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Abstract 

This thesis addresses methodological issues in the morphometric inventorying of relict 

drumlins and mega-scale glacial lineations (longitudinal subglacial bedforms, LSBs) 

which pose limits to a robust description of LSB morphometry and thus to testing 

hypotheses of LSB genesis, with implications for postdicting past, and predicting future, 

ice sheet behavior. Focus is on a) the adequacy of previously used morphometric 

measurement methods (MMM) (GIS) and b) the development of LSB semi-automated 

mapping (SAM) methods. Dimensions derived from an ellipse fitted to the LSB footprint 

based on Euler’s approximation are inaccurate and both these and orientation based on 

the longest straight line enclosed by the footprint are imprecise. A newly tested MMM 

based on the standard deviational ellipse performs best. A new SAM method 

outperforms previous methods. It is based on the analysis of normalized local relief 

closed contours and on a supervised ruleset encapsulating expert knowledge, published 

morphometric data and study area LSB morphometry.         

 

Keywords: drumlin; mega-scale glacial lineation; morphometry; semi-automated 
mapping; flow direction; paleoglaciology  
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1 

 Introduction 

 Research rationale: Decoding longitudinal subglacial 
bedforms   

Most warm-based glacier movement is related to processes at the ice-bed 

interface (Rignot et al., 2011); yet, in relation to the short time-span of the observational 

record and to the inaccessibility of present-day subglacial environments, these are not 

well constrained, introducing uncertainty into numerical models of ice sheet evolution 

and thus to projections of sea level change (Greenwood and Clark, 2009; Bartholomew 

et al., 2010). The paleoglaciological (morpho-sedimentary) record is spatially extensive 

and temporally comprehensive, readily accessible and easy to map, and can provide 

information at a detail which current numerical ice-sheet models are unable to resolve, 

but there is divergence on its glaciological significance and much remains to be done in 

terms of inventorying. While understanding the proxy value of this record is fundamental 

for paleoglaciological reconstructions, resolving past processes improves our ability to 

predict future changes to present-day glaciers; reconstructions of glacier geometry and 

dynamics associated with past periods of climate amelioration provide a basis for 

devising scenarios of future ice sheet evolution. On the other hand, observations from 

present-day glacial environments are fundamental for constraining the interpretation of 

relict features.     

1.1.1. Longitudinal subglacial bedforms and their unexplained 
genesis 

A particularly important characteristic of some glacial landforms is their 

morphological anisotropy. Formed at the ice-bed interface, transverse and longitudinal 

subglacial bedforms (LSBs) have their long axis consistently oriented (sub)perpendicular 

and (sub)parallel to ice flow vectors, respectively. This thesis focuses on positive-relief 
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LSBs, particularly drumlins and mega-scale glacial lineations (MSGLs) (Davis, 1884; 

Menzies, 1979a; Clark, 1993) (Figs 1.1, 1.2). These are very common at the footprints of 

past ice sheets (e.g., Prest et al., 1968; Hughes et al., 2010; found in ca. 70% of the 

previously glaciated area of Canada – Clark et al., 2009), occurring in spatial clusters of 

tens to tens of thousands of individuals (in drumlin fields) with positively spatially 

autocorrelated morphometry (Trenhaile, 1975; Aario, 1977; Francek, 1991; Smalley and 

Warburton, 1994; Stokes and Clark, 2002) and typically arranged in regular patterns 

(Clark, 2010). The distinction between drumlins and MSGLs has been based on shape 

and size, the latter being more elongate, longer and morphologically less varied than the 

first (Clark, 1993; Stokes and Clark., 2002; Clark et al., 2009). However, recent studies 

(Stokes et al., 2013; Spagnolo et al., 2014; Ely et al., 2014) indicate that, dimension-

wise, drumlins and MSGLs are indivisible, underscoring the existence of a subglacial 

bedform continuum (Rose, 1987) and leading to the formulation of a common genetic 

model for both types of LSBs (Fowler and Chapwanya, 2014). Hereafter, the acronym 

LSBs refers to both drumlins and MSGLs.   

Despite ca.180 years of research on the topic (since Bryce, 1833), LSB genesis 

is not yet fully understood, markedly different ideas still competing for its explanation. 

Proposed processes of drumlin and MSGL formation can be grouped into those that 

invoke meltwater and those that invoke ice as the main formative agent (Table 1.1). The 

first group is mainly attributed to Shaw and co-workers, who suggest that drumlins are 

formed during meltwater underbursts, but can be traced back to Bryce (1833) (drumlin 

formation by diluvial currents); the second group implicates the glacier bed deformation 

paradigm (e.g., Boulton and Hindmarsh, 1987) – that, in certain conditions 

(unconsolidated bed and high pore-water pressures), there may be a coupling between 

the glacier and its bed which results in the deformation and advection of the latter 

(mobile bed – till), with implications for glacier dynamics. Some hypotheses (sensu lato) 

of LSB genesis (Table 1.1, C and H; B with regard to drumlin composition, Stokes et al., 

2011) attempt explaining the full range of LSB characteristics, whereas others focus on 

specific traits; for example, the ice-keel groove-ploughing hypothesis predicts (is fitted 

to) a downflow-decrease of MSGL amplitude (due to a progressive melting of the keels), 

which occurs in some MSGLs (Spagnolo et al., 2014). Mathematical modeling has been 

conducted in association with hypotheses B, F, G and I (Table 1.1); quantitative 
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predictions from these mostly refer to landform size and spacing (e.g., Fowler, 2009, 

2010a,b). Predictions from hypotheses C and H about the shape and location of LSBs 

are supported by experimental (flume) and computational fluid dynamics studies (Shaw, 

1996; Pollard et al., 1996; Wilhelm et al. 2003). The remaining hypotheses are more 

qualitative, conceptual models.  

 

Figure 1.1 Relict LSBs (mostly drumlins) in the Puget Lowland, WA, USA. 
Hillshaded terrain model derived from a 1.8 m cell-size DTM 
(http://pugetsoundlidar.ess. washington.edu/About_PSLC.htm). 

The success of a LSB genesis hypothesis is dependent on the ability of the 

proposed process(es) to explain the range of LSB morphometric (Shaw, 1983; Knight, 

1997; Clark et al., 2009; Spagnolo et al., 2010, 2011, 2012; Spagnolo et al., 2014; 

Lamsters and Zelčs, 2014; Dowling et al., 2015) (Fig. 1.3) and compositional (Stokes et 

al., 2011 and Ó Cofaigh et al., 2013 for reviews) characteristics, as well as the variety of 

geomorphological settings in which LSBs occur (Menzies, 1979a; Patterson and Hooke, 
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1995). However, while LSB composition is well described (Stokes et al., 2011), existent 

morphometric data is limited, restricting hypothesis testing and development. The 

megaflood ideas (C and H) are particular in that they have been criticized mostly for the 

lack of evidence for the presence of subglacial meltwater reservoirs large enough to 

yield the outburst flow magnitudes necessary to conduct the implied geomorphic work 

(e.g., Benn and Evans, 2006), and not so much for the processes invoked. Stokes et al. 

(2013) tested predictions from MSGL formation hypotheses against a large 

morphometric dataset (17k MSGLs) and concluded that none of the existing hypotheses 

fits the range of inventoried characteristics, but also that the “rilling instability” hypothesis 

was not falsified. Spagnolo et al. (2014) assessed the “ice-keel groove-ploughing” and 

“rilling instability” hypotheses against the morphometry of 4k MSGLs from putative paleo 

Figure 1.2 Relict mega-scale glacial lineations at the south margin of the Juan 
de Fuca Straight west of the Puget Lowland, WA, USA.  Hillshaded 
terrain model derived from a 1.8 m cell-size DTM 
(http://pugetsoundlidar.ess.washington.edu/About_PSLC.htm). 

http://pugetsoundlidar.ess.washington.edu/About_PSLC.htm
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ice-streams in Canada, Norway and Antarctica, and from an active ice-stream in 

Antarctica, and concluded that neither fits the observed range of characteristics.  

 

Figure 1.3 Morphological drumlin types based on investigations in the 
Livingstone Lake drumlin field, Saskatchewan, Canada (modified 
from Shaw, 1983). 

1.1.2. Morphometric data: past and future 

Before the 1990’s to 2000’s many descriptions of LSB shape were qualitative 

(e.g., Clapperton, 1989; Knight, 1997; Zelčs and Dreimanis, 1997); quantitative data 

were measured manually and pertained to small samples (tens to hundreds of 

landforms; e.g., Reed et al. 1962; Baranowski, 1969; Gravenor, 1974; 
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Crozier, 1975; Jauhiainen, 1975; Boots and Burns, 1984). With the evolution of 

computers and GIS and the increasing availability of high resolution satellite imagery 

and DEMs, analyses began being conducted for larger datasets (thousands to tens of 

thousands of LSBs) and with (semi-)automated methods (GIS) (Stokes and Clark, 2002; 

Kerr and Eyles, 2007; Hess and Briner, 2009; Clark et al., 2009; Greenwood and Clark, 

2010; Spagnolo et al., 2010, 2011, 2012; Stokes et al., 2013; Spagnolo et al., 2014; 

Lamsters and Zelčs, 2014; Dowling et al., 2015), but typically for a limited number of 

properties and in 2D – mostly footprint length, width, elongation and longitudinal 

asymmetry. Data on LSB ridgeline planar shape, footprint transverse asymmetry, 3D 

morphometry, and spatial arrangement and autocorrelation are scarce. Spatial 

Table 1.1 LSB formation hypotheses classified by formative agent 

 Agent Mechanism Literature 
D

ru
m

lin
s 

Ice 

A) Subglacial sediment 
deformation/deposition/erosion about an 
obstruction to till advection (e.g., 
topographic obstacle; “sticky spot” due to 
high substrate permeability) 

Smalley and Unwin, 1968; Menzies, 1979b; 
Boulton, 1987; Hart, 1997 

B) Instability at the ice-deforming bed 
interface 

Smalley and Warburton, 1994; Hindmarsh, 
1998, 1999; Smalley et al., 2000; Fowler, 
2000, 2009, 2010a; Fowler and Chapwanya, 
2014 

Water 

C) Meltwater underburst a) deposition 
and/or b) erosion 

a) Shaw, 1983, 1989; Shaw et al., 1989 

b) Shaw and Sharpe, 1987; Shaw, 1989; 
Shaw et al., 1989 

Shaw, 2002, 2010 

D) Sedimentation in lee-side water-filled 
cavities  

Dardis et al., 1984 

M
S

G
Ls

 

Ice 

E) Subglacial sediment deformation 
(attenuated drumlins) 

Clark, 1993 

F) Ploughing of grooves in subglacial 
sediment by ice keels 

Tulaczyk et al., 2001; Clark et al., 2003 

G) Spiral (turbulent) flow in basal ice Schoof and Clarke, 2008 

Water 

H) Meltwater underburst 
Munro-Stasiuk and Shaw, 2002; Shaw et al., 
2008; Shaw, 2010; Shaw and Young, 2010; 
Lesemann et al., 2010* 

I) Rilling instability in the basal hydraulic 
system 

Fowler, 2010b 

* For “glacial curvilineations”, which can be thought of as curved MSGLs  

as 
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arrangement (e.g., regular vs. random) is the most complex to quantify (due to 

fragmentation and palimpsesting of relict subglacial landscapes) and, since the mid-

1980s, its quantitative analysis has received little attention (despite Hess and Briner, 

2007; Maclachlan and Eyles, 2013). Drumlins are often described as being disposed in 

regular patterns, and such regularity is a core concept in theories of drumlin genesis 

(Clark, 2010), but with little quantitative basis. The insecurity of morphogenetic 

assumptions is highlighted by Spagnolo et al. (2010, 2011), who, based on the 

morphometry of 44.5k drumlins from northern Europe and North America, concluded that 

the long-established and widely used criteria for determining ice flow direction from 

drumlins (wider and steeper stoss side; tapering lee) is false.  

At least as important as summarizing large datasets is to mine for morphometric 

types (sub-populations whose differences might be a function of distinct genetic 

conditions) and quantitatively describe previously reported morphological types (Fig. 1.3; 

e.g., Shaw, 1983; Knight, 1997). This has not been attempted and existing measures do 

not discriminate between categories of existing qualitative classifications (such as those 

in Fig. 1.3). Additionally, it is important to understand which aspects of LSB 

morphometry are determined by external factors (modulators of formation processes), 1) 

so that they are not wrongly used as direct glaciological proxies and 2) to constrain 

relationships between variables in LSB formation models, but this type of analyses is in 

its infancy (Maclachlan and Eyles, 2013). Several studies have linked variations in 

morphometry to environmental controls such as substrate properties (e.g., Miller 1972), 

topography (e.g., Trenhaile, 1975), sediment availability (e.g., Colgan and Mickelson, 

1997), and mechanical properties of till (e.g., Rattas and Piotrowski, 2003), but only 

recently have these relationships been addressed statistically (Kerr and Eyles, 2007; 

Greenwood and Clark, 2010). However, the adequacy of inventorying methods should 

be addressed before proceeding to the analysis of new and more detailed morphometric 

attributes.  

LSB mapping has been based on visual interpretation and manual digitization, a 

subjective and slow process which is difficult to reproduce, but little is known about the 

magnitude of inter-operator subjective differences, and published (semi-)automated 

mapping methods (designed for objectivity and speed) have not been highly successful. 
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On the other hand, previously used automated methods (GIS) for measuring LSB 

characteristics such as orientation, length and asymmetry based on mapped footprints 

have often been applied uncritically or with limited analysis of their adequacy. Both are 

low-level (pyramid) problems with implications for the robustness of existing 

morphometric data and derived conclusions, and thus should be addressed.  

1.1.3. LSB morphometry in past paleoglaciological reconstructions 

Despite our limited understanding of LSB genesis and the potential limitations of 

current morphometric data, LSB morphometry has been used to reconstruct ice flow 

direction and dynamics. Ice flow direction data is important not only for understanding 

glacial history, but also for practical applications in mineral exploration (e.g., Klassen and 

Thompson, 1993; Cummings et al., 2010). That LSBs are typically oriented (sub)parallel 

to ice flow is confirmed by other proxies, such as moraines, drift dispersal patterns and 

bedrock striae, and by imaging of present-day subglacial environments (King et al., 

2007; Smith et al., 2007), and thus is well established (e.g., Davis, 1884; Alden, 1905; 

Knight, 2009; Stokes and Korteniemib, 2014). On the other hand, the long-established 

criteria for determining ice flow direction from drumlin shape (wider and steeper stoss 

side; tapering lee) may be false (Spagnolo et al., 2010, 2011).  

LSB elongation has been causally linked to ice flow velocity, LSBs with higher 

length-width ratio forming under faster ice flow than less elongate LSBs (Clark, 1993; 

Stokes and Clark, 2002; King et al., 2009). This relationship has been invoked to identify 

and delineate paleo ice-streams (e.g., Margold et al., 2014), which are fast flowing (few 

hundreds of metres to 3 km yr-1) streams of ice within ice sheets responsible for 

transferring large volumes of ice from accumulation to ablation zones, thus playing a 

dominant role in present-day ice sheet mass balance and in glacier-driven changes in 

eustatic sea level (Rignot, 2006; Shepherd and Wingham, 2007; Rignot et al., 2008). 

 Research objectives 

The overarching goal of this thesis is to contribute to the testing and development 

of methods that can be used to produce a rich and robust LSB morphometric inventory 
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which, in turn, facilitates our ability to resolve LSB genesis and to reconstruct paleo 

glacier dynamics and evolution. Specifically, the objectives are:  

1) to assess the adequacy of previously used automated morphometric 

measurement methods (GIS) in order to assess the robustness of current 

morphometric data and determine best practices; and  

2) to develop a method for the semi-automated mapping of LSBs, as a solution to 

the subjectivity and slowness of manual mapping.   

 Thesis organization and authorship 

This thesis is composed of 2 research articles (chapters 2 and 3), each 

addressing one of the objectives (1 and 2, respectively). The research articles are co-

authored by myself (first author) and my Senior Supervisor (Tracy A. Brennand). I 

performed all the analyses and prepared the manuscripts. TAB contributed to research 

problem and method definition and accompanying analyses, promoted discussions on 

preliminary results and thoroughly reviewed the manuscripts in an iterative process with 

me, leading to significant improvements over the original versions. 

Chapter 2 evaluates the adequacy of previously used methods and of a new 

method for the computation of LSB orientation, length and longitudinal asymmetry from 

LSB footprints. Tests are conducted using a sample of 100 LSBs representing the shape 

and size range of LSBs in the Puget Lowland Drumlin Field (Goldstein, 1994), WA, USA.   

Chapter 3 is a comparative study of two new methods (object-based) for the semi-

automated mapping of LSBs from digital terrain models (DTMs). One method 

(normalized closed contour method, NCCM) is based on the identification of normalized 

local relief closed contour-bounded terrain segments with LSB-like morphometry; the 

other (land-form elements mask method, LEMM) involves classifying the DTM into land-

form elements, masking out elements rare to absent in LSBs and identifying terrain 

segments with LSB-like morphometry out of the remaining areas. Both are based on a 

ruleset encapsulating expert knowledge, published morphometric data and the 
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morphometric range of LSBs in the study area. These methods are tested on a 139.5 

km2 test area in the Puget Lowland drumlin field.  

 Additional work  

Earlier goals for my MSc research were to develop a richer array of 

morphometric measures (e.g., transverse asymmetry) and inventory the LSBs of the 

Puget Lowland drumlin field, WA, USA in order to assess the dependency of LSB 

morphometry on factors such as lithology (composition) and topography. It was while 

trying to map and measure LSBs using previously used methods that I realized that 

there were problems with the latter and thus uncertainties in the quality of previously 

collected data. In consultation with my supervisors, this led to a change in the research 

objectives – a refocusing on method development and assessment. This shelved work 

produced three products that are included in the appendices. 

1) An integrated terrain model of a large part of the Puget Lowland drumlin field 

which brings together elevation and bathymetric data (Appendix A). This was to be used 

as a foundational dataset for manual and semi-automated mapping.  

2) A manually mapped map of LSBs for part of the Puget Lowland drumlin field 

(Appendix B). Much of this mapping was conducted by undergraduate students in the 

SFU Work-Study Program, namely by Valerie Zhang and Suzann Rowden, whose 

dedication is much appreciated.  The LSB dataset used in chapter 2 is included in the 

map and was mapped by myself. 

3) A map of the location of sedimentary exposures visited during 15 days of field-

work in the Puget Lowland (Appendix C). These sites were visited in order to obtain 

insights on LSB composition.  
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Measuring subglacial bedform orientation, length 
and asymmetry – method accuracy1 

 Highlights 

1. Several methods for computing bedform orientation, length and asymmetry, 

including a new method based on the standard deviational ellipse (SDE), are 

tested. 

2. Method performance is dependent on footprint shape.  

3. The use of elliptical length should be discontinued. 

4. For elongation (E) >5, errors are negligible for most methods.  

5. For E <5, SDE data was relatively independent of footprint shape and is 

preferred. 

 Abstract 

This study is an assessment of previously reported automated methods and of a new 

method for measuring longitudinal subglacial bedform (LSB) morphometry. It evaluates 

the adequacy (accuracy and precision) of orientation, length and longitudinal asymmetry 

data derived from the longest straight line (LSL) fitting the LSB’s footprint, the footprint’s 

 
1 A version of this chapter is in preparation for submission to the journal Geomorphology as: 

Jorge, M.G. & Brennand, T.A. Measuring subglacial bedform orientation, length and asymmetry 
– method accuracy.   
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minimum bounding rectangle longitudinal axis (RLA) and the footprint’s standard 

deviational ellipse (SDE) longitudinal axis (LA) (new method), and the accuracy of length 

based on an ellipse fitted to the area and perimeter of the footprint (elliptical length). 

Tests are based on 100 manually mapped drumlins and mega-scale glacial lineations 

representing the size and shape range of LSBs in the Puget Lowland drumlin field, WA, 

USA. Data from manually drawn LAs are used as reference for method evaluation. With 

the exception of elliptical length, errors decrease rapidly with increasing footprint 

elongation (decreasing potential angular divergence between LAs). For LSBs with 

elongation <5 and excluding the 5% largest errors (outliers) (n = 60), 1) the LSL, RLA 

and SDE methods had very small mean absolute error (MAE) in all measures (e.g., MAE 

<5º in orientation and <5 m in length); they can be confidently used to characterize the 

central tendency of LSB samples. 2) When analyzing data spatially, the LSL method 

should be avoided for orientation (36% of the errors were larger than 5º). 3) Elliptical 

length was the least accurate of all methods (MAE of 56.1 m and 15% of the errors 

larger than 5%); its use should be discontinued. 4) The relative adequacy of the LSL and 

RLA depends on footprint shape; SDE computed with the footprint’s structural vertices is 

relatively shape-independent and is the preferred method. These conclusions are useful 

also for research on fluvial and aeolian bedform morphometry. 

Keywords: drumlin; mega-scale glacial lineation; morphometry; longitudinal axis; 
orientation; method  

 Introduction 

Landforms and sediment within the deglaciated footprints of former glaciers 

record paleo glacier geometry and dynamics (e.g., Stokes et al., 2011). A particularly 

important property of some glacial landforms is their morphological anisotropy. 

Transverse and longitudinal subglacial bedforms (LSBs) have their long axis typically 

oriented (sub)perpendicular and (sub)parallel to ice-flow vectors, respectively. Both 

types are very common within the footprints of past ice-sheets (e.g., Prest et al., 1968; 

Hughes et al., 2010). This study deals with positive-relief LSBs, particularly drumlins and 

mega-scale glacial lineations (Davis, 1884; Menzies, 1979; Clark, 1993). Differentiation 

between the two has been based on shape, size and spatiality: mega-lineations are 
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more elongate, longer and morphologically less varied than drumlins and tend to form 

parallel ridge-groove corrugations (Clark, 1993; Stokes and Clark, 2002; Clark et al., 

2009; Clark, 2010). More recent studies (Stokes et al., 2013; Spagnolo et al., 2014; Ely 

et al., 2014) indicate that, dimension-wise these two landforms are indivisible, 

substantiating the claim of a subglacial bedform continuum (Rose, 1987). Hereafter the 

acronym LSBs is used to refer to both drumlins and mega-scale glacial lineations.  

LSB genesis is disputed (e.g., compare Shaw, 2002; Clark et al., 2003; Schoof 

and Clarke, 2008; Hooke and Medford, 2013; Fowler and Chapwanya, 2014). Gaps 

(e.g., transverse asymmetry, 3D morphometry) and uncertainties (e.g., measurement 

method adequacy; sample representativeness) in the current morphometric data present 

limitations to testing hypotheses of LSB genesis. Existing geospatial data (DEMs and 

imagery from space-borne sensors) and software (GIS) provide the opportunity to 

improve the morphometric inventory, but, first, the adequacy of measurement methods 

must be assessed. Some previously reported methods have been applied uncritically or 

with limited assessment of potential bias; if method adequacy is not evaluated and bias 

is limiting, error will tend to accumulate both as new studies apply the same methods 

and as more complex measures are devised.  

This study assesses the adequacy of previously reported automated methods 

and a new method for deriving LSB orientation, length and longitudinal asymmetry from 

LSB footprints. Measuring these properties requires determining a longitudinal axis. 

Inaccuracies in the axis’ orientation propagate onto the quantification of length and 

longitudinal asymmetry. Tests are conducted on the accuracy and precision of 

orientation, length and longitudinal asymmetry computed based on the 1) longest 

straight line fitting LSB footprints (Spagnolo et al., 2010; Maclachlan and Eyles, 2013), 2) 

footprints’ standard deviational ellipse (Lefever, 1926) (new method) and 3) footprints’ 

minimum bounding rectangle (Napieralski and Nalepa, 2010; Dowling et al., 2015), and 

the accuracy of length based on an ellipse fitted to the area and perimeter of footprints 

(Clark et al. 2009; Lamsters, 2012; Spagnolo et al., 2014; Lamster and Zelčs, 2014). 

These methods are applied to 100 manually mapped drumlins and mega-scale glacial 

lineations representing the size and shape range of LSBs in the Puget Lowland Drumlin 
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Field (Goldstein, 1994), WA, USA and the accuracy of derived morphometric data is 

determined in relation to data based on a manually drawn longitudinal axis.  

 Prior work 

Clark et al. (2009) used the a- and b-axes of ellipses defined based on the area 

and perimeter of footprints using Euler’s approximation for deriving the length and width 

of 37k drumlins from Great Britain. They justified the adequacy of the method (hereafter 

referred to as elliptical length) based on a coefficient of determination (r2) of 0.9991 

between manually measured and automatically derived lengths from 100 drumlins. 

However, r2 is a limited statistic. For example, consider two paired lists of 10 values, one 

ranging between 100-550 (intervals of 50) and the other between 100-1000 (intervals of 

100); while their r2 would be 1, the mean difference between the pairs of values would be 

225. 

Following Clark et al. (2009), later studies applied the same method uncritically. 

Lamsters (2012) computed the elliptical length and width of 880 drumlins from Latvia 

and, like Clark et al. (2009), justified method adequacy based on the correlation to 100 

manually measured lengths (Spearman’s coefficient of 0.98 for length and 0.93 for 

width). Euler’s approximation was also used by Spagnolo et al. (2014), who analysed 

1929 mega-scale glacial lineations from putative paleo ice-streams in northwestern 

Canada, and by Lamsters and Zelčs (2014), for 4400 LSBs from Latvia and Lithuania.  

 Spagnolo et al. (2010, 2011) analyzed longitudinal (a)symmetry for a very large 

sample of drumlins (44.5k) from northern Europe and North America based on the 

longest straight line (LSL) fitting inside the footprints. Spagnolo et al. (2010) focused on 

planar asymmetry and Spagnolo et al. (2011) on the longitudinal topographic profile. 

Spagnolo et al. (2010) did not assess potential bias – is LSL a good representation of 

footprints’ longitudinal axis as manually drawn by an expert? Spagnolo et al. (2011) 

assessed two potential sources of bias: 1) LSL not passing through the summit of the 

drumlin; 2) LSL being shorter than a manually draw profile for slightly curving drumlins. 

The first was assessed by comparing the relative longitudinal position (RLP) of the 

highest point on the LSL profile (after Harry and Trenhaile, 1971) to the RLP of the true 
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summit based on Euclidean distances to the upflow and downflow ends (validation data) 

– errors exceeded 9.4% for 20% of the drumlins and the average absolute error was 6%. 

It is important to note that, because drumlin up and downflow ends may be transversally 

misaligned, the Euclidean distances up and downflow of the summit may correspond to 

different vectors. Bias related to differences in length between the LSL and the ridgeline 

was assessed by comparing the RLP of the highest point on LSL to the RLP of the 

summit on a manually drawn ridgeline for 100 drumlins – errors were larger than 10% for 

15% of the drumlins and the average absolute error was 6%. In both cases, the authors 

concluded that the differences were not significant. Following Spagnolo et al. (2010, 

2011), Maclachlan and Eyles (2013) used LSL to compute both length and longitudinal 

asymmetry for 812 drumlins in southern Ontario, Canada.  

Dowling et al. (2015), following Napieralski and Nalepa (2010) (a study on the 

influence of DTM resolution on derived morphometrics), used footprints’ minimum 

bounding rectangle for deriving the length, width (rectangle length, width) and elongation 

(ratio of length to width) for 10,311 LSBs from southern Sweden. Potential bias was not 

discussed. 

These examples illustrate the need to properly assess method adequacy 

whenever a method is applied for the first time. The application of specific methods can 

increase exponentially as new inventories are conducted using previous methods.  

 Methodology 

Defining a flow vector for LSB footprints is not straightforward and may require 

expert arbitration, but is important when building the morphometric inventory necessary 

to test hypotheses of LSB genesis. LSB footprints often lack axes of symmetry (they are 

transversally and longitudinally asymmetric), and can be best fitted by, or resemble, a 

variety of shapes, from ellipses and half-lemniscates to rectangles and parabolic and 

hyperbolic curves. Therefore, the orientation, length and longitudinal asymmetry 

measurement methods are assessed using a morphometrically diverse LSB sample. 

Tests are based on a manually mapped dataset of 100 LSBs (footprints, polygons) 

representing the shape and size range of LSBs in the Puget Lowland Drumlin Field 
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(Goldstein, 1994), WA, USA and a manually drawn longitudinal axis (LA) for these 

footprints. Previously reported methods are evaluated by comparing the data obtained 

from them to data from the manual LA (reference data). Figure 2.1 shows the workflow 

used to derive the morphometric database.  

 

Figure 2.1 Derivation of the morphometric database for method evaluation. 
LSB = longitudinal subglacial bedform; DTM = digital terrain model; 
GME = Geospatial Modeling Environment (Beyer, 2012); SDE = 
standard deviational ellipse (Lefever, 1926); DEM = digital elevation 
model; ASpl_A: the ratio between the footprints’ upflow area and total 
area (Spagnolo et al., 2010).  

2.5.1. LSB mapping 

LSB mapping was based on a 1.8 m cell-size digital terrain model (DTM; NDEP, 

2004) with vertical resolution <1 m prepared by the Puget Lowland LiDAR Consortium 

(http://pugetsoundlidar.ess.washington.edu/About_PSLC.htm) and on the break-of-slope 

criterion (LSBs are essentially bounded by concave breaks in slope gradient – Evans, 

2012). LSB footprint polygons (Fig. 2.2) were manually mapped within a GIS (ArcMap®) 

by inspecting a zenith-hillshaded terrain model overlain with 1 m-interval contours and a 

semi-transparent, display extent-adaptive color rendering of the DTM. ArcMap was used 

because it allows automatic display-extent adaptive rendering. The dataset is composed 

of 100 LSBs (Table 2.1), but with much redundancy in terms of shape and size.   

http://pugetsoundlidar.ess.washington.edu/About_PSLC.htm
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Figure 2.2 Examples of manually mapped LSB footprints and LAs.  

Table 2.1  Morphometric statistics for the LSB dataset used in this study (n = 
100); based on footprints’ minimum bounding rectangle; elongation 
is the ratio of length to width; longitudinal asymmetry is the ratio 
between the footprints’ upflow area and total area (ASpl_A of 
Spagnolo et al., 2010)   

 Measure Minimum Median Mean Maximum 

Length (m) 147 1198 1404 4839 

Width (m) 22 258 356 1425 

Elongation 1.3 4.1 5.4 19.8 

Longitudinal 
asymmetry 

0.36 0.52 0.51 0.67 

2.5.2. Reference longitudinal axis  

In practical terms, the reference LA is defined as a line sharing the orientation, 

length and minimum and maximum y coordinates (varying along the direction of polygon 
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elongation) with the footprint it belongs to. A footprint’s LA was manually drawn based 

on a qualitative assessment of footprint shape focusing on what the orientation of a 

symmetric version (mathematically defined a-axis) of the footprint would be (Fig. 2.2). 

The transverse placement of the line (i.e. middle vs. others) does not affect orientation or 

length measurements. 

2.5.3. Elliptical length  

Longitudinal subglacial bedform length was obtained from ellipses derived using 

the perimeter and area of footprints as proposed by Clark et al. (2009):  

 𝐴 = 𝜋𝑎𝑏 𝑎𝑛𝑑  𝑃 = 𝜋√2(𝑎2 + 𝑏2) (𝐸𝑢𝑙𝑒𝑟′𝑠 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛) Equation 1 

 𝐿𝑒𝑛𝑔𝑡ℎ =
1

𝜋
√𝑃2 + 𝑃4 − 16𝜋2𝐴2 Equation 2 

In Equation 1, A, P, and a and b are the ellipse’s area, perimeter, and semi-major and -

minor axes, respectively. Equation 2 is the derived expression for obtaining the length of 

the ellipse based on the perimeter and area of a footprint. 

2.5.4. Longest straight line   

The longest straight line (LSL) enclosed by LSB footprints was derived in the 

Geospatial Modelling Environment (GME) (Beyer, 2012) software (geom.polygonfetch 

tool). For LSBs lacking pronounced outline concavities, the LSL connects the distant-

most pairs of coordinates on the LSB outline. When the outline interferes with the path 

connecting those two points, the distant-most antipodal locations that can be connected 

through a straight path are used.  

2.5.5. Minimum bounding rectangle longitudinal axis  

The rectangle longitudinal axis (RLA) (of symmetry) corresponds to a line 

equidistant to the longest sides of the footprint’s minimum bounding rectangle (MBR). 

Minimum-width, -area and -perimeter bounding rectangles were visually compared; they 



 

26 

were very similar; the minimum-width version was used. The RLA was derived from a 

Voronoi tessellation based on the MBR’s 4 vertices (a skeletonization or medial axis 

transform – Blum, 1967). 

2.5.6. Standard deviational ellipse longitudinal axis 

The standard deviational ellipse (SDE) (Lefever, 1926) measures the geographic 

dispersion, and thus trend, of point patterns. For its computation, first, the mean centre 

of gravity of a set of points is obtained (Fig. 2.3A), then their standard deviation (SD) 

about the original (arbitrary) (Fig. 2.3B) and several sequentially rotated coordinate-axes 

(Fig. 2.3C) with origin at the mean centre of gravity (Raine, 1978) computed. Lines 

connecting same-absolute-value SDs on the respective x-axis define ellipses (Fig. 2.3D).  

One-SD SDEs were separately derived for the LSB footprints from i) points 

equidistantly (5 m) placed at the LSB’s outline (SDE1), ii) footprints’ structural vertices 

(i.e. those needed to maintain polygon shape) (SDE2) and iii) footprints’ structural 

vertices and their 180°-rotated version (SDE3), using ARCMAP module Directional 

Distribution. The basis for testing SDE3 is in that, for transversally asymmetric footprints, 

the rotated set of vertices may counterbalance the asymmetric spatial distribution of the 

un-rotated set (the combination of both sets is less asymmetric than the individual sets) 

and thus allow a better estimation of footprint orientation. Structural vertices 

(approximated) were extracted from simplified (deletion of non-essential points) footprint 

polygons. SDEs’ LA was derived in GME (Beyers, 2012) as their enclosed longest 

straight line. For ellipses falling short, or extending beyond, the footprint’s outline, the LA 

was extended (extend operation in ARCMAP using a layer merging the ellipse’s LA to 

the footprint’s MBR-composing lines as input), or cropped, to the MBR limits, 

respectively. 

2.5.7. Morphometric data from LAs 

Longitudinal axis length corresponds to the Euclidean distance between the line’s 

end points. LA orientation is represented as the angle between the LA and a N-S vector 

(projection grid) and ranges between -89º and +90º. As a measure of longitudinal 
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asymmetry, ASpl_A (Spagnolo et al., 2010) is used: the ratio between the footprint’s 

upflow area and total area. ASpl_A was derived for each LSB as follows (4th row in Fig. 

2.1): 1) creation of the LA’s perpendicular bisector (90°-rotation of the LA at its midpoint); 

2) footprint partition using the LA’s perpendicular bisector; 3) automated labelling of 

upflow and downflow segments using an ice surface elevation model; and 4) 

computation of ASpl_A. The Puget lobe ice surface elevation model was derived from 

Thorson (1980): his contour map (Thorson, 1980: fig. 4) was digitized, the contours 

densified with vertices, and a continuous surface interpolated using a cell-size of 30 m 

(ca. one-fifth of minimum footprint length). Ice surface elevation values decrease 

downflow and thus are lower at the footprints’ down than upflow segment. ASpl_A values 

above and below 0.5 represent larger up and downflow segments, respectively. 

 

Figure 2.3  Computation of the standard deviational ellipse (modified from 
Raine, 1978). Refer to text for explanation. 
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2.5.8. Performance assessment 

For method performance assessment, data based on the manually mapped LA 

was used as reference, the mean absolute error (MAE) as a measure of accuracy, and 

standard deviation (SD) as an indicator of precision. MAE is the mean of the absolute 

differences (errors) between pairs of observations and was used over the root-mean-

squared-error because the latter is ambiguous (Willmott and Matsuura, 2005).     

 Results 

With the exception of elliptical length, absolute differences between the values 

for footprint orientation, length and longitudinal asymmetry computed with the various 

automated methods diminish with increasing footprint length-to-width ratio (elongation, 

E) (Fig. 2.4). Elliptical lengths differed considerably (up to 100s of metres) from those of 

the other methods and independently of elongation (Fig. 2.4B). With the exception of 

elliptical length, for LSBs with E > ~5 differences between methods were minimal (e.g., < 

~1° in orientation). The results presented hereafter refer to LSBs with E <5 (n = 64, 

Table 2.2) and exclude the 5% highest errors (treated as outliers) (n = 60, Table 2.3). 

Method performance on orientation, length and longitudinal asymmetry was very 

strongly, positively correlated (Table 2.4).  

Figure 2.5 presents the cumulative histograms of method errors. Errors generally 

were small. The errors of the LSL, RLA and SDE1-3 methods have normal distributions 

(curve shape) on all measures. Distributions were very similar between the RLA and 

SDE1-3 methods and LSL has a distinctively large range on all measures. On length, 

elliptical length errors have a right-skewed distribution and are up to one order of 

magnitude larger than those of the other methods. The performance statistics (Table 

2.5) summarize Fig. 2.5 distributions. In terms of footprint orientation, RLA and SDE3 

were the best performers but, with the exception of LSL, every method had MAE below 

3° (Table 2.5). Regarding footprint length, RLA, SDE3 and SDE2 had the best, and LSL 

and elliptical length the worst, performance, but every method other than elliptical length 

had accuracy and precision below 5.1 m (Table 2.5). Elliptical length yielded a mean 

error about 1 order of magnitude higher than LSL and with an equivalently higher SD 
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Figure 2.4  Relationship between footprint elongation and morphometric 
differences between methods: A) difference in orientation relative 
to the LSL method; B) difference in length relative to elliptical 
length; C) difference between longitudinal asymmetry computed 
using the LSL and RLA methods.  
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(Table 2.5). On longitudinal asymmetry, SDE2 and RLA, and LSL, were the most and 

least accurate methods, respectively, but every method had very low MAE and SD 

(Table 2.5). The SDEs based on the footprints’ structural vertices (SDE2-3) 

outperformed (lower MAE and SD) the SDE computed using 5 m-equidistant points on 

the footprints’ outline (SDE1), but by a very small margin (Table 2.5). Concerning the 

difference between the means from the automated methods and from the reference LAs, 

only elliptical length yielded a mean off by more than 1% (Table 2.6).    

Table 2.2  Morphometric statistics for LSBs with E <5 based on footprints’ 
minimum bounding rectangle  

Measure Minimum Median Mean Maximum 

Length (m) 147 1198 1445 4839 

Width (m) 61 423 462 1425 

Elongation 1.3 3.1 3.2 4.9 

Longitudinal 
asymmetry1 

0.37 0.50 0.51 0.67 

                                                 1 ASpl_A, Spagnolo et al., 2010  

Table 2.3  95th percentile of the absolute differences between data from the 
automated methods and the reference LA for footprints with 
elongation < 5  

Method 
 

Orientation (º) Length (m) 
Longitudinal 

asymmetry1 * 10^2  

LSL  18.7 27.3 1.49 

RLA  7.5 13.8 0.40 

SDE1  9.1 18.4 0.50 

SDE2  7.6 9.3 0.37 

SDE3  7.4 10.1 0.48 

Elliptical 
length 

 
- 193.6 - 

                                                 1 ASpl_A, Spagnolo et al., 2010 

Table 2.4 Correlation between morphometric measure performance (n = 60) 

 Mean absolute error Standard deviation 

 Length Longitudinal 
asymmetry1 

Length Longitudinal 
asymmetry1 

Orientation 0.98 0.99 0.95 0.98 

Length  0.97  0.88 
                                               1 ASpl_A, Spagnolo et al., 2010  
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Figure 2.5 Cumulative histogram of automated method errors (differences to 
reference LA) (n = 60): A, orientation; B, Length; C, longitudinal 
asymmetry (ASpl_A, Spagnolo et al., 2010). 
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Table 2.5  Performance assessment (MAE, mean absolute error; SD, standard 
deviation) (n = 60); the lowest and highest values are bolded and 
underlined, respectively  

Method 
Orientation Length 

Longitudinal 
asymmetry1 

MAE SD MAE SD MAE x10 SD x10 

LSL 4.7 4.0 4.6 5.1 0.36 0.37 

RLA 2.0 1.7 1.2 2.2 0.08 0.10 

SDE1 2.4 2.2 2.3 3.7 0.10 0.10 

SDE2 2.1 1.8 1.8 2.1 0.09 0.08 

SDE3 2.0 1.7 1.7 2.1 0.10 0.09 

Elliptical 
length 

  56.1 47.8   

  1 ASpl_A, Spagnolo et al., 2010  

Table 2.6 Differences between means (n = 60) – automated methods vs. 
reference data   

Method Orientation (º) Length (%)1 
Longitudinal 

asymmetry (%)1,2 

LSL -0.39 0.15 0.06 

RLA -0.28 -0.09 0.03 

SDE1 0.29 -0.02 0.01 

SDE2 0.20 0.05 0.00 

SDE3 0.06 0.04 0.03 

Elliptical length 
 

-1.19 
 

  1 % of the reference mean; 2 ASpl_A, Spagnolo et al., 2010 

 Discussion 

In terms of central tendency, all of the tested methods (LSL, RLA, SDE1-3 and 

elliptical length) accurately described LSB orientation, length and longitudinal asymmetry 

(Table 2.6). The differences between the data from the different automated methods 

increase as LSBs become more compact (E <5, Fig. 2.4) because potential angular 

divergence between LAs also increases (the possible range in orientation of a line 

extending between the stoss and lee sides increases). The large errors in orientation 

with the LSL method and in length with elliptical length (Fig. 2.5) are of concern when 

analyzing morphometry spatially, especially if error magnitude is spatially autocorrelated.  
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2.7.1. Dependence of method adequacy on footprint shape 

LSL, RLA and SDE methods 

The relative adequacy of the LSL and RLA methods depends on footprint shape 

(Table 2.7; Figs 2.6-2.8). In contrast, the SDE2-3 methods are relatively shape-

independent (Fig. 2.9), and thus are preferable over the LSL and RLA methods. SDE2 

and SDE3 had similar accuracy and precision (Fig. 2.5; Tables 2.5, 2.6), and angular 

divergence between SDE2 and SDE3 LAs was always small (maximum = 2.3º; Fig. 

2.10); SDE2 is preferable over SDE3 because it is simpler to compute.   

Table 2.7 General guidelines on footprint shapes more suited to the LSL and 
RLA methods  

Method Footprint shape 

LSL 

- high elongation1 (e.g., E > ~5) 

- ovaloid: ~elliptical and ~half-lemniscate (Figs 2.6a-b, 2.7a-c,e,f)  

- ~hyperbolic with symmetric convex lee (Figs 2.6e, 2.7d,g) 

RLA 

- high elongation1 (e.g., > ~5) 

- ~rectangular (Figs 2.6c, 2.8a-d,g) 

- ~parabolic (Figs 2.6d, 2.8f,h,i) 

neither Hyperbolic with (half-)crescentic or asymmetric lee (Fig. 2.6f) 

1 Excludes curving LSBs, e.g., curvilineations (Lesemann et al., 2010) 

The RLA and LSL methods performed relatively well and poorly, respectively, 

because ovaloid (~elliptical and ~half-lemniscate) footprints (Fig. 2.6a-b; Fig. 2.7a-c,e,f) 

and ~hyperbolic footprints with a symmetric convex (as opposed to crescentic) lee (Fig. 

2.6e; Fig. 2.7d,g) were relatively rare. Rather, most footprints have misaligned ends (line 

connecting leading and lee-most points, i.e. LSL, is oblique to the reference LA) (Figs 

2.6d,f, 2.8a-i), ~parabolic footprints with (half-)crescentic lee (Figs 2.6d, 2.8f,h,i) being a 

typical example, and ~“rectangular” footprints (closer to rectangle than to ellipse; Fig. 

2.6c) are common (Fig. 2.8a-d,g). For rectangular footprints, LSL will be oblique to the 

sides of the LSB because the distant-most vertices of a rectangle are at opposite sides 

of its longitudinal mid-axis (Fig. 2.6c). The RLA method is inadequate for footprints 

lacking straight segments in their sides (i.e. ovaloid and hyperbolic shapes, Fig. 

2.6a,b,e,f) and is well suited to footprints with a relatively long straight segment aligned 
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parallel to the LA (i.e. rectangular and parabolic shapes, Fig. 2.6c,d). With the exception 

of very low eccentricity (curvature) hyperbolic footprints (e.g., Fig. 2.7e), for which the 

RLA method may be adequate, neither the RLA nor the LSL are well suited to describe 

hyperbolic shapes with (half-)crescentic or asymmetric convex lee (Fig. 2.6f), and 

curving footprints (e.g., glacial curvilineations of Lesemann et al., 2010).  

 

Figure 2.6 Idealized shapes:  A) elliptical; B) half-lemniscate (non-elliptical 
oval); C) rectangular; D) parabolic with symmetric crescentic lee; E) 
hyperbolic with symmetric convex lee; F) hyperbolic with 
asymmetric convex lee. A and C have 2 axes of symmetry; B, D and 
E have 1 axis of symmetry. Inside the shapes: solid lines represent 
the LA and its perpendicular bisector; dashed lines are the LSL and 
its perpendicular bisector. Angles in C, D and E represent the 
difference in orientation between the LA and the LSL. 

 

Figure 2.7 Examples of Puget Lowland LSB-footprints for which the LSL is a 
better approximation to the reference LA (orientation) than the RLA. 
Grey lines are the minimum bounding rectangle and its mid-axes; 
dashed lines represent the LSL and its perpendicular bisector; solid 
black lines are the reference LA. Bars at the bottom are 200 m wide. 
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Figure 2.8 Examples of Puget Lowland LSB-footprints for which the RLA is a 
better approximation to the reference LA (orientation) than the LSL. 
Grey lines are the minimum bounding rectangle and its mid-axes; 
dashed lines represent the LSL and its perpendicular bisector; solid 
black lines are the reference LA. Bars at the bottom are 200 m wide 
for A and C-I and 100m wide for B.   

Spagnolo et al. (2011) assessed the relative frequency of different footprint 

shapes based on the footprint-to-footprint minimum bounding rectangle area ratio, 

values close to 0.5, 0.78 and 1 indicating resemblance to a rhombus, ellipse and 

rectangle, respectively. However, this measure is insensitive to geometric variability 

which, for instance, may lead ~elliptical footprints to be more space-filling than more 

rectangular shapes, and thus cannot be used to determine which method (LSL or RLA) 

may be more adequate for a certain dataset. For example, the ratio values for Fig. 2.7A 

(elliptical) and Fig. 2.8C (rectangular) footprints are 0.78 and 0.77, respectively.  
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Elliptical length  

Equation 2 (after Clark et al., 2009) defines the length of an ellipse based on the 

area and perimeter of a footprint. However, LSB footprints have outlines of variable 

complexity/irregularity and their general shape may depart significantly from elliptical. 

Both a) LSBs of equal length and maximum width but different general shape and/or 

outline complexity and b) LSBs of equivalent general shape and outline complexity but 

different elongation, will have different elliptical lengths (Fig. 2.11). Regarding the latter 

case: for an ellipse, error magnitude increases rapidly with increasing elongation (and 

area-perimeter ratio) up to ~10% at E ~9, and then ~stabilizes (Fig. 2.12A); for a 

rectangle, error is minimum at E ~9 and increases both towards higher and lower 

elongations (Fig. 2.12B).   

 

Figure 2.9 SDE2 longitudinal axis examples (solid lines). Dots are the 
footprint’s vertices used to compute the SDE. Bars at the bottom are 
200 m wide. 
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2.7.2. Implications for previous works 

Clark et al. (2009) used ellipses defined based on the area and perimeter of 

footprints using Euler’s approximation for deriving the length (elliptical length) and width 

of 37k drumlins from Great Britain. Based on the performance of elliptical length here, 

bias of their results in terms of central tendency statistics is likely minor, but errors for 

individual LSBs, and thus in dispersion statistics, may be considerable (i.e. low 

precision) (Tables 2.5, 2.6; Fig. 2.5). Their LSB dataset should be re-analyzed using 

more adequate methods (SDE2, RLA and LSL). 

 

Figure 2.10 Footprints with relatively large difference in orientation between the 
SDE2 and SDE3 methods. Short-dashed, wide-dashed and solid 
lines represent the orientation of the SDE2, SDE3 and reference LAs, 
respectively. Black and white dots are the un-rotated and rotated 
footprints’ structural vertices. From left to right and top to bottom, 
angular divergence between SDE2 and SDE3 lines is 1.7º, 1.1º, 2.2º, 
1.3º, 1.7º and 0.6º. Bars at the bottom are 100 m wide.  
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Spagnolo et al. (2010) used the LSL to compute longitudinal asymmetry (ASpl_A) 

for 44.5k drumlins from northern Europe and North America and Dowling et al. (2015) 

used the minimum bounding rectangle for deriving the length (RLA), width and 

elongation of 10.3k LSBs from southern Sweden. Based on the results presented here 

(Tables 2.5, 2.6; Fig. 2.5): their central tendency statistics are likely very accurate; bias 

in dispersion statistics may be significant and thus should be elucidated (using the SDE2 

method).  

 

Figure 2.11 Dependence of elliptical length accuracy on footprint general shape 
and outline complexity. A) E = 3, and two axes (1, 2) or one axis (3, 4) 
of symmetry; B) E = 3, and zero axes (1-3) or one axis (4) of 
symmetry; C) E = 6, and zero axes (1-3) or one axis (4) of symmetry. 
D) Elliptical length error (%). 

2.7.3. Outlook 

Accurate description of LSB footprint (LA) orientation is essential for the 

inventorying of not only LSB length and longitudinal asymmetry, but also transverse 

asymmetry, whose quantification has not yet been attempted. Relative to longitudinal 

asymmetry, transverse asymmetry additionally requires defining the transverse 

positioning of the LA based on what the transverse symmetric version of the footprint 

would be. In principle, this longitudinal axis of symmetry represents the vector along 

which, under homogeneous conditions, formative processes symmetrically unfold to 

each side of. Accurate retrieval of LSB orientation is fundamental also for the 
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computation of new, more detailed shape measures, such as based on the longitudinal 

analysis of footprint width, which possibly can be used to automatedly identify the 5 

general types of shapes addressed in this study (elliptical, half-lemniscate, rectangular, 

parabolic and hyperbolic). For a robust and data-driven LSB shape classification, more 

detailed measures need to be applied. 

 

Figure 2.12 Dependence of elliptical length accuracy on elongation (i.e. area-
perimeter ratio): example for an ellipse (A) and for a rectangle (B). 
Elliptical length error = [(elliptical length – reference LA length) / 
reference LA length] * 100. 
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 Conclusion 

With the exception of elliptical length, differences between the morphometric 

statistics obtained from the manual method (reference for performance evaluation) and 

the automated methods decrease rapidly with increasing footprint elongation (Fig. 2.4), 

because of decreasing angular divergence between LAs. For compact LSBs (E <5) and 

excluding the 5% largest errors (outliers) (n = 60), most methods (LSL, RLA, SDE1-3) 

can be confidently used to characterize the central tendency of LSB samples. The RLA 

method (Napieralski and Nalelpa, 2010; Dowling et al., 2015) was the best performer on 

orientation, length and longitudinal asymmetry (MAE of 2.0º, 1.2 m and 0.008 or 0.1 % of 

the reference mean, respectively; Table 2.5). The LSL method (Spagnolo et al., 2010) 

had the worst performance on orientation and longitudinal asymmetry (MAE of 4.7º and 

0.004 or 0.4% of the reference mean, respectively) and the second worst performance 

on length (MAE of 4.6 m) (Table 2.5). Elliptical length (Clark et al., 2009) was the least 

accurate of all methods (MAE of 56.1 m and 15% of the errors larger than 5%; Table 2.5 

and Fig. 2.5) and should be discontinued. When analyzing morphometric data spatially, 

the LSL method should be avoided for orientation (36% of the errors were >5º, Fig. 2.5). 

The relative adequacy of the LSL and RLA methods depends on footprint shape 

(Table 2.6; Figs 2.6-2.8). In contrast, data from the SDE2 and SDE3 methods (standard 

deviational ellipse computed based on the footprints’ structural vertices) is relatively 

independent of footprint shape (Figs 2.9, 2.10), making it more reliable than data from 

the LSL and RLA methods. Mean errors from the SDE2 and SDE3 methods will tend to 

fall in between those of the LSL and RLA methods. SDE2 is preferable over SDE3 

because it is simpler to compute, and thus is, on balance, the preferred method for 

computing LSB orientation, length and longitudinal asymmetry. Applying the methods 

tested here (LSL, RLA and SDE) to large LSB samples described in previous studies 

would help quantify errors in the current LSB morphometric inventory.  
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Towards the semi-automated extraction of 
longitudinal subglacial bedforms from DTMs – two 
new methods1 

 Highlights 

1. DTM preprocessing drastically improved DTM suitability for longitudinal 

subglacial bedform (LSB) semi-automated mapping.   

2. The closed contour method outperforms the land-form elements mask method 

and published methods. 

3. Normalized local relief closed contours define LSB-candidate objects. 

4. Existent opensource software is fully adequate for applying the methods. 

 Abstract 

Relict drumlin and mega-scale glacial lineation (positive relief, longitudinal subglacial 

bedforms – LSBs) morphometry has been used as a proxy for paleo-ice-sheet dynamics 

though LSB genesis is unresolved and the current morphometric inventory incomplete. 

LSB morphometric inventories have relied on manual mapping, which is subjective and 

thus difficult to reproduce. Automated mapping overcomes this, and is faster, but 

previous methods for LSB (semi-)automated mapping have not been highly successful. 

 
1 A version of this chapter is in preparation for submission to the journal Geomorphology as: 

Jorge, M.G. & Brennand, T.A. Towards the semi-automated extraction of longitudinal subglacial 
bedforms from DTMs – two new methods.   
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Here, two new (object-based) methods for the semi-automated extraction of LSBs 

(footprints) from DTMs are tested. As segmentation procedures, the normalized closed 

contour method (NCCM) relies on the contouring of a normalized local relief model 

(NLR) (addressing LSBs on slopes) and the land-form elements mask method (LEMM) 

on the classification of land-form elements derived from the DTM. Both use the same 

LSB (operational) definition: a ruleset encapsulating expert knowledge, published 

morphometric data and the morphometric range of LSBs in the study area. The NCCM 

was separately applied to 4 different NLR models, two computed in moving windows and 

two hydrology-based. The NCCM outperformed the LEMM. NCCM based on a 

hydrological relief model from a multiple direction flow routing algorithm performed best. 

The NCCM with a hydrological relief model from a combination of two flow routing 

algorithms (multiple and single direction) had the highest general detection rate (90%; 

better than equivalent measures in published methods), morphometric detection rate 

(56%), True Skill Statistic (0.48) and kappa (0.49). Future work on the NCCM could 

focus on improving NLR modeling for LSBs on slopes, testing absolute (fixed-datum) 

elevation contours as an alternative to NLR modeling for LSBs on relatively flat terrain, 

and refining the LSB ruleset. 

Keywords: semi-automated mapping; drumlin; mega-scale glacial lineation; closed 
contour; landform elements; morphometry 

 Introduction  

Drumlins and mega-scale glacial lineations (MSGLs) (Davis, 1884; Menzies, 

1979; Clark, 1993) are smoothly rounded, elongate, positive-relief subglacial bedforms 

typically oriented (sub)parallel to ice flow vectors in effect at the time of their formation 

and with variable composition (Stokes et al., 2011; Ó Cofaigh et al., 2013) and wide 

dimensional range (Clark et al., 2009; Spagnolo et al., 2012; Spagnolo et al., 2014; 

Dowling et al., 2015). They are very frequent within the footprints of past ice sheets (e.g., 

Prest et al., 1968; Hughes et al., 2010), occurring in spatial clusters of tens to tens of 

thousands of individuals (i.e. drumlin fields) with spatially autocorrelated morphometry 

(e.g., Trenhaile, 1975; Aario, 1977; Francek, 1991; Smalley and Warburton, 1994; 

Stokes and Clark, 2002) and typically arranged in regular patterns (cf. Clark, 2010). The 

distinction between drumlins and MSGLs has been based on shape and size, the latter 
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being more elongate, longer and morphologically less varied than the first (Clark, 1993; 

Stokes and Clark., 2002; Clark et al., 2009). However, recent studies (Stokes et al., 

2013; Spagnolo et al., 2014; Ely et al., 2014) indicate that, dimension-wise, drumlins and 

MSGLs are indivisible, underscoring a subglacial bedform continuum (Rose, 1987). 

Current data indicates that, together, drumlins and MSGLs range from 0.3 m to 120 m in 

height (Spagnolo et al., 2012, 2014; Dowling et al., 2015), from 20 m to several 10s of 

km in length and from 15 m to 5 km in width (Clark et al., 2009; Spagnolo et al., 2014). 

Drumlins and MSGLs are hereafter collectively referred to as longitudinal subglacial 

bedforms (LSBs).  

Longitudinal subglacial bedforms form at the ice-bed interface, where a large 

proportion of glacier velocity is modulated (Engelhardt et al., 1990; Stearns et al., 2008; 

Rignot et al., 2011), and thus their morphometry has been linked to ice flow (e.g., Stokes 

and Clark, 2002; King et al., 2009) or meltwater flow (e.g., Shaw, 2002; Shaw et al., 

2008). Relict LSB morphometry has been used in paleoglaciological reconstructions to 

map ice flow direction, ice streams (e.g., Sollid and Sørbel, 1994; Kleman et al., 1997; 

Stokes and Clark, 2001; Greenwood and Clark, 2009; Margold et al., 2014, 2015) and 

flood flows (underbursts, Shaw et al., 1989, 1996; Rains et al., 1993; Munro-Stasiuk and 

Shaw, 2002) despite LSB genesis being unresolved (e.g., Clark et al., 2010; Stokes et 

al., 2011; Hooke and Medford, 2013; Spagnolo et al., 2014; Fowler and Chapwanya, 

2014). Testing hypotheses of LSB genesis requires an adequate inventory of their 

morphometry. The first step in this inventory is LSB footprint mapping.  

To date, LSB footprint mapping has been mainly done manually, based on visual 

interpretation (e.g., Clark et al., 2009; Spagnolo et al., 2010, 2011, 2012; Stokes et al., 

2013; Spagnolo et al., 2014; Dowling et al., 2015), a methodology which is slow and 

subjective and thus difficult to reproduce. Uncertainty about the magnitude of the 

subjective differences and the validity of manually mapped footprint datasets limit 

interpretations from derived morphometric analyses. Other limitations to the current 

morphometric inventory include insufficient or no data on 2D transverse asymmetry, 3D 

shape, and spatial arrangement and autocorrelation, and, although ~100,000 LSBs have 

been inventoried (Ely et al., 2014), uncertainty about sample representativeness.  
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(Semi-)automated mapping techniques are objective and fast (Van Asselen and 

Seijmonsbergen, 2006; Molloy and Stepinski, 2007; Saha et al., 2011). When combined 

with the increasing availability of high-resolution digital terrain models (DTMs, NDEP, 

2004) (e.g., 12 m x 12 m cell-size global DEM, http://www.astrium-geo.com/en/168-

tandem-x-global-dem), (semi-)automated mapping has the potential to improve the 

robustness of the LSB morphometric inventory available to test and to constrain 

hypotheses of LSB genesis and thus LSB glaciological significance.  

Whereas the automated classification of DTMs into elementary forms or land-

form elements is well established (e.g., Dikau et al., 1991; MacMillan et al., 2000; Drăguţ 

and Blaschke, 2006; Minár and Evans, 2008; Jasiewicz and Stepinski, 2013), algorithms 

for the delineation of genetic landforms are more demanding and have had more limited 

success. The first group of methods is conceptually simpler to implement because 

classes are simply morphometric or geometric. In contrast, genetic landforms are 

assemblages of elementary forms (composite forms of Minár and Evans, 2008) and 

have both a morphological and a genetic component in their definition – they can be 

thought of as units of maximum internal morphogenetic homogeneity and, in principle, 

only landforms with a morphometric (topographic) signature can be mapped with high 

success rates. Automated drumlin delimitation is thought to be a simple procedure 

(Evans, 2012) because they are typically bounded by concave breaks in slope gradient 

and have a distinct appearance, but a topographic signature has not been previously 

quantitatively demonstrated.  

The (semi-)automated mapping of LSB footprints from DTMs is a recent 

endeavour. Rutzinger et al. (2012) test automated breakline mapping for a single drumlin 

amongst other landforms. Maclachlan and Eyles (2013) use closed contour analysis, but 

do not focus on method development. Saha et al. (2011), d´Oleire-Oltmanns et al. 

(2013) and Eisank et al. (2014) use multi-resolution segmentation (MRS) of DTMs within 

an object-based image analysis framework (Baatz and Schäpe, 2000), but with 

inadequate results for morphometric purposes. DTM-based automated mapping 

methods have been developed with varying success for other landforms, including 

craters (Bue and Stepinski, 2007), volcanos (Euillaides et al., 2013) and sinkholes (de 

Carvalho et al., 2013). Here, two new object-based methods for the semi-automated 
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extraction of LSB footprints from DTMs are presented, and tested in the Puget Lowland 

Drumlin Field (Goldstein, 1994), WA, USA. 

 Object-based mapping of LSBs: past work 

(Semi-)automated object-based landform mapping spans the fields of digital 

image processing and geomorphometry (Evans, 1972), a sub-discipline of 

geomorphology concerned with the study of land surface form(s) through digital terrain 

modeling and analysis. Mapping with object-based (image) analysis (OBIA, Baatz and 

Schäpe, 2000) (OBA) typically entails: 1) segmentation of the image(s) into segments or 

objects (aggregations of pixels), based on either internal homogeneity criteria (e.g., 

slope variance) (region-based segmentation) or outline (e.g., break-of-slope) recognition 

and delineation (edge-based segmentation); and 2) object classification or filtering – 

from candidate objects to meaningful objects (Blaschke, 2010). The nature of OBA 

segmentation algorithms is what distinguishes OBA from somewhat equivalent pixel-

based procedures the most: segmentation is based not only on pixel values but also on 

image texture (Lucieer and Stein, 2005), leading to the creation of more intelligible (i.e. 

more proximal to real world features) objects better suited for semantic modelling – the 

implementation of pertinent knowledge about the feature(s) being mapped into computer 

language/software realized terms (an operational definition sensu lato). In addition, 

classifications based on image objects are less affected by the “salt-and-pepper” noise 

that is common in pixel-based classifications (Blaschke et al., 2000), and segmentation 

results are typically handled in a vector graphics format, allowing easy derivation of any 

kind of attribute (aggregative cell statistics, geometry, context) for the individual objects 

prior to, and to be used by, the classifier or filter. The acronym GEOBIA has been more 

recently introduced in the literature in order to acknowledge the specificity of geographic 

objects (Blaschke, 2010). The application of OBA to DTMs is recent, the first studies 

dating from 2006 (Stepinski et al., 2006; Drăguţ and Blaschke, 2006). eCognition® 

probably has been the most used OBA software in geomorphological studies, but other 

software, some of which are opensource (e.g., OrfeoToolbox, orfeo-toolbox.org; QGIS, 

www.qgis.org; SAGA GIS, www.saga-gis.org), also support OBA. Here, the expression 
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object-based refers to any analysis or method which includes segmentation of an image 

or DTM into objects more meaningful than individual cells as one of its steps.  

It was within this context that Saha et al. (2011), d´Oleire-Oltmanns et al. (2013) 

and Eisank et al. (2014) used object-based methods in their attempts to (semi-)automate 

the extraction of drumlin footprints from DTMs. Saha et al. (2011) extract then merge 

three terrain objects: two slopes facing opposite directions and outlined by breaks in 

slope gradient, and one ridge (mediating the slopes). Drumlin objects are essentially 

defined through edge-based segmentation and classified from morphometric rules based 

on manually mapped LSBs in their study area. On the other hand, d’Oleire-Oltmanns et 

al. (2013) and Eisank et al. (2014) use a region-based segmentation (multiresolution 

segmentation of Baatz and Schäpe, 2000) to extract drumlin footprints as individual 

objects. d’Oleire-Oltmanns et al. (2013) define drumlins as multi-convex relief units 

(based on mean curvature) with elliptical planar shape. Eisank et al. (2014) test the 

individual suitability of several terrain parameters, i.e. do not use a single operational 

definition. Because drumlins are topographically complex and variable and currently are 

not well represented by a single terrain parameter(ization), using a region-based 

segmentation (delineation of homogeneous objects) for directly extracting footprints as 

single objects is counterintuitive.  

(Semi-)automated terrain object-based LSB (landform) mapping can be broadly 

defined as a 4-step procedure: 1) computation of terrain parameter(s) on which the 

landform operational definition is built; 2) segmentation of terrain parameter(s) (one- or 

multi-dimensional cell-based feature vectors) – from a data storage structure-controlled 

representation (cells) to terrain-meaningful objects; 3) computation of object attributes 

required for implementing the operational definition; and 4) classification or filtering. 

Whether multi-scale segmentation is or is not needed in order to deal with the landform 

dimensional range depends on the segmentation algorithm used.      

 Methods  

Two new methods for the semi-automated mapping (SAM) of LSB footprints from 

DTMs are compared in a test area in the Puget Lowland, WA, USA (section 3.5.1). Their 
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performance is assessed in relation to a footprint dataset from manual mapping (MM) 

(section 3.5.2). One method is based on the identification of normalized local relief 

(NLR) contour-bounded terrain objects with LSB-like morphometry and is separately 

applied to 4 different NLR models (section 3.5.5). This is referred to as the normalized 

closed contour method (NCCM) (Fig. 3.1). The second method involves classifying the 

DTM into landform elements, masking out elements rare to absent in LSBs and 

identifying terrain segments with LSB-like morphometry out of the remaining areas 

(section 3.5.6). This is referred to as the landform elements mask method (LEMM) (Fig. 

3.2). Both methods share the same DTM preprocessing (section 3.5.4) and LSB 

operational definition (section 3.5.3). The latter is a ruleset combining expert knowledge 

with morphometric data from previous inventories and from MM-LSBs in the study area.  

 

Figure 3.1 NCCM processing flow. 

 

Figure 3.2 LEMM processing flow.  
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3.5.1. Test area and DTM 

The test area (139.5 km2) is located in the east-central part of the Puget Lowland 

Drumlin Field (Goldstein, 1994; ~19k km2), WA, USA and within the footprint of the 

Puget lobe, a fast flowing, topographically constrained outlet glacier of the last 

Cordilleran Ice Sheet which attained its maximum extent 17,420 ± 90 cal yr BP (Porter 

and Swanson, 1998) (Fig. 3.3). The test area was chosen over other areas in the 

drumlin field because it is a relatively large area seamlessly populated by LSBs with a 

relatively high diversity of morphometries and has relatively low anthropogenic 

disturbance. The northern and southern limits of the test area are (sub-)perpendicular to 

the general orientation of the LSBs that they cross.  

The region is covered by several freely available DTMs, including USGS National 

Elevation Data of 1/3 and 1/9 arc-second (6.9 m and 2.3 m at the latitude of Seattle, 

respectively) horizontal resolution, a 1.8 m cell-size DTM with vertical resolution <1 m 

produced by the Puget Sound LiDAR Consortium (http://pugetsoundlidar.ess. 

washington.edu/About_PSLC.htm), and a 9.1 m cell-size DTM partly created by 

downsampling (5x) of the previous (Puget Sound DEM, PSDEM – Finlayson, 2005). This 

study uses the 1.8 m DTM downsampled (weighted average) to a 9.1 m cell-size (not the 

PSDEM because it is distorted in the test area), which is appropriate for studies on LSB 

morphometry (cf. Napieralski and Nalepa, 2010). This cell-size was chosen over the 

original 1.8 m because it is closer to typical resolutions of DTMs available for other 

regions and reduces noise and DTM size (14 vs. 350 megabytes) while not 

compromising the identification of small LSBs in the test area.  

3.5.2. LSB manual mapping 

The MM-footprint dataset is used as the reference for SAM performance 

assessment and for deriving some of the values for the LSB ruleset. LSB edges mostly 

correspond to concave breaks in slope gradient and, accordingly, MM of LSBs 

(footprints) has been based on break-of-slope delineation (e.g., Mitchell and Riley, 2006; 

Clark et al., 2009; Spagnolo et al., 2010; Saha et al., 2011; Dowling et al., 2015). The 

same criterion is used here. LSB footprint polygons were manually drawn within a GIS 

by inspecting a zenith-hillshaded (~slope) terrain model overlain with 1.5 m-interval 
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Figure 3.3 Test area. A) Location of the test area (black-outline quadrangle) 
within the Puget Lowland Drumlin Field and Puget Lobe footprint; 
the white line marks the last maximum extent of the Cordilleran 
Ice Sheet (Thorson, 1980). The hillshaded terrain model (10x 
vertical exaggeration) is derived from the USGS National 
Elevation Data 1/3 arc-second DTM. B) Hillshaded terrain model 
(5x vertical exaggeration, from a 9.1 m cell-size DTM – PSDEM, 
Finlayson, 2005) of the test area and footprints of figures 
presented later.  
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contours derived from the DTM and a semi-transparent, display extent-adaptive color 

rendering of the DTM. Other hillshaded models, ranging in solar angle between 35°-65° 

and illuminated from opposite azimuths (110° and 290°) perpendicular to general LSB 

orientation (NNE-SSW) aided in the interpretation. Anthropogenic features were 

identified using Bing Maps. Where original LSB edges were poorly preserved, drawn 

limits reflect a visual interpolation based on well-preserved segments. In order to 

minimize MM subjectivity, footprints digitized in a first pass were subjected to multiple 

inspections days apart, until modifications imposed to the previous set of footprints 

reached a minimum. ArcMap® was used because of built-in automatic display extent-

adaptive rendering. Bing Maps imagery was sourced from OpenLayers Plugin for QGIS.  

Elongate partial LSBs truncated transverse to their long axis at the test area 

border (n = 8) were included, because for (semi-)automated mapping they are 

indistinguishable from complete LSBs (limitation of current operational definitions). 

Excluding incomplete LSBs at the test area border would require either a) use of very 

irregular limits at the southern border of the test area, where truncated LSBs are long 

(e.g., 1.62 km) and closely spaced (displacing the limits in the up or downflow direction 

is not a solution because other LSBs would become truncated), or b) redefinition of the 

areas that they occupy into non-LSB terrain, changing a priori probability (LSB density). 

Potential changes in method performance after applying the latter option are assessed in 

the discussion section (3.7.6). Bias in morphometric statistics due to the inclusion of 

elongated LSBs truncated at the test area border is irrelevant for the purpose of SAM 

performance assessment because their morphometry falls within the range of the other 

LSBs.  

3.5.3. LSB operational definition 

The LSB operational definition is a pragmatic set of rules that defines LSBs in 

software-realized terms (ideally unambiguously). LSBs are typically described as 

distinctive landforms, but this has not been addressed quantitatively (what is their 

topographic signature?); operational definitions based on existing definitions of LSBs 

(e.g., d’Oleire-Oltmanns et al., 2013) thus are exploratory and potentially ambiguous. 

Here, a LSB morphometry knowledge-base combining expert knowledge (that LSBs are 
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relatively straight, elongated and highly convex hills with a high degree of parallel 

conformity and relatively regular surface and outline that occur within the footprints of 

paleo ice-sheets; Menzies, 1979; Shaw, 1983; Clark, 1993; Smalley and Warburton, 

1994; Patterson and Hooke, 1995; Knight, 1997; Clark et al., 2009) with morphometric 

data from previous inventories (Spagnolo et al., 2012, 2014) and from MM-LSBs from a 

DTM of the test area, seeds a ruleset used to classify the outputs of segmentation 

algorithms (LSB-candidate terrain segments) into LSB and non-LSB terrain segments 

(Figs 3.1, 3.2). This LSB ruleset (Table 3.1) is based on measures of size (2, 7 and 8), 

2D shape (3, 6), 3D shape (1, 9 and 10) and orientation (4, 5).  Values for measures 3 to 

10 are based on MM-LSBs in the study area. Measure 1 has been used to distinguish 

hills from depressions (Doctor and Young, 2013). DTM vertical resolution conditions the 

relief of the smallest hills that can be identified, whereas for maximum relief current data 

(Spagnolo et al., 2012) can be used (measure 2). Measure 3 allows distinguishing 

between circular and elongated hills; had the elongation (ratio of footprint length to 

width) of LSBs in the study area not been sampled, a minimum value of, e.g., 1.1, could 

be used. The use of measures 4 and 5 reflects that LSB orientation is relatively constant 

amongst neighboring landforms and thus potentially very discriminatory (any hill with 

different orientation can be ruled out). If, in a certain study area, the orientation of a 

cross-cutting LSB set is outside the range in orientation of non-superimposed LSBs, 

then rules can be specified as to exclude or separately map each set. Measure 5 allows 

distinguishing also between flat-topped (i.e. no ridgeline; e.g., anthropogenic structures 

that may persist in the DTM) and convex hilltops. Footprint outline complexity (measure 

6) is used because, relative to other landforms, LSB outlines tend to be regular/smooth. 

Applied thresholds were constrained from examples of MM- and SAM-footprints 

(typically more irregular than MM-footprints) and vary with footprint elongation because 

outline complexity tends to increase with increasing elongation. The remaining ruleset 

measures (7-10) were chosen from a wider group of variables (including footprint area 

and perimeter, 2D ridge sinuosity, mean total slope curvature, mean longitudinal slope 

curvature, and standard deviation of slope) for reducing the number of false positives 

without significantly affecting the number of successfully mapped LSBs following filtering 

with measures 1-6 on preliminary versions of the NCCM and LEMM. Not to risk 

excluding relatively successful SAM-footprints for being somewhat wider than maximum 

sampled width, measure 8 allows SAM-footprints to be 25% wider than the latter. Out of 



 

55 

the selection of variables that made it into the ruleset (1-10), measures 9 and 10 were 

the least discriminative and are the least straightforward to sample. Therefore, in order 

to better understand if the inclusion of measures 9 and 10 in the ruleset is beneficial, two 

maps, one based on measures 1-8 (hereafter referred to as ruleset X) and the other on 

measures 1-10 (hereafter referred to as ruleset Y), were produced for each SAM 

method. 

Table 3.1  LSB operational definition (ruleset) and corresponding values for 
the test area; minimum and maximum values for measures 3-10 refer 
to MM-footprints in the test area  

Measure Rule Minimum Maximum 

1 – Mean topographic 
position index  (Guisan et al., 
1999) 

 (> ~0) LSBs are hills 
0 (NCCM); 

-0.2 (LEMM) 
-- 

2 – Relief (m) 
> at least 2x DTM vertical resolution 
& < maximum reported in the 
literature (worldwide) 

2 120 

3 – Footprint elongation  > minimum 1.83 -- 

4 – Footprint orientation (°) > minimum & < maximum 0 / 180 40 / 220 

5 – Ridge orientation  (°) 
LSBs have ridges; > minimum & < 
maximum 

0 / 180 56 / 236 

6 – Footprint (outline) shape 
complexity index (Lindsay, 
2014) 

Elongation  <5 -- 
0.17 (NCCM); 
0.15 (LEMM) 

Elongation ≥5 and <10 -- 
0.20 (NCCM); 
0.22 (LEMM) 

Elongation ≥10 and <20 -- 
0.25 (NCCM & 

LEMM) 

Elongation  ≥20 -- 
0.45 (NCCM & 

LEMM) 

7 – Footprint length (m) > minimum  266 -- 

8 – Footprint width (m) > minimum & < maximum*1.25 45 830 

9 – Standard deviation of 
aspect (radians) 

> minimum & < maximum 0.268 1.947 

10 – Mean cross-sectional 
curvature (radians) 

> minimum & < maximum -1.43E-05 1.10E-04 

Measures 1 and 6 are different between the NCCM and the LEMM (Table 3.1). 

The LEMM ruleset uses a lower mean topographic position index than NCCM because 

LEMM footprints tend to be larger than the corresponding MM-footprints (i.e. to extend 
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into inter-LSB terrain). This biases performance slightly in favor of LEMM, but is useful 

for assessing method potential (assuming that there is a solution to the over-mapping). 

Relative method performance was not significantly affected. The maximum allowed 

shape complexity index is lower and higher for the LEMM for LSBs with elongation <5 

and between ≥5 and <10, because its footprint-candidate objects had smoother and 

more irregular outlines at these elongation values, respectively, than the footprint-

candidates of the NCCM.  

Footprint length, width and orientation were derived with the minimum bounding 

rectangle method (Napieralski and Nalepa, 2010; Dowling et al., 2015; chapter 2 of this 

thesis). This method was chosen because, while not being the best LSB morphometric 

measurement method (chapter 2), it was the most accurate and very precise (e.g., 

standard deviation of 1.7º in orientation) for a sample of LSBs from the Puget Lowland 

drumlin field and is much simpler to apply than the best method (chapter 2). Elongation 

corresponds to the ratio of footprint length to width (n:1; for a circle, n = 1). Ridge 

orientation was derived from ridges defined by thresholding a catchment area model 

based on the D8-flow routing algorithm (O'Callaghan and Mark, 1984). The shape 

complexity index is calculated as 1 - area of footprint / area of footprint’s convex hull and 

ranges between 0 (lack of boundary concavities) and ~1. Relief is the elevation range of 

LSBs. Measures 8-10 are based on every cell of the LSB DTM. The minimum bounding 

rectangle was derived in ARCMAP®, measure 6 in Whitebox GIS (Lindsay, 2014) and 

the remaining measures in SAGA GIS (Olaya and Conrad, 2009).  

3.5.4. DTM preprocessing  

LSBs in the test area frequently display highly indented outlines and irregular 

topography (Fig. 3.4A) due to post LSB-formation processes and anthropogenic terrain 

modification. Notably, sets of small (from <2 m to ~10 m in height), regularly spaced 

(<100 m apart) transverse ridges can be superimposed on LSBs. While in some 

locations their texture is crisp, in others they occur as smooth undulations. Some have 

been interpreted as crevasse-squeeze ridges (Haugerud, 2009).  Additionally, drainage 

reorganization and adjustment to base level changes following glacier retreat led to the 

truncation of some LSBs, particularly at the west and east margins of the test area. The 
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MM operator is able to recognize such irregularities in the DTM and draw footprints more 

representative of original LSB edges than present-day topography. For SAM the DTM 

was processed to better reflect assumptions on original LSB topography: smooth outline 

and texture (Fig. 3.4B). This preprocessing utilized SAGA GIS modules (italicized below) 

and is explained below. 

 

Figure 3.4 DTM before (A) and after (B) preprocessing. Contour interval is 2 m. 
Arrow points to a road. 

First, the DTM was smoothed with anisotropic filters (directional statistics for 

single grid) conditioned to general LSB orientation (NNE-SSW), in the following order: 

filter 1) directional mean with a spatial range of 10 cells (~1/3  of minimum LSB length), 

first along 200°, then 20° (flipped by 180°) azimuth; filter 2) directional mean with a 

spatial range of 10 cells, weighted to the power of two of the inverse distance and with a 
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direction tolerance of 3°, first along 290º, then 110º azimuth (perpendicular to filter 1). In 

both filter 1 and 2, the reverse direction filtering is needed in order to reduce the 

geometric distortion (directional spread) generated in the first run. A mesh denoise 

operation (Sun et al., 2007) was then applied. This algorithm was selected because it is 

designed such that sharp features (e.g., breaks of slope) are preserved (in contrast with 

smoothing operators, which tend to subdue high frequencies). It was applied with a 

common-edge neighbourhood, an averaging threshold of 0.1, 15 iterations for normal 

update and 50 iterations for vertex update. These settings provided a good compromise 

between the level of smoothing and the loss of relevant information. In practice, 

differences relative to whether a typical smoothing algorithm (such as a median or a 

Gaussian kernel) had been used were small.  

3.5.5. Normalized closed contour method 

The NCCM assumes that each LSB footprint can be represented by a lowermost, 

normalized local relief (NLR) closed contour. In a top-down approach, LSB footprint 

objects are identified by querying a multitude of candidate objects (every NLR closed 

contour) against a LSB ruleset (Fig. 3.1, Table 3.1). NLR is used here as a general term 

for any normalized, local (neighborhood) datum relief model, and “normalized” is used as 

a synonym of relative. 

NCCM draws on passive contouring for segmenting a NLR model into LSB-

candidate objects. Passive contouring refers to the creation of contours by conversion of 

digital representation format (raster to vector), in contrast to active contouring, which 

typically refers to the recognition and delineation of edges (edge-based segmentation) 

(e.g., Arbelaez et al., 2011; although see Chan and Vese, 2001).  Because LSBs 

typically are bounded by concave breaks in slope gradient, edge-based segmentation 

could, in principle, be used for LSB automated delineation. Though, in practice, 

limitations exist:  the angle of curvature at LSB edges is variable – LSBs sometimes 

smoothly merge with the surrounding terrain and grade into one another (Heidenreich, 

1964); and landforms occurring in association with LSBs (e.g., moraines) are themselves 

delimited by concave slope breaks.  
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An elevation-a.s.l. (fixed datum) contour dataset of a LSB field will contain closed 

contours closely matching the outlines of LSBs in relatively flat terrain. In contrast, the 

edges of LSBs on slopes cut across multiple contours. NLR addresses this limitation of 

fixed-datum contours for LSB SAM. NLR computation is a terrain detrending or flattening 

procedure. Local elevation minima and maxima in the original DTM are brought to 

common planes; one NLR contour may correspond to a range in elevation a.s.l. The 

NLR of a certain location (cell) x,y can be defined as the difference in elevation a.s.l (Δz) 

between x,y and a nearby datum (e.g., zmin), relative to maximum Δz in the proximity of 

x,y with respect to the same datum. The datum thus varies spatially. Using zmin as the 

datum, NLR varies between 0 (z = zmin) and 1 (z = zmax). The contour value is not 

relevant for application of the NCCM however. The position of the datum with respect to 

x,y  can depend solely on the distribution of z within a pre-determined distance from x,y 

(as for the example given) or be morphometrically defined (e.g., base of slope). NLR has 

been used in previous LSB (semi-)automated mapping attempts. d’Oleire-Oltmanns et 

al. (2013) based their method on a NLR computed in moving windows on a terrain model 

excluding (flattening) topography below local (1x1 km neighborhood) median elevation 

(after Hillier and Smith, 2008) and Eisank et al. (2014) tested the suitability of 

multiresolution segmentation (Baatz and Schäpe, 2000) of an hydrology-based NLR 

(Böhner and Selige, 2006). None of these studies provides insights that can be used in 

this study for determining which type of NLR model might be more adequate for the 

NCCM. 

Implementation 

The NCCM draws on test area LSB morphometry in two separate instances (Fig. 

3.1): 1) for scale definition in NLR computation; and 2) for deriving some of the values 

for the LSB ruleset. Because the MM-dataset covers the complete test area (required for 

SAM performance assessment), sampling errors should be negligible; effectively, it 

includes the shortest, largest, most compact and most elongate LSBs as well as the 

range of LSB orientation. The NCCM processing flow, from NLR computation to the 

topologic filtering is explained below. SAGA GIS v.2.1, Grass GIS (Neteler et al., 2012; 

v.6.4) modules run within QGIS v.2.2 and v.2.3, Whitebox GIS v.3.2 and ArcMap® 

v.10.2 were used. This combination reflects author preference.  
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(1) NLR model computation. Four different NLR models were tested (Fig. 3.5): 1) 

normalized neighborhood relief (NNR) (i.e. local or relative relief; Mark, 1975) and 2) 

topographic position index (TPI) (Guisan et al., 1999), both computed in moving 

windows; 3) normalized hydrological relief (NHR) (normalized altitude of Böhner and 

Selige, 2006), based on a multiple direction flow routing algorithm; and 4) NHR combo 

(NHRC), combining NHR with a model derived from a single direction flow routing 

algorithm (NHR2) (the latter model after MacMillan, 2005). Whereas for NNR and TPI 

normalization is done relative to the minimum and mean elevation within a certain 

distance from the cell being transformed, respectively, for NHR and NHRC the datum 

approximates the base of the slope (based on drainage accumulation).  

NNR was computed for each cell as 

 𝑁𝑁𝑅𝑖 =  
𝑍𝑖 − (𝑍𝑚𝑖𝑛𝑘(𝑟))𝑖

 (𝑍𝑚𝑎𝑥𝑘(𝑟))𝑖 −  (𝑍𝑚𝑖𝑛𝑘(𝑟))𝑖
 Equation 1 

where i is the cell, Z is elevation a.s.l. and k is a circular kernel (moving window) of 

radius r centered on i. A radius equivalent to the width of the widest LSB (664 m) was 

used.  

TPI was computed as  

 𝑇𝑃𝐼𝑖 =  𝑍𝑖 −  (�̅�𝑘(>𝑟1<𝑟2))𝑖 Equation 2 

where k is an annulus kernel centered on i with inner radius r1 and outer radius r2. The 

widths of the thinnest and of the widest LSBs were used for r1 (45 m) and r2 (664 m), 

respectively.  

NHR is computed as  

 𝑁𝐻𝑅 =
1

2
 [1 + (𝐴𝐷 − 𝐴𝑆)/ 𝐴𝐷 + 𝐴𝑆)]     Equation 3 

where AD and AS are normalized height above drainage culmination (cell catchment) 

and below summit, respectively (Böhner and Selige, 2006). These positions are based 

on a catchment area model derived from a multiple direction flow routing algorithm 

(Freeman, 1991) modified as a function of slope angle for correcting model inaccuracies 
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in flat areas and used to weight relative altitudes. NHR requires setting three 

parameters: w, weighting the influence of catchment size on relative elevation (inversely 

 

Figure 3.5 NLR models for part of the test area (refer to Fig. 3.3 for location). 
A) Preprocessed DTM; B) NNR; C) TPI; D) NHR; E) NHR2; F) 
NHRC. A ranges between 87-177m a.s.l.; B, D and E range 
between 0-1; C ranges from -4.5 to 3.2; F ranges between 0.1-1.7.  

asd 
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proportional); t, controlling the proportion of maximum accumulated flow in a cell’s 

neighborhood that will move into the cell based on the slope between the cells (higher t, 

higher sensitivity to small elevation differences); and e, controlling the position of relative 

height maxima as a function of inclination. Values used for w (0.5), t (250) and e (1) 

were chosen after iteration using a range of values (w = 0.1, 0.5, 1, 2, 4 and 10; t = 10, 

20, 100, 250 and 500; e = 1, 2 and 4) based on their ability to maximize model 

representation of the less evident swales. In order to subdue modeling artifacts (e.g., 

pronounced concavities and convexities in slopes), the resulting surface was subjected 

to a directional mean filter parallel to general LSB orientation (filter 1 of DTM 

preprocessing).  

NHR2 was based on the D8-flow routing algorithm (O'Callaghan and Mark, 1984) 

and computed as 

 NHR2 =  𝐶𝐴−1 / (𝐶𝐴 + 𝐶𝐴−1) Equation 4 

where CA is catchment area. As for NHR, in order to subdue modeling artifacts, the 

resulting surface was subjected to a directional mean filter parallel to general LSB 

orientation. NHRC was computed as NHR * 0.75 + NHR2 * 0.25. NHR2 was given less 

weight than NHR due to artifacts resulting from the high sensitivity of the single direction 

flow routing algorithm to small changes in slope and aspect. On the other hand, 

weighting NHR2 less would render NHRC too similar to NHR.    

(2) Contouring. Each NLR model was contoured at 0.1 equidistance. Contours 

were then converted from polyline to polygon geometry and resulting topological errors 

(intersection of polygons in relation to contours closed at the test area border) processed 

with ARCMAP® repair geometry module.  

(3) Terrain segment morphometry. The LSB ruleset measures (Table 3.1) are 

computed for each polygon.  

(4) Morphometric filtering. Closed contours discordant with the LSB ruleset 

values are removed. Rulesets X and Y were applied separately. 
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(5) Topologic filtering. This step selects which closed contour polygon in a set of 

superimposed polygons best represents the LSB footprint. Lone polygons and 

lowermost polygons from each set of superimposed polygons were labelled “LSB 

footprint” and the remaining polygons deleted.  

3.5.6. Landform elements mask method  

The LEMM processing flow (Fig. 3.2) can be summarized into three meta-steps 

(bolded in Fig. 3.2; each involving a number of sub-steps): 1) classification of the DTM 

into landform elements; 2) reclassification of these into A) typical LSB and B) non-LSB 

classes; and (3) filtering of segments composed of typical LSB elements through the 

LSB ruleset. A full description of the processing flow is described below. Unless 

otherwise noted, the processing was done with SAGA GIS. 

Implementation 

(1) Landform elements. The results of three methods for the classification of 

DTMs into landform elements were compared: 1) Wood (1996); 2) Schmidt and Hewitt 

(2004); and 3) Jasiewicz and Stepinski (2013) (in GRASS GIS 7). These methods 

classify the terrain into 6, 9 and 10 elements, respectively. Wood’s (1996) method was 

preferred because of a highly customizable output, a reduced number of classes and a 

relatively short processing time. This method classifies each cell of the DTM into flat, pit, 

channel, saddle, ridge or peak (Fig. 3.6). Based on a qualitative assessment of results 

from a range of parameter values, the following settings were applied: scale radius = 5 

cells; slope tolerance for planar surface = 10°; curvature tolerance for planar surface = 

5x10-5 radians. The absence or presence of pits and saddles within LSBs is very 

dependent on these settings. Significantly smaller scale radiuses and lower curvature 

tolerances would create too much detail (and vice-versa, though variable in space 

depending on terrain configuration). The high value of slope tolerance allowed more 

channel features (swales) to be defined without causing significant over-mapping.       

(2) Reclassification of landform elements. First, landform elements were 

reclassified into two classes: elements typical of LSBs (peaks, ridges and flats); 
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elements absent to rare in LSBs (channels, pits and saddles). The first was then set as 

null value. The resulting layer is hereafter referred to as the inter-LSB mask.  

 

Figure 3.6 (A) Landform elements classification and (B) inter-LSB mask. In B, 
grey corresponds to the inter-LSB mask derived from the first 
landform elements classification and black represents the difference 
between that mask and processing loop 4 mask (mostly the result of 
the mathematical morphology filter – step 3 of LEMM processing 
flow).  No saddle was mapped in this area.  

 (3) Mathematical morphology filter – closing operation. The inter-LSB mask was 

subjected to cycles of isotropic dilation and erosion aimed at closing small gaps in the 

mask so as to increase the number of LSBs fully enclosed by it (Fig. 3.6B).  Distances of 

1 and 2 cells were used.  

 (4) Mask burning. The inter-LSB mask was reclassified to a negative value (-10, 

arbitrary) and summed to the preprocessed DTM. The modified DTM was then 

submitted to a fill sinks operation aimed at removing pits within LSBs, followed by a 

mesh denoise operation (Sun et al., 2007) for smoothing fine-scale topography and also 

counterworking the expansion of the mask into LSBs. 

(5) Looping. The modified DTM (from step 4) is subjected to the landform 

elements classification and a new inter-LSB mask is derived (steps 1-4 are repeated). 

The decision on whether to stop or to re-run the loop was based on the visual 

(dis)similarity of the mask from the previous loop to the just-created mask and on the 

relationship between the amount of positive changes and unwanted artifacts in the latter. 
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The final mask was obtained at loop 4; the loop 5 mask was visually similar to that of 

loop 4. Following changes to the DTM at each loop, parameter values used for the 

landform elements classification also varied:  loop 2 used the same parameters as loop 

1 plus a vertical exaggeration of 2; and, relative to loop 2, loops 3 and 4 used different 

slope and curvature tolerances (20° and 3x10-4 radians, respectively).  

(6) Raster to polygons. The final inter-LSB mask was inverted (class labels 

exchanged) in order to obtain the regions enclosed by it, then converted to polygon 

vector format.  

(7) Polygon Simplification. A bend simplify operation (ARCMAP®) using a 

reference baseline of 500 m and fixing of topological errors was applied in order to 

subdue artifacts generated during the looping.     

(8) Terrain segment morphometry (same as NCCM step 3). The LSB ruleset 

measures (Table 3.1) are computed for each polygon.   

(9) Morphometric filtering (same as NCCM step 4). Closed contours discordant 

with the LSB ruleset are removed. Rulesets X and Y were applied separately. 

3.5.7. Performance assessment 

Method performance was evaluated with reference to the MM-dataset. The 

assessment was done individually for each of 10 SAM-footprint datasets: 4 (NLR 

models) times 2 (rulesets X and Y) applications of the NCCM, and 2 implementations of 

the LEMM (rulesets X and Y). Both object-oriented and cell-based measures were used 

(Liu et al., 2007; Clinton et al., 2010), the latter for establishing comparisons to previous 

studies. Object-oriented measures allow performance evaluation in terms of spatial 

detection (overlap) and morphometric fidelity, whereas cell-based measures ignore the 

latter. In order to assess the number of potentially newly identified LSBs and 

overdetection, each SAM-footprint without a MM-footprint was evaluated against the 

same terrain representations as used for MM.   
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The object-based performance assessment (OOPA) is based on 7 measures 

(Table 3.2). Two detection rates (general, morphometric) are used. The general 

detection rate is a 1st order indicator of method performance, akin to, although improved 

over, measures used to evaluate published methods (d’Oleire-Oltmanns et al., 2013; 

Saha et al., 2011 method, evaluated by d’Oleire-Oltmanns et al., 2013). d’Oleire-

Oltmanns et al. (2013) used a detection rate where any MM-footprint intersected by a 

SAM-footprint seems to be considered successfully detected; for the general detection 

rate, a minimum overlap of 10% (of MM- by one SAM-footprint) is required and, due to 

the inclusion of orientation in the LSB ruleset, no successful SAM-footprint falls outside 

of the range in orientation of the LSBs in the test area. The morphometric detection rate 

rejects relationships of >1 SAM- to 1 MM-footprint and of 1 SAM- to >1 MM-footprint, 

and uses a minimum overlap of 50% between MM- and SAM-footprint and a maximum 

divergence of SAM- from MM-footprint orientation of 5º; it thus is a more constrained 

indicator of method success and provides a better basis for evaluating method adequacy 

with regard to morphometric inventorying purposes than the general detection rate; 

however, because different research objectives may have different quality requirements, 

those thresholds are somewhat arbitrary. 

The difference of means index (DMI) and the correlation analysis were applied to 

footprint length, width, elongation and orientation. DMI was calculated separately for: all 

SAM- and MM-footprints (DMI-A); satisfactory (cf. morphometric detection) SAM- and all 

MM-footprints (DMI-B); and satisfactory SAM- and their respective MM-footprints (DMI-

C). DMI-A informs about the relative extent to which false detections and non-

satisfactory footprints compromise morphometric accuracy. DMI-B informs about the 

representativeness of satisfactory SAM-footprints.  

For the cell-based assessment, the true skill statistic (TSS) (Allouche et al., 

2006) and kappa (Cohen, 1960) were used. The TSS is calculated as sensitivity + 

specificity - 1. Sensitivity corresponds to the areal proportion of MM-footprints which is 

overlapped by SAM-footprints (true positives). Specificity corresponds to the proportion 

of non-LSB terrain not mapped as LSB; conceptually, it is different from the proportion of 

true negatives because mapping is done for a single feature – i.e. a detection or unary, 

not a binary (classification), problem, as there is no attempt to map non-LSB terrain 
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(background). Kappa measures the difference between the measured proportion of true 

positives and “true negatives” and the proportion expected to occur by chance alone. 

Both TSS and Kappa range from -1 to 1, values above zero indicating performance 

better than random. 

Table 3.2 Object-oriented performance measures 

Measure name Measure definition 

N-rate 

(𝑛2 / 𝑛1) ∗  100 

n2: number of SAM-footprints; 

n1: number of MM-footprints. 

N-new (new detections) Number of LSB footprints mapped by the SAM method but not with MM.   

General detection rate 

(𝑛3 / 𝑛1) ∗  100 

n3: number of MM-footprints overlapped by a SAM-footprint by at least 
10% of its extent;   

n1: number of MM-footprints. 

Morphometric detection 
rate 

(𝑛4 / 𝑛1) ∗  100 

n4: number of satisfactory SAM-footprints (see text);  

n1: number of MM-footprints. 

Overdetection rate N-rate  – general detection rate 

Difference of 
(morphometric) means 
index 

∑ (
| (�̅�𝑆𝐴𝑀))𝑖 − (�̅�𝑀𝑀))𝑖 |

(�̅�𝑀𝑀))𝑖
)

𝑛

𝑖=1
/ 𝑛 ∗ 100 

where (�̅�𝑆𝐴𝑀))𝑖 and (�̅�𝑀𝑀))𝑖 correspond to the mean of morphometric 

measure i for the SAM- and MM-footprint dataset, respectively; and 𝑛 is 
the number of measures used. 

(Correlation between SAM- 
and MM-footprint 
morphometry)  

𝑟 =  
∑ (𝑥𝑖 −𝑛

𝑖=1  �̅� ) ( 𝑦𝑖 −  �̅�)

√∑ (𝑥𝑖 −  �̅� )
2𝑛

𝑖=1  √∑ (𝑦𝑖 −  �̅� )
2𝑛

𝑖=1

  

where r is Pearson’s correlation coefficient and n is the number of 
satisfactory SAM-footprint–respective MM-footprint (Y and X, respectively) 
pairs.  
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 Results 

3.6.1. Manual mapping 

MM yielded 135 LSB footprints (Fig. 3.7A), at a mean density of 1 footprint per 

km2 and covering 22% of the test area. Footprint length, width and elongation (E) have 

left-skewed, high-range and high-dispersion distributions (Table 3.3). Orientation is 

approximately normally distributed and more consistent. Using an elongation (E) of 10 

as a separation criteria (Stokes and Clark, 1999), 114 LSBs would be drumlins (E <10) 

and 21 would be MSGLs (E ≥10).  

Table 3.3 MM-footprint morphometry 

Measure Minimum Median Maximum Mean 
Coefficient  
of variation 

Length (m) 266 1146 4212 1213 0.53 

Width (m) 45 182 664 212 0.60 

Elongation 1.9 6 29.0 6.9 0.65 

Orientation (°) 0 / 180 16 / 196 40 / 220 17 / 197 0.35 

3.6.2. Object-oriented performance assessment 

The object-oriented performance measures are presented in Table 3.4. Figure 

3.7 presents maps from the SAM. The LEMM inventoried considerably fewer footprints 

(106% and 96% of the number of MM footprints for rulesets X and Y, respectively) than 

any of the NCCMs, and the NHRC method inventoried the largest number of footprints 

(Table 3.4). On average ruleset Y yielded 19 footprints less and had 1.8% lower general 

detection than ruleset X. The detection and overdetection rates are lowest for the 

LEMM_Y and highest for the NHRC_X method (Table 3.4). N-new and the general and 

morphometric detection rates and overdetection rate are strongly correlated with N-rate 

(r = 0.95, 0.91, 0.94 and 0.99, respectively).  

NHR, NHRC and TPI footprint datasets had the lowest, and similar, DMI-A (Table 

3.4). DMI-B indicates that the TPI satisfactory (successful according to morphometric 

detection rate) footprints are particularly representative of the morphometry of the MM-

dataset. In contrast, the correlation between the morphometry of the subsets of 
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footprints used in calculating DMI-C was, in general, relatively low for the TPI and higher 

for the LEMM (Table 3.5). On average, the LEMM footprints were larger, and the NCCM 

footprints smaller, than the MM-footprints (Table 3.6). All methods were relatively 

accurate in terms of orientation and length (Table 3.6). The large differences in footprint 

width explain the relatively low accuracy of elongation (Table 3.6). Regarding 

morphometric differences between the complete SAM- and MM-footprint datasets (Table 

3.7): 1) all methods but NHR were relatively accurate (difference ≤10%) in terms of 

footprint orientation; and 2) the NNR and NHRC methods were accurate also for 

orientation and elongation, the NHR method for elongation and the LEMM for length. All 

DMIs had weak correlations with each other, with the detection rates and with N-rate. 

Table 3.4 Performance assessment; with the exception of N-new (number of 
footprints) and TSS and kappa, all values are percentages; DMI, 
Difference of means index; DMI-A, all SAM & all MM; DMI-B, 
satisfactory SAM & all MM; DMI-C, satisfactory SAM & their 
respective MM footprints 

 Object-oriented Cell-based 

N- rate N-new 

Detection rate 
Overdet-

ection rate 

DMI 

TSS Kappa Method 
general 

morpho-
metric 

A B C 

LEMM_X 106 1 65 32 41 19 18 11 0.47 0.43 

LEMM_Y 96 1 65 31 30 18 19 11 0.47 0.44 

NNR_X 162 7 84 41 79 21 15 14 0.37 0.44 

NNR_Y 150 7 81 40 69 20 15 14 0.37 0.43 

TPI_X 141 4 75 41 66 17 3 9 0.44 0.48 

TPI_Y 120 3 71 41 49 15 2 9 0.44 0.48 

NHR_X 126 6 79 38 47 16 5 10 0.45 0.48 

NHR_Y 117 4 78 39 39 15 4 10 0.44 0.48 

NHRC_X 198 12 90 56 108 17 14 12 0.48 0.49 

NHRC_Y 181 12 87 56 93 15 14 11 0.48 0.49 

X and Y refer to the LSB ruleset used. Underlined and bolded numbers are the two lowest and the two 
highest values, respectively, for each measure. 

3.6.3. Cell-based performance assessment 

With the exception of NNR, all TSS and kappa values fall within the moderate 

accuracy range (0.41-0.60, after Landis and Koch, 1977) (Table 3.4). The two statistics 
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agree on the best performer (NHRC method) and on a worst performer (NNR method). 

On the other hand, whereas according to kappa the LEMM performed similarly to the 

NNR method, based on TSS it is the second best method. Differences between rulesets 

X and Y are small. 

 

Figure 3.7 MM-footprints (A) and SAM-footprints (B-F). 
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Table 3.5 Correlation (Pearson’s coefficient) of footprint morphometry 
measures between satisfactory SAM-footprints and their respective 
MM-footprints (DMI-C)  

Method Orientation Length Width Elongation 

LEMM_X 0.82 0.88 0.97 0.88 

LEMM_Y 0.82 0.88 0.97 0.88 

NNR_X 0.93 0.88 0.77 0.78 

NNR_Y 0.91 0.87 0.76 0.79 

TPI_X 0.87 0.87 0.81 0.67 

TPI_Y 0.86 0.87 0.81 0.66 

NHR_X 0.79 0.88 0.85 0.83 

NHR_Y 0.75 0.88 0.85 0.80 

NHRC_X 0.86 0.85 0.85 0.86 

NHRC_Y 0.84 0.85 0.85 0.89 

Underlined and bolded numbers are the two lowest and the two highest values, respectively, for each 
measure. 

Table 3.6 Morphometric differences (% difference of SAM-footprints mean 
relative to MM-footprints mean) between satisfactory SAM-footprints 
and their respective MM-footprints (DMI-C) 

Method Length Width Elongation Orientation DMI-C 

LEMM_X & Y 9 18 -14 2 11 

NNR_X & Y -3 -23 26 2 14 

TPI_X & Y -3 -19 12 2 9 

NHR_X & Y -2 -18 18 1 10 

NHRC_X / Y 6 / 7 -15 23 / 22 1 12 / 11 

 

Table 3.7 Morphometric differences (% difference of SAM-footprints mean 
relative to MM-footprints mean) between the complete datasets of 
SAM- and MM-footprints (DMI-A) 

Method Length Width Elongation Orientation DMI-A 

LEMM_X / Y -8 / -1 30 / 34 -39 / -36 -1 / 0 19 / 18 

NNR_X / Y -37 / -35 -38 / -37 -7 / -4 4 / 4 21 / 20 

TPI_X / Y -27 / -23 -16 / -15 -23 / -20 -3 / -2 17 / 15 

NHR_X / Y -21 / -19 -9 / -8 -16 16 16 / 15 

NHRC_X / Y -28 / -25 -30 / -27 -4 / -3 8 / 6 17 / 15 
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 Discussion 

3.7.1. DTM preprocessing 

DTM preprocessing is an important step for LSB SAM because, due to post-

formational modification, present (recent) topography may depart significantly from 

original (pristine) subglacial topography (Finlayson, 2013). In the test area, LSBs 

frequently display highly indented outlines and irregular topography, and sometimes are 

truncated by natural (rivers) or anthropogenic features (roads), whereas original LSB 

outlines and topography are thought to be regular and smooth. Relatedly, the original 

DTM was very noisy and in many areas unsuitable for LSB SAM. DTM preprocessing 

using anisotropic (LSB orientation-constrained) smoothing fundamentally changed this 

(Figs 3.4, 3.8). This study indicates that SAM of LSBs is possible even in terrains with a 

high degree of post-LSB formation modification.  

3.7.2. Object-oriented performance assessment 

SAM-method performance was variable; no single method scored best in all 

measures (Table 3.4). Determining which methods performed, on balance, better and 

worse based on object-oriented measures requires to jointly consider detection and 

overdetection and to account for reference data (MM-dataset) density (e.g., prevalence, 

the proportion of test area covered by LSBs; i.e. a priori probability). For example, alone, 

a general detection of 100% cannot be used to conclude that the method performed 

perfectly; only if overdetection was 0%. On the other hand, considering a value of 100% 

for both general detection and overdetection, and imagining that LSBs were all the same 

size, only for prevalences below 50% (lower probability for detection than overdetection) 

could the method be considered better than random. These examples are simplifications 

and require postulating that detection, as defined for the general detection rate, is a 

direct indicator of SAM correctness, but illustrate the basis for conclusions presented 

below well. It is important to note also that, when morphometric fidelity is taken into 

account, a method can be better than random even if detection and overdetection are 

the same and prevalence is 50%.  
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Figure 3.8 Inter-LSB mask and NHR derived from the original DTM (A and C, 
respectively) and from the preprocessed DTM (B and D, 
respectively). C and D vary between zero (dark blue) and one (red). 
Both A and B, and C and D were computed with the same 
parameters (the inter-LSB mask from the first loop in the LEMM 
processing flow and section 3.5.5, respectively). The original DTM 
was very noisy and neither A nor C would be adequate inputs for 
SAM.  

Figure 3.9 ranks methods based on the ratio of general detection to 

overdetection. The NHRC was the only method with lower detection than overdetection 

(0.83:1 and 0.94:1 for rulesets X and Y, respectively), but in a proportion still well above 

the prevalence of LSBs in the test area (0.22:1). In every method, ruleset Y  has a larger 

ratio than ruleset X, indicating that the inclusion of topographic texture (ruggedness) 

measures in the LSB ruleset is advantageous – the decrease in detection from X to Y 

was always small (maximum and mean of -4% and -2.1% for general detection, 

respectively) and outweighed by a decrease in overdetection (mean = -11.9%) (Table 
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3.4). For a classification of overall method performance, an index was computed as: 

general detection * ((general detection / overdetection - 0.22) / 2) * 0.5 + morphometric 

detection * (morphometric detection / morphometric overdetection) * 0.5. Morphometric 

overdetection was computed as: N-rate - morphometric detection. For the ratio of 

general detection to (general) overdetection, values of 0.22 (prevalence of LSBs in the 

study area) and 2.22 are valued 0% and 100%, respectively. The NHR_Y and LEMM_Y, 

and the NNR_X and NHRC_X, arise as the best and worst methods, respectively (Table 

3.8). The NHR_Y was one of the best methods also according to the DMIs (lowest (best) 

DMI-A together with the TPI and NHRC, and 2nd lowest DMI-B and DMI-C; Table 3.4).  

 

Figure 3.9 SAM-methods ratio of general detection to overdetection.  

The relative success of the LEMM is related to the short spacing between LSBs 

in the test area; LEMM will perform relatively poorly where LSBs are more spaced apart. 

The LEMM has a processing flow which is more dependent on study area specificities 

and user input than the NCCM and thus is less transferrable than the latter. Other 

terrains and DTMs with different cell sizes would require careful re-evaluation of the 

processing flow.  The overestimation of footprint size (Tables 3.6, 3.7) reflects limitations 

of the land-form elements classification as a segmentation procedure – channels often 

are at lower elevations and some distance away from the MM-edges (breaks-of-slope) of 

LSBs.  These are reasons to conclude that the LEMM is inferior to the NCCM. 
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Table 3.8 Overall performance index  

Method Performance index (%) 

LEMM_X / Y 29 / 39 

NNR_X / Y 25 / 26 

TPI_X / Y 26 / 33 

NHR_X / Y 37 / 44 

NHRC_X/ Y 25 / 28 

False detections were mainly related to artifacts resulting from NLR modelling 

and anisotropic smoothing (e.g. “streamlining” of non-LSB ridges) of both the original 

DTM and NLR model (NHR and NHRC) (issue exacerbated by the high-degree of post 

LSB-formation terrain modification, which is common in drumlin fields), and to limitations 

of the LSB ruleset, which did not exclude convex upper sections of some non-LSB hills. 

The LSB ruleset was limited also in its ability to screen out partial (truncated) LSBs, 

which may emulate the morphometry of complete LSBs; this is particularly relevant when 

inventorying morphometry, but has no obvious solution (besides manual deletion of 

SAM-footprints). The tested NLR models substantially differ from the ideal surface, 

where inter-LSB areas (swales) would be homogeneous and similar in value; swales in 

the NLR models frequently were not flat and occur at different NLR levels. The reduced 

dimension of the NCCM satisfactory footprints (closed contours) relative to MM-

footprints (Table 3.6) reflects this. SAM-footprints tend to be smaller than MM-footprints 

because the lowest contours conformant to the LSB ruleset typically occur above the 

concave slope break at the base of LSBs (Fig. 3.10). One other factor contributing to the 

smaller size of SAM-footprints is the interpolation or generalization conducted in the MM; 

while MM tends to pass over post-formational concavities (indentations) in current LSB 

outlines, SAM was based on a DTM of recent topography where post-formational 

topographic features, though subdued by the DTM preprocessing, are present. With 

improvements to NLR modelling, a rule relative to NLR contour value can be used to 

exclude hilltops of non-LSB hills (larger value than the lowest ruleset-conformant closed 

contour in LSBs).  

The overdetection of the NHRC method was very high (Table 3.4) because the 

NHR2 model is particularly sensitive to small changes in terrain aspect and slope. While 

the NHR generalizes original topography, the NHR2 accentuates terrain variability, 
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facilitating mapping of thin LSBs missed by the NHR, but also creating many artifacts. 

This contrast is related to differences in the flow routing algorithms used: multiple (NHR) 

vs. single (NHR2) flow path direction.  

 

Figure 3.10 Statistical distribution of SAM-footprints’ (closed contours) NLR 
value. TPI and NHRC scales were normalized between 0-1. The 
relatively low values of TPI are related to TPI formula (i.e. mean, 
instead of minimum, elevation is the reference).    

3.7.3. Cell-based performance assessment 

The cell-based performance measures (Table 3.4) were less discriminative 

between methods and partially disagree with the overall performance index (Table 3.8). 

Essentially, the differences result from the TSS and kappa being based solely on spatial 

overlap. The NHRC was the best method according to both the TSS and kappa 

because, in terms of area, differences in overdetection (commission errors) relative to 

the other methods were not as pronounced as in the object-oriented assessment (3% 

difference in commission errors vs. 54% difference in overdetection rate between the 

NHRC_Y and NHR_Y methods); i.e. NHRC false positives were relatively small in size. 

Inversely, the LEMM, which had the lowest detection and overdetection in the object-

oriented assessment, obtained the highest sensitivity and commission. Cell-based 

measures are generally inappropriate for assessing the performance of object-based 
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methods. In this study they are useful for establishing comparison to previous methods 

(section 3.7.4). 

For LSBs on relatively flat terrain, basing mapping on contour datasets directly 

extracted from the preprocessed DTM may lead to higher accuracy than using NLR 

contours. Variable DTM preprocessing based on a classification of the test area into 

morphometric units (landform elements) may reduce preprocessing artifacts and 

facilitate NLR modelling. Excluding regions where no LSBs occur or post-LSB formation 

processes profoundly changed original subglacial topography may considerably reduce 

overdetection and consequently improve performance; we tested this (Fig. 3.11; Tables 

3.9, 3.10). The mask was drawn manually based on hillshaded terrain models; it 

encloses highly incised terrain, flats (glacial outwash and Holocene alluvium – 

Haugerud, 2009) and irregular surfaces (kame-kettle topography), as well as significantly 

modified LSBs adjacent to, or within, those areas. The performance index significantly 

rises for every method due to a decrease in overdetection, the difference being largest 

for the NHRC method, and the NHR_Y and NNR_X become the best- and worst-

performing methods by a larger margin, respectively (Tables 3.9, 3.10).  Importantly, a 

high degree of automation is possible for masking out areas where LSBs probably do 

not occur or will be too degraded (e.g., floodplains and highly incised terrain; e.g., 

Gallant and Dowling, 2003; Stout and Belmont, 2014), and this can be enhanced by the 

use of surficial geology data (e.g., areas covered by Holocene alluvium can be readily 

masked out).         

3.7.4. Comparison to previous methods 

A comparison to results of Saha et al. (2011), d’Oleire-Oltmanns et al. (2013) and 

Eisank et al. (2014) is discussed below. It is important to note that the same method will 

tend to perform differently in different terrains and that validation datasets of the same 

area prepared by different interpreters may be significantly different (subjectivity of MM). 

Saha et al. (2011) did not explain the criteria used to determine the “80 most 

closely matched drumlins that were clearly identified in both datasets [MM- and SAM-

footprints]” and did not include overdetection or cell-based measures. d’Oleire-Oltmanns 
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et al. (2013) estimated Saha et al.’s (2011) method detection rate to be ~88% (of 129 

MM-drumlins). Based on these figures and on the number of SAM-footprints (111), the 

overdetection rate (N-rate – detection rate) of Saha et al.’s (2011) method would be -2% 

(111 / 129 * 100 - 88). The low overdetection rate results from their SAM-footprints being 

 

Figure 3.11 Mask (dark grey) of regions where LSBs do not occur or are 
much degraded.  

Table 3.9 Overall performance index after the exclusion of regions where 
LSBs do not occur or are much degraded (Fig. 3.11) 

Method Performance index (%) Difference 

LEMM_X / Y 44 / 53  +14 / +14 

NNR_X / Y 32 / 34 +7 / +7 

TPI_X / Y 40 / 47 +14 / +14 

NHR_X / Y 52 / 62 +15 / +18 

NHRC_X / Y 41 / 47 +16 / +19 

Table 3.10 SAM-method performance after the exclusion of regions where 
LSBs do not occur or are much degraded (Fig. 3.11); numbers 
within brackets represent changes relative to values in Table 3.4 
(no mask)  

Method  Overdetection (%) TSS Kappa 

LEMM_Y 22 (-8) 0.49 (+0.1) 0.47 (+0.3) 

NNR_Y 55 (-14) 0.38 (+0.1) 0.45 (+0.2) 

TPI_Y 34 (-15) 0.45 (+0.1) 0.50 (+0.2) 

NHR_Y 27 (-12) 0.45 (+0.1) 0.50 (+0.2) 

NHRC_Y 56 (-37) 0.50 (+0.2) 0.52 (+0.3) 
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frequently very large, there being cases where one SAM-polygon indiscriminately covers 

more than five MM-footprints (their Fig. 8); counting relationships of 1 SAM-footprint to 

>1 MM-footprint as only one successful detection would reveal that Saha et al.’s (2011) 

method performed poorly. Additionally, as previously mentioned (section 3.5.7), d’Oleire-

Oltmanns et al. (2013) detection rate is different from the general detection rate used 

here; in that study, every MM-footprint intersected by a SAM-footprint is considered 

detected, whereas here a minimum spatial overlap of 10% (by a single SAM-footprint) 

was used. The “intersection rate” (to distinguish it from the general detection rate) is 

highest (93%) for the NHRC_X method.  

d’Oleire-Oltmanns et al. (2013) also used cell-based measures (Table 3.11) to 

assess performance. The NHRC_X method apparently outperforms their method (Table 

3.11). However, it needs to be noted that their method uses an unsupervised operational 

definition and that their MM criteria seems to differ from the one used here. From visual 

inspection of their figure 1, it seems that multiple LSBs were represented with a single 

footprint and that, in some cases, outlines were drawn above LSB edges.   

Table 3.11 Performance comparison between d’Oleire-Oltmanns et al. (2013) 
method and the NHR and NHRC methods; best-scoring method in 
each measure is also given; all values are percentages 

Method Sensitivity1  
Producer 
accuracy2  

Commission 
(overdetection)3 

Intersection 
rate4 

d’Oleire-Oltmanns et al. 58 61 39 88 

NHR_X 53 65 35 84 

NHRC_X 59 62 38 93 

Best score 64 (LEMM_X) 72 (NNR_Y) 28 (NNR_Y) 93 (NHRC_X) 

1 User accuracy; 2 percent of SAM-footprints total area which overlaps MM-footprints; 3 inverse of producer 
accuracy; 4 detection rate of d’Oleire-Oltmanns et al. (2013) (any partially overlapped MM-footprint 
is considered detected) 

Eisank et al. (2014) report a minimum miss rate of ~0.52 and an area fit index 

(Lucieer and Stein, 2002) always in excess of ~0.55 (their Figs 5 and 6). The miss rate is 

similar to the inverse of the general detection rate, ranging here from 0.35 (LEMM) to 

0.10 (NHRC). The area-weighted average area fit index for the NHRC_X method is 0.04. 

For both measures, lower values correspond to better performance.  
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The NCCM, besides performing relatively well, may have more potential for 

improvement than previous methods. This study supports that NLR is a suitable terrain 

parameter for the (semi-)automated mapping of LSBs (d’Oleire-Oltmanns et al., 2013; 

Eisank et al., 2014), but also that region-based segmentation is not a pre-requisite for 

success; in fact, as mentioned earlier, since LSBs are topographically complex and 

variable and currently are not well represented by a single terrain parameter(ization), 

using a region-based segmentation (delineation of internally homogeneous objects) for 

extracting LSBs as single objects is counterintuitive. Additionally, unlike previously used 

segmentation algorithms, contouring, besides relatively simple, is intrinsically multi-

scale; for example, satisfactory footprints from the NHRC_X method ranged in length 

from 341 m to 3958 m.  Regarding cost of implementation, whereas previous methods 

were based on very costly software (eCognition©), existent opensource GIS software is 

fully adequate for applying the NCCM.  

The type of operational definition used here is parsimonious: visual discovery of 

morphometric extremes followed by ruleset definition is a fast procedure (maybe one or 

two days of work for thousands of LSBs); and using case study-constrained measures 

improves performance (less false detections) relative to unsupervised definitions. Most 

of the LSB ruleset measures used here should be transferrable to other areas. 

Additionally, separate rulesets can be used for separately mapping LSBs of specific 

shapes or dimensional range, eventually improving overall performance. In terms of 

scale information for DTM preprocessing (e.g., scale of smoothing) and terrain attribute 

computation, while manual sampling can be slow relative to automated procedures (e.g., 

Drăguţ et al., 2010), it is not laborious and the latter may not be able to separate the 

signal of LSBs from the rest of the terrain (dependent on the geomorphology of the area: 

which other landforms occur along with LSBs and how frequent are they?). 

3.7.5. Methodology limitations  

Uncertainty in the validation dataset (MM-footprints) related to the subjectivity of 

visual interpretation and MM induces uncertainty in computed performance. Different 

interpreters may map a different number of LSBs and the same LSB differently. For 

better constraining method performance, methods can additionally be tested on 
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synthetic DTMs for which the exact number of LSBs in the area is known and where LSB 

topography is simplified. Hillier et al. (2014) and Eisank et al. (2014) (after Hillier and 

Smith, 2012) used DTMs with synthetic drumlins with this goal. The DTMs used in these 

studies were generated by manually mapping drumlin footprints, removing the 

corresponding drumlins from the original DTM, modelling new drumlin surfaces based on 

extracted data and placing them at random positions in the DTM without the original 

drumlins. Being rooted on the visual interpretation of real topography, these DTMs still 

are limited tools for the assessment of actual method performance (e.g., would different 

interpreters manually map and remove the same drumlins from the original DTM?). 

Eliminating subjectivity in the reference dataset would be best done using fully synthetic 

(simulated) DTMs or synthetic LSBs on real terrain that did not have LSBs (drumlins and 

mega-scale glacial lineations). Here, bias related to the potential incompleteness of the 

MM-footprint dataset is small and does not affect conclusions, because: 1) all SAM-

methods were evaluated with regard to the same reference data; 2) the MM-dataset was 

constructed through several iterations, towards the end of which changes in the total 

number of mapped LSBs was small. An indication of potential MM-dataset 

incompleteness is given by N-new (number of LSBs mapped by the SAM method but not 

with MM), which was largest for NHRC_X&Y (12, 8 more than NHR_Y), though this 

measure too is based on visual interpretation. Re-computing the general detection rate 

taking into account N-new (adding N-new to both the number of detected MM-footprints 

and the total number of MM-footprints) would raise detection by 1% for all methods but 

the LEMM (0%).  

As explained in section 3.5.2, elongate partial footprints of LSBs truncated 

transverse to their long axis at the test area border (n = 8) were included in the reference 

dataset. In order to assess differences in performance relative to whether those LSBs 

had not been included, Kappa and TSS were recomputed for the NHR_Y after deletion 

of all MM-footprints truncated at the border and of the SAM-footprints that would not 

have been mapped was it not for the presence of the test area border. Differences are 

minor: Kappa changes from 0.480 to 0.483 and TSS from to 0.443 to 0.439.   
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 Conclusion 

This study presents and compares two object-based methods for the semi-

automated extraction of positive-relief, longitudinal subglacial bedform (LSB) footprints 

from digital terrain models (DTMs). Tests are conducted on a 139.5 km2 area located in 

the Puget Lowland drumlin field, WA, USA. Method performance is evaluated against a 

manually mapped footprint dataset. The normalized closed contour method (NCCM) is 

based on (“passive”) contouring (raster to vector conversion) of a normalized local relief 

surface (dealing with LSBs on slopes) and the landform elements mask method (LEMM) 

on the classification of landform elements derived from the DTM. For both methods, 

identification of LSB segments was based on a supervised ruleset. The NCCM was 

separately applied to 4 different NLR models, two computed in moving windows and two 

hydrology-based. 

Departure of present-day topography from original LSB topography (regular 

outline and smooth texture) strongly limited the suitability of the original DTM for LSB 

automated mapping. DTM preprocessing with isotropic and LSB orientation-constrained 

smoothing (a novelty) drastically increased DTM suitability, showing that even terrains 

with a high degree of post-LSB formation modification are suitable for SAM. 

This study supports that NLR is a suitable terrain parameter for LSB automated 

mapping (d’Oleire-Oltmanns et al., 2013; Eisank et al., 2014), but also shows that 

multiresolution segmentation (Baatz and Schäpe, 2000), which all previous LSB SAM 

methods (Saha et al., 2011; d’Oleire-Oltmanns et al., 2013; Eisank et al., 2014) depend 

on, is not a pre-requisite for method success. A hydrology-based NLR (NHRC) 

combining a relief model derived from a multiple direction flow routing algorithm (Böhner 

and Selige, 2006) with a model from a single direction algorithm had the highest general 

detection rate (90%, better than equivalent measures in published methods), 

morphometric detection rate (56%), True Skill Statistic (0.48) and kappa (0.49). 

However, NHRC had also the highest overdetection (38% in terms of area). Based on an 

index combining the general detection rate with the morphometric detection rate, each 

weighted by the corresponding ratio of detection to overdetection, Böhner and Selige’s 

(2006) NLR model (NHR), LEMM and NHRC arise as the best, second-best and worst 
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methods, respectively. Detection and overdetection need to be analysed jointly, but 

neither Saha et al. (2011) nor d’Oleire-Oltmanns et al. (2013) present object-oriented 

overdetection figures. Future studies should also incorporate a priori probability (density 

of LSBs in the study area) in the performance assessment.    

The LEMM worked better than the NCCM where LSBs are closely spaced. The 

LEMM requires more user input and is more dependent on study area specificities, and 

thus is less transferrable, than the NCCM. The NCCM has more possibility for 

improvement than published methods. Previous methods were based on very costly 

software (eCognition®), whereas existent opensource software is fully adequate for the 

NCCM. Using a region-based segmentation (delineation of internally homogeneous 

objects) for extracting LSBs as single objects is conceptually counterintuitive because, 

currently, LSBs are not well-represented by a single terrain parameter(ization). 

Contouring, unlike multiresolution segmentation, is intrinsically multi-scale and thus does 

not require a priori information on the scale of the objects to be mapped. 

Reducing artifacts generated during DTM preprocessing and NLR modelling 

(such as by applying a spatially variable DTM preprocessing based on a classification of 

the terrain into land-form elements), further refining the LSB operational definition 

(mining for terrain parameters on which LSBs have a signature) and using contours 

directly derived from the preprocessed DTM for mapping LSBs on relatively flat terrain, 

may improve NCCM performance. Tests on fully synthetic DTMs would be useful in the 

future to better isolate sources of error and determine absolute method performance  

more exactly (no subjectivity in validation dataset).     
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Conclusions 

This thesis contributes to the testing and development of methods that can be 

used to produce a rich and robust LSB morphometric inventory which, in turn, facilitates 

our ability to resolve LSB genesis and to reconstruct paleo glacier dynamics and 

evolution. Focus was on the adequacy of previously used automated methods (GIS) for 

measuring LSB footprint orientation, length and longitudinal asymmetry (chapter 2), and 

the development of methodology for the semi-automated mapping (SAM) of LSB 

footprints from digital terrain models (DTMs) (chapter 3).     

LSB measurement methods 

Chapter 2 was motivated by the failure of previous LSB morphometric research 

to justify method appropriateness and by the realization that some previously used 

techniques (GIS) for measuring length and longitudinal asymmetry, such as the use of 

the longest straight line enclosed by LSB footprints to represent LSB orientation suitable 

to inferring formative flow direction, could be flawed. The results show that, while most of 

the previously used methods are appropriate for characterizing LSB samples in terms of 

central tendency (mean), some methods can yield large individual errors depending on 

LSB footprint general shape and outline complexity. The following is recommended: 

1) the use of elliptical length (from ellipse fitted to the area and perimeter of

footprints based on Euler’s approximation; Clark et al., 2009; Lamsters, 2012; 

Spagnolo et al., 2014; Lamster and Zelčs, 2014) should be discontinued;  

2) when analyzing morphometric data spatially, the longest straight line (LSL)

fitting footprints (Spagnolo et al., 2010, 2011; Maclachlan and Eyles, 2013) 

should not be used for deriving orientation;  
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3) data based on footprints’ standard deviational ellipse (SDE) (Lefever 1926; 

new method) should be preferred over data based on the LSL or on footprints’ 

minimum bounding rectangle (MBR) (Napieralski and Nalepa, 2011; Dowling et 

al., 2015), for which error magnitude is dependent on footprint shape.  

Re-analyzing previously characterized datasets using these 3 methods (LSL, 

SDE and MBR) would be useful for elucidating the degree of bias in their original 

morphometric data.   

 LSB mapping 

Two new methods for the SAM of LSBs from DTMs were compared (Chapter 3). 

Both methods can be classified as object-based methods though neither makes use of  

the more complex segmentation algorithms typically associated with object-based 

(image) analysis (Lucieer and Stein, 2005; Blaschke, 2010). For terrain segmentation, 

one method (normalized closed contour method – NCCM) uses contouring (raster to 

vector format conversion) of a normalized local relief model and the other (landform 

elements mask method – LEMM) is based on a classification of the original DTM into 

landform elements. The NCCM outperformed the LEMM and published methods, but 

suffered from high overdetection. DTM preprocessing using directional smoothing 

constrained by LSB orientation for subduing post-LSB formation terrain modification 

drastically increased DTM suitability for SAM. 

Automation is touted as the solution to the subjectivity of visual interpretation and 

MM, but that automated mapping methods allow for higher accuracy is not 

straightforward. While LSBs do seem to have “enough of” a topographic signature as to 

be suitable for SAM, problems, both conceptual and technical, persist and automatedly 

mapped footprints do not match the accuracy of MM-footprints. First, dealing with 

topographic changes post-dating LSB formation requires interpretation and decision at a 

level which automated methods have trouble reproducing. DTM preprocessing and the 

exclusion of areas where LSBs are likely to be particularly degraded lessen, but do not 

neglect, the issue; applying a spatially variable DTM preprocessing, such as depending 

on a morphometric classification of the test area (e.g., landform elements; e.g., 
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Jasiewicz and Stepinski, 2013), may lead to additional improvements relative to the 

preprocessing flow used in this study. Second, the source of inter-operator differences in 

the MM of LSBs probably extends beyond the domain of intrinsic subjectivity; the 

openness/restrictiveness of LSBs’ conceptual framework and the volatility of LSBs’ 

definitions (in relation to uncertain genesis and limited morphometric descriptions) 

probably condition those differences and are a problem for both manual and automated 

mapping. Additionally, LSB (particularly drumlin) morphometric complexity and variability 

dictates that any morphometric definition of LSB is necessarily broad, setting limits to the 

success of a single SAM method.  

Manual mapping still seems to be the only appropriate method to date that allows 

a sufficiently detailed (individual bedform) morphometric inventorying for the purpose of 

LSB formation hypothesis testing (e.g., the ice-keel groove-ploughing hypothesis 

prediction of a downflow decrease in bedform amplitude – Clark et al., 2003). For 

mapping individual LSB footprints (either all LSBs or subcategories), SAM likely will 

never reach the accuracy of MM. Nonetheless, with further method development, SAM 

will be able to replace MM in some inventories, such as when differences between 

individual bedforms are less relevant than the distribution of averages over wider spatial 

extents. The analysis of the spatial distribution of LSB elongation at the ice-stream scale 

is an example of a potential application. With further development, the NCCM has the 

potential to do this confidently. For the regional-scale mapping of properties irrespective 

of footprints (e.g., ridgeline orientation), raster-based analyses may be a better solution, 

particularly because processing of vector data is computationally more demanding.  

Local relief modeling (NCCM method) entailed the generation of artifacts and 

significant differences between various tested algorithms. A most obvious potential 

solution to this problem is subdividing the NCCM processing flow for separately mapping 

LSBs on relatively flat terrain and on slopes. On flat terrain, contours directly derived 

from the DTM (elevation relative to fixed datum) may outperform NLR contours. For 

LSBs on slopes, alternatives to NLR modelling for DTM detrending include subtracting a 

smooth (e.g., low degree polynomial) surface based on local elevation minima (referent 

to the original subglacial landscape) in the DTM from the DTM.              
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The current morphometric data and reference datasets used in evaluating LSB 

automated method performance are based on MM even though the magnitude of 

subjective differences in the MM of LSBs is not well understood (cf. Hillier et al., 2014). 

Advances in this regard require revisiting previously mapped areas and conducting tests 

using synthetic DTMs (with a predetermined number of LSBs and representing LSBs in 

their original condition) (Hillier and Smith, 2012; Hillier et al., 2014; Eisank et al., 2014). 

Assessing inter-operator MM differences in previous study areas requires using the 

same data sources, mapping scales and visual representations used in the 

corresponding studies, and should involve different research teams (differences in 

conceptualizations) and researchers with prior LSB mapping experience (e.g., Clark et 

al., 2009; Spagnolo et al., 2010, 2011, 2012; Stokes et al., 2013; Spagnolo et al., 2014; 

Lamsters and Zelčs, 2014; Dowling et al., 2015). On the other hand, synthetic DTMs are 

important because they allow determining the exact number, location and morphometry 

of the landforms they represent, and thus permit evaluating MM subjectivity in absolute 

terms (Eisank et al., 2014; Hillier et al., 2014). Such tests are important for defining 

operational mapping guidelines.  

Future studies on the development of automated LSB mapping methods should 

converge in terms of the measures used to assess performance. Also, assessment 

methodologies have been generous in their definition of success; as methods improve 

more realistic targets need to be set. The morphometric detection rate is incipient in this 

regard but can be turned into a more rigorous measure through the redefinition of 

applied, and addition of new, thresholds. Weighting this morphometric detection rate by 

the ratio of morphometric detection to overdetection, itself weighted by the a priori 

probability of LSBs in the study area, will allow a strict, goal-oriented assessment of 

performance.       

 Novelty of conducted research 

The research reported in this thesis is novel in geomorphology in that it develops 

and assesses morphometric methods rather than simply applying untested methods to 

new field areas. Prior to this thesis, the adequacy of LSB morphometric measurement 

methods had scarcely been addressed. The standard deviational ellipse (Lefever, 1926) 
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was used for the first time to quantify LSB morphometry and outperformed previously 

used methods. DTM preprocessing using anisotropic filtering constrained by LSB 

orientation has not been used before (not found in the reviewed literature) and was 

associated with a drastic improvement in DTM (terrain) suitability for SAM. The new LSB 

SAM methods tested in chapter 2 were devised based on "first principles” and diverge 

considerably from previous approaches, which were all based on multiresolution 

segmentation (Baatz and Schäpe, 2000). Also, whereas all previous (semi-)automated 

mapping methods were developed based on very expensive software (eCognition®), 

existent opensource software is fully adequate for applying both the NCCM and the 

LEMM. The SAM performance assessment was relatively elaborate when compared to 

previous LSB (semi-)automated mapping studies, highlighting inadequacies in previous 

performance assessment methodologies, and leading to recommendations for future 

studies (above).             

This thesis contributes to advances in the fields of glacial geomorphology and 

geomorphometry. More generally, conducted research is relevant for studies applying 

rotation-variant morphometrics (independently of the scientific field) and developing 

DTM-based automated mapping methodologies.     
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Appendix A. 
 
Puget Lowland drumlin field integrated terrain map  

 

Figure A1. Puget Lowland Drumlin Field integrated terrain map. Areas above and below 
present-day sea level are represented with a hillshaded terrain model and a color 
elevation rendering, respectively. 
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Appendix B.   
 
LSB manual mapping in the Puget Lowland drumlin field 

 

 

Figure B1. Manually mapped LSBs (black-fill polygons) (n = 1.6k) in central and 
southern Puget Lowland, WA, USA. Inner labels and lines are county names and 
boundaries. Mapping was conducted mostly over hillshaded terrain models, and contour 
maps, derived from a 1.8 m cell-size DTM 
(http://pugetsoundlidar.ess.washington.edu/About_ PSLC.htm). Puget Lobe limit (local 
Last Glacial Maximum) from Thorson, 1980.  

 

http://pugetsoundlidar.ess.washington.edu/About_%20PSLC.htm
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Appendix C.   
 
Field investigations on LSB composition in the Puget 
Lowland drumlin field – visited sites 

 

 

Figure C1. Areas visited during field work in the Puget Lowland, WA (quadrangles A-D).  
Puget Lobe limit (local Last Glacial Maximum) from Thorson, 1980.  
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Figure C2. Location of sedimentary exposures visited during field work (see Fig. C1 for 
location of quadrangles A-D). Traditional sedimentary descriptions were done in 30 of 
the 36 sites. Eighteen sites expose drumlin sediments; 16 sites potentially expose 
drumlin sediments; 4 or 5 sites are positioned in between or by drumlins; 2 or 3 sites 
appear to expose sediments stratigraphically lower than drumlins. Hillshaded terrain 
models were derived from a 1.8 m cell-size DTM 
(http://pugetsoundlidar.ess.washington.edu/About_ PSLC.htm).    

 

http://pugetsoundlidar.ess.washington.edu/About_%20PSLC.htm
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