t ṽt =

1
σ2

T

∑
t=1

X̃
∗′
t [ỹt − ρW(δ)ỹt − X̃

∗
t ζ], (2.A.5)

∂lnLw(θ)

∂ρ
= −Ttr(G) +

1
σ2

T

∑
t=1

[(GX̃
∗
t ζ)

′
ṽt + ṽ

′
tGṽt], (2.A.6)

∂lnLw(θ)

∂σ2 = −NT
2σ2 +

T

∑
t=1

ṽ
′
tṽt

2σ4 , (2.A.7)

∂lnLw(θ)

∂δ
= −ρTtr(∆(δ)) +

ρ

σ2

T

∑
t=1

[(∆(δ)X̃
∗
t ζ)

′
ṽt + ṽ

′
t∆(δ)ṽt], (2.A.8)

∂lnLw(θ)

∂α1
=

T

∑
t=1

ṽ
′
tZ(α1)x̃t1φ1

σ2 =
T

∑
t=1

(ỹt − ρW(δ)ỹt − X̃
∗
t ζ)

′
Z(α1)x̃t1φ1

σ2 ,

(2.A.9)

∂lnLw(θ)

∂α2
=

T

∑
t=1

ṽ
′
tZ(α2)x̃t2φ2

σ2 =
T

∑
t=1

(ỹt − ρW(δ)ỹt − X̃
∗
t ζ)

′
Z(α2)x̃t2φ2

σ2 ,

(2.A.10)

where ṽt = ỹt− ρW(δ)ỹt− X̃
∗
t ζ. To shorten notation, we further use G = W(δ)S−1(ρ, δ)

and ∆(δ) = Z(δ)S−1(ρ, δ).

2.A.3 Second-order derivatives of the parameters

In line with θ = (ζ
′
, ρ, σ2, α

′
)
′
, the Hessian matrix can be partitioned into a block-

matrix consisting of six rows and column groups with respect to ζ
′
, ρ, σ2, δ, α1,

and α2. Since the Hessian matrix is symmetric, we provide the expressions for the
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diagonal and upper-diagonal blocks of this matrix only.

The submatrices in the first row group of the Hessian matrix are

∂2lnLw(θ)

∂ζ∂ζ
′ = −

T

∑
t=1

X̃
∗′
t X̃
∗
t

σ2 , (2.A.11)

∂2lnLw(θ)

∂ζ∂ρ
= −

T

∑
t=1

X̃
∗′
t W(δ)ỹt

σ2 = −
T

∑
t=1

X̃
∗′
t GX̃

∗
t ζ + X̃

∗′
t Gṽt

σ2 , (2.A.12)

∂2lnLw(θ)

∂ζ∂σ2 = −
T

∑
t=1

X̃
∗′
t ṽt

σ4 , (2.A.13)

∂2lnLw(θ)

∂ζ∂δ
= −

T

∑
t=1

ρX̃
∗′
t Z(δ)ỹt

σ2 = −
T

∑
t=1

ρX̃
∗′
t ∆(δ)X̃

∗
t ζ + ρX̃

∗′
t ∆(δ)ṽt

σ2 ,

(2.A.14)

∂2lnLw(θ)

∂ζ∂α1
=

T

∑
t=1

(Z(α1)x̃t1)
′
ṽt − X̃

∗′
Z(α1)x̃t1φ1

σ2 , (2.A.15)

∂2lnLw(θ)

∂ζ∂α2
=

T

∑
t=1

(Z(α2)x̃t2)
′
ṽt − X̃

∗′
Z(α2)x̃t2φ2

σ2 , . (2.A.16)

The submatrices in the second row group are

∂2lnLw(θ)

∂ρ2 = −Ttr(G2)−
T

∑
t=1

(X̃
∗
t ζ + ṽt)

′
G
′
G(X̃

∗
t ζ + ṽt)

σ2 , (2.A.17)

∂2lnLw(θ)

∂ρ∂σ2 = −
T

∑
t=1

(W(δ)ỹt)
′
ṽt

σ4 = −
T

∑
t=1

(GX̃
∗
t ζ)

′
ṽt + ṽ

′
tGṽt

σ4 , (2.A.18)

∂2lnLw(θ)

∂ρ∂δ
= −Ttr(∆(δ))− ρTtr(G∆(δ))

+
T

∑
t=1

(∆(δ)X̃
∗
t ζ + ∆(δ)ṽt)

′
ṽt − ρ(GX̃

∗
t ζ + Gṽt)

′
(∆(δ)X̃

∗
t ζ + ∆(δ)ṽt)

σ2 ,

(2.A.19)

∂2lnLw(θ)

∂ρ∂α1
= −

T

∑
t=1

(W(δ)ỹt)
′
Z(α1)x̃t1φ1

σ2 = −
T

∑
t=1

(GX̃
∗
t ζ + Gṽt)

′
Z(α1)x̃t1φ1

σ2 ,

(2.A.20)

∂2lnLw(θ)

∂ρ∂α2
= −

T

∑
t=1

(W(δ)ỹt)
′
Z(α2)x̃t2φ2

σ2 = −
T

∑
t=1

(GX̃
∗
t ζ + Gṽt)

′
Z(α2)x̃t2φ2

σ2 .

(2.A.21)
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The submatrices in the third row group are

∂2lnLw(θ)

∂(σ2)2 =
NT
2σ4 −

T

∑
t=1

ṽ
′
tṽt

σ6 , (2.A.22)

∂2lnLw(θ)

∂σ2∂δ
=

∂2lnLw(θ)

∂δ∂σ2 = −
T

∑
t=1

ρ(Z(δ)ỹt)
′
ṽt

σ4 = −
T

∑
t=1

ρ(∆(δ)X̃
∗
t ζ + ∆(δ)ṽt)

′
ṽt

σ4 ,

(2.A.23)

∂2lnLw(θ)

∂σ2∂α1
=

∂2lnLw(θ)

∂α1∂σ2 = −
T

∑
t=1

ṽ
′
tZ(α1)x̃t1φ1

σ4 , (2.A.24)

∂2lnLw(θ)

∂σ2∂α2
=

∂2lnLw(θ)

∂α2∂σ2 = −
T

∑
t=1

ṽ
′
tZ(α2)x̃t2φ2

σ4 . (2.A.25)

The submatrices in the fourth row group are

∂2lnLw(θ)

∂δ2 = −ρTtr(G)− ρ2Ttr(∆(δ)∆(δ))

+
T

∑
t=1

ρ(GX̃
∗
t ζ + Gṽt)

′
ṽt − ρ2(∆(δ)X̃

∗
t ζ + ∆(δ)ṽt)

′
(∆(δ)X̃

∗
t ζ + ∆(δ)ṽt)

σ2 ,

(2.A.26)

∂2lnLw(θ)

∂δ∂α1
= −

T

∑
t=1

ρ(∆(δ)X̃
∗
t ζ + ∆(δ)ṽt)

′
Z(α1)x̃t1φ1

σ2 , (2.A.27)

∂2lnLw(θ)

∂δ∂α2
= −

T

∑
t=1

ρ(∆(δ)X̃
∗
t ζ + ∆(δ)ṽt)

′
Z(α1)x̃t2φ2

σ2 . (2.A.28)

The submatrices in the fifth row group are

∂2lnLw(θ)

∂α2
1

=
T

∑
t=1

ṽ
′
t

∂2W(α1)

∂α2
1

x̃t1φ1 − (Z(α1)x̃t1φ1)
′
Z(α1)x̃t1φ1

σ2 , (2.A.29)

∂2lnLw(θ)

∂α1∂α2
= − (Z(α2)x̃t2φ2)

′
Z(α1)x̃t1φ1

σ2 . (2.A.30)

Finally, the submatrix in the sixth row group is

∂2lnLw(θ)

∂α2
2

=
T

∑
t=1

ṽ
′
t

∂2W(α2)

∂α2
2

x̃t2φ2 − (Z(α2)x̃t2φ2)
′
Z(α2)x̃t2φ2

σ2 . (2.A.31)
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2.A.4 Information matrix

The submatrices in the first row group of the information matrix Σw
θT

are

−E

[
∂2lnLw(θ)

∂ζ∂ζ
′

]
=

1
σ2

T

∑
t=1

X̃
∗′
t X̃
∗
t , (2.A.32)

−E
[

∂2lnLw(θ)

∂ζ∂ρ

]
=

1
σ2

T

∑
t=1

X̃
∗′
t GX̃

∗
t ζ, (2.A.33)

−E
[

∂2lnLw(θ)

∂ζ∂σ2

]
= 0, (2.A.34)

−E
[

∂2lnLw(θ)

∂ζ∂δ

]
=

ρ

σ2

T

∑
t=1

X̃
∗′
t ∆(δ)X̃

∗
t ζ, (2.A.35)

−E
[

∂2lnLw(θ)

∂ζ∂α1

]
=

1
σ2

T

∑
t=1

X̃
∗′
t Z(α1)x̃t1φ1, (2.A.36)

−E
[

∂2lnLw(θ)

∂ζ∂α2

]
=

1
σ2

T

∑
t=1

X̃
∗′
t Z(α2)x̃t2φ2. (2.A.37)

The submatrices in the second row group of Σw
θT

are

−E
[

∂2Lw(θ)

∂ρ2

]
= Ttr[G(G + G

′
)] +

1
σ2

T

∑
t=1

(X̃
∗
t ζ)

′
G
′
GX̃

∗
t ζ, (2.A.38)

−E
[

∂2Lw(θ)

∂ρ∂σ2

]
=

T
σ2 tr(G), (2.A.39)

−E
[

∂2Lw(θ)

∂ρ∂δ

]
= ρTtr[∆(δ)(G + G

′
)] +

ρ

σ2

T

∑
t=1

(X̃
∗
t ζ)

′
G
′
∆X̃
∗
t ζ, (2.A.40)

−E
[

∂2Lw(θ)

∂ρ∂α1

]
=

1
σ2

T

∑
t=1

(X̃
∗
t ζ)

′
G
′
Z(α1)x̃t1φ1, (2.A.41)

−E
[

∂2Lw(θ)

∂ρ∂α2

]
=

1
σ2

T

∑
t=1

(X̃
∗
t ζ)

′
G
′
Z(α2)x̃t2φ2. (2.A.42)

The submatrices in the third row group of Σw
θT

are

−E
[

∂2Lw(θ)

∂(σ2)2

]
=

NT
2σ4 , (2.A.43)

−E
[

∂2Lw(θ)

∂σ2∂δ

]
=

ρT
σ2 tr(∆(δ)), (2.A.44)

−E
[

∂2Lw(θ)

∂σ2∂α1

]
= 0, (2.A.45)
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−E
[

∂2Lw(θ)

∂σ2∂α2

]
= 0. (2.A.46)

The submatrices in the fourth row group of Σw
θT

are

−E
[

∂2Lw(θ)

∂δ2

]
= ρ2Ttr[∆(δ)(∆(δ) + ∆(δ)

′
)] +

ρ2

σ2

T

∑
t=1

(X̃
∗
t ζ)

′
∆(δ)

′
∆(δ)X̃

∗
t ζ,

(2.A.47)

−E
[

∂2Lw(θ)

∂δ∂α1

]
=

ρ

σ2

T

∑
t=1

(X̃
∗
t ζ)

′
∆(δ)

′
Z(α1)x̃t1φ1, (2.A.48)

−E
[

∂2Lw(θ)

∂δ∂α2

]
=

ρ

σ2

T

∑
t=1

(X̃
∗
t ζ)

′
∆(δ)

′
Z(α2)x̃t2φ2. (2.A.49)

The submatrices in the fifth row group of Σw
θT

are

−E

[
∂2Lw(θ)

∂α2
1

]
=

1
σ2

T

∑
t=1

(Z(α1)x̃t1φ1)
′
Z(α1)x̃t1φ1, (2.A.50)

−E
[

∂2Lw(θ)

∂α1α2

]
=

1
σ2

T

∑
t=1

(Z(α2)x̃t2φ2)
′
Z(α1)x̃t1φ1. (2.A.51)

Finally, the submatrix in the sixth row group is

−E

[
∂2Lw(θ)

∂α2
2

]
=

1
σ2

T

∑
t=1

(Z(α2)x̃t2φ2)
′
Z(α2)x̃t2φ2. (2.A.52)

2.A.5 Asymptotic normality

Lee and Yu (2010a) show in Theorem 2(1) and Lemma A.4 that the asymptotic dis-

tribution of the ML estimator (see Section 2.3.4) is given by

√
NT(θ̂w − θ)

d−→ N (0, Υw
θT
), (2.A.53)

where Υw
θT

= lim T
T−1 (

1
NT Σw

θT
)−1( 1

NT Σw
θT

+ Ωw
θT
)( 1

NT Σw
θT
)−1, and Σw

θT
is specified in

Appendix 2.A.4. The matrix Ωw
θT

reads as

Ωw
θT

=
(T − 1)

T
µ4 − 3σ4

0

σ4
0
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=



02K×2K ∗ ∗ ∗ ∗

01×2K
1
N ∑N

i=1(G)2
ii ∗ ∗ ∗

01×2K
1

2σ2 N tr(G) 1
4σ4 ∗ ∗

01×2K
ρ
N ∑N

i=1(G)ii(∆(δ))ii
ρ

2σ2 N tr(∆(δ)) ρ2

N ∑N
i=1(∆(δ))

2
ii ∗

02×2K 02×1 02×1 02×1 02×2


, (2.A.54)

where µ4 is the fourth moment of the error term. If the error terms are assumed to

be normally distributed, the matrix Ωw
θT

cancels out since µ4 − 3σ4
0 = 0 under this

circumstance. This yields Υw
θT

= lim T
T−1 (

1
NT Σw

θT
)−1.

2.A.6 Direct and indirect spillover effects: the delta method

To draw statistical inferences on the direct and indirect spillover effects, expressions

for standard errors are needed. Two methods can be used: bootrapping or the delta

method. To save computation time, we use the delta method which is an extension

of the method described in Arbia et al. (2020). We depart from
√

NT(θ̂w − θ)
d−→

N (0, Υw
θT
), derived in Appendix A.5, but instead of θ and Υw

θT
, we consider ϕ =

(β
′
, φ
′
, ρ, α

′
)
′

and Υw
ϕT

, i.e., after rows and columns for the time dummies and σ2

have been removed since they are not needed to determine the direct and indirect

spillover effects. Applying propositions 1 and 2 and remark 2 in Arbia et al. (2020),

we get

√
N[DEk(ϕ̂

w)− DEk(ϕ)]
d→ N[0, ADE

k (ϕ)(Υw
ϕT
)−1 ADE

k (ϕ)
′
], (2.A.55)

√
N[IEk(ϕ̂

w)− IEk(ϕ)]
d→ N[0, AIE

k (ϕ)(Υw
ϕT
)−1 AIE

k (ϕ)
′
], (2.A.56)

where ADE
k (ϕ) = ∂DEk(ϕ)

∂ϕ
′ and AIE

k (ϕ) = ∂IEk(ϕ)

∂ϕ
′ . These first order derivatives for

the direct effects take the form

∂DEk(ϕ)

∂βk
=

1
N

tr(S−1(ρ, δ)), (2.A.57)

∂DEk(ϕ)

∂φk
=

1
N

tr{S−1(ρ, δ)W(αk)}, (2.A.58)

∂DEk(ϕ)

∂ρ
=

1
N

tr{S−1(ρ, δ)W(δ)S−1(ρ, δ)Π}, (2.A.59)

∂DEk(ϕ)

∂δ
=

1
N

tr{ρS−1(ρ, δ)Z(δ)S−1(ρ, δ)Π}, (2.A.60)

∂DEk(ϕ)

∂αk
=

1
N

tr{S−1(ρ, δ)Z(αk)φk}, (2.A.61)
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and for the indirect effects take the form

∂IEk(ϕ)

∂βk
=

1
N

ι
′
NS−1(ρ, δ)ιN −

1
N

tr(S−1(ρ, δ)), (2.A.62)

∂IEk(ϕ)

∂γk
=

1
N

ι
′
N{S−1(ρ, δ)W(αk)}ιN −

1
N

tr{S−1(ρ, δ)W(αk)}, (2.A.63)

∂IEk(ϕ)

∂ρ
=

1
N

ι
′
N{S−1(ρ, δ)W(δ)S−1(ρ, δ)Π}ιN −

1
N

tr{S−1W(δ)S−1Π},

(2.A.64)

∂IEk(ϕ)

∂δ
=

1
N

ι
′
N{ρS−1(ρ, δ)Z(δ)S−1(ρ, δ)Π}ιN −

1
N

tr{ρS−1(ρ, δ)Z(δ)S−1(ρ, δ)Π},

(2.A.65)

∂IEk(ϕ)

∂αk
=

1
N

ι
′
N{S−1(ρ, δ)Z(αk)φk}ι

′
N −

1
N

tr{S−1(ρ, δ)Z(αk)φk}, (2.A.66)

where Π = IN · βk +W(αk) · φk. Contrary to Arbia et al. (2020), our effect estimates

contain the terms Z(αk), which represent the first order derivative of the spatial

weight matrices with respect to αk. The mathematical expressions of this derivative

for the inverse distance and exponential decay matrix and for both normalizations

can be found in Appendix 2.A.1.

2.A.7 Matlab routines and additional simulation results

Appendix 2.A.7 contains a description of the developed estimation routine and ad-

ditional simulation results.

PWFE: A routine for practitioners

To be able to estimate the parameters of the model set out in this paper, we de-

veloped a Matlab routine entitled PWFE with the following options:

1. Type of spatial weight matrix: exponential distance decay matrix (Edist) or

inverse distance matrix (Idist).

2. Type of normalization of the spatial weight matrix: row normalization (rsn)

or scalar normalization by the largest eigenvalue (men).

3. Type of model: different distance decay parameters for each spatial lag (multi),

one common distance decay parameter for all spatial lags (same), and one
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common distance decay parameter for all spatial lags in the explanatory vari-

ables, but not the dependent variable (one).

4. Method to determine significance levels of the direct and indirect spillover

effects: the recommended delta method (del) or the bootstrap method based

on LeSage and Pace (2009) (bt).

5. gamma0, lb and ub are respectively the starting values, the lower bounds

and the upper bounds on ρ and the distance decay parameters when using

row normalization, and on the distance decay parameters when using scalar

normalization by the largest eigenvalue.

Additional simulation results

Case I represents the basic run: β1 = −1, β2 = 0.2, φ1 = 1.5, φ2 = −0.3, ρ =

0.5, σ2 = 1, δ = 2, α1 = 1.5, α2 = 3. The main text contains the results for the ex-

ponential distance decay matrix. The section also reports the results for the inverse

distance matrix. In general, the results are similar to the results of the exponential

distance decay matrix.
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Table A.2. Direct (DE) and indirect (IE) spillover effects of variables x1 and x2 for Case I
using the parameter estimates in Table A.1

Settings Inverse distance: row normalized Inverse distance: scalar normalized
T N DE x1 DE x2 IE x1 IE x2 DE x1 DE x2 IE x1 IE x2

WFE 5 200 Bias 0.0003 0.0017 0.1813 -0.2062 0.0001 -0.0001 0.0911 -0.2898
RMSE 0.0074 0.0102 0.4750 0.2716 0.0073 0.0099 0.4091 0.3377
Mbias -0.0001 0.0018 0.1251 -0.2176 -0.0002 -0.0001 0.0463 -0.3015
Mabias 0.0050 0.0066 0.2714 0.2214 0.0050 0.0066 0.2583 0.3017

TWFE 5 200 Bias -0.0004 0.0003 -0.0153 0.0028 -0.0004 0.0002 -0.0168 0.0023
RMSE 0.0071 0.0099 0.2134 0.0668 0.0071 0.0099 0.2094 0.0649
Mbias -0.0007 0.0003 -0.0281 0.0032 -0.0008 0.0001 -0.0310 0.0024
Mabias 0.0049 0.0066 0.1434 0.0442 0.0049 0.0065 0.1387 0.0442

PWFE 5 200 Bias -0.0003 0.0004 0.0122 -0.0033 -0.0002 0.0004 0.0229 -0.0037
RMSE 0.0073 0.0099 0.4117 0.1402 0.0073 0.0099 0.3950 0.1295
Mbias -0.0005 0.0003 -0.0061 0.0117 -0.0004 0.0003 -0.0020 0.0050
Mabias 0.0051 0.0065 0.2695 0.0957 0.0051 0.0064 0.2606 0.0925

WFE 5 800 Bias -0.0005 0.0008 -0.0591 -0.5646 -0.0005 0.0006 -0.0455 -0.5470
RMSE 0.0037 0.0053 0.2479 0.5820 0.0037 0.0053 0.2393 0.5649
Mbias -0.0005 0.0005 -0.0712 -0.5649 -0.0005 0.0003 -0.0555 -0.5480
Mabias 0.0024 0.0035 0.1786 0.5649 0.0024 0.0035 0.1671 0.5480

TWFE 5 800 Bias 0.0000 0.0000 -0.0126 -0.0024 0.0000 0.0000 -0.0124 -0.0025
RMSE 0.0036 0.0052 0.1615 0.0392 0.0036 0.0052 0.1617 0.0389
Mbias 0.0000 -0.0003 -0.0169 -0.0010 0.0000 -0.0002 -0.0175 -0.0027
Mabias 0.0024 0.0035 0.1077 0.0271 0.0024 0.0035 0.1111 0.0274

PWFE 5 800 Bias 0.0000 0.0000 -0.0217 -0.0060 0.0000 0.0000 -0.0208 -0.0073
RMSE 0.0036 0.0053 0.2365 0.0873 0.0036 0.0052 0.2314 0.0867
Mbias 0.0000 -0.0002 -0.0275 -0.0025 0.0000 -0.0002 -0.0225 -0.0037
Mabias 0.0024 0.0036 0.1624 0.0580 0.0024 0.0035 0.1559 0.0586

Table A.3. Case I: Mean and standard deviation of the p-values of the parameters (Table
A.1) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.2)

Settings Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.2133 0.4387 0.0308 0.1919 0.0708 0.4917 0.4908 0.2685 0.2430
Std 0.2483 0.3019 0.1153 0.2767 0.1740 0.2866 0.2877 0.2968 0.2947

TWFE 5 200 Mean 0.4918 0.4938 0.4845 0.4896 0.4800 0.4961 0.4935 0.4945 0.5010
Std 0.2814 0.2925 0.2906 0.2920 0.2938 0.2807 0.2926 0.2939 0.2929

PWFE 5 200 Mean 0.4905 0.4887 0.4620 0.4494 0.4348 0.4785 0.4382 0.4759 0.4961 0.4941 0.4593 0.4428
Std 0.2960 0.2916 0.2970 0.3022 0.3109 0.2839 0.2984 0.2915 0.2897 0.2942 0.3092 0.3056

WFE 5 800 Mean 0.2788 0.3707 0.0208 0.0005 0.0031 0.5069 0.5073 0.2514 0.0015
Std 0.2867 0.2987 0.0903 0.0079 0.0218 0.2997 0.2910 0.2975 0.0170

TWFE 5 800 Mean 0.5092 0.5015 0.4953 0.4996 0.4881 0.5045 0.4990 0.4951 0.4932
Std 0.2979 0.2903 0.2917 0.2909 0.2877 0.3001 0.2902 0.2943 0.2853

PWFE 5 800 Mean 0.4996 0.5008 0.4686 0.4834 0.4518 0.4792 0.4587 0.4848 0.5026 0.4983 0.4731 0.4837
Std 0.2953 0.2893 0.2978 0.2924 0.3016 0.2873 0.3025 0.2911 0.3009 0.2900 0.3018 0.2973

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.2308 0.4224 0.0796 0.1372 0.0548 0.4909 0.4961 0.2698 0.1579
Std 0.2560 0.3013 0.1868 0.2382 0.1476 0.2848 0.2876 0.2983 0.2520

TWFE 5 200 Mean 0.4920 0.4955 0.4836 0.4917 0.4819 0.4948 0.4936 0.4814 0.4996
Std 0.2817 0.2927 0.2893 0.2914 0.2963 0.2806 0.2911 0.2926 0.2936

PWFE 5 200 Mean 0.4990 0.4928 0.5032 0.5060 0.6553 0.5232 0.4724 0.5393 0.4996 0.4923 0.4858 0.4813
Std 0.2853 0.2906 0.2879 0.2904 0.2248 0.2745 0.2907 0.2637 0.2903 0.2900 0.3020 0.2984

WFE 5 800 Mean 0.3138 0.3923 0.0431 0.0011 0.0039 0.5052 0.5059 0.2546 0.0022
Std 0.2888 0.2999 0.1344 0.0165 0.0296 0.2998 0.2895 0.2955 0.0250

TWFE 5 800 Mean 0.5093 0.5011 0.4871 0.5006 0.4859 0.5042 0.4990 0.4848 0.4909
Std 0.2980 0.2908 0.2920 0.2911 0.2916 0.3000 0.2900 0.2991 0.2832

PWFE 5 800 Mean 0.5065 0.5024 0.5430 0.4966 0.6897 0.5617 0.5189 0.4989 0.5025 0.4988 0.4823 0.4859
Std 0.2946 0.2901 0.2785 0.2893 0.2065 0.2694 0.2880 0.2835 0.3007 0.2896 0.3029 0.2893

We also run several simulations to investigate the parameter spaces of the spa-

tial autocorrelation parameter and the distance decay parameters in greater detail.
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Specifically, we modify ρ, δ, α1, and α2. This yields 6 additional parameter config-

urations, which are summarized in Table A.4. Changes with respect to Case I are

Case II: ρ = 0.25, Case III: ρ = −0.25, Case IV: ρ = −0.01, Case V: α2 = 1, Case VI:

α2 = 0.5, and Case VII: α1 = 10.

Table A.4. Summary of cases

ρ δ α1 α2

Case I 0.5 2 1.5 3
Case II 0.25 2 1.5 3
Case III -0.25 2 1.5 3
Case IV 0.01 2 1.5 3
Case V 0.5 2 1.5 1
Case VI 0.5 2 1.5 0.5
Case VII 0.5 2 10 3
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Table A.14. Case II: Mean and standard deviation of the p-values of the parameters (Table
A.5) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.11, upper panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.2838 0.0000 0.0508 0.0000 0.5071 0.5026 0.0834 0.1383
Std 0.0002 0.2849 0.0000 0.1438 0.0000 0.2854 0.2899 0.1988 0.2260

TWFE 5 200 Mean 0.4960 0.4909 0.4951 0.4945 0.4780 0.4920 0.4944 0.4901 0.4952
Std 0.2881 0.2929 0.2919 0.2950 0.2861 0.2806 0.2935 0.2874 0.2940

PWFE 5 200 Mean 0.4805 0.4868 0.4866 0.4837 0.4644 0.5106 0.4746 0.4869 0.4920 0.4917 0.5022 0.4855
Std 0.3035 0.2909 0.2825 0.2864 0.2965 0.2864 0.2998 0.2830 0.2807 0.2926 0.2925 0.2895

WFE 5 800 Mean 0.0000 0.1271 0.0000 0.0000 0.0000 0.5124 0.5062 0.0022 0.0009
Std 0.0000 0.2023 0.0000 0.0001 0.0000 0.2939 0.2943 0.0339 0.0124

TWFE 5 800 Mean 0.5009 0.5017 0.5007 0.4983 0.4912 0.5069 0.4991 0.4889 0.4925
Std 0.2887 0.2883 0.2881 0.2924 0.2940 0.3000 0.2907 0.2914 0.2920

PWFE 5 800 Mean 0.4949 0.5028 0.4857 0.4983 0.4807 0.5016 0.4794 0.4870 0.5054 0.4982 0.4994 0.4952
Std 0.2971 0.2890 0.2900 0.2902 0.2966 0.2918 0.2981 0.2906 0.3003 0.2909 0.2917 0.2896

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0003 0.2902 0.0000 0.0353 0.0000 0.5058 0.5000 0.1564 0.1088
Std 0.0026 0.2880 0.0000 0.1144 0.0000 0.2790 0.2901 0.2450 0.2055

TWFE 5 200 Mean 0.4918 0.4925 0.4863 0.4983 0.4897 0.4924 0.4937 0.4806 0.5003
Std 0.2874 0.2937 0.2867 0.2948 0.2913 0.2808 0.2926 0.2867 0.2969

PWFE 5 200 Mean 0.5304 0.4933 0.5668 0.4931 0.6880 0.5123 0.5431 0.5018 0.4925 0.4922 0.5009 0.4887
Std 0.2820 0.2906 0.2687 0.2851 0.2126 0.2848 0.2870 0.2804 0.2804 0.2910 0.2863 0.2884

WFE 5 800 Mean 0.0000 0.1307 0.0000 0.0000 0.0000 0.5063 0.5097 0.0010 0.0017
Std 0.0000 0.2051 0.0000 0.0004 0.0000 0.2940 0.2887 0.0149 0.0215

TWFE 5 800 Mean 0.5076 0.5015 0.4949 0.4959 0.4894 0.5065 0.4993 0.4851 0.4890
Std 0.2947 0.2881 0.2898 0.2896 0.2887 0.2996 0.2905 0.2901 0.2884

PWFE 5 800 Mean 0.5451 0.5055 0.5615 0.5018 0.6856 0.5241 0.5372 0.4900 0.5050 0.4987 0.4945 0.5010
Std 0.2839 0.2883 0.2792 0.2903 0.2134 0.2753 0.2702 0.2879 0.2999 0.2906 0.2944 0.2923

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0969 0.4300 0.0125 0.1316 0.0022 0.5006 0.5018 0.2903 0.2185
Std 0.1831 0.3025 0.0673 0.2356 0.0132 0.2786 0.2887 0.3146 0.2902

TWFE 5 200 Mean 0.4912 0.4930 0.4874 0.4900 0.4853 0.4951 0.4937 0.5074 0.4976
Std 0.2811 0.2925 0.2911 0.2927 0.2955 0.2806 0.2921 0.2900 0.2948

PWFE 5 200 Mean 0.4487 0.4856 0.4323 0.4511 0.4100 0.4739 0.3696 0.4727 0.4976 0.4957 0.4627 0.4398
Std 0.3062 0.2925 0.3039 0.3055 0.3378 0.3062 0.3161 0.2954 0.2873 0.2917 0.2996 0.3114

WFE 5 800 Mean 0.0975 0.3784 0.0003 0.0007 0.0000 0.5130 0.5074 0.2054 0.0058
Std 0.1717 0.2996 0.0054 0.0111 0.0000 0.2961 0.2882 0.2789 0.0521

TWFE 5 800 Mean 0.5103 0.5016 0.4980 0.4992 0.4939 0.5063 0.5011 0.5014 0.4938
Std 0.2981 0.2900 0.2931 0.2904 0.2888 0.2995 0.2909 0.2930 0.2843

PWFE 5 800 Mean 0.4817 0.4951 0.4514 0.4808 0.4421 0.4993 0.4399 0.4788 0.5047 0.5007 0.4724 0.4791
Std 0.2957 0.2931 0.3070 0.2945 0.3138 0.2829 0.3133 0.2930 0.3000 0.2912 0.2977 0.2988

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.1202 0.4106 0.0478 0.0866 0.0031 0.5000 0.4996 0.2646 0.1238
Std 0.2045 0.3001 0.1464 0.1933 0.0181 0.2804 0.2888 0.2989 0.2277

TWFE 5 200 Mean 0.4909 0.4945 0.4846 0.4928 0.4884 0.4940 0.4941 0.4848 0.4976
Std 0.2807 0.2923 0.2892 0.2921 0.2981 0.2809 0.2915 0.2915 0.2952

PWFE 5 200 Mean 0.5037 0.4931 0.4984 0.5014 0.6917 0.5846 0.4611 0.5351 0.4971 0.4953 0.4844 0.4801
Std 0.2886 0.2908 0.2881 0.2924 0.2220 0.2477 0.2918 0.2664 0.2871 0.2903 0.3015 0.2985

WFE 5 800 Mean 0.1363 0.4035 0.0016 0.0013 0.0000 0.5117 0.5065 0.2216 0.0053
Std 0.2078 0.3001 0.0185 0.0200 0.0000 0.2966 0.2888 0.2951 0.0459

TWFE 5 800 Mean 0.5101 0.5010 0.4890 0.4999 0.4921 0.5062 0.5010 0.4881 0.4925
Std 0.2977 0.2904 0.2921 0.2901 0.2938 0.2996 0.2908 0.2972 0.2835

PWFE 5 800 Mean 0.5078 0.5026 0.5325 0.4955 0.7349 0.6102 0.5183 0.4983 0.5045 0.5007 0.4831 0.4856
Std 0.2927 0.2895 0.2800 0.2886 0.1862 0.2485 0.2860 0.2838 0.2998 0.2910 0.3005 0.2885
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Table A.15. Case III: Mean and standard deviation of the p-values of the parameters (Table
A.6) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.12, lower panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(-0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.2803 0.0000 0.0580 0.0000 0.4947 0.4973 0.0131 0.2076
Std 0.0000 0.2801 0.0000 0.1549 0.0000 0.2980 0.2832 0.0593 0.2657

TWFE 5 200 Mean 0.4962 0.4911 0.4937 0.4941 0.4855 0.4966 0.4955 0.4934 0.4947
Std 0.2869 0.2935 0.2910 0.2944 0.2925 0.2852 0.2924 0.2888 0.2952

PWFE 5 200 Mean 0.4832 0.4858 0.4951 0.4863 0.4582 0.4930 0.4856 0.4902 0.4976 0.4939 0.5016 0.4871
Std 0.3060 0.2919 0.2882 0.2874 0.2937 0.2945 0.2907 0.2844 0.2856 0.2905 0.2878 0.2889

WFE 5 800 Mean 0.0000 0.2101 0.0000 0.0000 0.0000 0.4386 0.5309 0.0000 0.0008
Std 0.0000 0.2534 0.0000 0.0001 0.0000 0.2953 0.2864 0.0000 0.0094

TWFE 5 800 Mean 0.4980 0.5018 0.5002 0.4976 0.4886 0.5084 0.5056 0.4936 0.5007
Std 0.2879 0.2880 0.2899 0.2922 0.2936 0.2976 0.2926 0.2893 0.2935

PWFE 5 800 Mean 0.4909 0.5040 0.4904 0.4982 0.4806 0.4961 0.4826 0.4861 0.5070 0.5042 0.4934 0.4963
Std 0.2938 0.2895 0.2910 0.2901 0.2943 0.2882 0.2967 0.2886 0.2973 0.2925 0.2893 0.2879

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(-0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0001 0.3240 0.0000 0.0431 0.0000 0.5155 0.4979 0.0097 0.1595
Std 0.0005 0.2871 0.0000 0.1306 0.0000 0.2860 0.2845 0.0497 0.2372

TWFE 5 200 Mean 0.4929 0.4927 0.4835 0.4987 0.4948 0.4959 0.4955 0.4818 0.4981
Std 0.2879 0.2942 0.2852 0.2955 0.2917 0.2842 0.2925 0.2869 0.2942

PWFE 5 200 Mean 0.5568 0.4988 0.5477 0.4942 0.7449 0.5834 0.5631 0.5055 0.4954 0.4934 0.5036 0.4933
Std 0.2775 0.2921 0.2760 0.2827 0.1762 0.2623 0.2810 0.2795 0.2842 0.2893 0.2838 0.2856

WFE 5 800 Mean 0.0000 0.2202 0.0000 0.0000 0.0000 0.4313 0.5229 0.0000 0.0012
Std 0.0000 0.2586 0.0000 0.0001 0.0000 0.2954 0.2853 0.0000 0.0148

TWFE 5 800 Mean 0.5038 0.5017 0.4942 0.4946 0.4898 0.5085 0.5054 0.4875 0.4971
Std 0.2938 0.2883 0.2913 0.2889 0.2904 0.2972 0.2924 0.2878 0.2907

PWFE 5 800 Mean 0.5787 0.5083 0.5386 0.5017 0.7505 0.5843 0.5529 0.4900 0.5072 0.5047 0.4923 0.5014
Std 0.2741 0.2882 0.2852 0.2906 0.1781 0.2546 0.2693 0.2888 0.2973 0.2928 0.2947 0.2895

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(-0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.2354 0.5114 0.0000 0.3808 0.0000 0.5073 0.5152 0.0003 0.4129
Std 0.2482 0.2903 0.0000 0.2983 0.0000 0.2899 0.2886 0.0038 0.2959

TWFE 5 200 Mean 0.4920 0.4922 0.4907 0.4902 0.4880 0.4957 0.4948 0.4955 0.4953
Std 0.2839 0.2925 0.2911 0.2940 0.2961 0.2837 0.2925 0.2885 0.2981

PWFE 5 200 Mean 0.4726 0.4863 0.4547 0.4589 0.4080 0.4282 0.4195 0.4714 0.4965 0.4989 0.4564 0.4514
Std 0.3058 0.2903 0.2979 0.3047 0.3075 0.3254 0.3065 0.2963 0.2858 0.2912 0.3149 0.3101

WFE 5 800 Mean 0.3968 0.5207 0.0000 0.0267 0.0000 0.4623 0.5171 0.0000 0.0636
Std 0.2923 0.2890 0.0000 0.0983 0.0001 0.2946 0.2860 0.0000 0.1542

TWFE 5 800 Mean 0.5117 0.5016 0.4982 0.4984 0.5000 0.5077 0.5040 0.4981 0.4977
Std 0.2980 0.2896 0.2915 0.2893 0.2917 0.2983 0.2920 0.2909 0.2846

PWFE 5 800 Mean 0.4765 0.4965 0.4611 0.4821 0.4197 0.4572 0.4421 0.4796 0.5059 0.5028 0.4741 0.4842
Std 0.2954 0.2886 0.3001 0.2909 0.3120 0.3089 0.3111 0.2883 0.2983 0.2923 0.3044 0.2978

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(-0.25) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.2183 0.5113 0.0000 0.2956 0.0001 0.4974 0.5121 0.0011 0.3463
Std 0.2421 0.2861 0.0000 0.3013 0.0000 0.2976 0.2880 0.0076 0.3074

TWFE 5 200 Mean 0.4908 0.4936 0.4877 0.4935 0.4948 0.4952 0.4951 0.4882 0.4942
Std 0.2826 0.2922 0.2906 0.2932 0.2981 0.2832 0.2923 0.2902 0.2933

PWFE 5 200 Mean 0.5329 0.4967 0.5108 0.5031 0.7507 0.6634 0.5091 0.5342 0.4962 0.4975 0.4902 0.4832
Std 0.2830 0.2905 0.2901 0.2931 0.1830 0.2326 0.2881 0.2708 0.2845 0.2904 0.3028 0.2999

WFE 5 800 Mean 0.3977 0.5165 0.0000 0.0210 0.0000 0.4731 0.5194 0.0000 0.0410
Std 0.2930 0.2910 0.0000 0.0884 0.0000 0.2942 0.2884 0.0000 0.1267

TWFE 5 800 Mean 0.5114 0.5009 0.4891 0.4991 0.4952 0.5079 0.5039 0.4897 0.4973
Std 0.2980 0.2896 0.2897 0.2893 0.2910 0.2983 0.2921 0.2936 0.2852

PWFE 5 800 Mean 0.5159 0.5036 0.5178 0.4957 0.7922 0.6830 0.5245 0.4993 0.5060 0.5031 0.4816 0.4882
Std 0.2893 0.2889 0.2901 0.2877 0.1552 0.2093 0.2878 0.2834 0.2982 0.2926 0.3013 0.2890
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Table A.16. Case IV: Mean and standard deviation of the p-values of the parameters (Table
A.7) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.14, upper panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.01) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.2272 0.0000 0.0503 0.0000 0.5113 0.5045 0.1522 0.1736
Std 0.0000 0.2680 0.0000 0.1456 0.0000 0.2886 0.2878 0.2498 0.2471

TWFE 5 200 Mean 0.4964 0.4910 0.4944 0.4944 0.4809 0.4948 0.4947 0.4901 0.4947
Std 0.2880 0.2932 0.2919 0.2949 0.2882 0.2835 0.2924 0.2862 0.2944

PWFE 5 200 Mean 0.4308 0.4824 0.4433 0.4862 0.4053 0.5976 0.4258 0.4864 0.4948 0.4927 0.5282 0.4876
Std 0.3027 0.2922 0.2898 0.2864 0.2557 0.3575 0.2990 0.2810 0.2837 0.2906 0.2786 0.2915

WFE 5 800 Mean 0.0000 0.0343 0.0000 0.0000 0.0000 0.5113 0.5067 0.0195 0.0002
Std 0.0000 0.0914 0.0000 0.0000 0.0000 0.2820 0.2806 0.0890 0.0023

TWFE 5 800 Mean 0.4955 0.5053 0.4963 0.4929 0.4964 0.4991 0.5010 0.4963 0.4945
Std 0.2927 0.2820 0.2902 0.2934 0.2891 0.2863 0.2804 0.2910 0.2949

PWFE 5 800 Mean 0.4684 0.5027 0.4692 0.4970 0.4809 0.7440 0.4521 0.5005 0.4975 0.5010 0.5040 0.5056
Std 0.2947 0.2859 0.2888 0.2817 0.2875 0.2948 0.2966 0.2922 0.2868 0.2802 0.2852 0.2859

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.01) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.2206 0.0000 0.0244 0.0000 0.5138 0.4970 0.2378 0.1108
Std 0.0001 0.2652 0.0000 0.0917 0.0000 0.2797 0.2883 0.2966 0.2073

TWFE 5 200 Mean 0.4924 0.4926 0.4847 0.4987 0.4917 0.4946 0.4943 0.4816 0.4994
Std 0.2880 0.2940 0.2860 0.2955 0.2906 0.2832 0.2921 0.2876 0.2958

PWFE 5 200 Mean 0.5529 0.4948 0.6175 0.4913 0.6534 0.7695 0.7071 0.5051 0.4941 0.4939 0.5579 0.4898
Std 0.2706 0.2884 0.2545 0.2822 0.2126 0.2461 0.2146 0.2761 0.2831 0.2896 0.2652 0.2860

WFE 5 800 Mean 0.0000 0.0558 0.0000 0.0000 0.0000 0.5094 0.5090 0.0200 0.0007
Std 0.0000 0.1238 0.0000 0.0000 0.0000 0.2823 0.2787 0.0947 0.0072

TWFE 5 800 Mean 0.4992 0.5044 0.4899 0.4964 0.4994 0.4990 0.5011 0.4876 0.4981
Std 0.2956 0.2819 0.2842 0.2953 0.2952 0.2862 0.2804 0.2805 0.2963

PWFE 5 800 Mean 0.5525 0.5093 0.6048 0.5030 0.6667 0.7423 0.6908 0.5068 0.4975 0.5009 0.5705 0.5142
Std 0.2742 0.2819 0.2511 0.2841 0.2151 0.2576 0.2193 0.2809 0.2866 0.2801 0.2596 0.2826

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.01) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0704 0.4715 0.0001 0.1569 0.0000 0.5073 0.5084 0.2439 0.2680
Std 0.1414 0.2933 0.0011 0.2465 0.0000 0.2802 0.2888 0.2676 0.3029

TWFE 5 200 Mean 0.4917 0.4925 0.4895 0.4900 0.4869 0.4951 0.4942 0.5000 0.4972
Std 0.2827 0.2924 0.2916 0.2933 0.2953 0.2826 0.2921 0.2905 0.2972

PWFE 5 200 Mean 0.4569 0.4911 0.4600 0.4508 0.3345 0.4362 0.4324 0.4649 0.4948 0.4969 0.4755 0.4438
Std 0.2975 0.2942 0.2921 0.3025 0.2360 0.3423 0.2948 0.2979 0.2842 0.2913 0.3084 0.3090

WFE 5 800 Mean 0.1235 0.3991 0.0000 0.0000 0.0000 0.4928 0.5038 0.0002 0.0000
Std 0.1985 0.3044 0.0000 0.0000 0.0000 0.2866 0.2788 0.0027 0.0000

TWFE 5 800 Mean 0.4993 0.5035 0.4801 0.4936 0.4866 0.4990 0.5009 0.4862 0.5021
Std 0.2908 0.2818 0.2983 0.2899 0.2931 0.2862 0.2803 0.2980 0.2949

PWFE 5 800 Mean 0.4789 0.5013 0.3992 0.4997 0.3828 0.4601 0.3754 0.5015 0.4969 0.5007 0.4667 0.4933
Std 0.2967 0.2820 0.2914 0.2833 0.2595 0.3394 0.2905 0.2905 0.2866 0.2805 0.2921 0.2979

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.01) δ(2) α1(1.5) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0876 0.4496 0.0015 0.0793 0.0000 0.5049 0.5042 0.3256 0.1394
Std 0.1631 0.2956 0.0133 0.1760 0.0004 0.2828 0.2893 0.3031 0.2317

TWFE 5 200 Mean 0.4911 0.4940 0.4860 0.4933 0.4922 0.4946 0.4947 0.4856 0.4963
Std 0.2821 0.2922 0.2895 0.2926 0.2983 0.2824 0.2921 0.2910 0.2952

PWFE 5 200 Mean 0.5189 0.4954 0.5622 0.4969 0.6057 0.7405 0.5927 0.5292 0.4954 0.4961 0.5346 0.4748
Std 0.2792 0.2889 0.2744 0.2939 0.2213 0.2247 0.2480 0.2711 0.2831 0.2896 0.2908 0.2998

WFE 5 800 Mean 0.1666 0.4761 0.0000 0.0032 0.0000 0.5033 0.5112 0.0250 0.0113
Std 0.2305 0.2860 0.0000 0.0335 0.0000 0.2927 0.2893 0.0817 0.0707

TWFE 5 800 Mean 0.5107 0.5010 0.4891 0.4995 0.4946 0.5071 0.5026 0.4893 0.4947
Std 0.2977 0.2899 0.2906 0.2896 0.2929 0.2988 0.2916 0.2949 0.2843

PWFE 5 800 Mean 0.5162 0.5016 0.5816 0.4935 0.6249 0.7361 0.6021 0.4984 0.5053 0.5018 0.5103 0.4808
Std 0.2924 0.2901 0.2681 0.2878 0.2257 0.2185 0.2563 0.2838 0.2988 0.2918 0.2971 0.2870
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Table A.17. Case V: Mean and standard deviation of the p-values of the parameters (Table
A.8) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.13, upper panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(1) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0046 0.4891 0.0000 0.2841 0.0054 0.4899 0.4755 0.0032 0.1836
Std 0.0224 0.2926 0.0000 0.2975 0.0277 0.2901 0.2938 0.0318 0.2616

TWFE 5 200 Mean 0.4952 0.4923 0.4934 0.4820 0.4811 0.4893 0.4912 0.4926 0.4863
Std 0.2887 0.2920 0.2905 0.2936 0.2897 0.2797 0.2914 0.2918 0.2942

PWFE 5 200 Mean 0.4878 0.4924 0.4779 0.4443 0.4571 0.4983 0.4643 0.4692 0.4883 0.4962 0.5058 0.4443
Std 0.3058 0.2937 0.2913 0.2934 0.2944 0.2869 0.3000 0.3012 0.2801 0.2923 0.3002 0.2937

WFE 5 800 Mean 0.0000 0.4556 0.0000 0.2594 0.0000 0.4839 0.4953 0.0000 0.0983
Std 0.0000 0.2909 0.0000 0.2872 0.0000 0.2977 0.2926 0.0000 0.1956

TWFE 5 800 Mean 0.5054 0.5024 0.5026 0.4983 0.4910 0.5049 0.4969 0.4885 0.4937
Std 0.2927 0.2909 0.2880 0.2858 0.2927 0.3011 0.2898 0.2906 0.2859

PWFE 5 800 Mean 0.4981 0.5027 0.4840 0.4812 0.4783 0.4932 0.4827 0.4933 0.5039 0.4990 0.4976 0.4825
Std 0.2963 0.2917 0.2899 0.2915 0.2941 0.2923 0.3018 0.2941 0.3023 0.2897 0.2892 0.2940

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(1) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0197 0.4927 0.0000 0.2838 0.0292 0.4898 0.4766 0.0042 0.1957
Std 0.0726 0.2925 0.0000 0.3028 0.0903 0.2930 0.2932 0.0356 0.2670

TWFE 5 200 Mean 0.4912 0.4930 0.4870 0.4811 0.4868 0.4904 0.4906 0.4765 0.4835
Std 0.2868 0.2922 0.2909 0.2902 0.2937 0.2791 0.2899 0.2867 0.2884

PWFE 5 200 Mean 0.5218 0.4937 0.5617 0.4790 0.6493 0.5010 0.5285 0.5102 0.4914 0.4977 0.4990 0.4697
Std 0.2855 0.2914 0.2716 0.2920 0.2338 0.2805 0.2826 0.2899 0.2802 0.2917 0.2916 0.2956

WFE 5 800 Mean 0.0000 0.4549 0.0000 0.2503 0.0000 0.4823 0.4934 0.0000 0.1154
Std 0.0001 0.2917 0.0000 0.2827 0.0004 0.2983 0.2893 0.0000 0.2110

TWFE 5 800 Mean 0.5098 0.5025 0.4969 0.5031 0.4877 0.5034 0.4965 0.4821 0.4980
Std 0.2963 0.2909 0.2897 0.2898 0.2873 0.2996 0.2883 0.2869 0.2891

PWFE 5 800 Mean 0.5273 0.5025 0.5677 0.4855 0.6477 0.5017 0.5309 0.5031 0.5024 0.4985 0.4943 0.4811
Std 0.2875 0.2913 0.2735 0.2865 0.2304 0.2794 0.2745 0.2906 0.3008 0.2890 0.2938 0.2889

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(1) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.3237 0.4890 0.0002 0.1379 0.4117 0.3332 0.4681 0.0179 0.1219
Std 0.2915 0.2941 0.0037 0.2272 0.3143 0.2957 0.2966 0.0795 0.2080

TWFE 5 200 Mean 0.4935 0.4943 0.4772 0.4722 0.4736 0.4964 0.4910 0.4862 0.4730
Std 0.2828 0.2924 0.2906 0.2957 0.2913 0.2814 0.2905 0.2974 0.2913

PWFE 5 200 Mean 0.4891 0.4974 0.4473 0.4579 0.4258 0.4742 0.4329 0.5445 0.4921 0.5005 0.4428 0.4545
Std 0.2947 0.2919 0.2975 0.3080 0.3171 0.2769 0.3026 0.2528 0.2886 0.2916 0.3093 0.3117

WFE 5 800 Mean 0.3505 0.5021 0.0000 0.1760 0.3167 0.4991 0.5003 0.0139 0.1276
Std 0.2917 0.2913 0.0003 0.2554 0.2983 0.2959 0.2907 0.0692 0.2149

TWFE 5 800 Mean 0.5088 0.5027 0.4872 0.4962 0.4894 0.5055 0.5011 0.4842 0.4964
Std 0.2977 0.2919 0.2921 0.2926 0.2936 0.3007 0.2905 0.2908 0.2928

PWFE 5 800 Mean 0.4992 0.5018 0.4543 0.4534 0.4363 0.4690 0.4439 0.5071 0.5029 0.5001 0.4533 0.4494
Std 0.2955 0.2923 0.2996 0.2999 0.2987 0.2877 0.3017 0.2735 0.3017 0.2901 0.3043 0.3043

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(1) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.3386 0.4927 0.0012 0.2349 0.4318 0.3734 0.4797 0.0330 0.2146
Std 0.2966 0.2923 0.0119 0.2874 0.3012 0.3031 0.2922 0.1189 0.2761

TWFE 5 200 Mean 0.4928 0.4949 0.4708 0.4684 0.4668 0.4957 0.4920 0.4732 0.4726
Std 0.2826 0.2918 0.2905 0.2936 0.2942 0.2814 0.2895 0.2987 0.2935

PWFE 5 200 Mean 0.4950 0.4964 0.4721 0.5164 0.6459 0.5690 0.4584 0.5873 0.4949 0.4991 0.4794 0.4946
Std 0.2881 0.2898 0.2937 0.2954 0.2286 0.2662 0.2990 0.2392 0.2886 0.2886 0.2955 0.3020

WFE 5 800 Mean 0.3664 0.5013 0.0001 0.2013 0.2871 0.4968 0.4996 0.0201 0.1511
Std 0.2933 0.2905 0.0016 0.2678 0.2870 0.2962 0.2899 0.0901 0.2319

TWFE 5 800 Mean 0.5092 0.5025 0.4814 0.4963 0.4861 0.5049 0.5010 0.4687 0.4972
Std 0.2979 0.2921 0.2953 0.2901 0.2949 0.3004 0.2906 0.2885 0.2914

PWFE 5 800 Mean 0.5067 0.5017 0.5062 0.4872 0.6935 0.5738 0.4964 0.5415 0.5029 0.5001 0.4719 0.4720
Std 0.2950 0.2921 0.2898 0.2917 0.2007 0.2654 0.2916 0.2648 0.3010 0.2895 0.3013 0.2974
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Table A.18. Case VI: Mean and standard deviation of the p-values of the parameters (Table
A.9) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.13, lower panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(0.5) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0081 0.4917 0.0000 0.0041 0.0234 0.4876 0.4807 0.0010 0.0009
Std 0.0360 0.2930 0.0000 0.0248 0.0762 0.2947 0.2921 0.0172 0.0062

TWFE 5 200 Mean 0.4960 0.4938 0.4920 0.4697 0.4824 0.4890 0.4899 0.4896 0.4739
Std 0.2892 0.2923 0.2904 0.2906 0.2893 0.2799 0.2910 0.2932 0.2927

PWFE 5 200 Mean 0.4907 0.4935 0.4860 0.5077 0.4893 0.4967 0.4795 0.7983 0.4891 0.5095 0.5096 0.5023
Std 0.3000 0.2928 0.2892 0.2874 0.2978 0.2846 0.2999 0.2802 0.2800 0.2909 0.2954 0.2875

WFE 5 800 Mean 0.0000 0.5046 0.0000 0.0000 0.0000 0.4755 0.4950 0.0000 0.0000
Std 0.0000 0.2921 0.0000 0.0000 0.0001 0.2966 0.2905 0.0000 0.0000

TWFE 5 800 Mean 0.5062 0.5028 0.5022 0.4955 0.4897 0.5051 0.4999 0.4882 0.4930
Std 0.2933 0.2920 0.2877 0.2931 0.2920 0.3013 0.2898 0.2908 0.2922

PWFE 5 800 Mean 0.4997 0.5017 0.4879 0.5553 0.4835 0.4960 0.4847 0.7459 0.5044 0.5178 0.5059 0.5509
Std 0.2959 0.2918 0.2958 0.2870 0.2916 0.2923 0.3008 0.3105 0.3020 0.2832 0.2912 0.2862

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(0.5) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0333 0.4894 0.0000 0.0063 0.1120 0.4814 0.4771 0.0004 0.0018
Std 0.1037 0.2955 0.0000 0.0404 0.1988 0.3018 0.2934 0.0039 0.0140

TWFE 5 200 Mean 0.4929 0.4939 0.4836 0.4698 0.4842 0.4902 0.4903 0.4744 0.4736
Std 0.2885 0.2922 0.2905 0.2889 0.2952 0.2795 0.2904 0.2863 0.2893

PWFE 5 200 Mean 0.5203 0.4940 0.5645 0.5113 0.6447 0.5062 0.5231 0.7955 0.4913 0.5087 0.5020 0.5124
Std 0.2856 0.2920 0.2749 0.2858 0.2348 0.2783 0.2836 0.2709 0.2796 0.2907 0.2891 0.2870

WFE 5 800 Mean 0.0000 0.5039 0.0000 0.0000 0.0002 0.4751 0.4894 0.0000 0.0000
Std 0.0001 0.2903 0.0000 0.0001 0.0016 0.2975 0.2891 0.0000 0.0000

TWFE 5 800 Mean 0.5100 0.5029 0.4964 0.4955 0.4892 0.5035 0.5001 0.4817 0.4928
Std 0.2964 0.2921 0.2899 0.2907 0.2892 0.2997 0.2891 0.2848 0.2898

PWFE 5 800 Mean 0.5264 0.5016 0.5663 0.5613 0.6504 0.5121 0.5301 0.7461 0.5028 0.5149 0.5014 0.5568
Std 0.2874 0.2921 0.2746 0.2880 0.2297 0.2806 0.2757 0.3061 0.3007 0.2828 0.2957 0.2886

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(0.5) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.3462 0.4854 0.0001 0.0366 0.3014 0.2658 0.4615 0.0073 0.0363
Std 0.2986 0.2955 0.0012 0.1112 0.3035 0.2787 0.2982 0.0368 0.1020

TWFE 5 200 Mean 0.4937 0.4950 0.4810 0.4701 0.4717 0.4968 0.4915 0.4861 0.4775
Std 0.2826 0.2925 0.2974 0.2889 0.2947 0.2818 0.2905 0.3026 0.2921

PWFE 5 200 Mean 0.4874 0.4980 0.4310 0.4586 0.4417 0.4558 0.4220 0.7921 0.4822 0.4990 0.4294 0.4539
Std 0.2947 0.2926 0.3023 0.3117 0.3072 0.2841 0.3081 0.2904 0.2892 0.2911 0.3143 0.3148

WFE 5 800 Mean 0.3634 0.5017 0.0000 0.0301 0.4385 0.4945 0.5004 0.0042 0.0210
Std 0.2933 0.2939 0.0000 0.0972 0.3071 0.2958 0.2911 0.0339 0.0769

TWFE 5 800 Mean 0.5084 0.5027 0.4893 0.4874 0.4899 0.5062 0.5018 0.4881 0.4878
Std 0.2977 0.2921 0.2940 0.2892 0.2928 0.3013 0.2910 0.2931 0.2884

PWFE 5 800 Mean 0.5019 0.5017 0.4535 0.4668 0.4673 0.4755 0.4482 0.7494 0.5023 0.5024 0.4594 0.4613
Std 0.2967 0.2919 0.2962 0.2982 0.2973 0.2906 0.3016 0.3301 0.3010 0.2902 0.3005 0.3009

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(1.5) α2(0.5) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.3646 0.4904 0.0005 0.0884 0.3804 0.3161 0.4744 0.0137 0.0783
Std 0.3025 0.2952 0.0049 0.1811 0.3200 0.2889 0.2951 0.0575 0.1626

TWFE 5 200 Mean 0.4930 0.4953 0.4718 0.4654 0.4615 0.4964 0.4926 0.4715 0.4703
Std 0.2826 0.2921 0.2951 0.2888 0.2945 0.2822 0.2902 0.3024 0.2864

PWFE 5 200 Mean 0.4913 0.4965 0.4483 0.5001 0.6305 0.5581 0.4347 0.7604 0.4887 0.4988 0.4561 0.4832
Std 0.2882 0.2903 0.2995 0.3080 0.2365 0.2743 0.3025 0.2990 0.2895 0.2885 0.3026 0.3119

WFE 5 800 Mean 0.3785 0.5016 0.0000 0.0412 0.4241 0.4921 0.4997 0.0050 0.0287
Std 0.2947 0.2929 0.0002 0.1170 0.3043 0.2965 0.2903 0.0333 0.0975

TWFE 5 800 Mean 0.5088 0.5026 0.4845 0.4891 0.4876 0.5055 0.5016 0.4765 0.4894
Std 0.2978 0.2922 0.2971 0.2883 0.2949 0.3008 0.2912 0.2916 0.2879

PWFE 5 800 Mean 0.5064 0.5018 0.5052 0.4866 0.6909 0.5793 0.4929 0.7311 0.5020 0.5025 0.4690 0.4757
Std 0.2942 0.2921 0.2882 0.2904 0.2060 0.2667 0.2952 0.3332 0.3000 0.2902 0.2970 0.2935
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Table A.19. Case VII: Mean and standard deviation of the p-values of the parameters (Table
A.10) and the direct (DE) and indirect (IE) spillover effects of variables x1 and x2 (Table
A.13, lower panel)

Settings Negative exponential: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(10) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.0331 0.0000 0.1792 0.0000 0.4215 0.6258 0.0021 0.2719
Std 0.0000 0.0642 0.0000 0.2559 0.0000 0.2522 0.2407 0.0221 0.2955

TWFE 5 200 Mean 0.5008 0.4914 0.4919 0.4951 0.4852 0.4893 0.4934 0.4878 0.5015
Std 0.2958 0.2918 0.2840 0.2945 0.2913 0.2792 0.2923 0.2921 0.2967

PWFE 5 200 Mean 0.4990 0.4882 0.4780 0.4837 0.4823 0.5114 0.6105 0.4903 0.4881 0.4912 0.4971 0.4871
Std 0.2866 0.2889 0.2880 0.2872 0.2936 0.2944 0.3225 0.2825 0.2792 0.2917 0.2935 0.2896

WFE 5 800 Mean 0.0000 0.0027 0.0000 0.0029 0.0000 0.0804 0.6600 0.0000 0.3796
Std 0.0000 0.0103 0.0000 0.0333 0.0000 0.0960 0.2337 0.0000 0.3084

TWFE 5 800 Mean 0.5081 0.5027 0.4957 0.4996 0.4884 0.5042 0.4946 0.4898 0.4932
Std 0.2926 0.2899 0.2860 0.2934 0.2927 0.2999 0.2902 0.2920 0.2964

PWFE 5 800 Mean 0.4924 0.5042 0.5044 0.4986 0.4956 0.5038 0.5530 0.4854 0.5031 0.4954 0.4928 0.4937
Std 0.2888 0.2894 0.2855 0.2892 0.2944 0.2892 0.2702 0.2867 0.3010 0.2901 0.2881 0.2896

Negative exponential: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(10) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.0511 0.0000 0.1382 0.0000 0.6342 0.6050 0.0000 0.3511
Std 0.0000 0.0866 0.0000 0.2242 0.0000 0.2458 0.2463 0.0000 0.3067

TWFE 5 200 Mean 0.4964 0.4927 0.4852 0.4981 0.4743 0.4903 0.4927 0.4723 0.5040
Std 0.2968 0.2933 0.2836 0.2944 0.2894 0.2794 0.2922 0.2889 0.2963

PWFE 5 200 Mean 0.5140 0.4908 0.5620 0.4894 0.6074 0.7000 0.6866 0.4985 0.4895 0.4909 0.5346 0.4869
Std 0.2929 0.2886 0.2628 0.2802 0.2516 0.2298 0.3791 0.2853 0.2797 0.2892 0.2688 0.2897

WFE 5 800 Mean 0.0000 0.0046 0.0000 0.0003 0.0000 0.4872 0.6715 0.0000 0.2423
Std 0.0000 0.0123 0.0000 0.0061 0.0000 0.2538 0.2269 0.0000 0.2866

TWFE 5 800 Mean 0.4974 0.5029 0.4964 0.4957 0.4941 0.4958 0.5068 0.4913 0.5000
Std 0.2947 0.2806 0.2912 0.2946 0.2896 0.2881 0.2842 0.2867 0.2958

PWFE 5 800 Mean 0.5140 0.5035 0.5928 0.5014 0.6186 0.7314 0.7161 0.5010 0.4939 0.5086 0.5459 0.5143
Std 0.2860 0.2814 0.2593 0.2842 0.2448 0.2087 0.3574 0.2859 0.2880 0.2853 0.2687 0.2875

Inverse distance: row normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(10) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.7403 0.0000 0.0013 0.0000 0.3045 0.7016 0.0000 0.0001
Std 0.0000 0.1839 0.0000 0.0114 0.0000 0.1721 0.2014 0.0000 0.0008

TWFE 5 200 Mean 0.4934 0.4923 0.4897 0.4910 0.4933 0.4915 0.4944 0.4950 0.5069
Std 0.2880 0.2918 0.2818 0.2946 0.2961 0.2799 0.2937 0.2957 0.2942

PWFE 5 200 Mean 0.4895 0.4902 0.4822 0.4636 0.4680 0.4903 0.5192 0.4862 0.4912 0.4934 0.4650 0.4529
Std 0.2906 0.2919 0.2819 0.3068 0.3022 0.2832 0.2788 0.2895 0.2802 0.2925 0.3039 0.3060

WFE 5 800 Mean 0.0078 0.4196 0.0007 0.0000 0.0585 0.5073 0.7985 0.0004 0.0000
Std 0.0504 0.1798 0.0113 0.0000 0.1219 0.1752 0.1418 0.0071 0.0012

TWFE 5 800 Mean 0.4911 0.5026 0.4929 0.4916 0.4905 0.4982 0.5030 0.4915 0.5013
Std 0.2929 0.2804 0.2923 0.2879 0.2954 0.2882 0.2809 0.2967 0.2913

PWFE 5 800 Mean 0.5003 0.5041 0.5035 0.5059 0.4876 0.4999 0.4949 0.5095 0.4959 0.5028 0.4862 0.5050
Std 0.3015 0.2810 0.2881 0.2889 0.2975 0.2813 0.2844 0.2878 0.2883 0.2803 0.2980 0.2918

Inverse distance: scalar normalized
T N β1(-1) β2(0.2) φ1(1.5) φ2(-0.3) ρ(0.5) δ(2) α1(10) α2(3) DE x1 DE x2 IE x1 IE x2

WFE 5 200 Mean 0.0000 0.7411 0.0000 0.0108 0.0000 0.2601 0.7262 0.0000 0.0014
Std 0.0000 0.1816 0.0000 0.0505 0.0000 0.1632 0.1935 0.0000 0.0119

TWFE 5 200 Mean 0.4909 0.4936 0.4851 0.4916 0.4821 0.4921 0.4935 0.4785 0.5051
Std 0.2910 0.2929 0.2827 0.2940 0.2933 0.2800 0.2926 0.2884 0.2934

PWFE 5 200 Mean 0.5149 0.4932 0.5323 0.5221 0.6780 0.7172 0.6879 0.5385 0.4939 0.4946 0.6589 0.4852
Std 0.2901 0.2908 0.2719 0.2775 0.2207 0.2202 0.3720 0.2702 0.2799 0.2906 0.2279 0.2891

WFE 5 800 Mean 0.0036 0.3993 0.0002 0.0001 0.0361 0.5395 0.7829 0.0001 0.0003
Std 0.0329 0.1788 0.0055 0.0024 0.0888 0.1827 0.1510 0.0026 0.0062

TWFE 5 800 Mean 0.4909 0.5025 0.4914 0.4988 0.4858 0.4980 0.5034 0.4849 0.5076
Std 0.2909 0.2806 0.2905 0.2958 0.2903 0.2882 0.2816 0.2869 0.2938

PWFE 5 800 Mean 0.5276 0.5031 0.5621 0.5103 0.6663 0.7880 0.7144 0.5093 0.4960 0.5043 0.6509 0.5251
Std 0.2776 0.2807 0.2725 0.2895 0.2240 0.1804 0.3479 0.2854 0.2887 0.2818 0.2266 0.2831



Chapter 3

The spatial autoregressive

panel data model with spatial

moving average errors*

* This chapter was written with J.P. Elhorst, except for the derivations in the appendix.
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3.1 Introduction

The spatial autoregressive (SAR) model, the spatial error (SE) model, and the so-

called SARAR model combining these two specifications are the most widely used

spatial econometric models to introduce new methods of estimation. Leading ex-

amples focusing on cross-sectional data are Ord (1975), who introduces the max-

imum likelihood (ML) estimator of SAR and SE models; Anselin (1988, pp.82-86)

and Kelejian and Prucha (1998, 1999), who develop instrumental variables (IV) and

generalized method-of-moments (GMM) estimators of SAR, SE, and SARAR mod-

els; and Lee (2004) who derives the quasi maximum likelihood (QML) estimator

of the SAR model. Leading examples focusing on spatial panel data are Elhorst

(2003), who introduces the ML estimator of several SAR and SE models with fixed

and random effects; Lee and Yu (2010a) who derive the QML estimators of the

SARAR model with fixed effects; and Lee and Yu (2012) who derive the QML es-

timator of a general spatial panel model with fixed and random effects, which nests

various spatial panel specifications existing in the literature. In addition to these

econometric-theoretical studies, the SAR, SE, and SARAR models are also widely

used in all kinds of empirical applications.

A spatial econometric model that received limited attention in both the econometric-

theoretical and empirical literature is the SAR model with spatial moving average

(MA) errors, hereinafter abbreviated to SARMA. The main reason to draw atten-

tion to this model is that in many empirical applications it is not likely that an

unobserved shock in the error term of one unit is able to reach every other unit of

the study area. Most shocks are local and only have a limited spatial range. Sev-

eral spatial econometric researchers (Anselin, 2003; Fingleton and LeGallo, 2008;

Elhorst, 2010) have pointed out that shocks captured by an AR error process are

global since they diffuse among all the units, also when they are not connected

according to the specification of the spatial weight matrix. Conversely, shocks cap-

tured by an MA error process are local since units can only affect each other when

they are connected according to the spatial weight matrix. This finding indicates

that the distinction between local and global shocks, and therefore the difference

between spatial AR and MA errors and their relationship with the spatial weight

matrix describing the spatial arrangement of the units in the sample deserves more
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attention. Two important properties of spatial weight matrices in this regard have

emerged from the existing literature (Kelejian and Prucha, 1998, 1999; Lee, 2004).

The proportion of elements that is zero and whether the row and column sums

are upper bounded in absolute value or diverge to infinity though slower than the

sample size N. To investigate the relevance of these properties, we consider three

different spatial weight matrices in this chapter. A first-order binary contiguity

matrix which is sparse and whose row and column sums are uniformly bounded,

an inverse distance decay matrix which is dense and whose row and columns sums

are unbounded but go to infinity slower than the sample size N, and an exponen-

tial distance matrix which is dense but whose row and column sums are again

uniformly bounded. A detailed overview of previous studies, which considered

spatial MA errors, the difference between local and global shocks, the specification

and properties of the three proposed matrices, and the relationship between local

or global shocks and the sparsity or density of these matrices is the topic of the

next section in this chapter. This detailed overview is also the first contribution of

this chapter to the existing literature. Although spatial weight matrices of different

spatial lags can be different, they are generally treated to be the same in empir-

ical applications. The downside of this simplification will also be examined in this

chapter.

The second contribution of this chapter to the existing literature is the derivation

of a QML within estimator of the SARMA model including fixed effects in both

the cross-sectional and time domain, and a proof that this estimator is consistent

and asymptotically normal for the dominating panel data setting in applied spatial

econometric research: N is large and T is finite. We show that time fixed effects, if

included, are better treated as regular regressors, since the QML within estimator

then also offers the opportunity to consider spatial weight matrices normalized by

a scalar, such as the largest eigenvalue, as an alternative to row normalization. This

is an advantage because row normalization is not always harmless (see Kelejian

and Prucha, 2010), especially when working with inverse or exponential distance

decay matrices. Our QML within estimator also explains why the popularity of

the SARMA model has lagged behind the SARAR model. It is computationally

more demanding and software for spatial MA error models have not or hardly



68 Chapter 3

been made available to practitioners.1

This chapter is organized as follows. In Section 3.2 we introduce the SARMA

model and its main competitor the SARAR model, give an overview of previous

studies that focused on spatial moving average errors, provide a detailed explana-

tion of global versus local interpretations, and explain the link with the two men-

tioned properties of spatial weight matrices. In Section 3.3 we set out the QML

within estimator of the SARMA model. In Section 3.4 we report and discuss the

results of a Monte Carlo (MC) simulation experiment evaluating the performance

of the proposed estimator. We also show which biases occur when data generated

by a SARMA model with different spatial weight matrices for each spatial lag is es-

timated by the SARAR model, or when one common spatial weight matrix is used

for all spatial lags in the SARMA model. Section 3.5 contains an empirical applica-

tion on military expenditures taken from Yesilyurt and Elhorst (2017) in which the

SARMA and SARAR models are compared to each other. Finally, we draw conclu-

sions and suggest topics for further research in Section 3.6.

3.2 Spatial MA and AR error processes

3.2.1 Specifications

The SARMA model for panel data reads as

yt = ρ0Wyt + X tβ0 + c0 + v0tιN + ut, ut = vt − λ0Mvt, (3.1)

and the SARAR model as

yt = ρ0Wyt + X tβ0 + c0 + v0tιN + ut, , ut = λ0Mut + vt, (3.2)

where the N × 1 vector yt = (y1t, y2t, ..., yNt)
′

reflects the dependent variable of

units 1 to N at time t (t = 1, . . . , T). Wyt represents the spatial lag of yt and ρ0

the spatial autoregressive coefficient of this variable. X t is an N × K matrix of non-

stochastic time-varying regressors and β0 the associated K× 1 vector of coefficients.

ut = (u1t, u2t, ..., uNt)
′

is an N × 1 vector of error terms, which follows a spatial

moving average (MA) error process in (3.1) or a spatial autoregressive error process

1 The routines developed for the purpose of this chapter will be made available upon request.
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in (3.2) with parameter λ0. The elements vit of the disturbance term vector vt are

i.i.d across i and t with zero mean, variance σ2
0 , and finite fourth moment. W and

M are N × N spatial weight matrices generating spatial dependence among the

cross-sectional units in the dependent variable and the error terms, respectively.

Although W and M can be different, they are generally treated to be the same

in empirical applications. This simplification will be expressly examined in this

chapter. c0 is an N × 1 vector of individual fixed effects, φt0 is a time fixed effect,

and ιN is an N × 1 vector of ones.

3.2.2 Previous studies on spatial MA errors

Previous studies focusing on spatial moving average errors in spatial econometric

models providing econometric-theoretical proofs that their estimators are consist-

ent or that implement these type of errors in their empirical application are scarce.

Table 3.1 provides an overview. Haining (1978) proposes a spatial MA model and

investigates its stationarity, assuming that the spatial weight matrix takes the form

of a square lattice. Huang (1984) derives the ML estimator and its asymptotic prop-

erties of a SARMA(p,q) model for cross-sectional data. Hepple (2003) sets out the

ML estimator of the spatial MA model for cross-sectional data. In addition, she

briefly pays attention to the Bayesian estimator of this model and the ML estimator

when this model is extended with a spatial lag in the dependent variable, yielding

the SARMA model. Fingleton and LeGallo (2007, p.44) modify the feasible general-

ized spatial two-stage least squares (FGS2SLS) estimator developed by Kelejian and

Prucha (1998) for the cross-sectional SARAR model, such that it can be used to es-

timate a linear regression model not only with exogenous but also with endogenous

explanatory variables and a spatial MA error term. In a series of follow-up studies,

Fingleton (2008a,2008b) and Fingleton and LeGallo (2008) further explore the finite

sample properties of this estimator, extend this model to spatial panels with unob-

served unit-specific random effects, and illustrate their models and estimators with

the results of some empirical studies. Baltagi and Liu (2011) improve Fingleton’s

(2008a) FGS2SLS by taking into account that the moment conditions that are based

on OLS residuals rather than the true disturbances. Instead of the FGS2SLS estim-

ator developed by Kelejian and Prucha (1998), Doğan and Taspinar (2013) modify

the one-step GMM estimators developed by Lee (2007) and Liu et al. (2010) for the
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Table 3.1. Studies on spatial moving average errors

Study Spatial lags Data Matrix form Estimation
method

Haining (1978) Mv CS Squared lattice MLE
Huang (1984) Wy, Mv CS Not mentioned MLE
Hepple (2003) Wy, Mv CS Not mentioned MLE,

Bayesian
Fingleton and LeGallo
(2007)

Mv CS Contiguity FGS2SLS

Fingleton (2008a) Mv CS Contiguity FGS2SLS
Fingleton (2008b) Wyt, Mvt PD Contiguity FGS2SLS
Fingleton and LeGallo
(2008)

Wy, Mv CS Negative exponen-
tial

FGS2SLS

Baltagi and Liu (2011) Mv CS Contiguity GMM (OLS
residuals)

Lee and Yu (2012) Wyt, Mvt PD Not mentioned QMLE-FD
Doğan and Taşpınar
(2013)

Wy, Mv CS Group interaction GMM

Fingleton et al. (2018) Wyt, Mvt PD Group interaction FGS3SLS
Baltagi et al. (2019) Wyt, Mvt PD Contiguity FGS4SLS
This study Wyt, Mvt PD Contiguity, negat-

ive exponential, in-
verse distance, row
and scalar normal-
ized

QMLE-
within

CS: cross-sectional data; PD: panel data. (Q)MLE=(Quasi) maximum likelihood estimator,
FGS2SLS=Feasible generalized spatial two-stage least-squares, FGS3SLS=Extension of FGS2SLS,

FGS4SLS=Extension of FGS3SLS.
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cross-sectional SARAR model, such that it can be used to estimate the spatial MA

and the SARMA models. The FGS2SLS estimator developed by Fingleton and oth-

ers is also used in later work of Fingleton et al. (2018) to estimate a spatial panel

SARMA model with hierarchical random effects in the spatial domain, i.e., for indi-

vidual units and individual units within groups. They also rename their estimator

FGS3SLS because the parameters are determined in three stages. In their empirical

application, they specifically focus on regions across EU member countries and a

spatial weight matrix which is specified as a group interaction matrix. Baltagi et al.

(2019) further extends this model with dynamic effects in space and time, i.e., cap-

turing a spatial, a time, and a space-time lag in the dependent variable, as well as a

spatial lag, a time lag, and a spatial MA process in the error term, and to a FGS4SLS

estimator to account for these additional dynamic effects. Lee and Yu (2012) derive

the QML estimator of a general spatial panel model with fixed and random effects,

which nests various spatial panel specifications, among which the SARMA model

in Equation (3.1) of this chapter. However, due to its general character and the fo-

cus on the properties of their derived estimators, this model specification and its

properties relevant for empirical studies, the subject of this study, do not get the at-

tention they deserve. Another issue is that they take first-differences to concentrate

out the individual effects rather than the commonly used within transformation.

In addition to these journal papers, the spatial MA error specification is briefly dis-

cussed in several overview chapters (Anselin and Bera, 1998) or spatial econometric

textbooks (Haining, 1990; LeSage and Pace, 2009).

The conclusion from this overview of previous studies is that estimation meth-

ods, which are first developed to estimate models with spatial autoregressive er-

rors, are subsequently also developed for models with spatial moving average er-

rors. The focus has been on ML, IV/GMM, and Bayesian estimators of the cross-

sectional SARMA model, and on the feasible generalized spatial two-stage least

squares (FGS2SLS) estimator of its panel data counterpart with at most random ef-

fects for the cross-sectional units. Fixed effects in space and especially time have

not been considered in these studies, while the degree of local spatial dependence

in the dependent variable and/or the error term when time fixed effects are left

aside tends to be overestimated, an issue that is overlooked in all studies reported

in Table 3.1. One exception is Lee and Yu (2012), but they do use first-differences
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rather than the standard within approach to concentrate out the individual effects.

For these reasons, we provide the quasi ML (QML) within estimator of the panel

data SARMA model with individual and time fixed effects. The term quasi is used

since this estimator does not require any specification of the distribution function

of the error terms, except that they have zero mean, variance σ2, and finite fourth

moment. We focus on the large N and finite T panel data setting since it is repres-

entative for most empirical studies in spatial econometrics. The problem of N being

large is the incidental parameter problem; if N is large so will be the number of in-

dividual fixed effects, which furthermore cannot be estimated consistently if T is fi-

nite. Generally, they are concentrated out by the demeaning procedure IT − 1
T ιTι′T ,

which is the standard within transformation in the panel data literature (Arellano,

2003, Section 2.2; Baltagi, 2005).

3.2.3 Local versus global shocks

The spatial MA error of the SARMA model in (3.1) can be rewritten as

ut = (IN − λ0M)vt = vt − λ0Mvt, (3.3)

and the spatial AR error of the SARAR model in (3.2) as

ut = (IN − λ0M)−1vt =

(
∞

∑
i=1

λi
0Mi

)
vt

= vt + λ0Mvt + λ2
0M2vt + λ3

0M3vt + ..., (3.4)

where we used the property that M0 = IN . These two spatial error specifications

have different economic interpretations. Spatial interaction effects among the error

terms may occur if unobserved shocks follow a spatial pattern other than those

covered by time fixed effects, which may cause the parameters of the model to be

inefficient. This inefficiency may be avoided or reduced by accounting for these

spatial interaction effects through estimating λ0.

Several studies paid attention to the economic interpretation of spatial AR versus

MA errors (Anselin, 2003; Fingleton2 and LeGallo, 2008; Elhorst, 2010). If a shock

occurs at a particular unit, a spatial MA error term will have the effect that this

2 See also several follow-up studies of this author.
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shock is transmitted to those units which belong to its neighbourhood set accord-

ing to the specification of M. If this matrix is sparse, it will only be transmitted to

a limited number of units, mainly nearby units. If this matrix is dense, it will be

transmitted to more units, whereby units located nearby, in accordance with To-

bler’s first law, will be more strongly influenced than units farther away. In other

words, the sparser (denser) the spatial weight matrix, the smaller (greater) will be

the spatial range of the area that is affected by this shock. Since the right-hand

side of (3.3) only contains the first-order effect Mvt, the impact of the shock may be

termed a local effect.

By contrast, if a shock occurs at a particular unit and the error term follows

a spatial AR process, then the right-hand side of (3.4) not only contains the first-

order effect Mvt but also higher-order effects. Just as the spatial MA error term,

the first-order effect is limited to those units of which the elements of M are non-

zero. However, due to the second and higher-order effects, units that do not belong

to the neighbourhood set of a unit that instigates the shock will also be affected.

Such higher-order effects may also arise as a result of feedback effects, i.e. impacts

passing through neighbouring units and back to the unit itself (e.g. 1 → 2 → 1

and 1 → 2 → 3 → 2 → 1). Since this multi-round diffusion effect ultimately

affects all units by the shock that occurred at one location, such a shock may be

termed a global effect. To explain this principle, all three cited studies (Anselin,

2003; Fingleton and LeGallo, 2008; Elhorst, 2010) adopt a sparse matrix, i.e., the

first-order binary contiguity (BC) matrix whose elements are 1 if two units share a

common border, and 0 otherwise. This is understandable because it is not plausible

that the spatial matrix is dense when adopting a spatial AR process. If this matrix

would be dense, it is not necessary to consider higher-order terms. Then it would be

sufficient and more efficient to specify a spatial MA error term in combination with

a spatial matrix that is dense. In many empirical applications it is also not likely to

assume that an unobserved shock in one unit is able to reach any corner of the study

area. Most shocks are local and only have a limited spatial range. Furthermore,

external shocks that are shared by all units in the sample, such as business cycle

effects, can be modelled by time fixed effects. Besides, the SARMA model also

contains a spatial lag in the dependent variable (Wyt). Consequently, the impact of

a local shock on the dependent variable of a particular unit may also spread further
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due to endogenous interaction effects among the dependent variables of the units

across the study area.

Finally, it should be emphasized that AR and MA error processes are not nested.

Equation (3.4) seems to simplify to Equation (3.3) when the second and higher-

order terms in (3.4) are zero, i.e., when λ0 = 0. However, when this parameter is

zero, the first-order term λ0Mvt is also dropped, resulting in the SAR instead of the

SARMA model.

3.2.4 Spatial weight matrices

The previous section has made clear that the choice between a spatial AR or MA

process is also related to the spatial range of the spatial weight matrix. The spatial

econometric literature has pointed out that this range depends on the properties

which percentage of the elements is zero and whether or not their row and column

sums are upper bounded in absolute value or diverge to infinity though slower than

the sample size N. Assuming that M (note: the same holds for W) is non-negative

and in raw form a non-normalized matrix of known constants with zero diagonal

elements (to prevent units from explaining themselves) either of the two additional

assumptions is needed for the consistency of the QML/IV/GMM estimators set out

in Kelejian and Prucha (1998, 1999), Lee (2004), and Lee and Yu (2010a):

I : 0 < limN→+∞

N

∑
j=1
|mij| ≤ c, (3.5)

where mij denotes an element of M and c is a constant. This is known as the

boundedness condition and will be satisfied when the spatial weight matrix takes

the form of a BC matrix, since the number of neighbours of each unit is less than

the unit with the largest number of neighbours. This condition is not satisfied

when the spatial weight matrix takes the form of an inverse distance (ID) matrix:

mij = 1/dij, where dij denotes the distance between units i and j. Not only are

all off-diagonal elements of this matrix non-zero, the row and column sums of this

matrix also diverge to infinity. For example, if the distance to the first neighbour

is 1, to the second is 2, to the third is 3, and so on, the corresponding row sum of

this unit amounts to 1/1+ 1/2+ 1/3+ . . ., representing a series which is not upper
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bounded. By contrast, the second assumption

I I : limN→+∞
∑N

j=1 mij

N
→ 0, (3.6)

is satisfied since limN→+∞(1/1 + 1/2 + 1/3 + . . .)/N → 0. This is known as the

weak convergence condition. A more detailed mathematical explanation is avail-

able in Elhorst et al. (2021). The exponential distance (ED) matrix, whose ele-

ments are defined as mij = exp(−dij), takes a position in between. Just as the

ID matrix, all off-diagonal elements of this matrix are non-zero, but in contrast to

the ID matrix it does satisfy condition I that its row and column sums are upper

bounded. Using the same example as for the ID matrix, the row sum amounts

1/e + 1/e2 + 1/e3 + . . ., which is upper bounded by 1/(e− 1).

In sum, while the off-diagonal elements of both the ED and the ID matrix are

non-zero, the correlation between any two units of the ED matrix converges so

much faster to 0 with distance in contrast to that of the ID matrix that its row and

column sums are upper bounded. We will utilize these properties when testing the

SARMA and SARAR models against each other.

3.3 Estimation of the SARMA panel data model

In this section, we derive the ML and QML within estimator of the SARMA model

when using the within transformation to concentrate out the individual fixed ef-

fects, and we investigate the asymptotic properties of the estimator when N is large

and T is finite.

The SARMA model in (3.1) contains both individual and time fixed effects. Im-

portantly, when T is finite, these time fixed effects do not have to be concentrated

out; they can also be taken up as part of the regressors X t. For this reason, we

depart from the model

yt = ρ0Wyt + X tβ0 + c0 + ut, ut = vt − λ0Mvt, (3.7)

in this subsection and do no specify the time fixed effects separately. This model

therefore covers both the possibility that a researcher includes time fixed effects or

does not want to include time fixed effects, for example, because some regressors
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do not vary over time.

In general, elements of the spatial weight matrix are row-normalized because it

facilitates the interpretation of operations with the weight matrix as an averaging

of neighbouring values (Anselin and Bera, 1998). However, row-normalization has

also been criticized. Kelejian and Prucha (2010) demonstrate that normalization

of the elements of the spatial weight matrix by a different factor for each row as

opposed to a single factor is likely to lead to misspecification problems. To avoid

such misspecification problems, they propose an alternative normalization proced-

ure where each element of the spatial weight matrix in raw form is divided by its

largest eigenvalue. Important, the QML within estimator set out in this section also

covers the possibility to consider this kind of normalized matrices, which is useful

especially when working with inverse or exponential distance decay matrices. In

sum, since the majority of empirical studies is characterized by this panel data set-

ting and the spatial weight matrix does not necessarily have to be row-normalized,

the findings in this section are relevant for a broad range of empirical studies.

Let S(ρ) = IN − ρW , R(λ) = IN − λM, β = (β
′
, ρ, λ, σ2)

′
, and ζ = (β

′
, ρ, λ)

′
.

When the subscript 0 is added to a parameter or a vector of parameters below, we

denote the true value of this parameter or vector. JT = IT − 1
T ιTι

′
T is used to con-

centrate out the individual fixed effects, which is known as the within transforma-

tion in the panel data literature (see Arellano, 2003; Baltagi, 2005). This technique

reads as ỹt = yt − yt for t = 1, 2, . . . , T, where the elements of yt are defined by

yit = 1
T ∑T

t=1 yit. Similar transformations apply to the explanatory variables and

the error term of the model, yielding X̃ t, ũt, and ṽt.

Assuming as if the error terms are normally distributed, we will change this

later when investigating the asymptotic properties based on the variance-covariance

matrix of the proposed estimator, the log likelihood after c0 is concentrated out us-

ing the within transformation (indicated by the superscript w) is given by

lnLw(θ) =− NT
2

ln(2πσ2) + T[ln|S(ρ)| − ln|R(λ)|]− 1
2σ2

T

∑
t=1

ṽ
′
t(ζ)ṽt(ζ),

(3.8)

where ṽt(ζ) = R−1(λ)[S(ρ)ỹt − X̃ tβ]. Two important differences between the

SARMA and SARAR model are that the matrix R(λ) needs to be inverted when
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calculating ṽt(ζ) and that the Jacobian term ln|R(λ)| does have a negative rather

than a positive sign. The first and second order derivatives of (3.8) are given in

(3.A.1) and (3.A.3) of the Appendix 3.A.1, respectively.
Next, we also concentrate out β and σ2 to focus on (ρ, λ), whose QML within

estimators, given λ and ρ, are

β̂
w
(ρ, λ) = [

T

∑
t=1

X̃
′

tR
−1′ (λ)R−1(λ)X̃ t]

−1[
T

∑
t=1

X̃
′

tR
−1′ (λ)R−1(λ)S(ρ)ỹt], (3.9)

σ̂2w(ρ, λ) =
1

NT

T

∑
t=1

[S(ρ)ỹt − X̃ t β̂
w
(ρ, λ)]

′
R−1′ (λ)R−1(λ)[S(ρ)ỹt − X̃ t β̂

w
(ρ, λ)], (3.10)

as a result of which the corresponding concentrated log likelihood function of

(ρ, λ) is

lnLw(ρ, λ) = −NT
2

(ln(2π) + 1)− NT
2

lnσ̂2w(ρ, λ) + T[ln|S(ρ)| − ln|R(λ)|].

(3.11)

One problem of the within transformation is that the resulting error terms are lin-

early dependent over the time dimension. Consequently, the estimate σ̂2w of σ2
0

using the within transformation will be consistent only when T is large. When T

is finite, σ̂2w should be bias-corrected by T
T−1 σ̂2w to obtain a consistent estimate

of σ2
0 . This is demonstrated by Arellano (2003, p.24) for non-spatial panel models

and by Lee and Yu (2010a) for a SARAR panel data model. This can be effected by

replacing T in (3.11) with T − 1.

To investigate the asymptotic properties of the proposed QML within estimator

of the SARMA model, we make eight assumptions and prove two theorems. As-

sumptions similar to Lee and Yu (2010a) are labelled by (LY) and those that are

different due to considering a spatial MA error process are labelled by (MA). The

assumptions are

Assumption 3.1 (LY). The spatial weight matrices W and M are non-stochastic and have

zero diagonal values.

Assumption 3.2 (LY). The disturbances vit are i.i.d for i = 1, 2, ..., N and t = 1, 2, ..., T,

and have zero mean, variance σ2
0 , and E|vit|4+η < ∞ for some η.

Assumption 3.3 (LY). S(ρ) and R(λ) are invertible for all ρ and λ in compact intervals

P and Λ, respectively. ρ0 is the interior of P and λ0 is the interior of Λ.
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Assumption 3.4 (MA). The elements of X t are non-stochastic and bounded uniformly

in N and T in absolute value and the limit of 1
NT ∑T

t=1 X̃
′

tR
−1′R−1X̃ t exists and is non-

singular.

Assumption 3.5 (LY). W and M are uniformly bounded in both row and column sums

in absolute value, and so are S−1(ρ) and R−1(λ) for ρ ∈ P and λ ∈ Λ.

Assumption 3.6 (MA). N is large and T is finite.

Assumption 3.7 (MA). Either (a) the limit of

(
1
N
|σ2

0 R
′
S−1′S−1R| − 1

N
|σ2†(ρ, λ)R

′
(λ)S−1′(ρ)S−1(ρ)R(λ)|)

is not zero for (ρ, λ) 6= (ρ0, λ0), as N tends to infinity; or (b) the limit of H(λ) is non-

singular for each possible λ in Λ, and the limit of 1
N |σ2

0 R
′
R| − 1

N |σ2†(λ)R
′
(λ)R(λ)| is

not zero for λ 6= λ0.

Assumption 3.8 (MA). The limit of 1
N2 [tr(CsCs)tr(DsDs)− tr2(CsDs)] is strictly pos-

itive as N tends to go infinity.

We denote G = WS−1, G̈ = R−1GR, K = R−1M, C = G̈ − trG̈
N IN , and D =

K − trK
N IN . We further have

H(λ) =
1

N(T − 1)

T

∑
t=1

(X̃ t, GX̃ tβ0)
′
R−1′(λ)R−1(λ)(X̃ t, GX̃ tβ0), (3.12)

σ2†(λ) =
σ2

0
N

tr[(R−1(λ)R)
′
(R−1(λ)R)],

σ2†(ρ, λ) =
σ2

0
N

tr[(R−1(ρ)S(ρ)S−1R)
′
(R−1(λ)S(ρ)S−1R)].

Assumptions 3.1, 3.2, 3.3, and 3.5 have been discussed in Lee and Yu (2010a), al-

though a few comments from a practitioner’s point of view are in order. Assump-

tion 3.1 can be relaxed by allowing the spatial weight matrices to contain non-zero

diagonal elements. Generally, their diagonal elements are set to zero to avoid that

units can affect themselves. However, there are also applications in which this as-

sumption is not made, for example, when explaining self-flow data in trade flow

models (Balaszi et al., 2018). Even though the elements of spatial weight matrices

are generally assumed to be non-negative from an economic viewpoint, negative

elements do not have to be excluded either (Bailey et al., 2016). This explains the
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addition in absolute value in Assumption 3.5. Furthermore, even if all elements

are non-negative, this does not guarantee that all elements of S−1(ρ) and R−1(λ)

are also non-negative, which explains the terminology uniformly bounded in abso-

lute value in general. Assumption 3.5 might also be relaxed; the row and columns

sum may also diverge to infinity, but only to a lesser extent than the sample size

N (see Lee, 2004; Lee and Yu, 2010a, footnote 14). Commonly it is assumed that

ρ0 and λ0 take values in the interval (−1,+1) to fulfill Assumption 3.3. Theoretic-

ally it is possible that ρ0 is smaller than -1, since the lower bound is defined by 1

divided by the smallest eigenvalue of W . The result will be smaller than -1 since

this smallest eigenvalue will be in the interval (-1,0) when W is non-negative and

normalized (Ord, 1978). However, negative values for ρ0 in models with a spatial

lag in the dependent variable are considerably less common than positive ones, let

alone negative values smaller than −1 (Elhorst, 2014, Section 2.5). Therefore, im-

posing this lower bound is hardly restrictive. A similar argument applies to the

coefficient of the MA error term.

Assumptions 3.4, 3.6, 3.7, and 3.8 are modified for the model with MA errors;

if the inverse of the matrix R(λ) is taken when considering a spatial AR error pro-

cess, it is not when considering a spatial MA process, or vice versa. Assumption

3.6 focuses on the large N and finite T panel data setting, representative for the

majority of spatial econometric studies. This assumption allows researchers the

opportunity to include time fixed effects as regular regressors without facing an in-

cidental parameter problem due to T being large, and the opportunity to consider

spatial weight matrices that are not row normalized but normalized by a scalar. As-

sumption 3.7 provides the identification conditions of the model with spatial MA

errors. Assumption 3.7(a) globally identifies (ρ0, λ0), provided that W 6= M. In

case W = M, (ρ0, λ0) and (λ0, ρ0) cannot be distinguished from each other based

on 3.7(a). Instead, identification relies on Assumption 3.7(b). The non-singularity

of H(λ) for each λ in the first part of Assumption 3.7(b) guarantees that ρ0 and β0

are identified. The second part of Assumption 3.7(b) provides the identification of

λ0 for λ 6= λ0.3 These identification assumptions have been discussed in Lee and

Yu (2010a) for the SARAR model and have been transformed here for the SARMA

3 In Assumption 3.7, the equations in (3.12), and the proofs of Theorems 1 and 2 in the appendix, the
notations R(λ) and R are used to denote this matrix evaluated at respectively the estimate of λ and the
true value of λ = λ0.



80 Chapter 3

model.

Theorem 1. Under Assumptions 3.1-3.7, β0 is identified and for θ̂
w

based on (3.9)-(3.11)

of the within transformation, θ̂
w − θT

p−→ 0, where θT = θ0 − (01×(K+2),
1
T σ2

0 )
′
.

Proof. See Appendix 3.A.2.

From this theorem it follows that σ2
T = σ2

0 −
1
T σ2

0 , which implies that the true value

of σ2
0 = T

T−1 σ2
T .

Theorem 2. Under Assumptions 1-6 and 7(a) (W 6= M); or Assumption 1-6, 7(b), and 8
(W = M),

√
NT(θ̂

w − θT)
w−→ N

(
0, lim

T
T − 1

(Σw
θT
)−1(Σw

θT
+ Ωw

θT
)(Σw

θT
)−1
)

, (3.13)

where Σw
θT

and Ωw
θT

are given in (3.A.4) and (3.A.5) of Appendix 3.A.1;

Proof. See Appendix 3.A.3.

Importantly, the addition of the matrix Ωw
θT

in (3.13) of this theorem, see Equation

(3.A.5) for its detailed specification, covers the correction that is needed when the

error terms are not assumed to be normally distributed. Only if they are, this mat-

rix reduces to the null matrix and drops out. This correction affects the efficiency of

the parameter estimates but not their consistency.

To determine the parameters of the SARMA model numerically based on the

proposed QML within estimator, a routine has been developed where the researcher

needs to specify the N × 1 vector yt, the N × K matrix X t, and the two N × N spa-

tial weight matrices W and M. The researcher also has the opportunity to specify

whether or not to include time fixed effects and whether or not to depart from

normally distributed error terms. The routine first concentrates out the individual

fixed effects and then maximizes the concentrated log-likelihood function in Equa-

tion (3.11), such that if the values of ρ and/or λ change, the estimates for β̂
w
(ρ, λ)

and σ̂2w(ρ, λ) in Equations (3.9) and (3.10) change accordingly. When this max-

imum is found, the estimate for σ̂2w is bias-corrected. A similar routine has been de-

veloped for the SARAR model. By comparing these two routines, it appeared that



The SARMA panel model 81

the SARMA model is computationally more demanding than the SARAR model

and thus requires more computation time. This is because the matrix R when de-

termining β̂
w
(ρ, λ) and σ̂2w(ρ, λ) needs to be inverted every time the concentrated

log-likelihood function is determined for a particular pair of values (ρ, λ) in the

maximization process, which is not needed when estimating the parameters of the

SARAR model. This may have been an obstacle in the past when computing fa-

cilities were relatively limited and might explain why the SARAR model received

more attention than the SARMA model. Another explanation might be that re-

searchers may find it more difficult to work with different structures for the spatial

lag in the dependent variable and in the error term. For the same reason and due to

lack of economic-theoretical knowledge how to specify the spatial weight matrix,

they also often consider one common spatial weight matrix for all spatial lags in the

model. This chapter attempts to break this practice by considering both the SARMA

and the SARAR model, by considering the opportunity to consider different spatial

weight matrices for each spatial lag, and by making both routines available.

The routines are based on Assumption 3.6 that N is large and T is finite. Given

that T is finite in most empirical spatial econometric studies, there is no obstacle to

treat time fixed effects, if included, as regular regressors. When T grows large, it

is nonetheless tempting not only to concentrate out the individual effects but also

the time fixed effects. However, this requires more complicated transformations

than the within approach and spatial weight matrices that are row normalized, or

alternatively a more complicated bias correction procedure of the within estimator.

Details are available in Lee and Yu (2010a, Section 3) and Elhorst (2014, Section

3.3.3), though only for the SARAR model. To illustrate the minor significance of

this extension, we refer to the xsmle command in Stata. This routine offers the op-

portunity to estimate the SARAR model with individual and/or time fixed effects

(ind, time or both), as well as to activate the “leeyu” suboption to concentrate out

the fixed effects using the transformations developed by Lee and Yu (2010a). How-

ever, when both individual and time fixed effects are included and the “leeyu”

suboption is activated, the following warning is given “Suboption -both- will be

replaced with -ind-”.
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3.4 Monte Carlo simulations

We conduct a Monte Carlo experiment to examine the finite sample properties of

the proposed QML within estimator of the SARMA model under different N and

T settings. We consider N = (200, 800) and T = (5, 10) because these panel data

settings are representative for applied studies in spatial econometrics. We gener-

ate the data using the SARMA model with a binary contiguity (BC) matrix for the

dependent variable and a negative exponential (ED) distance decay matrix for the

error term. To construct these matrices, we use the coordinates of the N data points

evenly set in a rectangle of 10× 20 for N = 200 and 20× 40 for N = 800. The BC

matrix is based on the rook principle. Row-normalization is performed for both

matrices. The data generating process further contains one explanatory variable xt

with coefficient β0 = 1, while c0, v0t = (v0,1, v0,2, ..., v0T), and vt are all generated

from independent standard normal distributions, where σ2
0 = 1. Two settings of

spatial dependence in the dependent variable and spatial dependence in the error

are considered, which are (ρ0, λ0) = (0.2, 0.5) and (ρ0, λ0) = (0.5, 0.2). The degree

of spatial dependence in the dependent variable in the first setting is relatively mild

(0.2) and the spatial dependence in the error term relatively large (0.5), while in the

second setting this is turned around. The number of iterations is set to 1000. The

R2 of the DGP ranges from 30% to 50%.

We first estimate the model “correctly”; the SARMA model with BC matrix for

the dependent variable and ED matrix for the errors are used both in the DGP and

estimation of this model. We consider the QML within estimator before and after

bias correction (bc), respectively. When bias correction is performed, σ2 is labelled

as σ2
bc. Next, we investigate respectively what happens if a practitioner would

estimate the SARMA model by one common spatial weight matrix, the BC mat-

rix, for the two spatial lags (“wrong” matrix), would estimate the SARAR model

with the BC matrix for the dependent variable and the ED matrix for the error

terms (“wrong” model), or would estimate the SARAR model by one common spa-

tial weight matrix, the BC matrix, for the two spatial lags (“wrong” matrix and

“wrong” model). In each of these additional cases, we only consider the bias cor-

rected σ2
bc. Time fixed effects are included and treated as regular explanatory vari-

able in all cases, but their coefficient estimates are not reported for reasons of space
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and simplicity. For each panel data setting and estimated model, the empirical bias

(Bias), the empirical standard deviation (E-SD), the empirical root mean square er-

ror (RMSE), and the empirical median bias (Mbias) are reported. In addition, we re-

port the direct and indirect spillover effect of the explanatory variable in the model

(denoted by DE x and IE x). The direct effect measures the impact of changing the

explanatory variable of one unit on the dependent variable of that unit itself, and

the indirect spillover effect the cumulative effect of changing the explanatory vari-

able of one unit on the dependent variable of other units (LeSage and Pace, 2009).

LeSage and Pace (2018) demonstrate that past studies’ focus exclusively on point

estimates may not provide useful information regarding the statistical properties

of the marginal effects, i.e., the direct and indirect spillover effect of each variable

obtained from these point estimates.

Tables 3.2 and 3.3 report the simulation results for (ρ0, λ0) = (0.2, 0.5) and

(ρ0, λ0) = (0.5, 0.2), respectively. Both cases show similar patterns. The simula-

tion results in the first panel “SARMA BC ED” of these tables unequivocally show

that the within approach without bias correction should be rejected. As expec-

ted, the estimate for σ2 is severely biased in small samples, even though it halves

when T increases from 5 to 10. The biases in β, ρ, λ, σ2
bc, and the direct and in-

direct spillover effects are all small and acceptable and tend to fall as T increases

but above all when N increases. Largely similar results are found for the E-SD,

RMSE, and Mbias. Overall, the simulation results appear to be consistent with the

theoretical predictions.
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Figure 3.1. Bias of λ

Since the spatial moving average parameter λ is our point of our interest, Fig-

ure 3.1 graphs the bias that occurs in this parameter when adopting a wrong spatial

weight matrix, a wrong model, or both. These biases are taken from Tables 3.2 and

3.3. The numbers 1 to 4 on the x-axis indicate the panel data settings of N and T,

respectively (N, T) = (200, 5), (200, 10), (800, 5), (800, 10), and the values on the y-

axis the magnitude of the biases. When the model is estimated correctly, the bias

of ρ decreases as N, T, or both increase, and especially if N increases. Further-

more, the bias is smallest compared to the other cases. Nevertheless, the bias is

relatively large compared to that of the other parameters and marginal effects in

the panels “SARMA BC ED” of Tables 3.2 and 3.3. When the wrong model is es-

timated, namely the SARAR model, Figure 3.1 shows that the bias in λ increases,

but that the downward pattern relative to N and T remains. By contrast, when

one common spatial weight matrix is adopted for all spatial lags, both in the right

model (SARMA) and in the wrong model (SARAR), not only the bias in λ further in-

creases, but also the downward pattern relative to N and T completely disappears.
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This finding demonstrates that the selection of the right spatial weight matrix and

considering different spatial weight matrices for different spatial lags in the model

is of crucial importance and perhaps even more important than the selection of the

right spatial econometric model.

3.5 Empirical application: Military expenditures

The empirical analysis in this section is based on Yesilyurt and Elhorst (2017) (YE).

YE investigate (the log of the level of) military spending measured as a ratio of

GDP, also known as the defense burden, in 144 countries over the period 1993 to

2007. Consequently, T = 15 may be considered finite. Explanatory variables are

GDP, population, international war, civil war, and political regime.4 The first two

explanatory variables are measured in logs, while the latter three are measured as

scores, of which the scores on international war and civil war range from 0 (no

war) to 10 (greatest, and on political regime from -10 (strongly autocratic) to +10

(strongly democratic).5

YE compare the performance of different spatial econometric models, among

which the SAR model, but not the SARMA and the SARAR models, and eight po-

tential specifications of the spatial weight matrix, among which a binary contiguity

matrix, but not an exponential or distance decay matrix. Using Bayesian compar-

ison methods developed by LeSage (2014, 2015), they find that the SAR model, the

specification that only includes a spatial lag in the dependent variable, in combin-

ation with a spatial weight matrix specified as a row-normalized binary contiguity

(BC) matrix based on maritime borders produces the highest Bayesian posterior

model probability. It makes this study interesting for further research because the

SARMA and SARAR models are not considered and LeSage’s Bayesian comparison

approach does not give any other option than to depart from one common spatial

weight matrix for all spatial lags in the model. We investigate whether extending

the SAR model with a spatial MA or AR error process and whether utilizing the

4 Due to linking several data sources, YE were able to collect data on many countries from multiple
continents (Europe, Asia, Africa, North and South America, and Australia). The number of 144 coun-
tries is also greater than any other study on military expenditures, and also covers countries frequently
engaged in tensions (Cuba, Israel, Lebanon, Iran, Syrian, Kuwait, Vietnam, Mali, Ethiopia, both Congos,
and Columbia).

5 For more details on the data and the variables we refer the reader to Yesilyurt and Elhorst (2017).
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opportunity to use different spatial weight matrices for each spatial lag improve

the results. We consider row-normalized BC, ED, and ID spatial weight matrices,

which differ in their degree of sparsity and boundedness, but for reasons explained

in Section 3.2.3, we exclude the ID matrix when modelling AR spatial lags and the

BC matrix when modelling MA spatial lags. We also consider scalar normalization

by the largest eigenvalue of the distance-based spatial weight matrices.

Table 3.4 reports the estimation results using the QML within estimator with

bias correction. The individual fixed effects are included but concentrated out and

the time fixed effects are captured as year dummies and estimated as regular ex-

planatory variables. One year dummy is dropped to avoid multicollinearity. Just

as YE, the direct and indirect spillover effects of each variable are also determined.

The delta method introduced in Arbia et al. (2020) is used to calculate the signi-

ficance levels of these effects. Columns (1) and (2) report the estimation results of

the SAR model using either the row-normalized BC or the row-normalized ED spa-

tial weight matrix, respectively. Although the ED matrix was not part of the eight

matrices considered by YE, it is clear that when this matrix were added to their

choice set, the results would not have changed. The log likelihood function value

when adopting the BC matrix is higher than that of the ED matrix. The coefficient

estimate of the spatial autoregressive parameter ρ is 0.2368 and significant at the

1% level. Four of the five explanatory variables in the model appear to have coeffi-

cients, direct and indirect spillover effects that are significant at the 1%, 5% or 10%

level. When adopting the row-normalized ED matrix, only three explanatory vari-

ables have this property. For this reason and the fact that its log likelihood function

value is lower, we reject the ED matrix and stick to the BC matrix when modelling

the spatial lag in the dependent variable in the next steps.

Columns (3) and (4) report the results when the SAR model using the row-

normalized BC matrix is extended with a spatial AR error process based on either

the row-normalized BC or the row-normalized ED matrix. The results demonstrate

that the common practice to use one common spatial weight matrix for the spatial

lag in the dependent variable and the spatial lag in the error term needs to be rejec-

ted. The log likelihood function value when adopting the row-normalized BC mat-

rix also in the error term is lower than that of the ED matrix. Furthermore, while the

spatial autoregressive parameter is close to zero and insignificant (-0.0162, t-value
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Table 3.4. Military expenditures according to different combinations of spatial
weight matrices

Var W

Model SAR SARAR SARMA

(1)BC (2)ED (3)BC BC (4)BC ED (5)BC ED (6)BC ID (7)BC ID*

GDP -0.4900*** -0.4982*** -0.4770*** -0.4845*** -0.4838*** -0.5003*** -0.4812***
(-5.27) (-5.34) (-5.05) (-5.15) (-5.14) (-5.32) (-4.95)

Pop -0.3437** -0.2804 -0.4667** -0.3537* -0.3596* -0.3396* -0.3604**
(-2.02) (-1.64) (-2.32) (-1.91) (-1.92) (-1.83) (-1.96)

Int. War 0.0733* 0.0725* 0.0785* 0.0751* 0.0758* 0.0749* 0.0759*
(1.82) (1.80) (1.93) (1.85) (1.86) (1.85) (1.81)

Civil War 0.0092 0.0085 0.0101 0.0098 0.0098 0.0072 0.0069
(0.63) (0.58) (0.70) (0.68) (0.68) (0.50) (0.46)

PR -0.0147*** -0.0156*** -0.0137*** -0.0152*** -0.0153*** -0.0143*** -0.0145***
(-3.07) (-3.26) (-2.89) (-3.18) (-3.20) (-3.03) (-2.96)

ρ 0.2368*** 0.3389*** -0.0162 0.1649*** 0.1530*** 0.1762*** 0.2880***
(8.42) (8.35) (-0.51) (5.54) (5.11) (5.97) (6.44)

λ 0.2587*** 0.1744*** -0.2235*** -0.3426*** -0.2918***
(9.01) (3.50) (-3.50) (-3.40) (-2.74)

dir GDP -0.4962*** -0.5035*** -0.4770*** -0.4874*** -0.4863*** -0.5037*** -0.4853***
(-5.27) (-5.34) (-5.05) (-5.15) (-5.14) (-5.32) (-4.95)

dir Pop -0.3481** -0.2835 -0.4667** -0.3557* -0.3614* -0.3419* -0.3635**
(-2.02) (-1.64) (-2.32) (-1.91) (-1.92) (-1.83) (-1.96)

dir Int. War 0.0742* 0.0733* 0.0785* 0.0755* 0.0762* 0.0754* 0.0765*
(1.82) (1.80) (1.93) (1.85) (1.86) (1.85) (1.81)

dir Civil War 0.0093 0.0086 0.0101 0.0099 0.0099 0.0072 0.0070
(0.63) (0.58) (0.70) (0.68) (0.68) (0.50) (0.46)

dir PR -0.0148*** -0.0158*** -0.0137*** -0.0153*** -0.0154*** -0.0144*** -0.0147***
(-3.07) (-3.26) (-2.89) (-3.18) (-3.2) (-3.03) (-2.96)

ind GDP -0.1448*** -0.2500*** 0.0076 -0.0921*** -0.0843*** -0.1029*** -0.1172***
(-4.12) (-3.86) (0.52) (-3.49) (-3.35) (-3.66) (-3.49)

ind Pop -0.1016* -0.1407 0.0074 -0.0673* -0.0627* -0.0698* -0.0878*
(-1.93) (-1.58) (0.51) (-1.77) (-1.76) (-1.72) (-1.82)

ind Int. War 0.0217* 0.0364* -0.0012 0.0143* 0.0132* 0.0154* 0.0185*
(1.75) (1.71) (-0.50) (1.72) (1.72) (1.73) (1.70)

ind Civil War 0.0027 0.0043 -0.0002 0.0019 0.0017 0.0015 0.0017
(0.63) (0.58) (-0.42) (0.67) (0.67) (0.49) (0.46)

ind PR -0.0043*** -0.0078*** 0.0002 -0.0029*** -0.0027*** -0.0029*** -0.0035***
(-2.79) (-2.82) (0.51) (-2.64) (-2.60) (-2.60) (-2.53)

logL -1390.2946 -1394.6256 -1389.5789 -1387.5085 -1387.1566 -1387.0925 -1394.7790
rsqr 0.7003 0.6984 0.6861 0.6975 0.6970 0.6980 0.6970

***significant at 1% level **significant at 5% level *significant at 10% level
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-0.51) when using the BC matrix, it is positive and significant (0.1649, t-value 5.54)

when using the ED matrix. The estimates of λ indicating the spatial dependence in

the error terms are significant in both settings. This makes sense. It is likely that

the spatial pattern of unobserved shocks in the error term go beyond the first-order

neighbours of each country. When modelling the AR error process by the same BC

matrix as for the spatial lag in the dependent variable, it finally appears that none

of the indirect spillover effects is significant any more.

Columns (5) and (6) report the results when estimating the SARMA model, in

particular the SAR model using the row-normalized BC matrix extended with a

spatial MA error process based on spatial weight matrices that are denser than the

binary contiguity matrix, either the row-normalized ED or the row-normalized ID

matrix. In line with the purpose of this chapter, it first appears that the log likeli-

hood function value of the SARMA model compared to the SARAR model when

using the same two spatial weight matrices, the row-normalized BC matrix for the

spatial lag in the dependent variable and the row-normalized ED matrix for the

spatial lag in the error term, appears to be higher. The difference is nonetheless

small: -1387.1566 versus -1387.5085. This is because they yield largely similar res-

ults in terms of magnitude and significance. Second, it appears that the perform-

ance of the SARMA model in terms of the log likelihood function value can be

improved further to -1387.0925 by replacing the row-normalized ED matrix by the

row-normalized ID matrix. This finding supports the hypotheses that shocks are

local because the spatial pattern of unobserved shocks in the error term go beyond

the first-order neighbours of each country, that these shocks for this reason are bet-

ter modelled by a spatial MA error process than by a spatial AR process, and that

a spatial weight matrix denser than the binary contiguity matrix used to model the

spatial lag in the dependent variables is the appropriate matrix to model this MA

error process. The estimated spatial moving average parameter of the error term

is -0.3426 and significant at the 1% level; it turns out to have a downward effect

on the estimated autoregressive parameter in that it decreases from 0.2368 in the

SAR model to 0.1762 in the SARMA model. This finding implies that if a particu-

lar country increases its military expenditure as a ratio of GDP (say by 1% point),

neighbouring countries will follow (by 0.18% points), though to a lesser extent than

is found when estimating the SAR model without a spatial lag in the error term.
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Column (7) of Table 3.4 finally reports the estimation results when the row nor-

malized inverse distance matrix is replaced by its scalar normalized counterpart.

Since the log likelihood value does not increase, this alternative specification of the

inverse distance matrix appears not to be fruitful.6

When comparing the parameter estimates, the direct effects, and the indirect

spillover effects in the different columns with each other, it initially seems as if

the differences are rather small. Especially, the signs, magnitudes, and significance

levels of the parameters estimates and the direct effects do not differ to any great

extent from each other, no matter which model is used (SAR, SARAR, or SARMA)

and which specification of the spatial weight matrix is used (BC, ED, or ID). How-

ever, a different conclusion emerges considering the indirect spillover effects when

a model is estimated with the “wrong” spatial weight matrix, such as the SAR

model with an ED matrix in Column (2), or when one common spatial weight mat-

rix is used for all spatial lags in the model, such as the SARAR model with a BC

matrix in Column (3). Then both the signs and significance levels tend to be differ-

ent. This is an important finding since indirect spillover effects are often the main

focus of applied practitioners. They want to know whether changing a variable in

one country has an effect on other counties. Our search for the most likely model

and the most likely spatial weight matrix for the different spatial lags in the model

show that this can really make a difference. The results of the SARMA models are

more robust when different spatial weight matrices are used. The results found for

the best performing model, the SARMA model with a spatial lag modelled by the

BC matrix and a spatial MA error process modelled by the ID matrix, show that a

focal country surrounded by countries with higher levels of GDP, countries with

larger population, countries involved in an international war, and countries with

an autocratic regime have a significant upward effect on the military expenditures

of that country.

3.6 Conclusion

The SARMA model received considerably less attention in the theoretical and ap-

plied econometric literature than the SARAR model. We identify two reasons for

6 The estimated results of the full set of models with scalar normalized spatial weight matrices can be
obtained upon request.
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this. First, the estimation of the spatial MA autocorrelation parameter is computa-

tionally more demanding than of spatial AR autocorrelation parameter since the

matrix R(λ) needs to be inverted multiple times when estimating the SARMA

model, while this inversion is not needed when estimating the SARAR model. This

may have been an obstacle in the past when computing facilities were relatively

limited. Second, estimation routines of the SARMA model have not been made

available to practitioners. This chapter attempts to break this practice along four

ways.

First, we develop the QML within estimator with bias correction to estimate the

parameters of the SARMA model when N is large and T is finite. We investigate its

asymptotic sample properties from an econometric-theoretical viewpoint and their

finite sample properties from an empirical viewpoint using Monte Carlo simula-

tions. The QML within estimator appears to be consistent, asymptotically normal,

and due to the bias correction properly centred, while its finite sample properties

appear to be acceptable and to improve as T increases but above all when N in-

creases. The QML within estimator without bias correction needs to be rejected. We

also investigate what happens when the data is generated by a SARMA model with

different spatial weight matrices for each spatial lag but estimated by the SARMA

model with one common spatial weight matrix, the SARAR model with similar spa-

tial weight matrices, or the SARAR model with one common spatial weight matrix.

This simulation experiment shows that the selection of the right spatial weight mat-

rix and considering different spatial weight matrices for different spatial lags in the

model is of crucial importance.

Second, the proposed estimator offers the opportunity to consider different spa-

tial weight matrices for the spatial lags in the model, as well as spatial weight

matrices that are normalized by its largest eigenvalue rather than row normalized.

We have shown that this improves empirical applications.

Third, a Matlab routine of the proposed QML estimators will be made available

to give other researchers the opportunity to apply it to their own data sets.

Fourth, we describe and compare the econometric and economic properties of

spatial moving average errors and spatial autoregressive errors with each other in

relation to the degree of sparsity and boundedness of three spatial weight matrices,

and demonstrate that the interpretation of spatial moving average errors in various
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empirical applications, among which our empirical application based on military

expenditures, is more obvious than spatial autoregressive errors since most shocks

are local rather than global.

In follow-up research we aim at extending the SARMA and SARAR models

further with spatial lags in the explanatory variables, leading to so-called general

nesting spatial models, and with parameterized specifications of distance decay

spatial weight matrices to further increase the flexibility with which these matrices

can be specified.
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3.A Appendix: QML within estimator with bias cor-

rection

3.A.1 First and second order derivatives of the log likelihood in
(3.8)

The first order derivatives are

1√
NT

∂lnLw(θ)

∂θ
=



1
σ2

1√
NT ∑T

t=1(R−1(λ)X̃ t)
′
ṽt(ζ)

1
σ2

1√
NT ∑T

t=1[(R−1(λ)Wỹt)
′
ṽt(ζ)− trG(ρ)]

1
σ2

1√
NT ∑T

t=1[−(K(λ)ṽt(ζ))
′
ṽt(ζ) + trK(λ)]

1
2σ4

1√
NT ∑T

t=1(ṽ
′
t(ζ)ṽt(ζ)− Nσ2)

 , (3.A.1)

where S(ρ) = IN − ρW , G(ρ) = WS−1(ρ), R(λ) = IN − λM, H(λ) = MR−1(λ),

and K(λ) = R−1(λ)M.

The score of the log likelihood function evaluated at θT , where θT = θ0 −
(01×(K+2),

1
T σ2

0 )
′

is defined in Theorem 1, is

1√
NT

∂lnLw(θT)

∂θ
=



1
σ2

T
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t=1(G̈Ẍ tβ0)
′
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1
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1
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T
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NT ∑T

t=1(−ṽ
′
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ṽt + σ2

TtrK)

1
2σ4

T

1√
NT ∑T

t=1(ṽ
′
tṽt − Nσ2

T)


,

(3.A.2)

where Ẅ = R−1W R, G̈ = Ẅ(IN − ρẄ)−1 = R−1GR, and Ẍ t = R−1X̃ t.

The second order derivatives are
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)ṽ
t(

ζ
))
′ ṽ t
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Given the second order derivatives, the score of the log likelihood at θT , and

Lemma A.4 of Lee and Yu (2010a), the information matrix Σw
θT

takes the form

Σw
θT

= −E
1

NT
∂2lnLw(θT)

∂θ∂θ
′

=
1

σ2
T


H ∗ ∗

01×(K+1) 0 ∗
01×(K+1) 0 0



+


0K×K ∗ ∗ ∗
01×K

1
N tr(G̈sG̈) ∗ ∗

01×K − 1
N tr(KsG̈) 1

N tr(KsK) ∗
01×K

1
σ2

T N
tr(G̈) − 1

σ2
T N

tr(K) 1
2σ4

T

 , (3.A.4)

where H = 1
NT ∑T

t=1(Ẍ t, G̈Ẍ tβ0)
′
(Ẍ t, G̈Ẍ tβ0). A matrix with superscript s is defined

by As = A
′
+ A (A = G̈s, Ks). The matrix Ωw

θT
in Theorem 2 reads as

Ωw
θT

=
T − 1

T
µ4 − 3σ4

0

σ4
0
×

0K×K ∗ ∗ ∗
01×K

1
N ∑N

i=1 G̈2
ii ∗ ∗

01×K − 1
N ∑N

i=1 G̈iiKii
1
N ∑N

i=1 K2
ii ∗

01×K
1

2σ2
T N

trG̈ − 1
2σ2

T N
trK 1

4σ4
T

 . (3.A.5)

This matrix captures the correction that is needed to the information matrix when

the error terms are not assumed to be normally distributed.

3.A.2 Proof of Theorem 1 (Consistency)

The proofs closely follow the steps and notations used in Lee and Yu (2010a), but

we do make modifications for using the SARMA rather than the SARAR model.

We present the analysis under the asymptotic setting that N tends to infinity and T

is finite.

As pointed out in Section 3.3, one problem of the within transformation is that

the resulting error terms are linearly dependent over the time dimension. Con-

sequently, the estimate σ̂2w of σ2
0 using the within transformation will be consistent
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only when T is large. When T is finite, σ̂2w should be bias-corrected by T
T−1 σ̂2w to

obtain a consistent estimate of σ2
0 . This is demonstrated by Arellano (2003, Section

2.2) for non-spatial panel models, by Lee and Yu (2012) for spatial panel data mod-

els, and by Lee and Yu (2010a) for the SARAR model. One major difference between

the last two studies is that Lee and Yu (2012) concentrate out individual specific

effects by taking first-differences, while Lee and Yu (2010a) concentrate them out

by an orthogonal transformation. However, all three studies conclude that the re-

quired bias correction can be effected by replacing T in (3.11) with T− 1,7 to get the

adjusted log likelihood (not indicated by a symbol)

lnL(θ) =− N(T − 1)
2

ln(2πσ2) + (T − 1)[ln|S(ρ)| − ln|R(λ)|]

− 1
2σ2

T−1

∑
t=1

v∗
′

t (ζ)v∗t (ζ), (3.A.6)

where v∗t (ζ) = R−1(λ)[S(ρ)y∗t − X∗t β]. To be able to compare this log likelihood

with that of the within transformation in Equation (3.8), we use the property that

∑T−1
t=1 v∗

′
t v∗t = (v

′
1, ..., v

′
T) (JT ⊗ IN)(v1, ..., vT) = ∑T

t=1 ṽ
′
tṽt, where JT = IT − 1

T ιTι′T ,

and rewrite (3.A.6) as

lnL(θ) =− N(T − 1)
2

ln(2πσ2) + (T − 1)[ln|S(ρ)| − ln|R(λ)|]

− 1
2σ2

T

∑
t=1

ṽ
′
t(ζ)ṽt(ζ). (3.A.7)

The QML estimators of β and σ2, given ρ and λ, starting from this log likelihood

are

β̂(ρ, λ) = [
T

∑
t=1

X̃
′

tR
−1′(λ)R−1(λ)X̃ t]

−1[
T

∑
t=1

X̃
′

tR
−1′(λ)R−1S(ρ)ỹt], (3.A.8)

σ̂2(ρ, λ) =
1

N(T − 1)

T

∑
t=1

[S(ρ)ỹt − X̃ t β̂(ρ, λ)]
′

× R−1′(λ)R−1(λ)[S(ρ)ỹt − X̃ t β̂(ρ, λ)], (3.A.9)

7 A detailed explanation is provided by Lee and Yu (2012, p.1373).
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as a result of which the concentrated log likelihood function of (ρ, λ) is

lnL(ρ, λ) = −N(T − 1)
2

(ln(2π) + 1)− N(T − 1)
2

lnσ̂2(ρ, λ)

+ (T − 1)[ln|S(ρ)| − ln|R(λ)|]. (3.A.10)

By comparing (3.9)-(3.10) with (3.A.8)-(3.A.9), it appears that β̂(ρ, λ) = β̂
w
(ρ, λ)

and σ̂2(ρ, λ) = T
T−1 σ̂2w(ρ, λ). Hence, after plugging in the estimates from the adjus-

ted log likelihood into the concentrated log likelihood of the within transformation,

(3.11) can be rewritten as

lnLw(ρ, λ) = −NT
2

(ln(2π) + ln(
T − 1

T
) + 1)− NT

2
lnσ̂2(ρ, λ)

+ T[ln|S(ρ)| − ln|R(λ)|]. (3.A.11)

The expressions in (3.A.7) and (3.A.11) show that the difference between T− 1 and

T has no effect and that the maximum for ρ̂ and λ̂ of both transformations will be

the same. Therefore, β̂
w
(ρ, λ) and β̂(ρ, λ) using the log likelihood of the within

transformation and its adjustment will also be the same. By contrast, the estimate

of σ2
0 using the within transformation will be different and consistent only when

T is large. However, departing from the expressions for σ̂2w(ρ, λ) and σ̂2(ρ, λ),

σ̂2w(ρ, λ) can be easily be bias-corrected by T
T−1 σ̂2w, which is numerically equal to

σ̂2(ρ, λ).

Global identification of (ρ0, λ0)

Corresponding to 1
N(T−1) lnL(ρ, λ) in (3.A.7), define Q(ρ, λ) = maxβ,σ2E 1

N(T−1) lnL(θ)

and let Hρ0(λ) = H3(λ)−H
′
2(λ)H

−1
1 (λ)H2(λ). where Hi(λ) for i = 1, 2, 3 are the

corresponding components ofH(λ) in (3.12). We have

Q(ρ, λ) = −(ln(2π) + 1)− 1
2

σ∗2(ρ, λ) +
1
N
[lnS(ρ)− lnR(λ)], (3.A.12)

where

σ∗2(ρ, λ) = (ρ0 − ρ)2Hρ0(λ) + σ2†(ρ, λ)

= (ρ0 − ρ)Hρ0(λ) + σ2
0

1
N

tr(R
′
S
′−1S

′
(ρ)R

′−1(λ)R−1(λ)S(ρ)S−1R).

(3.A.13)
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At the true parameters, Q(ρ0, λ0) = − 1
2 (ln2π+ 1)− 1

2 lnσ2
0 +

1
N ln|S(ρ0)|− 1

n ln|R(λ0)|.
We need to prove that limQ(ρ, λ) < limQ(ρ0, λ0) for any (ρ, λ) 6= (ρ0, λ0). We have

Q(ρ, λ)−Q(ρ0, λ0) =

− 1
2
[lnσ∗2(ρ, λ)− lnσ2

0 ] +
1
N

ln|S(ρ)| − 1
N

ln|S(ρ0)|+ [−( 1
N

ln|R(λ)| − 1
N

ln|R(λ0)|)]

= T1(ρ, λ)− T2(ρ, λ),

where

T1(ρ, λ) = −1
2
[lnσ2(ρ, λ)− lnσ2

0 ] +
1
N

ln|S(ρ)| − 1
N

ln|S(ρ0)|+ [−( 1
N

ln|R(λ)| − 1
N

ln|R(λ0)|)],

and T2(ρ, λ) = 1
2 ln(1 + (ρ0−ρ)2(H3(λ)−H

′
2(λ)H

−1
1 (λ)H2(λ))

σ2†(ρ,λ) ).

Consider the spatial process yt = ρ0Wyt + ut without explanatory variables

and the spatial MA error process ut = vt − λ0Mvt in period t. The log likelihood

of this process is

lnLp(ρ, λ, σ2) = −N
2

ln2π − N
2

lnσ2 + ln|S(ρ)| − ln|R(λ)| − 1
σ2 v

′
t(ρ, λ)JNvt(ρ, λ),

where vt = R−1(λ)S(ρ)yt. Let Qp(ρ, λ) = maxσ2E 1
N lnLp(ρ, λ, σ2) and Qp(ρ0, λ0)

be Qp(ρ, λ) evaluated at (ρ0, λ0). It follows that Qp(ρ, λ)− Qp(ρ0, λ0) = T1(ρ, λ).

Due to the information inequality Qp(ρ, λ)−Qp(ρ0, λ0) ≤ 0, we have T1(ρ, λ) ≤ 0

for any (ρ, λ). By contrast, as (ρ0 − ρ)2(H3(λ)−H
′
2(λ)H

−1
1 (λ)H2(λ)) is a quad-

ratic function of ρ, given λ, and σ2†(ρ, λ) is bounded away from zero, T2(ρ, λ) ≥ 0.

The finding that Qp(ρ, λ)−Qp(ρ0, λ0) ≤ 0 for any (ρ, λ) implies that− 1
2 lnσ2†(ρ, λ) ≤

− 1
2 lnσ2

0 +
1
N ln|S(ρ)| − 1

N ln|S(ρ0)|+ [−( 1
N ln|R(λ)| − 1

N ln|R(λ0)|)]. As 1
N ln|S(ρ)| −

1
N ln|S(ρ0)| and 1

N ln|R(λ)| − 1
N ln|R(λ0)| and thus −( 1

N ln|R(λ)| − 1
N ln|R(λ0)|) are

all O(1) uniformly in (ρ, λ), −lnσ2†(ρ, λ) is bounded from above as σ2
0 is bounded

away from 0. Hence, σ2†(ρ, λ) is is bounded away from 0.

Under Assumption 3.7(b),H3(λ)−H
′
2(λ)H

−1
1 (λ)H2(λ) is positive, so that T2(ρ, λ) >

0 for ρ 6= ρ0 for any given λ. Given ρ0, λ0 is the unique maximizer of limT1(ρ, λ)

under

lim(
1
N
|σ2

0 R
′
R| − 1

N
|σ2†(ρ, λ)R

′
(λ)R(λ)|) 6= 0,

for λ 6= λ0. Hence, both ρ0 and λ0 are identified. When Assumption 3.7(b) does not
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hold, identification requires that T1(ρ, λ) < 0. Under Assumption 3.7(a), we will

have T1(ρ, λ) < 0 whenever (ρ, λ) 6= (ρ0, λ0). Hence, lim[Q(ρ0, λ0)− Q(ρ, λ)] > 0

if (ρ, λ) 6= (ρ0, λ0). This proves global identification of (ρ0, λ0).

Uniform convergence of 1
N(T−1) lnL(ρ, λ)−Q(ρ, λ)

As 1
NT lnLw(ρ, λ)−Qw(ρ, λ) = 1

N(T−1) lnL(ρ, λ)−Q(ρ, λ), where

Qw(ρ, λ) = maxβ,σ2E 1
NT lnLw(θ), we also prove the latter for simplicity. Denote

X̃χ,t(λ) = R−1(λ)(GX̃
′

tH−1
1 (λ)H2(λ))

and

Vχ,t(λ) =
1

N(T − 1)

T

∑
t=1

X̃
′

tR
−1′(λ)R−1(λ)S(ρ)S−1Rṽt.

We have

σ̂2(ρ, λ) = (ρ0 − ρ)2Hρ0(λ)

+
1

N(T − 1)

T

∑
t=1

ṽ
′
tR
′
S
′−1S

′
(ρ)R

′−1(λ)R−1(λ)S(ρ)S−1Rṽt

+ 2(ρ0 − ρ)
1

N(T − 1)

T

∑
t=1
X̃χ,t(λ)R

′−1(λ)R−1(λ)S(ρ)S−1Rṽt

− V ′χ,t(λ)H−1
1 (λ)Vχ,t(λ), (3.A.14)

as a result of which

σ̂2(ρ0, λ0) = σ2
0 + Op(

1√
NT

) and σ̂∗2(ρ0, λ0) = σ2
0 . (3.A.15)

From (3.A.10) and (3.A.12), 1
N(T−1) lnL(ρ, λ)−Q(ρ, λ) = 1

2 lnσ∗2(ρ, λ)− 1
2 lnσ̂2(ρ, λ).

By the mean value theorem, 1
N(T−1) lnL(ρ, λ) − Q(ρ, λ) = − 1

2
1

σ̃2(ρ,λ) (σ̂
2(ρ, λ) −

σ∗2(ρ, λ)), where σ̃2(ρ, λ) lies between σ̂2(ρ, λ) and σ∗2(ρ, λ). We need to show

that (1) σ̂2(ρ, λ)− σ∗2(ρ, λ)
p−→ 0 uniformly in ρ and λ and (2) σ̃2(ρ, λ) is bounded

away from zero uniformly in ρ and λ in probability.

To prove Theorem 1: We have σ̂2(ρ, λ) and σ∗2(ρ, λ) in (3.A.14) and (3.A.15).

When N is large and T is finite, using Lemma A.12 in Lee (2004), σ̂2(ρ, λ)−σ∗2(ρ, λ)
p−→
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0 uniformly in ρ and λ. As σ̂2(ρ, λ)− σ∗2(ρ, λ)
p−→ 0 uniformly in ρ and λ, we have

1
N(T−1) lnL(ρ, λ)−Q(ρ, λ)

p−→ 0 uniformly in ρ and λ.

Uniform equicontinuity of Q(ρ, λ)

From (3.A.12) and (3.A.13), Q(ρ, λ) is uniformly equicontinuous in ρ and λ due

to the facts: (1) 1
N ln|S(ρ)| and 1

N ln|R(λ)| uniformly equicontinuous in ρ and λ;

(2)(ρ − ρ0)
2Hρ0(λ) is uniformly equicontinuous in ρ and λ; (3) σ2†(ρ, λ) is uni-

formly equicontinuous in ρ and λ.

Combining global identification, uniform convergence and equicontinuity, the con-

sistency of (ρ̂w, λ̂w), which is equivalent to (ρ̂, λ̂), follows.

Consistency of other parameters

From (3.9) and our comparison of QML estimators based on those two transform-

ations, we know that (β̂
w

, ρ̂w, λ̂w) is numerically the same as (β̂, ρ̂, λ̂). From (3.10)

and (3.A.9), we also know that T
T−1 σ̂2w(ρ̂w, λ̂w)− σ2

0
p−→ 0 and σ̂2(ρ̂w, λ̂w)− σ2

0
p−→

0. Hence, β̂
w
(ρ̂w, λ̂w) is consistent.

3.A.3 Proof of Theorem 2 (Asymptotic Distribution)

For the within transformation, according to the Taylor expansion,

√
NT(θ̂

w − θT) = (− 1
NT

∂2lnLw(θ̄w)

∂θ∂θ
′ )−1 × (

1√
NT

∂lnLw(θT)

∂θ
),

where θ̄
w lies between θT and θ̂

w
. As we have

− 1
NT

∂2lnLw(θ̄w)

∂θ∂θ
′ = (− 1

NT
∂2lnLw(θ̄w)

∂θ∂θ
′ − (− 1

NT
∂2lnLw(θw

T )

∂θ∂θ
′ ))

+ (− 1
NT

∂2lnLw(θw
T )

∂θ∂θ
′ − Σw

θT
) + Σw

θT
,

where the first term is ||θ̄w − θT || ·Op(1) and the second term, by using Lee and Yu

(2010a, Lemma A.3), is Op(
1√
NT

),− 1
NT

∂2lnLw(θ̄w)

∂θ∂θ
′ = ||θ̄w−θT || ·Op(1)+Op(

1√
NT

)+

Σw
θT

.

Under Assumptions 3.7 and 3.8, Σw
θT

in (3.A.4) is non-singular. We can prove

the non-singularity of the limiting information matrix by using an argument by
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contradiction. We need to prove that Σw
θT

c = 0 implies that c = 0, where c =

(c
′
1, c2, c3, c4)

′
, c2, c3, c4 are scalars and c1 is K× 1 vector.

With C = G̈ − trG̈
N IN and D = K − trK

N IN , we have 1
N tr(G̈sG̈) − 2( trG̈

N )2 =

1
2N tr(CsCs), 1

N tr(KsK)− 2( trK
N )2 = 1

2N tr(DsDs), and 1
N tr(KsG̈)− 2( trK

N
trG̈
N ) = 1

2N tr(CsDs).

Furthermore, we have Hβ = 1
NT ∑T

t=1 Ẍ
′

tẌ t, Hβρ = 1
NT ∑T

t=1 Ẍ
′

tG̈Ẍ tβ0, Hρ =

1
NT ∑T

t=1(G̈Ẍ tβ0)
′
G̈Ẍ tβ0, and Hρβ = H′βρ. The detailed proof of Σw

θT
c = 0 is as

follows:

1
σ2

T
Hβc1 +

1
σ2

T
Hβρc2 = 0,

1
σ2

T
Hρβc1 + (

1
σ2

T
Hρ +

1
n

trG̈sG̈)c2 −
1
N

tr(KsG̈)c3 +
1

σ2
T N

trG̈c4 = 0,

− 1
N

tr(KsG̈)c2 +
1
N

tr(KsK)c3 −
1

σ2
T N

trKc4 = 0,

1
σ2

T N
trG̈c2 −

1
σ2

T N
trKc3 +

1
2σ4

T
c4 = 0.

By solving the third and fourth equations, we get

c3 =
tr(CsDs)

tr(DsDs)
c2,

1
σ2

T N
c4 =

2
N2

trKtr(CsDs)

tr(DsDs)
c2 −

2
N2 trG̈c2,

as a result of which c1, c3, and c4 can all be expressed in terms of c2. Substituting

these results in the second equation yields

1
σ2

T
(Hρ −Hρθ(Hθ)

−1Hθρ)c2 +
1

2N
tr(CsCs)c2 −

1
2N

tr2(CsDs)

tr(DsDs)
c2 = 0,

as a result of which Σw
θT

c = 0 implies that

{lim(
1

σ2
T

1
N

tr(DsDs)(Hρ −Hρβ(Hβ)
−1Hβρ) + Φ)},

where Φ = 1
2N2 [tr(C

sCs)tr(DsDs)− tr2(CsDs)] andHρ −Hρβ(Hβ)
−1Hβρ are non-

negative by the Cauchy-Schwarz inequality. Hence, the non-singularity of limΣw
θT

follows from Assumption 3.7.

Since the score of the log likelihood function evaluated at θ0 is a linear and
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quadratic form of ṽt, which has zero mean and Eṽ
′
tṽt =

T−1
T Nσ2

0 = Nσ2
T , and Ẍ t is

uncorrelated with ṽt, using Lee and Yu (2010a, Lemma A.4), we have

E(
1√
NT

∂lnLw(θT)

∂θ
· 1√

NT
∂lnLw(θT)

∂θ
′ ) = cov(

1√
NT

∂lnLw(θT)

∂θ
,

1√
NT

∂lnLw(θT)

∂θ
′ ),

=
T − 1

T
(Σw

θT
+ Ωw

θT
),

where Σw
θT

is given in (3.A.4) and Ωw
θT

is given in (3.A.5). When vt are normally

distributed, Ωw
θT

= 0(K+3)×(K+3) because µ4 − 3σ4
0 = 0. By using the central limit

theorem in Lee and Yu (2010a, Lemma A.1), 1√
NT

∂lnLw(θT)
∂θ

w−→ N (0, lim T−1
T (Σw

θT
+

Ωw
θT
)).

As ||θ̄w − θT || = op(1) and Σw
θT

is non-singular in the limit, (− 1
NT

∂2lnLw(θ̄w)

∂θ∂θ
′ )−1

is Op(1). It follows that θ̂
w − θT = Op(

1
NT ) and thus

√
NT(θ̂

w − θT) = (Σw
θT

+ Op(
1√
NT

))−1 × (
1√
NT

∂lnLw(θT)

∂θ
).

Using the fact that

(Σw
θT

+ Op(
1√
NT

))−1 = (Σw
θT
)−1 + Op(

1√
NT

),

we eventually have

√
NT(θ̂

w − θT)
w−→ N (0, lim

T − 1
T

(Σw
θT
)−1(Σw

θT
+ Ωw

θT
)(Σw

θT
)−1).
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4.1 Introduction

Spatial econometric models study whether and to which extent cross-sectional units

affect each other. The kind of interactions that are considered can take the form of

endogenous spatial interactions in the dependent variable (Wyt), exogenous inter-

actions in the regressors (WX t), and interaction in the errors, which in turn can take

the form of a spatial autoregressive (AR) structure, given by ut = λMut + vt, or a

moving average (MA) structure, given by ut = vt − λMvt. Although there exists a

variety of spatial econometric models that contain one or multiple forms of spatial

interactions (for an overview see Elhorst, 2014), the general nesting spatial (GNS)

model that includes all three forms of spatial interactions, either with AR or MA

errors, hardly received any attention. For example, the GNS model with AR errors

is mentioned on page 53 in the introductory spatial econometric textbook of LeSage

and Pace (2009), but it is not taken seriously given the fact that the specification of

this model in contrast to other models is not numbered. The GNS model with AR

errors is more extensively discussed in the spatial econometric textbook of Kelejian

and Piras (2017). In Chapter 2 they briefly set out the instrumental variables (IV)

and the maximum likelihood (ML) estimators of this model in a cross-sectional set-

ting, specify the assumptions to be made for these estimators to be consistent and

asymptotically normal, and take up a proof for this. However, in spite of many

empirical illustrations, none of them provides the estimation results of this model.

This lack of applications also characterizes the empirical literature. Lin (2015) ad-

opts the GNS model to investigate peer effects among adolescents, though based

on cross-sectional data only. Li and Li (2020) depart from a GNS model with fixed

effects in space and time to investigate energy investment, economic growth, and

carbon emissions, but eventually they only estimate the simpler spatial Durbin (SD)

model. Huang et al. (2021) initially estimate a GNS model with fixed effects in

space and time to explain green innovations for sustainable development in China.

However, because the simpler SD model is not inferior in performance, they inter-

pret all results based on this model. Further below we also discuss studies which

have developed estimators for GNS models.

One major barrier hindering the wide application of GNS models is the identi-

fication problem, the issue that the coefficients of various spatial interactions can-
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not be separately identified from the reduced form of the model. This identification

problem is discussed in several studies. Manski (1993) demonstrates that peer ef-

fects and contextual effects in linear-in-means models, known as spatial lags in the

dependent and independent variables in a spatial econometric model, cannot be

distinguished from each other if the network or spatial weight matrix is specified

as a group interaction matrix in which the diagonal elements just as the off-diagonal

elements are specified as 1/Ng, where Ng represents the number of people in each

group g. This identification problem is known as the reflection problem. Bramoullé

et al. (2009) show that identification fails when the linear-in-means model, the

counterpart of a spatial Durbin model in spatial econometrics, simplifies to a model

with correlated effects only, the counterpart of a spatial error model in spatial eco-

nometrics. Gibbons and Overman (2012, Section 3) argue that a weak instrument

problem may occur when a linear-in-means model with peer effects and contextual

effects is estimated by instrumental variables based on second and higher-order

contextual effects. Although Halleck Vega and Elhorst (2015) show that these prob-

lems can be reduced by setting the diagonal elements of spatial weight matrix to

zero, based on the argument that a unit cannot affect itself, by parameterizing the

spatial weight matrix, and by estimating the model by maximum likelihood, they

find that the GNS model might still suffer from identification problems because the

spatial autoregressive parameter of the spatial lag in the dependent variable and

the spatial autocorrelation coefficient of the spatial lag in the error term are easily

interchanged. To break the curse of identification in a GNS model, Lee, Liu, and Lin

(2010) assume a block diagonal network matrix for social interaction models, where

each block represents a group of units that interact with each other but not with it-

self and not with units in other groups. However, just as all the other cited studies,

this study departs from one uniform spatial weight matrix for all spatial lags in the

model. In this chapter, we propose a distance-based parameterized spatial weight

matrix that is different for each spatial lag in the model.

The spatial weight matrix is first specified as a functional form of distance with

a distance decay parameter and then the corresponding distance decay parameter

of each individual spatial lag is assumed to be different and estimated jointly with

the response parameters of the model. The distance decay concept has been well

applied in different fields of economics such as regional science, spatial econom-
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ics, urban economics, and economic geography. Fotheringham (1981) describes the

distance decay parameter as a measure of the relationship between distance and

interaction. Using a simple parametric approach, such as the negative exponential

form e−dij$0 , where dij is the geographical distance between units i and j, the degree

of interaction between units of observations diminishes with the distance decay

parameter $0. The advantage of allowing the distance decay parameters to be dif-

ferent for different spatial lags is that the problem of weak identification further

diminishes. Generally, one pre-specified spatial weight matrix is used in empirical

studies for all spatial lags in the model, while in this study different distance decay

parameters are estimated. Consequently, more information is extracted from the

data, as the distance decay parameters of the spatial lags of the regressors are likely

to be different from one common distance decay parameter for all of them.

While spatial AR errors dominate the spatial econometric literature focusing on

the GNS model, the errors might also take the form of spatial MA process. An

overview of previous studies in this field is provided in Table 3.1 of Chapter 3. Fin-

gleton and LeGallo (2007) distinguish AR and MA errors from each other in terms

of the shock diffusion process among spatial units. Spatial AR errors represent

global shocks since a shock that occurs in one unit not only spreads to nearby units

to which this unit is connected, but due to its multiple rounds structure also to all

other units farther away. Conversely, spatial MA errors reflect local shocks, as a

shock in one unit only spreads to nearby units in one round and cannot spread fur-

ther. Unlike GNSAR models, GNS models with the MA errors (GNSMA) have, to

our knowledge, not been discussed.

Three types of estimators have been developed to estimate GNSAR models for

cross-sectional data or spatial panels, with and without fixed effects in space and

time: maximum likelihood (ML) (Burridge et al., 2016), quasi-maximum likelihood

(QML) (Lee et al., 2010), two-stage-least-squares (2SLS) or IV (Lee and Yu, 2016;

Kelejian and Piras, 2017), and Bayesian estimators (Hassan, 2017). For spatial eco-

nometric models in a panel data setting, the inclusion of fixed effects, for both spa-

tial units and time periods, is important. Individual fixed effects are incorporated to

control for time-invariant unobserved individual characteristics which can be cor-

related with the existing regressors1, while time fixed effects control for unobserved

1 Instead of fixed effects, it also possible to consider random effects (Millo, 2022).
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characteristics varying from one time period to another. Lee and Yu (2010a) point

out that time fixed effects might be important for space-time researches such as

economic growth, convergence, and regional economics to capture business cycle

effects typical for the time-series and macroeconomic literature. Neglecting fixed

effects may thence bias the estimation results (Elhorst, 2003). However, the in-

creased number of parameters due to the inclusion of fixed effects may cause an

incidental parameter problem, as discussed in Neyman and Scott (1948). When

spatial econometric models contain both fixed effects in space and time, two panel

data settings may be distinguished: large N finite T and large N large T. In the

former case, time fixed effects do not have to be included or if included they can

be treated as normal regressors. In the latter case, the inclusion of time effects may

cause an incidental parameter problem when T goes to infinity in addition to the

incidental parameter problem caused by the individual fixed effects when N goes

to infinity.

To estimate the spatial panel models with fixed effects, Lee and Yu (2010a) pro-

pose a QML estimator which uses an orthogonal transformation to concentrate

out both fixed effects in the spatial autoregressive model with AR errors (SARAR

model). Later on Lee and Yu (2012) apply this QML orthogonal estimator to es-

timate a general spatial econometric model which nests the spatial autoregressive

model with MA errors (SARMA model) with both fixed effects. These QML estim-

ators are consistent and properly centered requiring no additional bias correction

procedures. In this study, these QML estimators are modified further to estimate

panel GNS models with AR or MA errors by adding Durbin terms with paramet-

erized spatial weight matrices to the SARAR and SARMA models.

This chapter contributes to the literature in the following ways. First, we are

among the first to consider GNS panel data models with AR or MA errors, indi-

vidual fixed effects and time fixed effects in which the spatial weight matrices are

parameterized. Although GNS models are characterized by identification prob-

lems, these problems are reduced by parameterizing the spatial weight matrices

with a different distance decay matrix for each lag in the model. Second, we derive

QML estimators for these kind of models. Third, as an extension of the work of Lee

et al. (2010) in which the social interaction model with group interaction matrices

and individual fixed effects is estimated, we first show that identification problems
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in the estimation of the GNS models are the same when either spatial AR or MA

errors are used. Then we introduce the rank conditions for the identification when

the spatial weight matrices are parameterized for the GNS models with these two

different types of errors.

This chapter is organized as follows. In Section 4.2 we specify the GNSAR and

GNSMA panel models, introduce the functional form of the parameterized spatial

weight matrices, set out the corresponding QML estimator based on the orthogonal

transformation to concentrate out the fixed effects, and show the rank conditions

for identification. In Section 4.3 we conduct a Monte Carlo experiment to explore

the finite sample properties of the proposed QML estimators. In Section 4.4 we

illustrate the benefits of the GNSAR and GNSMA models by an empirical analysis

using US house price data of Yang (2021). In the last section of this chapter, we

draw conclusions.

4.2 Methodology

4.2.1 The GNSAR and GNSMA models

The GNSAR panel model with parameterized spatial weight matrices and indi-

vidual and time effects consists of a combination of the spatial Durbin (SD) model

in (4.1) and a spatial AR error process in (4.2),

yt = ρ0W(δ0)yt + X tβ0 +
K

∑
k=1

W(α0k)xktφ0k + c0 + v0tιN + ut, (4.1)

ut = λ0W(γ0)ut + vt, t = 1, 2, ...T. (4.2)

The spatial MA error process is given by

ut = vt − λ0W(γ0)vt, t = 1, 2, ...T. (4.3)

The SD model in (4.1) combined with the spatial MA error process in (4.3) is the

GNSMA panel model with parameterized spatial weight matrices and both fixed

effects. In both models, v0t represents a time fixed effect and c0 an N × 1 vector

of individual fixed effects. ιN is an N × 1 vector of ones. The dependent variable

yt = (y1t, y2t, ..., yNt)
′

and the disturbances vt = (v1t, v2t, ..., vNt)
′

are N× 1 vectors,
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where vit is i.i.d across i and t with zero mean and variance σ2
0 . X t is an N× K mat-

rix of non-stochastic time varying regressors whose kth column is denoted by xkt.

W(δ0), W(α0k) (k = 1, ..., K), and W(γ0) are N × N parameterized spatial weights

matrices with zero diagonals, which capture spatial dependence in respectively the

dependent variable, the regressors, and the error terms among the cross sectional

units at each moment in time. δ0, α0k, and γ0 are the corresponding distance decay

parameters. ρ0 is the spatial autoregressive parameter for the dependent variable

and λ0 is the spatial autocorrelation parameter for the spatial AR or MA error. For

any parameter, the subscript 0 denotes that parameter evaluated at its true value.

The typical element of the parameterized spatial weight matrix, before it is row-

normalized, is e−dij$0 , where dij is the distance between unit i and j and $0 is the

distance decay parameter. This matrix has three important properties. First, the

degree of interaction between two units diminishes if the distance decay parameter

increases. The elements converge to 1 when $0 → 0 and to 0 when $0 → ∞. Second,

by allowing the distance decay parameters to be different, the spatial lag of each re-

gressor will have its own spatial weight matrix. Third, even though the off-diagonal

elements of the exponential distance decay matrix are nonzero, this matrix satisfies

the boundedness condition. The boundedness condition requires that both row and

column sums before the spatial weight matrix is row-normalized is upper bounded

when N goes to infinity, which it is as long as the distance decay parameter $0 is

positive (see Chapter 2). Row normalization of the spatial weight matrices is pop-

ular in empirical studies on spatial interactions. Row normalization is required to

concentrate out time fixed effects by the orthogonal transformation.

4.2.2 QML estimation of the GNSAR and GNSMA models

We take the estimation of the GNSAR model as point of departure since this model

receives more attention in the literature and the method of concentrating out the

fixed effects is basically the same for both the GNSAR and GNSMA models. The

main difference is that the corresponding log-likelihood functions and notations

are different. To estimate the GNSAR model with both fixed effects, we modify

the QML estimator based on the orthogonal transformation set out in Lee and Yu

(2010a). To concentrate out the individual fixed effects as a first step, the matrix

FT,T−1 is used, where [FT,T−1, 1√
T

ιT ] is the orthonormal eigenvector matrix of the
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time mean operator JT = IT − 1
T ιTι

′
T . After reshaping the dependent variable of

dimension NT× 1 into the matrix [y1, y2, ..., yT ] of dimension N× T, it can be post-

multiplied by FT,T−1, to get [y•1 , y•2 , ..., y•T−1] = [y1, y2, ..., yT ]FT,T−1. Similar trans-

formations are used to obtain X∗•t and v•t , where X∗t = (x1t, ..., xKt, W(α0,1)x1t, ..., W(α0K)xKt)

before it is post-multiplied by FT,T−1. Due to this transformation, the GNSAR

model given in (4.1) and (4.2) can be re-written as

y•t = ρ0W(δ0)y•t + X∗•t ζ0 + v•0tιN + u•t ,

u•t = λ0W(γ0)u•t + v•t , t = 1, 2, ...T − 1, (4.4)

where ζ0 = (β
′
0, φ

′
0)
′

and the actual sample size has become N(T − 1) instead of

NT.

In the second step, the time fixed effects are concentrated out by the matrix

FN,N−1, where [FN,N−1, 1√
N

ιN ] is the orthonormal eigenvector matrix of the cross-

sectional mean operator JN = IN − 1
N ιNι

′
N . After concentrating out both fixed

effects using the orthogonal transformation, (4.4) can be re-written as

y••t = ρ0(F
′
N,N−1W(δ0)FN,N−1)y••t + X∗••t ζ0 + u••t ,

u••t = λ0(F
′
N,N−1W(γ0)FN,N−1)u••t + v••t , t = 1, 2, ...T − 1, (4.5)

where y••t = F
′
N,N−1y•t , X∗••t = F

′
N,N−1X∗•t , and v••t = F

′
N,N−1v•t . After this

second-step transformation, the actual sample size decreases to (N − 1)(T − 1).

As we also have

(v••
′

1 , ..., v••
′

T−1)
′
= (IT−1 ⊗ F

′
N,N−1)(v

•′
1 , ..., v•

′
T−1)

′
= (F

′
T,T−1 ⊗ F

′
N,N−1)(v

′
1, ..., v

′
T)
′
,

E(v••
′

1 , ..., v••
′

T−1)(v
••′
1 , ..., v••

′
T−1)

′
= σ2

0 (F
′
T,T−1 ⊗ F

′
N,N−1)(FT,T−1 ⊗ FN,N−1)

= σ2
0 (IT−1 ⊗ IN−1),

the log-likelihood function of (4.5) reads as

lnL(θ) =− (N − 1)(T − 1)
2

ln(2πσ2) + (T − 1)ln|IN−1 − ρF
′
N,N−1W(δ)FN,N−1|

+ (T − 1)ln|IN−1 − λF
′
N,N−1W(γ)FN,N−1| −

1
2σ2

T−1

∑
t=1

v••
′

t (ξ)v••t (ξ).

(4.6)
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Using Lemma A.2 in Lee and Yu (2010a), which requires the spatial weight matrices

to be row-normalized, the corresponding log determinant and inverse of IN−1 −
ρF
′
N,N−1W(δ)FN,N−1 are

|IN−1 − ρF
′
N,N−1W(δ)FN,N−1| =

1
1− ρ

|IN−1 − ρW(δ)|,

(IN−1 − ρF
′
N,N−1W(δ)FN,N−1)

−1 = F
′
N,N−1(IN − ρW(δ))−1FN,N−1.

The same holds for IN−1 − λF
′
N,N−1W(γ)FN,N−1. For every two N-dimensional

column vectors pt and qt we further have

T−1

∑
t=1

p••
′

t q••t = (p
′
1, ..., p

′
T)(FT,T−1 ⊗ FN,N−1)× (F

′
T,T−1 ⊗ F

′
N,N−1)(q

′
1, ..., q

′
T)
′

= (p
′
1, ..., p

′
T)(JT ⊗ JN)(q

′
1, ..., q

′
T)
′
=

T

∑
t=1

p̃
′
t JN q̃t,

where the element of p̃t is p̃it = pit − 1
T ∑T

t=1 pit for t = 1, 2, ..., T and q̃it = qit −
1
T ∑T

t=1 qit is the element of q̃t for t = 1, 2, ..., T. Consequently, the corresponding

log-likelihood of the GNSAR model after both fixed effects have been concentrated

out is

lnL(θ) =− (N − 1)(T − 1)
2

ln(2πσ2)− (T − 1)[ln(1− ρ) + ln(1− λ)]

+ (T − 1)[ln|S(ρ, δ)|+ ln|R(λ, γ)|]− 1
2σ2

T

∑
t=1

ṽ
′
t(ξ)JN ṽt(ξ), (4.7)

where ṽt(ξ) = R(λ, γ)[S(ρ, δ)ỹt − X̃
∗′
t ζ] using the following notations: S(ρ, δ) =

IN − ρW(δ), R(λ, γ) = IN − λW(γ), ỹt contains the element ỹit = yit − 1
T ∑T

t=1 yit,

X̃
∗
t has the element x̃∗kit = x∗kit−

1
T ∑T

t=1 x∗kit, ṽt has the element ṽit = vit− 1
T ∑T

t=1 vit,

θ = (ζ
′
, ρ, λ, σ2, δ, α

′
, γ)

′
, and ξ = (ζ

′
, ρ, λ, δ, α

′
, γ)

′
. α
′
= (α1, α2, ..., αK). The corres-

ponding ML estimates for the transformed GNSAR model are

ζ̂ =

[
T

∑
t=1

X̃∗
′

tR
′
(λ, γ)JN R(λ, γ)X̃

∗
t

]′ [
T

∑
t=1

X̃
∗′
t R

′
(λ, γ)JN R(λ, γ)S(ρ, δ)ỹt

]
,

(4.8)
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σ̂2 =
1

(N − 1)(T − 1)

T

∑
t=1

[S(ρ, δ)ỹt − X̃∗
′

tζ]
′
R
′
(λ, γ)JN R(λ, γ)[S(ρ, δ)ỹt − X̃

∗′
t ζ].

(4.9)

Turning to the GNSMA model, the log-likelihood after both fixed effects have been

concentrated out is

lnL(θ) =− (N − 1)(T − 1)
2

ln(2πσ2)− (T − 1)[ln(1− ρ)− ln(1− λ)]

+ (T − 1)[ln|S(ρ, δ)| − ln|R(λ, γ)|]− 1
2σ2

T

∑
t=1

ṽ
′
t(ξ)JN ṽt(ξ), (4.10)

where ṽt(ξ) = R−1(λ, γ)[S(ρ, δ)ỹt− X̃
∗
t ζ]. The corresponding ML estimates for the

transformed GNSMA model are

ζ̂ =

[
T

∑
t=1

X̃
∗′
t R−1′(λ, γ)JN R−1(λ, γ)X̃

∗
t

]′ [
T

∑
t=1

X̃
∗′
t R−1′(λ, γ)JN R−1(λ, γ)S(ρ, δ)ỹt

]
,

(4.11)

σ̂2 =
1

(N − 1)(T − 1)

T

∑
t=1

[S(ρ, δ)ỹt − X̃
∗
t ζ]

′
R−1′(λ, γ)JN R−1(λ, γ)[S(ρ, δ)ỹt − X̃

∗
t ζ].

(4.12)

To analyse the asymptotic properties and identification of the proposed estimators,

the following assumptions are needed. These assumptions are extended based on

those in Lee and Yu (2010a) and Chapters 2 and 3 of this thesis. It concerns as-

sumptions for the SARAR model with non-parameterized spatial weight matrices,

the SD model with parameterized spatial weight matrices, and the SARMA model

with non-parameterized spatial weight matrices, respectively.

Assumption 4.1. The spatial weight matrices W(δ0), W(α0k), and W(γ0) are row-

normalized and have zero diagonals.

Assumption 4.2. The idiosyncratic errors vit for i = 1, 2, ..., N and t = 1, 2, ..., T are i.i.d

across i and t with zero mean, variance σ2
0 , and finite fourth moment such that E|vit|4+h <

∞ for some h > 0.

Assumption 4.3. S(ρ, δ) and R(λ, γ) are invertible for all ρ, δ, λ, and γ in compact

intervals P1, P2, P2, and P4, respectively. ρ0, δ0, λ0, and γ0 should be interior of P1, P2,

P2, and P4, respectively. Furthermore, ρ0 and λ0 are bounded away from zero.
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Assumption 4.4 (for AR errors). The elements of X t are non-stochastic and bounded,

uniformly in N and T. The limit of 1
NT ∑T

t=1 X̃
∗′
t R

′
JN RX̃

∗
t exists and is non-singular.

Assumption 4.4′ (for MA errors). The elements of X t are non-stochastic and bounded,

uniformly in N and T. The limit of the limit of 1
NT ∑T

t=1 X̃
∗′
t R−1′ JN R−1X̃

∗
t exists and is

non-singular.

Assumption 4.5. Before row normalization, the row and column sums of the spatial

weight matrices W(δ0), W(α0k), and W(γ0) are uniformly bounded in both row and

column sums in absolute value. S−1(ρ, δ) and R−1(λ, γ) are uniformly bounded in both

row and column sums in absolute value for ρ, δ, λ, and γ in compact intervals P1, P2, P2,

and P4.

Assumption 4.6. φ0k for k = 1, ..., K is bounded away from zero.

Assumption 4.7. N is large.

Assumption 4.8 (for AR errors). Given

σ2†(λ, γ) =
σ2

0
N − 1

tr[(R(λ, γ)R−1)
′
JN(R(λ, γ)R−1)]

σ2†(ρ, δ, λ, γ) =
σ2

0
N − 1

tr[(R(λ, γ)S(ρ, δ)S−1R−1)
′
JN(R(λ, γ)S(ρ, δ)S−1R−1)]

(i) the limit of

(a) (λ, γ) =
1

(N − 1)(T − 1)

T

∑
t=1

(X̃
∗
t , GX̃

∗
t ζ0)

′
R
′
(λ, γ)JN

×R(λ, γ)(X̃
∗
t , GX̃

∗
t ζ0)

is nonsingular for each λ and the limit of

(b)
1

N − 1
ln|σ2

0 R−1′ JN R−1| − 1
N − 1

ln|σ2†(λ, γ)R−1′(λ, γ)JN R−1(λ, γ)|

is not zero for λ 6= λ0 and γ 6= γ0;

(ii) the limit of 1
N−1 ln|σ2

0 R−1′S−1′ JNS−1R−1| − 1
N−1 ln|σ2

N(ρ, δ, λ, γ)R−1′(λ, γ)

S−1′(ρ, δ)JNS−1(ρ, δ)R−1(λ, γ)| is not zero for (ρ, δ, λ, γ) 6= (ρ0, δ0, λ0, γ0), as N tends

to infinity.
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Assumption 4.8′ (for MA errors). Given

σ2†(λ, γ) =
σ2

0
N − 1

tr[(R−1(λ, γ)R)
′
JN(R−1(λ, γ)R)]

σ2†(ρ, δ, λ, γ) =
σ2

0
N − 1

tr[(R−1(λ, γ)S(ρ, δ)S−1R)
′
JN(R−1(λ, γ)S(ρ, δ)S−1R)]

(i) the limit of

(a) H(λ, γ) =
1

(N − 1)(T − 1)

T

∑
t=1

(X̃
∗
t , GX̃

∗
t ζ0)

′
R−1′(λ, γ)JN

×R−1(λ, γ)(X̃
∗
t , GX̃

∗
t ζ0)

is nonsingular for each λ and the limit of

(b)
1

N − 1
ln|σ2

0 R
′
JN R| − 1

N − 1
ln|σ2†(λ, γ)R

′
(λ, γ)JN R(λ, γ)|

is not zero for λ 6= λ0 and γ 6= γ0;

(ii) the limit of 1
N−1 ln|σ2

0 R
′
S−1′ JNS−1R| − 1

N−1 ln|σ2
N(ρ, δ, λ, γ)R

′
(λ, γ)S−1′(ρ, δ)

JNS−1(ρ, δ)R(λ, γ)| is not zero for (ρ, δ, λ, γ) 6= (ρ0, δ0, λ0, γ0), as N tends to infinity.

For the matrices C and D below and in the appendices, we define As = A + A′.

We further use the truncated notations G = W(δ0)S−1, H = W(γ0)R−1, and Q =

R−1W(γ0).

Assumption 4.9 (for AR errors). The limit of 1
(N−1)2 [tr(CsCs)tr(DsDs)− tr2(CsDs)]

is strictly positive, where C = JNG̈ − trJN G̈
N−1 JN , D = JN H − trJN H

N−1 JN , and G̈ =

RGR−1.

Assumption 4.9′ (for MA errors). The limit of 1
(N−1)2 [tr(CsCs)tr(DsDs)− tr2(CsDs)]

is strictly positive, where C = JNG̈− trJG̈
N−1 JN , D = JNQ− trJN Q

N−1 JN , and G̈ = R−1GR.

The row normalization of the spatial weight matrices W(δ0) and W(γ0) in As-

sumption 4.1 ensures that the orthogonal transformation may be implemented to

concentrate out the time fixed effects. It also causes the parameters ρ and λ to

take values in the interval (−1, 1), in line with Assumption 4.3. Note that the spa-

tial weight matrices W(α0k) do not necessarily need to be row normalized, but

that this makes most sense given the row-normalization of W(δ0) and W(γ0). As-

sumption 4.2 states the standard regularity assumptions for the disturbance term
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vit. Assumption 4.3 ensures that the reduced form of the combination of (4.1) and

(4.2) and the combination of (4.1) and (4.3) are valid. The first two parts are ex-

tensions of Assumption 3 in Lee and Yu (2010a). The last part is a modification of

Assumption 2.3 in Chapter 2 to ensure that the distance decay parameters δ0 and

γ0 are identified. Assumption 4.4 is for the GNSAR model and Assumption 4.4’ for

the GNSMA model. They not only assume that all regressors are exogenous and

uniformly bounded, but also rule out perfect multicollinearity between any pair

of regressors, including the regressors xkt and W(α0k)xkt. They extend Assump-

tion 4 in Lee and Yu (2010a) and Assumption 3.4 in Chapter 3 with spatial Durbin

terms. Assumption 4.5 extends Assumption 5 of Lee and Yu (2010a) and modifies

Assumption 2.5 of Chapter 2 in which the boundedness condition also relies on

the distance decay parameters. If φ0k = 0 then α0k = 0 is not identified for each

k = 1, ..., K, which is excluded by Assumption 4.6 and taken from Assumption 2.5

in Chapter 2. Assumption 4.7, taken from Lee and Yu (2010a), states that the QML

estimator based on the orthogonal transformation is consistent no matter whether

T is large or finite. Assumption 4.8 and Assumption 4.8’ are the identification con-

ditions of the QML estimators for the GNSAR and GNSMA models with both fixed

effects, to be discussed below. Assumption 4.9 and 4.9’ ensure that the limits of the

information matrices of the GNSAR and GNSMA models are non-singular.2 This

is because we exclude that ρ0, λ0k and φ0k (k = 1, ..., K) are equal to 0. Assumptions

4.8, 4.8’, 4.9, and 4.9’ are adapted to GNSAR and GNSMA models in which the

spatial weight matrices are parameterized.

According to Theorem 3 (2) in Lee and Yu (2010a), the asymptotic distribution

of the QML estimator of the GNSAR model when both fixed effects are included,

under assumptions 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, and 4.8(i) or 4.1, 4.2, 4.3, 4.4, 4.5,

4.6, 4.8(ii), and 4.9, is√
(N − 1)(T − 1)(θ− θ0)

d−→ N(0, Υ(θ0)). (4.13)

where Υ(θ0) = limΣ−1(θ0)(Σ(θ0) + Ω(θ0))Σ
−1(θ0).

The same holds for the asymptotic distribution of the QML estimator of the

2 Assumptions 4.9 and 4.9’ also ensure that the limits of the information matrices of the models are
non-singular when the QML estimator based on the within transformation is applied.
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GNSMA model when both fixed effects are included.3 The first-order derivatives,

second-order derivatives, Σ(θ0), and Ω(θ0) with respect to the log-likelihood func-

tion of the GNSAR model in the form of (4.7) and the GSNMA model in (4.10) are

given in Appendix 4.A and Appendix 4.B.

4.2.3 Identification

We first show that the rank conditions for the identification of the fixed effects

GNSAR and GNSMA models are the same, provided that the spatial weight matrices

are not parameterized. This extends the work of Lee et al. (2010) in which the

GNSAR model with network matrix only contains group fixed effects.4 Then we

generalize the rank conditions for identification when the spatial weight matrices

are parameterized.

Consider the fixed effects GNSAR model given by

yt = ρ0Wyt + X tβ0 + WX tφ0 + c0 + v0tιN + ut,

ut = λ0Mut + vt, t = 1, ..., T, (4.14)

where W and M are not parameterized. The identification problem arises if ρ0β0 +

φ0 = 0 and W = M. Under these circumstances, β0, φ0, and ρ0 can no longer be

separately identified. To reveal the identification problems when W = M, we take

the reduced form of the GNSAR model with both fixed effects as point of departure

y••t = S•−1(X••t β0 + W•X••t φ0) + S•−1R•−1v••t , t = 1, 2, ..., T − 1, (4.15)

where W• = F
′
N,N−1W FN,N−1, M• = F

′
N,N−1MFN,N−1 and S•−1 = IN−1 − ρ0W•,

and R•−1 = IN−1−λ0M•. Lee et al. (2010) show that ρ0 and λ0 are identified when

W 6= M and thus W• 6= M•, since εt = λ0M•εt + ρ0W•εt − ρ0λ0M•W•εt + v••t
then follows a higher-order SAR process.5 Conversely, ρ0 and λ0 cannot be iden-

tified when W = M and thus W• = M•, since εt then degenerates to εt =

3 Details are provided in a working paper of Lee and Yu (2010c).
4 Group fixed effects should not be confused with individual fixed effects. In principle, they might be

interpreted as time fixed effects.
5 Lee and Liu (2010) discuss the identification conditions for higher-order SAR and SARAR models in

detail. Lee (2004) dicusses the identification conditions for higher-order SAR model. If ρ0β0 + φ0 = 0
in a SD model, then it simplifies to a spatial error model (Bramoulle et al., 2009, equation (6)). If this
condition holds in a GNS model with spatial AR or MA errors, one obtains a higher-order spatial error
model.
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(ρ0 + λ0)W•εt − ρ0λ0W•2εt + v••t in which ρ0 and λ0 can be switched around

without observing any difference.

The reduced form of the GNSMA model, which is not part of the work of Lee et

al. (2010), reads as

y••t = S•−1(X••t β0 + W•X••t φ0) + S•−1R•v••t , t = 1, 2, ..., T − 1, (4.16)

Given that (IN−1−λ0M•)−1 = ∑∞
i=1 λi

0M•i for the GNSMA model, εt = −λ0M•εt +

ρ0W•εt + ρ0λ0M•W•εt − (∑∞
i=2 λi

0M•i)εt + (∑∞
i=2 λi

0ρ0M•iW•)εt + v••t also fol-

lows a higher-order SAR process. This process shows that ρ0 and λ0 cannot be

separately identified when W• = M•.

Three conclusions can be drawn from this overview. First, the identification

problems of the GNSAR and GNSMA model are similar to those of the SD model.

Second, the identification conditions for ρ0 and λ0 within the GNSAR and GNSMA

models are the same when the spatial weight matrices are not parameterized. Only

when W 6= M are ρ0 and λ0 identified, while φ0 is identified via φ0 = ρ0β0.

Third, when the spatial weight matrices are parameterized, then the identification

conditions of the GNSAR and GNSMA models are different because the matrix

R(λ, γ) of a spatial MA error process is inverted and of a spatial AR error process

is not.

Given that the disturbances vt of the GNSAR and GNSMA models follow dif-

ferent higher-order SAR processes, the rank conditions for the identification of the

GNSAR and GNSMA models with both fixed effects are the same when the spatial

weight matrices are not parameterized. Lemma 4.1 provides a sufficient condition

for the rank condition under Assumption 4.8(i) for GNSAR and Assumption 4.8’(i)

for GNSMA models with both fixed effects when the spatial weight matrices are

not parameterized:

Lemma 4.1. If ρ0β0 + φ0 6= 0 and [X̃ t, WX̃ t, W2X̃ t, ιN ] has full column rank, then

JN R(λ)(X̃
∗
t , GX̃

∗
t ζ0) has full column rank for the GNSAR model and JN R−1(λ)(X̃

∗
t ,

GX̃
∗
t ζ0) has full column rank for the GNSMA model when both fixed effects are included.

Expression (a) of Assumptions 4.8(i) and 4.8’(i) ensures that ρ0, β0, and φ0 in

the GNSAR and GNSMA models are locally identified, respectively. Expression (b)

of 4.8(i) and 4.8’(i) ensures that λ0 is identified through the SR−1vt process for the
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GNSAR model and SRvt for the GNSMA model. When Expression (a) of Assump-

tions 4.8(i) and 4.8’(i) does not hold, but Assumption 4.8(ii) or 4.8’(ii), then (ρ0, λ0)

is globally identified.

Lemma 4.2 provides a sufficient condition for the rank condition under As-

sumption 4.8(i) for GNSAR and Assumption 4.8’(i) for GNSMA models with both

fixed effects when the spatial weight matrices are parameterized:

Lemma 4.2. If ρ0β0kW(δ0)+φ0kW(α0k) 6= 0 and [X̃ t, W(δ0)X̃ t, W(δ0)W(α0,1)x̃1t, ...,

W(δ0)W(α0K)x̃Kt, ιN ] has full column rank, then JN R(λ, γ)(X̃
∗
t , GX̃

∗
t ζ0) has full column

rank for the GNSAR model and JN R−1(λ, γ)(X̃
∗
t , GX̃

∗
t ζ0) has full column rank for the

GNSMA model when both fixed effects are included.

When the spatial weight matrices are parameterized, Expression (a) of 4.8(i)

and 4.8’(i) ensures that ρ0, δ0, β0, and φ0 are locally identified for the GNSAR and

GNSMA models, respectively. Expression (b) of 4.8(i) and 4.8’(i) ensures that λ0 and

γ0 are identified through the SR−1vt process for the GNSAR model and SRvt for

the GNSMA model. When Expression (a) of Assumptions 4.8(i) and 4.8’(i) does not

hold, but Assumption 4.8(ii) or 4.8’(ii), then (ρ0, δ0, λ0, γ0) are globally identified.

The first part of Lemma 4.2 is less restrictive than the first part in Lemma 4.1 due

to employing a different weight matrix for each spatial lag. Lemma 4.2 rules out

two cases: (i) ρ0βk + φk = 0 and δ0 = α0k for all k; and (ii) W(δ0) = W(δ0)W(α0k).

Under case (i), the GNS models will reduce to a spatial error model which only

contain spatial interactions among the errors, which is shown in Chapter 3. In

empirical studies, however, the estimated distance decay parameters are expected

to be different since individual regressors tend to follow different distance decay

patterns. Under case (ii), the full column rank conditions in Lemma 4.2 are not met.

However, endogenous and exogenous spatial interactions, captured by W(δ0)yt

and W(α0k)xkt, also tend to follow different distance decay patterns. Furthermore,

they do not tend to diverge to infinity,6 as a result of which W(δ0) = W(δ0)W(α0k)

does not hold, which is the second condition stated in Lemma 4.2. Overall, it can

be concluded that Lemma 4.2 will not be restrictive in empirical applications. A

formal proof of Lemma 4.2, and of Lemma 4.1 as special case of Lemma 4.2, is

given in Appendix 4.C.

6 If the distance decay parameter grows large, the spatial weight matrices will converge to binary con-
tiguity matrix as the elements of distant units go to zero faster than nearby units.
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4.3 Monte Carlo simulations

A Monte Carlo experiment is conducted to evaluate the performance of our pro-

posed estimator for the fixed effects GNSAR and GNSMA models in which the

spatial weight matrix is specified as a row-normalized negative exponential (ED)

distance decay matrix.

Data are generated either from the process given in (4.1) and (4.2) for the GNSAR

model or (4.1) and (4.3) for the GNSMA model. Two regressors are included:

x1it ∼ N (−2, 5) and x2it ∼ N (3, 3). The coefficients of x1it and its spatial lag

are β1 = 1 and φ1 = −0.2 and those of x2it and its spatial lag are β2 = −1.5 and

φ2 = 0.3. c0, ω0t, and vt are generated from independent standard normal distri-

butions. We set N = (50, 200), T = (50, 100), and the number of iterations equal

to 1000. To construct distance matrices between the cross-sectional units, we use

the coordinates of N data points evenly set in a rectangle of 5 × 10 for N = 50

and 10 × 20 for N = 200. These distances are used to calculate the exponen-

tial distance decay matrix. The distance decay parameters for the spatial weight

matrices interacting with different spatial lags are set as (δ, α1, α2, γ) = (2, 4, 2.5, 3).

Row-normalization of the spatial weight matrices is required. Two settings of the

(ρ, λ) are considered. In the first setting (ρ, λ) = (0.2, 0.5), such that the degree

of spatial dependence in the dependent variable is relatively mild (0.2) and the

spatial dependence in the error term relatively large (0.5). In the second setting

(ρ, λ) = (0.5, 0.2), such that these two degrees of spatial dependence are turned

around.

In our experiments we focus on both the parameter estimates and the estimates

of the direct and indirect effects. The formulas for the direct and indirect effects

are taken from Chapter 2. They do not change when spatial AR or MA errors are

added to the SD model with parameterized spatial weight matrices. To evaluate

the performance of the estimators, four statistics are considered: the empirical bias

(Bias), the empirical root mean square error (RMSE), the median bias (Mbias), and

the median absolute value of the bias (Mabias). Among them, Mbias and Mabias

are used since they are robust to outliers. Besides, the asymptotic distribution of

the estimators is evaluated. Specifically, we test the null hypothesis whether each

parameter equals its true value and report the mean and the standard deviations
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of the p-values. If the underlying asymptotic distribution is true, then the p-values

should follow a U(0, 1) distribution, and thus should have a mean p-value of 0.5

and a standard deviation of approximately 0.29.

Table 4.1 reports the simulations results when ρ = 0.2 and λ = 0.5 and Table

4.2 when ρ = 0.5 and λ = 0.2. These tables show that the simulation results for

both cases exhibit similar patterns. As N, T, or both increase, the biases of the coef-

ficient estimates, direct and indirect effects, and distance decay parameters tend to

go down. The same holds for the RMSE, Mbias, and Mabias. However, there are

some striking differences. First, the biases for the estimates of the GNSMA model

are smaller than those of the GNSAR model for both settings, except for the para-

meter λ in the second setting. Second, the biases of the distance decay parameter

estimates are generally larger than the biases of the response parameters. Among

the distance decay parameters, the biases in γ in turn are larger than those of the

other distance decay parameters. Third, when comparing the parameters ρ and λ,

it turns out that the biases in λ are larger. Fourth, in general, the biases in the coef-

ficients of the spatial lags of the explanatory variables are larger than those of the

explanatory variables themselves. Similarly, the biases of the indirect effect estim-

ates are larger than those of the direct effect estimates of the explanatory variables.

Overall, the biases, RMSE, Mbias, and Mabias of the estimates are nevertheless re-

latively small, except for γ in the second case. Only if both N and T are large, do

these four statistics of γ take acceptable small values. Table 4.3 reports the average

p-values and standard deviations of the p-values. The simulation results show that

all the estimated parameters and direct and indirect effects are properly centered

for both models and both panel data settings of N and T.

4.4 Empirical application

The empirical application is based on a recent study of Yang (2021), which con-

tains data on house prices, population density, income, and spatial information of

377 Metropolitan Statistical Areas (MSAs) over the period 1975Q1 to 2014Q4 (total

number of time periods is 160). According to the United States Office of Manage-

ment and Budget, the MSA is defined as the core area with a population density

of 50,000 people or more including surrounding territory that has high commuting
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Table 4.1. Simulation results for ρ = 0.2 and λ = 0.5

T N β1 β2 φ1 φ2 ρ λ σ2 δ α1 α2 γ DE x1 DE x2 IE x1 IE x2

GNSAR
(1) 50 50 Bias 0.0015 0.0003 0.0026 0.0041 0.0098 -0.0025 -0.0042 0.3669 0.0736 0.0967 0.1832 0.0000 0.0006 -0.0058 0.0071

RMSE 0.0089 0.0080 0.0184 0.0428 0.0546 0.0466 0.0299 1.3542 0.2500 0.5674 0.9116 0.0047 0.0084 0.0509 0.0552
Mbias 0.0018 0.0002 0.0020 0.0010 0.0028 -0.0032 -0.0038 0.0144 0.0218 0.0065 0.0432 0.0000 0.0005 -0.0009 0.0031
Mabias 0.0060 0.0054 0.0125 0.0289 0.0357 0.0313 0.0203 0.4822 0.1268 0.3302 0.4961 0.0032 0.0056 0.0319 0.0380

(2) 100 50 Bias 0.0006 0.0000 0.0018 0.0023 0.0046 0.0004 -0.0020 0.1884 0.0446 0.0400 0.0804 -0.0001 0.0002 -0.0023 0.0039
RMSE 0.0065 0.0053 0.0144 0.0293 0.0401 0.0341 0.0211 0.8158 0.1839 0.3479 0.5707 0.0036 0.0056 0.0380 0.0381
Mbias 0.0005 0.0001 0.0017 0.0012 0.0008 0.0009 -0.0018 0.0235 0.0053 0.0052 0.0193 -0.0002 0.0002 0.0003 0.0026
Mabias 0.0045 0.0036 0.0098 0.0192 0.0275 0.0237 0.0140 0.3849 0.0978 0.2282 0.3518 0.0025 0.0038 0.0269 0.0250

(3) 50 200 Bias 0.0004 0.0000 0.0011 0.0021 0.0022 -0.0006 -0.0007 0.0993 0.0256 0.0184 0.0414 0.0000 0.0001 -0.0007 0.0031
RMSE 0.0047 0.0037 0.0101 0.0224 0.0289 0.0241 0.0150 0.4942 0.1164 0.2404 0.3807 0.0024 0.0038 0.0259 0.0287
Mbias 0.0004 0.0001 0.0008 0.0001 0.0002 -0.0002 -0.0014 0.0052 0.0144 0.0030 0.0102 0.0000 0.0002 0.0002 0.0008
Mabias 0.0032 0.0025 0.0067 0.0150 0.0186 0.0156 0.0102 0.2680 0.0714 0.1576 0.2461 0.0016 0.0026 0.0168 0.0185

(4) 100 200 Bias 0.0001 -0.0001 0.0003 0.0007 0.0020 -0.0011 -0.0008 0.0233 0.0054 0.0032 0.0335 0.0000 -0.0001 -0.0014 0.0013
RMSE 0.0031 0.0026 0.0068 0.0146 0.0205 0.0171 0.0104 0.2976 0.0717 0.1592 0.2534 0.0016 0.0027 0.0176 0.0188
Mbias 0.0001 -0.0001 0.0003 0.0005 0.0013 -0.0015 -0.0011 -0.0014 0.0036 -0.0054 0.0207 -0.0001 -0.0001 -0.0007 0.0005
Mabias 0.0020 0.0018 0.0046 0.0096 0.0145 0.0115 0.0071 0.1934 0.0453 0.1036 0.1603 0.0011 0.0019 0.0117 0.0125

GNSMA
(5) 50 50 Bias 0.0008 0.0003 0.0007 0.0010 0.0037 0.0085 -0.0035 0.1656 0.0470 0.0582 0.1512 0.0000 0.0004 -0.0016 0.0019

RMSE 0.0090 0.0073 0.0090 0.0196 0.0303 0.0431 0.0298 0.8746 0.2405 0.4186 0.8930 0.0040 0.0070 0.0203 0.0243
Mbias 0.0004 0.0000 0.0006 0.0004 0.0033 0.0071 -0.0037 0.0117 0.0123 -0.0080 0.0007 0.0000 0.0003 -0.0003 0.0014
Mabias 0.0058 0.0049 0.0064 0.0139 0.0199 0.0276 0.0200 0.3353 0.1371 0.2649 0.4832 0.0028 0.0049 0.0126 0.0166

(6) 100 50 Bias 0.0002 0.0000 0.0005 0.0005 0.0013 0.0027 -0.0017 0.0841 0.0269 0.0286 0.0672 -0.0001 0.0000 -0.0003 0.0008
RMSE 0.0064 0.0048 0.0068 0.0131 0.0220 0.0287 0.0210 0.4883 0.1643 0.2663 0.5228 0.0029 0.0047 0.0152 0.0164
Mbias 0.0001 -0.0002 0.0006 -0.0003 0.0009 0.0038 -0.0015 0.0066 0.0143 0.0119 -0.0138 -0.0002 0.0000 0.0008 0.0006
Mabias 0.0043 0.0033 0.0048 0.0091 0.0158 0.0199 0.0140 0.2701 0.1052 0.1691 0.3081 0.0020 0.0033 0.0098 0.0115

(7) 50 200 Bias 0.0002 -0.0001 0.0003 0.0007 0.0010 0.0023 -0.0005 0.0385 0.0141 0.0129 0.0200 0.0000 0.0000 -0.0003 0.0010
RMSE 0.0047 0.0035 0.0053 0.0098 0.0159 0.0201 0.0150 0.3164 0.1092 0.1793 0.3382 0.0021 0.0034 0.0098 0.0121
Mbias 0.0004 -0.0001 0.0001 0.0009 0.0010 0.0024 -0.0008 0.0006 0.0047 0.0012 0.0041 0.0000 0.0000 0.0000 0.0011
Mabias 0.0031 0.0022 0.0034 0.0066 0.0114 0.0132 0.0102 0.1909 0.0709 0.1152 0.2140 0.0014 0.0022 0.0067 0.0080

(8) 100 200 Bias -0.0001 -0.0001 0.0001 0.0003 0.0005 0.0012 -0.0007 0.0055 0.0012 0.0019 0.0009 0.0000 -0.0001 -0.0004 0.0004
RMSE 0.0032 0.0025 0.0035 0.0063 0.0107 0.0144 0.0103 0.1996 0.0721 0.1186 0.2189 0.0014 0.0024 0.0064 0.0078
Mbias -0.0002 -0.0001 0.0001 0.0004 0.0007 0.0019 -0.0008 -0.0079 -0.0014 -0.0084 -0.0068 0.0000 0.0000 -0.0004 0.0008
Mabias 0.0020 0.0017 0.0025 0.0041 0.0071 0.0097 0.0071 0.1345 0.0473 0.0794 0.1420 0.0009 0.0016 0.0044 0.0052

Table 4.2. Simulation results for ρ = 0.5 and λ = 0.2

T N β1 β2 φ1 φ2 ρ λ σ2 δ α1 α2 γ DE x1 DE x2 IE x1 IE x2

GNSAR
(1) 50 50 Bias -0.0001 0.0001 0.0009 0.0036 -0.0033 0.0135 -0.0038 0.0570 0.0349 0.0538 1.0644 0.0000 0.0002 0.0042 0.0064

RMSE 0.0077 0.0072 0.0135 0.0340 0.0340 0.0634 0.0297 0.2778 0.1964 0.4851 2.9620 0.0048 0.0083 0.0636 0.0683
Mbias -0.0003 0.0001 0.0006 0.0005 -0.0031 0.0050 -0.0032 0.0320 0.0152 0.0035 0.0563 0.0000 0.0000 0.0080 0.0033
Mabias 0.0055 0.0049 0.0090 0.0211 0.0233 0.0382 0.0194 0.1693 0.1280 0.2969 1.1885 0.0032 0.0057 0.0448 0.0421

(2) 100 50 Bias -0.0001 0.0001 0.0001 0.0003 -0.0026 0.0061 -0.0029 0.0379 0.0195 0.0485 0.6605 0.0001 0.0000 0.0026 0.0002
RMSE 0.0059 0.0048 0.0101 0.0225 0.0273 0.0464 0.0203 0.2116 0.1452 0.3159 2.2097 0.0036 0.0054 0.0524 0.0454
Mbias -0.0002 0.0001 0.0003 -0.0004 -0.0016 0.0025 -0.0031 0.0119 0.0090 0.0226 0.0128 0.0001 0.0000 0.0047 -0.0011
Mabias 0.0038 0.0032 0.0066 0.0155 0.0185 0.0296 0.0136 0.1338 0.0866 0.1967 0.8314 0.0024 0.0036 0.0357 0.0305

(3) 50 200 Bias 0.0004 -0.0001 0.0001 0.0000 0.0002 0.0005 -0.0013 0.0190 0.0158 0.0240 0.2605 0.0000 -0.0001 -0.0005 0.0001
RMSE 0.0042 0.0035 0.0074 0.0167 0.0176 0.0313 0.0144 0.1415 0.1004 0.2235 1.1759 0.0023 0.0039 0.0323 0.0341
Mbias 0.0005 -0.0001 0.0003 -0.0006 0.0005 -0.0014 -0.0013 0.0047 0.0118 0.0100 0.0951 0.0000 -0.0001 0.0010 -0.0007
Mabias 0.0028 0.0024 0.0051 0.0109 0.0122 0.0203 0.0097 0.0966 0.0664 0.1406 0.6055 0.0016 0.0027 0.0211 0.0225

(4) 100 200 Bias 0.0000 0.0000 -0.0002 0.0001 -0.0005 0.0001 -0.0008 0.0077 0.0038 0.0043 0.1369 0.0000 0.0000 0.0000 0.0001
RMSE 0.0029 0.0025 0.0051 0.0111 0.0131 0.0219 0.0100 0.0957 0.0687 0.1441 0.7205 0.0016 0.0027 0.0245 0.0227
Mbias 0.0001 0.0000 -0.0002 -0.0002 -0.0002 -0.0007 -0.0013 0.0005 0.0022 -0.0007 0.0294 0.0000 0.0000 0.0004 -0.0001
Mabias 0.0020 0.0017 0.0035 0.0072 0.0086 0.0143 0.0071 0.0616 0.0480 0.0949 0.4303 0.0011 0.0018 0.0163 0.0144

GNSMA
(5) 50 50 Bias -0.0002 0.0001 0.0010 0.0024 0.0020 0.0228 -0.0039 0.0058 0.0126 0.0401 0.8152 -0.0002 0.0001 -0.0048 0.0060

RMSE 0.0078 0.0070 0.0112 0.0263 0.0280 0.0774 0.0298 0.2398 0.1998 0.4501 2.7562 0.0043 0.0073 0.0494 0.0522
Mbias -0.0004 0.0002 0.0014 0.0008 0.0018 0.0112 -0.0034 -0.0117 -0.0075 0.0002 -0.0664 -0.0002 0.0000 -0.0026 0.0030
Mabias 0.0055 0.0047 0.0072 0.0163 0.0190 0.0397 0.0193 0.1587 0.1277 0.2835 1.2383 0.0028 0.0051 0.0338 0.0329

(6) 100 50 Bias -0.0001 0.0000 0.0001 0.0000 0.0002 0.0105 -0.0028 0.0096 0.0073 0.0380 0.4953 0.0000 0.0000 -0.0020 0.0005
RMSE 0.0058 0.0048 0.0084 0.0174 0.0217 0.0464 0.0203 0.1808 0.1441 0.2924 2.0059 0.0031 0.0049 0.0393 0.0345
Mbias 0.0000 0.0001 0.0003 -0.0003 0.0003 0.0076 -0.0030 -0.0036 0.0028 0.0129 -0.0227 0.0000 0.0002 0.0007 0.0002
Mabias 0.0038 0.0032 0.0055 0.0120 0.0149 0.0278 0.0137 0.1189 0.0919 0.1884 0.8049 0.0021 0.0033 0.0262 0.0233

(7) 50 200 Bias 0.0002 -0.0001 0.0004 -0.0001 0.0014 0.0066 -0.0010 0.0036 0.0085 0.0181 0.1999 0.0000 -0.0001 -0.0023 0.0004
RMSE 0.0042 0.0034 0.0063 0.0129 0.0141 0.0311 0.0144 0.1283 0.1019 0.2085 1.1978 0.0021 0.0035 0.0238 0.0259
Mbias 0.0004 -0.0001 0.0005 -0.0002 0.0010 0.0058 -0.0009 -0.0007 0.0067 0.0007 -0.0443 0.0000 0.0000 -0.0011 -0.0006
Mabias 0.0027 0.0024 0.0043 0.0087 0.0097 0.0199 0.0096 0.0878 0.0681 0.1322 0.5430 0.0015 0.0024 0.0158 0.0170

(8) 100 200 Bias -0.0001 0.0000 -0.0001 0.0001 0.0002 0.0032 -0.0006 -0.0002 -0.0002 0.0003 0.0599 0.0000 0.0000 -0.0010 0.0004
RMSE 0.0029 0.0024 0.0043 0.0084 0.0103 0.0210 0.0100 0.0864 0.0703 0.1329 0.6639 0.0015 0.0025 0.0178 0.0168
Mbias 0.0000 0.0000 -0.0001 -0.0003 0.0004 0.0028 -0.0011 -0.0051 -0.0013 -0.0029 -0.0409 -0.0001 0.0001 -0.0011 0.0005
Mabias 0.0019 0.0016 0.0030 0.0054 0.0072 0.0135 0.0071 0.0568 0.0491 0.0900 0.4168 0.0010 0.0017 0.0116 0.0108
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Table 4.3. Simulation results of the means and the standard deviations of the p-
values

T N β1 β2 φ1 φ2 ρ λ δ α1 α2 γ DE x1 DE x2 IE x1 IE x2

ρ: 0.2. λ: 0.5 GNSAR
(1) 50 50 Mean 0.5060 0.4883 0.5015 0.4893 0.5012 0.5293 0.5093 0.5029 0.4916 0.5282 0.5014 0.4864 0.5064 0.4885

Std 0.2810 0.2931 0.2881 0.2935 0.3034 0.2886 0.2880 0.2876 0.2806 0.2784 0.2882 0.2934 0.2952 0.2922
(2) 100 50 Mean 0.5029 0.5046 0.5006 0.5021 0.4967 0.5287 0.5003 0.4922 0.5045 0.5317 0.4955 0.4954 0.4966 0.5026

Std 0.2893 0.2842 0.2885 0.2849 0.2938 0.2793 0.2959 0.2880 0.2872 0.2912 0.2897 0.2828 0.2848 0.2884
(3) 50 200 Mean 0.4891 0.5108 0.5075 0.4945 0.5289 0.5553 0.5189 0.4959 0.5045 0.5409 0.5031 0.5012 0.5207 0.4988

Std 0.2978 0.2873 0.2933 0.2917 0.2901 0.2785 0.2939 0.2886 0.2887 0.2854 0.2914 0.2832 0.2836 0.2936
(4) 100 200 Mean 0.5057 0.4950 0.4988 0.5144 0.5236 0.5510 0.5217 0.5233 0.5081 0.5598 0.5081 0.4955 0.5268 0.5105

Std 0.2883 0.2854 0.2935 0.2979 0.2793 0.2706 0.2850 0.2882 0.2857 0.2729 0.2992 0.2832 0.2801 0.2960
ρ: 0.2. λ: 0.5 GNSMA

(5) 50 50 Mean 0.5074 0.4891 0.5021 0.4849 0.5101 0.4966 0.5217 0.5039 0.4923 0.4901 0.4979 0.4908 0.5086 0.4863
Std 0.2913 0.2894 0.2888 0.2864 0.2855 0.2980 0.2857 0.2905 0.2779 0.2850 0.2908 0.2948 0.2936 0.2884

(6) 100 50 Mean 0.5015 0.5012 0.4931 0.5072 0.5157 0.4944 0.5039 0.4908 0.5074 0.5015 0.4990 0.4991 0.5011 0.4988
Std 0.2894 0.2802 0.2803 0.2859 0.2831 0.2765 0.2857 0.2857 0.2867 0.2850 0.2919 0.2817 0.2886 0.2827

(7) 50 200 Mean 0.4836 0.5093 0.5070 0.4956 0.4866 0.5051 0.4966 0.4953 0.5061 0.4971 0.4961 0.5054 0.4934 0.4934
Std 0.2931 0.2868 0.2992 0.2923 0.2862 0.2927 0.2867 0.2951 0.2849 0.2900 0.2902 0.2861 0.2885 0.2907

(8) 100 200 Mean 0.5068 0.4980 0.5018 0.5095 0.5036 0.4930 0.5053 0.5100 0.5079 0.5139 0.5019 0.4999 0.4983 0.5020
Std 0.2908 0.2888 0.2858 0.2890 0.2875 0.2868 0.2875 0.2864 0.2846 0.2837 0.2922 0.2891 0.2876 0.2868

ρ: 0.5. λ: 0.2 GNSAR
(9) 50 50 Mean 0.5140 0.4972 0.5094 0.5093 0.5110 0.5293 0.5119 0.5190 0.5030 0.5546 0.5059 0.4922 0.5058 0.5096

Std 0.2841 0.2957 0.2900 0.2877 0.2858 0.2839 0.2775 0.2919 0.2895 0.2915 0.2966 0.2909 0.2838 0.2869
(10) 100 50 Mean 0.5060 0.5101 0.5100 0.4976 0.4948 0.5100 0.4951 0.5038 0.4989 0.5558 0.5065 0.5171 0.4883 0.4948

Std 0.2903 0.2853 0.2918 0.2922 0.2905 0.2867 0.2923 0.2948 0.2818 0.2782 0.2860 0.2842 0.2890 0.2911
(11) 50 200 Mean 0.5062 0.5007 0.4968 0.5098 0.5066 0.5239 0.4904 0.4922 0.5040 0.5305 0.4892 0.5012 0.5069 0.5126

Std 0.2920 0.2873 0.2869 0.2850 0.2883 0.2919 0.2881 0.2889 0.2889 0.2794 0.2902 0.2888 0.2885 0.2893
(12) 100 200 Mean 0.5062 0.4966 0.5109 0.5149 0.5003 0.5169 0.5161 0.4993 0.5130 0.5142 0.4967 0.4968 0.5005 0.5146

Std 0.2822 0.2934 0.2861 0.2904 0.2862 0.2842 0.2893 0.2805 0.2833 0.2749 0.2846 0.2936 0.2911 0.2927
ρ: 0.5. λ: 0.2 GNSMA

(13) 50 50 Mean 0.5058 0.4979 0.5098 0.5016 0.5057 0.4998 0.5038 0.5097 0.4988 0.5207 0.4994 0.4930 0.4986 0.5019
Std 0.2828 0.2910 0.2899 0.2907 0.2912 0.2897 0.2870 0.2944 0.2943 0.3042 0.2897 0.2906 0.2835 0.2921

(14) 100 50 Mean 0.5017 0.5034 0.5097 0.4908 0.4968 0.4973 0.4884 0.4979 0.4972 0.5411 0.5025 0.5141 0.4895 0.4899
Std 0.2890 0.2838 0.2950 0.2892 0.2905 0.2836 0.2906 0.2909 0.2792 0.2889 0.2861 0.2835 0.2927 0.2905

(15) 50 200 Mean 0.5006 0.4997 0.4938 0.5007 0.4976 0.4940 0.4887 0.4934 0.4944 0.5171 0.4883 0.4968 0.4976 0.5004
Std 0.2920 0.2862 0.2849 0.2827 0.2898 0.2910 0.2949 0.2928 0.2876 0.2896 0.2903 0.2852 0.2926 0.2829

(16) 100 200 Mean 0.5075 0.4937 0.5102 0.5141 0.4901 0.5026 0.5106 0.4974 0.5131 0.4999 0.4939 0.4916 0.4935 0.5159
Std 0.2868 0.2916 0.2892 0.2869 0.2876 0.2879 0.2890 0.2827 0.2840 0.2885 0.2841 0.2897 0.2917 0.2887
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ties with the core. The dependent variable, the real house price change, is construc-

ted as log(Pit/CPIit) − log(Pi,t−1/CPIi,t−1), where Pit is the Freddie Mac House

Price Index (FMHPI) and CPIit is Consumer Price Index (CPI). Explanatory vari-

ables are the percentage changes in population (pop) and real per capita income

(income). Both variables are calculated as first-differences of these variables ex-

pressed in natural logarithms and thus can be interpreted as growth rates. Due to

taking first-differences, the actual number of time periods reduces to 159. The CD

statistic of Pesaran (2015) on the residuals of several specifications investigated by

Yang (2021) suggest that there might still be some remaining spatial dependence in

the residuals, indicating the need to examine other spatial weight matrices, para-

meterize them, and to include spatial errors. The CD statistics is -6.365 when the SD

model is applied in combination with the regional national common factors, indi-

vidual fixed effects, seasonal dummies, and the row-normalized binary contiguity

matrix with cut-off point at 100 miles (W100), which is the best performing spatial

weight matrix in her study.

For this purpose, we first estimate the GNSAR and GNSMA models when each

spatial lag in the model is pre-specified by the same spatial weight matrix: the

W100 used in Yang (2021) and a non-parameterized negative exponential matrix

(ED), respectively. We further estimate the GNSAR and GNSMA models when

the negative exponential matrices are parameterized. Three cases are considered:

(i) all spatial lags share the same estimated distance decay parameter (ED-same);

(ii) the estimated distance decay parameters are different for the spatial lag in the

dependent variable and the error tern, but not for the spatial lags in the explanatory

variables (ED-one); and (iii) the estimated distance decay parameters are different

for all spatial lags (ED-multi). All models include spatial and time fixed effects and

all spatial weight matrices are row-normalized. The results are reported in Table

4.4 by which Columns (1) - (5) capture the results of GNSAR models and Columns

(6) - (10) of the GNSMA models.

The estimated values of the spatial autoregressive parameter ρ are all positive

and highly significant across the different models; they take values in the range

(0.6, 0.8). This result indicates that house prices in each individual MSA are highly

dependent on those in neighbouring MSAs. Population and income growth rates

are found to have an upward effect on house prices. The magnitudes of the estim-
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ated coefficients and the corresponding direct effects, which fluctuate around 0.3

(coefficient) and 0.4 (direct effects) for population, and below or around 0.1 (coeffi-

cient and direct effect) for income, are similar to those in Yang (2021). By contrast,

the estimated coefficients of the spatial lags and the indirect effects of these two ex-

planatory variables differ across the equations. The coefficient of the spatial lag of

population tends to be positive and significant in most cases, except when adopting

Yang’s W100 matrix, while its indirect effect is positive and significant in all cases,

even though the magnitude of this effect is quite different across the equations. The

indirect effect of income is found to be positive and significant in all cases, while its

magnitude seems to increase as more distance decay parameters are estimated sep-

arately (Columns (9) and (10)). Although the estimated coefficients of the spatial

errors λ are all highly significant, they also differ in terms of signs and magnitudes.

Note that due to the specification of spatial AR and MA errors in Equations (4.2)

and (4.3), a positive spatial autocorrelation coefficient in a spatial AR error process

corresponds with a negative spatial autocorrelation coefficient in a spatial MA er-

ror process. The estimated λ’s take large negative values in the GNSMA models the

moment that more distance decay parameters are estimated separately (Columns

(9) and (10)). Importantly, the distance decay parameter of the spatial AR errors

appears to be large and of the spatial MA errors to be small. This is line with the

Fingleton and LeGallo’s (2007) statement that spatial AR errors represent global

shocks and spatial MA errors represent local shocks. Due to its multiple rounds

structure, a shock reaches every corner of the research area even if the spatial range

of AR errors is small, while a shock in MA errors due to its one round structure

can only reach areas located farther away if the spatial range of MA errors is large.

Overall, the estimated distance decay parameters appear to be significant, except

for the distance decay parameter of income (α2) of the GNSMA model in Column

(1). Moreover, since the estimated values of the distance decay parameters are quite

different, the conclusion must be that each spatial lag, as expected, exhibits a dif-

ferent distance decay pattern.

For both the GNSAR and GNSMA models, the log-likelihood values increase

when the non-parameterized ED matrix replaces the binary contiguity matrices

with a cut-off point (W100) used by Yang (2021). Importantly, the log-likelihood

values further increase when the ED matrix is parameterized, also if all spatial lags
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share the same parameterized ED matrix. However, the log-likelihood values reach

their maximum when the estimated distance decay parameters are assumed to be

different for each spatial lag. Eventually, the log-likelihood value of the GNSAR

model (193194.3107), reported in Column (6), turns out to be the largest across all

models being considered. For this reason, the GNSAR model with different spatial

weight matrices for each spatial lag may be labelled as the best performing model.

Population shows a strong distance decay effect within this model (α1 = 4.6185).

This finding implies that the spatial range of population, the distance at which it

still has effect, is limited. The spatial AR error shows a milder distance decay ef-

fect (λ = 2.2365), while the distance decay effects exhibited by income and the

house price change in neighbouring units are relatively small (α2 = 0.9608 and

δ = 0.4893). According to the estimated direct and indirect effects reported in

Column (5), a one percentage point increase in population growth in one partic-

ular MSA is predicted to lead to an average 0.3479 percentage point increase in

house prices in the own MSA, and a 2.2652 percentage point increase in house

prices in neighbouring MSAs. By contrast, a one percentage point increase in in-

come growth has much smaller direct and indirect effects on house prices, respect-

ively 0.0912 and 0.7179 percentage points. The estimated indirect effects are larger

than those in Yang (2021). There are two possible explanations for this finding.

The larger indirect effects in our study might be due to modelling strong cross-

sectional dependence by time fixed effects rather than the more general common

factors considered in Yang (2021). On the other hand, there is evidence of mild (or

weak) cross-sectional dependence captured by the spatial AR error in that the spa-

tial autocorrelation coefficient is strongly significant (λ = 0.5286 is significant at

the 1% significance level). This has been ignored in Yang (2021). The inclusion of

the spatial error is important since an improperly specified error term may result in

misleading conclusions concerning the statistical significance of the estimated para-

meters. The results in this study favour a spatial AR error process, which is in line

with the complexity of the US housing market. This market has gone through na-

tionwide economic shocks and housing-related policy changes, as a result of which

geographic interactions and spillovers of shocks between cities influence the co-

movement of US house price changes (Choi and Hansz, 2021). Since such shocks

are global and affect all MSAs in the US, they are more likely to diffuse according
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to a multiple rounds structure among the units.
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4.5 Conclusion and discussion

We consider GNS models with individual and time fixed effects, a spatial autore-

gressive or spatial moving average error process, and parameterized spatial weight

matrices that are different for each spatial lag in the model. These spatial weight

matrices, which are specified as exponential distance decay matrices, add more

flexibility to the coefficients of the spatial lags of the explanatory variables in the

model and the direct and indirect effect estimates derived from them. They also

help to reduce the identification problems that plagued the empirical literature es-

timating GNS models.

Consistent and properly centred QML estimators, based on the orthogonal trans-

formation to concentrate out the individual and time fixed effects, are derived to

estimate the distance decay parameters jointly with the response parameters in the

model. The assumptions necessary for asymptotic normality, identification and

consistency have been taken from previous studies, and adapted and extended to

the model at hand. In our Monte Carlo experiment we examine the performance

of the estimators of the response parameters, distance decay parameters, and direct

and indirect effects. An empirical application using US house data taken from Yang

(2021) shows that the GNS model with spatial AR errors and different distance de-

cay parameters for different spatial lags outperforms all the other empirical models

considered in this chapter.

Literature on the selection of spatial econometric models with either AR or MA

errors is scarce. The reasons are that these two models are not nested and models

with MA errors are computationally more difficult to estimate, as shown in Chapter

3. Bayesian posterior model probabilities (LeSage, 2014) or entropy measures (Her-

rera et al., 2019), in addition to log-likelihood values, may be a useful tool to com-

pare the performance of these kind of non-nested models in future research.
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4.A Appendix: The GNSAR model with both fixed ef-

fects

Without loss of generality, the presentation with respect to the distance decay para-

meters in Appendix 4.A and 4.B is limited to two explanatory variables (K = 2)

with distance decay parameters α1 and α2.

∂lnL(θ)
∂θ

=

1
σ2 ∑T

t=1(RX̃
∗
t )
′
JN ṽt(ξ)

1
σ2 ∑T

t=1(RW(δ)ỹt)
′
JN ṽt(ξ)− (T − 1)trJNG

1
σ2 ∑T
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′
JN ṽt(ξ)− (T − 1)trJN H

1
2σ4 ∑T
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′
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T σ2)

−ρ(T − 1)tr[∆(δ)S−1] + ρ
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′
JN ṽt(ξ)
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′
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

, (4.A.1)

where G = W(δ)S−1 and H = W(γ)R−1. We also denote G̈ = RGR−1, Z(δ)S−1 =

∆, ∆̈ = R∆R−1, and Z(γ)R−1 = Λ. Z($) = ∂W($)
∂$ and Γ($) = ∂2W($)

∂$2 .
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ṽ′ tJ N

Z
(γ

)R
−

1 ṽ
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ṽ t

+
ρ

2

σ
2

∑
T t=

1(
R

Z
(δ
)ỹ
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ṽ t

λ
(T
−

1)
tr
(Γ
(γ

)R
−

1
)
+

λ
2
(T
−

1)
tr
(Z

(γ
)R
−

1
Z
(γ

)R
−

1
)

+
λ σ
2

∑
T t=

1
(R

Z
(α

2
)x̃

2t
φ

2
)′

J N
Z
(γ

)R
−

1
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4.B Appendix: The GNSMA model with both fixed ef-

fects
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,

(4.B.1)

where G = W(δ)S−1 and Q = R−1W(γ). We also denote G̈ = R−1GR, Z(δ)S−1 =

∆, ∆̈ = R−1∆R, and R−1Z(γ) = Λ.



General nesting spatial panel models 137

−
∂2 ln

L(
θ
)

∂
θ

∂
θ
′

=

                                                          

1 σ
2

∑
T t=

1
(R
−

1
X̃
∗ t
)′

J N
R
−

1
X̃
∗ t

∗
∗

∗
∗
∗
∗

1 σ
2

∑
T t=

1
(R
−

1 W
(δ
)ỹ
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)ỹ

t)
′ J N

R
−

1 W
(δ
)ỹ
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ṽ t
(ξ
)

1 σ
2

∑
T t=

1
(Q
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ṽ t
(ξ
)

0
∗
∗
∗

−
1 σ
2

∑
T t=

1
(Q

ṽ(
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ṽ t
(ξ
)

0
0

0
0

ρ σ
2

∑
T t=

1
(R
−

1
Z
(δ
)ỹ
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ṽ t

0
0

0
0

0 1
×

K
+

ρ σ
2

∑
T t=

1(
R
−

1 W
(δ
)ỹ
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ṽ′ tJ N

R
−

1
Z
(α

2)
x̃ 2

tφ
2

0
0

0
0

0 1
×

K
0

+
1 σ
2

∑
T t=

1(
λ

Q
R
−

1
Z
(γ

)ṽ
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)ṽ
t

−
λ σ
2

∑
T t=

1(
R
−

1
Z
(α

1)
x̃ 1

tφ
1)
′ J N

R
−

1
Z
(γ

)ṽ
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4.C Appendix: Proofs of Lemma 4.2

We provide proofs of Lemma 4.2, since Lemma 4.1 is a special case of Lemma 4.2

with W(δ0) = W(α0k) = W for each k.

For the GNSAR model, we are interested in the sufficient condition that

JN R(λ, γ)G(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k)c1 + JN R(λ, γ)X̃ tc2

+ JN R(λ, γ)(
K

∑
k=1

W(α0k)x̃kt)c3 = 0, (4.C.1)

for c1 = c2 = c3 = 0, where c1, c2, and c3 are conformable scalars. This is ana-

logous to Equation (G.1) in the proof of Lemma 5.2 in Lee et al. (2010) for the

social interaction models. Denote κ1 = 1
N ι
′
N R(λ, γ)G(X̃ tβ0 + ∑K

k=1 W(α0k)x̃ktφ0k),

κ2 = 1
N ι
′
N R(λ, γ)X̃ t, and κ3 = 1

N ι
′
N R(λ, γ)[W(α0,1)x̃1t, ..., W(α0K)x̃Kt]. Exploiting

W(δ0)S−1 = S−1W(δ0)
7, yields

[JN R(λ, γ)G(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k), JN R(λ, γ)X̃ t, JN R(λ, γ)(
K

∑
k=1

W(α0k)x̃kt)]

= R(λ, γ)S−1{[W(δ0)(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k), SX̃ t, S(
K

∑
k=1

W(α0k)x̃kt)]

− SR−1(λ, γ)ιN(κ1, κ2, κ3)}

= R(λ, γ)S−1{[W(δ0)(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k), SX̃ t, S(
K

∑
k=1

W(α0k)x̃kt)]

− ιN(κ
∗
1 , κ∗2 , κ∗3)}, (4.C.2)

where κ∗m = 1−ρ0
1−λ0

κm for m = 1, 2, 3, and SR−1(λ, γ)ιN = 1−ρ0
1−λ0

ιN . Therefore, (4.C.1)

is equivalent to

W(δ0)(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k)c1 + SX̃ tc2 + S(
K

∑
k=1

W(α0k)x̃kt)c3

− ιN(κ
∗
1 c1 + κ∗2 c2 + κ∗3 c3)

= X̃ tc2 + W(δ0)[W(α0,1)x̃1t(φ0,1c1 − ρ0c3), ..., W(α0K)x̃Kt(φ0Kc1 − ρ0c3)]

7 W(δ0)S−1 = W(δ0)(IN + ρ0W(δ0) + ρ2
0W2(δ0) + ...) = (IN + ρ0W(δ0) + ρ2

0W2(δ0) + ...)W(δ0) =

S−1W(δ0).
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+
K

∑
k=1

(W(δ0)x̃ktβ0kc1 − ρ0W(δ0)x̃ktc2 + W(α0k)x̃ktc3)− ιN(κ
∗
1 , κ∗2κ∗3) = 0.

(4.C.3)

As [X̃ t, W(δ0)X̃ t, W(δ0)W(α0,1)x̃1t, ..., W(δ0)W(α0K)x̃Kt, ιN ] has assumed to have

full column rank for each k, it follows that c2 = 0, φ0kc1− ρ0c3 = 0, and W(δ0)β0kc1 +

W(α0k)c3 = 0. This in turn implies that c1 = 0 and c3 = −φ0kc1/ρ0 = 0 given the

assumptions that ρ0β0kW(δ0) + φ0kW(α0k) 6= 0 and ρ0 6= 0. This completes the

proof for the GNSAR model.

For the GNSMA model, we similarly have

JN R−1(λ, γ)G(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k)c1 + JN R−1(λ, γ)X̃ tc2

+ JN R−1(λ, γ)(
K

∑
k=1

W(α0k)x̃kt)c3 = 0. (4.C.4)

Denote κ1 = 1
N ι
′
N R−1(λ, γ)G(X̃ tβ0 + ∑K

k=1 W(α0k)x̃ktφ0k), κ2 = 1
N ι
′
N R−1(λ, γ)X̃ t,

and κ3 = 1
N ι
′
N R−1(λ, γ)[W(α0,1)x̃1t, ..., W(α0K)x̃Kt], to get

[JN R−1(λ, γ)G(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k), JN R−1(λ, γ)X̃ t, JN R−1(λ, γ)(
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∑
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K

∑
k=1

W(α0k)x̃ktφ0k), SX̃ t, S(
K

∑
k=1

W(α0k)x̃kt)]

− SR(λ, γ)ιN(κ1, κ2, κ3)}

= R−1(λ, γ)S−1{[W(δ0)(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k), SX̃ t, S(
K

∑
k=1

W(α0k)x̃kt)]

− ιN(κ∗1 , κ∗2 , κ∗3 )}, (4.C.5)

where κ∗m = (1− ρ0)(1− λ0)κm for m = 1, 2, 3, and SR(λ, γ)ιN = (1− ρ0)(1−
λ0)ιN . Therefore, (4.C.4) is equivalent to

W(δ0)(X̃ tβ0 +
K

∑
k=1

W(α0k)x̃ktφ0k)c1 + SX̃ tc2 + S(
K

∑
k=1

W(α0k)x̃kt)c3

− ιN(κ
∗
1 c1 + κ∗2 c2 + κ∗3 c3)

= X̃ tc2 + W(δ0)[W(α0,1)x̃1t(φ0,1c1 − ρ0c3), ..., W(α0K)x̃Kt(φ0Kc1 − ρ0c3)]
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+
K

∑
k=1

(W(δ0)x̃ktβ0kc1 − ρ0W(δ0)x̃ktc2 + W(α0k)x̃ktc3)− ιN(κ
∗
1 , κ∗2κ∗3) = 0.

(4.C.6)

As [X̃ t, W(δ0)X̃ t, W(δ0)W(α0,1)x̃1t, ..., W(δ0)W(α0K)x̃Kt, ιN ] is assumed to have full

column rank for each k, it follows that c2 = 0, φ0kc1 − ρ0c3 = 0, and W(δ0)β0kc1 +

W(α0k)c3 = 0. This in turn implies that c1 = 0 and c3 = −φ0kc1/ρ0 = 0 given the

assumptions that ρ0β0kW(δ0) + φ0kW(α0k) 6= 0 and ρ0 6= 0. The desired result for

the GNSMA model follows.
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Conclusion

This dissertation contains three chapters which are linked through their focus on

the specification and estimation of several spatial econometric models and their

spatial weight matrices. The central question of this thesis is threefold: (I) how to

specify the spatial weight matrix or matrices, (II) how to specify the spatial lags, and

(III) how to solve or diminish any identification problems of the model parameters.

To address this central question, models from simple to challenging are considered.

The general context and the more detailed context of each chapter is discussed in

the previous chapters. This chapter summarizes and reiterates the main conclu-

sions of each chapter, mentions some limitations, and provides potential directions

for future research.

In Chapter 2 the prominent spatial Durbin model, which contains spatial lags

in the dependent variable and the regressors, is taken as point of departure. This

model generates more flexible indirect effects than their counterparts without Durbin

terms. We further let each spatial lag and regressor have its own spatial weight mat-

rix by parameterizing each of them with a different distance decay parameter. In

the panel setting, this model can also contain individual and time fixed effects when

N is large and T is finite. The QML estimator based on the within transformation

to concentrate out the individual fixed effects is used to estimate the distance decay

parameters together with the response parameters. In addition to the two func-

tional forms of distance decay structure, the negative exponential and the inverse

distance, two types of normalization, row normalization and scalar normalization,

are considered. The simulation and empirical application results show that, instead
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of adopting one common pre-specified matrix, each spatial lag should interact with

a different spatial weight matrix. Therefore, this chapter answers Question (I), the

specification of the spatial weight matrix or matrices, by estimating them within

the SDM framework.

Chapter 3 considers the QML within estimator of the SARMA model with indi-

vidual and time fixed effects, which includes spatial lags in the dependent variable

and the errors. This model has gained less attention in the literature compared

with the widely applied SARAR model. We focus on the popular panel setting in

which N is large and T is finite. We extend the interpretation of local and global

shocks by considering the spatial range of the spatial weight matrices: a spatial

MA error process representing local shocks which tend to go together with a dense

matrix and the spatial AR error process representing global shocks which tend to

go together with a sparse matrix. The simulation results show that the model para-

meters, the direct effects, and the indirect effects are biased when wrong spatial

weight matrices are used. This chapter therefore answers Question (II) regarding

the specification of the spatial lags. Question (I) about the specification of the spatial

weight matrix is also partly answered since the empirical results show that differ-

ent types of spatial lags may interact with different spatial weight matrices in terms

of sparsity or density.

As an extension of Chapter 2 and Chapter 3, Chapter 4 considers the estima-

tion of panel GNS models with spatial AR or MA errors, individual and time fixed

effects, and parameterized spatial weight matrices within the large N and large T

setting. We exploit and modify the QML estimator based on the orthogonal trans-

formation to estimate the distance decay parameters of the spatial weight matrices

and the response parameters of these models. Monte Carlo simulations are con-

ducted to show the acceptable performance of the QML estimators. The empirical

application using US house data taken from Yang (2021) confirms the existence of

global shocks in the US housing market, since the spatial AR error process is found

to outperform its spatial MA counterpart. This chapter answers all three questions

posed in this thesis. It answers Question (I) regarding the specification of the spatial

weight matrix since it shows that distance-based decay matrices can be estimated

along the response parameters of the model. It answers Question (II) regarding the

specification of spatial lags since both MA and AR errors are considered. Finally,
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it answers Question (III) by taking into account the rank conditions of the GNSAR

and GNSMA models and by showing that the identification of its parameters is

alleviated by parameterizing the spatial weight matrices.

Matlab routines will be made available for the proposed QML estimators for

all the mentioned models; these routines provide opportunities to practitioners for

their own research.

One issue for further research is how to select between spatial AR and MA er-

rors. Besides the economic theory set out in Chapter 3, Bayesian posterior model

probabilities are a powerful and straightforward tool for model selection since the

model with the highest probability should be selected (LeSage, 2014). However,

prior and posterior probabilities need to be derived not only for each model spe-

cification but also for different spatial weight matrices of each spatial lag in these

specifications. These derivations are not yet available and left for future research.

Attempts have also been made for selecting from non-nested spatial economet-

ric models. Liu and Lee (2019) propose a non-degenerate likelihood-ratio test for

model selection between two non-nested spatial econometric models. This test is

based on QML estimators of the matrix exponential spatial specification (MESS)

model and the SARAR model. However, the power of the test for model selection

between models with spatial AR and MA errors is yet unknown. One of the pos-

sibilities is to explore whether AR versus MA tests in the time-series literature (e.g.,

King, 1983) are also applicable to spatial econometric models.

Another step forward of this thesis is to add “dynamic” elements to the spa-

tial panel models. Elhorst (2021) categorizes spatial econometric models into four

generations: the first generation contains models based on cross-sectional data, the

second generation comprises models based on pooled data but with controls for

individual and time fixed or random effects, the third generation captures dynamic

spatial panel data models, and the current fourth generation, from 2021, includes

spatial panel data models with all spatial lags, both fixed or random effects, and

common factors. These models are quite difficult to apply. Parameterizing the spa-

tial weight matrices in these advanced models will make the estimation far more

difficult. Furthermore, they may suffer from additional identification problems.

Lee and Yu (2016) propose identification conditions for dynamic spatial panel mod-

els with Durbin terms. The role of parameterized spatial weight matrix in the iden-
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tification of the parameters in these dynamic models is left for future research.
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Samenvatting

Ruimtelijk econometrische modellen bieden mogelijkheden om ruimtelijke, econo-

mische en sociale interacties tussen transversale waarnemingseenheden te verkla-

ren door verschillende ruimtelijke vertragingen op te nemen. Ruimtelijke gewich-

tenmatrices zijn daarin een essentieel onderdeel, omdat ze weergeven hoe deze

eenheden met elkaar verbonden zijn. Om ruimtelijk econometrische modellen te

kunnen toepassen, dienen drie vragen te worden beantwoord. Het betreft achter-

eenvolgens (I) hoe de ruimtelijke gewichtenmatrix of -matrices te modelleren, (II)

hoe ruimtelijke vertragingen te modelleren, en (III) langs welke weg de parame-

ters van het model zijn geı̈dentificeerd. Dit proefschrift onderzoekt oplossingen en

geeft antwoord op deze drie vragen. De panel structuur en schattingsmethode spe-

len hierbij een belangrijke rol. In ruimtelijke panel data modellen met individuele

en tijdgebonden vaste effecten, worden deze vaste effecten in het algemeen name-

lijk eerst uit het model getransformeerd, middels ofwel de zogenoemde “within”

transformatie of de orthogonale transformatie, waarna het getransformeerde model

wordt geschat, in dit proefschrift op basis van quasi maximale waarschijnlijkheid

(QML).

Hoofdstuk 2 gaat in op eerste vraag door te kijken naar de schatting van het

ruimtelijke Durbin model (spatial Durbin (SD) model) met geparameteriseerde ruim-

telijke gewichtenmatrices. Dit model bevat ruimtelijke vertragingen in de te ver-

klaren variabele en elk van de verklarende variabelen. De kracht van dit model

in empirisch onderzoek is dat het flexibele indirecte spillover effecten genereert,

een maat voor de marginale effecten van veranderingen in één van de verklarende

variabelen van een waarnemingseenheid op de te verklaren variabele van andere

waarnemingseenheden. Deze flexibiliteit wordt opgevoerd door elke ruimtelijke



160

gewichtenmatrix te parameteriseren met een andere afstandsvervalparameter en

deze parameters tezamen met de andere parameters van het model te schatten.

De QML-schatter op basis van de within-transformatie wordt gebruikt om het SD-

model te schatten met individuele en tijdgebonden effecten onder de veronderstel-

ling dat N groot en T eindig is. Vanwege deze veronderstelling behoeven alleen de

individuele effecten uit het model te worden getransformeerd, terwijl de tijdgebon-

den effecten kunnen worden behandeld als reguliere regressoren. De Monte Carlo-

simulatieresultaten en empirische toepassing laten zien dat de gangbare praktijk

om met één gemeenschappelijke ruimtelijke gewichtenmatrix te werken voor alle

ruimtelijke vertragingen in het model moet worden verworpen en dat de para-

meterisering van de gewichtenmatrices de flexibiliteit waarmee indirecte spillover

effecten worden gemeten inderdaad verbetert.

Hoofdstuk 3 gaat in op de tweede vraag met betrekking tot de specificatie van

ruimtelijke vertragingen door ruimtelijke moving average (MA) en ruimtelijke au-

toregressieve (AR) processen in de storingstermen met elkaar te vergelijken. We

breiden de interpretatie van lokale en globale schokken uit door rekening te hou-

den met het ruimtelijke bereik van de gewichtenmatrices: het ruimtelijke MA-

proces modelleert lokale schokken en correspondeert met goed gevulde ruimte-

lijke gewichtenmatrices, terwijl het ruimtelijke AR-proces globale schokken vast-

legt en correspondeert met schaars gevulde ruimtelijke gewichtenmatrices. De

QML-schatter op basis van de within-transformatie wordt gebruikt om een ruimte-

lijk econometrisch model te schatten met ruimtelijke vertragingen in de te verklaren

variabele en de storingsterm met vooraf gespecificeerde maar verschillende ruim-

telijke gewichtenmatrices. Dit model, beter bekend als het ruimtelijke autoregres-

sieve (SAR) model met ruimtelijke MA-storingstermen, of kortweg het SARMA-

model, bevat voorts individuele en tijdgebonden effecten en wordt wederom ge-

schat onder de veronderstelling dat N groot en T eindig is. De Monte Carlo-

simulatieresultaten laten zien dat de selectie van de juiste ruimtelijke gewichten-

matrix en het overwegen van verschillende ruimtelijke gewichtenmatrices voor

verschillende ruimtelijke vertragingen in het model van cruciaal belang zijn en

misschien zelfs belangrijker dan de selectie van het juiste ruimtelijk econometri-

sche model. De empirische toepassing op basis van data ontleend aan Yesilyurt

en Elhorst (2017), waarin militaire uitgaven worden verklaard, laat echter zien dat
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het ruimtelijke proces in de storingsterm van dit model het beste gemodelleerd

kan worden volgens een MA structuur en een goed gevulde ruimtelijke gewichten-

matrix, omdat de schokken een lokaal karakter vertonen. Met deze bevindingen

beantwoordt dit hoofdstuk zowel niet alleen de tweede vraag gesteld in dit proef-

schrift, maar ook de eerste.

Hoofdstuk 4 gaat aanvankelijk in op de derde vraag betreffende identificatie

van de modelparameters middels de schatting van het general nesting spatial (GNS)

model met ruimtelijke AR- of MA-storingstermen en geparameteriseerde ruimte-

lijke gewichtenmatrices. Deze modellen bevatten ruimtelijke vertragingen in de

te verklaren variabele, elk van de verklarende variabelen en de storingsterm. De

QML-schatter gebaseerd op de orthogonale transformatie wordt niet alleen ge-

bruikt maar ook afgeleid om deze GNS-modellen te schatten met individuele en

tijdgebonden vaste effecten, in dit hoofdstuk onder de veronderstelling dat zowel

N en T groot zijn. Langs deze weg wordt bewezen dat het parameteriseren van de

ruimtelijke gewichtenmatrices het in de literatuur genoemde identificatieprobleem

verlicht. De Monte Carlo simulatieresultaten laten zien dat de QML orthogonale

schatter acceptabel presteert. De empirische toepassing op basis van een data set

ontleend aan Yang (2021), waarin de stijging van huizenprijzen in Amerikaanse

metropolen wordt verklaard middels veranderingen in inkomens- en bevolkings-

groei, laat zien dat elke van de vier ruimtelijke vertragingen in het model wordt

gekenmerkt door een andere gewichtenmatrix en dat het ruimtelijke proces in de

storingsterm in dit model het beste gemodelleerd kan worden volgens een auto-

regressief (AR) proces en een schaars gevulde ruimtelijke gewichtenmatrix, omdat

de Amerikaanse huizenmarkt wordt gekenmerkt door schokken die een globaal

karakter vertonen. Met deze bevindingen beantwoordt dit hoofdstuk tenslotte alle

vragen die in dit proefschrift gesteld zijn.
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