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Abstract

In group activity recognition, the temporal dynamics of the whole activity can be inferred
based on the dynamics of the individual people representing the activity. We build a deep
model to capture these dynamics based on LSTM (long-short term memory) models. To
make use of these observations, we present a 2-stage deep temporal model for the group
activity recognition problem. In our model, a LSTM model is designed to represent action
dynamics of individual people in a sequence and another LSTM model is designed to ag-
gregate human-level information for whole activity understanding. We evaluate our model
over two datasets: the collective activity dataset and a new volleyball dataset. Experi-
mental results demonstrate that our proposed model improves group activity recognition

performance as compared to baseline methods.

Keywords: Group Activity Recognition; Recurrent Neural Network; Hierarchical Models
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Chapter 1

Introduction

What are the people in Figure 1.1 doing? This question can be answered at numerous levels
of detail — in this work, we focus on the group activity, a high-level answer such as “team
spiking acivity”. We develop a novel hierarchical deep model for group activity recognition.

Human activity recognition is a challenging computer vision problem, and, it has re-
ceived a lot of attention in the past. It is a challenging problem due to considerable variations
arising from the variability within action class, background clutter, high overlap between
different action classes, to name a few. Group activity recognition is relatively even more
challenging than person level activity recognition, and finds a lot of applications in the
context of video surveillance, sport analytics, video search and retrieval.

Popular approaches that address activity recognition use hand crafted feature represen-
tation including HOG, MBH both in a dense and sparse fashion [42] [30]. In the context of
group activity recognition, it is shown that representing a group activity using a hierarchi-
cal model yields better performance than flat representations [22]. Concretely, a semantic
representation that captures different levels of interaction (e.g. person-person interactions)
distinctly is likely to be more successful than a model that does not possess such seman-
tic structuring. However, since they rely on shallow hand crafted feature representation,
they are limited by their representational abilities to model a complex learning task. On
the other hand, deep representations overcame this limitation and yielded state of the art
results in several computer vision benchmarks [35] [15] [19].

A key cue for group activity recognition is the spatio-temporal relations among the
people in the scene. Determining where individual people are in a scene, analyzing their
image appearance, and aggregating these features and their relations can discern which
group activity is present. A volume of research has explored models for this type of reason-
ing [4, 23, 29, 2]. However, these approaches have focused on probabilistic or discriminative
models built upon hand-crafted features. Since they rely on shallow hand crafted feature
representations, they are limited by their representational abilities to model a complex

learning task.
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Figure 1.1: Group activity recognition via a hierarchical model. Each person in a scene
is modeled using a temporal model that captures his/her dynamics, these models are inte-
grated into a higher-level model that captures scene-level activity.

A naive approach to group activity recognition with a deep model would be to simply
treat an image as an holistic input. One could train a model to classify this image according
to the group activity taking place. However, it isn’t clear if this will work given the redun-
dancy in the training data: with a dataset of volleyball videos, frame will be dominated
by features of volleyball courts. The differences between the different classes of group ac-
tivities are about spatio-temporal relations between people, beyond just global appearance.
Forcing a deep model to learn invariance to translation, to focus on the relations between
people presents a significant challenge to the learning algorithm. Similar challenges exist in
the object recognition literature, and research often focuses on designing pooling operators
for deep networks (e.g. [39]) that enable the network to learn effective classifiers.

Group activity recognition presents a similar challenge — appropriate networks need
to be designed that allow the learning algorithm to focus on differentiating higher-level
classes of activities. Hence, we develop a novel hierarchical deep spatio-temporal model
that reasons over individual people. Given a set of detected and tracked people, we run

temporal deep networks (LSTMs) to analyze each individual person. These LSTMs are



aggregated over the people in a scene into a higher level deep temporal model. This allows
the deep model to learn the relations between the people (and their appearances) that
contribute to recognizing a particular group activity.

The main contribution of this work is the proposal of a novel deep architecture that
models group activities in a principled structured spatio-temporal framework. In this work,
we assume that we have a single group activity happening in a given video. Our 2-stage
approach models individual person activities in its first stage, and then combines person
level information to represent group activities. The model’s temporal representation is
based on the long short-term memory (LSTM): recurrent neural networks such as these
have recently demonstrated successful results in sequential tasks such as image captioning
[9] and speech recognition [10]. Through the model structure, we aim at constructing a
representation that leverages the discriminative information in the hierarchical structure
between individual person actions and group activities. The model can be used in general
group activity applications such as video surveillance, sport analytics, video search and
retrieval.

To cater the needs of our problem, we also propose a new volleyball dataset that offers
person detections, and both the person action label, as well as the group activity label.
The camera view of the selected sports videos allows us to track the players in the scene.
Experimentally, the model is effective in recognizing the overall team activity based on

recognizing and integrating player actions.



Chapter 2

Related Work

Human activity recognition is an active area of research, with many existing algorithms. One
can refer to the surveys [43], and [28] for exploring the vast literature in activity recognition.
Here, we will focus on the group activity recognition problem and recent related advances

in deep learning.

2.1 Group Activity Recognition

Group activity recognition has attracted a large body of work recently. Most previous work
has used hand-crafted features fed to structured models that represent information between
individuals in space and/or time domains.

Lan et al. [24] proposed an adaptive latent structure learning that represents hierarchical
relationships ranging from lower person-level information to higher group-level interactions.

Lan et al. [22] and Ramanathan et al. [29] introduced the idea of social roles, where
the expected behaviour of an individual person in the context of group, is exploited in fully
supervised and weakly supervised frameworks respectively.

In Lan et al. [22], the model maps the individual features to group activity by con-
structing a hierarchical map consisting of individual action, role based unary components,
through pairwise roles, through scene level group activities. The interactions and unary
roles/activities are represented using an undirected graphical model. The parameters of
this model are learnt using structured SVM formulation that operates on max margin
framework, and operates under completely supervised settings. This model is shown in

Figure 2.1.
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Figure 2.1: (©2012 IEEE. Overview of Lan et al. [22] social roles model

Figure 2.2: ©2013 IEEE. Overview of Ramanathan et al. [29] social roles model



In Ramanathan et al. [29], CRF based social role model is deployed under weakly
supervised setting. To learn model parameters and role labels, a joint variational inference
procedure is adapted. HOG3D [17], spatio-temporal feature [42], object interaction feature
[25], and social role feature [46] are used as unary component representations. A subsequent
layer consisting of pairwise spatio-temporal interaction features is used to refine the noisy
unary component features. Finally, variational inferencing is used to learn the unknown

role labels and model parameters. This model is shown in Figure 2.2.

Collective Activity (C)
“gathering”

Atomic Activities (A)
“facing-right”
“walking”

Interaction (I)
“approaching”

Tracklet(T)

Choi and Savarese [3] have unified tracking multiple people, recognizing individual ac-
tions, interactions and collective activities in a joint framework. The model is based on the
premise that strong correlation exists between an individual’s activity, and the activities of
the other nearby people. Following this intuition, they come up with a hierarchical structure
of activity types that maps the individual activity to overall group activity. In this process,
they simultaneously track atomic activities, interactions and overall group activities. The
parameters of this model (and the inferencing) are learnt by combining belief propogation
with branch/bound algorithm. Figure 2.3 summarizes this model.

Choi et al. [5] adopted a random forest structure to sample discriminative spatio-
temporal regions from input video that were fed to 3D Markov random field to localize
collective activities in a scene. Shu et al. [33] detect group activities from aerial video using
an AND-OR graph formalism. The above-mentioned methods use shallow hand crafted

features, and typically adapt a linear model that suffers from representational limitations.
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Figure 2.4: Overview of Deng et al. [7] deep structured model

In Deng et al. [7] a similar framework is used for group activity recognition, where a neu-
ral network-based hierarchical graphical model refines the person action labels, and learns
to predict the group activity simultaneously. In this model, factor neurons are employed,
that perform the message passing operation to learn the relationship between different as-
pects of data such as pose, action and scene. The model consists of individual pose/action
unary components, in addition to an overall scene based unary component. The unary
components are represented as class probabilities obtained by passing the input (individ-
ual person / overall scene appropriately) to alexnet. This is further refined by a couple
of bifactor layers that help in refining information obtained from unary component. The
final model comprises of blocks of unary component layers and bifactor layers. A schematic

representation of this model is shown in Figure 2.4.

2.2 Sport Video Analysis

Several previous work have extended group activity recognition to team activity recognition

in sport footage.



Siddiquie et al. [34] proposed sparse multiple kernel learning to select features incorpo-
rated in spatio-temporal pyramid. In this work, quantized hand crafted features are used

for pyramid kernel based classification.
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Figure 2.5: ©2011 IEEE. Overview of [26]

Morariu et al. [26] track players, infer part locations, and reason about temporal struc-
ture in 1-on-1 basketball games. In this method, trajectories are first extracted to generate
video observations, which are then used to construct event hypothesis. Finally, an event
label is assigned to a test video if its observations correlate strongest to the hypothesis
corresponding to the label. The model is shown in 2.5.

Swears et al. [38] used Granger Causality statistic to automatically constrain the tem-
poral links of a Dynamic Bayesian Network (DBN) for handball videos. Direkoglu and
O’Connor [8] solved a particular Poisson equation to generate a holistic player location
representation. Kwak et al. [21] optimize based on a rule-based depiction of interactions

between people.

2.3 Deep Learning

Deep Convolutional Neural Networks (CNNs) have shown successful performance mainly
due to unifying feature and classifier learning and the availability of large labeled datasets.
Successes have been demonstrated on a variety of computer vision tasks including image
classification [19, 36] and action recognition [35, 15].

More flexible recurrent neural network (RNN) based models are used for handling vari-
able length space-time inputs. Specifically, LSTM [12] models are popular among RNN
models due to the tractable learning framework that they offer when it comes to deep

representations. These LSTM models have been applied in a variety of tasks [9, 10, 27, 41].
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Figure 2.6: ©2015 IEEE. Overview of Video captioning network [9].

For instance, in Donahue et al. [9], the so-called Long term Recurrent Convolutional
network formed by stacking LSTM on top of pre-trained CNNs, is proposed for handling
sequential tasks such as activity recognition, image description, and video description. In
this work, they showed that it is possible to jointly train LSTMs along with convnets and
acheive comparable results to the state of the art time varying tasks. For video captioning,
they first construct a semantic representation of the video using maximum aposteriori esti-
mate of a CRF which is then used to construct a natural sentence using LSTMs, as against
the statistical machine translation used in Koehn et al. [18] for constructing natural sen-

tences. A schematic view of this model is shown in Figure 2.6.
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Figure 2.7: (©2014 IEEE. Overview of visual-linguistic alignment stage in karpathy et al.
[14]

In Karpathy et al. [14], structured objectives are used to align CNNs over image regions
and bi-directional RNNs over sentences and a deep multi-modal RNN architecture is used
for generating image description using the deduced alignments. In the first stage, words
and image regions are embedded onto an alignment space. Image regions are represented by
RCNN embeddings, and words are represented using bi-directional recurrent neural network
[31] embeddings. Figure 2.7 illustrates the first stage of this model. In the second stage,
using the image regions and textual snippets, or full image and sentence descriptions, a
generative model based on RNN is constructed, that outputs probability map of the next
word.

In this work, we aim at building a hierarchical structured model that incorporates a deep
LSTM framework to recognize individual actions and group activities. Previous work in the
area of deep structured learning include Tompson et al. [40] for pose estimation, Zheng et
al. [45] and Schwing et al. [32] for semantic image segmentation. In Deng et al. [7] a similar
framework is used for group activity recognition, where a neural network-based hierarchical
graphical model refines the person action labels, and learns to predict the group activity

simultaneously. While these methods use neural network-based graphical representations, in

10



our current approach, we leverage LSTM-based temporal modelling to learn discriminative
information from time varying sports activity data. Yueng et al. [44] introduced a new
dataset that contains dense multiple labels per frame for underlying action, and a novel

Multi-LSTM is used to model the temporal relations between labels present in the dataset.

2.4 Datasets

Popular datasets for activity recognition include the Sports-1M dataset [14], UCF 101
database [37], and the HMDB movie database [20]. These datasets started to shift the
focus to unconstrained Internet videos that contain more intra-class variation, compared to
a constrained dataset. While these datasets continue to focus on individual human actions,
in our work, we focus on recognizing more complex group activities in sport videos. Choi
et al. [4] introduced the Collective Activity Dataset consisting of real world pedestrian se-
quences where the task is to find the high level group activities. In this work, we experiment
with this dataset, but also introduce a new dataset for group activity recognition in sport
footage which is annotated with player pose, location, and group activities to encourage

similar research in the sport domain.
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Chapter 3
Proposed Approach

Our goal in this work is to recognize activities performed by a group of people in a video
sequence. The input to our method is a set of tracklets of the people in a scene. The
group of people in the scene could range from players in a sports video to pedestrians in a
surveillance video. Generally speaking, there are three elements that can be considered to

determine what a group of people is doing:

e Person-level actions collectively define a group activity. Person action recognition

is a first step toward recognizing group activities.

e Temporal dynamics of a person’s action is higher-order information that can
serve as a strong signal for group activity. Knowing how each person’s action is

changing over time can be used to infer the group’s activity.

e Temporal evolution of group activity represents how a group’s activity is evolving
over time. For example, in a volleyball game a team may move from defence phase to

pass and then attack.

Many classic approaches to the group activity recognition problem have modeled these
elements in a form of structured prediction based on hand crafted features [42, 30, 24, 22, 29].
Inspired by the success of deep learning based solutions, in this work, a novel hierarchical
deep learning based model is proposed that is potentially capable of learning low-level image
features, person-level actions, their spatio-temporal relations, and temporal group dynamics
in a unified end-to-end framework.

Given the sequential nature of group activity analysis, our proposed model is based on
a Recurrent Neural Network (RNN) architecture. RNNs consist of non-linear units with
internal states that can learn dynamic temporal behavior from a sequential input with
arbitrary length. Therefore, they overcome the limitation of CNNs that expect constant
length input. This makes them widely applicable to video analysis tasks such as activity

recognition.

12
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Figure 3.1: (©2015 IEEE. Schematic representation of an LSTM (Figure borrowed from
Donahue et al. [9]

Our model is inspired by the success of hierarchical models. Here, we aim to mimic a
similar intuition using recurrent networks. We propose a deep model by stacking several
layers of RNN-type structures illustrated in Figure 3.1 to model a large range of low-level
to high-level dynamics defined on top of people and entire groups. We describe the use of

these RNN structures for individual and group activity recognition next.

3.1 Temporal Model of Individual Action

Given tracklets of each person in a scene, we use long short-term memory (LSTM) models
to represent temporally the action of each individual person. Such temporal information is
complementary to spatial features and is critical for performance. LSTMSs, originally pro-
posed by Hochreiter and Schmidhuber [12], have been used successfully for many sequential
problems in computer vision. Each LSTM unit consists of several cells with memory that
stores information for a short temporal interval. The memory content of a LSTM makes it
suitable for modeling complex temporal relationships that may span a long range.

The content of the memory cell is regulated by several gating units that control the flow
of information in and out of the cells. The control they offer also helps in avoiding spurious
gradient updates that can typically happen in training RNNs when the length of a temporal
input is large. This property enables us to stack a large number of such layers in order to
learn complex dynamics present in the input in different ranges.

We use a deep Convolutional Neural Network (CNN) to extract features from the bound-
ing box around the person in each time step on a person trajectory. The output of the CNN,
represented by x¢, can be considered as a complex image-based feature describing the spa-

tial region around a person. Assuming x; as the input of an LSTM cell at time ¢, the cell

13
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Here, o stands for a sigmoid function, and ¢ stands for the tanh function. z; is the
input, ks € RY is the hidden state with N hidden units, ¢; € RY is the memory cell,
i € RN, f, € RN, 0, € RN, and, ¢, € R" are input gate, forget gate, output gate, and
input modulation gate at time ¢ respectively. ® represents element-wise multiplication.

When modeling individual actions, the hidden state h; could be used to model the action
a person is performing at time ¢. Note that the cell output is evolving over time based on
the past memory content. Due to the deployment of gates on the information flow, the
hidden state will be formed based on a short-range memory of the person’s past behaviour.
Therefore, we can simply pass the output of the LSTM cell at each time to a softmax
classification layer! to predict individual person-level action for each tracklet.

The LSTM layer on top of person trajectories forms the first stage of our hierarchical
model. This stage is designed to model person-level actions and their temporal evo-
lution. Our training proceeds in a stage-wise fashion, first training to predict person level
actions, and then pasing the hidden states of the LSTM layer to the second stage for group

activity recognition, as discussed in the next section.

3.2 Hierarchical Model for Group Activity Recognition

At each time step, the memory content of the first LSTM layer contains discriminative
information describing the subject’s action as well as past changes in his action. If the
memory content is correctly collected over all people in the scene, it can be used to describe
the group activity in the whole scene.

Moreover, it can also be observed that direct image-based features extracted from the
spatial domain around a person carries a discriminative signal for the ongoing activity.
Therefore, a deep CNN model is used to extract complex features for each person in addition
to the temporal features captured by the first LSTM layer.

At this moment, the concatenation of the CNN features and the LSTM layer represent

spatio-temporal features for a person. Various pooling strategies can be used to aggregate

"More precisely, a fully connected layer fed to softmax loss layer.

14
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Figure 3.2: Our two-stage model for a volleyball match. Given tracklets of K-players, we
feed each tracklet in a CNN, followed by a person LSTM layer to represent each player’s
action. We then pool over all people’s spatio-temporal features in the scene. The output of
the pooling layer is feed to the second LSTM network to identify the whole teams activity.

these features over all people in the scene at each time step. The output of the pooling layer
forms our representation for the group activity. The second LSTM network, working on top
of the spatio-temporal representation, is used to directly model the temporal dynamics
of group activity. The LSTM layer of the second network is directly connected to a
classification layer in order to detect group activity classes in a video sequence.

Mathematically, the pooling layer can be expressed as the following:

Py, = 41 ® hyg, (3.7)
Zt = Ptl < Pt2 L O Ptk (38)

In this equation, h;; corresponds to the first stage LSTM output, and xy; corresponds
to the AlexNet fc7 feature, both obtained for the k' person at time t. We concatenate
these two features (represented by @) to obtain the spatio-temporal feature representation
P, for k™ person. We then construct the frame level feature representation Z; at time t
by applying a max pooling operation (represented by ¢) over the features of all the people.
Finally, we feed the frame level representation to our second LSTM stage that operates
similar to the person level LSTMs that we described in the previous section, and learn the
group level dynamics. Z;, passed through a fully connected layer, is given to the input of
the second-stage LSTM layer. The hidden state of the LSTM layer represented by h{"*?

hgroup

carries temporal information for the whole group dynamics. is fed to a softmax

classification layer to predict group activities.

15



3.3 Implementation Details

We trained our model in two steps. In the first step, the person-level CNN and the first
LSTM layer are trained in an end-to-end fashion using a set of training data consisting of
person tracklets annotated with action labels. We implement our model using Caffe [13].
Similar to other approaches [9, 7, 41], we initialize our CNN model with the pre-trained
AlexNet network and we fine-tune the whole network for the first LSTM layer. 9 timesteps
and 3000 hidden nodes are used for the first LSTM layer and a softmax layer is deployed
for the classification layer in this stage.

After training the first LSTM layer, we concatenate the fc7 layer of AlexNet and the
LSTM layer for every person and pool over all people in a scene. The pooled features, which
correspond to frame level features, are fed to the second LSTM network. This network
consists of a 3000-node fully connected layer followed by a 9-timestep 500-node LSTM layer
which is passed to a softmax layer trained to recognize group activity labels.

For training all our models (that include both the baseline models and both the stages
of the two-stage model), we follow the same training protocol. We use a fixed learning rate
of 0.00001 and a momentum of 0.9. For tracking subjects in a scene, we used the tracker
by Danelljan et al. [6], implemented in the Dlib library [16].

16



Chapter 4
Experiments

In this section, we evaluate our model by comparing our results with several baselines and
previously published works on the Collective Activity Dataset [4] and our new volleyball
dataset. First, we describe our baseline models. Then, we present our results on the

Collective Activity Dataset followed by experiments on the volleyball dataset.

4.1 Baselines

The following five baselines are considered in all our experiments:

1. Image Classification: This baseline is the basic AlexNet model fine-tuned for

group activity recognition in a single frame.

2. Person Classification: In this baseline, the AlexNet CNN model is deployed on each
person, fc7 is pooled over all people, and is fed to a softmax classifier to recognize

group activities in each single frame.

3. Fine-tuned Person Classification: This baseline is similar to the previous baseline
with one distinction. The AlexNet model on each player is fine-tuned to recognize
person-level actions. Then, fc7 is pooled over all players to recognize group activities
in a scene without any fine-tuning of the AlexNet model. The rational behind this
baseline is to examine a scenario where person-level action annotations as well as
group activity annotations are used in a deep learning model that does not model
the temporal aspect of group activities. This is very similar to our two-stage model

without the temporal modeling.

4. Temporal Model with Image Features: This baseline which is the temporal
extension of the first baseline, examines the idea of feeding image level features directly
to a LSTM model to recognize group activities. In this baseline, AlexNet model is
deployed on the whole image, and, fc7 is fed to a LSTM model. This baseline can be

considered as reimplementation of Donahue et al’s work [9] for activity recognition.
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5. Temporal Model with Person Features: This baseline which is the temporal
extension of the second baseline, feeds fc7 pooled over all people to a LSTM model to

recognize group activities.

4.2 Experiments on the Collective Activity Dataset

The Collective Activity Dataset [4] has been widely used for evaluating group activity
recognition approaches in the computer vision literature [2, 7, 1]. This dataset consists of
44 videos, eight person-level pose labels (not in use), five person level action labels, and
five group-level activities. A scene is simply assigned with what the majority of people are
doing. We follow the train/test split provided by [11]. In this section, we present our results

on this dataset.

’Method ‘Accuracy‘
B1l-Image Classification 63.0
B2-Person Classification 61.8
B3-Fine-tuned Person Classification 66.3

B4-Temporal Model with Image Features | 64.2
B5-Temporal Model with Person Features| 62.2
Our Two-stage Hierarchical Model 81.5

Table 4.1: Comparison of our method with baseline methods on the Collective Activity
Dataset.

Method Accuracy
Contextual Model [24] 79.1
Deep Structured Model [7] 80.6
Our Two-stage Hierarchical Model| 81.5
Cardinality kernel [11] 83.4

Table 4.2: Comparison of our method with previously published works on the collective
activity dataset.

In Table 4.1, the classification results of our proposed architectures is compared with
the baselines. As shown in the table, our two-stage LSTM model significantly outperforms
the baseline models. An interesting comparison can be made between temporal and frame-
based counterparts including B1 vs. B4, B2 vs. B5 and B3 vs our two-sage model. It is
interesting to observe that adding temporal information using LSTM model improves the
performance of these baselines.

Table 4.2 contains the comparison between our model and other top performing group

activity recognition models. As shown in the table, our model fares better than most of the
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previous methods, and is less than 2% behind the state of the art cardinality kernel [11]
based approach, that assumes that group activity representation specific to the dataset (i.e.,

group activity is defined as what majority are performing in the scene).

4.2.1 Discussion

The confusion matrix obtained for collective activity dataset using our two-stage model in
shown in Figure 4.1. From the figure, we could observe that the model performs almost
perfectly in case of talking and queuing class, and gets confused between crossing, waiting,
and walking. We observe such a behaviour perhaps due to lack of consideration of spatial
relations between people in the group, which is shown to boost the performance of previous
group activity recognition methods. e.g. crossing involves walking action, but is confined in
a path, which people perform in orderly fashion. Therefore, our model that is designed only
to learn the dynamic properties of group activities often gets confused with the walking
action.

It is clear that our two-stage model has robust performance with compare to baselines.
From one side, the temporal information helps much as refereed before. On the other side,
finding and describing the elements of a video (e.g. persons) seems reveal clearer information

than just utilizing frame level.

crossing

walting

queuing

walking

0.00 0.55

talking

) crossing  waiting queuing  walking talking

Figure 4.1: Confusion matrix for the Collective Activity Dataset obtained using
our two-stage model.

4.3 Experiments on the Volleyball Dataset

In order to evaluate the performance of our model for team activity recognition on sport
footage, we collected a new dataset based on publicly available YouTube volleyball videos.

We annotated 1525 frames collected from 15 videos with seven player action labels, and
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six team activity labels. The list of action and activity labels and related statistics are
tabulated in Tables 4.3 and 4.4.

Action Average No. of
Classes |Instance per Frame
Waiting 0.30
Setting 0.33
Digging 0.57
Falling 0.21
Spiking 0.28
Group No. of Blocking 0.58
Activity Class|Instances Others 9.22
R¥ght set' 229 Table 4.4: Statistics of the action la-
Right spike 187 bels in the volleyball dataset
Right pass 267 ’
Left pass 304
Left spike 246
Left set 223

Table 4.3: Statistics of the group ac-
tivity labels in the volleyball dataset.

From the tables, we observe that the group activity labels are relatively more balanced,
compared to the player action labels. This feature follows from the fact that we have more
people often present in static actions like standing pose compared to dynamic actions (set-
ting, spiking, etc.). Therefore, our dataset presents a challenging team activity recognition
task, where we have the interesting actions that solely determine the group activity oc-
cur rarely in our dataset. The dataset will be made publicly available to facilitate direct
comparisons.

In Table 4.5, the classification performance of our proposed model is compared against
the baselines. Similar to the performance in the collective activity dataset, our two-stage
LSTM model outperforms the baseline models. However, compared to the baselines, perfor-
mance gain using our model is quite modest unlike in the case of collective activity dataset.
This follows directly from the fact that in general, we can infer group activity in volleyball by
using just a few frames. Therefore, in case of volleyball dataset, our baseline B1 is closer to
the actual model’s performance, compared to the collective activity dataset. Moreover, ex-
plicitly modeling people is necessary for obtaining better performance in this dataset, since
the background is rapidly changing due to fast moving camera, and therefore it corrupts
the temporal dynamics of the foreground. This could be verified from the performance of
our baseline model B4, which is a temporal model, that does not consider people explicitly,
shows inferior performance compared to the baseline B1, which is a non-temporal image

classification style model. On the other hand, baseline model B5, which is a temporal model
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that explicitly considers people performs comparably to the image classification baseline,

in spite of the problems that arise due to tracking and motion artifacts.

Method ‘Accuracy‘
B1l-Image Classification 46.7
B2-Person Classification 33.1
B3-Fine-tuned Person Classification 35.2

B4-Temporal Model with Image Features | 37.4
B5-Temporal Model with Person Features| 45.9
Our Two-stage Hierarchical Model 51.1

Table 4.5: Comparison of the team activity recognition performance of baselines against
our model evaluated on the volleyball dataset.

Analysis

Iset

rset

rspike

Ispike

Ipass

rpass

Iset rset rspike  Ispike Ipass rpass

Figure 4.2: Confusion matrix for the volleyball dataset obtained using our two-stage hier-
archical model.

set

spike

pass

set spike pass

Figure 4.3: Confusion matrix for the volleyball dataset obtained using our two-stage hier-
archical model without team considerations.

21



Figure 4.2 shows the confusion matrix obtained for the volleyball dataset using our two-
stage model. From the confusion matrix, we observe that our model generates consistent
high level action labels. Nevertheless, our model has some confusion between set and pass
activities.as these activities typically may look similar. Further, it is evident from better
numbers obtained with no team considerations as shown in confusion matrix in Figure 4.3.
It means that our model gets confused on the side that is performing the action, and makes
some mistakes as a result of it. Some examples of classification using our model is shown

in Figure 4.4.
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v

Figure 4.4: Visualizations of the generated scene labels using our model. Green denotes
correct classifications, red denotes incorrect. The incorrect ones correspond to the confusion
between different actions in ambiguous cases (h and j examples), or in the left and right
distinction (i example).
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Chapter 5

Conclusion

In this work, we presented a novel deep structured architecture to deal with the group
activity recognition problem. Through a two-stage process, we learn spatio-temporal repre-
sentation of people actions and combine the representation of individual people to recognize
the whole activity. We also created a new volleyball dataset to train and test our model, and
also evaluated our model on the Collective Activity Dataset. Results show that our archi-
tecture can improve upon baseline methods lacking hierarchical consideration of individual

and group activities using deep learning.

5.1 Limitations and Future Work

In this model, we considered a very rudimentary pooling techniques as we focused on the
learning architecture. Specifically, these pooling operators limit the performance of the
overall model. Therefore, we aim to incorporate other pooling operation that have limited
loss of information and thereby improving the overall performance.

Yet another interesting direction is to apply a joint training approach where we train
the entire model together under weakly supervised setting. This is a significant direction of
research as it reduces the cost incurred due to human annotations substantially. We would
also conduct a detailed analysis of the current model as to examine the role of each LSTM
layer in order to learn more interesting properties.

A more sophisticated approach might involve incorporating ideas like [29] in deep learn-
ing framework so as to learn interesting roles and higher level activity simultaneously under
deep weakly supervised settings, and apply it to tasks that include group activity recogni-

tion, event recognition etc.
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