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Abstract

Laser-cooled ions held in a linear Paul trap with strong transverse confinement organize
into a one-dimensional (1–D) linear crystal. If the transverse confinement is relaxed, the
linear ion crystal undergoes a continuous, structural phase transition to a 2–D zigzag con-
figuration. We study the dynamics near the critical point of the linear-zigzag transition. In
the first part of this thesis, we study the spontaneous nucleation and dynamics of topolog-
ical kink defects, formed as a result of a rapid quench across the linear-zigzag transition.
The experimental results are compared to the Kibble-Zurek mechanism, which provides
an intuitive model of defect formation and predicts a power-law scaling for the number of
defects formed as a function of transition quench rate. The second part of this thesis is
focused on one of the key requirements for investigations of the near-transition dynamics in
the quantum regime. To achieve an efficient ground state cooling of the zigzag vibrational
mode, we demonstrate 3–D polarization-gradient cooling of strings of 1–4 trapped ions as
an intermediate step between Doppler and sideband cooling, and study the polarization-
gradient cooling rate and cooling limit as a function of the cooling beam intensity in and
near the Lamb-Dicke regime. The results of this thesis pave the way towards our future
experiments aimed at assessing the coherence time of a zigzag superposition state through
measurements of tunneling oscillations.

Keywords: Ion trap, Linear–zigzag phase transition, Polarization-gradient cooling, Kibble–
Zurek mechanism
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Chapter 1

Introduction

The first observation of a crystal of trapped charged particles was reported in 1959 by
Wuerker et al. [10]. Using Paul traps, they demonstrated ordered configurations of alu-
minium micro–particles cooled via buffer gas. Repeated melting–crystallization events were
also obtained by variation of the confining potential and the cooling force. Despite this
demonstration of an easily controlled order-disorder transition, as experiments for trapping
atomic ions developed in sophistication, the research was mainly focused on utilizing sin-
gle trapped ions for high resolution spectroscopy and frequency standards [11]. It took a
number of years before the applicability of ion-trapping experiments to exploring "few-body
phase transitions" was realized.

Indeed, it was the motivation to improve the high-resolution spectroscopy of trapped
ions that led Wineland and Dehmelt [12], and Hänsch and Schawlow [13] to come up with
schemes for laser cooling in 1975. In 1978, laser cooling of trapped ions was successfully
implemented for an ensemble of trapped ions [14, 15]. Within two years, Neuhauser et
al. had demonstrated the localization of single cooled trapped ions [16]. Finally, in 1987
the first observation of the crystallization of laser-cooled, trapped ions into an ordered
structure was shown by the group at the Max Planck Institute in Germany [17], and the
NIST group in the USA [18]. The NIST group was interested in probing the motional
spectroscopy of this pseudo-molecule [19,20], which led to stimulated Raman transitions [20]
and sideband cooling [21, 22]. These techniques, which had ready application to single-ion
atomic clocks [23], were ultimately adapted to quantum information applications [20, 24].
The Max-Planck group was interested in the system as a condensed matter analog for
studying mesoscopic phase transitions, and they made early studies of the order–disorder
and then structural phase transitions [25–27]. The achievements of these two pioneer groups
were widely used afterwards.

Since the first experimental realizations of Coulomb crystals through laser cooling of
trapped ions [17,18], there has been growing experimental [25,28–36] and theoretical [37–49]
interest in studying the structural and dynamic properties of various ion crystal configura-
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tions in different trap setups. Many of the theoretical studies have used molecular dynamics
simulation to bridge between pure theory and real experiments and to make direct com-
parisons to experiment. In fact there was already theoretical interest predating the first
experiments [50], and perhaps one should say that the history of the subject goes all the
way back to the first theoretical investigations by Wigner of crystals of electrons [51].

This thesis is focused on the specific case of ion crystals in a linear Paul trap. The equi-
librium crystal structure of the trapped ions in a linear Paul trap with strong transverse
confinement is a 1-D linear configuration [52]. The next structure encountered when the
transverse confinement is reduced is a 2-D zigzag structure [49]. The linear-zigzag (L-Z)
structural phase transition is categorized as a second-order phase transition in thermody-
namics limit [53], and has the potential to be characterized as a classical phase transition,
described by the Landau model [54], or a quantum phase transition, belonging to the uni-
versality class of a one-dimensional transverse field Ising model [55, 56]. The interesting
properties of this transition along with the high controllability existing in ion-trapping sys-
tems has motivated a number of intriguing proposals to explore different aspects of the
transition in both classical and quantum regimes in recent years [54,57–63].

A number of these works, prompted by the intrinsic non-linearity of the L-Z transition,
are focused on exploring both static and dynamic effects in non-linear physics (see [64] for
a review). One of the main non-linear effects that has attracted significant attention is the
nucleation of topological kink-defects. The dynamics involved are essentially classical and
kinks can be formed as a result of a fast quench across this second-order phase transition.
At least two applications have been proposed for these kinks including a test of the Kibble-
Zurek mechanism (KZM) of defect nucleation (see below) [61], and the use of the internal
modes of the kink to store and process quantum information [59].

The first part of this thesis is focused on exploring dynamics near the critical point of
the L-Z transition in classical regime. In particular, this includes the nucleation of kink-
defects and a test of the KZM. The KZM was originally proposed by Kibble in 1976 [65] as
a theory to describe the formation of topological structures (such as cosmological strings)
in the early universe. He proposed that as the universe cooled, the cosmological symmetries
were broken and the universe was divided into independent domains, topological structures
could have subsequently been formed on the boundary of domains with different symmetries.
In 1985, Zurek [66] brought up the analogy between cosmic strings and vortex lines in a
superfluid, and suggested an experiment in liquid Helium to verify the key elements of the
Kibble theory. He reformulated Kibble’s theory for the superfluid system and showed that
the density of the formed defects is related to the quench rate by a power-law dependence.
Nowadays, these two proposals are merged into the universal Kibble-Zurek mechanism
describing the formation of defects across any second-order phase transition and predicting
the same scaling behavior for all systems fitting within the same universality class. Since
Zurek’s first proposal, there have been many theoretical proposals for testing the KZM in
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a broad range of physical systems, and many experimental attempts to do so. Following
a theoretical proposal for testing the KZM in ion-trap systems [61], we have measured the
density of defects as a function of quench rate and have studied a range of post-nucleation
dynamics in a string of ∼42 174Yb ions.

Building on the experience and techniques we accquired for that experiment, and follow-
ing a theoretical proposal [57], our group decided to investigate the near-transition dynamics
in a string of four 171Yb ions at low temperature in the quantum regime. The goal of this
experiment is to manipulate and assess quantum coherences by tunneling between the two
configurations of the zigzag structure near the critical point of the transition. This exper-
iment requires a high level of control and stability, and there are a number of techniques
that need to be developed and technical problems to be addressed in order to realize a
successful tunneling measurement. One of the key requirements for investigating the L-Z
transition in the quantum regime is the ability to cool the zigzag vibrational mode of the
string to the ground-state of motion with a high probability. In addition, given the rela-
tively high Doppler average energy in our trap we expect it be necessary to cool the other
modes of the string with a sub-Doppler cooling technique to a few quanta of vibration, or
better. Motivated to resolve these issues, we implemented 3-D Sisyphus cooling in the form
of polarization-gradient cooling [67] to obtain simultaneous near-ground state cooling of all
vibrational modes and to allow a more efficient ground-state cooling of the zigzag mode.
The Sisyphus cooling technique is widely used in laboratory experiments to cool down neu-
tral atomic gasses of a variety of species [68], in optical lattice experiments [69–72] and for
individual atoms in optical tweezers or optical cavities [73–75]. However, the Sisyphus cool-
ing of trapped ions has been reported only once, for the case of one and two particles [76].
Based on the efficiency and simplicity of this cooling technique, we believe that it can be
very useful in experiments with moderately sized ion crystals.

Following this introduction, we provide an overview in Chapter 2 of the theory of the
Kibble-Zurek mechanism and survey most of the physical systems in which an attempt to
test the KZM was made. In Chapter 3, we show how the KZM can be applied in ion-trapping
systems. Starting with the equilibrium configurations in linear Paul traps, we explain the
theory of the linear–zigzag transition and show how the scaling law of the defect formation is
obtained for the ion-trap system. In Chapter 4, we focus on the experimental setup required
to test the KZM and describe the complications encountered with using a large string of ions.
The experimental results on spontaneous nucleation and dynamics of kinks are presented in
Chapter 5. The experimental results are accompanied by molecular dynamics simulations
used to assess the dynamics of kinks at the transition point and shortly after, which is
hard to access experimentally. The second part of the thesis starts at Chapter 6, where
we describe the details of a proposed experiment to measure the tunneling rate near the
transition. We also point out the experimental challenges that need to be addressed to make
the coherence assessment of zigzag superposition states possible. In Chapter 7, we provide
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a detailed theoretical description of Sisyphus cooling in trapped-ion systems, experiments
to assess the cooling performance, and comparison to simulation results. We also present
Sisyphus cooling of all vibrational modes of a 4-ion string followed by ground-state cooling
of any given mode. Finally, the conclusion of the thesis appears in Chapter 8.
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Chapter 2

The Kibble – Zurek Mechanism

This chapter begins with a historical overview of the Kibble-Zurek Mechanism (KZM).
Starting with Kibble’s proposal to explain the formation of domains and topological defects
in the early universe, we discuss how Zurek extended Kibble’s idea to condensed matter
systems. We then review the Kibble-Zurek mechanism as a "universal" theory describing
the spontaneous nucleation of topological defects in any system that is rapidly brought
("quenched") across a continuous phase transition. In particular, we discuss a key prediction
of the KZM, namely a universal power-law scaling for the density of defects as a function of
the quench rate. Finally, we survey most of the physical systems used to test the predictions
of the KZM since the first experiments were performed in 1991. Since then, Kibble, Zurek
and others have provided a series of updated reviews of the experimental tests of the KZM
and commented on their degree of success [77–79].

2.1 Introduction to the Kibble – Zurek mechanism

In the 1970’s, after the successful theoretical unification of electromagnetic and weak in-
teractions, researchers tried to expand the electro-weak theory into a grand unified theory
of the electro-weak and strong interactions. They suggested a larger underlying symmetry
exists at high energies which relates the carriers of these three interactions. Evidence shows
that the strengths of these three interactions approach a common value at energy scales
of about 1016 GeV, suggesting that the underlying symmetry was somehow broken around
those energy scales [77]. Accordingly, it was natural to propose that after the big-bang, as
the universe cooled and expanded, it went through some early symmetry breaking phase
transitions around a critical temperature corresponding to those energy scales. The question
that followed this proposal was whether these symmetry breaking phase transitions have
led to the formation of any topological defects in the early universe. In 1974, Zeldovich et
al. first discussed this question [80]. They pointed out the cosmological consequences of
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the formation of a specific cosmic structure known as a planar domain wall that could have
been formed as a result of a spontaneously broken discrete symmetry.

In 1976, Kibble broadened the discussion by studying the possibility of the formation of
different topological structures that could have appeared in the early universe and their evo-
lution over time [65]. He assumed that the universe could be described by a spontaneously
broken gauge symmetry exhibiting a phase transition at a critical temperature of Tc. At
earlier times and above Tc, the universe was assumed to be in a normal phase, in which the
expectation value of the complex "order parameter" field was zero 〈φ〉 = 0. As the universe
cooled and reached Tc, the fluctuations in φ rose, and as it passed through Tc, the expec-
tation value of φ settled into a non-zero value. Since the size of the universe is very large,
due to causality, largely separated regions in space could independently choose randomly
different expectation values of φ. The mean size of these widely separated regions (domains)
was estimated to be the same order as the correlation length at a time when fluctuations
in φ diminish significantly or freeze out. Beyond this time, known as the "freeze-out" time,
regions of normal and ordered phases, and also the ordered phases of different domains are
distinct. He then examined the topology of structures in the boundaries of domains and
showed a variety of topological structures could have been formed when different numbers
of domains meet. For example, at the boundary of two domains, planar domain walls could
appear, at the boundary of three domains, linear cosmic strings; and finally at the boundary
of four domains, pointlike monopoles. He studied the evolution of domain walls and strings
under the effects of tension and interaction with the surrounding matter and found both
of these defect structures evolved similarly, and their sizes grew with time and eventually
could become comparable to the universe size. Domain walls were found to have a large
gravitational effect and could be ruled out observationally. In this first paper, Kibble also
concluded that it is unlikely to expect strings to survive on a small scale until the present
time to be directly visible. Later on, after the introduction of inflation into the cosmology,
researchers concluded that if the strings were formed after the inflation period, a sufficient
number of them could have survived to have interesting effects on the evolution of universe.

In 1985, Zurek brought up the analogy between cosmic strings and vortex lines in su-
perfluids, and suggested an experiment using 4He to verify the key elements of the Kibble
mechanism describing cosmic string formation. He proposed that a fast pressure quench
across the normal to superfluid phase transition in bulk 4He leads to the appearance of vor-
tex lines [81], and proposed a related experiment for spontaneous formation of quantized
rotation in an annulus of superfluid [66]. The title of the latter well-known paper inspired
the term "cosmology in the lab" used so often later. A vortex, analogous to a cosmic string,
is a thin tube around which the phase of φ varies by 2nπ (n being a non-zero integer). The
order parameter φ of the 4He superfluid corresponds to the Bose condensate wavefunction,
and vortex lines are quantized circulations of the superfluid. Zurek replaced the speed of
light in the Kibble ’s theory with the relevant characteristic speed in the 4He system, which
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is the speed of "second sound", and used equilibrium concepts such as correlation length
and relaxation time to assess the non-equilibrium dynamics of this phase transition. He
estimated the density of vortex lines formed using the correlation length of the system at
the "freeze-out" time and showed the density of defects is related to the quench time by a
power-law relation.

Nowadays, the theoretical results of these two scenarios are merged into one universal
mechanism known as the Kibble-Zurek-mechanism (KZM) and describes the non-equilibrium
dynamics of any system going through a second-order phase transition. The KZM proposes
an intuitive model of domain and defect formation, and predicts a power-law scaling for the
number of defects formed as a function of transition quench rate.

2.2 Theory of Kibble – Zurek mechanism

A second-order phase transition induced by the change of a control parameter λ can be
described by Landau-Ginzburg theory in which the potential energy is: [65, 82,83]

V = α(λ− λc)|φ|2 + β

2 |φ|
4, (2.1)

where α and β are constants and φ is the order parameter field. In this case, both of the
equilibrium correlation (or healing) length ξ and the equilibrium relaxation (response) time
τ diverge in a power-law relation as a function of reduced order parameter or dimensionless
distance from the critical point ε = λ−λc

λc
:

ξ(ε) = ξ0
|ε|ν

, (2.2)

τ(ε) = τ0
|ε|µ

. (2.3)

In these equations, ν and µ are critical exponents defined by the universality class of the
transition, while ξ0 and τ0 are constants defined based on the microphysics of the system
in use. The divergence in the response time of the system to external perturbations, as
described by Eq. 2.3, is given the name "critical slowing down".

To understand the non-equilibrium dynamics of a second-order phase transition near
the critical point, we assume the control parameter is changed uniformly over a finite time:

ε(t) = t/τQ , t ∈ [−τQ, τQ], (2.4)

where τQ is the quench time of the symmetric quench around the critical point. Following
the KZM argument, if we start far from the critical point, (ε � 1), where the relaxation
time τ(ε) is short, the adjustment rate to the imposed changes is fast compared to the
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rate of changes induced by the quench. Consequently, the system follows the changes
adiabatically and remains in equilibrium. As we approach the critical point (ε → 0), as a
result of the critical slowing down, the response time of the system becomes too long to
keep up with the imposed changes. Consequently, the dynamics of the system become non-
equilibrium and the system ceases to react to the quench-induced changes (it freezes). When
we are well past the critical point (ε � 1), the dynamics of the system become adiabatic
again. The KZM divides the dynamics into three separate regions: adiabatic, frozen, and
adiabatic again. This simplification is referred to as the adiabatic-impulse approximation.
In this approximation, the non-equilibrium region is assumed to be effectively frozen and the
transition between the adiabatic (quasi-equilibrium) and frozen (non-equilibrium) regions
is effectively shrunk to a point in time. This point, known as the freeze-out point (see
Fig. 2.1), is the point when the relaxation time of the system becomes comparable to the
time remaining to reach the critical point (or equivalently the time elapsed after crossing
the critical point):

τ(t) ≈
∣∣∣∣εε̇
∣∣∣∣ = t. (2.5)

Equating Eqs. 2.3 and 2.5, and assuming a linear quench (Eq. 2.4), one can find the "freeze-
out" time t̂:

t̂ ∼
(
τ0τ

µ
Q

) 1
1+µ , (2.6)

which corresponds to the reduced order parameter

ε̂ ∼ t̂/τQ =
(
τ0
τQ

) 1
1+µ

. (2.7)

The correlation length at the "freeze-out" time can be derived by substituting Eq. 2.7 into
the divergence equation of the correlation length (Eq. 2.2):

ξ̂ = ξ0

(
τQ
τ0

) ν
1+µ

. (2.8)

The correlation length, ξ(ε), is related to the scale of fluctuations in the system. In other
words, the correlation length defines the extent of the system over which the order parameter
returns to its equilibrium value following quench induced changes. The information about
the state choice propagates with a finite speed that is a characteristic of the system (for
example, the speed of light in cosmological cases and second-sound speed in superfluids).
Near the freeze-out time t̂, the size of the correlation length becomes of the same order as
the distance over which the information about the state choice is spread. Assuming that
the size of system is sufficiently larger than the correlation length at t̂, then the system
can contain regions (domains) with an average size of ξ̂ at this time. These domains
are causally disconnected and have independent, randomly chosen, broken states. The
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Figure 2.1: Schematic description of how the relaxation time τ and the characteristic time
of changes, |ε/ε̇|, vary over time. The relaxation time is very small far from the critical point
and it becomes significantly large as we approach the critical point at t = 0. For a linear
change of the reduced order parameter ε, the characteristic time of changes varies linearly
with time. The time when these two times meet (| εε̇ | = τ) is called the freeze-out time.
According to the adiabatic-impulse approximation, dynamics of the system is considered
non-adiabatic or impulsive in between the two freeze-out times, while adiabatic elsewhere.

topological defects can form on the boundary of domains with different broken states and
the density of these defects is related to the number of domains i.e. the correlation length
at freeze-out time:

d ∼ 1
ξ̂

= 1
ξ0
·
(
τ0
τQ

) ν
1+µ

. (2.9)

The density of defects follows a power-law relation as a function of quench time, for which
the power-law exponents depend only on the universality class of the transition. This is
the key prediction of the KZM. As is often noted by Zurek, the power-law which describes
the non-equilibrium dynamics is determined by equilibrium properties of the system near
critical point. From the opposite perspective, assuming the KZM holds, sufficiently good
measurements of the power-law exponent in principle would provide a constraint on ν and
µ for a system.

Checking the universal KZM’s power-law scaling requires a measurement of the number
of defects over a reasonable range of quench rates. In the next section we provide an
overview of different experiments designed to investigate the Kibble-Zurek Mechanism and
to test the power-law dependence of the density of defects on the quench time.
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2.3 A historical review of experiments designed to test the
KZM

Since the first experiment in 1991, many experiments have been performed to test KZM
predictions, and have been reviewed many times. The founders of the KZM, Tom Kibble
and Wojciech H. Zurek, (and others) have reviewed the outcome of experimental tests of
the KZM and commented on their degree of success [77–79]. The most recent review was
written by A. del Campo and W. H. Zurek in 2014, for the occasion of Tom Kibble’s 80th

birthday, and provides a complete review of all the experimental attempts at testing the
KZM power-law prediction so far [79].

2.3.1 Liquid Crystals:

The first experimental attempt to test KZM predictions was on nematic liquid crystals by
Chuang et al. in 1991 [1]. Nematic liquid crystals (NLC) are rod-like molecules in which
isotropic-nematic transitions from a randomly oriented to an aligned phase occur by chang-
ing the temperature (or pressure). As the KZM predicts, it was demonstrated that rapid
pressure and temperature quenches across isotropic-nematic transitions lead to the sponta-
neous formation of defects. The advantage of using NLC is the feasibility of simultaneous
formation of various types of defects, including strings, monopoles and textures, that can
be seen directly. Chuang et al. also studied the dynamical evolution of defects (see Fig. 2.2)
and showed that the decay rate of defects matches the theoretical predictions.

Figure 2.2: Time evolution of two strings defects, showing the crossing, then reconnecting
in the other way. From [1]. Reprinted with permission from AAAS.

Following this experiment, Bowick et al. studied the nucleation, growth, and coales-
cence of nematic domains after a quench and how this leads to string-defect formation (see
Fig. 2.3) [2]. They measured the number of string defects formed per domain after a quench
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Figure 2.3: The time evolution of nematic bubbles at different times of (a) 2 s, (b) 5 s, (c) 11
s, and (d) 23 s, showing the process of domain formation and coalescence, and ultimately
the formation of defects, following a quench. From [2]. Reprinted with permission from
AAAS.

and compared it to simulations based on the Kibble mechanism. The measurement result
was about a factor of two smaller than simulations, which they related to the losses of
strings before the measurement time. The isotropic-Nematic transition studied in this and
the prior experiment is a 1st-order phase transition, for which the theory of domain nucle-
ation is different than that described above for the 2nd-order phase transition [78]. Neither
group attempted to investigate the power-law dependence of the number of defects on the
quench time for NLC.

2.3.2 Superfluid He:

At about the same time that Bowick et al. were studying defect formation in liquid crys-
tals, Hendry et al. were pursuing an experiment more directly in line with Zurek’s original
proposal, in which they investigated the spontaneous formation of vortex defects in liquid
4He after a rapid temperature reduction across the normal-superfluid transition [84]. Unlike
NLC, liquid 4He has a simpler order parameter, a scalar corresponding to the wavefunction
associated with the superfluid. Nevertheless, as noted by Zurek in his original paper, the
choice of phase for the superfluid order parameter provides a close analogy to the symme-
try breaking associated with the quantum vacuum in relevant cosmological models, and the
quantized vortex lines are the analog of cosmological strings. In comparing their 4He system
to NLC, Hendry et al. pointed out that while their experiment requires the added compli-
cation of cryogenics and does not allow direct observation of defects, the low viscosity of the
liquid 4He and the purity of their samples provides perhaps a cleaner cosmological analog.
In their initial publication, Hendry et al. reported evidence of spontaneous nucleation of
vortices after a fast quench across the normal-superfluid transition, but the occurrence of
vortices was found later to be caused by imperfections in the experiment [85]. With an
improved set-up, there was no sign of vortices from a quench [85], and it is believed that
they disappear too quickly to be observed.

Following the 4He experiment, two groups in 1996 reported observations of sponta-
neously nucleated vortices in superfluid 3He [86, 87]. In both cases a neutron-induced nu-
clear reaction was used to locally heat small regions of superfluid 3He to form bubbles of
normal liquid. As the bubble cooled down to the superfluid state, vortex formation was
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investigated. Although superfluid 3He experiments need yet more sophisticated cryogenic
technology due to the ultralow temperatures involved, the system has some novel features
compared to 4He and liquid crystals. As noted by both Bauerle et al. [86] and Ruutu et
al. [87], during the normal to superfluid transition in 3He more symmetries are broken,
which together with the types of symmetries involved, make for a closer analogy to what
is believed to have happened in the early universe. Compared to 4He, superfluid 3He ex-
hibits more phases and allows for a wider range of defects including points, vortex lines and
domain walls, as well as excitations associated with the underlying fermionic system.

Ruutu et al. used a continuously rotating container of superfluid 3He to allow vortex
rings nucleated in the bubble to expand into stable vortex lines in the container. An
NMR technique was used to monitor the number of vortices formed during the 0.1-µs
cooling time of the bubbles as a function of normalized super-fluid velocity due to rotation.
Spontaneously nucleated vortices were observed, and the experimental results, when plotted
in terms of the normalized superfluid velocity, followed a dependence in favor of the KZM
of defect formation.

In a complimentary experiment, Bauerle et al. used the same nuclear reaction to create
bubbles of normal fluid, but measured the amount of energy kept in the fluid in the form
of a vortex tangle after the bubble re-cooled. Their experiments were performed well below
the critical temperature (0.1 Tc). Knowing the thermal energy of a vortex per unit length,
they could infer the typical spacing between vortices for three different ambient pressures
i.e. three different quench rates. They found a pressure-independent value of about 8 for
the ratio of vortex separation to correlation length, while an estimate based on the KZM
predicted a value between 4-7 depending on the pressure through a weak power-law of τ1/4

Q .
Although the value of the measured vortex density was close to the estimated range, it was
constant and the reason for this discrepancy in pressure dependence was unclear.

In conclusion, both the experiment by Ruutu et al. [87] and Bauerle et al. demonstrated
vortex formation during a quench of a second-order phase transition, but due to the small
range of achievable quench rates and the weak τ

−1/4
Q scaling, the experiments could not

provide definitive evidence in support of the KZM power-law prediction for the vortex
density as a function of quench rate.

2.3.3 Liquid Crystal Light Valve:

The first experiment to directly test the power-law dependence of the KZM was performed
by Ducci et al. in a nonlinear optical system consisting of a liquid crystal light valve [3]. The
transitions in these types of systems are not a typical phase transition between equilibrium
states, but still can be described in terms of an effective field theory. The liquid crystal
light valve (LCLV), which acts as a Kerr medium, was placed in an optical feedback loop
and illuminated by a laser beam. Due to the Kerr effect, the reflected beam from the front
face of the LCLV undergoes a phase retardation proportional to the light intensity at the
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Figure 2.4: Intensity patterns in a liquid crystal light valve (LCLV) experiment, showing a
number of defects (for example the circled one) 0.5 s after an intensity quench over a time of
τQ = 0.41s. Reprinted figure with permission from [3]. Copyright (1999) by the American
Physical Society.

rear face. The intensity of this light (the control parameter) can be varied linearly from
below to above a threshold value for optical pattern formation in the profile of the reflected
beam. This experiment was set to obtain stripe patterns, and as they ramped the intensity
of the light, defects were formed in the stripes (see Fig. 2.4). The density of defects was
expected to follow a scaling law proportional to τ−1/2

q . For quench times between 5 and 100
ms, after correcting for effects of defect drift, a scaling law was found to be consistent with
the theoretical prediction.

The ease with which the laser intensity, and so the quench, can be controlled was one
of the advantages that allowed this system to achieve a power-law measurement. However,
as noted in a recent review by del Campo and Zurek [79], more recent experiments and
theory suggest that for such systems, involving switching between non-equilibrium states,
renormalization theory may not be applicable. As a result the KZM scaling may apply only
approximately or not at all in these cases.

2.3.4 Superconductors:

Another broad class of experiments used to investigate the KZM involves superconductor
systems. The presence of an evolving gauge field, i.e. the electromagnetic field, that
evolves with time across the transition complicates the description of the quench dynamics
in superconductor transitions [88].

The first attempt to test the KZM in a normal-superconductor phase transition was
performed at the Technion-Israel institute of Technology in 1999, using high temperature
superconductor films [88]. A thin superconductor film held in a cell was heated to the normal
state using a quartz lamp. The thin film was then cooled down to superconducting state
via a helium exchange gas that linked the cell to liquid nitrogen. Following a temperature
quench, the appearance of vortex-like defects, known as fluxons, was searched for. Based
on KZM predictions, the number of defects is proportional to the inverse of correlation
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length. The correlation length of a high temperature superconductor is much smaller than
a conventional one. As a result, more defects are expected to form in a high temperature
superconductor, but due to the low quench rate of 20 K/s in this experiment, no evidence
of defect formation was observed at that time.

Four years later, the same group with an improved experiment reported the observation
of flux lines in high temperature superconductor thin films, following a much faster quench
rate of ∼ 108K/s [89]. It is interesting to note that the ∼ 107 times faster cooling rate
was achieved by using a pulsed laser to provide a local heating of the thin film, and a
transparent cold substrate as a heat sink for cooling. In these experiments only the net flux
could be measured which is proportional to the difference between the number of fluxons
and antifluxons. One down-side to this indirect measurement of flux formation is that the
power-law scaling is very weak, ∆N ∼ τ−1/8

Q , compared to a direct measurement, N ∼ τ−1/2
Q .

The weak scaling law was verified over a small quench-rate range of 2× 107 − 1× 108 K/s.
However, as a result of a small range of changes in the measured flux values and large
error bars, the exponent could not be extracted. It was also shown that the sign of net
flux changes totally randomly from one quench to another, which is on par with KZM
predictions.

In 2001, Hindmarsh and Rajantie proposed an additional mechanism (HRM) of de-
fect formation for cases like superconductors, in which a local gauge symmetry breaking
is involved rather than a global symmetry breaking [90]. They pointed out that in super-
conductors, in addition to fluctuations of the order parameter, leading to defect formation
through the KZM, fluctuations of the magnetic field can also lead to the formation of clus-
ters of fluxons of the same sign. The number of HRM defects is independent of quench
rate, and their contribution to the total number of nucleated defects varies in different ex-
periments [91, 92]. In almost all the superconductor experiments described here, the KZM
has the main role in defect formation, but in 2003 Kirtley et al. verified the HRM over
five orders of magnitude of quench range [93]. They used specifically chosen thin film su-
perconductor rings with a high magnetic field penetration depth and inductance, which
make the activation of fluctuations in ring vortex number not too costly energetically at
temperatures relatively far from Tc. As a result, they could show that thermal fluctuations
in the magnetic flux can activate spontaneous formation of defects [92,93].

In 2010, the Technion group performed another experiment to study the spontaneous
generation of fluxons in superconductors, but this time with the ability to image the defects
in the sample [94]. They performed the experiment for two different quench rates. They
found a higher density of fluxons for faster quench rates, but their measured values were
two orders of magnitude smaller than KZM predictions. They also measured the spatial
correlation between the fluxons and found both short- and long-range correlations. While
the short-range correlation agrees with the KZM prediction, the long-range correlations are
unexplained so far.
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Another superconductor experiment was performed by the same Technion group in
2000 using a high-temperature superconductor loop made of 214 Josephson junctions in se-
ries [95]. During a thermal quench, as the loop cools down, each segment between the junc-
tions would be expected to choose an independent random phase as the segment becomes
superconducting. At lower temperature when the junctions coherently link the segments,
the random walk in phase around the loop can resolve into a net integer phase winding, i.e.
a net non-zero flux, around the loop. They indeed observed spontaneous formation of flux
in the loop and found the sign and magnitude of the flux to be random from one quench
to another in accordance with the KZM. However, due to the constant distance between
the Josephson junctions that sets the size of domains, the number of domains are fixed and
independent of quench rate in this experiment. As a result the power-law dependence of
defect formation on quench rate cannot be tested.

Lastly, a series of more sophisticated experiments was performed by Monaco et al.
using small, annular, low-temperature superconductor systems between 2001-2009. These
experiments were the most elaborate effort to that point to specifically test the KZM power-
law prediction [96–101], and were the second direct KZM power-law scaling measurement
after the experiments by Ducci et al. using a liquid crystal light valve [3]. Monaco et
al. used small annular Josephson tunnel junctions (JTJ) and small superconducting loops,
where the size of the system is much smaller than the correlation length at freeze-out time
(i.e. typical domain size). Therefore, the number of trapped fluxon defects during a thermal
quench will be either 0 or 1. The probability of spontaneous formation of a single fluxon
was measured by inspecting I-V curves in which the presence of a fluxon is revealed by
current peaks. At first, the probability of finding a fluxon in a small annular JTJ or loop
as a function of quench time was predicted to follow a power-law scaling of P ∝ τ

−1/4
Q ,

and a verification of this power-law was reported in 2002 over three orders of magnitude of
quench time in annular JTJs [96]. In 2006, a similar but much improved experiment with
better magnetic field shielding, more statistics, and a wider quench range of four orders of
magnitude, found a power-law exponent of 0.51± 0.06 [99]. The factor of 2 discrepancy in
power-law exponent was attributed at that time to flaws in the fabrication of the junction
barrier. However, in 2009, a similar "doubled" power-law exponent of 0.62 ± 0.15 was also
measured in small loops [101].

Monaco et al. explained this by using a calculation to propose a doubling of the power-
law due to a change in the dispersion of winding numbers for small annuli.1 In fact, a
doubling in the KZM power-law was already noted in theoretical studies of atomic Bose-
Einstein condensate systems [102, 103] and has figured in the interpretation of the recent
KZM experiments in trapped ions (see discussion below).

1For a more recent interpretation of these experiments that does not invoke fabrication flaws, and that
discusses the power-law doubling among other effects, see the recent review by del Campo and Zurek [79].
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Figure 2.5: (a), (b) The AFM (atomic force microscopy) images of stripe patterns and
vortex-antivortex domain patterns in ErMnO3 crystals. Large domains of a single order-
parameter polarization are separated by narrow (dark) domains of the opposite polarization.
(c) The density of vortices as a function of cooling rate for slow cooling rates (red triangles,
Chae et al. results [4]) and fast cooling rates (blue circles, Griffin et al. results [5]).
Reprinted figure with permission from [4]. Copyright (2012) by the American Physical
Society.

2.3.5 Multiferroics

The Kibble-Zurek mechanism has also been studied in multiferroic materials. These ma-
terials exhibit more than one primary ferroic order parameter in a single phase [104]. For
example, hexagonal (h-) manganites, h-REMnO3 (RE:Rare Earth, e.g. Er, Y, Yb), are one
type of multiferroics that posses ferroelectric and ferromagnetic behaviour simultaneously.
In h-REMnO3, ferroelectricity appears as a result of a structural phase transition which is
induced by the size mismatch between RE and Mn-O layers. The interplay between struc-
tural and ferroelectric order parameters leads to the formation of domains that can have
different configurations [4].

In 2012, Chae et al. investigated the growth of various REMnO3 crystals. They first
showed that ErMnO3 crystals, grown with stripe patterns (see Fig. 2.5), transformed into
ones with vortex-antivortex patterns when the sample was annealed above a characteristic
temperature of 1200oC and then cooled to room temperature. Once formed, the vortex-
antivortex structures were observed to persist (i.e. did not change back to stripes), and the
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size of the domains varied with the cooling rate. Comparing the characteristic temperature
of REMnO3 crystals with different rare earth atoms, including Y, Ho, Er, Tm, Yb and Lu,
it was found that the characteristic temperature increases almost linearly with decreasing
size of RE atoms used, which suggested this temperature to be the same as the critical
temperature (Tc) of the structural phase transition. Starting slightly above Tc and changing
the cooling rate for a set of ErMnO3 samples, they measured the average distance of vortex-
antivortex pairs and showed a power-law dependence of vortex density on the quench rate.
A power-law exponent of 0.23 was extracted from four data points over a range of 3 orders of
magnitude of cooling rate, while the KZM prediction is 0.29 based on subsequent numerical
calculations of the critical exponents performed by Griffin et al. [5]. In addition to the
good agreement in the power-law exponent, the absolute density of defects itself is also
reasonably well predicted by these calculations. All put together, Griffin et al. suggest
that this provides strong confirmation of KZM behaviour. However, as noted by del Campo
and Zurek in their recent review [79], some caution is in order. As first pointed out by
Chae et al., the critical temperatures of h-ReMnO3 are very high and can be determined
only approximately. Moreover, very little is known about the critical behaviour of these
materials experimentally. As a result, this leaves some uncertainty in the comparison of the
measurements to the KZM, which in the end relies on the details of the dynamics of the
system in the vicinity of the critical point. Finally, in the same year as the work by Chae
et al. , Griffin et al. extended the cooling rates in another experiment using YMnO3 and
showed a suppressed defect formation at higher cooling rates (see Fig. 2.5c) that is opposite
to KZM predictions and unexplained so far [5].

2.3.6 Landau-Zener transition and the KZM

The probability of a non-adiabatic transition between two quantum states at an avoided
level crossing has been known since the 30’s [105–108]. It has been shown that when the
energy difference of the two states changes linearly with time, the excitation probability
decays exponentially with the "quench" time τQ (Landau-Zener formula). Recently, Damski
has pointed out [109] that the average excitation probability can be correctly predicted
up to 3rd order in quench time τQ by applying the adiabatic-impulse approximation. The
importance of this result is that it provides a direct route to extend the KZM to the dynamics
of quantum phase transitions. The connection between the Landau-Zener formula and KZM
has been demonstrated experimentally in a nine stage Mach-Zender interferometer [110] and
subsequently in a semiconductor electron charge qubit system [111]. Note that these are
not extended systems, and a test of the power-law scaling of the defect density (i.e. inverse
of the domain size) is not achievable.
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Figure 2.6: Images of BECs in a harmonic trap with a single vortex (left, center) and
two vortices (right) nucleated by a quench of the normal-BEC transition. Reprinted by
permission from Macmillan Publishers Ltd: [Nature] [6], copyright(2008).

2.3.7 Ultracold trapped atoms and ions

In addition to all the condensed matter systems described above, atomic systems are also
found to be a good testbed for investigating the KZM. The atomic systems include ultracold
trapped atoms and ions. These systems are well-controlled and theoretically simple, and
provide the possibility of investigating the KZM in an inhomogeneous system. The inhomo-
geneity of these systems is a result of the external trapping potential. The inhomogeneous
KZM (IKZM) will be discussed in more detail in the next chapter in the context of trapped
ions.

In 2006 Sadler et al. first demonstrated the formation of topological defects, including
walls, textures, and vortices, as a result of spontaneous symmetry breaking across a quantum
phase transition near zero temperature [112]. For this type of situation, the structure of
the quantum ground state undergoes a discontinuous change as a function of some external
control parameter. In their experiments, Sadler et al. used a spinor BEC gas held in an
optical dipole trap [112], and quenched the quantum phase transition from an un-magnetized
to a ferromagnetic ground state by reducing the magnetic field by a factor of 100.

In 2007, Scherer et al. demonstrated vortex formation during a controlled merging of
multiple uncorrelated BECs in a harmonic trap in an experiment reminiscent of that in a
superconducting system discussed above [113]. Two years later, the same group reported
spontaneous formation of vortices following a quench of the normal-BEC transition in an
ultracold trapped gas of Rb atoms [6] (see Fig. 2.6). They showed spontaneous vortex
formation after a fast quench in both a toroidal and a 2-D pancake shaped trap. In the latter
case, they demonstrated a factor of ∼ 2 increase in vortex formation between two different
temperature quenches. The cooling was performed using forced evaporative cooling. As the
authors note, one challenge in extending these experiments to a power-law measurement
is to obtain sufficient control and range for the evaporative cooling rate. Due to limited
statistics, the power-law scaling of KZM could not be tested in this experiment and it
remains un-tested to date.

In 2011, Chen et al. [114] studied the spontaneous formation of defects across the Mott
insulator-superfluid (MI-SF) transition, a quantum phase transition. Like Sadler et al., they
also demonstrated the formation of defects as a result of a rapid quench across a quantum
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Figure 2.7: a-d, Sample time of flight pictures of BEC containing 0, 1, 2, and 3 solitons. The
vertical direction corresponds to the strong-confinement direction in the trap. Reprinted
by permission from Macmillan Publishers Ltd: [Nature Physics] [7], copyright(2013).

phase transition, but they also went on to investigate the possibility of extending KZM
predictions to a quantum phase transition by measuring the power-law scaling. The exper-
iments of Chen et al. used ultracold Rb atoms trapped in a 3-D optical lattice, which can
be described by the inhomogeneous Bose-Hubbard model (For a recent review of these sys-
tems in the context of non-equilibrium dynamics, see [115]). The quench across the MI-SF
quantum phase transition is attained by varying the ratio of tunneling to interaction energy.
In the actual experiment, this ratio is controlled by the optical intensity, which adjusts the
depth of optical lattice potential. For quench rates across two orders of magnitude, vortices
were found in the final BEC state. They used time of-flight density profiles to measure
the amount of excitations, and the energy produced during quenches, as a function of τQ,
and found a KZM-like power-law behaviour with an exponent of 0.32 ± 0.02. Chen et al.
point out that the exponent does not match the theoretical prediction value of 3/4 for 3-D
homogeneous systems but it was not clear at that time if the deviations could be explained
by known effects such as inhomogeneity or the 10% thermal fraction present in samples.
In a subsequent theory paper, Dziarmarga et al. [116] found the scaling law to be quite
insensitive to trapping potential, and the same scaling value of 1/3 for a 1-D chain also
holds in 3-D. This is in reasonable agreement with the Chen et al. power-law exponent,
indicating no obvious discrepancy from the KZM prediction. However, the recent review of
del Campo and Zurek [79] places caveats on the direct connection between the KZM and
Chen et al.’s results. For instance, the trap-induced inhomogeneity gives rise to an initial
state of MI layers separated by SF layers. Consequently as the transition is crossed, differ-
ent layers cross at different times, which is a more complicated scenario compared to the
inhomogeneous KZM. Moreover, the small system size and finite temperature of the initial
cloud along with other complications makes it unclear whether this scaling agreement is a
coincidence or not.
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In 2013, following ion-trap KZM experiments including the one reported in this thesis,
Lamporesi et al. studied spontaneous formation of soliton defects across the normal-BEC
phase transition of ultracold sodium atoms in a cigar-shaped magnetic trap [7]. This ex-
periment was in fact the original system proposed by Zurek as a testbed for the study of
the Inhomogeneous KZM (IKZM) [117]. In this experiment, the temperature is quenched
by evaporative cooling and domains of condensate with different phases form. As the BEC
grows, neighboring condensates merge and the phase mismatch can lead to the formation
of (non-topological) solitonic defects.

The solitons were detected using time-of-flight density profiles (see Fig. 2.7) and a power-
law dependence with an exponent of 1.38±0.06 was measured over a quench range of about
a factor of 10. They also demonstrated that the power law is insensitive to a change in
atom number by about a factor of 6 from 25 to 4 million atoms which could suggest a
universal behaviour with some caution (see [7] for details). Based on the IKZM predictions
a power-law exponent of 7/6 can be expected in this system. The authors suggest that the
discrepancy may arise from the non-uniform axial temperature in the BEC, atom losses in
fast quenches and soliton decays during slow quenches.

2.3.8 Ion trapping

In 2010, del Campo et al. proposed that trapped ions could be an ideal testbed for KZM
studies, and in particular could be used to investigate the inhomogeneous KZM where
the propagation of a transition front across the inhomogeneous sample would lead to a
steepening of the KZM power-law [61]. This proposal motivated this experimental thesis
work, as well as simultaneous work by two other groups [8,118], which will be discussed in
Chapter 5.

Ion trapping systems are highly controllable, simple enough to make direct comparison
to theory, and efficient in that the defects are imaged in situ and the trapped sample can
be recycled repeatedly across the transition. In ion-trap systems, the symmetry-breaking
phase transition in use is a structural transition between linear and zigzag configurations.
Laser-cooled ions held in a linear Paul trap with strong transverse confinement organize
into a one-dimensional (1-D) linear crystal with an inhomogeneous axial density. If the
transverse confinement is relaxed slowly, the linear ion crystal undergoes a continuous,
structural phase transition to a 2-D zigzag configuration, beginning at the center of the
crystal. Two broken-symmetry states (zig and zag) are possible. Rapidly quenching the
transverse confinement across the transition can lead to crystal structures containing spon-
taneously nucleated topological defects (kinks), which are formed by the interface between
domains of opposite symmetry. In our experiment we study the spontaneous nucleation of
defects, and the power-law scaling of the number of defects as a function of quench time
in a string of 41-43 174Yb ions. As a natural extension of the nucleation studies, we also
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explore the dynamics of the defects. The results of these studies are presented in Chapter
5.

2.3.9 Conclusion

It seems by now clear that a quench does indeed lead to spontaneous nucleation of defects,
as has been demonstrated in a wide range of systems. Also the early work has shown
many of the features of domain coalescence involved in the Kibble mechanism for defect
formation, including the number of defects formed per domain. The status of the power-law
measurements and confirmation of KZM has been most recently evaluated by del Campo
and Zurek in their 2014 review [79]. In a nutshell, their conclusion is that there has been
much progress, particularly recently, in making power-law measurements, but in each case
(including ions as will be discussed later) there are caveats that leave work to be done before
one can say the definitive test of the KZM has been done.
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Chapter 3

The Kibble–Zurek Mechanism for
Trapped Ions

In this chapter, we present the KZM predictions for the specific system of trapped ions.
First, the linear rf Paul trap setup and an ion’s motion in the resulting confining potential
are discussed. Then, the equilibrium structure of trapped laser-cooled ions is found as a
function of trap anisotropy and it is shown that the linear structure of ions in a linear Paul
trap is spatially inhomogeneous with an axial ion spacing (ion density) that varies across the
ion chain. As the trap anisotropy is changed, the equilibrium structure transits into a zigzag
configuration. The behaviour of the linear-zigzag transition and the effects of inhomogeneity
on this transition are explained and the critical anisotropy of the phase transition is derived
through two different approaches. Next, it is discussed how the linear-zigzag structural
transition is a second-order phase transition and can be used for KZM studies. Finally, the
KZM prediction of power-law scaling for the number of defects nucleated as a function of
quench time is discussed, considering the cases of a homogeneous and inhomogeneous ion
chain in two cooling limits of over-damped and under-damped.

3.1 Ion – trap system

The ion-trap setup used in our experiment is a linear radio frequency (rf) Paul trap com-
posed of four rods and two endcap needles (see Fig. 3.1). Four 0.48-mm diameter tungsten
rods are held in a square configuration by ceramic spacers at either end. The distance
between the trap axis and rods’ surfaces is R0 = 0.7 mm. Two opposing rods are grounded
and the other two are connected to a combined rf and dc voltage, V0 cos (ΩT · t) + Urod,
that generates (combined) oscillating (and static) quadrupolar potentials in the transverse
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Figure 3.1: The linear rf Paul trap used in our experiment is composed of four rods held in
a square configuration of the side of 1.27 mm and two needles separated by 2.5 mm. The
rods confine the ion in the transverse direction. Two opposing rods are grounded (shown in
red) and the other two are connected to rf and dc voltage of V0 cos (ΩT · t) + Urod (shown
in olive green). Two needles confine the ion in the axial direction and are connected to a
dc voltages of U0.

direction1. The electric potential can be approximated near the trap axis as follows [20,119]:

Φ ' (V0 cos (ΩT · t) + Urod)
2

[
1 + (x2 − y2)

R2

]
, (3.1)

where R ' R0.
Two tungsten needles connected to dc voltages of U0 confine the ion in the axial ẑ

direction and are separated by 2Z0 = 2.5 mm. The needles provide the static harmonic well
potential in the axial direction and their effect can be described by the following potential
for points near the center of the trap:

Φs = κU0

[
z2 − 1

2(x2 + y2)
]
, (3.2)

where κ is a geometrical factor. In both of the above equations, experimental imperfections
such as anharmonicities, asymmetries, external stray fields, and the leakage of rf electric
field into the axial direction are neglected.

1In the actual experiment separate dc voltages are applied to all rods for maximum flexibility in design
of the potential.
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The equations of motion of a single ion of mass M and charge Q, in the combined
potential of Eq. 3.1 and Eq.3.2 can be found using Newton’s second law:

Mẍi = −Q · ∂(Φ + Φs)
∂xi

, i = {1, 2, 3}. (3.3)

The above equation results in a Mathieu equation for each direction as follows:

d2xi
dζ2 + [ai + 2qi cos (2ζ)]xi = 0, (3.4)

where ζ = ΩT t/2 and

ax = 4Q
MΩ2

T

(
Urod
R2 −

κU0
Z2

0

)
, ay = − 4Q

MΩ2
T

(
Urod
R2 + κU0

Z2
0

)
, az = 8QκU0

MΩ2
TZ

2
0
, (3.5)

and
qx = −qy = 2QV0

MΩ2
TR

2 , qz ∼= 0. (3.6)

The Mathieu equations (Eq. 3.4) can be solved using Floquet solutions [20,120]. Assuming
ai < qi � 1, the position of an ion to first order in ai and qi is

xi(t) ≈ x0i cos (ωit+ φi)
[
1 + qi

2 cos (ΩT · t)
]
, (3.7)

where the amplitude x0i and phase φi are determined by the initial conditions, and ωi is
the secular trap frequency in the ith direction defined as

ωi ∼=
1
2ΩT

√
ai + 1

2q
2
i . (3.8)

In the transverse direction, the secular frequency is associated with a simple harmonic oscil-
lation in a time-averaged pseudopotential, while in the axial direction a harmonic oscillator
potential is generated directly by the dc endcap voltages U0 (see Eq. 3.2).

As Eq.3.7 shows, the motion of a trapped ion consists of two oscillatory components:
1 – A low-frequency motion called secular motion, oscillating with a secular trap frequency
of ωi ' (2π · 0.35 - 0.8) MHz for our setup. The amplitude of secular motion is x0i and can
be reduced by laser cooling methods (see "Doppler cooling" section in Chapter 4).
2 – A high-frequency motion of relatively small amplitude, known as micromotion, oscillat-
ing with the rf trap frequency of ΩT = (2π · 12 - 17.5) MHz. The amplitude of micromotion
is x0i · qi/2. Considering qi ∼ 0.12 - 0.16� 1, the amplitude of micromotion is smaller than
that of secular motion.
The two oscillatory components of a trapped ion’s motion in a transverse direction are
shown in Fig. 3.2 for qi = 0.2. The ratio of the micromotion to secular motion frequency in
this figure is ΩT /ω = 20, which is comparable to our experimental values.
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Figure 3.2: The oscillatory motion of a trapped ion as a function of secular period. The
motion consists of two parts: secular motion shown in black with a low frequency ω and
larger amplitude x0, and micromotion shown in red with a high frequency ΩT = 20ω and
smaller amplitude x0 · q/2 = 0.1x0, where q = 0.2 in this plot.

In an ideal linear trap, the micromotion vanishes for an ion at rest along the axial rf null.
However, in a non-ideal situation, in addition to the intrinsic micromotion accompanying
the secular motion, an excess micromotion can arise due to different causes. For instance, a
phase difference between the ac potentials applied to the rods will give a non-zero minimum
rf field value on the trap axis. This is not a significant effect in our trap. Of more impor-
tance are external stray dc electric fields on the electrodes and patch potentials which cause
the ion-trap center to shift from the rf field null in the transverse direction [120]. Micromo-
tion in our non-ideal linear trap and the detrimental effects of the excess micromotion on
laser cooling will be discussed in Chapter 4. The detection of excess micromotion and its
minimization through the use of shim electric fields are also discussed in that chapter. For
multiple ions in a linear string, the excess micromotion can be minimized by placing them
along the rf null along the trap’s axial axis of a linear Paul trap. On the other hand, when
the ions are in a 2-D configuration such as the zigzag structure, the excess micromotion is
unavoidable. For typical trap conditions and as long as the trapped ions are not too far
from the rf null, it is typical to neglect the micromotion as a first approximation.

3.2 Inhomogeneous linear equilibrium structure

To find the equilibrium structure of trapped laser-cooled ions in a linear Paul trap, we
consider N identical ions with mass M and charge Q. The classical Hamiltonian of this
system includes kinetic and potential energy terms:

H =
N∑
i=1

p2
i

2M + V ({~ri}), (3.9)
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where the potential term accounts for the harmonic confining pseudo-potential and the
ion-ion Coulomb interaction. In 2-D, the potential energy is

V ({~ri}) = M

2

N∑
i=1

(ω2
yy

2
i + ω2

zz
2
i ) + 1

2 ·
1

4πε0

N∑
i=1

N∑
i 6=j

Q2

| ~ri − ~rj |
, (3.10)

where ωy is the transverse and ωz is the axial secular trap frequency. The position of the
ith ion is denoted by ~ri. If the ions’ positions are re-scaled in terms of the axial Coulomb
length a0 = (Q2/4πε0Mω2

z)1/3 as ~r/a0 → ~r ′, then the potential energy simplifies to

V ({~r ′i }) = V0

1
2

N∑
i=1

(α2y′ 2i + z′ 2i ) + 1
2

N∑
i=1

N∑
i 6=j

1
| ~r ′i − ~r ′j |

 , (3.11)

where V0 = Mω2
za

2
0. In the above equation, α denotes the trap anisotropy2:

α ≡ ωy
ωz
. (3.12)

When trapped ions are sufficiently laser cooled, the ions crystalize into an array and the
equilibrium position of each ion can be found by minimizing the potential V (Eq. 3.11)
with respect to all coordinates [44]. By writing the potential in this way we see that the
minimum-energy equilibrium structure in linear Paul traps depends only on trap anisotropy
α.

When α� 1, which means the transverse confinement is much stronger than the axial
confinement, the equilibrium structure is a one-dimensional linear structure. Figure 3.3(a)
shows an experimental CCD image of a linear string of 42 174Yb ions in our trap for α ' 17
with ωz = 2π · 38 kHz and ωy = 2π · 660 kHz. In Fig. 3.3(b), the numerical solution for the
equilibrium positions of 42 ions, obtained from minimizing the potential energy of Eq. 3.11
for the same α value, is plotted using MAPLE software. The comparison of the two images
of experiment and numerical calculations (Fig. 3.3(a),(b)) indicates that the theory provides
a fair description of the system.

As can be seen in this figure, the axial ion spacing of the linear structure is inhomoge-
neous. The axial density which is proportional to the inverse separation between neighbor-
ing ions, is highest at the center and decreases towards the edges. In Fig. 3.3(c) the axial
density variation along the string of 42 ions is shown. The points are extracted from the
numerically calculated ion positions shown in Fig. 3.3(b) using the inverse of adjacent ions’
separation, ni = 1

zi+1−zi .

2The trap anisotropy α can be defined in different ways. For instance α = ω2
z/ω

2
y is one of the commonly

used alternative definition [44,49]. In our experiment, we vary the trap anisotropy by changing the transverse
trap frequency while the axial frequency remains constant. As a result α = ωy/ωz definition is more
convenient than other possibilities.
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Figure 3.3: (a) An experimental CCD image 42 174Yb ions in a 1-D linear structure taken
by an intensified CCD camera for α = 17 with ωz = 38 kHz and ωy = 660 kHz. (b) The
numerical calculation results of ions positions in a string of 42 ions with the same α value.
(c) The axial density of ions vs. scaled ion position. The points are extracted from the
numerically calculated ion positions shown in (b). The red dashed line is the LDA theory
as described in Eq. 3.13. The black line is a fit to the points for which n(0) and L are
considered as free parameters. Distances scaled to a0 = 24.4 µm.

Alternatively, for a large number of ions, it is reasonable to consider a local density
approximation (LDA) to find a description of the axial density. This approximation works
best in homogenous cases; hence it is expected to work better in the center of large strings
compared to the edges. Using the LDA, for a string with a half-length L, the axial density
is reasonably well approximated by:

n(z) = n(0)
(

1− z2

L2

)
, n(0) = 3

4
N

L
. (3.13)

This functional form for a string of 42 ions is shown in Fig. 3.3(c) by the dashed red line.
As expected, it works better at the center compared to the edges. If n(0) and L are treated
as free adjustable parameters, the functional form in Eq. 3.13 can match the density across
the crystal even better, with the central density unchanged and L replaced by an effective
length L′ = 1.07L.
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3.3 The structural transition from linear to zigzag structure

The 1-D linear structure remains as the equilibrium structure as long as the transverse
confinement stays considerably stronger than the axial confinement. As the transverse
confinement is relaxed, or equivalently the axial confinement is strengthened, the anisotropy
of the trap potential decreases. Below a threshold value of the trap anisotropy (αc), the
linear structure will no longer have the lowest energy, and a structural phase transition
into a 2-D zigzag structure occurs3. The 2-D zigzag structure lies in the plane of the
axial direction, ẑ, and the weakest transverse direction, which we call ŷ. When the inward
transverse trapping force becomes equal to the net outward Coulomb force due to the
surrounding ions, the linear structure breaks for points infinitesimally away from the axial
axis. In a finite string with an inhomogeneous linear structure, the density (i.e. Coulomb
pressure) is highest in the center, so the central ions break into the zigzag, or reach the
critical point, first. As the trap anisotropy decreases further, the transverse displacements
of the central ions (i.e. zigzag amplitude) grow while ions closer to the edges join the zigzag
configuration. Figure. 3.4 shows some experimental snapshots of this transition from linear
to zigzag structure in a string of 41 ions. The α is reduced from 17 to 9 with the critical
point being at αc ' 16. In the same figure, the numerical calculations of the transverse
separation of adjacent ions ∆ypp vs. the ions’ axial position is shown for different α values.
It can be seen that as the critical point is crossed, ∆ypp starts to grow at the center while the
outer ions are still in the linear structure (∆ypp = 0). As α passes further below the critical
point, more ions join the zigzag structure. Figure 3.5 shows the transverse separation of
the two central ions, ∆ypp0 (peak to peak zigzag amplitude at z = 0) as a function of trap
anisotropy. The points are derived from the experimental measurements of a string of 41
174Yb ions (see Fig. 3.4). The line is the numerical calculations in MAPLE obtained from
minimizing the potential V to find the equilibrium positions of central ions at each value
of α. The rapid onset of the zigzag transition, near the critical point can be seen clearly in
this figure.

3.4 Calculation of the critical point of the linear–zigzag tran-
sition: approach I.

In the thermodynamic limit, the critical point of a string of N →∞ ions can be found by
equating the trapping and outward Coulomb forces in the transverse direction. Assuming
that no axial confinement exists, i.e. ωz → 0, and so the axial ion spacing d is constant,

3The term of "phase transition" in condensed matter systems is only used in the thermodynamic limit
for which N →∞. However, in this thesis we follow the atomic physics literature on this topic [44, 49, 121]
and use this term for the structural transition in a system of N = 3− 43 trapped ions.
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Figure 3.4: (a) Experimental images of the equilibrium structures of a string of 41 174Yb
ions for different trap anisotropy values. Distances scaled to a0 = 24.4 µm. After passing
the critical point (αc ' 16) the zigzag configuration starts to form in the center. As the trap
anisotropy decreases further, the transverse displacement of the central ions becomes larger
and more ions join the zigzag configuration. In the laser image, the white line indicates
the scale of 10 µm, and the transverse separation of central ions (∆ypp0) is shown by two
arrows. (b): Numerical calculations of the transverse displacement vs. axial position for a
series of α values in a range of 9-16, shown by different colors.
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Figure 3.5: The transverse separation (peak to peak zigzag amplitude) of the two center
ions at z = 0 as a function of trap anisotropy. The points are the experimental data for
a string of 41 174Yb ions (see Fig. 3.4). The line shows ∆ypp obtained from numerically
determined equilibrium configurations for a range of α values. The critical point is αc ' 16.

the critical transverse frequency in an infinite homogenous string is [20]

ω2
y,c = 7

8πε0
ζ(3) Q

2

md3 , (3.14)

where ζ is the Riemann zeta function. This critical point applies to all points in the ion
chain simultaneously, unlike in the inhomogeneous case. Nevertheless, Eq. 3.14 can be used
to approximate the critical trap anisotropy αc for the central ions of a finite inhomogeneous
string. In this case, the constant ion spacing d is replaced by the central ion-ion separation
d0 in the linear configuration. Eq. 3.14 can be re-written in terms of the axial Coulomb
length a0 as :

ω2
0y,c = 7

2ζ(3)ω2
z

(
a0
d0

)3
. (3.15)

Equivalently, the critical trap anisotropy can be written as :

α2
0c = 7

2ζ(3)
(
a0
d0

)3
. (3.16)

According to the numerical calculations reported in [122], the central ion-ion spacing in a
linear string of N ions follows a power-law scaling as a function of N :

d0 = a0 ·
2.018
N0.559 . (3.17)

Finally, substituting the above equation into Eq. 3.16 results in a power-law relation for α0c

in terms of Nas follows:
α0c = 0.7155N0.8385. (3.18)
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Figure 3.6: The connected blue points are derived from minimizing the potential energy to
find the onset of zigzag structure using MAPLE. The red line is the power-law dependence
of α0c in terms of N as described by Eq. 3.18. The good agreement between the two lines
indicates that the power-law dependence (Eq. 3.18) is a fair approximation of the central
ion’s critical point.

A power-law dependence of αc on N was first theoretically predicted by Schiffer [44] and
Dubin [45], and subsequently confirmed experimentally by Enzer et al. [49]. The calculated
and measured power-law coefficient and exponent are slightly different in these reports,
but ultimately the values for αc are in good agreement for moderate number of ions. As
the power-law relation suggests, when the string gets larger, αc increases. In other words,
when the number of ions increases, the Coulomb pressure becomes stronger, and it requires
less of a decrease in trap anisotropy to transit from the linear to zigzag configuration. In
Fig. 3.6, the power-law dependence of αc on N as predicted by Eq. 3.18 (shown by the red
line) is compared to the numerical calculations of αc for ten different N values between 3
and 100 (shown by the connected blue points). The latter points are obtained by finding
the onset of the zigzag structure in numerically obtained ∆ypp vs. α plots (see Fig. 3.5).
The two results are in a good agreement over the range shown, which suggests that for the
central ions the power-law dependence of Eq. 3.18 is a good approximation for the onset
of linear-zigzag transition. It is also convenient for predicting the critical asymmetry for
N values of experimental interest, including N = 41− 43 used in our KZM measurements.
In an experiment with a string of N = 42 ions, we have measured αc = 16.5(1), while the
power-law predicts αc = 16.43 which is within the error bar of the measured value.

As pointed out earlier, the central ions cross the critical point of the linear-zigzag tran-
sition first, and so the zigzag configuration forms first at the center and spreads to the edges
of the ion crystal as α reduces. In other words, αc is a function of the axial position, and is
highest for the central ions and lower for the outer ions. The value of αc across the crystal
can be approximated by replacing 1/d in Eq. 3.16 by the axial density n(z) (Eq. 3.3). The
resulting critical point as a function of axial position αc(z) is as follows:

31



αc(z) = α0c ·
(

1− z2

L2

)3/2

. (3.19)

3.5 Calculation of the critical point of the linear-zigzag tran-
sition: approach II.

Another approach to understand the linear-to-zigzag structural transition and the value of
the critical anisotropy is through studying the vibrational normal modes of the system. This
is a very common approach in studying the structural phase transitions in condensed matter
systems. It was suggested by Cochran [123] in 1960 (although commented on earlier by
Raman, Anderson and others [124]) that the structural phase transition of some ferroelectric
materials is associated with a dynamical instability against a particular normal mode, called
the "soft mode". Later on, the concept of a soft mode was expanded to explain a wide range
of structural phase transitions (for a list of these phase transitions see [125]).

The soft mode concept: When a material is cooled from above Tc, the frequency of
a vibrational normal mode decreases to zero and the crystal becomes unstable against
excitations of this "soft mode". In an extension of the Landau theory, it was predicted that
the frequency of the soft mode behaves as [124]:

ω2 ∝
∣∣∣∣ TTc − 1

∣∣∣∣ . (3.20)

Similarly, the linear-to-zigzag structural transition in trapped ions occurs when the fre-
quency of the transverse zigzag mode (the "soft" mode) goes to zero [49]. Hence, the critical
point of the transition can be determined through an analysis of the frequency of the trans-
verse zigzag mode as a function of the trap anisotropy. To find the vibrational modes in a
string of N ions, the potential V (Eq. 3.10) can be expanded to second order in displacement
about the equilibrium configuration:

V = V (0)
∣∣∣∣
yeq ,zeq

+ V (1)
∣∣∣∣
yeq ,zeq

+ V (2)
∣∣∣∣
yeq ,zeq

. (3.21)

The first-order term is zero at equilibrium. Assuming that the ions’ oscillations about their
equilibrium positions, δzi = zi − zi,eq and δyi = yi − yi,eq, are small, the second-order term
will be [126]

V (2) = m

2

N∑
i=1

(ω2
yδy

2
i + ω2

zδz
2
i )− 1

8

N∑
i=1

N∑
i 6=j

Ki,j

[
(δyi − δyj)2 − 2(δzi − δzj)2

]
, (3.22)
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where Ki,j = ∂2V/∂zj∂zi|zeq is

Ki,j = 1
4πε0

· 2Q2

|zi,eq − zj,eq|3
. (3.23)

Using Eq. 3.22 for the potential, the equations of motion and normal modes can be derived
from Lagrange’s equations. For a linear equilibrium structure where {yi,eq = 0}, the axial
and transverse motions are decoupled for small oscillations. For up to 3 ions in the linear
regime the normal modes in the axial and transverse directions can be found algebraically.
For N ≥ 4, the normal modes can be found numerically (see [122] for convenient tables of
axial eigenfrequencies and eigenvectors of up to 10 ions in a linear array). On the other
hand, for ions in the equilibrium zigzag structure, the axial and transverse motions are
coupled, which leads to more complicated mode structures.

The results of a numerical calculation of the eigenvectors of all 8 normal modes of 4
trapped ions in 2-D and on both the linear and zigzag sides of the transition are shown
in Fig. 3.7. It can be seen that on the linear side, the transverse and axial motions are
decoupled, and the corresponding modes in the two directions (e.g. the axial zigzag and
the transverse zigzag modes) have matching eigenvectors. On the other hand, on the zigzag
side only for the center of mass mode are the axial and transverse motions decoupled.

The results of a numerical calculation of the frequencies of these normal modes as a
function of trap anisotropy α is shown in Fig. 3.8. It can be seen that the frequency of the
transverse zigzag mode goes to zero at α ' 2.04. This point marks the onset of the linear–
zigzag transition where the linear structure becomes unstable against the excitations of the
transverse zigzag mode. This value matches the critical point obtained from the numerical
analysis of the equilibrium structure in the previous section. Also, Fig. 3.8 shows that
on the linear side, the frequency ordering of transverse modes is opposite to that of axial
modes. For instance, in the transverse direction the zigzag mode is the lowest frequency
and the center-of-mass (COM) mode is the highest frequency, while in the axial direction it
is the opposite: the zigzag mode is the highest frequency and the COM mode is the lowest
frequency.

From the small oscillation analysis it can be shown that the frequency of the soft mode
(zigzag mode) on the linear side depends on α as follows [127]:

ωyzz = ωy

√
1−

(
αc
α

)2
, (3.24)

which is an analogous expression to Eq. 3.20.
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Figure 3.7: The numerical calculation results of the eigenvectors of normal modes in a string
of 4 ions on the linear (left column) and zigzag (right column) side of the L-Z transition.
On the linear side, the eigenvector components of a mode are the same in the axial and
transverse directions. It can also be seen that the axial and transverse motions are totally
decoupled on the linear side. On the zigzag side, only for the center of mass mode are the
axial and transverse motions decoupled.
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Figure 3.8: Numerical calculation of frequencies of 8 normal modes of Fig. 3.7 with the
same color code. All frequencies are scaled with respect to the transverse trap frequency
ωy. The frequency of the transverse zigzag mode goes to zero at α = 2.04, which defines
the critical point of the linear-zigzag transition.

3.6 Beyond the zigzag structure

As α decreases below αc, the amplitude of the zigzag structure increases, but there is an
upper limit for the transverse separation of ions. At sufficiently low values of α, further
transitions in 2-D into multi-row structures occur at a succession of critical values [44]. In
Fig. 3.9, the results of numerical calculations of equilibrium structures at lower α values are
presented for a string of 41 ions in 2-D ( relevant to our experimental setup). Figure. 3.9(a)
shows a zigzag structure at α = 6. The transition to a 3-layer structure happens at α ' 5.8
and Fig. 3.9(b) shows the 3-row structure in the center of the zigzag configuration at α = 5.6.
As α decreases further, the 3-row structure expands to the edges (Fig. 3.9(c)), and ulti-
mately turns into a 4-row structure (Fig. 3.9(d)). However in our experiment, we normally
observe the ions to de-crystallize shortly after forming a 3-row structure presumably due to
micromotion heating and weak transverse confinement.

3.7 Characteristics of the linear–zigzag "phase transition"

The classification of the linear-zigzag transition in ion traps was first investigated by Pi-
acente et al.. They consider an infinite number of identical charges interacting through
a screened Coulomb potential (Yukawa potential)4 and trapped in a transverse parabolic

4The screened Coulomb potential is defined as V (r) = Q
4πε0

· e
−r/λ

r
, where the exponential term is the

screening factor and its strength is controlled by the screening length λ.
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Figure 3.9: Numerical calculations of the 2-D equilibrium structure for four different values
of α in a string of 41 ions. (a) A zigzag structure. (b) A 3-row structure formed at the
center of the zgizag configuration. (The critical point of the 3-row structure i at αc ' 5.8)
(c) A deep 3-row structure. (d) A 4-row structure.

confining potential [53]. Using a combination of analytical calculations and Monte Carlo
simulations, they find the minimum energy structures as a function of the density (or trap
potential) and screening length of the Yukawa potential, and show that the linear–zigzag
transition is a second-order (continuous) phase transition. In a later study, Fishman et
al. use mean field approaches to derive a classical model describing the system’s behaviour
in the vicinity of the critical point, and demonstrate that the linear-zigzag transition is
second-order. Fishman et al. consider N identical charges in the thermodynamic limit
with a fixed inter-particle separation d and no axial confinement [54]. They expand the
potential V (Eq. 3.10) to fourth order around the equilibrium positions of the linear crys-
tal, and re-write the potential in terms of the normal-mode coordinates. In the vicinity of
the critical point, they study the dynamics of the transverse zigzag mode and the coupling
of the zigzag mode to other quasi-degenerate modes with a small wave-vector difference
compared to the zigzag mode (|δk|d � 1). In zeroth order of expansion in terms of |δk|d,
the third order term V (3) containing axial-transverse coupling vanishes, while the remain-
ing fourth order term V (4) involves only the coupling between transverse modes. For the
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latter couplings, in the vicinity of the critical point, where the frequency of the transverse
zigzag mode approaches zero, a frequency gap opens up between the zigzag mode and all
the quasi-degenerate modes. Therefore, close to the critical point the dynamics is controlled
by the transverse zigzag mode alone and the effective potential reduces to:

V = 1
2
(
ω2
y − ω2

y,c

)
φ2
zz + 1

4Aφ
4
zz, (3.25)

where the coefficient A is
A = 93

16ζ(5) Q
2

md5 , (3.26)

in which ζ is the Riemann-zeta function. Equation 3.25 has the same form as for any other
second-order phase transition. Above the critical point where ω2

y − ω2
y,c > 0, the potential

has a single minimum at φzz = 0 and the minimum-energy configuration is linear. When
the critical point is passed, ω2

y − ω2
y,c < 0, the potential has a double-well form with two

degenerate minima corresponding to the "zig" and "zag" configurations.
Both of the above references demonstrate that in the thermodynamic limit, the linear-

zigzag transition is a second-order type phase transition. However, Fishman et al. also
comment on the experimentally relevant situation of a finite number of ions in a trap
that provides both transverse and axial confinements. They note that in the vicinity of
the critical point, their theory is expected to provide qualitatively reasonable predictions
(though not quantitatively detailed). They point out two effects that arise from the axial
confinement in particular. First, the axial inter-particle separation d is not constant any-
more, which makes the transition inhomogeneous across the ion crystal, as already discussed
above. Second, the axial spacing will change in going from the linear to zigzag structure
as the ions move inward under the influence of the axial confinement. We next investigate
briefly the consequences of the small coupling of the zigzag mode to the axial motion.

Following a similar approach as Fishman et al., we approximate the effective potential
of the transverse zigzag mode near the critical point, for the smallest possible trapped ion
system consisting of only three ions. Expanding the 2-D potential V (yi, zi) (Eq. 3.11) to
fourth order around the equilibrium positions of the three ions on the linear side, we re-write
V (yi, zi) in terms of the linear normal mode coordinates φk using the transformation:

Xi =
2N∑
k=1

ψik · φk. (3.27)

Here, Xi are the 6 coordinates of N=3 ions in 2-D, and ψki are the normalized eigenvector
components of normal modes on the linear side as shown in the tables of Fig. 3.10. Fi-
nally, we use V (φk) to derive the dynamical equations for the normal modes, including the
nonlinear coupling. At first the set of equations appear complicated, but in the vicinity of
critical point the fast oscillating nonlinear coupling terms between the low-frequency zigzag
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Figure 3.10: The axial and transverse normal modes of three trapped ions, along with the
tables showing the eigenvectors of ith ion and kth normal mode ψik for each direction.

mode and the other modes can be discarded.5 With this approximation, the dynamics of
the transverse zigzag mode can be viewed as due to the following effective potential:

V = 1
2

(α2
c − α2) +

∑
k 6=yzz

ck〈φ2
k〉 − c1〈φzss〉

φ2
yzz + 1

4Aφ
4
yzz. (3.28)

Two coupling terms survive the averaging over the fast oscillations:
1– The coupling term related to the amplitudes of all the normal modes 〈φ2

i 〉 excluding φyzz.
This term leads to a weak thermal shift in the critical point αc, which can be accounted for
through the definition of a new critical value α′2c = α2

c +
∑
ck〈φ2

k〉. The effect of thermal
fluctuations on the linear-zigzag transition, including the effect of thermal fluctuations of
the transverse zigzag mode itself, is considered more rigorously elsewhere [60].
2– The other term is the coupling to the axial symmetric stretch (breathing) mode φzss.
This term accounts for the fact that due to the axial confinement, ions move closer axially
as the zigzag structure grows. On the linear side, α > α′c, the axial correction is zero,

5It is well-known that at certain specific trap asymmetries it is possible to hit nonlinear resonance coupling
of several modes, but these are not relevant here.
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〈φzss〉 = 0, so it does not affect the situation on the linear side, including the determination
of the critical point. The breathing mode acquires a non-zero dc component as the transition
is crossed. The average over fast oscillations implicitly assumes that the fast axial breathing
mode adiabatically follows the slow zigzag evolution. From the equations of motion and
assuming adiabatic following, we find 〈φzss〉 ∝ φ2

yzz, which shows that the change in axial
spacing is a higher order correction, and only affects the size of order parameter, but not
the soft mode frequency. The effect of the axial correction can be accounted for through
the definition of a new quartic coefficient A′. The effective potential in terms of α′c and A′

has the same form as Eq. 3.25:

V = 1
2(α′2c − α2)φ2

yzz + 1
4A
′φ4
yzz. (3.29)

In addition to thermal shifts, micromotion can also lead to small shifts in αc that depends
on rf trap frequency ΩT . In a trap like ours, this shift is about 1% for three ions [128]. Also
note that the adiabatic following of the breathing mode will break down for fast quenches
across the transition. Far past the critical point, as the order parameter grows quickly
it will excite the breathing mode impulsively, which can lead to defect losses and will be
discussed in Chapter 5.

By way of conclusion to this section, we note that like in any other second-order phase
transition, as we pass through the linear-zigzag transition, the potential changes from a
single-well to a double-well, which means there are two possible symmetry broken configu-
rations. In our case, these two configurations, "zig" and "zag", are differentiated by the sign
of the transverse displacement for even and odd numbered ions in a linear array. In one
configuration, the even numbered ions shift up and the odd numbered ions shift down, and
in the other configuration they shift oppositely. For a linear array of Doppler cooled ions
confined in a symmetric trap, when the linear-zigzag transition is crossed, thermal fluctu-
ations lead ions into one of the two configurations with equal probability. The presence of
these two equally probable configurations is a key feature of the linear-zigzag transition for
the studies of the Kibble-Zurek mechanism that will be described next.

3.8 Kibble – Zurek mechanism in ion–trap systems

The theory of KZM in ion-trap systems was first investigated by del Campo et al. in
2010 [61]. Along the lines of a more detailed follow-on paper by De Chiara et al. [129], we
now investigate the theoretical scaling of the number of defects with the quench rate across
the transition, and demonstrate a power-law dependence using the KZM. We derive the
power-law exponents in the two limits of under-damped and over-damped regimes for the
homogeneous and inhomogeneous scenarios.
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3.8.1 Homogenous KZM (HKZM) for trapped ions

With a similar approach as Fishman et al. [54], del Campo et al. expand the potential V of a
homogeneous ion chain to fourth order and re-write the potential in terms of the transverse
normal modes. By assuming that ions are pinned in the axial direction, they discard the
axial-transverse couplings (V (3) = 0). Considering the effects of the quasi-degenerate modes
with a small wave-vector difference compared to the zigzag mode |δkd| � 1, the effective
potential near the critical point is

V = 1
2
[
(ω2
y − ω2

y,c) + h2δk2
]
φ2
zz + 1

4Aφ
4
zz. (3.30)

This equation is valid for up to second order of expansion in terms of |δk|d � 1, which
assumes the amplitude of transverse oscillations is much smaller than the inter-particle
separation d. In the limit of |δkd| � 1, they transformed φzz into a continuum field φzz(z)
by a Fourier transform, and obtained the Lagrangian L =

∫
dzL(z), in which the Lagrangian

density L(z) has the same form of a Ginzburg-Landau theory:

L(z) = 1
2ρ
[
(∂tφzz(z))2 − h2(∂zφzz(z))2 − (ω2

y − ω2
y,c)φ2

zz(z)− 2Aφ4
zz(z)

]
. (3.31)

The coefficient h = ω0d
√

log 2 ' ω0d/2 with ω0 =
√
Q2/4πε0Md3, can be interpreted as

the speed with which a transverse perturbation propagates along the chain. The coefficient
A influences the value of the order parameter on the zigzag side and is a similar form to
that in Eq. 3.26. As usual in the KZM theory, it is assumed that the control parameter, in
this case the difference ω2

y − ω2
y,c, changes in a time interval of [−τQ, τQ] as follows:

ωy(t)2 − ω2
y,c = δ(t), (3.32)

in which δ(t) is taken to be a linear function of time,

δ(t) = −δ0
t

τQ
, 0 < δ0 � ωy,c. (3.33)

In this notation, the frequency of the transverse zigzag mode (soft mode) can be expressed
as
√
δ near the transition.

To add the effect of the laser cooling, it was assumed that the ion chain is in contact
with a thermal bath at a low temperature T , so the evolution of the energy distribution
of the modes satisfies the same form of a Fokker-Planck equation [130]. In this case, the
equation of motion of the field can be written in equivalent Langevin form as:

∂2
t φzz − h2∂2

zφzz + η∂tφzz + δ(t)φzz + 2Aφ3
zz = ϑ(t), (3.34)

40



in which η is the damping rate proportional to the laser cooling rate (see Section 4.3) and
ϑ(t) is the Langevin force associated with the thermal bath.

The first step in deriving the power-law scaling of the number of defects as a function
of quench time is to find the correlation length and relaxation time. Having the relaxation
time, the freeze-out time can be found, and finally the density of defects can be derived
from the size of correlation length at the freeze-out.

Correlation length: Based on the Ginzburg-Landau theory, the correlation function
evaluated for the linear-zigzag transition decays exponentially with a correlation length
of ξ = h/

√
δ [61]. Near the critical point, the correlation length can be approximated in

terms of the reduced control parameter ε as follows:

ε =
ω2
y,c − ω2

y

ω2
y,c

, (3.35)

ξ '
(

1√
8
dω0
ωy,c

)
1
|ε|1/2

. (3.36)

In trapped ion systems, the critical exponent of the correlation length ξ is therefore ν = 1/2.

Freeze-out time: The freeze-out time t̂ is the instant at which the the time remain-
ing to reach the critical point (or the time elapsed after crossing the critical point), is the
same as the relaxation time τ : ∣∣∣∣∣∣

δ
(
t̂
)

δ̇
(
t̂
)
∣∣∣∣∣∣ = t̂ = τ

(
t̂
)
. (3.37)

Using the expression of the relaxation time τ ( Eq. 3.39), and the linear variation of the
control parameter δ (Eq. 3.33), the following freeze-out time can be obtained in the over-
damped and under-damped regimes:

Over-damped : t̂o =
(
τQη

δ0

)1/2
;

Under-damped : t̂u =
(
τQ
δ0

)1/3
.

(3.38)

Relaxation time: Unlike the correlation length, the relaxation time depends on the
strength of the damping rate and can be evaluated in two limits of over-damped and under-
damped [131]. In the over-damped limit, η �

√
δ(t̂), the damping overcomes the oscillations

at freeze-out, while in the under-damped limit, η �
√
δ(t̂), the damping is weak and the

response of the system is determined by the soft mode frequency. In these two limits, the
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relaxation time τ is

Over-damped : τo '
η

δ
'
(

η

2ω2
y,c

)
1
ε

;

Under-damped : τu '
1√
δ
'
(

1√
2ωy,c

)
1
ε1/2

.

(3.39)

Note that in the under-damped case, the response time of the system is independent of the
system’s damping η and is governed only by the soft mode frequency

√
δ.

In trapped ion systems, the critical exponent of the relaxation time, τ , is µo = 1 in the
over-damped, and µu = 1/2 in the under-damped regime.

Density of defects: As noted in Chapter 2, the inverse of the correlation length at freeze-
out, ξ̂, sets the typical domain size at that point, and is proportional to the density of
defects formed. For the homogeneous trapped ion system, the density of defects in the two
cooling limits of over-damped and under-damped is therefore

Over-damped : no ∼
1
ξ̂o

= 2
ω0d

(
δ0η

τQ

)1/4

;

Under-damped : nu ∼
1
ξ̂u

= 2
ω0d

(
δ0
τQ

)1/3

.

(3.40)

As expected, the density of defects follows a power-law scaling as a function of quench time
τQ. For the homogeneous trapped ion system, the exponent of the power-law scaling is 1/4
in the over-damped, and 1/3 in the under-damped regime.

3.8.2 Inhomogeneous KZM (IKZM) for trapped ions

The homogeneous KZM description provided so far can be used to describe the dynamics of
uniformly arranged ions in a ring trap, or for the central ions of a sufficiently large string in a
linear Paul trap, for which the inter-particle separation stays (reasonably) constant. As we
discussed earlier in this chapter, the homogeneous case is not a good description in general
for ions confined in a linear Paul trap where the density of the ion chain is inhomogeneous
with the inter-particle separation, d(z), varying along the chain. When the ions’ spacing is
position-dependent, all the related parameters of the equation of motion (Eq. 3.34) become
position-dependent as well and the equation of motion can be written as:

∂2
t φzz − h(z)2∂2

zφzz + η∂tφzz + δ(z, t)φzz + 2A(z)φ3
zz = ϑ(t). (3.41)
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Using the local density approximation for axial density, the position-dependent coefficients
can be found in terms of the coefficient value at the center of the trap (z = 0). For instance
in an inhomogeneous ion string with half-length L, the critical transverse trap frequency as
a function of axial position is

ω2
y,c(z) = ω2

0y,c

(
1− z2

L2

)3

. (3.42)

A position-dependent critical point means that in an inhomogeneous linear ion string, as
we reduce the transverse trap frequency, the critical point is crossed at different times along
the chain. The center of the chain with the highest ωy,c value reaches the critical point
first and the outer ions follow afterward. In other words, the transition front propagates
from the center towards the edges with a position-dependent velocity known as the "front
velocity".

Front velocity vs. sound velocity:
Knowing the time dependence of the transverse trap frequency (Eq. 3.32), and the position
dependence of the critical frequency ωy,c, (Eq. 3.42), one can find the time tf at which an
ion in the position x reaches the critical point, or equivalently the time at which the front
reaches that position:

tf (z) =
τQω

2
0y,c
δ0

1−
(

1− z2

L2

)3
 . (3.43)

The front velocity can therefore be defined as:

vf (z) =
(
dtf (z)
dz

)−1
. (3.44)

In order for it to be possible to nucleate a defect, causality dictates that at the freeze-out
time, the front velocity should be greater than the sound velocity in the ion chain. In
other words, the front velocity should be faster than the speed with which perturbations
or information of the selected symmetry propagates to have causally disconnected domains
formed. The sound velocity at the freeze-out time can be approximated as the ratio between
the correlation length and the relaxation time at freeze-out:

v̂s ∼
ξ̂

τ̂
. (3.45)

Using the expression for the correlation length, ξ̂ = h(z)/
√
δ(z, t̂), and the freeze-out time

given by Eq. 3.39, the sound velocity at the freeze-out can be found.
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Figure 3.11: The ratio of front to sound velocity is shown for the left half of a 42-ion
chain, for different quench times in the range of 10-70 µs. The transverse trap frequency
ωy changes from 2π · 657 to 2π · 412 kHz, while the axial trap frequency ωz = 2π · 37.6 kHz
remains constant.

Nucleation region and density of defects:
In a homogeneous ion chain all the ions reach the critical point at the same time, i.e. the
front velocity is infinite. This means that the front velocity is always greater than the sound
velocity and defects can be nucleated anywhere along the ion chain. In an inhomogeneous
ion chain, the front velocity is finite and position-dependent, and the nucleation of defects
is only possible in the regions where vf > v̂s.

In Fig. 3.11, the ratio of the front velocity to sound velocity is shown for the left half
of a 42-ion string for different quench times τQ. It can be seen that for fast quenches
(τQ = 10, 15 µs), vf/v̂s > 1 across the whole crystal, so nucleation is possible anywhere
across the ion chain, like a homogeneous case. For the slower quenches, the condition of
vf/v̂s > 1 is satisfied in two separate regions around the center and near the edges of the
ion string. When the size of the nucleation region is being estimated, due to the high
loss rates of defects at the edges, the outer edges are ignored and only the central region is
considered. The size of the nucleation region 2Z∗, can be estimated by finding the boundary
point for which vf (Z∗)/v̂s(Z∗) = 1. The density of defects in the nucleation region of an
inhomogeneous ion chain can then be estimated for the limit of Z∗ � L, in the over-damped
and under-damped regimes as follows:

Over-damped : no ∼
1
ξ̂o

2Z∗

L
= 4L

3ω2
0y,cω

2
0d

2

(
δ0η

τQ

)
.

Under-damped : nu ∼
1
ξ̂u

2Z∗

L
= 4L

3ω2
0y,cω

2
0d

2

(
δ0
τQ

)4/3

.

(3.46)
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For the inhomogeneous trapped ion system, the exponent of the power-law scaling is 1 in
the over-damped, and 4/3 in the under-damped regime. Compared to the homogeneous
case, the density of defects is reduced in an inhomogeneous ion string, but the power-law
dependence on the quench rate is strengthened, and so should be easier to measure.

Homogeneous KZM, Inhomogeneous KZM and Doubled IKZM:
The ratio between the density of defects in the IKZM and HKZM is:

nIKZM
nKZM

= 2Z∗

L
. (3.47)

What the applicable scaling is -HKZM, IKZM or otherwise- in fact depends on the quench
rate, which controls the size of the nucleation region (2Z∗) In the limit of very fast quenches,
the front velocity (vf ∝ τ−1

Q ) is sufficiently fast that the size of the nucleation region
becomes the same as the crystal length. In ion crystals that are large enough to contain
several domains, the IKZM scaling therefore breaks down for fast quenches, and the HKZM
describes the situation best. In the other limit, for slow quenches or simply for small ion
crystals, the nucleation region is so small that it becomes of the same order, or smaller than
the domain size at freeze out 2Z∗ ≤ ξ̂. As a result, after the quench at most one defect is
nucleated and a doubling of the IKZM power-law is expected [79]. This is similar to the
doubling behaviour that has already been predicted in other systems including BECs [102,
103], and reported in experiments with small annular Josephson tunnel junctions [101]. In
between these two limits, the IKZM scaling holds.

Figure 3.12: Simulation results from Pyka et al. of the density of defects as a function
of quench rate in a string of 30 ions. The quench rate is varied by a factor of 150, and
the string is in the under-damped regime. All three regimes of defect nucleation can in
principle be accessed over this range. Reprinted by permission from Macmillan Publishers
Ltd: [Nature Communications] [8], copyright(2013).

Simulation results reported by Pyka et al. [8] show that in a string of 30 ions when
the quench rate is varied by a factor of 150, all three of the regimes of HKZM, IKZM and
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DIKZM (Doubled IKZM) will be spanned (see Fig. 3.12). (Pyka et al. were one of the other
two groups studying the KZM in ion trap systems at the same time as us). The power-law
scaling in the under-damped regime, changes from 1/3 in the HKZM regime to 4/3 in the
IKZM regime as the quench rate is slowed, and for much slower quench rates a doubling
of power-law scaling to 8/3 can be expected. As will be shown in Chapter 5, for strings of
10’s of ions and the range of quench rates used in our experiment and those performed by
two other groups at the same time, the experiments lie in or near the DIKZM regime.

The source of the damping mechanism in KZM studies with ion traps is laser cooling,
the strength of which defines if the system is in the over-damped or under-damped regime.
In the next chapter, we focus on the Doppler cooling mechanism for a string of 10’s of ions.
We also focus on the experimental details and complications that can arise in a larger string
of trapped ions.
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Chapter 4

Experimental Setup for KZM
Studies

In this chapter, we give an overview of different aspects of the ion trapping experimental
setup used for KZM studies. We start with the ytterbium ion and focus on the specific
isotope of 174Yb used in the KZM studies. A summary of the energy levels for the main
fluorescence/Doppler cooling transition and the fluorescence theory of the isotope are given.
Then, we explain the mechanism of Doppler laser cooling needed to crystallize the trapped
ions. The Doppler cooling is also the source of the damping mechanism in the KZM studies
with trapped ions. We note the complications that arise in Doppler cooling of large strings
of trapped ions in our setup. We also include a description of photo-ionization as an effective
technique for loading the isotopically pure ion crystals necessary for KZM studies. We then
describe the ramp setup used to quench rapidly across the linear-zigzag transition. Lastly,
we focus on the imaging system used for the defect detection, and the laser setup used in
the experiment.

4.1 Ytterbium ion

Trapped ion systems currently have many different applications, including quantum in-
formation and quantum simulation [20, 24, 132–138], precision spectroscopy for time and
frequency metrology [139–142], studies of interactions with ultra-cold atoms [143,144], and
studies of few-body "phase transitions" including the study of the non-equilibrium dynam-
ics [8, 64, 118, 145]. Depending on the application, different ions or isotopes of an ion can
be used in the ion trapping experiments. Commonly used ions include Ba+, Be+, Ca+,
Cd+, Mg+, Sr+ and Yb+. In this thesis, we use different isotopes of ytterbium ions, Yb+.
A more detailed study of the energy levels of Yb+, including hyperfine structure, and the
fluorescence theory is provided in my M.Sc. thesis and the associated publication [146,147].
Only a summary of those results is reported here.
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Figure 4.1: Yb+ energy levels, involved in Doppler cooling and fluorescence detection. The
primary transition is 2S1/2 − 2P1/2 at 369 nm. The 935 nm transition is used to clear out
the small leakage from the excited state 2P1/2 to 2D3/2 state. An additional low lying state
of 2F7/2 can be populated via collision process, and is depopulated through the 638 nm
transition.

Like other ions used in laser cooled trapped-ion experiments, Yb+ has a single active
electron which ensures that the ion has a simple level structure. This allows, in particular,
a relatively simple closed transition for laser cooling and fluorescence detection. Partial
energy levels of Yb+ are shown in Fig. 4.1. The primary transition used for Doppler
cooling and fluorescence detection is 2S1/2 − 2P1/2 at 369.5 nm with a natural linewidth of
γ/2π19.60(5) MHz [148, 149]. A small leak from the 2P1/2 excited state to the low lying
2D3/2 state occurs with a branching ratio of α = 0.005 [133] and requires the use of a
repump laser to maintain fluorescence. Clear-out of the 2D3/2 state is achieved via a 935.2-
nm transition to the 3D[3/2]1/2 excited state. The ion returns to the ground state with a
calculated branching ratio of β = 0.98 [150]. We assume the remainder of the branching
ratio is back to the 2D3/2 state. There is also a low lying and long-lived metastable 2F7/2

state that can be populated via collisional processes [151–153]. An additional repump laser
at 638.6 nm is necessary to depopulate the 2F7/2 state via a 1D[5/2]5/2 state from where it
can return to the cooling cycle.

4.1.1 Ytterbium Isotopes

Ytterbium has seven stable isotopes with different natural abundances, shown in Table. 4.1.
Of the isotopes listed in the table, 174Yb+ and 171Yb+ were used for the experiments
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Isotope Natural Abundance(%) Atomic Nuclear Spin Hyperfine Splitting [GHz]
168Yb 0.13 0 -
170Yb 3.04 0 -
171Yb 14.28 1/2 12.6
172Yb 21.83 0 -
173Yb 16.13 5/2 10.5
174Yb 31.83 0 -
176Yb 12.76 0 -

Table 4.1: Different isotopes of ytterbium atoms [154].

presented in this thesis. To study the Kibble-Zurek mechanism in ion trapping systems, we
used a string of 41-43 Doppler-cooled 174Yb ions. Doppler cooling of all the Yb+ isotopes
is easily achievable, but we choose to work with 174Yb+ for two main reasons. First and
most importantly, the 174Yb isotope has the highest abundance which makes the isotope-
selective loading process of the 41-43 ions fast and easy in practice. Second, for this type
of experiment which involves only Doppler cooling, 174Yb+ has the added advantage that
it has no nuclear spin and so lacks the complication of hyperfine structure. This simplifies
the experimental setup.

As a note in passing, for other experiments in the quantum regime, i.e. involving signifi-
cant motional ground state occupation, we will take advantage of the hyperfine structure in
171Yb+ to achieve resolved sideband cooling. A description of the energy levels of 171Yb+

and effects associated with the hyperfine structure are left to Chapter 7, where we discuss
Sisyphus cooling and resolved sideband cooling mechanisms. This chapter is focused on
174Yb+ and the KZM experiment.

4.1.2 Energy levels of 2S1/2 − 2P1/2 transition in 174Yb+

The primary 2S1/2− 2P1/2 transition of 174Yb+ is used for Doppler cooling and fluorescence
detection. Both the ground and excited states of this transition have a half-integer angular
momentum of J = 1/2 and two sublevels, mJ = ±1/2. All of our experiments are performed
in the presence of a magnetic field that defines the quantization axis. The energy shift of
sublevels due to the magnetic field is known as a Zeeman shift. The Zeeman shift of a |J,mJ〉
state at low fields is linearly proportional to the magnetic field strength B as follows [68]:

∆EB(J,mJ) = gJ ·mJ · (µB ·B) = gJ ·mJ · (~δB), (4.1)

where µB is the Bohr magneton and δB = µBB/~ is the Zeeman frequency-shift. The
Lande g-factor gJ is gJ = 2 for the 2S1/2 state and gJ = 2/3 for the 2P1/2 state. As a
result, the Zeeman splitting for the ground-state sublevels are three times larger than for
the excited state sublevels. The Zeeman resolved structure of the 2S1/2− 2P1/2 transition of

49



Figure 4.2: Zeeman resolved structure of the 2S1/2 − 2P1/2 transition for 174Yb+. Zeeman
splittings due to the magnetic field B are indicated in terms of δB = µBB/~. Laser detuning,
∆ is defined relative to the B = 0 transitions. The polarization resolved branching ratios
are 1/3 for π and 2/3 for σ transitions.

174Yb+ is shown in Fig. 4.2. In this figure, ωo is the frequency of the 2S1/2 − 2P1/2 atomic
transition in the absence of magnetic field, and ωL is the frequency of the laser. Laser
detuning is defined as ∆ = ωL−ωo. For efficient fluorescence and to make sure that the ion
is not optically pumped dark into one of the ground-state sublevels, one should avoid pure
circularly polarized light. In practice we use a linear polarization, which depending on its
orientation can drive a π transition or an equal combination of σ+ and σ−.

4.2 Fluorescence theory

The basis of Doppler laser cooling (and detection) relies on efficient fluorescence scattering.
The fluorescence theory of a single Yb ion is studied and reported in our previous works [146,
147]. In this section, I present a summary of our previous results to describe the fluorescence
behaviour of 174Yb+ and the requirements for achieving an optimum fluorescence rate.

The fluorescence rate on the 2S1/2−2P1/2 transition is defined as γPp, in which Pp is the
total population of the excited state 2P1/2, and γ is the natural linewidth of the transition.
To find the excited-state population, we calculated the steady-state solution of the Liouville
equation, describing the time evolution of the density matrix, as follows:

dρ

dt
= − i

~
[H, ρ]kl + Lρ, (4.2)
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where ρ is the density matrix, in which the diagonal terms represent the population of
the states, and the off-diagonal terms represent the coherences between different states.
The Hamiltonian H includes the interaction of the atom with the laser field and external
magnetic field. The last term, Lρ, represents the damping effects, which are exclusively due
to spontaneous emission in our case and may be calculated from Clebsch-Gordan coefficients
(see for example [155]).

Finding the steady-state solution of the Liouville equation analytically is in general com-
plicated for 174Yb+. To simplify the solution, we assumed the coherence terms between the
excited-state Zeeman levels, as well as between the ground state levels, are zero. (Numerical
simulation shows that these numbers are in fact very small and this assumption is valid over
a wide range of parameters). As long as the magnetic field is not too large (δB . γ/2),
to a good approximation theoretically, the excited-state population can be simplified to a
saturation form analogous to a two-level system as follows [146,147]:

Pp =
1/2∑

MJ=−1/2
Pp(MJ) = 1

2 ·
Ω2

0
6

∆2 +
(

Γ174
2

)2 . (4.3)

In this equation, Ω0 is the laser Rabi frequency, which is a function of laser power, ∆ is the
laser detuning, and Γ174 is the effective linewidth.
Rabi frequency Ω0Ω0Ω0: The Rabi frequency and associated "on-resonant saturation parame-
ter" s0 are defined in terms of the bare 2S1/2 − 2P1/2 fine-structure transition as follows:

Ω0 ≡
√
s0
2 γ , s0 = I

Isat
, Isat = πhc

3λ3 γ. (4.4)

In this equation, the natural linewidth γ/2π = 19.60(5) MHz [148, 149], and I is the laser
intensity. The saturation intensity Isat is only a function of the natural linewidth γ and
wavelength λ of the transition, which to a very good approximation are the same for different
isotopes. The saturation intensity of the 2S1/2−2P1/2 transition of Yb+ is Isat =51 mW/cm2.
Effective linewidth Γ174Γ174Γ174: The effective linewidth for a linearly polarized laser field is
extracted in the limit of large detuning ∆ → ∞, and is a function of Rabi frequency Ω0,
Zeeman shift δB, natural linewidth γ, and θBE . The latter is the angle between the laser’s
electric field and the external magnetic field. The effective linewidth is approximated as
follows1:

(Γ174
2

)2
= Ω2

0
6 + γ2

4 ·

(
1 + 16δ2

B
9γ2

)(
1 + 64δ2

B
9γ2

)
1 + 16δ2

B
9γ2 · (3 cos2 θBE + 1)

(4.5)

1The effective linewidth is extracted at large detunings, but the shape of the polarization dependance is
not well modeled at high detunings. The absolute systematic error however remains small, below 10% over
the magnetic field range used. The approximated form coincides with the exact solution at θBE = 0o, 90o
In our experiment, θBE ≈ 0o.
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Figure 4.3: The excited state 2P1/2 population of 174Yb+ is shown as a function of saturation
parameter (laser intensity) for three different detuning values, ∆/2π = {0,−10,−33} MHz,
and an optimized θBE = 0o. The Zeeman shift is δB/2π = 8.2 MHz and γ/2π=19.6 MHz.

The peak of the excited-state population, and so the maximum fluorescence, occurs at
θBE = 0o, which corresponds to a π–polarized laser field. At this optimum point the
effective linewidth simplifies to:

(Γ174(θBE = 0)
2

)2
= Ω2

0
6 + γ2

4 + 4δ2
B

9 (4.6)

The behaviour of the excited-state population Pp as a function of saturation parameter s0,
for three different detuning values ∆/2π = {0,−10,−33} MHz and an optimized θBE = 0o

is shown in Fig. 4.3. In this plot, the Zeeman shift is set to δB/2π = 8.2 MHz, which is
equivalent to a magnetic field of B = 5.9 G that is used in our KZM experiment. As can be
seen in the figure, increasing the saturation parameter, or equivalently the laser intensity,
increases the fluorescence until saturation is reached. The maximum achievable population
is 0.5, in which the population of excited and ground states are equal. On resonance, the
ion reaches half the maximum value at saturation parameter s0 = 3, or an effective value
of s0eff = s0/3 = 1, where s0eff is equivalent to the on-resonance saturation parameter of
a two-level system.

Note that the leakage to the low lying 2D3/2 state is ignored in the calculation of the
excited state population Pp. For a saturated UV transition (Pp = 0.5), and near-optimal
935.2-nm laser parameters, numerical simulations indicate that repump effects comprise a
maximum of ∼ 5% correction to the fluorescence, which can be neglected.

The UV fluorescence that we measure experimentally, ηeff · γPp, is proportional to the
fluorescence (scattering) rate γsc = γPp of the excited state and the collection efficiency of
our imaging system, which is about ηeff ' 3× 10−3. The imaging setup in this experiment
is described as a part of the experimental setup at the end of this chapter.
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4.3 Doppler cooling

Doppler cooling is a laser-cooling technique that applies light scattering from a laser beam
to slow down the motion of atoms through a velocity resisting force. We start with the
simple case of Doppler cooling of a free atom, and then expand the idea to the case of a
single trapped ion. Finally we point out the complications that arise in Doppler cooling of
a large string of ions.

4.3.1 Doppler cooling of a single free atom

A free atom with an atomic transition of frequency ω0 and moving with a constant velocity
~v is irradiated by a laser beam of frequency ωl. In the reference frame of the atom, the
laser’s frequency is Doppler shifted by ωl − ~kl.~v, in which ~kl is the laser beam’s wave
vector. Doppler cooling can be achieved when ωl + klv is near resonance with the atomic
transition. In this case, photons moving in the opposite direction to the particle, and with
frequencies tuned below the atomic resonance (red detuned), will be absorbed. During the
absorption-emission process, the atom first receives a momentum kick (recoil) of ~~kl from
the absorbed photon, followed by another recoil from the spontaneously emitted photon.
However, the angular distribution of spontaneous emission has symmetry, such that the
total recoil momenta over a large number of spontaneous emission processes averages to
zero. Averaged over a large number N of scattering events, the atom loses a net momentum
of N~~kl due to the total momentum kicks from absorbed photons moving in the opposite
direction to the atom.

The absorption-emission process occurs at the scattering rate γsc = γPe, given by the
decay rate γ (natural linewidth), and the probability of being in the excited state Pe (excited
state population). Momentum kicks are received at the same rate, and on average the atom
experiences a force as follows: 〈∆p

∆t

〉
≈ F = ±~kl · γsc, (4.7)

where the +(−) sign refers to an atom moving along (opposite to) the laser’s propagation
direction. For small atom velocities, where the Doppler broadening is low (klv � γ), the
average force can be approximated as [68]:

F ≈ F0(1 + κv); F0 = ~kl · γsc0. (4.8)

In this equation, F0 is the averaged radiation-pressure force exerted on a stationary atom
(v = 0). The damping coefficient κ is proportional to detuning ∆, and its sign follows that
of the detuning. For negative detunings, the force becomes velocity resisting (damping),
leading to a loss in kinetic energy (i.e. the atom cools). To ensure cooling of a free atom in
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1-D, two laser beams are required to provide damping forces for both positive and negative
directions. Even when the two laser beams are provided, the atom cannot be cooled down
to zero energy through Doppler cooling. Although the recoil momenta average to zero in the
spontaneous emission process, the recoil energies that the atom receives, Er = ~2k2

l /2M , do
not average to zero. The atom goes through a random walk in momentum space with each
step being equal to the momentum of the emitted photon, and there is a diffusion of p, with
〈∆p〉 = 0 while 〈∆p2/2M〉 6= 0. In addition to the emitted photons, absorbed photons also
contribute to the recoil energy, and the atom gains a kinetic energy of 〈∆p2/2M〉 = 2NEr
(i.e. it heats) after N absorption-emission processes 2. When the heating and cooling
effects balance, an equilibrium state will be attained with the lowest achievable energy
called the Doppler cooling limit. The minimum Doppler energy is a function of linewidth
and detuning, and is optimized when the detuning is set to half a linewidth. In this case,
the average kinetic energy, which for an ensemble of atoms can be expressed in terms of a
temperature through 〈EK〉 = 1

2kBTD, simplifies to :

TD = ~γ
2kB

. (4.9)

As an example, in an atomic sample with an atomic transition of linewidth γ = 2π · 20
MHz, a minimum Doppler temperature of TD = 0.48 mK can be expected.

4.3.2 Doppler cooling of a single trapped ion

The Doppler cooling of an ion confined in a harmonic trap has some differences compared
to a free atom. For instance, due to the oscillatory motion of the trapped ion, a single
near-resonant laser beam is sufficient to cool the ion. Moreover, depending on the strength
of confinement, the cooling with a near resonant beam breaks up into two regimes: the weak
and tight binding regimes [156]. The weak binding limit corresponds to ωi � γ, where ωi
is the secular trap frequency along the ith direction, i ∈ {1, 2, 3}. In this limit, the Doppler
cooling can be modeled as if the ion was free during the scattering process, since the decay
rate is much faster than the oscillatory motion of the trapped ion. In addition, the energies
are high enough that the quantization of energy levels of the trap are not relevant and a
semiclassical model is adequate. In the other limit, where the ion is bound very tightly,
ωi � γ, the above free-atom picture is not applicable and the cooling can reach well below
the Doppler limit, including ground-state cooling.

In our KZM experiments, we operate in the weak binding regime, where the transverse
trap frequency ωt/2π ' 0.6 MHz is small compared to the linewidth γ/2π = 19.6 MHz. A
detailed derivation of the Doppler cooling mechanism for a trapped ion is reported by
Wineland and Itano [156, 157]. In this section, we present a summary of these results for
the specific case of 174Yb+ in the weak binding limit.

2Properly, spontaneous recoil energy is distributed over three dimensions (see next section)
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During an absorption-emission event, a single trapped ion with massM absorbs a photon
with a wave vector ~kl and frequency ωl, and emits another photon with a wave vector ~ks and
frequency ωs , resulting in a velocity change from ~v to ~v′. The conservation of momentum
and energy require:

M~v′ + ~~ks = M~v + ~~kl, (4.10)
1
2Mv′

2 + ~ωs = 1
2Mv2 + ~ωl. (4.11)

In the non-relativistic limit and for near-resonant laser beams, after a scattering event, the
change in kinetic energy associated with motion in the ith direction can be approximated
as3:

∆Eki = 1
2Mv′i

2 − 1
2Mv2

i = Er(k̂2
li − 2k̂lik̂si + k̂2

si) + ~(kli − ksi)vi. (4.12)

In this equation, Er = (~k0)2/2M is the recoil energy, and k̂li and k̂si are the ith components
of the unit vectors k̂l and k̂s. While k̂l has a fixed direction defined by the laser beam, k̂s
changes randomly from one scattering event to another. The average of kinetic energy
change in the ith direction per scattering event is

〈∆Eki〉s = Er(fli + fsi) + ~klivi, (4.13)

where fli and fsi reflect the average components of the absorption and emission recoil kicks
along the ith direction, and are defined as:

fli = k̂2
li fsi =

∫
Ps(k̂s)k̂2

sidΩ. (4.14)

in which Ps(k̂s) is the probability of emitting a photon in the k̂s direction.
We briefly note in passing that the above derivation breaks up the cooling of the 3D

motion of a trapped ion into three independent 1D cooling effects. This assumes that we can
ignore correlations between motion along different axes. We will pursue a similar approach
later when we consider a model for Sisyphus cooling for a trapped ion.

At this point we focus specifically on 174Yb+ and find the rate of kinetic energy change
during Doppler cooling. This leads us to the definition of the cooling and heating rates, as
well as the minimum steady-state energy or Doppler temperature. The change in kinetic
energy occurs at the scattering rate γsc = γPp, in which the population of 2P1/2 excited
state, Pp, is given in Eq. 4.3. Note that the detuning ∆ in that expression will be replaced
by ∆ − ~kl.~v − ωr to account for the first-order Doppler shift and recoil shift. The recoil
frequency is defined as ωr = Er/~. Averaging over the velocity distribution of a trapped

3In this equation it is assumed (~kl)2/2M = (~ks)2/2M = (~k0)2/2M = Er, based on two approxima-
tions:
1- For near resonant laser beam, ∆ = |ωl − ω0| ∼ γ � ω0, which leads to ωl ≈ ω0 or equivalently kl ≈ k0.
2- In non-relativistic limit, | ωl − ωs |∼ ωr � γ, with ωr being the recoil frequency. As a result, kl ≈ ks.
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ion, one can find the following rate equation for the kinetic energy of a single 174Yb trapped
ion:

Ėki = 〈γPp〈∆Eki〉s〉v = γ

2 .
Ω2

0
6

〈
Er(fli + fsi) + ~klivi

(∆− klivi − ωr)2 + (Γ174
2 )2

〉
v

. (4.15)

In the final stages of cooling, where the Doppler shift is much smaller than the linewidth,
Eq. 4.15 simplifies to

Ėki = γsc0

(
Er(fli + fsi) + 2~k2fli∆〈v2

i 〉v
∆2 + (Γ174

2 )2

)
, (4.16)

in which the scattering rate at zero velocity γsc0 is

γsc0 = γΩ2
0/12

∆2 + (Γ174
2 )2 . (4.17)

Using the fact that Eki = 1
2M〈v

2
i 〉v, the right hand side of Eq. 4.16 can be re-written as a

linear function of the energy, from which the cooling rate and steady-state energy can be
derived:

Ėki = −ΓcEki +RHeat, (4.18)

Eki−ss = RHeat
Γc

, (4.19)

where

RHeat = γsc0Er(fli + fsi), (4.20)

Γc =
8fliωr(−∆s0eff )(γ2 )3(

∆2 +
(

Γ174
2

)2
)2 . (4.21)

The heating term RHeat arises from the recoil energy gained by the ion from absorbed and
scattered photons. The cooling term of the energy is due to the velocity-resisting force
F = −κv associated with the Doppler effect. The damping rate η = κ/m, introduced in the
KZM theory of Chapter 3, is related to the cooling rate as η = Γc/2. The maximum cooling
rate is achieved when the detuning is set to half of the Zeeman broadened linewidth ∆ =

−Γ(0)
174 = −

√(γ
2
)2 +

(
2δB

3

)2
, and the effective saturation parameter is s0eff = 2

(
Γ(0)

174
γ

)2
. At

these optimum values, the cooling rate is:

Γc,max = ωrfli

(
γ

Γ(0)
174

)
. (4.22)
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The minimum steady-state kinetic energy is achieved when ∆ = −Γ174/2. At this optimum
detuning, the minimum achievable average kinetic energy, i.e. the Doppler limit, will be:

Eik−ss = (1 + fsi/fli) ·
~Γ174

8 . (4.23)

The Doppler limit depends on the laser direction and angular distribution of spontaneous
emission relative to the trap direction being cooled through the values of fli and fsi. For
a J = 1/2 −→ J ′ = 1/2 transition, the angular distribution of spontaneous emission is
isotropic, which means fsi = 1/3 [158]. If the cooling beam is perpendicular to the ith

principal axis of the trap (fli = 0), there will be no cooling in that direction and the recoil
heating will lead to an energy divergence in that direction (Eki−ss −→ ∞). In order to
have 3-D Doppler cooling, the cooling laser’s wave vector needs to have components along
all principal trap axes. In the case of isotropic emission, the optimum Doppler limit is
obtained at fli = fsi = 1/3, resulting in a minimum kinetic energy of Eki−ss = Γ174/4 in
each direction. At a low laser power (Ω0 � 1) and small magnetic field (δB � γ), the
effective linewidth approaches the natural linewidth (Γ174 → γ), and Eki−ss = ~γ/4, which
agrees with the typical Doppler-cooling limit discussed above. In ion trapping experiments
it is more common to use the average vibrational quantum number n̄ in the harmonic trap
rather than temperature to define how cold an ion is. The total energy E = 2Ek from
equipartition can be used to estimate n̄ from Ei = ~ωi(n̄+ 1

2).

Doppler cooling parameters in our setup:

Laser beam’s direction: The Doppler cooling beam lies in a horizontal plane at an
angle of 45o with the axial direction so that ~kl = {1

2 ,
1
2 ,

1√
2}kl, corresponding to fli ∈

{1/4, 1/4, 1/2}. The direction of the beam, which is determined by optical access to the
trap, ensures cooling along all trap axes.
Trap frequencies: The KZM experiment is performed at trap frequencies of:
{ωx, ωy, ωz} = 2π{0.679, 0.658, 0.037} MHz.
Doppler cooling limit: In an optimum case of low laser power and no magnetic field,
the minimum steady-state energy of a trapped 174Yb ion along each direction is Ei−ss ∈
{0.6, 0.6, 0.4}~γ. For the given trap frequencies, the minimum steady-state n̄ achieved
through Doppler cooling is n̄i−ss ∈ {17, 18, 200}, which clearly shows that a classical treat-
ment of the motion is indeed appropriate.
Damping (cooling) rate: The optimum cooling rate according to Eq. 4.21, along each
direction is: Γic,max ∈ {1/4, 1/4, 1/2}ωr with the recoil frequency ωr/2π = 8.4 kHz. The
optimum damping time η−1 for each direction becomes {38, 38, 19} µs. In our KZM studies,
the transverse frequencies are normally changed by ∆ωy ' 2π ·450 kHz, over a quench time
of 2τQ = 10−70 µs. The soft mode frequency at freeze out

√
δ(t̂) = (δ0/τQ)1/3 (see Chapter
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3, Section 8) is (1 µs)−1, which compared to the optimum damping rate of (38 µs)−1, is
much faster. This means that our experiment is in the under-damped regime. Note that the
damping time of 38 µs is obtained for the transverse motion of a single ion in the optimum
cooling situation. The damping time in the context of the KZM is related to the damping
of the transverse zigzag mode in a string of ions. In practice, considering the complications
of the larger strings and experimental imperfections, the damping time is expected to be
even longer.

4.3.3 Doppler cooling of a string of trapped ions

When a Doppler cooling beam illuminates an ion string uniformly, the recoil kicks from
each ion are distributed throughout the crystal by the Coulomb interactions. Depending
on the participation of an ion in a given vibrational mode, the cooling effect of a given
ion will have different effects on each collective vibrational mode of the string. Morigi and
Eschner [130] have studied the laser cooling of an ion string theoretically. For thermal energy
in the Doppler cooling regime, the theory is not particularly simple but the conclusion is a
Fokker-Planck equation for the energy distribution of the modes is derived and it is shown
that the Doppler laser cooling of an ion string is essentially the same as for the single ion.
For uniform illumination, the Doppler limit and cooling rate for the total energy of the
crystal match that of the single-ion case. However, there are some practical complications
that can arise as we Doppler cool a large string of ions. In this section, we investigate some
of these complications and their possible effects on the cooling outcome.

In order to have a uniform cooling beam across the crystal, we use a combination
of spherical and cylindrical lenses to make a beam that is focused transversely, but more
extended axially, without excessive scatter on the endcaps. The full width at half maximum
(FWHM) of the cooling beam is 280 µm in the axial direction. We chose to limit our
experiment to a string of maximum 43 ions, which has a similar length to the FWHM over
the range of trap frequencies used in the experiment. Another practical complication of the
large ion strings in a linear Paul trap is the presence of the excess micro-motion. For our
trap design, the two needles used for endcaps result in non-negligible leakage of rf electric
field into the axial direction with an amplitude that increases towards the endcaps. For a
small crystal of a few ions, the micro-motion axially can be minimized by optimizing the
position of the crystal. However, for larger crystals (N > 10) that extend over significant
axial distance, the micro-motion is unavoidable and the ions on the outer edges may end up
with significant micro-motion. The excess micro-motion results in a linewidth broadening
and reduction in scattering rate. The other parameters such as the cooling rate and cooling
limit that depend on scattering rate are also affected. In the presence of micro-motion,
whose amplitude is characterized by a modulation index β, the excited state population of
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Figure 4.4: The effect of micro-motion on (a) scattering rate, (b) cooling rate, and (c)
cooling limit, for three cases of, no micro-motion (β = 0), medium micro-motion (β = 0.75)
and large micro-motion (β = 3). In these plots, parameters used are rf trap frequency
ΩT /2π = 11.75 MHz, Zeeman frequency δB/2π = 8.24 MHz, θBE = 6o, effective saturation
parameter s0eff = 2.7, γ/2π = 19.6 MHz, and wavevector projection ki = 1/2 i.e. for
a transverse trap axis so the vertical axes of all the three plots are normalized to their
optimum values.

Eq. 4.3 changes to [120]:

Pp(mm) = 1
2 .

n=∞∑
n=−∞

(Ω2
0/6)J2

n(β)
(∆ + nΩT )2 + (Γ174/2)2 , (4.24)

where Jn is the Bessel function and ΩT is the rf trap frequency. Figure 4.4 shows the effect
of micro-motion on scattering rate (γsc = γPp(mm)), cooling rate, and cooling limit for a
transverse trap axis as a function of detuning. The numerical values of the parameters used
in these plots are the same as the experimental values. The plots include three cases of
no micro-motion (β = 0), a medium micro-motion (β = 0.75) and a large micro-motion
(β = 3). It can be seen in Fig. 4.4(a) that as the amplitude of micro-motion increases,
the linewidth broadens and sidebands at ±nΩT (n = 1, 2, 3, ..) develop, while the carrier’s
strength decreases. (The sidebands are not resolved in Fig. 4.4(a)). The reduction in the
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Figure 4.5: Samples of fluorescence measurements as a function of detuning ∆ for (a) an
ion in the middle of a 51-ion string, and (b) an ion close to the edge of the string. Fitting
the fluorescence rate of an ion to Eq. 4.24 gives the value of β at the position of that ion.
(c) The modulation index β as a function of axial position. An image of a 43-ion string is
overlapped on the x-axis for reference.

scattering rate leads to a reduction in cooling rate or even a heating effect at detunings
∗below∗ the transition resonance (see Fig. 4.4(b)). Figure 4.4(c) shows that when micro-
motion is large, the minimum steady-state energy is not obtained at half a linewidth and
larger detunings are needed.

To find out the magnitude of excess micro-motion amplitude across the crystal, we
measured the fluorescence rate of individual ions with camera images as a function of
detuning in a string of 51 ions. The values of modulation index β were obtained from
fitting the fluorescence measurement to Eq. 4.24. The fits use a fixed value for the rf
frequency (ΩT /2π = 11.75 MHz), unmodulated linewidth (Γ174/2π = 35 MHz, determined
by a separate measurement) and the resonance location. The laser power is at a low value
to limit saturation and the only fit parameters are peak value and β. In Fig. 4.5, we show
the variation of β as a function of axial position (or equivalently ion number). Two samples
of fluorescence measurements for the central ion and the outer edge one is also shown in
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Figure 4.6: The simulation results of (a) normalized cooling rate and (b) normalized steady-
state kinetic energy across a crystal of 42 ions for a detuning of ∆/2π = −32.6 MHz,
s0eff = 2.7 at the center, and a laser beam FWHM=280 µm. The other parameters are
similar to Fig 4.4. The estimated cooling rate is uniform to a factor of 2 or better across
the crystal. The cooling rate is normalized to Γc,max given by Eq. 4.22 and the steady-state
energy is normalized to minimum Ek−ss given by Eq. 4.23.

this figure. The on-resonance scattering rate reduces by a factor of ∼ 10 as we go from the
center to the edges. As can be seen in the β vs. position plot, micro-motion is nulled for
the central 15 ions but starts to increase linearly for the ions farther out. The central value
from fits is systematically sensitive to the unmodulated linewidth used in the fits. However,
a separate measurement of micro-motion using a much more sensitive technique of photon
correlation indeed shows that the ion at the center of crystal has a modulation index < 0.1
(We did not use this technique for the plots since it would be more labor intensive and
require using a single ion moved to different positions). The β vs. position plot can be used
as a ruler to estimate the excess micro-motion on the edges of a 41-43 ion string. An image
of a string of 43 ions is also included in Fig. 4.5, from which we can deduce that the index
of modulation increases to a maximum of β ' 3 for ions on the outer edge.

Based on the results of cooling rate and cooling limit shown in Fig. 4.4, and considering
the maximum index of modulation of β ' 3 on the edges of a 43-ion string, we chose to
operate at a detuning of ∆/2π = −32.6 MHz to provide a reasonable and uniform cooling
rate and steady-state energy across the crystal. The simulation results of the normalized
cooling rate and steady-state energy across a crystal of 42 ions are shown in Fig. 4.6. With
an effective saturation parameter of s0eff = 2.7 at crystal center, the estimated cooling
rate is uniform to a factor of 2 or better across the crystal. Due to these adjustments, the
cooling rate becomes slower by a factor of ∼ 2.5, corresponding to a value of 200− 400 µs
including estimated spatial variation of the cooling rate. So, we are a bit further in the
under-damped regime. The decrease in cooling rate will also have some impact on losses of
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kinks once formed. Having dealt with the damping rate and having identified the cooling
limit in a string of 41− 43 trapped ions, we next describe the loading process to achieve an
isotopically pure crystal with a given number of ions.

4.4 Efficient loading of a large pure ion crystal

For the KZM experiments, it is very important to use an isotopically pure ion crystal,
since the presence of even one non-fluorescing ion at the center of the crystal biases the
zigzag into one of the symmetry broken states and thus reduces the rate of defect formation
significantly (see Chapter 5). Also we aimed for tight control of the ion number in our
experiment to limit its effect on our results. As a result, we require an efficient means
to load an isotopically pure crystal of a known number of ions. This is done by photo-
ionization loading of 174Yb+ from an effusive atomic beam. The details of the atomic beam
production and photo-ionization process is provided in my M.Sc. thesis [146]. In summary,
a 398.911-nm beam is used to resonantly excite neutral Yb atoms from the 1S0 to 1P1

state with reasonable selectivity (the isotope shifts are around hundreds of MHz). Then,
an outer electron in the 1P1 state is directly excited to the continuum by absorbing a 369.5-
nm photon. To improve the isotope selectivity of the photo-ionization process, the 399-nm
beam is directed nearly perpendicular to the atomic beam to minimize Doppler shifts, and
it is maintained at a relatively low power to limit saturation broadening of the 1S0 →1 P1

transition. To obtain efficient loading, we use the 369-nm Doppler/detection beam and a
beam with several mW of power from an additional Ti-Sapph beam to provide the second
photon of the photo-ionization process.

To load a crystal of 42 ± 1 174Yb ions, we set the trap’s rod voltages to the onset of
the zigzag transition for a slightly smaller string (such as ∼ 38 ions). Then we turn on
the ytterbium oven that produces the effusive Yb atomic beam, and introduce the photo-
ionization beam into the trap. A video-like monitor of the center of the trap is provided by
our CCD camera in "focus" mode, running at maximum frame rate. The 174Yb ions loaded
into the trap form a linear crystal whose length increases as more ions are added to the
crystal. When the number of trapped ions surpasses N = 38, a zigzag structure appears.
At that point, we stop the loading process by turning off the oven and blocking the photo-
ionization beam, and wait for a few minutes to allow any extra loaded ions to cool down
and join the crystal. We then count the number of ions. If the total number of ions is lower
than 42-43 ions, we re-start the loading process with a reduced photo-ionization power to
slow down the loading rate. This allows us to top up the number of ions to 42-43. On the
other hand, if the number of loaded ions is slightly higher than 43, we found it convenient to
"boil off" an ion or two by increasing the rod voltages close to the point where the trapping
potential is lost. A pure 42-43 ion crystal can be used for 2-3 hours of experiment. However
during this time, one or two trapped 174Yb ions from time to time will form a molecular ion
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Figure 4.7: (a) To quench across the linear-zigzag transition, we change the transverse trap
frequency by changing the voltage of the rods linearly over a quench time of 2τQ. (b) The
single-ion calibration of the secular transverse trap frequency ωy with the applied dc rod
voltage Vdc. The line indicates the fit to Eq. 4.25. (c) The transverse quadrupole potential
is produced by applying +V (t) and −V (t) to each pair of opposing rods.

through collision with a background gas atom. We are able to use the high power Ti-Sapph
beam to dissociate the molecule and recover the pure crystal. Additionally, ions leave the
trap occasionally, in which case we re-load to top up the crystal.

Having loaded a pure ion crystal, the next step for performing a KZM experiment is the
implementation of the quench across the linear-zigzag transition.

4.5 Ramp across linear–zigzag transition

To study the KZM in an ion-trap system, we start with a linear string of 41-43 Doppler
cooled 174Yb ions, then rapidly quench across the linear-zigzag transition, and finally image
the zigzag structure to see if any defect was formed. We then ramp back to the linear
structure and repeat the process with the same ion string to accumulate more statistics.
To quench across the linear-zigzag transition, the ratio between the transverse and axial
confinement needs to be reduced (α ≡ ωy/ωz) to pass the critical point (αc). This can be
achieved by weakening the transverse confinement or equivalently strengthening the axial
confinement. In keeping with the theoretical proposal [61], we chose to reduce the secular
transverse trap frequency and keep the axial frequency constant to maintain a constant axial

63



spacing until the transition point. The transverse secular trap frequencies are controlled by
applying a transverse dc quadruple potential via the trap rods. The transverse secular trap
frequency along the y axis scales with the applied dc rod voltage as:

ω2
y(t) = ω2

y0

(
1− V (t)

V0

)
, (4.25)

where the constants ωy0 = 658(1) kHz and V0 = 7.95(2) V are obtained from a single-ion
calibration measurement. (See a sample of these calibrations in Fig. 4.7(b)). In this case,
δ(t) = ω2

y(t) − ω2
y,c represents the time-dependent change of the control parameter (see

theory of KZM Chapter 3, section 8) and is proportional to rod voltage. A linear voltage
ramp is equivalent to a linear change in δ(t) as assumed in the KZM theory. The transverse
trap frequency along the x-axis, ωx, increases in an equivalent way to ωy with the dc rod
voltage. To generate a transverse quadruple potential, it is sufficient to apply V0 to two
opposing trap rods. Instead we make use of all four rods as shown in Fig. 4.7(c). In this
way, we get twice the effect for the same voltage change, which extends the range of the
voltage card we use. More importantly, the effect of the electric field leaking into the axial
direction is eliminated to the lowest order, and the axial frequency stays almost constant.
To correct the residual axial effect, we add some corrections to the endcap voltages during
the ramp.

To obtain the necessary voltage ramps, we use a computer running LabView software
to control the output of a National Instrument PCI-6733 board. The NI PCI-6733 has 8
high-speed analog outputs, which is enough number to control the voltages of all four trap
rods and two endcaps independently. The voltage range of the board is -10 to 10 V, which
is large enough to cover the range of required order parameter variations, an accuracy of
2.24 mV, and 16-bit resolution (300 µV). The board has a clock rate of 10 MHz, and can
be externally triggered.

For this setup, we write the ramp-up and ramp-down waveforms into the on-board buffer
of the card, and use a pair of external triggers from the main experiment-control computer
to control the output of the ramp-up and ramp-down waveforms, and the timing between
them. The ramp waveform can be programmed to an arbitrary shape. The front panel
of the Labview program is shown in Fig. 4.8 and contains both a dc panel and a two-step
ramp panel. The dc panel is normally used at the start of the day when nulling the micro-
motion for the start and end points of the ramp. The voltage corrections for nulling the
micro-motion are incorporated into the ramp. In practice, we found the correction to be
nearly independent of the voltage over the typical 0-5 V ramp. The two-step ramp panel
allows for the choice of the ramp shape including linear, step function and tanh, but we
exclusively use the linear form for the KZM experiments. The quench time of the ramp-up
and ramp-down can be chosen independently. Typically we use a fixed ramp-down time
of 200 µs for resetting the crystal to a linear string. For the fastest ramps considered, on
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Figure 4.8: (a) The front panel of the Labview program for the dc voltage setup used at
the start of the experiment to null the micro-motion. (b) The front panel of the Labview
program for implementing a voltage ramp. The micro-motion correction is added to the
start- and end-point of the ramp in the two-step ramp setup. (c) The circuit diagrams of
the Bessel filter and the current-booster circuit of the four rods, and two endcaps. The
resonator is only shown schematically

the order of 0.5-2 V/µs, the discretization of the voltage steps in the DAC output is fairly
obvious. In order to smooth the ramp shape, six Bessel filters are added between the analog
output of the board and all four trap rods and two endcaps (The circuit diagram of the
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Figure 4.9: The effect of adding a Bessel filter to the board output for 5µs ramps over 0-400
mV (a) and 0-4 V (b). The yellow line is the output of the board (input of the Bessel filter),
and the blue line is the output of the Bessel filter. The Bessel filter smoothens the shape
of the ramp. For fast quenches, the low current output of the board cannot charge up the
final capacitor of the Bessel filter fast enough to support fast quenches.

Bessel filters can be found in Fig. 4.8). The Bessel filters are chosen to minimize distortion
of the waveform. They are placed close to the trap, since they also serve the dual purpose
of rf grounding their connection points. The smoothing effect of the Bessel filters on the
waveform is shown in Fig. 4.9(a).

One limitation of the PCI-6733 board is its low 5-mA output current, which does not
allow for the fast voltage changes required (V/µs), when driving the Bessel filters (see
Fig. 4.9(b) ). The essential limitation is the charging of the final capacitor of the Bessel
filter needed to hold the output at rf ground. To solve this problem, we added a current-
booster amplifier for each output of the board (The circuit diagram of the booster-amplifier
is shown in Fig. 4.8). For typical ramps of 0-5 V and ramp times of 10 − 70 µs used in
the experiment, the ramp performance after adding the current-boosters and Bessel filters
is shown in Fig. 4.10 (top panel). A magnified view of the partially smoothed residual
distortion is also shown in Fig. 4.10 (bottom panel), which indicates a maximum distortion
of Vpp ∼ 100 mV after filtering. Having a large, pure crystal of trapped ions in hand, and
being able to rapidly quench across the linear-zigzag transition, we next proceed to the
defect detection technique in our ion-trap setup.

4.6 Imaging setup and data collection

The defects are detected and recorded by imaging the fluorescing trapped ions. The mea-
sured UV fluorescence, ηγsc, is proportional to the scattering rate γsc and the collection
efficiency of our imaging system, ηeff ' 3 × 10−3. The imaging setup in this experiment
is similar to the one used previously in our group for fluorescence and hopping studies
[127, 146, 147] with some modifications to reduce the total magnification from 140 to 16
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Figure 4.10: Typical result of the added current-booster, and Bessel filter along with the
partially smoothed residual distortion for 0-5 V ramps over quench times of (a) 2τQ = 10
µs and (b) 2τQ = 70 µs. The maximum distortion in voltage is Vpp ∼ 100 mV.

in order to be able to see the larger strings. The scattered photons are collected with an
anti-reflection-coated UV microscope objective lens with a focal length of 20 mm and a
high numerical aperture (NA ≈ 0.23). An intermediate image of the ions is focused about
17 cm behind the objective where an adjustable slit, set to a width of 450 µm, is used to
suppress background scatter from electrodes. A back-to-back pair of f = 300 mm lenses
re-images the ions onto an intensified CCD camera (or onto a photo-multiplier-tube (PMT)
for measurement of the ion fluorescence by photon counting, used for the Sisyphus cooling
and Raman cooling data). The camera exposures are also triggered by the main experiment
program. In a typical KZM experiment we acquire a single image of the initial linear string
before the quench, and then one or more images after the quench to search for kinks or
observe their dynamics in the zigzag structure. In order to limit the effect of loss of kinks
before detection the exposure time of the camera is reduced to the minimum value of 3 ms
that is required to obtain a good fluorescence image of the ions. However, the exposure
time is still too long to capture any of the fast µs dynamics taking place shortly after the
quench, including immediate kink loss from the crystal.

Having gone through the main aspects of a KZM experiment in our ion-trap system, we
finish this chapter with a summary of the laser setup used in this experiment.

4.7 Laser setup

A detailed description of the all lasers used in this experiment and their lock setups is
provided in my Masters’ thesis [146]. Here, we provide a brief overview of the laser-beam
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setup including the 369-nm beam tuned to the S1/2 → P1/2 transition used for Doppler
cooling and fluorescence detection, and the 935-nm and 638-nm repump beams needed to
maintain the ion in the fluorescence/cooling cycle (see Fig. 4.1). All these three beams are
continuously on during the experiment. We also include in the discussion below the 399-nm
beam used for the photo-ionization. The simplified optical path of these laser beams is
shown in Fig. 4.11.

Doppler cooling/ detection beam: The 369-nm beam used for Doppler cooling/fluorescence
detection is produced by a frequency doubled diode-laser system at 739 nm. To ensure the
short term stability of the detuning and to obtain a narrow laser linewidth, the 739-nm
laser is short-term stabilized using its doubling resonator cavity as a reference. Long-term
drifts are also suppressed by locking the laser to an iodine hyperfine feature using a satu-
rated absorption setup. The laser system produces ∼ 4 mW of UV power, and ∼ 2 mW
is fiber coupled to the experiment. About 90% of the fiber-coupled beam goes through a
∗high-power∗ path used for the KZM experiment with 174Yb+, and the remaining 10% is
directed to a ∗low-power, frequency modulated∗ path that is required for laser cooling and
detection of 171Yb+ (see Chapter 7). The latter path is not relevant to the KZM experi-
ment. Acousto-optic modulators (AOM) provide power (and frequency) control of the UV
beams incident on the ion. The maximum power of the Doppler/detection beam (from the
high-power path) reaching the trap is ∼ 600 µW. The power used in this experiment is
∼ 180 µW, which is equivalent to an effective saturation parameter of s0eff = 2.7. Power
drifts in the cooling laser are monitored during the experiment using the zeroth order of
the AOM. The Doppler cooling beam is tuned to ∆ = 33 MHz below resonance. The po-
larization of the 369-nm beams is initially linearly polarized by a polarizing beam splitter
cube. A half-wave plate, placed near the beams’ entrance to the trap is used to rotate the
laser’s polarization with respect to the magnetic field ~B, and is set to ≈ 0o with respect
to a 5.9 G magnetic field. The axial full width at half maximum (FWHM) of the beam
is 280 µm achieved with a cylindrical-spherical lens pair. The alignment and focus of the
beams on the ion string are finely adjusted by a lens mounted on on XY Z translation stage.

D-state repump beam: The 935-nm beam which serves for 2D3/2-state repumping,
is produced by a stabilized external cavity diode laser. (For the 171Yb+ isotope, the beam
is frequency modulated with a broadband fiber modulator at 3.07 GHz for hyperfine re-
pumping). The 935-nm laser is stabilized against long-term drifts by a transfer lock setup
consisting of a confocal Fabry-Perot cavity locked to the iodine-stabilized 739-nm laser. The
lock setup was built as part of my Masters’ thesis, and the details can be found in [146].
The power of the laser’s output beam after a 30-dB isolator is ∼ 40 mW. Half of the power
is fiber coupled to the experiment, from which ∼ 6 mW reaches the trap. About ∼ 3 mW
reaches the lock setup through another fiber. The 935-nm beam is shaped with a spherical-
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Figure 4.11: The simplified schematic of the laser-beam paths to the trap for the cool-
ing/detection laser beam at 369 nm, the D-state and F-state repump laser beams at 935
nm and 638 nm, and the photo-ionisation laser beam at 399 nm.

cylindrical lens pair to cover the extent of the ion string. The alignment of the beam on
the ion is fine tuned by a lens mounted on a XY Z translation stage.

F-state repump beam: The 638-nm beam used for the repumping of the metastable
2F7/2 state is produced by an external cavity diode laser and is fiber coupled to the experi-
ment. The laser is not frequency locked, but a small amount of the laser power is directed to
a wavemeter through a fiber beam splitter for wavelength monitoring. The beam reaching
the trap has a power of ∼ 2 mW and a relatively large focused waist. The wavelength is
ramped over ∼ 0.01 nm with a cycle time of 1 s to ensure resonance.

Photo-ionisation beam: The isotope-selective loading is achieved by a 399-nm photo-
ionisation laser beam. The beam is produced by an external cavity diode laser and is only
active during the loading process. The short-term passive stability of the laser system is
adequate for the isotope selective photo-ionization. The wavemeter is used to monitor and
set the wavelength to seven digits. The power of the laser’s output beam after a 30-dB
isolator is ∼ 8 mW, and 80% of that goes to the experiment through free space. The power
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of the beam is attenuated using a manual optical attenuator. The beam enters from the
north side of the trap and is nearly perpendicular to the atomic beam coming from the
oven to minimize Doppler broadening. The beam is also only focused with a cylindrical
lens in the vertical direction to reduce scatter from the trap rods. Note that a high-power
UV beam produced by a frequency-doubled Titanium-Sapphire laser system is also used to
assist the loading and maintenance of large ion strings. The high power UV beams from
the Ti-Sapph. laser are mainly used in resolved sideband cooling and thermometry and are
described in detail in Chapter 7.

As part of a daily routine, the output UV power of the 369-nm beam, and the out-
put power of all the fiber couplers are optimized before the loading process. Once the
ions are loaded, the 369-nm and 935-nm beams are aligned on the ions in preparation for
experiments.

The next chapter is focused on the experimental results of the KZM studies, where we
investigate the defect formation, the power law-dependence of the number of defects on the
quench time, and the post nucleation dynamics of defects.
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Chapter 5

Experimental Results on KZM in
Ion Trap Systems

This chapter is focused on the experimental results of spontaneously nucleated kink-defects
and their post-nucleation dynamics. We start with a brief summary of the experimental
setup. Then, we show how the presence of non-fluorescing ion(s) in the ion crystal biases
the linear-zigzag transition, and hence such cases are excluded from the analysis. We then
proceed to the experimental results, starting with an exploration of the occurrence of two
different forms of kink and the role of the quench end-point in configural change and in kink
survival probabilities. Then the number of kinks formed as a function of quench rate across
the linear-zigzag transition is measured in the under-damped regime of the inhomogeneous
Kibble-Zurek theory. We show that the experimental results agree well with molecular
dynamics simulations, indicating how losses mask the intrinsic nucleation rate. Afterwards,
the observation of a range of kink dynamics is presented including motion and lifetime, and
behavioural sensitivity to ion number. Finally, we conclude with a comparison of our results
with two other studies performed simultaneous to ours.

5.0.1 Summary of the experimental setup

We use a linear Paul trap, operating at a radio frequency (rf) of ΩT /2π =12 MHz. Photo-
ionization is used to load a pure crystal of 42−43 174Yb ions, which arrange as a linear string
in a trap with an axial secular frequency of ωz/2π= 37.6 kHz, and transverse frequencies
of ωx/2π = 679 kHz and ωy/2π = 658 kHz. A single laser beam at 369.5 nm (with axial
FWHM of 280 µm) is used for fluorescence imaging of the ions and for Doppler cooling along
all principal axes of the trap. The 369.5-nm laser is linearly polarized at 6o with respect
to a 5.9-G magnetic field. A relatively large laser detuning of –33 MHz (1.5 linewidths)
is used to suppress the effects of micro-motion on fluorescence and cooling, arising from a
non-zero component of the trap rf electric field along the axial direction (up to 2500 V/m
at the edges of a 43-ion crystal). With an effective saturation parameter of s0eff = 2.7, the
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estimated cooling rate is uniform to a factor of 2 or better across the crystal with variation
primarily at the edges, and the calculated damping time, η−1, is 200–400 µs. The damping
rate places the experiment deeply in the under-damped regime for quench rates considered.

To quench the system through the linear-zigzag transition, we apply a transverse dc
quadrupolar potential using the trap rods. The quench waveform is linear (V (t) = Vf ·
t/(2τQ)) with a quench end-point of Vf = 4.2 − 5.8 V, a ramp time of 2τQ = 10 − 70 µs,
and a maximum distortion of 100 mVpp after filtering. The quench also incorporates small
adjustments to the end-caps and rods to maintain a constant axial secular frequency and
to maintain the center of the crystal at the rf null in all dimensions. The linear form of
our quench in terms of ω2

y is exactly as assumed in the KZM theory [61], with the one
modification that we use an asymmetric ramp across the critical point. For example, in a
string of 42 ions with ωz/2π = 37.6 kHz where the critical transverse frequency at the center
of the crystal is ω0y,c/2π = 619(3) kHz (or equivalently, 0.92(6) V)1. Our quench starts at
658 kHz (Vi = 0.0 V), which ensures a sufficiently linear configuration, and continues further
past the critical point, for example to 414 kHz (Vf =4.8 V) to involve about half of the
crystal in the zigzag phase2.

Each experimental run begins with 53 ms of cooling in the linear configuration, followed
by the quench. Images of the initial linear and subsequent zigzag configurations are recorded
with an exposure time of 3 ms. A 200-µs ramp recycles the crystal to the linear structure.
Data is acquired in batches of 100–700 runs over 3 minutes. Our data sets contain 80%
of runs approximately equally divided between 42 and 43 ions with 41 or fewer ions in
the remainder. Image analysis is used to identify the locations of any kinks in the zigzag
structure.

5.0.2 The effect of a central non-fluorescing ion

Having two equally probable symmetry-broken configurations is the key feature of the linear-
zigzag transition that allows the formation of defects in ion-trap crystal. The two symmetry-
broken configurations are differentiated by the sign of the transverse displacement for even
and odd numbered ions in a linear array. We assume that in the "zig" configuration, assigned
a zigzag symmetry sign of S = +1, the odd numbered ions shift up and the even numbered
ions shift down (Fig. 5.1(b)), and in the "zag" configuration, assigned a zigzag symmetry
sign of S = −1, the ions shift oppositely (Fig. 5.1(c)).

The presence of a non-fluorescing ("dark") ion in the center of the crystal, biases the
zigzag into one of the symmetry-broken states. The dark ion could be a 174Yb ion that has
temporarily transitioned to a non-fluorescing low lying F-state, or it could be a molecular

1The observed value of ω0y,c is slightly higher than expected (1%), roughly consistent with measured
axial anharmonicity vs. ion number, and is accounted for in simulations by a shift in ωz

2We note that the soft-mode frequency at quench start is larger than the KZM freeze-out value. Simula-
tions of quenches starting at higher transverse frequency (883 kHz) give quantitatively similar kink numbers
to those observed.
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Figure 5.1: Experimental CCD images of 42 174Yb ions. (a) A linear structure. (b) A
zig configuration, in which the odd-numbered ions shift up and the even-numbered ions
shift down. (c) A zag configuration, in which the even-numbered ions shift up and the
odd-numbered ions shift down

ion (e.g. YbH+) formed from a collision with a background gas atom. In either case, the
primary cause of the bias in the zigzag structure is expected to be the differential laser
radiation pressure force from the Doppler cooling beam. (As a separate effect a different
mass ion in the center of the crystal will also cause the critical point to shift due to a
pseudopotential effect.)

Figures 5.2(a) and (b) show a sample of time sequence of the zigzag orientation for 700
successive runs of a linear-zigzag quench, along with the number of dark ions present in the
crystal. To understand the effect of dark ions on the zigzag structure, a selection of images
for runs involving 1-2 dark ions (runs shown by red arrows in Fig. 5.2(a)) are presented in
Figs. 5.2(c)–(g). Point (c) in Fig. 5.2(a) represents the case of a single dark ion that does
not bias the zigzag orientation. Figure 5.2(c) shows that the dark ion is located closer to the
edges of the crystal. Unlike point (c), at point (d) the presence of a single dark ion biases
the zigzag structure into the zag configuration (S = −1). Figure 5.2(d) shows that, in this
case, the dark ion is located closer to the center of the crystal. Points (e) and (f) represent
the cases of two dark ions in the crystal (see Figs. 5.2(b), (e) and (f)), resulting in a bias
in the zigzag structure into the zag and zig configurations, respectively. Finally, point (g)
shows another case of a single ion located close to the center of crystal, but this time leading
to a bias into the zig configuration (S = 1). Figures 5.2(c)–(g) indicate that the presence of
the dark ion in the center of the crystal, where the zigzag structure is first born, results in a
configuration in which the dark ion is shifted ∗up∗. Depending on the site occupied by the
dark ion, this preference can bias the structure into one of the two configurations (compare
Figs. 5.2(d) and (g)). When the dark ion is farther from the center, it does not affect the
configuration (see Figs. 5.2(a) and (d)). In the presence of two dark ions, the one closer to
the center seems to dictate the preferred configuration (compare Figs. 5.2(e) and (g)).
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Figure 5.2: (a) Orientation (sign) of the zigzag structure and (b) number of dark ions
present for a sample sequence of successive quenches. A zigzag sign of 0 corresponds to an
indeterminate case in image analysis. (c)–(g) Images of the ion crystal corresponding to
selected runs in the quench sequence. Each pair of images shows the ion crystal before and
after the quench. The locations of dark ions in the initial linear crystal are indicated by
arrows.(h) The central dark-ion exclusion region. The runs with dark ion(s) in this region
are excluded from analysis. Note that the horizontal axis is in pixels, and 1 pixel' 0.7 µm.
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Due to hopping events, the site of the dark ion can change over time, resulting in a
different bias. To assess effects of zigzag bias we check the deviations from run-to-run
randomness by calculating the autocorrelation of the zigzag sign S for a time sequence of
quenches:

ck =
∑
j

SjSj+k, (5.1)

where j is the index of the run. Figure 5.3(a) shows the calculated normalized autocorre-
lation for all measurements on a given day. The files with dark ion(s) in the central part
of the crystal have a significant positive temporal autocorrelation on adjacent runs. Only
∼ 15% of our data is contaminated with a dark ion in the zigzag region. The obvious bias in
the zigzag configuration due to the dark ion suppresses the defect nucleation and can affect
the statistics of the results. Therefore, in our analysis we exclude the runs with dark ions
within the zigzag region (±70µm around the center.) See Fig. 5.2(h) for the visualization
of the dark-ion exclusion region. Excluding these cases, the temporal statistics of the two
symmetry-broken phases is nominally random with a bias of ≤ 1 % and a normalized binary
autocorrelation on adjacent runs of ≤ 1% (see Fig. 5.3(b)).

Having a random distribution of the two possible configurations, we next investigate
the types of defects and their axial distribution in the crystal as a function of the quench
end-point.

Figure 5.3: (a) The run-to-run autocorrelation of the zigzag orientation. A clear positive
autocorrelation between adjacent sites can be observed in the files with dark ion(s). (b)
The run-to-run autocorrelation after excluding the dark-ion contaminated runs in each file.

5.1 Different types of kinks

In the first experiment, we explore the formation of two types of kink [59]: discrete kinks,
which are localized to about 3 ion-sites (see Figs. 5.4(a) and (d)), and extended ones, which
involve more sites and occur in crystals brought far into the zigzag region (see Figs. 5.4(b),
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(c), and (e)). The shape of the extended kink and the number of involved sites varies
deeper into the zigzag (compare Figs. 5.4(b) and (c)). A sample of two discrete kinks and
two extended kinks are also shown in Figs. 5.4(d) and (e). The occurrence of two discrete
kinks is very rare in our results: In a crystal of the size of 42-43 ions and for the quench
ranges we use, more than one kink is only observed after fast quenches (2τQ ≤ 15µs). Two
extended kinks were only observed when the size of crystal was increased to more than 50
ions, which is outside the range of data presented in subsequent sections.

Figure 5.4: (a)-(c): Images of crystals of 42 174Yb ions in zigzag configurations with (a) a
single discrete kink (indicated by arrow) and (b), (c) a single extended kink. The axial trap
frequency for all images is ωz/2π = 37.6 kHz, while the weak transverse frequency ωy/2π
is (a) 414 kHz, (b) 380 kHz, and (c) 342 kHz. Starting at 0 V the corresponding quench
end points Vf are (a) 4.8, (b) 5.3, and (c) 5.8 V. The imaging system looks at 45o to the
transverse y axis where the zigzag displacement occurs. (d) Two discrete kinks (kink and
antikink) in a string of 42 ions. (e) Two extended kinks in a string of 51 ions. In the lower
panel, the zigzag domains are traced with dotted yellow lines to accentuate the location of
the kinks in the crystal structure.

Figures 5.5(a)–(c) show the observed axial distribution of both kink types and their
total numbers as a function of the quench end-point, Vf . The data, for 41–43 ions, is
taken at a constant ramp rate of 0.19 V/µs so that the nucleation dynamics near the
critical point is expected to be same. Any differences are due to post-nucleation dynamics
during the remainder of the ramp through to detection. To understand the outcome of the
experiment, we have performed molecular dynamics simulations with no free parameters.
The ion trap is treated as an ideal harmonic potential limited to two dimensions. The
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Figure 5.5: Observed axial position distribution of (a) discrete and (b) extended kinks
versus quench end-point. All data taken at a quench rate of 0.19 V/µs. Simulation results
of axial position distribution of (c) discrete and (d) extended kinks at the same quench rate
as experiment. (e) Average number per run of discrete kinks (red circles) and extended kinks
(blue squares) for distributions in (a) and (b). Data points, for 41-43 ions, include 1000-
2200 runs. Errors calculated assuming binomial statistics. Lines are a simulation for 42
ions with no free parameters, and shown 2 ms after the quench, 2/3 of the camera exposure
time. Statistical uncertainties in simulation comparable to experimental ones shown.

small axial anharmonicity in the experiment is modeled in an effective way by shifting the
axial frequency from 37.6 to 38.2 kHz. The effect of the Doppler cooling laser is modeled
explicitly [39] and includes the steady-state fluorescence behaviour of 174Yb+ and all laser
calibrations [147]. Simulations for 42 ions reveal similar distributions (see Figs. 5.5(c) and
(d)). There is also a good qualitative match in the numbers of discrete and extended kinks
between simulation and experiment (see Fig. 5.5(e)). From the simulations, we find that
discrete kinks are nucleated in the central 5-10 sites of the crystal shortly after the critical
point is first crossed. Then, there is an outward motion and loss of the discrete kinks,
propelled by the gradient in zigzag amplitude and axial density, and enhanced by the added
kinetic energy due to the quench. Figure 5.6 shows the axial and transverse kinetic energy
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Figure 5.6: Simulation: The axial kinetic energy (red) and transverse kinetic energy (blue)
as a function of time in a (a) fast 2τQ = 10 µs quench and (b) a slow 2τQ = 70 µs quench.
Only for the fast quench can a large spike and fast oscillations in the kinetic energy be
seen starting at 1.8 ms, where the quench occurs. The energy is primarily added to the
axial direction via excitations of the axial breathing mode. In the zigzag phase, the average
kinetic energy along both dimensions approach the same value.

for a fast 10 µs and a slow 70 µs quench. In the fast quench, a large spike in the kinetic
energy can be seen at the time that the ramp starts. This is due to the effect of the
impulsively excited zigzag mode and, more importantly, axial breathing mode that causes
a modulation in the transverse zigzag structure as the crystal stretches and compresses. As
the quench end-point increases towards 5.0 V, the mean number of discrete kinks and the
width of their distribution increase since more of the dispersing kinks are trapped in a deeper
and wider zigzag region. Above 5.0 V, the number of discrete kinks collapses when, as seen
in the simulation, those at the center of the crystal distort to extended form (Fig. 5.7).
Extended defects can also migrate to the center, leading to the well-centered distribution
observed in the experiment (Fig. 5.5(b)). This is understood to be caused by a confining
potential for the extended defect created by the inhomogeneous zigzag structure deep in the
zigzag phase [159]. Due to reduced losses, the mean number per run of extended kinks in
the simulation saturates at a value 1.4 times higher than the peak in the mean number of
discrete kinks. The experiment data ends at 5.8 V, well before the ∼7.1-V onset of another
structural transition to a different 2-D configuration. As this transition is approached, we
see an enhancement in (otherwise negligible) background kink nucleation, due to energy
transfer events such as background-gas collisions.

Understanding the role of quench end-point sets the stage for our nucleation studies,
which are as a function of the complementary variable of quench time. The results of Fig. 5.5
motivated the choice of quench end-point of Vf = 4.8 V for nucleation studies with discrete
kinks, presented in the next section.
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Figure 5.7: Simulation frames showing nucleation of a discrete kink, and the evolution
after nucleation into an extended kink, and migration of the extended kink to the center.
Simulation is at Vf = 5.8 V (ωy/2π = 342 kHz).
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5.2 Probability of kink generation vs. quench rate

5.2.1 Experimental measurement of number of kinks vs. quench rate

With an eye towards subsequent dynamics studies, we work with discrete kinks and operate
at Vf = 4.8 V, where their maximum number is detected. The quench time varies over
the range of 2τQ = 10− 70 µs. Figure 5.8(a) shows a log-log plot of the average number of
kinks detected per run (black triangles) as a function of the scaled rate, 1/(ωz · 2τQ). Data
for 41-43 ions is combined and includes 1000-5000 runs. Error bars are calculated assuming
a binomial distribution, which is approximately consistent with fluctuations.3

Figure 5.8: Experiment: (a): Average number of kinks observed per run vs. scaled quench
rate for standard trap with ωz/2π = 37.6 kHz (triangles). Data for 41-43 ions include 1000-
5000 runs. Error bars are calculated binomial, approximately consistent with fluctuations.
Solid line is a molecular dynamics simulation with parameters including ωz/2π = 38.2 kHz
(see text), and shown 2 ms after the quench. Statistical uncertainties of simulation less
than or equal to the experiment. (b)-(d): Observed position distributions of kinks for 42
ions (red, upper) and 43 (blue, lower) in standard trap at quench time 2τQ of (b) 20, (c)
15, and (d) 12 µs with simulations (lines) for comparison.

As the quench rate increases from 1/(ωz · 70µs), the number of kinks grows, peaks at
1/(ωz · 15µs), and begins to drop after that. Figure 5.8(a) also includes results of molecular
dynamics simulation, performed as described above. The simulation (solid black line) shows
the number of kinks 2 ms after the end of the ramp (2/3 of the exposure time in the

3The use of errors estimated from a binomial distribution is entirely sufficient for the data presented.
The only situation where multiple kinks are relevant is for the fast quench region, which are rare indeed. We
have checked the fluctuations, and they match reasonably well to binomial statistics, within about a factor
of 2 in the case of fast quench points. For the fast quenches, the error bars are already smaller than the
data symbols. For the slow and medium quenches where the error bars are significant, single-kink nucleation
dominates and binomial errors are suitable.
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experiment), by which time the kink number has stabilized. The simulation matches the
number of kinks observed in the experiment extremely well, and reproduces features in the
observed kink distributions, related to rapid post-nucleation dynamics (Figs. 5.8(b)–(d)).
The detected number of defects formed as a function of quench rate does not follow a power-
law scaling over the quench range shown. This is mainly due to kink losses by the 3-ms
detection time. To understand the effect of losses before detection in the experiment, we
next use the simulation to assess the dynamics at early times, including during the ramp.

5.2.2 Determining the effect of losses from simulation

In this section we investigate the effect of losses using the simulation results. All the
presented plots in this section are from simulations.

Finding the number of nucleated kinks at "early times" in the simulation requires ex-
tra caution, since at early times the amplitude of the symmetry-broken state is still small
and approaching the amplitude of thermal and/or dynamical excitations. In principle, one
should consider kinks when the symmetry-broken state is some factor larger in size than
the fluctuations. The challenge is that the larger the factor, the longer one must wait for
the zigzag amplitude to grow, and so the more time there is for the kinks to escape. This is
an issue of the inhomogeneous system and particularly bad for slow ramps where the front
grows very slowly outward after the kinks have been formed. We use a number of filtering
processes on the simulation results to find the estimate of kink numbers before loss. To
suppress the counting of thermal fluctuations, kinks are counted at early times only inside
a region of sufficiently large zigzag amplitude (0.15ay). This value is determined in part
from a consideration of the amplitude of thermal fluctuations in the initially linear string
(0.03ay) and the amplitude of zigzag fluctuations following the ramp (maximum of 0.2ay at
the edges of the zigzag region for the fastest (10 µs) quenches). At the same time, to tidy
up fluctuations on the edges of the crystal, a cut is also made based on the ion site, in which
kink-counting is limited to an inner region of the crystal, and the 9 outer ion-sites on each
side are excluded. Samples of the kink filtering process for a fast 10-µs quench and a slow
70-µs quench with an end-point of Vf=4.8 V are shown in Figs. 5.9(a) and (b), in which
the results of > 10 simulation runs are overlaid in each plot. Following the filtering, the
number of kinks as a function of time for different quench times are presented in Fig. 5.9(c).
Typical behaviour shows a rise in the proto-kink number during the first part of the ramp,
then a decay over ∼20–1000 µs, followed by a very slow decay above 1 ms. Depending on
the quench rate the behaviour is somewhat different as follows:
1 – Slow ramps produce fewer kinks as expected, and as seen in the experiment.
2 – Very fast ramps (2τQ < 20 µs) show anomalously high loss, presumably due to excita-
tion of the axial breathing mode. The associated additional kinetic energy in the system
is eventually removed by laser cooling. The kink decay rate over 100’s of microseconds
in Fig. 5.9(c) (e.g. for 2τQ = 10µs) is presumably related to the cooling time constant
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Figure 5.9: Simulation: The selected kinks at early times after (a) a fast quench (2τQ = 10
µs) and (b) a slow quench (2τQ = 70 µs). The quench begins at t = 0 Color-coded points
show identified trajectories. The blue points are potential kinks rejected by the filtering
process. The grey lines show the edges of the zigzag region for individual simulation runs.
The black line indicates the averaged zigzag edge defined by 0.15ay used to window the
valid kinks. The outer 9 ion-sites on each edge are also excluded. (c): The density of kinks
as a function of time for different quench rates.

(η−1=200–400 µs).
3 – For the 20 – 70 µs ramp times, short-term loss of kinks (over <100 µs) is observed with
an increasing decay rate at slower ramps (see Fig. 5.9(c)). This is not due to the excitation
of the axial breathing mode. The decay times are too short to be related to cooling, and
at longer ramp times, excitation of the axial breathing mode becomes negligible. From the
simulations, it appears that the short term loss is simply related to kinks leaving the zigzag
region early in the ramp when the zigzag region is still small. At the same time, it is not
even clear how "real" such kinks are given that the zigzag amplitude has not yet increased
to a large size before they leave.

To reject suspect counts at very early times, we added another layer of filtering to the
kink-counting in the simulation. There is a minimum time that does arise from the KZM:
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Figure 5.10: Simulation: The effect of a delay in counting on the maximum number of
counted kinks as a function of quench time. We chose a 7µs delay time. The plots are
shown for a threshold on zigzag amplitude of 0.15ay.

one could argue that one should only count after the freeze-out time, which is 1 µs for fast
quenches (10 µs), and 2 µs for slow quenches (70 µs). Although the threshold of 0.15 ay
(∼0.54 µm) already isolates longer lived defects, we restricted the counting of kinks to 7 µs
after the first arrival of the front at the crystal center. Figure 5.10 shows that in the end,
the 7-µs delay time has a very small effect on the maximum number of counts compared
to no delay. The final results for the early counts in the simulation is shown as the black
dashed line in Fig. 5.11.

5.2.3 Comparison to the IKZM predictions

In summary, we found that at fast quenches, there is enhanced loss due to the non-adiabatic
excitation of vibration modes, and before the crystal is re-cooled. Kink-pair annihilation
also plays a minor role. At slow quenches, we again see a loss of kinks, which worsens
with decreasing quench rate. In this case, the zigzag region expands too slowly to trap the
kinks, and they escape to the zigzag edges during the quench. Although kink losses in the
experiment mask the intrinsic nucleation rate – see, however, [8,118] – we comment briefly
on the power-law scaling for the simulation and experiment.

Figure 5.11 covers about three octaves in quench rate separated by log2(1/2ωzτQ) =−3.1
and −2.1 (yellow region). The KZ theory [8, 61] suggests that our data covers two regimes
of nucleation: For the slow-quench range, we expect a DIKZM power law of 8/3 = 2.67,
which agrees with the fit value of 2.5(2) for the early-counted simulation (with significant
systematic error associated with rapid losses). For the fast-quench range, where the nucle-
ation region is large enough that the nucleation of two or more kinks becomes significant
in the simulation, one expects to cross over towards the IKZM power law of 4/3 = 1.33.
The early-counted simulation gives a fit value of 1.7(1). We note that all cases of two
kinks observed in the experiment [Fig. 5.4(d)], albeit rare, occur in the fast-quench region.
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Finally, in the middle octave of quench rate, where the kink losses are least, a fit to the
experimental data gives a power law of 3.3(2), compared to the early-counted simulation
value of 2.0(1). For comparison, we have also studied kink nucleation in a trap with all
secular frequencies reduced by a factor of 2 (orange triangles in Fig. 5.11). Overall, the data
match the results at higher trap frequency, which shows the weak sensitivity of nucleation
and losses to effective cooling rate, η/ωz, over such variations, except perhaps for losses
at the fastest quenches. The overall weak sensitivity shown also supports ignoring small
(spatial) variations in cooling, corroborated by good agreement with simulations neglecting
them. Note the cooling beam is also larger for this experiment.

Of several possibilities to reduce losses in our experiment, we note that an increase in
ion number can help, particularly for slow quenches by reducing the crystal inhomogenieties
that transport kinks outward. We performed a simulation of 84 ions with optimized Doppler
cooling (detuning -11.3 MHz, s0 = 2.0) and with ωz/2π = 20.6 kHz, chosen to match the
transverse critical frequency for 42 ions at crystal center. As shown in Fig. 5.11, a doubling
of the ion number (and using twice better cooling) already leads to a significant reduction
in losses over the same quench range, albeit in a scaling regime closer to IKZM.

5.3 Kink dynamics

Finally, we investigate the dynamics of single discrete kinks, and measure their axial mo-
tion in the crystal and their lifetime. The experiments are performed at Vf = 4.8 V and
2τQ = 20 µs, for which the initial distribution of the kinks is relatively uniform (Fig. 5.8(b)).
Ten pictures, with a read-out limited frame rate of (40 ms)−1, are taken using the CCD
camera. Figures 5.12(a) and (b) show the trajectories of kinks in crystals of 42 and 43
ions for three initial axial positions: the center site and four sites away on either side. The
kinks move between sites corresponding to local potential wells separated by the axial lat-
tice spacing (5.6 µm) [160]. The 40-ms frame separation of our camera does not permit us
to resolve fast dynamics, including the motion between sites. Nevertheless, it can be seen
that, for 42 ions, most of the kinks that begin at the center of the crystal either stay there
or move by one site. In comparison, the central kinks in a string of 43 ions migrate to the
edges faster. For both cases, kinks closer to the edges tend to move outwards, as expected.
Samples of raw images showing the kink trajectories are shown in Figs. 5.13 and 5.14. To
calculate the lifetime of the kinks as a function of their initial position, the survival time ti
of each kink is obtained by tracking it through the 10 CCD frames over 0.4 s. The lifetime
is then obtained from a maximum likelihood estimate to the set of survival times. The
method includes the effect of the camera readout time that limits the time between CCD
frames to ∆t = 40 ms. We calculate the likelihood for measuring N kinks having survival
time ti with m in the final frame at t = Tf , and assuming that the decay rate of the kinks
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Figure 5.11: Experiment: (a): Average number of kinks observed per run vs. scaled quench
rate for standard trap with ωz/2π = 37.6 kHz (black circles), and for one with secular
frequencies reduced by 2 (orange triangles) with quench changed accordingly. The solid
black line is a molecular dynamics simulation with parameters including ωz/2π = 38.2
kHz (see text), and shown 2 ms after the quench. The dashed black line is the same
simulation with "early counted" kinks. Dotted and dash-dotted lines (green) show kink
number 2 ms after quench and shortly after nucleation, respectively, for a simulation of 84
ions with optimized Doppler cooling (detuning -11.3 MHz, s0 = 2.0) and with ωz/2π = 20.6
kHz, chosen to match the transverse critical frequency for 42 ions at crystal center. The
simulation plot is scaled using ωz/2π = 38.2 kHz for direct comparison to 42 ions. (b):
The blue region, log2(1/2ωzτQ) = [−3.1,−2.1], divides the plot into three octaves of quench
rate. Shown are linear fits in each of the three octaves for a string of 42 ions to extract
power-law scaling. The linear fit to the experimental measurements at ωz/2π = 37.6 kHz
in the middle octave gives a power-law exponent of 3.3(2) (c): Table of slopes obtained
from linear fits to early-counted simulations of 42-ion (shown in b) and 84-ion strings (not
shown).
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Figure 5.12: (a), (b): Axial trajectories of discrete kinks in zigzag crystals (Vf = 4.8 V)
with (a) 42 and (b) 43 ions for three different initial positions: center and four sites away
on both sides. The number of trajectories for each case is 11 with fewer for z < 0. (c), (d):
Exponential lifetime of kinks (filled circles) vs. initial position in crystals of (c) 42 and (d)
43 ions. Lifetimes and their uncertainties obtained from a maximum likelihood estimate
including binning due to camera frame rate. Also shown are axial position distributions at
t = 0 ms (filled gray bars) and t = 400 ms (open red bars).

are exponential, as follows:

L =
N−m∏
i=1

e−ti/τ
(
1− e−∆t/τ

) (
e−Tf/τ

)m
. (5.2)

The lifetime, τ , is then found from the maximum likelihood estimation (d lnL/dt = 0). In
Figs. 5.12(c) and 4(d), we show the exponential lifetime of kinks as a function of their initial
position as well as the distributions of kink positions at t = 0 s (first frame) and t = 0.4 s
(last frame). In Fig. 5.12(c)), we can see that the lifetime of kinks for 42 ions is highest near
the middle of the crystal, and decreases roughly symmetrically towards the edges. Losses
due to the position-dependent lifetime largely account for the observed time evolution of
the position distribution. The maximum ∼2 s lifetime is likely limited by background-gas
collisions, since crystal reordering events detected with a distinguishable dark ion occur
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every 2–4 s on average. In Fig. 5.12, for 43 ions, the 0.3–0.5 s lifetime of central kinks
contrasts with their complete absence in the position distribution after 0.4 s, and points to
their migration away from the deeper zigzag region at the center of the crystal. Simulations
show that this is associated with new dynamics in which the kink hops two sites [as observed
in Fig. 5.12 center] via a transient deformation into an extended-like form. Asymmetries
in the lifetime distributions are likely due to experimental imperfections. The difference
between 42 and 43 ions is understandable, considering that the experiment is performed at
Vf = 4.8 V, near to the sharp onset of the bimodal distribution in Fig. 5.5(a). Since the
zigzag phase begins 0.3 V lower for 43 ions, the onset of the bimodal distribution will also
occur at a lower voltage. The longer lifetime of outer kinks for 43 vs. 42 ions and changes
in dynamics with ion number and density are interesting and could be explored in a future
work.

5.4 Comparison to other experiments and conclusion

Three other groups have observed kinks in an ion crystal [8, 118, 159], two of which tested
the KZM scaling in ion-trap systems at about the same time as us. The experimental
approaches of these groups are somewhat different than ours. Pyka et al. [8] also quenched
across the transition by weakening the transverse confinement, but chose a farther end-
point that brought the crystal deeper into the zigzag. This helped with reducing the kink
losses by forcing a change from discrete into extended kinks, which then transfer to the
center of the crystal. Ulm et al. [118] quenched across the transition by increasing the
axial confinement, and used a shaped ramp function to suppress the excitation of the axial
breathing mode. Both of these experiments also have a faster damping rate (fast cooling
rate), and so the losses in their systems would be expected to be smaller. The size of the
systems used (see table below) along with the range of applied quench rates correspond to
the Double KZM region for the other two experiments, whereas our early counted simulation
appear to indicate that our experiment stands between DIKZM and IKZM regimes. Pyka
et al. and Ulm et al. both obtained a good match with the DIKZM value of 8/3 over a
limited quench range. Our experimental result, specified for the lowest loss regime, is ∼1.6
× higher than the pre-loss value obtained from simulations.

Paper Num. of ions Max. num. kinks Fitted exponent
Pyka et al. [8] 29± 1 1 2.68± 0.06
Ulm et al. [118] 16 1 2.7± 0.3

Ejtemaee et al. [145] 42± 1 2 3.3± 0.2

In regard to kink dynamics, our own experiment is unique in its detailed study of post-
nucleation kink dynamics including both spatial and number sensitivities. We note that
Mielenz et al., a fourth group investigating kinks in ion traps, has explored in particular
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the trapping potential created for extended kinks from both a theoretical and experimental
perspective [159].

Both of these experiments are solely focused on nucleation measurements coupled with
theoretical discussion, whereas our work goes beyond nucleation studies and explores post-
nucleation dynamics of discrete kinks including transformation of shape, motion and lifetime
in the crystal, and sensitivity of behaviour to unit change in ion number.

While the experimental results of [8, 118] seem to provide reasonable agreement with
the KZM prediction, del Campo and Zurek [79] have expressed some concerns about the
extent to which the limited data of these three experiments can be regarded as a verification
of the KZM. Over and above the experimental issues - the restricted range of quench rates
and kink losses - they question the applicability of IKZM theory to small sized ion chains for
two reasons. First, the KZM derivation of the inhomogeneous power scaling depends on the
size of the nucleation region set by the front propagation, but at the same time simulations
indicate that the boundary of the region where kinks are formed is not so sharply defined.
If the width of the boundary region were on the order of a domain size, this would have
significant implications on the scaling for small systems that span one or few domains at
freeze-out. Second, before the predictions of the KZM can be employed, the applicability
of the thermodynamic approximation, used to derive the critical exponents that define the
universality class of the system, needs to be justified.

To conclude, we have studied the spontaneous nucleation and post-nucleation dynamics
of kinks formed as a result of fast quenches across the linear-zigzag transition in trapped-ion
crystals. We measured the number of nucleated kinks as a function of quench rate, and
have shown how losses mask the intrinsic nucleation rate. To address the issues brought
up by del Campo and Zurek, the future direction of this type of experiment are towards
many ions, with multiple domains and several kinks. We expect that a shallower quench
preserving the discrete, localized character of kinks offers the best shot at reducing losses
due to kink interaction and annihilation in larger ion crystals in a linear Paul trap. We
have also pointed out how increasing the number of ions can help to expand the range
of quenches where loss is reduced. We have also studied the post-nucleation dynamics of
kinks, and have observed long lifetimes, which may allow future explorations of internal
kink dynamics [59]. A natural future direction is the study of linear-zigzag dynamics in the
quantum regime [57], which is the direction pursued in the remainder of this thesis.
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Figure 5.13: Images of a crustal of 43 ions. The separation between frames is 40 ms. (a) A
typical departure of a kink through the edges of the ion crystal. (b) An unusual motion of
a kink with back- and forth-motion before departure.
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Figure 5.14: (a) A crystal of 42 ions with two discrete kinks. The one on the left, leaves
the crystal within 5 frames (200 ms), while the kink on the right remains on the same site
for 8 frames (320 ms) and is gone on the 9th frame. (b) Departure of an extended kink
in a crystal of 50 ions (Extended like this one are not part of the presented data of post
nucleation dynamics and lifetime).
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Chapter 6

Dynamics Near the Linear-Zigzag
Transition in the Quantum Regime

In the second part of this thesis, we continue with exploring the dynamics of the linear-
zigzag transition, but now in the quantum regime. For a first goal of experiments in the
quantum regime we seek to observe tunnelling oscillations between the two possible zigzag
structures and, in doing so, to prepare superpositions of the two structures. In this chapter,
we will go through the theoretical model of the coherent oscillation between zig and zag
structures and investigate the requirements to make such tunneling measurements possible.
We also propose an experiment sequence that suits best our setup and point out potential
challenges of this experiment.

6.1 Introduction to the L-Z transition in the quantum regime

The interesting properties of the linear-zigzag (LZ) transition in trapped ion systems along
with the high controllability available in these systems provide a useful platform for explor-
ing many aspects of this transition, and hence motivated many intriguing proposals in recent
years [54,57,59–61]. In the first part of this thesis, we followed one of these proposals [61],
and studied the nucleation of topological defects. The dynamics involved are essentially
classical with thermal fluctuations seeding the nucleation of kinks. In this part, we proceed
to the proposals focused on the study of the LZ transition in the quantum regime.

As we described in previous chapters, the LZ transition is a second-order symmetry
breaking transition. The resulting tunable double-well potential formed as the transition is
crossed provides the opportunity to explore a variety of quantum effects. For instance, one
can imagine creating a Schrödinger-cat state consisting of a superposition of the zig and zag
configurations. Extending this idea, a proposal has been made to prepare a Schrödinger-
cat state involving structural states entangled with spin [57]. Besides its application to
preparing multiparticle quantum states of fundamental interest, the double well can also
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be used as an interferometer to characterize the properties of environmental noise [161].
The immediate direction of our group is set to assess the technical feasibility of preparing
superpositions of zig and zag, and observing/controlling quantum coherence of the system
through the tunneling between the two configurations.

The first Schrödinger-cat state prepared in an ion-trap system involved the spin and
motion of a single ion [162]. Since then, a Schrodinger cat state (in the form of a generalized
GHZ state) consisting of the spins of up to six ion-qubits [163] and later 14 ion qubits [164]
has also been demonstrated. A Schrödinger-cat state involving the zigzag structure involves
different degrees of freedom and so will be sensitive to different decoherence mechanisms
in the ion-trap environment. It has been pointed out elsewhere that zigzag superpositions
may be less susceptible to environmental noise than might otherwise be expected due to the
energy gap opened up by the double-well potential. The tunneling between two structural
states in a rotor consisting of three trapped ions has recently been reported in [165]. Our
system uses the zigzag mode instead of the rotational modes considered in [165] and in
principle has the potential to compare the behaviour of various numbers of ions more easily.

The experimental studies of the zigzag dynamics in the quantum regime requires a high
level of control and stability in the experiment, which can become technically challenging.
In the remaining part of this thesis, we address some of these challenges and technical
improvements made to make this experiment possible for the future.

6.2 Zigzag double-well potential and tunneling rate

In this section, we investigate the feasibility of our experimental setup for the manipulation
of coherent double-well dynamics. Following Retzker et al.’s qualitative/semiquantitaive
calculation [57], we estimate the tunneling rate between the zig and zag configurations in a
string of four 171Yb trapped ions.

In order to find the tunneling rate between the two structural states, the effective double-
well potential needs to be found. Similar to our calculations in Chapter 3, Retzker et al.
Taylor-expand the 2-D potential energy of a string of trapped ions to fourth order. Ignoring
the coupling to axial modes, they show that the effective potential has the familiar quartic
double-well structure:

V = 1
2aφ

2
zz + 1

4bφ
4
zz, (6.1)

where φzz is the dimensionless transverse field amplitude associated with the zigzag mode
and the coefficient a is positive (negative) on the linear (zigzag) side of the transition.
Retzker et al. showed that for a barrier height that embeds two motional energy levels (see
for example Fig. 6.1(f),(g)), a tunneling rate of 20–50 kHz can be expected in strings of 3–7
ions ions with an axial trap frequency of 1 MHz. A measurement of these tunneling rates
was found to require placement of the transverse trap frequency within about 2-4 kHz of
the critical point on the zigzag side.
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Following the same procedure, we expand the potential energy to fourth order, but
include the effect of the axial displacements on the double well (see Chapter 3, section 7
for details). Using the quadratic and quartic coefficients of the effective potential, other
parameters such as well separation, tunneling rate, and local frequency of each well can be
calculated as a function of trap anisotropy α, or equivalently as a function of the deviation
of the transverse trap frequency from the critical point ∆ωy = ωy − ωy,c.
Well separation: This is the distance between the two minima of the double well, given
by 2

√
(−a/b). This can be related to the actual displacement of the ions in the zigzag

structure, which is in general smaller (by a factor of 0.67 for the central ions of a four-ion
crystal).
Energy levels and tunneling frequency: The quantum energy levels provide access
to the zigzag-mode transition frequency and the tunneling frequency for the double-well
structure. The spacing between the two lowest energy levels, n = 0 and n = 1, corresponds
to the tunneling frequency for the case of the two levels lying below the barrier.
Local frequency: In the classical model of the transition, this is the soft-mode frequency
that goes to zero at the critical point, and is proportional to

√
−2a. In the quantum double-

well model, the local frequency is the spacing between n = 0 and n = 2 energy levels. In a
deep double well (i.e. far from the critical point), the local frequencies of the classical and
quantum models become the same. Note that on the linear side of the transition where we
have only a single well, the local frequency is given by the splitting between the n = 0 and
n = 1 states.

As we showed in Chapter 3 section 7, including the effect of axial-transverse coupling
only affects the quartic term and not the quadratic term. This means that the dependence
of the double-well structure on ωy is affected by the axial displacement, but the dependence
of the classical frequency (local potential curvature about equilibrium) is not. For instance,
at a point 2 kHz away from the critical point, ignoring the axial correction in a four-ion
crystal results in a factor of 2 smaller displacement of a middle ion, as inferred from the
well separation.

Figure 6.1 shows the effective potential and the first five motional energy levels of a
string of four trapped ions as the linear-zigzag transition is crossed. The eigen-energies of
the double-well potential are found by a numerical calculation in which the wave function
is expressed in terms of a basis set of an infinite square well [166]. The calculations are
performed for a string of four 171Yb ions at a fixed axial trap frequency of ωz/2π = 370 kHz.
The critical transverse frequency is ωyc/2π = 754 kHz. The effect of micro-motion, which
leads to some shifts in the critical point [118], is not included. On the zigzag side, the size
of the embedding square well is chosen to be four times the double well separation for each
calculated point. On the linear side, the square well is 60 times the transverse harmonic
oscillation size. On the linear side, the potential approaches a pure quadratic form away
from the critical point, and the energy levels become equally spaced (Fig. 6.1(a),(b)). At
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the critical point the potential becomes pure quartic (Fig. 6.1(c)), and on the zigzag side it
becomes a quartic double well.

Figure 6.1: The scaled effective potential V (φzz) and the level structure of the first five
motional energy levels of a string of four 171Yb ions for different deviations from the critical
point. Each plot shows the scaled potential over the extent of the embedding square well
used to solve for the energy levels (see text). For quantitative results, see Fig. 6.2. Plot
(a) and (b) are on the linear side, where the effective potential is quadratic far from the
critical point and has a single-well form. Plot (c) is right at the critical point (c.p.), where
the effective potential is quartic. Plot (d) is slightly after the c.p., where the double well is
starting to shape. Plot (e) is a double well that embeds only the first energy level (n = 0).
Plot (f) is when the second energy level (n = 1) is just below the barrier (the point with
the highest tunneling frequency). Plots (g) and (h) show how the two lowest energy levels
approach degeneracy further past the critical point. Plot (e) is even deeper into zigzag,
where the third and fourth energy levels are approaching degeneracy as well.

Figure 6.2 shows the calculated values of the well separation, classical local frequency
(soft mode frequency), quantum local frequency (the energy separation between n = 2 and
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Figure 6.2: (a) The well separation and (b) classical local frequency (soft mode fre-
quency)(green), quantum local frequency (proportional to energy separation between n = 2
and n = 0)(blue) and the separation between the first two energy levels (corresponding to
tunneling frequency) (red) in kHz, as a function of transverse frequency deviation from the
critical point. (c) Same as plot (b) on the zigzag side, where the tunneling frequency is the
right axis and the local frequencies are the left axis. The calculations are for a string of
four 171Yb ions, at a fixed axial trap frequency ωz = 2π·370 kHz.

n = 0 on the zigzag side, ∆E20/~), and the separation between the lowest two energy
levels, ∆E10/~, as a function of transverse frequency deviation from the critical point. The
plots cover both linear and zigzag regimes for four 171Yb ions with the same trap frequency
parameters as for Fig. 6.1.

Figure 6.2(b) shows that far from the transition on the linear side, ∆E10/~ approaches
the classical zigzag frequency as obtained from small oscillation analysis, and ∆E20 '
2∆E10, as is expected for a simple harmonic oscillator (SHO). On the zigzag side and far
from the transition, ∆E20/~ matches the classical local frequency, which is equivalent to
the zigzag mode frequency from small oscillation analysis. Near the transition, the quartic
term in the potential opens a gap between (near degenerate) SHO levels, and where the first
two energy levels lie below the barrier (Fig. 6.1(f)–(i)), ∆E10/~ is the tunneling frequency.
The largest level splitting between n = 0 and n = 1 is ∼ 10 kHz. As we go deep into the
zigzag the two levels become degenerate (Fig. 6.1(g),(h)) (i.e. ∆E10/~ approaches zero).
Note that the energy gap does not go to zero at the transition. This means that in principle
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it should be possible to prepare a ground state in the double well adiabatically from the
linear side. The highest tunneling frequency occurs when the n = 1 level is just below the
barrier. This occurs near ωy − ωy,c = −0.1 kHz (Fig. 6.1(f)), giving a tunneling frequency
of 2.8 kHz, at a local frequency of 13.1 kHz.

In assessing the quantum model, as the critical point is approached, the zigzag local
frequency gets lower and more sensitive to trap parameters, making the system more sus-
ceptible to technical noise. The tunneling frequency is also very sensitive to frequency shifts
which means that a high stability (of ∼ 10− 20 Hz) for ωy−ωy,c is required to preserve the
coherence and obtain a tunnel oscillation with reasonable fidelity.

6.3 Outline of the proposed experiment

The following is a proposed procedure, consisting of four stages, to perform a zigzag tun-
neling measurement in a string of 4 ions. The summary of these four stages is shown in
Fig. 6.3. Starting on the linear side, all the vibrational modes are cooled to a few quanta
of vibration (using Sisyphus cooling, to be described in next chapter), and the transverse
zigzag mode is Raman sideband cooled to the motional ground state. The second stage in-
volves preparing the zig or zag configuration deterministically. While keeping the axial trap
frequency fixed, the transverse trap frequency is reduced to ramp across the linear-zigzag
transition as adiabatically as feasible. An optical dipole force from a far detuned, tightly
focused laser (blue plug beam, see Chapter 7) can optionally be applied to bias the double
well during the ramp to prepare the zig or zag state deterministically. To clean up energy
acquired during the ramp, the zigzag mode is cooled to near the ground state again. (In
principle, re-cooling is not required, but we have found it necessary to clean up after the
ramp.) In the third stage, the crystal is ramped back closer to the critical point, where the
tunneling frequency is measurably large, and a variable wait time allows for tunneling to
occur. In the final readout stage, the crystal is ramped deep into the zigzag side and the
structural state of the crystal is measured with a fluorescence image. As a function of wait
time, the crystal structure should tunnel oscillate between zig and zag, in analogy with a
Rabi oscillation in a driven two-level system. Tunneling oscillations as a Rabi-type exper-
iment can provide information on system decoherence [167]; however more traditionally, a
decoherence assessment is made with a Ramsey-type experiment. The analogy of a Ramsey
experiment, if feasible, would involve a more complicated sequence of tunnel operations and
voltage ramps. We note that there are other possibilities for manipulation and readout of
the double-well external dynamics through coupling of the lowest energy levels via rf or
laser interactions, or through adiabatic transfer between the single and double well with
coherent ion-laser operations on the motion in the single well (see [57]).
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Figure 6.3: The four stages of the proposed experiment for measuring the tunneling oscil-
lations between the zig and zag configurations near the critical point of the L-Z transition.

6.3.1 Preparing the setup for a zigzag tunneling measurement and outline
of potential challenges

This experiment requires a high level of control and stability, and there are a number of
techniques that need to be developed and technical issues to be explored in order to realize
a successful tunneling measurement. Below is a list of technical improvements/challenges
that are required to be addressed for our experimental setup.

1) One of the key requirements for investigating the L-Z transition in the quantum
regime is the ability to cool the zigzag vibrational mode of the string to the ground-state
of motion with a high probability. Given the relatively high Doppler average energy in our
trap, we also expect it to be necessary to cool the other vibrational modes of the string
with a sub-Doppler cooling technique to a few quanta of vibration. This is to suppress the
potential effects of nonlinear coupling between modes near the zigzag transition, including
the potential for heating, and to reduce the effect of spectator modes on Raman operations.

2) In order to achieve the required high ∼ 10− 20 Hz stability in ωy −ωy,c, we estimate
that 0.4 mV voltage stability in the ∼ 1 V dc voltages provided by the trap rods, 4 mV
stability in the ∼ 50 − 100 V dc voltages provided by the axial endcaps, and finally 3–10
mV stability in the rf voltage in a range of a few 100 V are required. Achieving such high
voltage stabilities, in particular for the rf, can be a challenge for our experimental setup.
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3) By testing the asymmetry in the outcome of ramping across the transition, we found
a bias in the resulting double-well potential of our trap setup. Such a bias which was
not discernable in the KZM experiments at Doppler temperatures becomes significant for
ground-state cooled crystals undergoing slow ramps. Most likely this bias is due to a
hexapole term arising from the needles being displaced relative to the rods, which gives rise
to a cubic term in the potential that breaks symmetry. To reduce the effect of this bias, we
chose to perform the experiment with four ions rather than three.

4) A major challenge for this experiment will be the decoherence rates. First, there is the
loss of motional coherence due to heating out of the two lowest energy levels, especially at
low frequencies, where the tunneling measurement is performed. The size of this decoherence
can be assessed by measuring the heating rate of the zigzag mode near the critical point
of the LZ transition, on the zigzag side. Finally, there are the sources of fluctuations, in
particular the cubic term mentioned above, leading to loss of coherence between the lowest
energy levels and so loss of tunneling contrast.

In the next chapter, we address the first issue mentioned above and show a successful
implementation of polarization-gradient cooling that provides sub-Doppler cooling of all the
vibrational modes of a four-ion string simultaneously. We also demonstrate the resolved
sideband cooling of the transverse zigzag mode on the linear side of the transition.

Although it will not be discussed in this thesis, we note here briefly that we have
already demonstrated deterministic preparation of zig or zag states for a four-ion crystal,
successfully sideband cooled the crystal on the zigzag side, and we have made some initial
assessments of the zigzag bias and trap stability. We also have made preliminary heating
assessments of the local zigzag mode on both sides of the transition near the critical point
(ωzz/2π = 50− 100 kHz).
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Chapter 7

Laser Cooling to Near Ground
State of Motion

This chapter is focused on two laser cooling techniques, polarization-gradient (P-G) cooling
and resolved sideband cooling, used together in our experiment to achieve ground-state
cooling in a string of 1-4 trapped 171Yb ions. We start with approximate semiclassical
and quantum analytical theoretical models of the P-G cooling, and discuss how numerical
simulations, using these models as their bases, add various complications of the system
for a better understanding of the experimental results. Then, we proceed to the theory
of two-photon stimulated Raman transitions, and their application in thermometry. Next,
we will provide an overview of the experimental setup and operation process, followed
by the experimental results of P-G cooling, including the cooling rate and final average
energy measurements for a single 171Yb ion. We then go through the theory of the resolved
sideband cooling and discuss it for the case of multiple-ion strings. At the end, we present
ground-state cooling results of a single ion and the normal modes of a four-ion string.

7.1 Introduction and motivation

The investigation of the linear-zigzag transition in the quantum regime requires the trans-
verse zigzag mode of the ion crystal to be cooled to the ground-state of the motion with a
high probability. Even though we are considering the transverse zigzag motion, motional
energy in the orthogonal axial direction is also relevant, since near the linear-zigzag transi-
tion and increasingly into the zigzag region, the axial and transverse motions are coupled.
Given the relatively high Doppler average energy in our trap we expect it be necessary
to cool the other modes of the string with some amount of sub–Doppler cooling to a few
quanta of vibration, or better. This should be sufficient to remove thermal spectator effects
in Raman transitions (see Section 7.11) and so allow for a clean spectroscopy of the zigzag
mode. Cooling the other modes is also intended to suppress the effect of nonlinear couplings
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near the linear-zigzag transition, causing a thermal shift and fluctuations in the transition’s
critical point [60]. In practice, such nonlinear couplings can also lead to heating of the
zigzag mode, as suggested in [57], but this is probably not a significant effect for few-ion
strings considered in our case [57].

To achieve ground-state cooling, sub–Doppler cooling techniques, such as resolved side-
band cooling [168,169] or electromagnetically induced transparency (EIT) cooling [170] are
commonly employed. In our experiment, we implement resolved sideband (Raman) cool-
ing for the ground-state cooling of the transverse zigzag motion. In ion trap experiments,
depending on the strength of the trap i.e. the size of the secular trap frequency, Doppler
cooling commonly achieves average energies corresponding to average vibrational quantum
numbers of n̄ ∼ 5− 30. In weaker ion traps, as in our case, the Doppler-achieved n̄ is on the
higher side of the range. In these cases, the resolved sideband cooling of the modes starting
from Doppler temperatures becomes challenging, since a large number of pulses in a compli-
cated time sequence is required to walk the ion(s) down to the ground state. There is also
an added technical challenge if all 3-N modes of an ion string with different frequencies need
to be simultaneously cooled. Typically, resolved sideband cooling, and other ground-state
cooling methods, are initiated at a low n̄, in the so-called Lamb-Dicke (LD) regime, where
higher order momentum diffusion contributions in the relaxation process are suppressed. In
our experiment, to have a low initial n̄ suitable for resolved sideband cooling, we implement
3-D Sisyphus cooling in the form of polarization gradient cooling, well-known in neutral
atom experiments, as an intermediate step between Doppler and resolved sideband cooling.
Furthermore, the Sisyphus cooling acts to cool all 3-N vibrational modes of an ion string
simultaneously.

Sisyphus cooling was first demonstrated definitively in a sodium gas within a 3-D opti-
cal molasses in 1988 [171]. The resulting sub–Doppler cooling came as a surprise and was
unexplained at the time of the experiment. Within one year, two groups independently ex-
plained that the cooling was a result of optical pumping effects due to a spatial polarization
variation in the optical molasses [172, 173]. The cooling technique was called polarization
gradient cooling, the most common form of what is termed Sisyphus cooling (see below).
Since then, this technique has become widely adopted in laboratory experiments to cool
down neutral atomic gases of a variety of species to ultra-cold temperatures. In 1992, the
idea of Sisyphus cooling was extended to the situation of bound atoms, where a proposal was
made for achieving sub–Doppler temperatures for a trapped ion (atom) placed in an inten-
sity gradient [174, 175]. Proposals to use a polarization gradient followed in 1993 [67, 176].
In 1994, the first demonstration of P-G cooling of trapped ions was shown for one and two
Mg ions in a quadrupole ring trap [76]. However, the trap along the axis being cooled was
so weak that ions were quasi-free, so that the essentials of the cooling process were the
same as for free atoms. These experiments were later extended to study the transport of
ions in a combined ion trap and optical lattice [177], and recent related experiments have
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demonstrated lattice-assisted sideband cooling (but not Sisyphus cooling) for ions trapped
in a combined ion trap and optical lattice [178].

Sisyphus cooling has seen more applications in the case of bound neutral atoms. P-G
cooling has been used for cooling and localization of atoms in an optical lattice [69–71],
where the light provides both the cooling and the confinement. P-G cooling has also been
applied to the case where the trapping and cooling light are separate, including the case
of atoms in far detuned optical lattices [72], single atoms trapped in an optical cavity [73],
and single atoms in an optical tweezer as a precursor to sideband cooling [74]. As a related
application, P-G cooling light has been used for the detection of single atoms in optical
tweezers [179] and at sites in optical lattices [180]. A setup for counting atoms in optical
tweezers with a blue detuned lattice included a Sisyphus cooling effect [181]. Finally, in
2005 work by Nuszmann et al. [75], 3-D laser cooling of single atoms into an optical dipole
trap in the presence of an optical cavity was demonstrated in which several cavity cooling
mechanisms worked in combination with a Sisyphus-type effect driven by a pump laser.

In this work, we demonstrate the first 3-D Sisyphus cooling of 1-4 trapped 171Yb ions in
a linear Paul trap. We also present a detailed study of the polarization-gradient cooling of
a single trapped ion, including measurements of the cooling rate and final average energy
as a function of laser intensity, and compare the experimental results to both semiclassical
and quantum simulations. Note that the 3-D cooling of trapped ions is achieved by using a
1-D standing wave, which is a significant technical simplification from the optical molasses
setup for neutrals. We find Sisyphus cooling of trapped ions to be a simple, robust technique
which can be of general use.

7.2 Theoretical models of Sisyphus cooling

Laser cooling is a wide ranging topic with a significant body of theoretical work. For reviews
specific to trapped ions see for example [182, 183]. For Sisyphus cooling of trapped ions,
the theoretical models take two approaches: semiclassical and quantum. In both of these
approaches the laser-ion interaction (involving the ion’s internal state) is treated quantum
mechanically, but the semiclassical approach treats the motion of the ion (the ion’s external
state) classically. The theoretical models normally assume that the ion is strongly bound,
so that its spatial spread in the trap is much smaller than the laser’s wavelength (known as
the Lamb-Dicke limit (LDL)).

The first theoretical model extending the Sisyphus cooling idea to a trapped ion (atom)
in the LDL involved 1-D semiclassical calculations for a three-level system in an intensity
gradient standing wave with the trap assumed to be a harmonic well centered at the opti-
mum point of maximum intensity gradient [174]. Even though the final energies are on the
order of n̄ ≈ 1, where one would expect a quantum description of the motion to become
relevant, it was shown that in the LDL a semiclassical and quantum approach give the
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same result for the cooling limit and cooling rate: a cooling limit of a few quanta, and
a cooling rate proportional to the square of laser intensity, associated with the laser-ion
saturation parameter s. This agreement was discussed as a peculiarity of the harmonic
confining potential. Subsequent work [175], extending prior LDL calculations [158], devel-
oped a convenient quantum formalism to calculate laser cooling of a multi-level trapped
ion in the LDL for general configurations, and used it to compare to the cooling rate and
final energies in an intensity-gradient standing wave reported in [174]. Further models have
explored the 1-D polarization-gradient cooling of a trapped ion with a Jg = 1/2→ Je = 3/2
transition and in the Lin-⊥-Lin polarization configuration using both full quantum calcula-
tions [67] and semiclassical calculations [176]. The upshot of these calculations is that the
semiclassical and quantum results for P-G cooling in this situation agree as in the case of
an intensity gradient, and they also predict a typical cooling limit of a few quanta and a
cooling rate proportional to s2. Polarization gradient cooling was, however, noted by the
authors of [67] advantageous compared to the intensity gradient cooling technique, since
it is less sensitive to optical phase i.e. less sensitive to misalignment of the polarization
gradient with respect to the ion position. Finally, at about the same time as these works
were published, semiclassical Monte Carlo simulations for the same Jg = 1/2 → Je = 3/2
model were performed [184] and used to study the final cooling limit in the crossover from
the case of a tightly bound particle in the LDL to the free-particle case. Good agreement
with analytical theory was shown in both limits.

Semiclassical models can show discrepancies with quantum treatments of sub–Doppler
cooling (see for example [184]), but the above theoretical studies of Sisyphus cooling for a
trapped ion on a Jg = 1/2 → Je = 3/2 transition clearly show that a semiclassical model
can provide similar quantitative predictions in the LDL to the quantum calculations. The
semiclassical model of Sisyphus cooling gives a particularly intuitive understanding of the
cooling and so we have pursued this approach as a first model of P-G cooling of a 171Yb
ion. For the range of parameters that were considered in our experiment, this will turn
out to be a reasonable approximation. It worth noting that the particular polarization
gradient configuration of the Jg = 1/2 → Je = 3/2 model studied in [67, 176, 184] avoids
the creation of any ground-state coherences, which allows for a very simple representation
of the internal dynamics in terms of rate equations. This is not always the case, and other
situations, such as our Fg = 1→ Fe = 0 system for 171Yb+, can become more complicated
due to coherent dark state formation in the ground state. For this reason, we have calculated
a 1-D quantum analytical model for 171Yb+ following the approach of [67] to assess effects
of the internal state of the ion on the cooling. These analytical models have potential
limitations for ultimate comparison to experiment, in regard to the LD approximation,
the effect of three axes of motion being cooled simultaneously, and technical effects in the
implementation of the experiment. For comparison to experimental data, 3-D semiclassical
simulations following the rate-equation approach of [184] have been performed with some
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important differences related to our particular system. Finally, a limited set of quantum
simulations has been performed to give a quantitative assessment of the sub–Doppler cooling
mechanisms with minimal assumptions. A full quantum numerical simulation treats both
the internal state of a trapped ion and its motion quantum mechanically and solves the
master equation of the ion in interaction with the Sisyphus laser fields. Solving the master
equation directly is difficult due to the large number of basis states, and a 3-D calculation
rapidly becomes intractable as the number of states required increases. The Monte-Carlo
wave function (MCWF) technique developed in 1990s enabled progress in laser cooling
studies of free atoms [185, 186], and software packages now developed make this fairly
convenient to implement. A full 3-D quantum numerical simulation still requires high
computation power and can be time consuming, so we only consider 1-D simulations to
compare to our experimental data.

7.3 Theoretical models of P-G cooling of a trapped 171Yb+

Starting with a brief overview of the energy levels of the 171Yb ion used for the cooling
studies, we first discuss the semiclassical theory of Sisyphus cooling for both a free and
a trapped ion and provide a simplified model for the 171Yb ion, which forms the basis of
the semiclassical simulations presented in this thesis. We then describe how semiclassical
simulations account for the complications of the system and allow for a better understanding
of the experimental results. At the end of this section, we briefly discuss the quantum
approach to modeling Sisyphus cooling and point out the differences between the quantum
and semiclassical models.

7.3.1 Energy levels of 171Yb ion

Our cooling studies are performed using trapped 171Yb ions. Unlike the 174Yb+ isotope
used in our KZM studies, 171Yb+ has a non-zero nuclear spin of I = 1/2, which gives
rise to hyperfine structure. The primary transition used for Doppler cooling, P-G cool-
ing, and fluorescence detection is S1/2(F = 1)→ P1/2(F = 0). (A detailed discussion of the
S1/2(F = 1)→ P1/2(F = 0) transition of 171Yb ion with a comparison to the S1/2 → P1/2

transition of 174Yb ion is provided in my Master’s thesis [146]). The higher Zeeman mul-
tiplicity in the S1/2(F = 1) ground state of this transition, compared to the P1/2(F = 0)
excited state, creates coherences between the ground-state Zeeman levels in the presence of
an incident laser field, resulting in coherent dark-state population [146,147,187]. Applying
an external magnetic field can suppress the effect of coherences by averaging them out in
time. For this reason, a magnetic field of ∼ 5.9 G is applied in our experiment, which
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results in Zeeman shifts of δB = ±8.2 MHz for the mF = ±1 ground-state levels1.The
Zeeman-resolved hyperfine structure of the S1/2(F = 1)→ P1/2(F = 0) transition is shown
in Fig. 7.1. Two of the hyperfine levels of the S1/2 state, |F = 0,mF = 0〉 ≡|↑〉 and
|F = 1,mF = 0〉 ≡|↓〉, separated by ωHF /2π = 12.6 GHz form an effective spin-1/2 system
that will be used for microwave and two-photon Raman transitions (see Section 7.5). These
two states are preferred to other pairs of the Zeeman states, due to their reduced sensitivity
to magnetic-field fluctuations at low field values.

Figure 7.1: The Zeeman-resolved energy levels of the 2S1/2 and 2P1/2 states of 171Yb+ and
the main S1/2(F = 1) → P1/2(F = 0) transition used for Doppler cooling, P-G cooling,
and fluorescence detection. The size of Zeeman shifts are exaggerated. The polarization
resolved branching ratios for the three S1/2(F = 1) sub-levels are all the same and equal
to 1/3. Two of the hyperfine levels of the ground state, S1/2|F = 0,mF = 0〉 ≡|↑〉 and
S1/2|F = 1,mF = 0〉 ≡|↓〉, form an effective spin-1/2 system used for microwave and
two-photon Raman transitions.

7.3.2 P-G cooling of a free atom– semiclassical approach

We start the theory of the semiclassical approach with the polarization-gradient cooling
model of a free atom. The idea is then extended to the case of a bound atom in a similar
way to [67,176,184].

A spatial dependent polarization gradient field can be created using two counter-propagating
laser fields. The polarization gradient of the resulting standing wave depends on the po-

1Similar to the 174Yb+ isotope, in low magnetic fields, the Zeeman shift of a hyperfine level |F,mF 〉 is
∆EB(F,mF ) = gF ·mF · (µB ·B) = gF ·mF · (~δB), where the Lande g-factor gF = 1 for 2S1/2(F = 1), and
gF = 1/3 for 2P1/2(F = 1) sub-levels
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Figure 7.2: A polarization-gradient configuration formed by the superposition of two linearly
polarized counter-propagating beams. The typical "Lin-⊥-Lin" configuration corresponds
to θ = π/2.

larization of the original fields. We assume here that the laser’s power and detuning are
such that an atom interacting with the laser field can for the most part be considered in the
ground state with only weak interactions with the laser field. In this case, the polarization
gradient cooling works based on two main effects:
1 – State-dependent energy shifts: Due to the dipole interaction between the laser field and
atom, energies of the ground-state sub-levels shift. This energy shift, known as ac Stark
shift, depends on the dipole moment of the atom and the polarization of the field and leads
to a state-dependent potential and dipole force.
2 – Optical pumping between more than one ground-state sub-level: Absorption and sub-
sequent spontaneous emission from the excited state can transfer the atom between the
ground-state sub-levels. Due to the spatial polarization variation, the optical pumping
rates, and therefore the steady-state population of the sub-levels, become position depen-
dent.

To understand how the combination of these two effects can lead to cooling, consider a
free multi-level atom moving in a polarization-gradient standing wave. If the rate of optical
pumping is slow compared to the rate of polarization variation experienced by the moving
atom, the atom cannot adjust to the polarization variation adiabatically, and will therefore
be able to move some distance along the state-dependent potential before it is optically
pumped out of its Zeeman state. Since the ac Stark shifts of sub-levels are different, the
atom can lose or gain energy when it is transferred between states. Cooling will happen
when the optical pumping transfers the atom from a state with a higher potential to a state
with a lower potential. In a proper polarization gradient setup, the probability of optical
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pumping events that result in cooling is on average higher than the probability for events
leading to heating, and the atom is cooled on average.

As a specific case of relevance to our experiment, we consider a polarization-gradient
configuration formed by two counter-propagating laser beams with linear polarizations at
the angles ±θ/2 with ẑ (see Fig. 7.2). In the case of θ = π/2, this is referred to a "Lin-⊥-Lin"
configuration. The magnitudes of the electric fields E0, wavevectors kl, and frequencies ωL
are arranged to be the same for the two beams, so that we have

~E1 = 1
2E0 [cos (θ/2)ẑ − sin (θ/2)ŷ]

(
ei(ωLt−

~kl·~r−φ) + e−i(ωLt−
~kl·~r−φ)

)
, (7.1)

~E2 = 1
2E0 [cos (θ/2)ẑ + sin (θ/2)ŷ]

(
ei(ωLt+

~kl·~r+φ) + e−i(ωLt+
~kl·~r+φ)

)
. (7.2)

The electric field of the resulting standing wave in terms of the normalized polarization
vector ~ε(~r) is

~E(~r, t) = 1
2E0~ε(~r)e−iωLt + c.c., (7.3)

~ε(~r) = 1√
2

cos(θ/2) cos (~kl · ~r + φ) · (ε̂+ − ε̂−) + i sin (θ/2) sin (~kl · ~r + φ) · ε̂0, (7.4)

where we have chosen a polarization basis in terms of a quantization axis along ŷ ( ~B = Bŷ).
The spatial polarization gradient of the resulting standing wave is shown in Fig. 7.2. As can
be seen, the polarization changes periodically between a pure π−polarization and a linear
combination of circular left and right polarization (σ−, σ+) in λ/4 intervals.

The interaction between the atom and the resulting laser field can be described by the
dipole potential

Vdip(~r, t) = −~d · ~E(~r, t), (7.5)

where ~d is the electric dipole operator. In the following, we adopt the notation in [188]. The
raising and lowering operators, ~d+ and ~d−, are defined in terms of ~d and excited/ground
state projection operators, Pe and Pg. For a given pair of excited and ground states, ej and
gk, we have

~d+
jk = Pej

~dPgk = |ej〉〈ej |~d|gk〉〈gk| = Djkd̂
+
jk, (7.6)

~d−kj = Pgk
~dPej = |gk〉〈gk|~d|ej〉〈ej | = D†kj d̂

−
kj . (7.7)

Here, Djk is a reduced matrix element. Using the rotating wave approximation, the dipole
potential can be written in terms of Rabi frequency Ω as

Vdip(~r, t) = 1
2~Ω

(
~ε(~r) · d̂+

)
e−iωLt + h.c., (7.8)

Ω ≡ −DE0
~

. (7.9)
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The matrix elements of the operator
(
~ε(~r) · d̂+

)
can easily be found knowing that the values

of ε̂q · d̂+, with q = {+, 0,−} are just Clebsch-Gordan coefficients. In the limit of weak
saturation for the atom-laser interaction, the excited state is only weakly populated. The
excited state and optical coherences can be adiabatically eliminated in favor of a description
solely in terms of the slowly evolving ground-state levels. Introducing a new dimensionless
operator Λ(~r) as

Λ(~r) =
(
~ε(~r) · d̂+

)† (
~ε(~r) · d̂+

)
. (7.10)

We can express the ac Stark shift of a given state |gj〉 as

Uac[j](~r) = ~∆(4s)
2 〈gj |Λ(~r)|gj〉. (7.11)

Here, ∆ is the laser detuning, and 4s is the saturation parameter of the two Sisyphus beams
with s being the saturation parameter of each beam:

s = Ω2/2
∆2 + (γ/2)2 . (7.12)

The Rabi frequency associated with the S1/2 → P1/2 transition of Yb can be written in
terms of an on-resonant saturation parameter s0 associated with a single beam:

Ω = γ

√
s0
2 . (7.13)

In addition to the ac Stark shifts, the optical pumping rate out of the |gk〉 state also needs
to be considered and can be written as

Γj→k(~r) = γ
(4s)

2
∑

q=+,0,−

∣∣∣〈gk| (ε̂∗q · d̂−) (~ε(~r) · d̂+
)
|gj〉

∣∣∣2 , (7.14)

where γ is the natural linewidth of the g → e transition. To find the ac Stark shifts and
optical pumping rates of the S1/2(F = 1) sub-levels for the 171Yb ion, we first assume that
the magnetic field is sufficiently large and ignore the effect of ground-state coherences. Due
to the symmetry of the polarization for the mF = +1 and mF = −1 states, and ignoring
the small detuning shifts2, we can treat these two states as one effective mF = ±1 state.
This reduces the problem to one of two effective states, |0〉 and | ± 1〉. Note that for the
range of powers used in the experiment, one effect of the ground-state coherences is to
give an accentuated imbalance in the population of the mF = ±1 states, but a quantum
calculation shows that the sum of the two populations is not affected. We have considered
the full Zeeman level structure in both of our semiclassical and quantum analytical models,

2Zeeman splitting breaks the symmetry between the mF = ±1 states and gives a different laser detuning
for each, but we ignore these shifts in the following, since in the actual experiment the Zeeman splitting
(δB/2π = 8.2 MHz) is small compared to the laser detuning (∆/2π = 310 MHz).
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Figure 7.3: The sketch of the Sisyphus cooling process for a free 171Yb ion moving in a
Lin-⊥-Lin configuration. The ac Stark shifts (potentials) of the effective mF = ±1 state,
shown in green, and of the mF = 0 state, shown in red, are plotted using Eq. 7.15 and 7.16,
assuming ∆ > 0. The probability of the optical pumping is highest at the maximum point
of a potential; the atom tends to end up in the state with a lower potential after pumping,
and so loses an amount of kinetic energy lost to "climbing the hill". See also [9]

and in the simulations shown in later plots, but here we use the effective two-state model
to simplify the presentation of the results. The ac Stark shifts of the two effective states,
|0〉 and | ± 1〉, and the optical pumping rate out of each state in the polarization-gradient
standing wave given by Eq. 7.4 are

Uac[0](~r) = 1
3~s∆ sin2(θ/2) sin2(~kl · ~r + φ), (7.15)

Uac[±1](~r) = 1
6~s∆ cos2(θ/2) cos2(~kl · ~r + φ), (7.16)

Γ[0](~r) = 2
9sγ sin2(θ/2) sin2(~kl · ~r + φ), (7.17)

Γ[±1](~r) = 2
9sγ cos2 (θ/2) cos2(~kl · ~r + φ). (7.18)

For positive detunings, at the points of pure π-polarization, the ac Stark shift is at a
maximum for |0〉, while it is at a minimum for the | ± 1〉 state (see Fig. 7.3). The oppo-
site happens at points corresponding to a linear combination of σ− and σ+ polarizations.
Moreover, the rate of optical pumping out of a state is highest (lowest) when the atom is
at the maximum (minimum) of the potential for that state. This means that for a moving
atom the probability of an optical pumping event increases as the atom climbs the hill of
the potential, and so it tends to end up in the state with lower potential energy after the
pumping. Therefore on average, with each pumping cycle the atom will preferentially lose
an amount of kinetic energy associated with "climbing the hill". As the atom moves across
the polarization gradient, the loss of energy moving back and forth between potentials gives
rise to a Sisyphus cooling force. Further discussion of the Sisyphus cooling force for free
atoms in the specific case of an F=1→ F=0 transition can be found in [9].
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7.3.3 P-G cooling of a bound ion – semiclassical approach

The concept of Sisyphus cooling of a free atom was first extended to a bound ion (atom)
by Wineland et al. [174] for an intensity-gradient field and shortly after, the polarization-
gradient version of Sisyphus cooling of a trapped ion was discussed by several authors [67,
176, 184]. A single ion confined in a 1-D harmonic trap and described by position xi

experiences a potential of Uosc(xi) = 1
2Mω2

i x
2
i , where ωi is the trap frequency along the

ith direction with i = {1, 2, 3}. As already noted above, an important concept in the
interpretation of the cooling is the Lamb-Dicke limit. In the Lamb-Dicke limit, achieved for
strongly bound ions, the spread of the ion’s position is small compared to the wavelength of
the cooling beam (

√
k2〈x2

i 〉 � 1). It is convenient to define a Lamb-Dicke (LD) parameter

in terms of the rms spread of the ion’s wavefunction in the ground state xi0 =
√

~
2Mωi

as

η = kxi0 =
√
ωR
ωi
. (7.19)

Here, ωR is the recoil frequency. In the atom-laser interaction the appropriate LD parameter
to consider will include the ~k-projection onto the axis of interest (k → ki). We will point
this out in the text where necessary. It is important to keep the LD regime distinct from
the condition on the LD parameter being small. In the LD limit, it is true that the LD
parameter is very small, but η � 1 is not sufficient to satisfy the LD limit. The LD limit
is achieved when the ion is sufficiently cooled (low n̄) in a strong trap (ωi � ωR). For a
trapped ion with an average thermal energy of ~ωi(n̄+ 1/2), the rms spread of the ion can
be estimated as 〈x2

i 〉 = x2
0i(2n̄+ 1), and we are in the LD regime for η

√
2n̄+ 1� 1.

In our Sisyphus cooling setup for 171Yb+, the trap frequencies are {ωx, ωy, ωz} =
2π{0.790, 0.766, 0.525}MHz. The LD parameter associated with each direction is {ηx, ηy, ηz} =
{0.052, 0.053, 0.09}, which meets the condition η � 1 well enough. However, at a typical
Doppler temperature of n̄ ' 22, the values of η

√
2n̄+ 1 associated with the {x̂, ŷ, ẑ} direc-

tions are {0.35, 0.36, 0.6}, which indicates that we can likely expect deviations in behaviour
from LDL predictions. (See [184] for a theoretical exploration of the crossover from the
LD to free-ion limits for Sisyphus cooling). The cooling theories are particularly simple in
the LDL and one can readily derive analytical expressions for the cooling rate and cooling
limit. Even if the initial energies are such that the ion starts outside the LDL regime, one
can still describe the final stages of cooling of the ion by the theoretical models in the LDL.

In addition to the LDL approximation, and following [174], we also assume

Γ[j] � ωi � γ � |∆| and ωi � δB. (7.20)

Here, Γ[j] is the rate of optical pumping out of the |j〉 state where j ∈ {0,±1}; ωi/2π ≈
500 − 800 kHz is the trap frequency along the ith direction with i ∈ {1, 2, 3}; γ/2π = 19.6
MHz is the natural linewidth of the S1/2 → P1/2 transition; ∆/2π is the laser detuning,

109



which is set to 310 MHz in experiment; and δB/2π is the Zeeman shift, which is set to 8.2
MHz. We discuss each of the four approximations as follows:
1 – The first approximation, Γ[j] � ωi, implies that the trapped ion oscillates many times in
between the optical pumping events. Therefore, it does not make sense to define a velocity
dependent cooling force for the ion. Instead, the cooling effect will be calculated by averag-
ing the processes over an oscillation cycle of the ion. As well, under this approximation the
space-averaged steady-state Zeeman populations will be approximated by the populations
at the average location of the ion 〈ρ〉avg ' ρ(ravg).
2 – The second approximation, ωi � γ, implies that the scattering event happens so fast
compared to the ion’s motion that the ion can be considered stationary during the scatter-
ing event. (This is the limit of un-resolved sidebands, and the resolved sideband limit is
considered in Section 7.5).
3 – The third approximation, γ � ∆, together with a low laser intensity leads to the limit
of low saturation, s � 1, which allows the adiabatic elimination of the excited states in
favor of a description in terms of Zeeman ground states.
4 – The fourth approximation, ωi � δB, implies that two-photon Raman resonances be-
tween the Zeeman states can be ignored.

The internal state of the trapped ion:
Ignoring the coherences between the S1/2|1,mF 〉 Zeeman ground states, and adiabatically
eliminating the P1/2|0, 0〉 excited-state population, the evolution of the internal state of
171Yb+ is reduced to a set of rate equations for the ground-state Zeeman populations as
follows:

ρ̇[0] = −ρ[0]Γ[0] + ρ[±1]Γ[±1], (7.21)

ρ̇[±1] = −ρ[±1]Γ[±1] + ρ[0]Γ[0]. (7.22)

The steady-state solution of the rate equations and the normalization condition ρss[0] + ρss[±1] = 1
give the steady-state populations of

ρss[0] =
Γ[±1]

Γ[0] + Γ[±1]
, (7.23)

ρss[±1] =
Γ[0]

Γ[0] + Γ[±1]
. (7.24)
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Using the optical pumping rates of Eq. 7.17 and 7.18, the steady-state solutions can be
written as

ρss[0](x) = 1
4 tan2(θ/2) tan2(~kl · ~x+ φ) + 1

, (7.25)

ρss[±1](x) = 4 tan2(θ/2) tan2(~kl · ~x+ φ)
4 tan2(θ/2) tan2(~kl · ~x+ φ) + 1

. (7.26)

As noted above, the excited state adiabatically follows the ground states and so is given by

ρssee(x) =
Γ[0]ρ

ss
[0] + Γ[±1]ρ

ss
[±1]

γ
=

(
10
9 s
)

sin2(θ/2) sin2(~kl · ~x+ φ)

4 tan2(θ/2) tan2(~kl · ~x+ φ)] + 1
. (7.27)

Figure 7.4: The comparison between (a) optical pumping rates and (b) steady-state popu-
lations for both |0〉 and | ± 1〉 states as a function of position for the Lin.⊥.Lin case.

In Fig. 7.4, the optical pumping rates (Eqs. 7.17 and 7.18) and steady-state populations
of the two effective states (Eqs. 7.25 and 7.26) are compared for the case of θ = π/2. As
can be expected, when the optical pumping rate out of a state vanishes, that state is fully
populated and the population of the other state is at a minimum, and vice versa.

The external state of the trapped ion:
In the semiclassical approach of P-G cooling the external state of the trapped ion is treated
classically. We reduce the cooling of a trapped ion in a 3-D trap to three independent
1-D equations for the energy along each principal trap axis, and distinguish the different
directions by the label of i, where i = 1, 2, 3. This assumption will be tested later through
simulation.
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The total potential of a 1-D trapped ion in interaction with an off-resonant light field
is U(x) = Uosc(x) + Uac(x). In this case, the ac Stark shift leads to a shift in the position
of the minimum of the potential well. Since the ac Stark shift is state dependent, the shift
in the potential will also be state dependent. The shift in the center of the potential well
for the ion in the |j〉 state can be found by solving for the minimum point of the energy
U[j](x). We can then rewrite the total potential as

U[j](x) = 1
2Mω2

i x
2
i + Uac[j](x) = 1

2Mω2
i

(
xi − xic[j]

)2
+ C[j], (7.28)

where C[j] represents a constant potential which is not of importance here since it is sub-
tracted off when the change in energy is calculated for pumping events. In the LDL, the
shift in the center of each potential well to lowest order in η is as follows:

xic[0] = − 4
3kli

(
η2s∆
ωi

)
sin2(θ/2) sin(2φ) +O(η4), (7.29)

xic[±1] = 2
3kli

(
η2s∆
ωi

)
cos2(θ/2) sin(2φ) +O(η4). (7.30)

These equations indicate that the potential wells of the two states are shifted in opposite
directions, and the direction of the shift depends on the sign of detuning ∆.

To achieve optimum cooling, the center of the harmonic trap should be placed at the
optimum point of maximum polarization gradient. In the LDL, the sizes of the ion’s os-
cillations around the center of the potential well, and the shift of the center xic, are both
very small compared to the laser ’s wavelength. The polarization varies on the same spatial
scale as the wavelength, hence when the center of the trap is placed at the optimum point,
it can be assumed that optimum cooling is achieved throughout the whole oscillation. For
the Lin-⊥-Lin polarization configuration presented here, the optimum point is located at
φ = π/4, which is in between the points of pure π– polarization and the linear combination
of (σ+, σ−).

A qualitative description of the P-G cooling of a trapped ion:

For both of the qualitative and quantitative descriptions to follow, it is assumed that the
center of trap is located at the optimum cooling point, i.e. φ = π/4, that the electric fields
of the two counter-propagating Sisyphus beams are perpendicular, i.e. θ = π/2, and that
the beams are detuned above the resonance, i.e. ∆ > 0.

Figure 7.5 shows a simplified sketch of the Sisyphus cooling process of a single trapped
171Yb+. The ion experiences the potential well U[±1](x) when it is in the | ± 1〉 state,
and U[0](x) when in the |0〉 state. The centers of the two potential wells are separated
by |xc[±1] − xc[0]|. At each time, the ion’s potential energy is defined based on the ion’s
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displacement from the center of the potential well it is experiencing. In the case shown
in Fig. 7.5(a), an ion is oscillating in the U[±1](x) potential well, and it goes through an
optical pumping event when it gets to the point xo.p., displaced by ∆x±1 from xc[±1], the
center of U[±1](x). As a result of the optical pumping, the ion is transferred into the other
state. Based on the approximation ωi � γ described above, the scattering event happens
so fast that the ion will still be at the same position xo.p. after the pumping. This means
that the ion is now displaced by ∆x0 from xc[0], the center of the new potential well U[0](x).
In this case, the optical pumping has brought the ion closer to the minimum point of its
potential energy, |∆x0| < |∆x±1|, which means that the ion has lost energy through the
optical pumping event. Another optical pumping event can transfer the ion back to its
original state. Depending on where the optical pumping occurs, the ion may gain or lose
energy after the pumping event. Figures 7.5(b) and (c) depict possible heating and cooling

Figure 7.5: The Sisyphus cooling process of a single trapped 171Yb ion. (a) An ion in the
| ± 1〉 state is oscillating in the U[±1] potential. At the point xo.p., displaced by ∆x±1 from
the ion’s potential center, an optical pumping event transfers the ion into the other state.
As a result of optical pumping, the ion is brought closer to the center of its new potential
U[0] and loses energy. Samples of a (b) heating event and (c) a cooling event through optical
pumping from the | ± 0〉 to the | ± 1〉 state.
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events that can bring the ion back to its original state. After many of these optical pumping
events, an overall cooling is obtained if the average number of cooling events is larger than
the number of heating ones. This is achieved when the rate of optical pumping is higher
at positions where it results in cooling compare to the positions where it results in heating.
This condition is fulfilled when the center of the trap is placed at the optimum cooling point
and the detuning is positive ∆ > 0.

The quantitative description of the Sisyphus cooling mechanism:

After a long time compared to the optical pumping time (t > Γ−1), the variation of the
external energy (kinetic and potential) can be expressed by:

Ė(x) =ρss0 〈Γ[0]
[
U[±1] − U[0]

]
〉[0] + ρss[±1]〈Γ[±1]

[
U[0] − U[±1]

]
〉[±1]

+Rdip +RSE ,
(7.31)

in which 〈〉[j] represents the average over one period of oscillation in U[j] potential. Similar
to [67, 174], and based on the first approximation described above, Γj � ωi, the average
population of each state is approximated by the population at the center of the trap, i.e.
the averaged point. The first and second terms of Eq. 7.31 describe the average rates at
which the potential changes due to |0〉 → | ± 1〉 and | ± 1〉 → |0〉 transitions, which include
both cooling and heating events, and the last two terms describe heating terms. (Note that
the small Doppler heating effect of the blue-detuned Sisyphus beams are neglected. This
is acceptable as long as the Sisyphus beams are sufficiently far detuned, see [174]). The
first one of two heating terms, Rdip, is the diffusive heating due to the fluctuations in the
dipole force, and is calculated according to [189,190] and ignoring Zeeman coherences. For
a single running wave, this term would correspond to recoil heating on photon absorption
as used in the Doppler cooling section (Chapter 4, Section 3). For the polarization-gradient
standing wave, Rdip can be written as

Rdip = 2
3γsfliEr

[1
2 cos2(θ/2) sin2(φ)(ρ−1 + ρ1) + sin2(θ/2) cos2(φ)ρ0

]
. (7.32)

The second of the two heating terms, RSE , is the diffusive heating due to the random
direction of spontaneously emitted photons (or equivalently recoil heating on emission),
which can be written as

RSE = γρeefsiEr = 2
3γsfsiEr

[1
2 cos2(θ/2) cos2(φ)(ρ−1 + ρ1) + sin2(θ/2) sin2(φ)ρ0

]
.

(7.33)
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At the optimum cooling point φ = π/4, and assuming θ = π/2, the summation of the two
heating terms simplifies to

Rdip +RSE = γρeeEr(fli + fsi). (7.34)

Here, ER is the recoil energy. Also, fli and fsi are the same as Chapter 4 and reflect
the average components of the absorption and emission recoil kicks along the ith direction,
where fsi = 1/3 for isotropic emissions.

In the LDL, Eq. 7.31 can be Taylor expanded in klixi up to second order. Ignoring the
third and higher orders of the Lamb-Dicke parameter, the averages over first- and second-
order terms can be simplified as

〈klixi〉[j] = klixci[j], (7.35)

〈(klixi)2〉[j] = 2η2
iE

~ωi
+O(η4), (7.36)

where xci[j] is the center of U[j] potential well, and ηi represents the Lamb-Dicke param-
eter along the motion of interest, for which kl → kli in the definition of LD parameter
(Eq. 7.19). Substituting the averaged expressions of Eqs. 7.35 and 7.36 into the Taylor
expanded Eq. 7.31, and ignoring terms of order O(η3) and higher, the rate equation of
external energy simplifies to a linear function of energy, from which the cooling rate Γc and
steady-state energy Ess can be derived:

Ė = −ΓcE +Rheat = −Γc(E − Ess), (7.37)

Ess = Rheat
Γc

= ~ωi
(
n̄+ 1

2

)
. (7.38)

Here, Rheat is the total heating term. At the optimum cooling point φ = π/4 and assuming
θ = π/2, we obtain the cooling rate, heating term and steady-state energy expressed in
standard format as follows:

Γc = 32
45
(
η2
i sγ

)
ξi, (7.39)

Rheat = 32
45~ωi

(
η2
i sγ

)
ξ2
i + 1

10(sγ)
(
fli + 1

3

)
ER, (7.40)

Ess = ~ωi
[
ξi + 9

64

(
1 + 1

3fli

) 1
ξi

]
, (7.41)

with
ξi = s∆

8ωi
. (7.42)

It can be seen that a positive cooling rate is only obtained when the laser is blue-detuned
(∆ > 0). The cooling rate is proportional to s2 as predicted in earlier works [67, 174]. The
first part of the total heating term in Eq. 7.40 is coming from heating events associated
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with switching potentials, and is proportional to s3. The second part is related to diffusion
terms noted above and changes linearly with s. At low laser intensities, the heating linear
in s dominates and Ess diverges. At higher laser intensities, the first part of the heating
term, proportional to s3, overcomes the cooling and Ess increases. There is an optimum
laser intensity at which the cooling and heating rates are optimized, and the minimum
steady-state energy is obtained. At the optimum power corresponding to ξi = 3

8

(
1 + 1

3fli

)
,

the ion can be cooled to a minimum value of n̄ ' 0.5− 1 for fli between 1 and 1/2.
In summary, the analytical semiclassical model that we have presented above is a 1-D

model of P-G cooling in the LDL, which provides a basic understanding of how the Sisyphus
cooling works in our setup. However, the treatment of the internal energy-level structure
involved in the S1/2 → P1/2 cooling transition, was overly simplified by ignoring the ground-
state coherences, and reducing the system into an effective two-state model. Additionally,
only the P1/2(F = 0) excited state was considered; that is, the P1/2(F = 1) state which
is 2.1 GHz away was ignored (see Fig. 7.1). In our experiment, the Sisyphus beams are
detuned by ∆ = 2π(310 MHz)∼ 16γ above the P1/2(F = 0) state, which corresponds to
a detuning of ∆′ = 2π(−1800 MHz)∼ 92γ below the P1/2(F = 1) state. This means that
the saturation parameter for the P1/2(F = 1) state is ∼ 30 times smaller than for the
P1/2(F = 0) state, and therefore the rate of optical pumping (∝ s) due to the P1/2(F = 1)
state is a factor of ∼ 30 smaller as well. Note that the scattering from the P1/2(F = 1) state
also leads to loss of the ion from the cooling cycle into the S1/2(F = 0) state. Compared
to the P1/2(F = 0) state the ac Stark shift (∝ s∆) due to the P1/2(F = 1) state is only a
factor of ∼ 5 smaller, and can not be easily ignored.

Another major distinction between the above analytical model and the actual experiment
is the lattice modulation. Parking the center of the trap at the optimum point and remaining
there is very difficult experimentally, since it requires interferometric stability between the
Sisyphus beams. To go around this problem we modulate one of the beams with respect
to the other by a frequency of ωm. This will provide a moving standing wave that runs
over the center of the trap, and the constant phase will change to φ = (1/2)ωmt. The price
of modulation is a lower cooling rate and a higher n̄ at the end, by roughly a factor of 2.
The results of the analytical semiclassical model that we present later for comparison to
analytical quantum and semiclassical simulations, consider the effect of the P1/2(F = 1)
state and treat the three Zeeman sub-levels of the ground state separately.

To extend the analytical calculations and obtain a more accurate model of the experi-
mental situation, simulations were used. Although the development of the simulations are
not part of this thesis work, we include a brief description of both semiclassical and quantum
simulation features at the end of both approaches.
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7.3.4 Semiclassical simulations of P-G cooling

The semiclassical simulation is similar to the one that we used for the KZM studies, and
similar to the previous simulations done for the J = 1/2 → J = 3/2 transition [184]. We
perform a Monte-Carlo simulation to solve for the classical motion of a single ion trapped
in an ideal harmonic potential (i.e. under the pseudo-potential approximation) and in the
presence of a Doppler beam and Sisyphus beams. For the semiclassical simulations used for
the comparison to the experimental results, the lattice modulation of ωmod/2π = 0.080 MHz
is also added. In the simulation, a large number of independent particles are tracked simul-
taneously (typically 1000) and their positions and velocities are recorded vs. time. At the
end of the simulation, energy is calculated by averaging over the ions. The basic sequence
of the simulation is similar to the actual experiment. It starts with a period of equilibra-
tion to the Doppler temperature. The effect of Doppler cooling is included by calculating
the number of photons scattered at each time step from a Poissonian distribution, which
allows for a longer time step to be used. Each scattering event includes an absorption and
a spontaneous emission. For the absorption, a full 171Yb+ resonance response expression
(including magnetic field, polarization and the Doppler shift) is considered. For the sponta-
neous emission, the recoil distribution is determined from the magnetic field direction, and
a random recoil is added to the ion’s velocity for each emission event. At the end of the
Doppler cooling time in the simulation, the Doppler beam is then removed and the Sisyphus
beams become active. The effect of the Sisyphus beams is integrated into the motion by
adding the force due to the ac Stark shift of both P1/2(F = 0) and P1/2(F = 1) states to
the harmonic force of the trap. At each time step, the small probability of a pumping event
between the three Zeeman states of S1/2(F = 1) is calculated where only scattering from
the P1/2(F = 0) state is included. For each initial Zeeman state, there is a probability of a
pumping event back to itself or into the other states. For each pumping event, a random
recoil is included to account for the momentum diffusion due to spontaneous emission. The
effect of recoil on absorption in [184] is replaced with a more general expression for the
dipole force fluctuations suitable for all values of φ (Eq. 7.32). The small Doppler heating
effect of Sisyphus beams is ignored.

In the simulations, a lowest order correction due to the ground-state Zeeman coherences
was implemented with the effect of modifying the pumping rates and ac Stark shifts of the
outer mF = 1 and mF = −1 states. This improves the modeling of the Zeeman populations
in the simulation at higher laser intensities, but ultimately has negligible effect on the
cooling rate or steady-state energy, so it is not included in the results. Even though the
scattering rate from the P1/2(F = 1) state is small, it gives a noticeable contribution to the
cooling limit, and so we have applied a correction factor where appropriate.

A final comment, the semiclassical simulation allows for the calculations to be done in
3-D, outside the Lamb-Dicke regime, and for a modulating lattice.
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7.3.5 P-G cooling of a bound ion– quantum approach

In the quantum approach to modeling Sisyphus cooling, the motion of the trapped ion is
treated quantum mechanically. This method also naturally allows the atom-laser interaction
to be treated quantum mechanically including the effect of coherences in the ground and
excited state manifolds. A fully quantum treatment of laser cooling can be obtained by
deriving and solving the master equation for a trapped ion interacting with the cooling
laser beams. In [158, 191, 192], the master equations for a two-level and three-level atom
trapped in a harmonic potential and interacting with a running wave were derived and
solved in the LDL. Cirac et al. [175] extended this work to a multi-level atom, general trap
potential, and both running- and standing-wave configurations.

The master equation of a trapped ion interacting with a laser field can be written in
terms of the density operator ρ as follows:

dρ

dt
= − i

~
[H, ρ] + Lρ. (7.43)

Here, H is the total Hamiltonian, and L accounts for the damping caused by spontaneous
emission and includes the recoil momentum transfer as a result of spontaneously emitted
photons. The total Hamiltonian of the system includes three terms and is given by

H = Hosc +Hint + Vdip. (7.44)

The terms are as follows:
1 – Hosc describes the harmonic trap potential, Hosc = ~ωi(a†iai + 1

2), where ai, and a†i are
the annihilation and creation operators of a quantum of vibrational energy ~ωi along the
ith direction, where i = {1, 2, 3}. The eigenstates of Hosc are the Fock states |n〉 and the
eigenvalues are En = ~ωi(n+ 1

2).
2 – Hint describes the internal energy levels of the ion in the absence of the laser, and
includes the Zeeman effect due to the external magnetic field.
3 – Vdip describes the ion-laser dipole interaction and is the same as Eq. 7.8, with xi

considered as an operator.
In the LD regime, the master equation of the trapped ion interacting with a laser field

will have the same familiar form as the master equation of a damped harmonic oscillator
interacting with a finite-temperature heat bath [158,175]. In this case, the diagonal elements
of the density matrix in the basis of Fock states, i.e. populations, 〈n|ρ|n〉 = pn, evolve as

dpn
dt

= (n+ 1)A−pn+1 − [(n+ 1)A+ + nA−]pn + nA+pn−1, (7.45)

where the A+ and A− coefficients determine transition rates between the Fock states. A+

is related to a heating event n → n + 1, and A− is related to a cooling event n → n − 1.
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Figure 7.6: Illustration of the transition rates between the three Fock states using the rate
coefficients A+ and A−.

The first and last terms of Eq. 7.45 account for the transitions from the higher and lower
Fock states into the |n〉 state. The middle term describes the case of depopulation of the
|n〉 state into the higher and lower Fock states. The rate coefficients A± are described as

A± = 2Re[S(∓ωi) +D], (7.46)

where D is the diffusion coefficient due to spontaneous emission, and S(ωi) is the power
spectrum of the dipole force fluctuations. The scaled dipole force operator is given by

Fi = − 1
kli

dVdip
dxi

∣∣∣∣
xi=0

. (7.47)

The power spectrum S(ωi) can be calculated from a Fourier transform of the correlation
function of the force

S(ωi) = η2
∫ ∞
o

dteiωit〈F (t)F (0)〉ss, (7.48)

where 〈〉ss refers to an expectation value calculated from the steady state of the internal
ion dynamics. The dynamics of the average vibrational number n̄ =

∑∞
n=0 npn obeys the

following equation:
dn̄

dt
= −(A− −A+)n̄+A+. (7.49)

This equation has the same form as the energy-rate equation of the semiclassical approach
(Eq. 7.37). The cooling rate Γc, and the steady-state n̄ are

Γc = A− −A+, (7.50)

n̄ss = A+
A− −A+

. (7.51)
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For completeness, the equivalent of the heating term in the semiclassical equations is given
by

Rheat = ~ωi
(
A+ +A−

2

)
. (7.52)

The 1-D analytical quantum calculations for the Sisyphus cooling of a single trapped 171Yb
ion are performed using MAPLE software (with the added RACAH package for calculating
Clebsch-Gordan coefficients). For the S1/2−P1/2 transition involved in cooling, we include
the full hyperfine structure for ground and excited states3. To find the cooling rate and
final temperature, we start by deriving the dipole interaction operator and then calculate
the dipole force operator. To calculate the fluctuation spectrum of the force, S(ωi), we
follow closely the procedure laid out in [175]. The diffusion term is also defined as D =
(γ/2)η2fsiΣjρee[j], where the summation is over both P1/2(F = 1) and P1/2(F = 0) excited
state sub-levels, and for our case of isotropic scattering, we have fsi = 1/3. From the
obtained values of D and S(ωi), the transition rate coefficients A±, and finally the cooling
rate and steady-state n̄ are calculated. The results of these calculations are shown in the
next section, where we compare the semiclassical and quantum analytical calculations with
the semiclassical simulation.

In summary, compared to the 1-D analytical semiclassical model of the P-G cooling,
the 1-D analytical quantum model treats the motion of the ion quantum mechanically and
directly accounts for the effect of ground-state coherences, hyperfine states, and Doppler
heating. However, this model is only suitable for a stationary lattice and the LD regime.
To include the effect of phase modulation and to allow for the ability to investigate the
cooling behaviour outside the LDL, we perform a quantum simulation.

7.3.6 Quantum simulation of P-G cooling

The quantum simulation is performed using the quTip Python package. This is a 1-D model
and it includes the hyperfine structure with some limited approximations: The relaxation
due to spontaneous emission includes the decay of Zeeman coherences into ground-state
coherences, but ignores the effect of coherences between the well separated hyperfine mani-
folds. The lower S1/2(F = 0) hyperfine state is eliminated by assuming that any population
of that state is immediately repumped back to the S1/2(F = 1) state. Similar to the semi-
classical simulation, the trap is treated in the pseudo-potential approximation, and a lattice
modulation of ωmod/2π = 0.080 MHz is added in relevant cases. Each point is an average
over a minimum of 40 monte carlo wavefunction trajectories. The majority of simulations
are limited to a Hilbert space of 20 motional levels and use an initial Fock state of ni = 8
rather than a thermal state at Doppler temperature. For simulations starting in an initial
thermal state of n̄ = 22, which is similar to the experiment, the simulations are expanded

3 A continuous (recoilless) depopulation of the S1/2(F = 0) state is assumed for the calculations, whereas
in the experiment a pulsed re-pump sequence is used (see later).
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to a Hilbert space of 200 motional levels to avoid truncating the distribution. Increasing
the size of the Hilbert space by a factor of 10 increases the calculation time considerably.
For example at low laser intensities, where calculations take the longest, 80 processors with
7 days/processor would be required to find the cooling rate and n̄ss (compared to 40 pro-
cessors with 3.5 days/processor for the smaller Hilbert space). A 3-D quantum simulation
can take months to find the cooling rate and n̄ss for one laser intensity value. As a result,
we only use a 1-D quantum simulation and use a 3-D semiclassical simulation to investigate
the effect of motion in the other axes.

7.4 Comparison between analytical theoretical models and
simulations

In this section, we compare the outcomes of the analytical theoretical models and semiclas-
sical simulations under different conditions. Similar to our experimental measurements, we
first investigate the cooling rate and cooling limit as a function of the cooling laser intensity
and compare the predictions of the analytical models and semiclassical simulations in a
situation that fits into the assumptions of all the models. Then we continue with tuning
the parameters to investigate the effect of discrepancies between the models. The effect of
the proximity to the Lamb-Dicke regime is studied by varying the trap frequency. The ef-
fect of ground-state coherences is studied by varying the magnetic field, and laser intensity.
Finally, the effect of phase modulation is studied by varying the phase φ.

7.4.1 Perfect assumptions, excellent match

Starting with a situation that fits into the assumptions of all the models, we investigate the
laser intensity dependence of the cooling rate and steady-state energy, and compare the pre-
dictions of 3-D and 1-D semiclassical simulations to both 1-D semiclassical and 1-D quantum
analytical models. Here, we consider the case of a static polarization gradient with the cen-
ter of the trap located at the optimum cooling point of φ = π/4. To assure that the system
is in the Lamb-Dicke regime (which is an assumption for both semiclassical and quantum
analytical models), we use trap frequencies of {ωx, ωy, ωz} = 2π{2.258, 2.298, 1.575} MHz,
which are a factor of three higher than the experiment values. The projection of the laser
beams’ wave-vectors along the {x, y, z} directions are assumed to be the same as the experi-
ment, namely {kx, ky, kz} = 2π

λ {
1
2 ,
−1
2 ,

1√
2}. For the given trap frequencies, the Lamb-Dicke

parameters associated with each direction are {ηx, ηy, ηz} = {0.030, 0.031, 0.052}, for which
the system can be considered within the LD regime for the Doppler-cooled condition. Since
the effect of ground-state coherences is ignored in the semiclassical models, a large magnetic
field resulting in a Zeeman shift of δB/2π = 18.2 MHz is considered to reduce the effect of
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Figure 7.7: The calculation results of laser intensity dependence of the cooling rate (a and
c) and cooling limit (b and d) in the axial (a and b) and transverse (c and d) directions.
Calculations shown are the 3-D semiclassical simulation (filled circles), 1-D semiclassical
simulation (open circles), analytical semiclassical model (black lines), and analytical quan-
tum model (green line). The semiclassical analytical plots show a model with both ac Stark
shift and scattering due to the P1/2(F = 1) state (black dashed line) and with the scatter-
ing effect omitted (black solid line). The related parameters are {ηy, ηz} = {0.031, 0.052},
δB/2π = 18.2 MHz, ∆/2π = 310 MHz, θ = π/2, and φ = π/4.

coherences in the quantum models as well. (The experiment value of the Zeeman shift is
δB/2π = 8.2.) All the other related terms are similar to the experiment values.

In Fig. 7.7, we plot the cooling rate Γc and the steady-state n̄ as a function of the
single beam saturation parameter s0 (i.e. laser intensity), in the axial (ẑ) and transverse
(ŷ) directions. It can be seen that the results of all the models agree pretty well. For
these conditions, the 1-D and 3-D semiclassical simulations match well, indicating that the
effect of motion of other axes can be ignored and the problem can be treated as three 1-D
cooling situations. The figure also includes the semiclassical analytical model both with
and without scattering from the P1/2(F = 1) state included. The difference is small for
these parameters. The model without scattering matches the simulation as expected.
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Figure 7.8: The results of the (a) cooling rate and (b) steady-state n̄ as a function of the
axial trap frequency for two laser saturation parameters of s0 = 20.3 and s0 = 36.1. The
open circles are the results of 1-D semiclassical simulations and the dashed lines are the 1-D
semiclassical analytical model (derived for the LD regime). Also, the squares represent the
results of 1-D quantum simulations for s0 = 20.3, and starting with an initial state of ni = 8
(green) and an initial Doppler thermal distribution (red). (c): The condition for the LDL
is investigated in a plot of ηz

√
2n̄+ 1 vs. axial frequency for the range of Doppler-cooled to

Sisyphus-cooled average energies. The operation point of our experiment at ωz/2π = 0.525
MHz is indicated. Other parameters are; δB/2π = 18.2 MHz, ∆/2π = 310 MHz, θ = π/2,
and φ = π/4.

7.4.2 The effect of the Lamb-Dicke regime:

To study the effect of the LD regime, the predictions of the 1-D semiclassical simulation are
compared to the semiclassical analytical model over a wide range of axial trap frequencies.
For this comparison, the cooling rate and n̄ss are calculated as a function of the axial trap
frequency for two laser saturation parameters of s0 = 20.3 and s0 = 36.1, which are chosen
since they give simulations that are fast to run on computer due to the high cooling rates.
We continue to use a static polarization gradient with φ = π/4 and the same Zeeman shift
of δB/2π = 18.2 MHz. The semiclassical simulation is still performed in the same way as
described before, where Doppler cooling is followed by Sisyphus cooling.
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Before presenting the results, we note that as the trap gets weaker, the initial Doppler
energy is the same, but the value of the corresponding n̄ increases. As a result, the size
of the ion position fluctuations,

√
〈z2〉, grows, and eventually the condition for the LDL

(
√
k2
z〈z2〉 ' ηz

√
2n̄+ 1 � 1), will not be fulfilled. Figures 7.8(a) and (b) show the cooling

rate and steady-state n̄ as a function of the axial trap frequency for the range of ωz/2π =
0.13 − 6.5 MHz. Comparing the results of the semiclassical simulation and semiclassical
analytical model, a deviation in the cooling rate from the LD theory at lower frequencies
can be observed. The transition in behaviour is remarkably sharp. The conclusion one can
infer is that as n̄ gets high and the size of ion wave-packet size grows to be comparable
to the extent of the polarization gradient, the cooling rate gets weaker. Note that the
n̄ss predictions of the LD theory and simulation match pretty well, which indicates that
eventually as the ion’s thermal energy is brought close to the ground state, the ion lies
within the LDL.

In Fig. 7.8(c), the condition for the LD regime is investigated for the range of Doppler-
cooled to Sisyphus-cooled energies. Our experiment is performed at an axial frequency of
ωz/2π = 0.525 MHz. At this frequency, the LD limit is reasonably well satisfied for low n̄, so
in the final stages of the cooling the LD theory should hold, and the steady-state n̄ should
be correctly predicted by the LD theory. For the initial Doppler temperature, however,
the size of the ion’s position fluctuations grows by a factor of ∼ 3 such that the value of√
k2
z〈z2〉 ≈ 0.6 is approaching unity. As a result, it is reasonable to expect to see an effect

on the cooling rate. We also see similar effects in the quantum simulations. For our axial
quantum simulations, most are done with a limited Hilbert space of 20 and for an initial
state of |ni = 8〉, but selected points have also been done with an initial Doppler thermal
state with n̄i = 22 to illustrate the difference (see Fig. 7.8 (a) and (b)). (The simulations
with n̄i = 22 require a 10 times larger Hilbert space and take a considerable time). We
have emphasized the axial direction here, since as will be seen, the transverse direction in
our setup does not show a strong deviation in cooling rate from the LD prediction. The
trap frequency is higher (ωy/2π = 0.790 MHz) and the polarization gradient is softer due
to smaller ~k-projection.

7.4.3 The effect of ground state coherences:

To investigate the effect of ground-state coherences, we use the 1-D quantum analytical
model which inherently includes the effect of ground-state coherences, and we study the
cooling rate and the steady-state n̄ as a function of the external magnetic field B. We choose
a laser intensity corresponding to s0 = 15, which is close to the optimum laser intensity
for our experimental setup. In the limit of large magnetic fields, we expect the effect of
coherences to become negligible and the system should reach a relatively steady behaviour
in B. Figures 7.9 (a) and (b) indeed show that the cooling rate and steady-state n̄ start to
stabilize at δB/2π ' 4 MHz and eventually approach the semiclassical prediction. Below
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Figure 7.9: (a) Cooling rate and (b) steady-state n̄ as a function of the Zeeman shift,
calculated using the 1-D quantum analytical model. Parameters used for the plots are an
axial trap frequency ωz/2π = 0.525 MHz, transverse trap frequency ωy/2π = 0.766 MHz,
s0 = 15, θ = π/2, and φ = π/4.

this value, ground-state coherences grow in strength and Raman resonances are encountered
when the combined Zeeman and ac Stark shifts coincide with the trap frequencies. The
decrease in cooling rate below δB/2π = 4 MHz is not surprising since dark-state formation
will suppress the photon scattering. The complicated behaviour of the cooling rate near zero
magnetic field is associated with EIT cooling and heating effects [183,193]. Our experiment
is operated at δB/2π = 8.2 MHz, which lies in the safe region for the laser intensity shown
in Fig. 7.9. Note that the magnetic field dependence varies with the laser intensity and at
higher intensities we expect the system to stabilize at larger Zeeman shifts. For δB/2π = 8.2
MHz, the onset of coherence effects occurs for s0 > 40, where an EIT heating effect appears
for values of φ near π/2.

7.4.4 The effect of phase modulation:

Modulation of the lattice phase φ causes the ion to experience a varying polarization-
gradient. To understand the effect of the phase φ on the P-G cooling, we first show in
Fig. 7.10 (a), (b) and (c) the transverse heating rate, cooling rate and steady-state n̄ as
a function of φ. The Zeeman shift and the trap frequencies used for these calculations
are similar to the ones used in our experiment: δB/2π = 8.2 MHz and ωy/2π = 0.766
MHz. The time scale of the modulation plays an important role. For a slow average
(Γc � ωm � Γ), the steady-state n̄ can be determined from the cooling and heating rates
averaged over φ, i.e. averaging over the values shown in Fig 7.10 (a), and (b). For a fast
average (Γc � Γ � ωm � ωi), the ion’s internal state cannot follow the changing laser
polarization adiabatically. In this case, the Zeeman populations in the semiclassical model
are replaced with ones determined from the phase-averaged pumping rates. Of course, for
very fast modulation exceeding the trap frequency, the cooling will be suppressed. For
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Figure 7.10: (a) Cooling rate, (b) heating rate, and (c) steady-state n̄ as a function of
phase φ. The calculations are for the transverse direction with ωy/2π = 0.766 MHz and at
a saturation parameter of s0 = 20.3. The other parameters are similar to the ones used in
the experiment: δB/2π = 8.2 MHz, ∆/2π = 310 MHz, and θ = π/2. The blue circles show
the 3-D (filled circle) and 1-D (open circle) semiclassical simulations. The lines represent
the analytical models, where the black dashed line is a semiclassical model and the green
line is a quantum model. The discrepancy in n̄ss between simulation and analytical models
in (c) is due to the omission of the P1/2(F = 1) state’s pumping effect in the simulations.

our experiment with ωm/2π = 0.08 MHz, we are in between the slow and fast limits. In
Fig. 7.11 we show the effect of slow and fast modulation compared to the optimum static
case at φ = π/4 and compared to simulations at ωm/2π = 0.08 MHz. As a result of the
phase modulation, the cooling rate is reduced by a factor of ∼ 2, and the cooling limit
(minimum steady-state n̄) is higher by about the same amount. The difference between
slow and fast averages is not very large, and either case matches the simulations reluctantly
well.

The residual discrepancy in n̄ss between the semiclassical and quantum simulations in
Fig. 7.11(b) is primarily due to the omission of scattering from the P1/2(F = 1) states. For
the modulated case, we find that a simple correction vs. s0 can be applied to account for
this effect. The correction is determined from a comparison of the semiclassical and ana-
lytical models with and without the effect of the P1/2(F = 1) scattering. The corrections
for the slow and fast averaging limits of the theory match closely. The effect of applying
the correction to the semiclassical simulation is shown in Fig. 7.12. The agreement with
the quantum simulation is improved. The correction factor is included in our comparison
to the experiment. Note that the P1/2(F = 1) pumping effect has little effect on the cooling
rate and so no correction is performed. The phase modulated and corrected semiclassi-
cal simulation and the phase modulated quantum simulation will be used in Section 7.8
for the comparison to the experimental results, but first we discuss the two-photon stimu-

126



lated Raman transition technique, which is used for the thermometry in Sisyphus cooling
measurements.

Figure 7.11: Phase averaged (a) cooling rate and (b) steady-state n̄ as a function of s0. The
effect of slow (red line) and fast (purple line) modulation is compared to the static case at the
optimum point (black dashed line). Also, the 3-D/1-D semiclassical simulation (blue circles)
and 1-D quantum simulation (green square) for a lattice modulation of ωm/2π = 0.08 MHz,
are shown for comparison. The shaded region indicates the standard deviation of the n̄
fluctuations in steady state for the quantum simulation. The uncertainty in n̄ss value is
similar. These plots are calculated for the transverse direction with with ωy/2π = 0.766
and δB/2π = 8.2 MHz, ∆/2π = 310 MHz, and θ = π/2.

Figure 7.12: The P1/2(F = 1) state pumping correction to 3-D semiclassical simulations
of n̄ss vs. s0 for the (a) axial and (b) transverse directions. The green squares are 1-D
quantum simulation and blue filled circles are 3-D semiclassical simulation without any
correction (same as Fig. 7.11(b)). The open blue triangles are 3-D semiclassical simulations
considering the effect of the P1/2(F = 1) scattering.
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7.5 Motion–sensitive stimulated Raman transitions

Following the treatment of [20, 183], we briefly summarize the theory behind stimulated
two-photon Raman transitions and the application of motion-sensitive transitions for ther-
mometry of a trapped ion. The thermometry will be used to evaluate the Sisyphus cooling
performance. In a later section we will also return to discuss the same Raman technology
for use in sideband cooling of ions to their ground state of motion.

Before discussing the case of two-photon transitions in the presence of two laser beams for
coupling hyperfine spin states, we first start with the simpler case of a single ion interacting
with a single laser beam. The laser beam drives transitions between both internal and
motional states of the trapped ion and is assumed to be coupled to only two internal states.
The two internal states can be represented as an effective spin-1/2 system. In this case, the
unperturbed Hamiltonian of the trapped ion describing its motion and internal levels can
be written as

H0 = Hosc +Hint

= ~ωi(a†iai + 1
2) + ~ω0

2 (1 + σz),
(7.53)

where σ is the Pauli spin operator and ω0 is the frequency of the optical transition driven
by the laser. Assuming that the levels have long lifetimes, (ωi � γ), which brings us to the
resolved-sideband limit, the interaction Hamiltonian for a dipole transition can be written
as4

Vdip = −~d · ~E(t)

= ~Ω
2 · (σ+ + σ−)

(
ei(kixi−ωLt+φ) + e−i(kixi−ωLt+φ)

)
= ~Ω

2 · (σ+ + σ−)
(
ei(ηi(a

†
i+ai)−ωLt+φ) + c.c.

)
,

(7.54)

where ωL is the laser frequency and ηi is the Lamb-Dicke parameter along our axis of interest.
The dipole interaction Hamiltonian can be transformed into the interaction picture using
the time evolution operator U0 ≡ e−iH0t/~, giving

VI = U †0VdipU0. (7.55)

Now using the rotating wave approximation (RWA) to neglect fast oscillating terms at
frequency ωL + ω0, and setting δ = ωL − ω0, we will have

VI = ~Ω
2 σ+ exp

[
iηi(aie−iωit + a†ie

iωit)− i(δt− φ)
]

+ h.c.. (7.56)

4The calculations for quadupole transitions can also be done with a similar approach. In fact, given
that the typical trap frequencies are on the order of MHz, the resolved sideband limit cannot be achieved
with a dipole transition, and quadrupole transitions are more practical. A practical example is the S → D
transition of 40Ca+.
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The wave function of the ion can be written as

ψ =
∑

Mz=↑,↓

n=∞∑
n=0

CMz ,n(t)|Mz〉|n〉, (7.57)

where |Mz〉 and |n〉 are time-independent internal (spin) and motional states respectively,
which in general become entangled during the laser-ion interaction. The coefficients CMz ,n(t)
are time-dependent and can be found using Schrödinger’s equation. For the transitions
between |↑, n′〉 and |↓, n〉, driven by a near resonant field (∆ = δ − (n′ − n)ωz � ωi), these
coefficients evolve as [20]

Ċ↑,n′ = −i(1+|n′−n|)e−i(∆t−φ)Ωn′,nC↓,n (7.58)

Ċ↓,n = −i(1−|n′−n|)e−i(∆t−φ)Ωn′,nC↑,n′ , (7.59)

where the generalized Rabi frequency Ωn′,n is given by [20]

Ωn′,n ≡ Ω|〈n′|eiηi(ai+a
†
i )|n〉|

= e−η
2
i /2
√
n<!
n>!η

|n′−n|
i L|n

′−n|
n< (η2

i ).
(7.60)

Here, n< and n> are, respectively, the smaller and larger of n and n′, and Lαn is the
generalized Laguerre polynomial defined as

Lαn(X) =
n∑

m=0
(−1)m

(
n+ α

n−m

)
Xm

m! . (7.61)

The solution of Eqs. 7.58 and 7.59 shows a sinusoidal Rabi oscillation between |↑, n′〉 and
|↓, n〉 states. For the resonance case, corresponding to ∆ = 0 or ωL = ω0 + (n′ − n)ωi, the
time evolution of the wave-function becomes

ψ(t) =

 cos
(Ωn′,nt

2

)
−iei[φ+π

2 |n
′−n|]sin

(Ωn′,nt

2

)
−ie−i[φ+π

2 |n
′−n|]sin

(Ωn′,nt

2

)
cos

(Ωn′,nt

2

)  · ψ(0). (7.62)

For instance, suppose ψ0 = | ↓, 0〉; then for the n→ n carrier transition, the n→ n− 1 first
red-sideband transition (Fiq. 7.13 (a)), and the n + 1 → n first blue-sideband transition
(Fiq. 7.13 (b)), which are normally used in cooling processes and thermometry, the wave-
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Figure 7.13: (a) The first red-sideband transition and (b) blue-sideband transition driven
by a single laser beam.

functions and the associated Rabi frequencies are as follows:

ψ(t) = cos Ωct| ↓, n〉 − eiφ sin Ωct| ↑, n〉, Ωc = Ωe−η2
i /2L0

n(η2
i ), (7.63)

ψ(t) = cos Ωrsbt| ↓, n〉+ eiφ sin Ωrsbt| ↑, n〉, Ωrsb = Ωe−η2
i /2

ηi√
n
· L1

n−1(η2
i ), (7.64)

ψ(t) = cos Ωbsbt| ↓, n〉+ eiφ sin Ωrsbt| ↑, n〉, Ωbsb = Ωe−η2
i /2

ηi√
n+ 1

· L1
n(η2

i ). (7.65)

Figures 7.14, show the scaled Rabi frequencies of the carrier and blue-sideband transitions
as a function of n for two Lamb-Dicke parameters of η = 0.2 (Fig. 7.14(a)) and η =
0.02 (Fig. 7.14(b)). Note that a laser beam of ωL = ω0 + ωi can drive the blue-sideband
transition of any given initial vibrational level n. Since the Rabi frequency is n-dependent,
the population of each pair of coupled n and n + 1 levels oscillates with a different Rabi
frequency. This can cause a loss of contrast in the Rabi oscillation when the initial state is
not in a single vibrational level. In general, the dependence of the Rabi frequency on initial
n provides the capability for thermometry, which will be discussed in Section 7.6. For now
we note a few basic features of the n dependence. The sensitivity of the Rabi frequency to
n becomes stronger when the LD parameter is higher, as can be seen in Fig. 7.14. In the
LDL, the dipole interaction Hamiltonian in the RWA (Eq. 7.56) can be expanded in terms
of η to give

VI '
1
2~Ωσ+

[
1 + iηi(aie−iωit + a†ie

iωit)
]
ei(−δt+φ) + h.c.

= ~
2Ωσ+e

−i(δt+φ) + i~
2 Ω (ηiaiσ+) e−i(ωit+δt−φ) + i~

2 Ω
(
ηia
†
iσ+

)
ei(ωit−δt+φ) + h.c.,

(7.66)
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Figure 7.14: The scaled Rabi frequencies of carrier and blue-sideband transitions for the
Lamb-Dicke parameters of (a) η = 0.2 and (b) η = 0.02.

where the first term is associated with the carrier, the middle term is associated with the red-
sideband transition and the last term is associated with the blue-sideband transition. Under
a second rotating wave approximation, the Hamiltonian term for each of these transitions
simplifies to:

Hc = ~
2Ωσ+e

−i(∆t+φ) + h.c., (7.67)

Hrsb = i~
2 Ω (ηiaiσ+) e−i(∆t+φ) + h.c., (7.68)

Hbsb = i~
2 Ω

(
ηia
†
iσ+

)
e−i(∆t+φ) + h.c.. (7.69)

The Rabi frequencies of these transitions in the LDL can therefore be written as

Ωc = Ω, (7.70)

Ωrsb = ηi
√
nΩ, (7.71)

Ωbsb = ηi
√
n+ 1Ω. (7.72)

We can see that in the LDL the carrier transition becomes motion-insensitive, whereas the
sideband Rabi oscillations get slower at lower n (and so also at lower n̄ for the case of a
thermal state). The Rabi frequency for the red sideband vanishes for an ion in the motional
ground state.

Two-photon stimulated Raman transitions:

For several ion species in use, the two internal states involved in coherent operations are
hyperfine ground-state levels separated by a microwave frequency [194]. For instance, in
171Yb+ the two states are 12.6 GHz apart. In these cases, instead of an optical field, a
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Figure 7.15: The first blue-sideband transition driven by a pair of laser beams in a stimulated
two-photon Raman process.

microwave field is required to drive the single-photon transitions. The strength of the first
sideband coupling between the motion and internal states of an ion depends on the gradient
of the applied electromagnetic field. The field gradient ∝ λ−1 for a microwave plane wave
across the extent of a trapped ion’s wavepacket is so small that the coupling becomes neg-
ligibly small. There are different ways to go around this problem. For example, it has been
shown in recent experiments that gradients in the near field of microwave radiation [195], or a
gradient in an applied dc magnetic field together with uniform microwaves [196,197], can be
used to obtain spin-motion coupling. The more traditional approach, and the one discussed
here, is a two-photon stimulated transition through a third optical level (see Fig. 7.15). In a
two-photon stimulated Raman transition, two laser beams, ~Eα = E0α cos(klαx−ωlαt−φα)ε̂α
with α = 1, 2, are used to couple the two ground-state hyperfine levels through an excited
state |e〉. To a good approximation each laser beam couples the excited state to only one of
the ground states. The dipole coupling strength between the ground state |Mz〉 and excite
state |e〉 from laser field Eα is given by ΩMz ,α = − 1

2~
~dMz · ε̂αE0α. Both beams are detuned

from the excited state by ∆R. When the detuning is much larger than the linewidth of the
optical transition γ and the coupling strength |ΩMz ,α|2, the rate of spontaneous emission
from the excited state becomes small compared to the stimulated two-photon transition
rate. In the limit of large detuning, the excited state can be eliminated adiabatically and
the problem is reduced to a two-level problem again. The interaction Hamiltonian of the
two far-detuned laser beams and the ion is:

VI = 1
2~Ω(σ+ + σ−)(ei(∆kixi−∆ωLt+∆φ) + e−i(∆kixi−∆ωLt+∆φ)) + ~(χ↑ − χ↓)

4 σz. (7.73)

This equation is very similar to the atom-laser interaction for a single beam (Eq. 7.54) with
ki → ∆ki and ω → ∆ω. The last term of this equation is related to the ac Stark shift of the
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ground-state levels χMz = (|ΩMz ,1|2 + |ΩMz ,2|2)/2∆R. Although the control and stability of
these ac Stark shifts may be of practical significance, they can be absorbed into an effective
transition frequency for the two-level system. In this case, Eq. 7.73 will become exactly the
same as Eq. 7.54:

VI = 1
2~Ω(σ+ + σ−)(ei(∆kixi−∆ωLt+∆φ) + e−i(∆kixi−∆ωLt+∆φ)), (7.74)

Ω = Ω↑,1Ω∗↓,2/2∆R. (7.75)

The base Rabi frequency Ω directly couples the two ground states. The generalized Rabi
frequency Ωn′,n between |↑, n′〉 and |↓, n〉 is the same as Eq. 7.60. For the two-photon
Raman transition, the Lamb-Dicke parameter is defined as ηi = ∆kixi0. Note that for co-
propagating laser beams we will have ηi = 0, which means that the two-photon transition
can change the spin but not the internal states of the ion. This configuration can be used
for motion-independent operation on the ion spin. The highest value of the first-sideband
coupling ηΩ is achieved for a counter-propagating configuration, in which case ∆k = 2k.

7.6 Thermometry using stimulated Raman transitions:

Atom-laser interactions in the resolved sideband limit, including the technology of two-
photon stimulated Raman transitions, have different applications including resolved side-
band cooling, and different types of thermometry. One of the common forms of thermometry
is known as sideband thermometry. In this technique, the average motional population n̄
can be found from the asymmetry between the red- and blue-sideband transitions. For
most laser cooling techniques, including Doppler cooling and Sisyphus cooling discussed
here, it can be assumed that the outcome of cooling has a thermal distribution, for which
the occupation probability of the nth motional state is

Pn = n̄n

(1 + n̄)n+1 . (7.76)

To find n̄, a single ion is first prepared in the |↓〉 state. Then the first blue-sideband
transition is driven for a varying time t, which results in a transfer between the | ↓, n〉 and
| ↑, n + 1〉 state with a Rabi frequency of Ωn,n+1. Finally, the probability of observing the
|↑〉 state is measured over several iterations, yielding the averaged Rabi oscillation signal:

P bsb↑ (t) =
∞∑
n=0

Pn · sin2
(Ωn+1,nt

2

)
. (7.77)
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The same process is repeated for the first red-sideband transition, and so using the symmetry
of the Rabi transition Ωm,m+1 = Ωm+1,m, we will have:

P rsb↑ (t) =
∞∑
n=1

Pn · sin2
(Ωn−1,nt

2

)

=
∞∑
m=0

Pm+1 · sin2
(Ωm+1,mt

2

)
,

(7.78)

which has the same Rabi frequency dependence as P bsb↑ (t). As a result, the ratio of the two
populations only depends on n̄, and is independent of Rabi frequency, signal time or the
LD parameter:

P rsb↑
P bsb↑

= n̄

n̄+ 1 . (7.79)

This method is most effective at low mean energies corresponding to n̄ ≤ 5, where there
is a distinct difference between the red and blue sidebands. Due to this limitation, side-
band thermometry cannot be used for our Sisyphus studies, in which n̄ varies from Doppler
temperatures to a few quanta. We use an alternative thermometry technique based on the
motion-sensitive carrier transition, which reveals n̄ through a loss in contrast (and change
in Rabi frequency). Similar to sideband thermometry, we start in the |↓〉 state, drive the
carrier transition for a varying time t, and measure the probability of transfer to the |↑〉
state. Assuming a thermal distribution, the n̄ value can be found by fitting the measured
Rabi oscillation to

P c↑ (t) =
∞∑
n=0

Pn sin2
(Ωn,nt

2

)
. (7.80)

This expression applies straightforwardly to the motion-sensitive carrier oscillations in the
axial direction, but our carrier oscillation data in the transverse direction requires some
additional interpretation. In the transverse direction, our Raman setup couples to both
x and y transverse motions with equal Raman wave-vector projection onto each axis. We
have found that an approximate model for the transverse carrier is adequate and simplifies
the fitting for n̄. The transverse trap frequencies are very close (23 kHz in 800 kHz), and
so we can make the useful simplification that the temperatures are the same in the two
axes. At the same time, since the trap frequencies are close, there are Raman transitions
related to cross-mode coupling between the axes with resonances near to the carrier [20].
Our carrier Rabi frequency is strong enough that we do not resolve the closest transitions.
One simplified model is to ignore the cross coupling resonances, which are suppressed in
the LDL, and consider a 2-D fit model with independent x and y axes. Another approach,
which we adopt here for our fits, is to assume an effective 1-D model with motional Raman
coupling along the direction of the transverse Raman wave-vector. We have compared the
approximate models to simulated data, and the systematic effect on the obtained n̄ values
(≤ 10%) will be described as part of a future paper [198].
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Figure 7.16: The optical path of the north and south Sisyphus beams along with the Doppler
cooling/detection beam.

Several examples of carrier Rabi oscillation measurements and fits are shown in Fig. 7.24.
In this technique, near the ground state (i.e. well below n̄ ' 1) where the carrier is only
weakly sensitive to the initial motional state, the lowest measurable n̄ can be limited by other
damping mechanisms. This is not relevant to the case of Sisyphus cooling, but is likely to
become so for ground-state cooling measurements, for which we use sideband thermometry
as is common practice.

7.7 Experimental setup for Sisyphus cooling

Before discussing the experimental results for Sisyphus cooling, we briefly describe the
details of the experimental setup used for these measurements. This includes the Sisyphus
beams, Raman beams and the details of the setup for the cooling measurements.

7.7.1 Sisyphus beams

The formation of two Sisyphus beams:
The two counter-propagating Sisyphus beams, which enter the vacuum chamber from the
north and south sides, are derived from the 369.5-nm detection and Doppler cooling laser. It
was shown in Chapter 4 that the 369.5-nm laser beam is brought closer to the trap through
an optical fiber. The output of the optical fiber goes through a polarized beam-splitter
(PBS) that divides the beam into two paths (see Fig. 7.16). The beam that passes through

135



the PBS, has a lower power of ∼ 200 µW and is directed to a frequency modulated path.
This beam is used for Doppler cooling and detection. The other part that reflects from
the PBS has a higher power of ∼ 700 µW which goes through an acousto-optic modulator
(AOM). The first order output of the AOM is sent to the trap to be used for both loading
and far detuned Doppler cooling of the ions, while the zeroth order is used for the Sisyphus
beam path. This path has a power of 600 µW and is sent to a first double-pass AOM. The
double-pass output beam forms the south Sisyphus beam. The AOM also acts as a beam
splitter with the zeroth order on first pass being directed to a second double-pass AOM
for the north Sisyphus beam. Having two independent AOMs allow us to tune power and
frequency of each Sisyphus beam separately. The double-pass setup allows for changing the
AOM frequency without misalignment. The double pass configuration results in a 400-MHz
frequency shift with respect to the original high power beam. The 369.5-nm laser is locked
90 MHz below the resonance frequency. As a result, both Sisyphus beams are detuned
310 MHz above the 2S1/2(F = 1) −2 P1/2(F = 0) resonance. The north Sisyphus beam is
typically modulated by ωm/2π = 2×0.040 = 0.080 MHz with respect to the south Sisyphus
beam. The setup of the Sisyphus beams was one of the technical contributions as part of
this thesis work.

Adjustments of the Sisyphus beams:
Alignment/focus adjustment: Each of the Sisyphus beams is focused into the trap using
a pair of concave/convex lenses, which result in an estimated beam waist of ∼ 80 µm on the
ions. One of the lenses in each path is mounted on an XYZ transition stage which allows
fine adjustments of the beam on the ion. The beams’ alignment on the ion is adjusted on
a daily basis.

Polarization adjustment: The polarization configuration of the Sisyphus beams needs
to be Lin-⊥-Lin i.e. with θ = π/2 in Fig. 7.2. For this situation, the Sisyphus beams are
linearly polarized and the angle between their electric field ~E and the applied magnetic field
~B should be |θBE | = 45o. Two half-wave plates are used to adjust the polarization of each
beam independently. The polarization calibration is done by measuring the differential ac
Stark shift, ∆Uac = Uac(↑)− Uac(↓), due to each beam as a function of polarization angle.
The two hyperfine states |↑〉 and |↓〉 are separated by ∆s/2π = 12, 644 MHz. Including the
full hyperfine structure of the 2P1/2 excited state, consisting of P1/2(F = 1) and P1/2(F = 0)
states, separated by ∆p/2π = 2105 MHz, the differential ac Stark shift due to each linearly
polarized Sisyphus beam at a polarization angle of θBE is

∆Uac(θBE) = s0
24
γ2

∆

([
1 + ∆

∆p −∆

]
cos2 θBE −

∆
∆p −∆ + ∆

∆s + ∆p −∆

)
, (7.81)
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Figure 7.17: The pulse sequence of the microwave Ramsey experiment to measure the
differential ac Stark shift of a single Sisyphus beam. Ramsey oscillations are obtained by
varying the exposure time ∆t of the Sisyphus beam.

which depends on the laser intensity (∝ s0), polarization (θBE) and detuning of the beams
measured relative to the P1/2(F = 0) excited state (∆). Experimentally, the differential ac
Stark shift can be measured using a microwave Ramsey experiment. The pulse sequence
of the Ramsey experiment is shown in Fig. 7.17. The sequence starts with a 3-ms Doppler
cooling pulse followed by a short 50-µs optical pumping pulse used to initialize the ion into
the |↓〉 state. Then a single pulse of one Sisyphus beam, sandwiched in time between two
microwave π/2-pulses, is applied to the ion for a variable time. The sequence ends with
a 0.4-ms detection pulse to read out the ion spin state. The differential ac Stark shift is
obtained from the resulting Ramsey oscillations. To calibrate the polarization, the differ-
ential ac Stark shift of each beam is measured as a function of the polarization angle at a
fixed laser intensity. The polarization angle is varied by a half-wave plate (HWP) for which
θBE = 2(θλ/2 − θ0), where θ0 is an offset angle for each wave plate. The results of ∆Uac
measurements as a function of the HWP angle θλ/2 are shown in Fig. 7.18. The lines show
the fit to Eq. 7.82. The difference between the half-wave plates’ offset angles lead to a shift
in the plots for the two beams. The larger maximum is achieved when the laser’s linear
polarization is parallel to the magnetic field ( ~E‖ ~B) corresponding to pure π–polarization,
and the smaller maximum is related to the perpendicular case corresponding to an equal
superposition of left and right circular polarizations. Based on the calibration results, the
HWP angles of the north and south beams were set to θλ/2 = 18o and 29o, respectively, to
obtain a Lin-⊥-Lin configuration. These values are kept constant for all the experiments.

Power adjustment: The powers of the Sisyphus beams are adjusted on a daily basis
to balance the intensities incident on the ion(s). The powers of the beams are changed by
varying the rf powers driving the two AOMs. To balance the intensities of the beams, the
differential ac Stark shifts of the two beams are matched to 5–10 %. The differential ac
Stark shift of each beam, for which the polarization is permanently set to θBE = 450, is
given by

∆Uac(π/4) = s0
48
γ2

∆

(
1− ∆

∆p −∆ + 2∆
∆s + ∆p −∆

)
= s0

44.51 , (7.82)
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Figure 7.18: Polarization calibration of south (blue) and north (red) Sisyphus beams. The
points show the measure values and the lines show the fit results.

for which the detunings are ∆s/2π = 126443 MHz, ∆p/2π = 2105 MHz, and ∆/2π = 310
MHz. The waist sizes of the two beams are not perfectly matched, and so the beam powers
entering the trap are different by a factor of 2 or less when the ac Stark shifts are balanced.
Finally, we note that Eq. 7.82 is inverted to obtain an in situ calibration of s0 for our cooling
results.

7.7.2 Raman beams

Producing Raman beams: The Raman beams for the two-photon Raman transition,
used for both thermometry and sideband cooling of 171Yb+, are produced by a frequency
doubled Titanium:Sapphire laser system. The fundamental wave at 739 nm is produced
by a Spectra-Physics/Sirah Mattise TX Lite, and is frequency doubled to 369.5 nm in a
Tehknoscan resonant doubler unit. The fundamental wave is tuned to 738.950 nm (369.475
nm doubled), which is 100 GHz above the S1/2 − P1/2 resonance frequency. An external
reference cavity stabilizes the laser frequency. The power of the fundamental wave is ∼ 600
mW, and the power of the UV output of the doubler is ∼ 40− 50 mW. The optical setup of
the Raman beams is similar to one developed by a group at Michigan [199]. An electro-optic
modulator (EOM) is used to bridge the 12.6-GHz hyperfine splitting. However, due to the
high UV laser power and the large hyperfine splitting, the production of two Raman beams
with a frequency difference of 12.6 GHz, and with relative phase stability, requires a more
complicated setup in which the EOM is placed before the doubler.
Since a 12.6-GHz EOM is not commercially available, the fundamental wave is frequency
modulated by an EOM at ωHF /2. The output of the EOM can be written as

EIR = 1
2E0e

ikx−ωt
∞∑

n=−∞
Jn(φ)ein(δkx−ωHF t/2) + c.c, (7.83)
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where E0 is the field amplitude of the input beam, Jn(φ) is the nth order Bessel function with
modulation index φ, and δk = ωHF /2c. To produce the UV sidebands spaced by ωHF , the
output of the EOM is frequency-summed in the doubler cavity. The free spectral range of the
doubler cavity is tuned to a subharmonic of the modulation frequency (ωFSR = ωHF /24),
so that all the comb lines resonate simultaneously. The UV comb spectrum is effectively
the same as for the IR, but with a doubled carrier frequency and doubled phase modulation
2φ. In the presence of all the frequency comb lines, any pair with a frequency difference of
ωHF can drive the Raman transition. This leads to a destructive interference and the net
Rabi frequency reduces to zero:

Ω = 2Ω0

∞∑
n=−∞

Jn(2φ)Jn+2(2φ)ei(2δkx) = 0. (7.84)

In order to solve this issue, a Mach-Zehnder (MZ) interferometer can be employed to create
a phase shift in the sidebands. The non-copropagating Raman beam geometry is essentially
a form of a MZ interferometer, where the modulated beams are split and recombined at the
ion position. For a relative path length ∆x between the two beams, the phase of the nth

sideband is shifted by an n-dependent value of nδk∆x. As a result, the net Rabi frequency
of Eq. 7.84 changes to

Ω = Ω0e
iδk(2x+∆x)

∞∑
n=−∞

Jn(2φ)Jn−2(2φ) cos[2k∆x+ (n− 1)δk∆x]. (7.85)

The optimum Rabi frequency can be obtained when ∆x is adjusted properly so that
δk∆x = (2j+ 1)π, with j being an integer (and with 2k∆x = nπ). Unfortunately, the k∆x
factor in the cosine term of Eq. 7.85 requires a high optical stability in the setup, which is
difficult to achieve considering that the path lengths of the two beams are of the order of
a meter. To go around this problem, a relative frequency shift of ∆ω � Ω is introduced
between the two beams, which is compensated for by changing the modulation frequency
of the EOM by ±∆ω/2. The resulting net Rabi frequency is :

Ω = Ω0e
−ik∆xe−2iδk∆x

∞∑
n=−∞

Jn(2φ)Jn−2(2φ)einδk∆x = Ω0e
−ik∆xe−2iδk∆xJ2 (4φ sin(δk∆x/2)) ,

(7.86)
where the cos(k∆x) dependence giving an amplitude sensitivity is changed to a phase factor
e−ik∆x.

In our setup, for an optimized path length the phase modulation index of the EOM is
φ = 0.77, which results in Ω = 0.25Ω0. In order to perform cooling and thermometry for
both axial and transverse trap directions, two pairs of Raman beams are needed, where the
wave-vector difference of each pair is along one of the trap directions. Three Raman beams
is enough to produce the two pairs. The simplified optical setup for the three perpendicular
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Figure 7.19: The simplified optical path of the three perpendicular Raman beams entering
the trap from south, west, and east sides. The south and east beams are used for the
axial thermometry and sideband cooling, while the south and west beams are used for the
transverse direction.

Raman beams entering the trap from the south, west and east sides is shown in Fig. 7.19.
The south/east combination of beams is used for thermometry and sideband cooling in the
axial direction, while the south/west combination is used for the transverse direction.

The first AOM after the doubler and noise eater acts as a beam splitter which produces
the two beam paths of the MZ interferometer. The first-order beam is used to form the
Raman west and Raman east beams with another pair of AOMs. Mirrors, lenses and a half-
wave plate for each beam allows the adjustment of beam focus, alignments and polarization.
The Raman south beam (which is the common beam for both trap directions) is derived
from the zeroth order beam of the beam-splitter AOM. This path is also used to generate
a dipole force beam ("blue plug beam") for the deterministic zig/zag state preparation, as
described in Chapter 6. For a carrier transition the Raman south beam is modulated by
∆ω = 2 · (3.5) MHz, relative to the east/west beams, which is compensated for by setting
the EOM frequency to 6325 MHz. The AOM in each path allows for independent power
adjustment for each Raman beam. We use the common south Raman beam for frequency
tuning of Raman transitions since the double-pass configuration of its AOM allows for fre-
quency tuning with minimal misalignment at the ion.
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Power stability of the Raman beams:
The power stabilization of of the Raman beams is done with a home-made noise-eater feed-
back setup. The UV beam from the doubler goes through a noise-eater AOM, in which
∼ 10% of the zeroth order power is monitored by a photo-diode and stabilized around a
setpoint with a servo circuit. The output of the circuit is an error signal which gets mixed
with the rf signal that is fed to the AOM. Depending on the voltage of the error signal,
the modulation strength of the AOM and correspondingly the power of the zeroth order is
corrected. The circuit diagram of the noise-eater is shown in Fig. 7.20. The design of the
circuit is similar to the one found in [199] with some minor modifications (shown in red) to
eliminate slow drifts and improve the performance. The performance of the noise-eater is
also shown in Fig. 7.20. Adding the noise-eater reduces the standard deviation of the power
noise from 0.08 to 0.009. Given the long duration of typical experiments and the emphasis
on Raman Rabi fits in the measurements, the noise-eater has been crucial to obtaining the
results in this thesis work.
Raman beam adjustments:
The power of each pair of Raman beams is adjusted on a daily basis to balance their inten-
sities in the same way as was done for the Sisyphus beams by measuring the differential ac
Stark shifts of the two beams separately. Note that depending on the direction in use, the
power of the south beam is adjusted to balance the other beam.

As noted above, the perpendicular Raman beams entering from the south and west sides
of the trap are used for the axial direction, and the perpendicular south and east Raman
beams are used for the transverse direction. Figure 7.21 shows the wavelength difference
∆~k of each pair of beams with respect to the trap axis. The transverse Raman setup allows
us to couple to both x̂ and ŷ motions in the trap. The transverse trap frequencies ωx and
ωy are very close (23 kHz different in 800 kHz), and the temperatures are expected to be
about the same, so for the single ion’s transverse thermometry based on motion-sensitive
carrier oscillations, we find it convenient to assume a coupling along ∆~kT to simplify the
theory.

7.7.3 The cooling experiment setup

The detailed studies of Sisyphus cooling are performed for a single 171Yb ion in the same
linear Paul trap as the KZM studies but with a slightly higher rf frequency of ΩT /2π = 17.4
MHz. The transverse secular trap frequencies are {ωx, ωy} = 2π{0.790, 0.766} MHz, while
the axial secular trap frequency is at a frequency of ωz/2π = 0.525 MHz. These frequencies
are determined from Raman spectroscopy. A magnetic field is applied to suppress the effect
of coherent population trapping, and results in a Zeeman shift of ±δB/2π = 8.2 MHz for
the S1/2|F = 1,mF = ±1〉 sub-levels of the ground state.

At the start of each experiment day, the output power of the 369.5-nm laser used for
Doppler cooling, fluorescence detection and Sisyphus cooling, and the power of the Ti-
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Figure 7.20: (a) The circuit diagram of the noise-eater. (b) The noise-eater setup used
to stabilize the laser power of the Raman beams. (c) The performance of the noise-eater
showing the laser power with and without the servo active.
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Figure 7.21: (a) All the laser beams used in our experiment and their entry directions into
the trap. (b) The ∆~k (compared to the trap axis) of south/west and south/east Raman
beams applied for the transverse and axial thermometry (or sideband cooling).

Sapph. laser used for the Raman beams are optimized. The output power of the 369.5-nm
laser is ∼ 3 mW, and about half of that is fiber coupled to the experiment. The output
power of the frequency-doubled Ti-Sapph. laser is ∼ 45 mW, and 15% of that is used
for the Raman beams. Once the ion is loaded, first micro-motion is nulled, and then the
alignments of all the related laser beams are optimized on the ion. These beams include
the Doppler/detection beam, the 935-nm re-pump beam (for D-state depopulation), the
north/south Sisyphus beams, and the south/west/east Raman beams. In the case of the
Sisyphus and Raman beams, the intensities of each pair of the beams are also balanced.
The general sequence of Sisyphus cooling measurements is similar for the cooling rate and
steady-state n̄ measurements (see Fig. 7.22). The main components of these measurements
are: Doppler cooling, state preparation, Sisyphus cooling, Raman pulse, state detection,
and finally data collection.
Doppler cooling: The S1/2(F = 1) → P1/2(F = 0) Doppler cooling transition of 171Yb+

is driven by a 369.5-nm beam that is tuned 10 MHz below resonance. In order to have
efficient Doppler cooling, a hyperfine repump of the S1/2(F = 0) state is also active during
the Doppler cooling process. The hyperfine repump is obtained by modulating the Doppler
beam with a 7.37-GHz EOM, and the second modulation sideband drives the S1/2(F =
0)→ P1/2(F = 1) transition. The power of the Doppler cooling beam at the ion’s location
is ∼ 4 µW and it brings down the average energy of the ion to n̄ ' 22 in the axial direction
and n̄ ' 20 in the transverse direction.
State preparation: The ion can be initialized in either of the spin levels, S1/2|F = 0,mF =
0〉 ≡|↓〉 or S1/2|F = 1,mF = 0〉 ≡|↑〉, via optical pumping and microwave spin flips. The
optical pumping is obtained by frequency modulating the Doppler beam at 2.1 GHz using
an EOM. The optical pumping drives the S1/2(F = 1) → P1/2(F = 1) transition, and so
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Figure 7.22: The sequence of pulses used for the Sisyphus cooling experiments. The optical
transitions that are driven with each pulse are also depicted with Zeeman structures sup-
pressed for clarity. The sequence starts with a long Doppler cooling period, followed by a
variable number N of Sisyphus pulses. Each Sisyphus pulse includes a short (10 µs) optical
pumping pulse, followed by a microwave π-pulse. These two pulses initialize the ion into the
S1/2|F = 1,mF = 0〉 state, ready for the Sisyphus beams. The Sisyphus cooling sequence is
followed by a 50-µs optical pumping pulse that prepares the ion in the S1/2|F = 0,mF = 0〉
state for a two-photon Raman carrier transition for thermometry. The sequence ends with a
detection pulse. During spin-sensitive fluorescence detection, the fluorescence cycle is active
for the S1/2(F = 1) state but is closed to the S1/2(F = 0) state.

initialize the ion into the |↓〉 state. The ion can be transferred to the |↑〉 state by applying
a microwave π-pulse after the optical pumping.
Sisyphus cooling: The details of the Sisyphus beams are provided in the previous section.
The detuning of these beams are ∆/2π = 310 MHz above the S1/2(F = 1)2→ P1/2(F = 0)
resonance. One of the beams is modulated with respect to the other by a frequency of
ωm/2π = 0.080 MHz. The projections of the north Sisyphus beam’s wavevector along
the {x̂, ŷ, ẑ} directions are 2π

λ {
1
2 ,
−1
2 ,

1√
2}. For the given trap frequencies, the Lamb-Dicke

parameters for the transverse direction are {ηx, ηy} = {0.052, 0.053}, and for the axial
direction the value is ηz = 0.090. Our primary data consists of both cooling-rate and
steady-state n̄ measurements performed at different laser intensities. As mentioned above,
the intensities of the Sisyphus beams on the ion are determined in situ from their differential
ac Stark shifts (s0 = 44.51∆Uac), which are balanced to better than 10% uncertainty for
each intensity value.
The Sisyphus beams primarily drive the S1/2(F = 1)→ P1/2(F = 0) transition; however the
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ion can also be weakly optically pumped via the P1/2(F = 1) state into the dark S1/2(F = 0)
state, which is closed to the cooling cycle. In order to have effective cooling, a repump back
into the cooling cycle is required. To this end, the Sisyphus cooling is implemented through
a pulse method. Each of the N Sisyphus cooling pulses includes two parts: 1 – Initialization
into the |↑〉 state to prepare the ion for the next cooling pulse. This is done by applying a
10-µs optical pumping pulse followed by a microwave π-pulse. 2 – Exposure of the Sisyphus
beams for a time duration of τsis. The total Sisyphus cooling time, Nτsis, can be varied by
changing the number of cooling pulses N or the single-pulse cooling time τsis. Depending
on the laser intensity, the value of τsis is chosen to keep the probability of pumping dark at
a small level.
Raman pulse: The thermometry is performed by driving the motion-sensitive two-photon
carrier transition | ↓, n〉 → | ↑, n〉. The Raman pulse is preceded by a 50-µs optical pumping
pulse that prepares the ion in the |↓〉 state. To measure n̄ in the transverse direction, the
west and south Raman beams are activated, while for the axial direction, the east beam
and a matched lower intensity south Raman beam are activated. A lower Raman intensity
is used for the axial direction to account for the smaller separation of the 1st sideband from
the carrier due to the lower secular frequency.
State detection: The spin state read out is achieved by using the fluorescence detection
beam, which is the same as the Doppler cooling beam with a detuning of 10 MHz below the
S1/2(F = 1) → P1/2(F = 0) resonance. Since the S1/2(F = 1) → P1/2(F = 0) transition is
closed to the S1/2(F = 0) state, an ion in the |↑〉 state will continue to scatter photons and
is detected as bright, while the |↓〉 state will stay dark due to the large hyperfine splitting.
To measure the ion’s state, the detection beam is activated for 0.4 ms and the fluorescence
photons during that time are collected and counted by a photo-multiplier tube (PMT). A
discriminator threshold of 4 photon counts is used to distinguish the |↑〉 (bright) state and
|↓〉 (dark) state. For each experiment, a photon count above threshold is recorded as a
count of 1. Typically we achieve single-shot detection efficiencies of > 90% for both states
with ∼ 12 photons collected from the bright state in 0.4 ms.
Data collection: As mentioned before, the experiment is controlled by LabView software
which creates the timing sequence through a spincore pulser card, and collects photon
counts from the PMT using a National Instruments counter card. For the Sisyphus cooling
measurements the length of the Raman time scan, the scan time step, and the number of
experiments that are repeated per step can all be set by the user to acquire a carrier Rabi
flopping curve. Our displayed data shows the probability P↑(t) following the Raman pulse,
averaged over the experiments per point without any applied correction.
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Figure 7.23: The measurement for the rate of pumping to the dark S1/2(F = 0) state in the
presence of two Sisyphus beams at s0 = 11. A pumping time of τ = 0.3 ms is found from
an exponential fit, and the single-pulse cooling time is set to 1/3 of that value (0.1 ms) for
all the measurements at that power.

7.8 Experimental results of the Sisyphus cooling of a single
ion

We measure the cooling rate and steady-state n̄ of the Sisyphus cooling for a single 171Yb+,
in both axial and transverse directions. The experimental results are then compared to 3-D
semiclassical, 1-D semiclassical, and 1-D quantum simulations.

7.8.1 Sisyphus cooling rate measurement:

We first present the results of the cooling rate measurement, performed as a function of
the laser intensity. The cooling rate at each intensity value is extracted from a set of
measurements of n̄ vs. Sisyphus cooling time, where the value of n̄ at each time is obtained
from a Rabi-oscillation on the motion-sensitive carrier transition. This is done in both axial
and transverse directions.

At each laser intensity, the decay rate into the dark S1/2(F = 0) state in the presence of
the two Sisyphus beams is first measured (see Fig. 7.23), and fit to an exponential decay to
find the pumping rate. The single-pulse Sisyphus cooling time τsis is then set to 1/3 of the
decay time. In this way, during the time τsis, the ion will remain in the bright state (i.e.
in the cooling cycle) with an average probability of 85%. The cooling time Nτsis is then
varied by varying the number of Sisyphus cooling pulses N . The pulse sequence of each
experiment run is the same as that shown in Fig. 7.22, with a 6.6-ms Doppler cooling time
followed by the N Sisyphus cooling pulses, the Raman carrier transition, and finally the
0.4-ms readout. Thermometry for either the axial or transverse direction is enabled by the
appropriate pair of Raman beams as discussed above. The measurement at each cooling
time consists of a carrier time scan with a duration of 0.2(0.1) ms for the axial (transverse)
direction. The number of time steps for each scan is 0.1(0.05) µs with 50 experiment runs
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Figure 7.24: A selection of carrier scans vs. cooling time for the transverse direction and at
a saturation parameter of s0 = 11. The scans are fit to a thermally averaged Rabi oscillation
(red line) to derive n̄ for each cooling time.

used for averaging at each point. A set of typically 15-20 measurements are performed to
define the dependence of the ion’s average energy on the cooling time. A selection of carrier
scans vs. cooling time at s0 = 11 is shown in Fig. 7.24.

Each time scan represents the probability of being in the bright |↑〉 state, i.e. in the
S1/2 | F = 1,mF = 0〉 state, following the carrier transition, and so is expected to exhibit
Rabi oscillations (see Eq. 7.80). It can be seen in Fig. 7.24 that for the longer cooling
times, the coherence contrast clearly increases, as does the Rabi frequency, which is a sign
of a lower n̄. Above a certain cooling time, the carrier oscillation is observed to remain
unchanged as the cooling time becomes longer. This indicates that a final steady-state n̄
has been achieved. To find the n̄ for each cooling time, each plot is fit to Eq. 7.80 with an
initial thermal distribution, and with some added modifications to account for experimental
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Figure 7.25: (a) Transverse n̄ and (b) axial n̄ as a function of Sisyphus cooling time at a
single beam laser intensity corresponding to saturation parameter s0 = 11. The plots are fit
to an exponential decay to find the cooling rates at that laser intensity. (c) The complete
data set of cooling rate over a range of laser intensities for both the axial and transverse
directions. Note that the error bars for the n̄ values are from the carrier fits and the error
bars for the cooling rates are from the exponential fits. The green line shows s2

0 scaling as
a guide to the eye.

imperfections as follows:

P c↑ (t) = (ξ↑ − ξ↓)
Nf∑
n=0

Pn sin2
(

2πΩn,n( t−t0tc
)

2Ω00

)
+ ξ↓

= (ξ↑ − ξ↓)
Nf∑
n=0

n̄n

(n̄+ 1)n+1 sin2
(

2πη2L0
n(η2)( t−t0tc

)
2

)
+ ξ↓,

(7.87)

where ξ↑ and ξ↓ are bright-state and dark-state detection efficiency parameters, coming from
the calibration measurements at the start of the day, and are held fixed in the fit. Typical
values are ξ↑ = 0.92 and ξ↓ = 0.06. The time offset t0 ∼ 1µs accounts for propagation
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delays in the turn-on of the Raman AOM’s. The time offset is also held constant in the fits
over all data sets for each direction, but is different for the axial and transverse directions.
The higher limit of the summation is Nf = 500. The only free fit parameters in the
function are the carrier 2π-time tc and n̄. The extracted n̄ values are then plotted vs. the
Sisyphus cooling time, and fit to an exponential decay of the form n̄0 +A exp (−(t− t0)/τ),
to extract the cooling rate τ−1 at the given laser intensity. To omit the initial cooling
dynamics, only the measured points with n̄ ≤ 15 are considered. Figures 7.25(a) and (b)
show the transverse and axial n̄ vs. cooling time along with the resulting exponential decay
fits for a single laser intensity corresponding to s0 = 11. The error bars for the n̄ values are
obtained from the carrier fits. Since on average the ion is cooled 85% of the time, due to
the effect of pumping dark, the actual cooling rate is higher than the extracted value and
is calculated as Γc = (τ/0.85)−1. Figure 7.25(c) shows the complete data set of axial and
transverse cooling rates over a range of s0 (i.e. laser intensity), where the error bars of the
cooling rates are from the exponential fits, and the error bars for the saturation parameter
include calibration and drift uncertainties. It can be seen that the cooling rate values in
the axial and transverse directions are very close, and they are roughly proportional to s2

0
as expected.

7.8.2 Sisyphus cooling limit:

Figure 7.26: Measured steady-state n̄ vs. laser intensity, in terms of the single-beam on-
resonant saturation parameter s0, for the axial (red) and transverse (blue) directions. A
minimum of n̄ss ' 1− 2 is observed at an optimum value of s0 = 10− 20, depending on the
axis.

Next, we present measurements of the steady-state n̄ as a function of the laser intensity.
These measurements are very similar to the cooling rate measurements. Potential heat-
ing sources such as micro-motion and Sisyphus laser noise are checked and minimized (if
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necessary) on a regular basis. At each intensity, the steady-state n̄ is found by measuring
the n̄ after a sufficiently long cooling time. To assure that the steady-state is reached, the
total cooling time Nτsis at each intensity is adjusted to cover several cooling time constants
(1/Γc), which are obtained from the prior measurements. The single-pulse cooling time
τsis is adjusted to keep the probability of pumping out of the cooling cycle into the dark
S1/2(F = 0) state at a fixed value of 0.8, and the number of pulses is chosen accordingly to
get the required cooling time.

Similar to the measurements described in previous section, a carrier time scan is per-
formed and the value of n̄ss is derived from a fit to Eq. 7.87. As expected, there is a
minimum thermal energy - the Sisyphus cooling limit - that is obtained at an optimum
laser intensity. The minimum energy in the transverse direction corresponds to n̄ss ' 1,
while in the axial direction it is a higher value of n̄ss ' 2 with the lower optimum intensity
being due to the weaker confinement.

Next, we compare the experimental results of the n̄ss and cooling limit vs. laser intensity
to the 1-D quantum and 3-D semiclassical simulations.

7.8.3 Comparison between experimental results and simulations

The comparison of the measured cooling rates and steady-state n̄ to the 3-D and 1-D
semiclassical simulations, and the 1-D quantum simulations, are shown in Fig. 7.27. For the
transverse cooling rate, all the simulation models match the experimental results reasonably
well, while in the weaker axial direction, the 3-D semiclassical simulation matches the data
slightly better overall than the 1-D semiclassical and noticeably better than the quantum
simulations. The discrepancy between the 1-D and 3-D semiclassical simulations indicates
that the transverse motion has some effect on the axial cooling behaviour, perhaps the
additional effect of the transverse delocalization of the ion or correlations between the
motions. Simulations in a factor of three tighter trap (that is deeper in the LDL) do
not show this difference. The higher axial cooling rate predicted by the 1-D quantum
simulation, by about an overall factor of 3-4, is related to the lower initial state (ni = 8)
used in the calculation. A thermal initial state with n̄i = 22, (see Fig. 7.27(a)) as used in
the semiclassical simulation, brings the quantum simulation result closer to the experiment,
indicating the effect of deviations from the LDL.

For the transverse steady-state energy (i.e. the steady-state n̄ values), the 1-D quantum
simulation matches the experiment reasonably well over the range considered. The trans-
verse semiclassical simulations show similar good agreement, with perhaps the start of some
deviations at larger intensity, which could be due to the effect of ground-state coherences.
In the axial direction, there is a discrepancy between the experiment and theory by up to a
factor of 2, although the general behaviours agree. Comparing the simulations first, we note
that the quantum and semiclassical simulations agree well, and the quantum calculations
show that the final energy is independent of initial motional state as expected. (Compare
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ni = 8 and n̄i = 22 simulations in Fig. 7.27). The 3-D and 1-D semiclassical simulations
also match, which suggests that the influence of other trap axes can be ignored at low en-
ergies. The origin of the discrepancy between the simulations and experiment in the axial
direction is not clear. A test of the carrier thermometry for a ground-state cooled ion shows
that it the measurement is not baseline limited, and systematics in the fitting do not seem
likely. The higher n̄ss values may be due to technical aspects not included in the modelling
process, including the rf potential and the pulsed method of cooling and hyperfine repump.
The measured heating rate in the axial trap direction of 0.015 phonons/ms is too small to
explain the effect.

Finally, we comment briefly on possible systematic effects associated with the carrier fit
model for the transverse direction. The reasonable agreement between the experimental and
theoretical predictions in the transverse direction is obtained from fits to an effective 1-D
model of carrier Rabi oscillations involving the two transverse directions (see discussion in
Section 7.6). Using fits that consider a 2-D carrier model but ignore the effect of cross-mode
Raman couplings does not affect the cooling rates obtained, but shifts the steady-state n̄
values up by ∼ 10% and reduces the match between experiment and theory. The effect of
cross-mode coupling on the carrier Rabi oscillations and the comparison between the two
fit models will be presented in a

In conclusion, we have demonstrated 3-D Sisyphus cooling of a single 171Yb ion and
investigated the cooling rate and steady-state n̄ as a function of laser intensity. Our mea-
surement results reasonably agree with the predictions of simulations based on the quantum
and semiclassical theoretical models.
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Figure 7.27: The cooling rate ((a) and (c)) and steady-state quantum number n̄ ((b) and
(d)) as a function of laser intensity for the axial ((a) and (b)) and transverse ((c) and
(d)) directions. The experimental measurements (black open circles) are compared to 3-D
semiclassical simulations (solid blue line), 1-D semiclassical simulations (dashed blue line),
and 1-D quantum simulations (red). The quantum simulations include those with an initial
thermal state with n̄i = 22 (red open circles), and an initial state of ni = 8 (red dotted line).
The shaded region indicate the standard deviation of the n̄ fluctuations in steady state for
the quantum simulation. The uncertainty in the n̄ss values obtained from the simulation is
smaller.

152



7.9 Resolved sideband cooling using two-photon stimulated
Raman transitions

With Sisyphus cooling in hand, we now proceed to the final goal of ground-state cooling.
We first briefly review the technique of Raman sideband cooling for a single ion. We then go
on to consider the case of Raman transitions for multiple trapped ions, and finally present
both Sisyphus and sideband cooling results for a string of 4 ions.

In our experiment, ground-state cooling of trapped 171Yb ions is obtained by resolved
sideband cooling based on the two-photon stimulated transition technique. We use the
S1/2|F = 0,mF = 0〉 state, labeled |↓〉, and the S1/2|F = 1,mF = 0〉 state, labeled |↑〉,
separated by a frequency of ωHF /2π = 12.6 GHz. The Raman beams are far detuned
from the excited state P1/2 (∆R/2π = 100 GHz). For ground-state cooling of a single ion’s
center-of-mass motion in the ith direction, the frequency difference between the two Raman
beams (ideally) needs to be set to ωL2−ωL1 = ωHF −ωi to drive a red-sideband transition.

Figure 7.28: The ground-state cooling process is performed in two steps: first, a red-
sideband transition driven by two Raman beams transfers the ion into a lower mo-
tional state: | ↓, n〉 → | ↑, n− 1〉. Second, an optical pumping step resets the spin state:
| ↑, n− 1〉 → | ↓, n− 1〉. The two steps are repeated until the ion reaches the ground state,
which is decoupled from the red-sideband transition.

The basic concept behind sideband cooling is shown in Fig. 7.28. Starting with the ion
in the | ↓, n〉 state, a stimulated Raman transition tuned to the first red-sideband transition,
and of suitable duration, transfers the ion into the | ↑, n − 1〉 state. The ion is then reset
to the original spin state via optical pumping (| ↑, n− 1〉 → | ↓, n− 1〉), and the process is
repeated until the ion reaches the ground state. An efficient reset with optical pumping, in
which the motional state n remains unchanged with a high probability, is only achieved in
the LDL. When the initial energy of the ion (ni) is high, the probability of diffusion to a
different motional state on recoil becomes higher, and there will be an increasing likelihood
of being transferred into a higher motional state. In each scattering event, the ion gains
an energy of ~(ω0 − ωi) through the photon absorption, and loses an energy on average of
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~(ω0 − ωR) through the spontaneous emission. In the limit of ωR � ωi corresponding to
tight traps and a small LD parameter, and assuming low initial energies, the ion loses a net
energy of ~ωi over each scattering event.

Note that in the above discussion, it was assumed that the ion initially occupies a single
vibrational state n. In practice, the initial vibrational level of the ion has an n value that
is thermally distributed with mean set by for example the Doppler cooling limit. However,
since the red-sideband Rabi frequency is n-dependent, a fixed pulse time can only be chosen
to satisfy the | ↑, n− 1〉 → | ↓, n− 1〉 transition with 100% efficiency for a single n value.
Another problem with a fixed pulse time is that the ion can get trapped in a motional state
when Ωn,n−1t = mπ, (m being an integer). These problems can be remedied by using a pulse
sequence that sweeps in from high to low n. For example in a 60-pulse sequence, for each
step based on the n dependent Rabi frequency given by Eq. 7.60, a π-time for 60→ 59, then
59→ 58 etc is chosen. To avoid the complications due the the added momentum diffusion
discussed above, and to avoid a large number of pulses, sideband cooling is normally aimed
to start in the LD regime. To understand ground-state cooling of an ion string, we next
describe Raman transitions in the case of multiple ions.

7.10 Raman transition and thermometry of multiple ions

The idea of the single-ion interaction with a laser field can be extended to the case of an
array of multiple ions as follows. We first assume that the laser field is applied to only
one ion in the string, and in the end we will consider the case of all ions being illuminated
uniformly by the Raman beams, which is the case in our experiment.

Even assuming that the laser field is applied to only one ion (jth ion) in the string of
N ions, we will have the new feature that the ion has components of motion from all 3N
collective vibrational modes. The dipole interaction Hamiltonian of Eq. 7.54 for the jth ion
can be written as

Vdip−j = ~Ω
2 (σj+ + σj−)

(
ei(k·xj−ωLt+φj) + e−i(k·xj−ωLt+φj)

)
(7.88)

For the case of a linear string, the motions in x̂, ŷ and ẑ directions are decoupled and
the position operator can be expressed in terms of the normal-mode coordinates φk with
k ∈ {1, 2, ..., 3N}, and the associable eigenvectors ψjk as follows:

xj =
3N∑
k=1

ψjkφk, φk = φk0(ak + a†k). (7.89)
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The dipole Hamiltonian in the interaction picture with the RWA can then be written in
terms of normal mode coordinates as

VIj = ~Ω
2 σj+ exp

[
i

3N∑
k=1

ηjk(ake−iωkt + a†ke
iωkt)− i(δt− φj)

]
+ h.c., (7.90)

where the Lamb-Dicke parameter associated with the kth mode is ηjk ≡ kψikφk0. In this
case, the Rabi frequency of the kth mode will become

Ωj{n′
k
,nk} ≡ Ω

∣∣∣∣∣〈{np 6=k}, n′k|
3N∏
l=1

eiηjl(al+a
†
l
)|{np 6=k}, nk〉

∣∣∣∣∣ . (7.91)

If we define Ω(0)
j{n′

k
,nk} to be the Rabi frequency of the kth mode and for the jth ion in the

absence of all the other modes {p 6= k},

Ω(0)
j{n′

k
,nk} ≡ Ω

∣∣∣〈n′k|eiηjk(ak+a†
k
)|nk〉

∣∣∣ , (7.92)

the general Rabi frequency can be written in terms of Ω(0)
j{n′

k
,nk} and all the other 3N − 1

modes (spectator modes) labeled by p as follows:

Ωj{n′
k
,nk} = Ω(0)

j{n′
k
,nk}

∣∣∣∣∣∣〈{np 6=k}|
∏
p 6=k

eiηjp(ap+a†
p)|{np 6=k}〉

∣∣∣∣∣∣
= Ω(0)

j{n′
k
,nk}

∏
p 6=k

e−η
2
jp/2Lnp(η2

jp).
(7.93)

The states of the spectator modes are normally assumed to be thermally distributed with a
mean vibrational number n̄p. If we average over the thermal distribution, the mean-squared
Rabi frequency simplifies to

Ω̄j{n′
k
,nk} = Ω(0)

j{n′
k
,nk}

∏
p 6=k

e−η
2
jp(n̄p+1/2). (7.94)

In the Lamb-Dicke limit (η2
jp(n̄p + 1/2)� 1), it can be seen that the effect of the spectator

modes can be ignored. More importantly, we do not show it here but the fluctuations in
the Rabi frequency are also suppressed [20].

In the LDL limit, when the laser light shines uniformly on the whole string, as is the
case in our experiment, all the ions couple to the field simultaneously and the Hamiltonian
of the system can be written as

VI = ~Ω
2

N∑
j=1

σ+j exp
[
i

3N∑
k=1

ηjk(ake−iωkt + a†ke
iωkt)− i(δt− φj)

]
+ h.c. (7.95)
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Due to the entanglement between the spin state of the system and the collective motion,
the system cannot be treated as N -independent spin-1/2 systems, and the time-dependent
wave-function of the system becomes quite complicated during a Rabi oscillation. For
instance, in a string of N = 4 ions, when the blue-sideband of the kth mode is driven, the
time dependent wave-function of the system involves a ladder of states from | ↓↓↓↓, nk〉 all
the way up to | ↑↑↑↑, nk + 4〉.

Nevertheless, the resolved sideband cooling of a string of ions in principle is the same
as for a single ion. As long as the vibrational modes are resolved, any particular mode with
frequency ωk can be cooled to the ground-state by tuning the Raman beams to ωL2−ωL1 =
ωHF −ωk to drive the first red sideband of that given mode. However, the recoil energy on
reset is spread over all the modes and so heats all of them. In order to ground-state cool a
string, all the modes need to be cooled simultaneously.

7.10.1 Thermometry:

For multiple trapped ions in our setup, the thermometry techniques using two-photon Ra-
man transitions are not as simple as the case of a single ion, since all the ions are driven
simultaneously in the transition and the connection between sideband Rabi oscillation and
n̄ is more complicated 5. For instance, in the case of sideband thermometry, where red
and blue sideband transitions are driven, the value of n̄ cannot be directly derived from
the sideband asymmetry. Nevertheless, the average n̄k of a vibrational mode in a multi-ion
string can be obtained by fitting to the Rabi oscillation for the sidebands. In this case, the
probability of observing the |↑〉 state for N ions, following a transition for the kth mode, is

P↑(t) =
∑
nk=0

PnkP↑,nk(t), (7.96)

where Pnk is given by a thermal distribution, and P↑,nk(t) is found numerically by solving
the Schrödinger equation (using Eq. 7.95) for each nk in Python. Since we start from a
Sisyphus cooled energy, the LD condition is satisfied and the spectator modes can be ignored
in the calculation of P↑,nk . In our experiment, the thermometry of four ions is performed by
driving the red sideband starting from the |↓↓↓↓〉 state and the |↑↑↑↑〉 state. The value of n̄
is then found by simultaneously fitting the two Rabi oscillations to functions of the form of
Eq 7.96. The red sideband applied to the |↑↑↑↑〉 state, which gives equivalent information
to the blue sideband applied to the |↓↓↓↓〉 state, is obtained by first flipping the spins with
a microwave π-pulse (|↓↓↓↓〉 →|↑↑↑↑〉), and then applying the red sideband. Thus, we refer
to this as "π+red" sideband for convenience. Numerical simulation results for two samples
of red and "π+red" sideband Rabi oscillations for the transverse center-of-mass mode of a
four-ion string are shown in Figs 7.29 (a) and (b).

5Individual addressing of ions is possible but more technically challenging than uniform illumination.
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Figure 7.29: (a), (b) Simulation results of red-sideband Rabi oscillations for the transverse
center-of-mass mode, starting from the |↓↓↓↓〉 state (red line) or the |↑↑↑↑〉 state (blue line)
in a four-ion string with (a) n̄ = 1 or (b) n̄ = 2. The sideband asymmetry for each pair of
sideband oscillations is found by locating the maximum and minimum points of oscillations
(shown by black points in (a), (b)). (c) The sideband asymmetry vs. n̄ (green line). This
plot can be fit to a linear function (black dashed line) to obtain the approximate correction
factor of 2.32(2) relating the sideband asymmetry to n̄ for the transverse COM mode of a
four-ion string.

Alternatively, an approximate evaluation of n̄k can be obtained from the sideband asym-
metry together with a mode-dependent correction factor. These correction factors are found
from a linear fit to the numerical simulations of n̄ vs. sideband asymmetry (Fig. 7.29 (c)),
ignoring spectator modes. For the case of four ions, these correction factors vary between
1–3 and are listed in Fig. 7.31. The approximate evaluation of n̄ is useful for quick estimates
during the experiment, but for the analysis of our experimental results, we use fits.

7.11 Experimental results of sideband cooling

7.11.1 Sideband cooling of a single ion:

For sideband cooling of a given center-of-mass mode of a single ion, the experiment setup
is mostly the same as for the Sisyphus cooling experiments described above. Separate rf
synthesizers are used to drive the Raman south AOM for sideband cooling or thermometry
operations. The thermometry uses a lower laser power to reduce off-resonant transitions
from the carrier and other sidebands. We drive the sideband cooling transitions with higher
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Figure 7.30: Rabi time scans used for the thermometry of a single sideband-cooled 171Yb
ion. Both axial (a, b) and transverse y directions (c, d) are shown. The top panels (a, c)
show the red sideband starting in the |↑〉 state and the bottom panels (b, d) show the red
sideband starting in the |↓〉 state. The suppression of the red sideband oscillations in the
later case indicates cooling to near the ground state of motion.

laser power, which is useful in the transverse direction where power broadening of the Raman
sideband transition (π-time of 20–30 µs) allows us to simultaneously cool both transverse
COM modes (typically spaced by 30 kHz). The experiment procedure follows that of the
Sisyphus cooling. After the ion has been first Doppler cooled for 6.6 ms and then Sisyphus
cooled for 30 × 0.2ms = 6 ms, we tune the frequency of the sideband cooling synthesizer
to the first sideband of the mode of interest and determine the time for a Rabi π-pulse. We
then activate the sideband cooling sequence, programmed as described above typically with
30 pulses, and finally we use a thermometry sequence to assess the cooling outcome. In this
situation the thermometry is performed with the sideband asymmetry technique (see Sec
7.7), for which the blue sideband is replaced by the "π+red" sideband, i.e the red sideband
transition starting from the |↑〉 state.

Figure 7.30 shows a typical sideband cooling result for both the axial and transverse- y
center-of-mass mode of a single ion. The suppression of the red sideband transition starting
from the |↓〉 states indicates a final energy near to ground state with high probability. We
find n̄ ≤ 0.1 for both the transverse motion with trap frequency of ωy/2π = 0.804 MHz,
and the axial motion with the trap frequency of ωz/2π = 0.324 MHz.
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Figure 7.31: The measured frequencies of the normal modes of a four-ion string along the
three axes of motion, and the estimated sideband asymmetry correction factor for each
mode.

7.11.2 Sisyphus and sideband cooling of a four-ion string

We now consider the case of a four-ion string. Following a period of Sisyphus cooling,
we use sideband spectroscopy to measure the frequencies of the normal modes in all three
axes. The measured frequencies of all 12 normal modes of a linear four-ion string in a
typical trap setup are shown in the table of Fig. 7.31. The frequency difference between
the two transverse modes varies between 21 kHz for the zigzag and 36 kHz for the COM
mode. Similar to the single-ion case, for any given mode, both of the transverse axes are
sideband cooled simultaneously. The simultaneous cooling is implemented by interleaved
cooling pulse sequence for the resolved x and y modes.

For the four-ion string, the thermometry is performed by driving the red sideband and
the "π+red" sideband, and fitting both results simultaneously to find n̄ with a better ac-
curacy (see Section 7.11). Figure 7.32 shows samples of n̄ measurements for the transverse
bending mode, transverse zigzag, and axial zigzag mode. For each mode the Sisyphus-cooled
and sideband-cooled results are shown. In a similar fashion to the carrier transition fits used
for the Sisyphus cooling results of a single ion, we modify the fit function of Eq. 7.96 to
account for experimental modifications and imperfections. These include detection efficien-
cies, in this case without the use of a discriminator (efficiencies held fixed in the fit); AOM
delay (held fixed); and carrier Rabi frequency (a free fit parameter). In addition, we account
approximately for the effect of spontaneous emission during the Raman Rabi time scans
by including a linear baseline to the red sideband scan. Finally, we account approximately
for the effect of residual Raman intensity differences across the four ions (primarily giving
detuning variations) by adding an envelope function of variable timescale and final offset
to the "π + red" sideband scan. We have used either an exponential decay or cosine beat
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Figure 7.32: Sideband Rabi oscillations for three vibrational modes of a four-ion string
following (a, b and c) Sisyphus cooling and (d, e and f) Raman sideband cooling for: (a and
d) The transverse bending mode, (b and e) the transverse zigzag mode, and (c and f) the
axial zigzag mode. Note that no discrimination between photon count levels is used in our
four-ion detection, and so the vertical axes show the total number of counted photons in 0.4
ms. Black lines show fits including corrections for experimental imperfections (see text).
Dotted lines show the ideal model with contrast envelope removed. Average vibrational
number n̄ from the Sisyphus fits are (a) 1.60(4) for the transverse bending mode, (b) 1.95(4)
for the transverse zigzag mode, and (c) 1.11(4) for the axial zigzag mode. The fits to the
sideband cooled data constrain n̄ ≤ 0.05.

for the envelope function. For the sideband-cooled scans, the three parameters describing
spontaneous emission and intensity-balance effects are allowed to vary in the fits. The spon-
taneous emission correction is typically held fixed in the Sisyphus fits. Figure 7.32 shows
example fits to the modified theory (black), for both Sisyphus and sideband cooled modes.
The fit expression with the contrast envelope omitted (green) is also included to show the
effect at long times.

The Sisyphus cooling reduces the average energy of the transverse zigzag mode to n̄ ' 2.
Performing sideband cooling on the Sisyphus-cooled zigzag mode brings the averaged mo-
tional state down to n̄ ≤ 0.05. We have successfully performed sideband cooling of all four
modes of a four-ion string in the both axial and transverse directions. We have also per-
formed simultaneous ground-state cooling of multiple transverse or axial vibrational modes,
which are not shown in this thesis.
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7.12 Conclusion

In conclusion, we have demonstrated that we can cool all modes of motion in an ion crystal
of up to four ions to near n̄ ∼ 1 − 2 using Sisyphus cooling. This represents a lowering of
the center-of-mass energy of > 20 from Doppler values for the trap considered. Combining
Sisyphus and Raman sideband cooling, we have achieved ground-state cooling for each of
the modes of a four-ion crystal. For three ions we have also demonstrated simultaneous
sideband cooling of all axial and all transverse modes following Sisyphus cooling. Overall,
Sisyphus together with Raman cooling has enabled us to achieve the low temperatures
towards the study of quantum regime of the linear-zigzag transition.

One obvious question is how much extra time Sisyphus cooling adds on top of the
Doppler pre-cooling to an experimental sequence. It is interesting to compare the Sisyphus
technique to other cooling methods for ions. The Sisyphus cooling rate of ∼ 1 ms−1 is
certainly slower compared to Doppler cooling with a cooling rate of ∼ 100 µs−1, but in
practice the Sisyphus sequence of 6 ms is only a factor of ∼ 2 longer than the typical
Doppler cooling time used in this (and other) ion trapping experiments. Compared to
the techniques of sideband cooling [22] and EIT cooling [170] used to achieve ground-state
cooling, the Sisyphus technique cannot reach as low temperatures, but it benefits from
a simplicity and robustness in part because it is not a resonant process. This permits
the cooling of multiple modes of motion for an ion string without fine tuning of multiple
cooling parameters. We should note, however, that Raman sideband cooling can cool all
transverse modes simultaneously if the transverse confinement is strong enough to bring all
modes close to degeneracy, but such a simplification does not arise in the axial direction.
EIT cooling does have sufficient bandwidth to cool several modes simultaneously and has
been demonstrated, for example, to cool three axial modes of a mixed species Be+–Mg+

crystal to below n̄ ∼ 0.1 − 0.2 in 40 µs [200], but doing the same for more ions or all
axes will become more challenging. Like EIT cooling, the Sisyphus technique requires
much less optical power than for Raman cooling. We use typically 10 − 20 µW per beam
compared to 1 mW per beam for the Raman transitions. It is also a technical advantage
that the Sisyphus beams can be derived directly from the Doppler cooling and detection
laser and require the same single direction of optical access to enable 3-D cooling. Of
course Sisyphus cooling works also outside the LD regime, which has allowed us to bridge
Doppler and sideband cooling in our setup. One down side to Sisyphus cooling is that
it does not tolerate large micro-motion. For Raman cooling, the micromotion will only
reduce the sideband strength, but in the case of Sisyphus cooling the polarization-gradient
effect is simply washed out. Our Sisyphus technique should easily extend to more than four
ions although there might be some compromise in optimum cooling limit when the axial
frequency is reduced to accommodate a large string. This would for example be of interest
in recent proposals to study heat transport in ion strings [201–205]. It also may be useful
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in quantum information applications where deep ground-state cooling is not required, for
example in microwave-based logic [206,207].
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Chapter 8

Conclusion

In conclusion, we have studied the dynamics of a string of trapped ions near the critical
point of the linear-zigzag (L-Z) structural transition. We measured the rate of spontaneous
nucleation of topological kink-defects as a function of the quench rate across the LZ transi-
tion in a string of 42−43 Doppler-cooled and trapped 174Yb ions, and found good agreement
with molecular dynamics simulations. Using the molecular dynamics simulations, we as-
sessed the effect of kink losses and showed how they can mask the intrinsic nucleation rate,
and result in a reshaping of the simple power-law dependence over the full range of quench
rates used. We went beyond testing the KZM, and explored the two different types of
the kink, discrete and extended, observed in our experiments and presented the role of the
quench end-point in configural change and the survival probability for each type of the kink.
Furthermore, we investigated the post-nucleation dynamics of discrete kinks by observing
their trajectories in the zigzag structure in a sequence of pictures taken over 0.4 s. The
final results demonstrated a behavioral sensitivity on the ion number at the single ion level.
A maximum lifetime of ≥ 1 s was extracted for the created kinks, implying that further
studies of kink dynamics are possible, perhaps even in the quantum regime.

Extending the investigations of the near-transition dynamics to ultra-low temperatures,
we presented the outline of an on-going experiment of our group to reach the quantum
regime with a smaller string of four 171Yb ions. The goal of the experiment is to prepare a
quantum superposition of the two broken-symmetry states, the zig and zag configurations,
and assess the coherence time through tunneling oscillations near the critical point. To as-
sess the feasibility of this measurement, we discussed several possible experimental/technical
obstacles of the experiment and estimated the order of required sensitivities for our setup.
Compared to the previous experiment in the classical regime, this experiment is more chal-
lenging. An awareness of the (possibly limiting) challenges/issues and ways to address them
should be generally valuable to similar experiments.

One of the main requirements for the success of the tunneling measurement is an effi-
cient ground-state cooling of the zigzag vibrational mode. In order to achieve an efficient
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ground-state cooling in our setup, we demonstrated a 3-D Sisyphus cooling technique as an
intermediate step between Doppler cooling and resolved sideband cooling. We provided a
complete study of Sisyphus cooling of a single trapped 171Yb ion in and near the Lamb-
Dicke regime by measuring the cooling rate and steady-state n̄ as a function of the cooling
beam intensity. The measurement results were shown to agree with molecular dynamics
simulations based on semiclassical and quantum models. Moreover, by comparing with the
results of simulations under different conditions, we investigated the effects of experimental
complications, such as lattice modulation, on the cooling rate and cooling limit. Finally,
going back to our original motivation for Sisyphus cooling, we presented the measurement
results of a successful ground-state cooling of any given vibrational mode of a four-ion string,
in particular of the transverse zigzag mode required for the proposed measurements of tun-
neling. Based on the technical simplicity of Sisyphus cooling, providing a 3-D simultaneous
cooling of all vibration modes to near n̄ ' 1, we expect that Sisyphus cooling of trapped
ions will be of general use, particularly in experiments involving ion strings of a moderate
size.

Beyond the cooling work described in the thesis, we have also worked experimentally
on the other challenges listed in Chapter 6 for the tunneling project. We have already
demonstrated deterministic preparation of zig or zag state of a four-ion crystal with high
efficiency. We have also successfully sideband re-cooled these structures after the ramp to
the zigzag side. We have made some preliminary assessment of the residual asymmetry
in the four-ion double well by measuring the bias in the creation of the zig or zag (60-40)
following a ramp across the transition at sideband-cooled temperatures. The stability of the
critical point was assessed using Raman spectroscopy, and we found that drifts likely due to
the rf voltage need to be suppressed a further factor 3-10 to reach the desired high stability.
Finally, we have made preliminary heating assessments of the local zigzag mode on both
sides of the transition near the critical point. On the linear side we find that the heating
of the zigzag mode is strongly suppressed, but as can be expected on the zigzag side, the
heating rate increases away from the critical point as the zigzag structure grows. We have
measured the heating rate of the zigzag mode with a frequency as low as 50 kHz on the
zigzag side of the transition (0.6 phonons/ms at νzz=50 kHz ) but further measurements
closer to the critical point (i.e. at a zigzag mode frequency of about 13 kHz) are still required
to determine the level of mode heating to be expected near the tunneling point. The last
step would be to assess the net decoherence in the tunneling signal itself.

Looking into the future, if the tunneling signal could be obtained, the next type of
experiments one can aim to perform is assessing the decoherence of a zigzag superposition
state and its dependence on the size of the system. This could be done by varying the
size of the zigzag amplitude or increasing the number of ions in the string. Based on the
preliminary heating assessment of our setup, we presume that the latter is probably a more
feasible approach for our setup.
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