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Abstract 

The Personal Equation of Interaction (PEI) for Interface Learning is a short self-report 

psychometric measure which predicts reasoning outcomes of interface learning such as 

accurate target identification and insights garnered through and inferred from learning 

interaction. By predicting outcomes, we consider why some interfaces are more 

appropriate than others, provide a tool for intuitive interface design, and advance the 

pursuit and design of interface individuation. Through study designs which use 

comparative interfaces and simple but imperative tasks to any interface learning, such 

as target identification and inferential learning, we evaluate the accuracy of analysts and 

how it is impacted by graphical representation. By using psychometric items culled from 

normed trait assessment, we have created a measure which predicts accuracy and 

learning, called the Personal Equation of Interaction. This prediction tool can be used in 

a variety of ways, including as a function or equation that puts a number on the 

association between analyst and interface. We also use the PEI to build profiles of 

analyst expert cohorts and discuss how its use might impact Visual Analytics. 

Keywords: cognitive science; visual analytics; data visualization; interface learning; 
individual differences; laboratory studies 
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Glossary 

Term Definition 

individual difference variance between participants in any measurable aspect of a 
cognitive study. 

Inferential learning A method of learning that uses the cognitive integration of 
pertinent information 

interface learning Acquiring the ability to use an interface through the use of 
reasoning and reasoning outcomes. This study evaluates 2 types 
of interface learning: procedural and inferential.  

Personal Equation of 
Interaction 

a function (or an equation) that allows us to use what we know 
about individual differences to predict interface learning 
outcomes. 

procedural learning The knowing-how to do something, the acquisition of knowledge 
about how to do or complete a task or goal 

Psychometric A measurement of a psychological construct or attribute. 

Reasoning The process of thinking about things or concepts in order to 
reach an cognitive outcome, such as a decision or judgement 

visual analytics the science of analytical reasoning supported by visual interfaces 

Visualization The graphical representation of data or information which uses 
interaction. 
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Chapter 1. Introduction 

 OUR information-rich age has blessed us with data in such abundance that it often 

defies description. Organizing, representing, and manipulating these data has 

engendered new domains of expertise in data mining and visualization. For data 

analysts, whose tasks are to evaluate complicated situations in real time and make 

evidence-based decisions in a timely manner, such as air traffic controllers, emergency 

response teams, and weather warning systems, the retrieval of information can involve a 

chaotic confluence of data, timing, and analytical cognition. 

In this work, we will answer a central question, the pertinence of which may not 

be readily apparent now, but it will be by the end of this chapter. This research question 

can be broken down into several sub-questions, each of which will be addressed in this 

section. We will also address key concepts or drivers that motivated the research that is 

discussed in Chapter 2 through Chapter 5 before our final thoughts are provided in 

Chapter 6.  

1.1. Research Questions 

What is the Personal Equation of Interaction for Interface Learning? In other 

words, what personal equation of individual differences predicts reasoning outcomes 

during visual analytics interface learning? 

This central question can be broken down into the following sub-questions: 

1. Why is an analysis of reasoning important to visual analytics?

2. How do we use individual differences to predict reasoning outcomes?
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3. How can reasoning be studied? 

4. How do we use individual differences to study and predict reasoning 

outcomes? 

5. What is a personal equation and how can it be used? 

We will now discuss these questions one by one. 

 

1.2. Why Is The Study Of Reasoning Important To Visual 
Analytics? 

Visual analytics uses visual artifacts to aid in the solutions to “wicked problems” 

(Thomas & Cook, 2005). By definition, these problems require iterations of reasoning 

and reasoning outcomes before a solution can be built. In previous work (2008), we 

examined in depth the interaction between the visual analytics interface and reasoning 

outcomes. Based on the evaluation of the several interfaces and the types of analysis 

they were built to support, we presented a limited process model of the interaction of 

human cognition and the interface during visual analytics analysis. Several types of 

reasoning outcomes seemed common to the interactions with all of the visual analytics 

interfaces evaluated: information discovery, search by example or pattern, new 

knowledge creation, and the generation and analysis of hypotheses (please see Figure 

1). 
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Figure 1. The interaction between human cognition and the interface. source: Green, Ribarsky, 
and Fisher (2008) 

In addition to this early effort to diagram the process of complex interface 

interaction, several previous studies have attempted to study the interaction of reasoning 

and the visual analytics interface (whether the researchers realized that they were 

studying reasoning or not). For example, Ware, Neufeld, and Bartram (1999) as well as 

Bartram and Yao (2008) used animation to show how a reasoner might infer causality (a 

type of judgment) through the animation of contextual cues. Saraiya et al. (2006) 

conducted a longitudinal case study of hypothesis generation, which, by design, involves 

a wide variety of reasoning types, such as classification and satisficing (which are rule-

based reasoning, usually deduction). Sensemaking, which is the label given to early 

generalizations about presented data or systems of data and is useful in hypothesis 

generation (Pirolli & Card, 1999), is a form of abduction. General inferences about the 
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meaning of the relationships between visualized data (e.g., those evaluated by Saraiya 

et al.) are an information integration cognitive process that uses induction.  

The work of Correa, Chan, and Ma (2009) is part of a considerable body of 

literature that evaluates uncertainty in visualized data validity and relationships. The 

study of uncertainty visualization is, among other things, a study of analytical cognition. 

Much of the reasoning concerns the validity of data, its relationships, or its pertinence to 

the problem at hand. Correa et al. (2009) evaluated the problem of uncertainty in data 

validity by multiple transformations of the data so that uncertainty measures could be 

aggregated. These aggregations were visualized through scatterplots and correlational 

matrices, which we judged to be preferable in helping an analyst reason through 

uncertainty. Uncertainty can be an aspect of data, the noise in the data, the classification 

of data types, and so on.  

In recent work (Greensmith, 2016), we explored uncertainty in classification 

types. We built composite glyphs, the categories of which were ambiguously defined 

(e.g., there was no determining attribute for either category, and Category A attributes 

could be also be found on Category B exemplars). This allowed us to evaluate multiple 

types of categorization and the effects of individual differences on the accuracy of these 

categorical decisions.  

Irani and Ware (2000, 2003) also approached reasoning by using glyphs, 

positing that composite glyphs built with Biederman's geons (1987) would allow the 

analyst to deduce the correct classification more intuitively, especially in complex 

concepts. They also found that these composite glyphs improved long-term memory by 

improving recall. 

Some researchers of visual analytics have studied cognition holistically. 

Kazancioglu, Platts, and Caldwell (2005) evaluated the visualizing of strategic decision 

making by focusing on the formation of strategies and the role that visual artifacts play in 

this process. Strategy, much like hypothesis generation, involves more than one type of 

reasoning. Deduction (e.g., rule-based methods, such as target identification), induction 

(e.g., information integration), and abduction (often referred to as sensemaking) all play 
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a role. In Chapter 5, we discuss in detail these three types of reasoning and the manner 

in which they affect visual analysis. 

In Chapters 2, 3, and 5, we study the interface design structures commonly used 

as visual artifacts in reasoning. We comparing the performances of the participants in a 

GOMS-based interface and a data visualization that were equipped with the interaction 

paradigms of zooming, brushing, linking, and glyphs, and we evaluated the interface 

learning as either categorization tasks of classification (a rule-based reasoning) or 

inference (an information-integration reasoning). 

Heer and Agrawala (2008) argued that the abduction of sensemaking could be a 

social process. They explored the relevance of collaborative cognition concepts, such as 

peer production and the cost of intelligence. This research was one of several lines of 

inquiry in which visual analytics researchers sought to overlay established theories of 

cognition on visual analysis with varying degrees of success. Another example is Meyer 

(2010), which applied theories of perceptual understanding (including Pylshyn’s FINST, 

2007) to visual analytics. 

Although it may not be explicitly defined, the role of reasoning is well recognized 

in the visual analytics literature. It has always been studied through reasoning outcomes, 

however, and it is often based on natural observations or simple evaluations. The 

research that we describe in the following chapters differs from its contemporaries in that 

the focus is on reasoning and on predicting reasoning outcomes (visual analytics as the 

applied domain) instead of visual analytics interfaces and their use in secondary or 

ancillary discussion. A knowledge domain requires the study of both form and function 

and of both theory and practice. 

1.3. How Do We Use Individual Differences To Predict 
Reasoning Outcomes? 

Visual analytics is the science of analytical reasoning supported by visual 
interfaces (Cook & Thomas, 2005). We have established that reasoning is generally 
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considered an asset in the process of visual analytics. However, what makes analytical 
reasoning unique? In a recent paper (Green & Maciejewski, 2013), we proffered the 
following definition: 

Analytical reasoning can be defined in a variety of ways. In addition to the 
Kantian idea of analytical reasoning as an evaluation of the validity or virtue of 
the proposition itself, we will also consider analytical reasoning as a 
determination about the value of given associations between concepts or 
statements. Note that except determinations about validity, no other outcomes 
are required in analytical reasoning. This is important because it highlights a core 
characteristic: reasoning has little or no explicit observable behavior. Reasoning 
is usually not defined as the outcome; it is defined as how the outcome is made 
possible. This may not be explicitly stated, but it is a common assumption in the 
psychology of reasoning literature. Because reasoning and the cognitive 
processes it informs are so closely interrelated, they are often studied together. 

Johnson-Laird (1978, 1980) studied mental models through the decisions that 

participants make about formal syllogisms through deductive reasoning. His research 

demonstrated that these models are used to make decisions and solve problems, but a 

model or a system of mental models can also be used to make a variety of decisions or 

create multiple problem solutions. That is, a model is not the decision or the problem’s 

solution; it is how the decision or solution is reached. Johnson-Laird postulated this 

(Johnson-Laird & Shafir, 1993), arguing that reasoning and decision-making inform each 

other, but the two are separate cognitive processes (p. 4) 

In other words, analytical reasoning is a decision-making process. The decision 

is the degree of confidence in the validity of the visual analytics process for the problem 

at hand. Hence, analytical reasoning might be seen as an umbrella decision process that 

aids the reasoning outcomes of the types of reasoning discussed in the previous section 

by assuring a sufficient degree of confidence in the reasoning outcomes.  

1.3.1. How Can Reasoning Be Studied? 

As a field of study, reasoning is challenging because it is involved in many types 

of cognitive tasks. Many cognitive tasks common to visual analysis and its outcomes are 

closely associated with reasoning, such as judgment (Tversky & Kahneman, 1983; 

Piaget, 2002) and decision-making (e.g., Legrenzi, Girotto, & Johnson-Laird, 1993; 

Evans, Over, & Manktelow, 1993). With the possible exception of stimuli detection, 

reasoning is a handy toolbox for almost every aspect of human cognition. Indeed, there 
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are so many reasoning outcomes that we often give distinct labels to groups of 

reasoning-dependent outcomes, such as classification, target identification, and 

satisficing. These labels tend to describe the outcome of the reasoning process, not the 

reasoning process itself. 

There is a reason for the emphasis on reasoning outcomes. For the researcher, 

reasoning tends to be an unseen process. It is a difficult research topic because no 

method to quantify and evaluate this cognition is readily apparent. However, as 

mentioned earlier, this has not stopped theorists such as Johnson-Laird, Stanovich, and 

Gigerenzer from tackling reasoning from the standpoint of evaluating reasoning 

outcomes. In each case, the research focused on small problems, the solutions of which 

would allow the researcher to make defensible assumptions about how the solution was 

reached (i.e., the reasoning). By choosing a problem or task that clearly requires the use 

of one type of reasoning (such as deduction) over any other, researchers can constrain 

their tasks to evaluating the reasoning outcomes and inferring insights about the 

reasoning itself. The study protocols of Johnson-Laird, for example, included deductive 

syllogisms, which could be difficult to do correctly. Syllogisms are based in formal logic, 

and their use in reasoning research tends to be normative. Johnson-Laird used the 

responses to each task as the basis for his “mental models,” which are a theory of 

reasoning cognition. In one paper (1978), he described his problems as follows: 

Each subject was asked to make a deduction from the 27 pairs of 
premises that are shown in Table 1 with their valid conclusions italicized. The 
problems were presented with a sensible content of a sort unlikely to predispose 
subjects toward a particular conclusion. Hence, a typical pair was:  

None of the musicians is an inventor. 
All of the inventors are professors. 

In another paper that explained the relevance of his research for cognitive 

science, he described how a tasks' “atmosphere” or phrasing could control outcomes. 

The use of negative aggregates such as “none” elicited different deduction than positive 

ones elicited (e.g., “all” and “always”) (1980): 

One datum that is difficult to reconcile with the effect is that certain 

premises from which a valid conclusion can be drawn tend to be judged not to 

imply any conclusion. Here is an example: 
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Some of the beekeepers are artists. 
None of the chemists is a beekeeper. 

When such premises were presented in one experiment, 12 out of 20 subjects 

declared that there was no valid conclusion that could be drawn from them (see 

Johnson-Laird & Steedman, 1978). In fact, there is a valid conclusion: 

 Some of the artists are not chemists. 

Moreover, it is entirely congruent with the atmosphere effect, particularly because 

the first premise is particular, and negative because the second premises negative. Only 

2 of the 20 subjects drew this conclusion. Such findings require at the very least some 

modification of the atmosphere hypothesis. 

Stanovich, whose broad interests in reasoning tended to focus on cognitive 

ability and its effects on rational outcomes, administered a variety of tasks to his 

participants. One syllogistic task, which was first used by Markovitz and Nantel (1989), 

asked the participants to make decisions about the validity of eight syllogisms that 

“followed logically but were unbelievable”: 

Premise I: All things that are smoked are good for the health. 
Premise 2: Cigarettes are smoked. 

Conclusion: Cigarettes are good for the health. 

Other commonly used tasks which Stanovich employed were Wason’s Selection 

Task (which is discussed in detail later in this section) and statistical reasoning tasks 

similar to those in Fong, Krantz, and Nisbett (1986): 

Probabilistic-Structure 1: At Stanbrook University, the Housing Office 

determines which of the 10,000 students enrolled will be allowed to live on 

campus the following year. At Stanbrook, the dormitory facilities are excellent, so 

there is always great demand for on-campus housing. Unfortunately, there are 

only enough on-campus spaces for 5,000 students. The Housing Office 

determines who will get to live on campus by having a Housing Draw every year: 

every student picks a number out of a box over a 3-day period. These numbers 

range from 1 to 10,000. If the number is 5,000 or under, the student gets to live 

on campus. If the number is over 5,000, the student will not be able to live on 

campus. On the first day of the draw, Joe talks to five people who have picked a 
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number. Of these, four people got low numbers. Because of this, Joe suspects 

that the numbers in the box were not properly mixed, and that the early numbers 

are more favorable. He rushes over to the Housing Draw and picks a number. He 

gets a low number. He later talks to four people who drew their numbers on the 

second or third day of the draw. Three got high numbers. Joe says to himself, 

“I’m glad that I picked when I did, because it looks like I was right that the 

numbers were not properly mixed.” What do you think of Joe’s reasoning? 

Explain. 

Scenario-based laboratory tasks such as this one are not uncommon, and they 

involve the use of a story to elicit a response or series of responses. Researchers have 

used many such tasks to evaluate aspects of reasoning. For example, Traversky and 

Kahneman (1981) used several versions of the “disease problem”. They described two 

scenarios and asked the participants to choose one: 

Most of the participants in this study picked Program A. When the problem was 

presented in other ways and used different scenarios, the participants changed their 

minds and chose Program B. Tversky and Kanhneman demonstrated that context was 

highly pertinent when an analyst must reason through two similar but different choices. 

Reasoning outcomes, they argued, depend not only on the problem but also on how it is 

described or presented. 

The reasoning research reviewed so far has been highly textual or reading 

based, but that is not always the case. Sometimes visual elements are also used. 

Cherubini, a student of Johnson-Laird, used both syllogisms and graphical card tasks to 
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move Johnson-Laird’s models into fast heuristics. As we discuss in Chapter 5, his 

research demonstrated that after being exposed to a logical proposition as few as three 

times, his participants used inference to infer a deductive rule that they then used to 

solve similar problems (See Chapter 5 for a detailed description of this experiment.) 

Cox and Griggs (1981) used an adaptation of the Wason Card Selection Task 

(1966), which was termed the “Drinking Age Problem”. Wason used letters and numbers 

on his cards, but found consistently poor performance in an abstract task. The Drinking 

Age Problem applied the same task, but it was framed in a situation to which the 

participants could relate. Stanovich (1999, p. 128) described the task as follows:  

When testing the rule “if a person is drinking beer , then the person must 

be over 19 years of age,” and when given the four cards beer, Cole, 22 and 16 to 

represent P, not P, Q and not Q respectively, performance is markedly superior 

to that on the abstract selection task. 

Moving away from deductive and inferential syllogisms in the conclusion, 

Gigerenzer studied inference and induction by using the participants” a posteriori 

knowledge of the world to make quick decisions about the size of European cities 

(1996): 

Which city has a larger population? (a) Hamburg (b) Cologne. 

Gigerenzer postulated that these one-decision tasks were an example of 

bounded rationality that was based on limited information rules. Instead of acquiring 

knowledge about the task through syllogisms, scenarios, or graphical representations, 

his participants based their decisions on their own knowledge. 

In these and similar cases, the typical approach was to develop a narrow 

laboratory task so that the research could reasonably be considered to have content 

validity. Yamauchi and Markman (2000), for example, designed studies that created a 

series of tasks in two ambiguous categories, which were learned through exemplars. 

The participant then had to make a single decision about each presented visual artifact. 

In this task, the reasoning that classifies a visual artifact into one of two categories is 
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different from the reasoning that uses category labels to infer the characteristics of the 

category. While complex, these tasks were carefully constrained. 

For a visual analytics researcher, the problem with this approach, of course, is 

that there is little in its scope or practice of visual analytics that could be considered 

narrow. Its questions are complex, and its interfaces are interactive. Furthermore, it can 

reasonably be asserted that visual analytics requires the analyst to use more than one 

type of reasoning in any given analytics session (e.g., the multi-stage process of 

hypothesis generation). 

In this research program, we chose a blended approach. We used real-life visual 

analytics interfaces as part of our stimulus set. Both interfaces used throughout this 

program were expert systems built on the same dataset. The first interface was a 

Graphical User Interface (GUI) called MapViewer that continues to be used by genomic 

researchers across the United States. By using real-life interfaces, we were able to 

create a holistic environment that closely mimicked the problems that analysts would 

face. This improved the overall usefulness of the measured outcomes. 

However, although we used a real world interface, we paired the GUI with 

relatively straightforward single and multiple-point decision tasks. The study tasks asked 

participants either to find a specific item in the interface (target identification) or to make 

some inference about the category by integrating information that is more complex. 

Target identification involves deductive or top-down reasoning, while information 

integration requires induction or bottom-up reasoning. Instead of using traditional 

reasoning tasks, we borrowed concepts from other interface evaluations, which regularly 

asked participants to find something or use some aspect of the interface in order to 

evaluate the interface’s learnability (e.g. Irani & Ware, 2000, 2003). Because these 

laboratory tasks were undertaken on real world interfaces, the participants were able to 

reason more effectively with a visualized interface, but had an easier time finding 

solutions in a known interaction paradigm, such as a GUI interface.  

We have adapted reasoning research protocols so that they can be directly 

applied to visual analytics research. In Greensmith (2016), we used composite glyphs to 

study two distinct types of visual analytics categorization. Classification and attribute 
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inference performance were predicted by measured psychometric differences. We 

isolated a predictive measure that could predict both types of categorization. While the 

studies were conducted online, the tasks were performed in a laboratory. No previous 

research has reported the use of a similar composite glyph in the real world. Although 

the tasks were administered online, we used careful adaptations of the category-attribute 

schedules in previous reasoning research (e.g. Yamauchi & Markman, 2000). 

1.4. How Do We Use Individual Differences To Study And 
Predict Visual Analytics Reasoning Outcomes? 

When the goal is to study a phenomenon through prediction, the obvious concern 

is that the researcher will never find a quantifier that can reasonably be expected to 

predict the phenomenon. It helps if the predictor is reliable and can be generalized to the 

target population. 

How does the researcher stumble upon predictors? In cognitive research, a 

common place to start is to search individual differences. In study of cognitive 

psychology, an individual difference is the variance between participants in any 

measurable aspect of a cognitive study. Not surprisingly, individual difference is a broad 

topic in the cognition literature. Individual differences have been used to predict 

everything from affect (Gross & John, 2003; Nowicki & Duke, 1994), social 

categorization (Moscowitz, 1993), and rationality (Stanovich, 1999) to computer skills 

(Harrison & Rainer, 1992). A thorough literature review on the effects of individual 

differences is beyond the scope of the current work.  

This program of research focuses on a specific type of variance in the search for 

predictors: inherent differences in personality and learning style. By inherent, we mean 

predictors that the participant could be said to have had since birth. These predictors are 

not particularly malleable; they can be shaped by early human experience, but by 

adulthood, they are considered stable. For this reason, they are called traits (Rotter, 

1966). In other words, the analyst brings the same set of individual differences to every 

visual analytics task. These differences cannot be “changed” or diminished, so they are 

ideal for the task of prediction. Once measured, they can be used to generalize 
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expectations to other analysts with the same set of differences. What makes the study of 

these differences even more fascinating for the task at hand is that these differences can 

interact with each other, trending together systemically and allowing for the development 

of expert profiles. This interaction of differences can be seen in the profiles of chosen 

professions. Persons who self-select to acquire a set of job skills often have similar trait 

profiles (Blau, Super, & Brady, 1993; Gambles, Wilkinson, & Dissanayake, 2003; 

Warbah et al., 2007; Rose et al, 1982; Schroeder, Broach & Young, 1993). In Chapter 5, 

we develop a trait profile of excellent procedural learners and find that these superior 

performers tend to be moody extraverts who dislike novel environments and new 

experiences. 

1.4.1. The Non-Mystery of the Assumed Innate 

At this point in the discussion of inherent traits as predictors of visual analytics 

cognition, there is usually a critic who insists that superior analytical performance has 

nothing to do the analyst’s personal proclivities but is somehow a pure function of 

cognitive ability and intuitive interfaces. This view is bemusing because cognitive ability 

itself is a stable trait-like individual difference (Roberts et al., 2007; Ackerman, 2003; 

Plomin, 1999). Some analysts have better cognitive abilities than others  and are better 

able to make sense of the complex visual analytics environment. Is not this the very 

reason to build “intuitive interfaces” in the first place, as artifacts that support cognitive 

shortcomings in the analyst (Green & Ribarsky, 2008)? Is it really so strange that some 

analysts might be born with natural abilities that others do not have? 

Thousands of psychometric measures of inherent differences have been 

reported in the psychological literature. Each measure was carefully evaluated 

statistically and compared to measures of similar constructs. From the near-beginning, 

when Sir Francis Galton (1869) declared in defense of early Darwinian eugenics that 

“man’s natural abilities are derived by inheritance” (1896, p. 1) to the present day and 

Pinker’s emphatically defended innate characteristics (2003) against Locke’s tabula rasa 

and ghosts in machines, researchers have striven to isolate and measure the many 

aspects of unseen human personality, cognitive styles, and reasoning. They have 

particularly sought to demonstrate the ways in which such aspects affect outcomes 
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whether sociological, academic, or cognitive. With reference to this established corpus, 

our current research is one applied example of the statistical association of 

psychometrics with observed outcomes.  

This current research is not a philosophical discussion of nature versus nurture. 

Nor does it grind the axe of personality’s role in, frankly, much of anything at all. We 

found very early in our research that innate personality traits were linked with learning 

performance (Green & Najarian, 2007). This somewhat crude seminal work found 

correlations between the Big Five personality traits and the participants’ ability to build 

complex 3D structures from pictorial instructions. It seemed only natural to learn what 

else personality traits could predict and to transfer that predictive power into the 

complexity of visual analytics. It is not the personality traits themselves that are the 

fascination. It is the statistical power in the systemic assembly of self-report 

psychometrics that can and does predict complex cognitive outcomes. If we could find 

similar predictive power in the color of a participant’s hair or the time of day, we would 

abandon the current approach for one that was computationally easier. 

To be completely frank, in some ways this current study of inherent analyst 

characteristics could be seen as a reaction to the overwhelming view in visual analytics 

that the human is an information processor. Even a superficial study of human 

reasoning, including the role of Piagetian adaptation and accommodation, the rule 

mechanization of Cherubini, or even the satisficing elimination of Gerginzer, reveals the 

rigidly hierarchical and overly simplistic assumptions of information processing theory. 

Human cognition concerns the use of tools. It is not one cognitive tool, but many 

cognitive tools used in combinations, in varying orders of engagement depending on 

problem and context, in varying degrees of rationality depending on the tool user, and in 

the face of cognitive fallacies, adverse affect, priming and contextual errors, including 

illusion. All interact with and are bounded by innate traits that are consistent enough to 

be predicted. In view of this complexity, the present research program may indeed be 

seen as one small assertion that human cognition is not a computer.  

The choice of psychometrics in this research protocol was not random. Of the 

thousands of measures available, several stood out early and often as likely predictors. 
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Constructs such as locus of control have been known since the 1960s, and they have 

already been debated, reviled, and then eventually accepted by the scientific community 

(Marsh & Richards, 1986; Anderson, 1977). Furthermore, some of our earliest laboratory 

research on the role of affect in learners showed that the Big Five Personality was 

influential in cognitive outcomes (Green & Fisher, 2010). Moreover, research such as 

Judge et al. (2002) demonstrated correlations between locus of control, the Big Five 

Personality Index, and other measures. These inherent constructs, for whatever reason, 

tended to appear as predictors in study after study. As demonstrated in Chapters 2, 3, 

and 5, the present research found a high level of inter-correlation between 

psychometrics. Extraversion items consistently correlated with neuroticism items. Locus 

of control items consistently correlated with neuroticism and tolerance of ambiguity items 

to the degree that the process of isolating predictors could isolate a very short measure 

with a high degree of prediction, as shown in Chapter 2. 

In this research, isolating psychometric items as part of a predictive measure 

follows the basic rules of psychometric assessment development. If possible (always, in 

the case of the current work), previously used and normed items (e.g., survey questions) 

are used. The self-reported item responses are evaluated statistically for their 

relationships to each other and to the desired cognitive outcome. Items that might be 

related but are not strong predictors are eliminated. The remaining items are examined 

by using established protocols of factor reduction, focusing on items that are the best 

predictors of outcomes. These items are “spun” around each other, to reveal those that 

clump together because of similarities in their variances. These subgroups of items are 

then evaluated as both whole measures and separate measures to determine the best 

representatives of the group. When the best items are isolated, the newly minted 

psychometric measure is evaluated. Its predictive power is tested holistically, and its 

internal strength is measured through goodness-of-fit tests, such as the Kolmogorov-

Smirnov. A detailed description of this process of assessment creation is provided in 

Chapter 2. 
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1.5. What Is A Personal Equation And How Can It Be 
Used? 

We have saved the definition of a personal equation of interaction for discussion 

in the conclusion of this chapter, for it depends heavily on everything that has been 

previously discussed. So far, we have discussed the need for the understanding of 

individual differences and how they affect reasoning outcomes. We have discussed the 

ubiquity of reasoning in visual analytics and in cognition in general. However, how do we 

take a measure of reasoning and use it to predict visual analytics outcomes? 

Earlier in this chapter, we briefly touched on the many kinds of reasoning tasks 

that visual analytics can employ. Reasoning, of course, is an internal cognitive process 

and can only be studied by measuring its outcomes. In this line of research, these 

outcomes are accuracy ratings and timing, which are measures of how effectively and 

efficiently the reasoner was able to use of the visual interface to achieve an analytical 

outcome. These measures comprise half the equation—the measure of reasoning 

outcomes. 

The other half of the equation is the measure of personal traits (e.g., 

psychometrics) and how they affect the way the analyst discovers, uses, and 

synthesizes data in the quest for accurate reasoning outcomes. In this research, before 

the participants perform the task, they are administered a battery of psychometrics that 

have been normed as predictive of the desired reasoning outcome. This battery could 

contain items from any of the individual differences that we have already discussed. In 

Chapters 2, 3, and 5, Rotter’s Locus of Control items and those of the Big Five attributes 

of Neuroticism and Extraversion are identified as useful predictors of the reasoning 

outcomes. The analyst’s unique score on psychometrics is then used to predict the 

likelihood of a desirable outcome. 

In other words, the Personal Equation of Interaction for Interface Learning is a 

function (or an equation) that allows us to use what we know about individual differences 

to predict interface learning outcomes. The psychometrics which predict interface 

learning accuracy and speed will be to some degree unique to this particular task. 

Although similar cognitive tasks might overlap, the types of individual differences that 
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predict this type of reasoning are likely to deviate slightly from the differences that 

predict categorization outcomes, for example. 

This is the reason that some of the literature on the Personal Equation of 

Interaction (PEI) refers to it as a matrix of functions (see Chapter 4). Each function will 

uniquely predict one type of cognitive task more accurately that the other functions in the 

PEI. There will likely be overlap, but each type of cognition in visual analytics must be 

studied separately and that knowledge is added to the entire PEI as a research program. 

In a simple example, we will use a three-item measure that was isolated in 

Greensmith (2016), which predicts the classification of composite glyph performance. 

The three items are taken from the Rotter Locus of Control (1966) and the Index of 

Learning Styles (1988). Combined into a whole measure, the three items account for 

38% of the variance in the participants’ classification scores, which indicates that the PEI 

for classification is moderately predictive.  

We could use the PEI in several ways, but for the purposes of illustration, we will 

employ an early test of the relationship between the Personal Equation and its power to 

predict classification. We evaluated the strength (or importance) of each item in the 

Personal Equation by ranking the beta coefficients. The strongest item was Locus of 

Control 13, which asked the participants to choose which statement best described 

themselves: 

 When I make plans, I am almost certain that I can make them work.

 It is not always wise to plan too far ahead because many things turn out
to be a matter of good or bad fortune anyhow.

The second most important variable was the ninth item of the Locus of Control. 

 I have often found that what is going to happen will happen.

 Trusting fate has never turned out as well for me as making a decision to
take a definite course of action.

The last item was the first item on the Sequential/Global continuum of the Index 

of Learning Styles, which is a measure of whether participants use a top-down 

organizational style or a bottom-up, sequential style: 
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 I tend to understand the details of a subject but may be fuzzy about its 
overall structure. 

 I tend to understand the overall structure but may be fuzzy about its 
details. 

The scores for each of these three items were entered into an Enter-method Chi-

based regression model. The regression model statistically scored each participant with 

a probability score that reflects a prediction of how accurate the participant will be in the 

performance of the task. This prediction can be reflected in the Standardized Predictive 

Classification Value (ZPRED) for each participant. The ZPRED is the predicted accuracy 

computation for the participant. In other words, the model used what it had learned about 

each participant’s individual differences to predict the likely accuracy score for each 

participant. The ZPRED is not the predicted score itself, but it is a weight that will allow 

us to find the predicted score. 

We then graphed the relationship between the model computation (ZPRED) and 

the actuals to find an equation that would reasonably predict actual reasoning outcomes. 

In Figure 2, each dot represents the relationship between each participant actual 

accuracy score (the Y axis) and the accuracy score that the model predicted for the 

participant (the ZPRED on the X axis. 

The solid line in Figure 2 reflects the relationship between the participant’s 

accuracy score and the model’s computation. By graphing the relationship, we can find 

the function that allows us to predict a participant’s accuracy score from the ZPRED.   
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Figure 2. Example of the relationship between the PEI predicted values and the actuals. 

As Figure 2 shows, this method uses a very simple equation to predict a 

participant’s actual accuracy: 

𝑓(𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) = 17.25 + 1.54(𝑍𝑃𝑅𝐸𝐷) 

This function is an expression of the Y intercept of the line, which is generically 

expressed as y = mx + b. Put another way, the function allows us to derive the 

classification accuracy for each participant by using this Personal Equation of 

Interaction.  

As an example, for Participant 1, whose ZPRED is .044, the PEI yields 

𝑓(𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) = 17.25 + 1.54(. 044) 

 𝑓(𝑁𝑢𝑚𝑏𝑒𝑟 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑) = 17.32 
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In this case, the model predicted a rounded accuracy score of 17, which was 

indeed the actual accuracy score for Participant 1.  

Obviously, running the model on what is essentially the model’s training set is 

hardly a validation of the model. In Greensmith (2016), we validated the PEI by using it 

to predict performance in a replication of the study. Although for some purposes, this 

replication may suffice as validation, we realize that norming the PEI for classification will 

require a replication with a large participant set, preferably using stimulus sets that are 

similar but not exactly the same as the training set. However, this example suffices to 

demonstrate how the PEI could work. 

1.6. Summary 

The foregoing discussion has answered each sub-question. Let us review the 

research question: 

What is the Personal Equation of Interaction for Interface Learning? 

In the following chapters, we will create a series of study protocols that will use 

real-life visual analytics interfaces and laboratory tasks to evaluate interface learning 

through the reasoning outcomes of target identification and information integration, by 

both procedural and inference learning. 

We will predict the outcomes of these visual analytics tasks by using self-report 

measures of individual differences to create a model or short measure that uniquely 

predicts these reasoning outcomes. We will also use the PEI for Interface Learning as a 

foundation for the PEI functional matrix. 

Is the PEI useful in practice? This is still an open question, but a few applications 

seem promising. As the interface interaction becomes more intimate, the knowledge of 

why participants prefer one interaction style of paradigm will inform the design for the 

target users. This works in multiple directions. The pre-design understanding of the 

analysts” PEI profile allows the designer to choose displays and interaction schemas 
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that are the best suited for the expert cohort. For example, some research suggested 

that a majority of schoolteachers have a preference for learning through reading texts 

and organizing data in a bottom-up, sequential fashion (Felder & Silverman, 1988). With 

this knowledge, any expert educational system would not be heavily pictorial or follow 

Schniederman’s mantra (1966), which begins with a top-down overview. Instead, the 

data would be organized in a topical, step-by-step manner using textual pointers and 

paragraphs organized into readable information. The PEI does not show that one type of 

knowledge representation is always better than another is; it selects the best type of 

representation based on the target analyst audience. In an expert cohort that is highly 

visual and spatially coherent, the schoolteacher’s very wordy expert system would be 

ineffective. The visual-spatial analyst might be able to adapt to the schoolteacher’s 

interface, but insights would be synthesized slowly, and some pertinent information 

might be missed entirely. he PEI contributes to the domain of interface design by using 

the PEI to define the best interface that a visual-spatial expert would likely be able to 

accomplish key hypothesis-generation tasks the most effectively through interactive top-

down paradigms, such as zooming, bushing, and linking. The best visual analytics 

interface is one that the analyst can easily learn and make sense of and one in which the 

data are organized in a way that the analyst understands best.  

In reverse, the PEI contributes in a very real way with expert system 

recommendations. Knowing what we do about schoolteachers in the United States, we 

can choose tools and interfaces that are the best adapted to their organizational 

proclivities. Knowing why our analysts seem to see insights in one interface more easily 

than in another aids not only the visual analytics process for the user but prevents 

blaming the interface without cause. Schoolteachers may not work well with an 

interactive pictorial representation, but that does not mean that the interface is a failure; 

it is simply being used to support the wrong type of analyst.  

And lastly, and to us most importantly, the PEI contributes to the realm of 

reasoning research by studying the ‘black box’ reasoning processes by predicting their 

outcomes. The intellectual beauty of understanding why some people reason better than 

others provokes a re-evaluation the manner in which reasoning is studied. The PEI tells 

us why one reasoner is better than another during task, and provides impetus for 
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research that compares the ‘why’ of each reasoning outcome with the ‘why’ of other 

reasoning outcomes. In the research that follows, we do this comparison in order to find 

a group of psychometrics that predict all of the primary task outcomes of the study. But 

in ongoing research, the PEI has become a benchmark for describing how reasoning 

tasks relate to each other. For example, locus of control explains both bottom-up and 

top-down categorization, but with different emphases that seem to have something to do 

with how comfortable the analyst is with the unknown. Knowing what and when have 

been the traditional domains of reasoning research; we intend to also know the why.  

In the following chapters, we describe the boundaries of the PEI for Interface 

Learning. In Chapter 4, we review the theory of the PEI. In Chapter 2, we define the PEI 

task protocol of using common interface learning tasks and an administered battery of 

psychometrics. In this chapter, we will also use statistics to isolate the PEI. In Chapters 3 

and 5, we demonstrate the reliability of Locus of Control, Extraversion, and Neuroticism 

as useful PEI constructs in predicting learning outcomes. We explore the PEI in Chapter 

5 by using what we know to build the PEI’s first profile, which is a description of 

individual differences in a superior procedural learner. We offer concluding thoughts in 

Chapter 6. 
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Chapter 2. Using personality factors to predict 
interface learning performance. 

2.1. Overview 

This chapter was originally published as Green, T. M., Jeong, D. H., & Fisher, B. 

(2010, January). Using personality factors to predict interface learning performance. 

In System Sciences (HICSS), 2010 43rd Hawaii International Conference on (pp. 1-10). 

IEEE. At HICSS, this paper won Best Paper in Track. This paper was the first published 

on the Personal Equation of Interaction and as such outlines some of the rudimentary 

assumptions and discusses the differences between interface and reasoning tasks. 

Because many of the psychometric whole measures did not predict the primary outcome 

of interface learning efficiency, the individual items from the psychometric measures, 

including Locus of Control, Beck’s Anxiety Inventory, and Budner’s Tolerance of 

Ambiguity were used to build a 9-item psychometric assessment that could be fine-tuned 

to predict interface learning efficiency (i.e. completion times). The null hypothesis was 

that there would be no association between the 9-item measure and interface 

completion times. The primary alternate hypothesis was that the 9-item measure would 

reasonably predict interface learning efficiency. The alternate hypothesis was supported, 

as the 9-item measure moderately predicted interface learning efficiency. 

2.2 Abstract 

This current study explored the impact of individual differences in personality 

factors on interface interaction and learning performance in both an interactive 

visualization and a menu-driven web application. Participants were administered 6 

psychometric measures designed to assess trait anxiety, locus of control, and other 

personality traits. Participants were then asked to complete 3 procedural tasks and 3 
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inferential tasks in each interface. Results demonstrated that participants with an 

external locus of control completed inferential tasks more quickly than those with an 

internal locus. Factor analysis of items from the 6 psychometric scales isolated a 9-item 

short measure, which showed trending with procedural scores. Additionally, data 

demonstrated that the visualization interface was more effective and efficient for the 

completion of the inferential tasks. Participants also preferred the visualization to the 

web interface for both types of task. Implications and future directions of this research 

are also discussed. 

2.2. Introduction 

The successful visualization of complex information relies fundamentally on its 

ability to stimulate human cognition. Humans see what is visualized, emphasize 

information of interest through focused attention and elimination heuristics, and interact 

with representations of relational knowledge to reach a goal or complete a task that the 

human has chosen but that the visualization must facilitate. Each facet of human 

cognition engaged while using a visualization needs consideration; cognitive processes 

are typically not linear, and perception, categorization, and problem-solving activities 

inform and motivate each other throughout the interaction. The loss or impediment of 

one cognitive process hampers or stymies not only the other thought processes 

dependent upon it, but the path taken by cognition as a whole (Green, Ribarsky, and 

Fisher, 2008).  

Numerous studies have been undertaken in recent years to evaluate 

visualizations. Plaisant has outlined four current categories of evaluation: controlled 

experiments comparing design elements, usability evaluations of tools, controlled 

between-visualization comparisons, and tool case studies (Plaisant, 2004). Each type of 

evaluation serves a purpose, but is self-limiting in multiple ways. As is often the case 

with experimentation generally, these evaluations involve small, simple, sometimes 

normative or “non-real-world” tasks; interaction in the real world tends to more complex, 

harder to predict, and thus harder to measure. Additionally, these evaluations focus on 

the more binary of cognitive processes. In each case, the cognitive variables measured 

are facets of vision, given attention, and perhaps tactile manipulation. These variables 
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are indeed important. However, these evaluations are not designed to answer one 

pivotal question: The human has possession of the target information. Now what? 

Perhaps because humans learn so readily, we tend to take the supporting cast of 

cognition for granted. The visualization literature discusses this in a roundabout way, 

inferring reasoning and problem-solving from perceptual behaviors. However, there is a 

general belief in the centrality of learning to visualization, as is evidenced by the 

continuing discussion about what insight is and how to engender it during interaction 

(North, 2006, Plaisant, Fekete, and Grinstein, 2008). The question is not whether 

learning occurs, but how and when. These questions have yet to be tackled by 

visualization evaluation. One reason these questions remain unanswered is the 

complexity of the cognition involved.  

Reasoning and problem-solving are not uniformly sequential, but rather utilize a 

variety of heuristics, which can be worked singly or in congress with others (Green, 

Ribarsky, and Fisher, 2008). Which heuristics are used first or most often depends 

largely on the task and the individual characteristics of the person undertaking the task. 

(See also (Gigerenzer and Goldstein, 2008 and Gigerenzer, 1991)) As evaluators, we 

can control what specific task is undertaken, but what about the variability within the 

person? Current evaluative methods in visualization are limited in that they ignore this 

variability. Evaluation focuses on the differences in and between visualizations but tends 

to treat the persons interacting with the visualization as somehow standardized. This 

may be an acceptable assumption with regard to basic sensory transduction (however 

even here there are significant individual differences in color and stereo perception), but 

it fails altogether as we move to higher-order cognitive processes. One would expect, for 

example, an expert artist to have chosen their profession based on (perhaps native) 

abilities in image composition, color perception, innovative use of graphics. One would 

expect that those abilities would be further developed in the course of their artistic 

training and practice. 

Recognizing the institutional and innate differences, not only between novice and 

expert, but also between users with varying innate personality factors is key to moving 

past these evaluative limitations. 
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In the case of an expert user of visualization environments, we might expect a 

priori individual differences in ability that might be focused and trained through 

experience in their craft and in the use of a given set of technologies. Any model of the 

human-computer analytic system must find a way to assess, classify, and incorporate 

measures of those human characteristics to inform the development and evaluation of 

visual analytics systems. The comparative uniformity of basic perception (e.g. color 

space) limits the impact of individual differences to pathological cases (such as 

dichromacy). Spatial indexing, focused attention, and reasoning processes interact with 

the user’s individual differences in ways that might well obscure or confound analysis of 

the impact of changes in technological support for those processes in HCI or other 

evaluative studies. Individual differences in how problems are approached can also 

affect beliefs and motivation when a user is engaged in goal-oriented behaviors 

(Heppner and Anderson, 1985). When we evaluate visualizations that people use, we 

must also understand the built-in learning “pre-sets” of the individual user; it is possible 

that a visualization that seems intuitive for one subgroup or expert domain could seem a 

wilderness for another. 

Often visualization is assumed to be preferable to traditional types of interface for 

learning and/or the extension of knowledge. But how is it preferable, and for what types 

of learning? The science of learning is not generic. This study utilizes two tasks that 

touch on two broad genres of learning: procedural and inferential. Both genres have 

broad records in the human behavioral literatures, and represent two very different types 

of knowledge creation and use. Procedural learning, broadly defined, is the “knowing 

how” of any sequential task. It is sometimes called skill learning, as it is the learning 

most common to motor and iterative tasks that require repetition to master (Sun, Merrill, 

and Peterson (2001)); it is also referred to as script learning, which captures the idea 

that there is a “recipe” or “roadmap” to be followed. Riding a bike, brushing your teeth, or 

following a cooking recipe are all very simple examples of procedural learning. 

Procedural learning is thought to be either top-down (i.e. CLARION) (Sun, Merrill, and 

Peterson, 2001), or, more commonly, to be bottom up, first assimilating the necessary 

declarative facts and then the use of that information into the deconstruction of the task 

procedure (Anderson, 1982). Procedural learning, due in part to repetition, can become 

“automatic,” requiring little conscious focus. Inference learning, again broadly, is the 
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ability to draw a conclusion from available data or define a concept in terms of its 

similarity/dissimilarity to another. Categorization and classification are important building 

blocks of inference, and inference is used in a variety of reasoning, including induction, 

deduction, and comparison (Lim, Benbassat, and Todd, 1999). In this study, we study 

inference by providing an exemplar, and asking participants to find another example that 

shares/does not share a variety of characteristics. Humans use inferences when we 

decide whether a four-legged creature is a dog, when we decide whether we will like the 

new restaurant based on our experiences with others, and when we read body language 

to understand whether a person is telling a joke or being serious. Inferential learning, 

unlike procedural learning, does not lend itself to automaticity, and, when complex, 

involves sustained attention, problem-solving, a variety of reasoning heuristics, and 

decision-making. 

This study was designed to explore 3 research questions. The first question was 

whether one interface would prove to be more efficient than the other in the performance 

of procedural tasks. Previous literature comparing motor movement between menu-

driven and visualization interfaces (Lim, Benbasat, and Todd, 1996) leads us to 

hypothesize there will be no significant difference between mean procedural task 

completion times. 

The second question was whether one interface would prove to be more efficient 

and more effective than the other in the performance of inferential tasks; it was 

hypothesized that the tasks undertaken in the visualization would have shorter 

completion times overall and would be more likely to be answered correctly than tasks 

undertaken in the web application. 

The third question was whether the whole scores on one or more of the 6 

standard psychometric measures, or some combination of the measures” items would 

have a significant relationship to the outcome variables in both the procedural and 

inferential tasks; it was hypothesized that, given the interrelationship between these 

constructs, one or more constructs would be found to predict completion times and/or 

error rates in both interfaces. 
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To isolate individual differences, we chose to use existing measures of human 

attitudes and abilities that have shown to have explanatory value in a range of 

applications in cognitive, personality and social psychology. It would be surprising, but 

not impossible, that one of these scales might be strongly predictive of performance in 

the quite different situation of problem-solving using a visualization system. It is more 

likely that some novel combination of these psychologically important measures may 

interact in an interesting way with performance measures on these tasks. We hope that 

this work will pave the way for the development of new scales that assess an individual’s 

“personal equation” of interaction (Po, Fisher, and Booth, 2005) with visually-rich 

information systems. This measure can be used in selecting and training of users and 

customization of systems as well as a factor to take into account in the development and 

assessment process.  

2.3. Comparative Study 

The current study employed 50 participants, all of whom were undergraduate 

students enrolled in an introductory psychology course; all received course credit for 

their participation. The participants reported being students in 23 different majors, with 

the majority reporting a business-related (administration, finance, etc.) academic 

concentration. Most (47) had taken fewer than 4 laboratory biology courses. Most (44) 

were right-handed. Only one reported being color-blind (46) reported being comfortable 

or very comfortable using a computer; 44 reported their computer ability to be “OK” or 

“Very good.” All 50 reported having used a web application previously; 16 claimed to 

having used a data visualization in the past. 

2.3.1. Interfaces 

This study asked participants to interact with two genomic interfaces. Both 

interfaces were fed by the same underlying dataset (GenBank). What differed between 

the interfaces was the presentation of data and interaction methodology. One interface is 

the web-based National Center for Biotechnology Information (NCBI) MapViewer for 

genomic information, which is publically available and can currently be found at 

http://www.ncbi.nlm.nih.gov/mapview. MapViewer utilizes a multiple-row-based 



32 

hierarchical representation and is manipulated through primary use of hyperlinks. (See 

Figure 3.) The use of traditional menus provides access to special genomic features, 

such as graphical representation of physical structure and mapped genomes.  

The other interface is a genomic data visualization (GVis) developed in the 

Charlotte Visualization Center (Hong et al., 2005) and is not available commercially. 

(See Figure 4.) GVis was developed to support the visual analysis of large-scale 

phylogeny hierarchies by visualizing hierarchical relationships between organisms in 

addition to pictorially representing other essential information, such as the presence of 

mapped genomes or the phylogenic organization between two related subcategories. It 

allows quick browsing of the hierarchy from the highest level down to the level of an 

individual genome for the desired organism of interest via direct interaction, a method of 

data manipulation that minimizes the use of menus, allowing users to “drill down” directly 

by pressing and holding down a mouseclick near the information of interest. 
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Figure 3. The NCBI Interface 
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Figure 4. The main view of GVIS 

 

2.3.2. Psychometric Measures 

Six psychometric measures were administered: the Locus of Control Inventory, 

the Beck Inventory, the IPIP 20-item Big Five Neuroticism Scale, the IPIP 20-item Big 

Five Extroversion Scale, the Self-Regulation Scale, and the Scale of Intolerance-

Tolerance of Ambiguity. 

The Internal-External Locus of Control Inventory (LOC) (Rotter, 1966) is a 39-

item forced choice measure designed to evaluate the degree to which participants 

attribute life events to some action of their own, or to some uncontrollable action outside 

of themselves. Lower LOC scores are associated with an “internal locus” of control, an 

inherent belief that events and outcomes are under a person’s control, and thus, 

success or failure depends largely on personal behavior and attitudes. Higher scores 
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indicate an “external locus,” an inherent belief that events and outcomes are not under a 

person’s control, but are largely influenced by other people, unforeseen circumstances, 

a higher power, or other factors such as “good luck.” Rotter postulated that these loci 

were individual traits and remained stable over a person’s lifetime (Rotter, 1966). 

The Beck Anxiety Inventory (BAI) (Beck et al., 1988) is a 21-item Likert-like scale 

which asks the participant to evaluate how often common anxiety symptoms were 

experienced over the previous month, from 0(not at all) to 3(severely-bothered me a lot). 

The BAI was designed to diagnosis “trait” anxiety, a tendency to be prone to anxiety 

generally, even absent a generating trigger. 

The IPIP 20-item scales for the Big Five Neuroticism and Extraversion 

(Donnellan, 2006) are both 5-point Likert scales that ask participants the degree to which 

each listed characteristic applies to themselves. Both scales can be found on the IPIP 

website: http://ipip.ori.org/. Briefly, Extraversion defines the degree to which a person is 

action-oriented and seeks the society of others. Neuroticism can be viewed as the 

opposite of Extraversion; it is distinguished by negativity and a propensity to be 

emotionally sensitive. 

The Self-Regulation Scale (SRS) (Schwarzer, Diehl, and Schmitz, 1999) is a 10-

item, Likert-like measure which evaluates “postintentional” regulation of focused 

attention and emotional maintenance throughout the completion of a goal-oriented task, 

or, in other words, the ability to maintain sustained focus despite distractions, 

uncertainty, and/or emotional events. 

The Scale of Tolerance-Intolerance of Ambiguity (TOA) is a 16-item Likert 

measure designed to appraise the degree to which the participant self-evaluates novel, 

complicated, or apparently unsolvable situations as threatening (Budner, 1962). 

Tolerance of ambiguity, as measured by the TOA, is not, like the SRS, a measure of 

coping ability per se, but an appraisal of self-beliefs, similar to the LOC. 



36 

2.3.3. Protocol 

After signing up to participate in the study and giving informed consent, 

participants were invited to complete an online survey that included the 6 psychometric 

measures as well as demographics questions about self-perceived ability, personal 

experience, and comfort with computers and computer interfaces. This survey could be 

completed before arriving in the laboratory, or it could be completed the day of the study. 

Most participants elected to complete it before the study session. All data were collected 

for post-hoc analysis with task performance data. 

After completion of the self-report measures, participants began the first of the 

four series of learning tasks. All four series were administered through a web application 

written in the laboratory for this study, which led the participant through each task. The 

order of interface was counterbalanced for order effects; half of the participants used 

GVis first, half used NCBI first. The GVis tasks started with a brief demonstration of GVis 

3 basic modes of mouse manipulation: zooming in, zooming out, and panning (moving 

the visualization within the view for better visibility). 

After the demonstration, a short tutorial was administered to introduce 

participants to essential tools and concepts in the interface, and allow participants to 

experiment with what was being learned. In some cases, step-by-step instructions were 

given. A researcher was on hand throughout the study to answer any questions. 

Following the tutorial was a series of 3 tasks designed to test procedural performance: 

the participant was asked to identify a piece of information located somewhere within the 

presented informational hierarchy. The question provided what base categorization or 

subclass the information was located within, but did not provide step-by-step 

instructions. Participants were also told to find the item as quickly as possible, as the 

task was being timed. As soon as the information was located on screen, the participant 

pushed a “Found It” button on the screen. The time taken from the presentation of the 

question on-screen to the moment the button was pushed was recorded as completion 

time. 

Following the procedural tasks, the participant was administered a series of tasks 

designed to test inferential performance. A series of 3 questions were asked; each 
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question asked the participant to evaluate characteristics of one organism and find 

others that were like or unlike the example; the first question was open response, the 

other 2 were forced choice. Participants were told not to worry about the time taken to 

complete the task; this instruction was given to mitigate unmeasured performance 

anxiety. If the participant answered the question incorrectly, that was recorded post-

study as an error; participants were not informed if their answers were incorrect. Errors 

and completion time were recorded as outcome variables. 

The NCBI tasks series followed the same protocol as the GVis tasks: introduction 

and demonstration, tutorial, procedural tasks, and inferential task. Special care was 

taken to create tasks that were very similar in construction and difficulty to the tasks in 

the GVis. After each participant had completed the tasks in both interfaces, a post-study 

questionnaire was administered. Participants were asked to specify which interface they 

liked better and in which interface they were more comfortable working. They were also 

asked to freely respond to what they liked and disliked about each interface. Finally, they 

were asked to give each interface a letter grade (“A” (superior) through “F” (failing)). The 

completion of the post study questionnaire was followed by a short debriefing, which 

included an opportunity for questions. This ended the study session, and there was no 

follow-up. 

2.3.4. Results 

This section is divided into 3 subsections: descriptive results, including 

participant feedback about each interface, inferential statistical analyses of performance, 

and generation of new predictors of performance derived from psychometric measures. 

Descriptive Results 

Mean procedural task completion times (in seconds) in the MapViewer (M = 136, 

SD = 84) were faster than in GVis (M = 162, SD = 111). A paired-sampled t-test between 

the total completion times in the procedural tasks across the interfaces achieved only 

borderline significance (p = .057). This nonsignificant trend is not entirely congruent with 

our expectation that we would not find a significant difference between the procedural 
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completion times across interfaces. The MapViewer times were shorter, but the trend 

was not strong enough to rule out random chance as a factor.  

However, for the inferential task, GVis times (M= 451, SD = 169) were faster than 

those in the MapViewer (M = 922, SD = 521). During the completion of the inferential 

tasks, participants answered more questions correctly while using the GVis (M = 1.31, 

SD = .56) interface than while using the Mapviewer (M = .77, SD = .59). A paired 

samples t-test between total inferential completion times for each interface was 

significant (t (49) = -7.59, p < .01), as were the total completion times (all 6 tasks) in both 

interfaces (t (49) = 6.99, p < .01). 

Of the inferential questions answered in the visualization, 40 (78%) answered the 

first correctly compared with 2 (4%) in the web application. 4 (12%) correctly answered 

the second visualization question, compared with 8(16%) in the web application. And 

5(10%) answered the third GVis question correctly compared with 2(4%) in the web 

application. Overall, these data support the second hypothesis that tasks completed in 

the visualization would be done more efficiently and effectively than those completed in 

the web application. 

Correlations between total completion times were all significant: total procedural 

completion scores in both interfaces (r (50) = .49, p < .01), total inferential completion 

times in both interfaces (r (50) = .61, p < .01), and total completion times (all 6 tasks) in 

both interfaces (r (50) = .63, p < .01). These data demonstrate that participants who 

tended to take longer completing tasks in one interface also tended to take longer 

completing tasks in the other. 

Overall, participants preferred interacting with the visualization to interacting with 

the web application. This preference was indicated in a variety of ways. For example, 

when asked to give each interface a letter grade, from A (superior) to F (failing), 36 

(71%) gave the GVis an A or B; 18 (25%) gave an A or B to the MapViewer. Additionally, 

when asked, 33(65%) reported that they both preferred and were more comfortable in 

the visualization; 15 (29%) preferred and were more comfortable in the web application. 
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Participants were also asked to freely respond to prompts about likes and 

dislikes in each interface. Common likes in GVis included the ease of use and use of 

color and graphical groupings; dislikes included not always knowing where to look for 

information. Common likes in MapViewer included its alphabetical and hierarchical 

organization; dislikes included difficult searches and the presentation of too much data. 

 Inferential task performance 

Of the administered psychometric scales, only Rotter’s Locus of Control (LOC) 

whole score predicted inferential learning performance. LOC scores negatively 

correlated with total inferential task completion scores in the visualization (r (50) = -.34, p 

= .02) but not the web application (p = .104). A repeated-measures Analysis of Variance 

(ANOVA) demonstrated a significant between participant main effect of hi-lo LOC groups 

for GVis Inferential completion times (F (13, 36) = 2.06, p = .04, η2 = .43). No such effect 

existed for MapViewer completion times. 

Procedural task performance 

None of the 6 whole psychometric measure scores showed significant trending 

with procedural completion times in either interface. Therefore, each psychometric scale 

was analyzed for its principal components, and an analysis of the psychometric items 

was done to evaluate which constructs might predict performance separately. 

Intercorrelation0s between individual items as well as analysis with a metric alternating 

least scales scaling (ALSCAL) multidimensional scaling (MDS) analysis of each of the 6 

measures were used to identify clusters of similar items within each measure. This 

analysis was followed up with factor analysis with principal component analysis (PCA), 

which identified the structural “components” of each measure: items whose scores 

trended together, as well as accounted for substantial proportions of variance in the total 

score. The results of this analysis were then narrowed by choosing the most influential 

measure items, or the items that explained the most variance, from components that 

contained at least one item that significantly correlated with the mean procedural task 

completion times in either interface. For example, the item “Start conversations” in the 

IPIP Extraversion scale significantly correlated with the mean completion times from the 

3rd procedural task in GVis. This item, “Start conversations” had been identified as part 

of the 2nd component of the Extraversion measure. That component’s top item, or item 
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that was most influential, had been identified as “Feel comfortable around people,” which 

was then considered as a potential item for the new measure. In addition to the most 

influential item in each component, items that correlated with multiple mean task 

completion scores or had strong intercorrelations, were also considered, whether or not 

they were the most influential item in a component. 

Each item was then analyzed for its contribution to the new measure, and items 

that did not add to either its measure-task correlation or to its internal consistency of the 

new measure were eliminated from inclusion. In this way, 126 items from the original 6 

administered measures were narrowed to 9 items. (See Table 1.) These 9 items were 

evaluated together as a separate short measure. A metric ALSCAL MDS with a 2-

dimensional solution was conducted to define the underlying structure. The Young’s S-

stress value (max of 1, lower numbers indicate less stress) of the solution was .02, and 

the squared correlation (RSQ) was .99 (higher numbers indicate better intercorrelation), 

denoting that the data are a good statistical fit to the scale. 

 

 

 

Table 1. Items in the short measure. 
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Table 2. PCA components of the short measure 

MDS analysis identified two main clusters: Hands Trembling/Numbness and 

Unable to Relax/Fearing the Worst. All four of these items in these two clusters 

originated from the Beck Anxiety Inventory. (Please see Figure 5.) 

A factor analysis of the 9-item short measure was conducted using principal 

component analysis (PCA). Multiple criteria for the correlational factorability were 

utilized; 8 of the 9 items correlated at a minimum .30 with at least one other item; this 

suggests a reasonable level of factorability. Also, the Kaiser-Meyer-Olkin Measure of 

Sampling Adequacy was .68, which is above the accepted standard of .60. Bartlett’s 

Test of Sphericity was significant (χ2 (36) = 97.22, p < .01). All anti-image correlational 

diagonals, with the exception of Hands Trembling, were above .50. Internal consistency 

was measured using Cronbach’s alpha; consistency was moderate, α = .63. 
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Figure 5. MDS clusters in the 9-item measure 

Factor analysis extracted 3 principal components with initial Eigen values > 1.0; 

these components together accounted for 62% of score variance. (Please see Table 2 

for more.) The 9-item short measure moderately correlated with total procedural 

completion times in each interface (GVis: r (50) = -.46, p < .01, MapViewer: r (50) = -

.453, p < .01); participants with higher scores on the measure tended to take less time 

completing the procedural tasks in both interfaces. A 2 x 3 (interface x trial) repeated-

measures ANOVA was conducted to determine whether the 9-item short measure 

demonstrated a within-participants main effect of interface (F (1, 33) = 7.51, p = .01, η2 = 

.19). There was also a within-participants main effect of trial (F (2, 66) = 50.71, p < .01, 

η2 = .61.) The interaction of trial x 9-item short measure was also significant (F (32, 66) 

= 6.76 p < .01, η2 = .76). Lastly, a between-participants main effect of 9-item short 

measure was found (F (16, 33) = 4.13 p < .01, η2 = .67). 



43 

2.4. Discussion 

This study demonstrates that not all interactive learning tasks are created equal. 

Identify-and-find behaviors like the ones utilized during the procedural tasks use a 

different combination of tools in the cognitive toolbox than do more complex, iterative 

reasoning behaviors engaged during the inferential tasks. This was demonstrated by 

completion times; the simple procedural tasks were not done more efficiently in one 

interface over the other. But when the tasks became more difficult, requiring the user to 

categorize, compare, and evaluate multiple choices at once, participants worked more 

quickly and made fewer errors while using the visualization. 

Then too, is the difference in what genre of psychometrics predicted the task 

behavior. In the procedural tasks, most of the trending items were anxiety-based, or 

described some fear of the unknown. For the inferential tasks, the biggest indicator of 

performance was locus of control, a user’s self-belief about personal control over 

circumstances and environment. 

Although not considered by interface evaluators, how much control an individual 

feels over his or her life circumstances has long been regarded as a demonstrative 

predictor in the human behavioral literature; an internal locus has been associated with 

such outcomes as better use of problem-solving skills (Krause, 1986), a greater resolve 

during task difficulty (Krause, 1986), and development of intrinsic motivation (Weiss and 

Sherman, 1973). This study’s finding that an external locus is a predictor of efficient 

inferential task completion is not explained by much of the extant LOC literature 

originating from the psychological, learning, health, and HCI disciplines. 

It is possible, however, that participants with an external locus of control were 

more ready to accept the constraints of an unfamiliar environment, and so were more 

able to quickly work the tasks; similar results were reported in a study in which 

participants with an external locus who knew that they could not escape a loud, 

uncomfortable noise adapted more quickly to the environment than those with an 

internal locus, who tried to escape the environment more quickly or altogether (Hiroto, 

1974). Until we can replicate and further explore this trending, we will accept the 

plausibility that an external locus improves the ability to work within a novel environment 
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or with novel, complex information by allowing the user to adapt to the environment 

despite the discomfort of the unknown. 

That the external-locus = shorter-completion-time trend is exhibited only in the 

visualization interaction is easier to explain. GVis was developed in response to a 

request for a better way to locate and analyze the spatial and semantic relationships 

between ontological biological structures (Hong et al., 2005); inferential tasks that 

depend on compare-and-contrast behaviors should, theoretically, be easier to see and 

solve in GVis. Additionally, the performance outcomes, non-significant trending between 

MapViewer outcomes and the sporadic psychometric scores, as well as the varying 

nature of the participant feedback suggest that combination of variables influenced 

MapViewer complex performance behaviors, perhaps due to the difference in required 

interaction. Often, tasks that required one or two mouseclicks in a single view in GVis 

were much more complicated in the MapViewer, requiring multiple mouseclicks and 

changes of view. For example, unlike the straightforward presentation of mapped genes 

in GVis through direct interaction (holding down a single mouseclick on the organism of 

interest), determining the existence of a mapped gene for an organism in MapViewer 

required the user to hunt for the organism name in the list of organisms, possibly 

reorganizing the list through primary and secondary sorts, locating and clicking on the 

small single letter “G” on the far right of the application view, which served as a hyperlink 

to a separate page. If a gene existed, information about its mapping was presented. If 

the gene did not exist, the hyperlink led to a page presenting a frustrated-looking male 

icon and the explanation, “No information found for given taxid.” Locus of control played 

a role in the MapViewer inferential task outcomes, but not one strong enough to show 

any predictive strength. 

In the procedural tasks, the 9-item short measure is moderately negatively 

correlated with completion times. This suggests that more trait-anxious (i.e. persons that 

tend to be anxious all the time as compared to anxious only when presented when 

threatening stimuli), uncommunicative, and/or prone to emotional instability a person is, 

the less time they tend to take finding requested items while interacting with novel 

information. This might seem counterintuitive at first glance. However, according to 

Spence-Taylor Drive Theory (Spense, Farber, and Schmitz, 1999), persons with higher 
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trait anxiety tend to identify target information more quickly than the non-anxious when 

the task does not require either iterative or complex reasoning processes. Other studies 

have found that persons with higher trait anxiety are more attentive to presented 

information and can identify target threats more quickly than those less anxious (Ionnou, 

Mogg, and Bradley, 2004). While the causes for this “exception” are still subjects of 

debate, it has been proposed that trait anxious persons have developed adaptive 

heuristics than can make advantageous use of their anxiety (Spence et al., 1966). The 

results of the current study would suggest that certain aspects of trait anxiety tend to 

make users more attentive and better able to identify target information until the task 

becomes complex, requiring more complicated reasoning heuristics and lessening the 

effectiveness of the adaption. Additionally, the 9-item short measure scores positively 

correlated with LOC scores (r = .37, p <.01) , suggesting that persons who were more 

anxious/uncommunicative were also more likely to attribute consequences of life events 

to forces outside their control, such as luck or divine intervention; scores on the whole 

Beck’s Anxiety Inventory, however did not correlate. Given that LOC scores were a 

predictor of more efficient completion times in the more complex, inferential task, it 

seems reasonable that a relationship exists between the aspects of anxiety captured by 

the 9-item short measure and locus of control. 

The items in the 9-item short measure were culled from 6 measures designed to 

measure anxiety, personality traits, self-efficacy, and self-beliefs about control over 

personal circumstances. Subsequent analysis of the 9-item short measure found it to 

have moderate internal consistency and to meet the requirements for a reliable 

psychological assessment. However, it is unreasonable to expect that any new measure 

would be fully validated after one evaluative trial. While we are fairly confident the 9-item 

short measure has captured trending in this study, we recognize that further trials are 

required before the 9-item short measure could be considered predictive or reliable in a 

generalizable way. It is our desire that these results would be subject to replication by 

ourselves and others; we are currently designing protocols to replicate and extend these 

findings. 

A final note is the use of testing an expert system with non-experts; most of the 

participants had only a rudimentary knowledge of biology. Even, so, participants were 
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able to reason through the inferential tasks; overall, participants preferred the 

visualization to the web application. Also, given the participant pool’s overwhelming 

familiarity with the web application as an interface prototype, it is also telling that 

participants also found the visualization more comfortable to work within. Our intent was 

not to test the efficacy of GVis as an expert system; such an evaluation has been 

reported in other literature (Hong et al., 2005). The aim of the current study was to 

evaluate which interface proved better at facilitating procedural and/or inferential 

learning, and to explore whether individual differences in personality factors and self-

beliefs could have a large enough influence on outcomes to recommend their 

consideration in interface design. 

For this reason, we sought non-experts who were relatively unfamiliar with the 

subject matter. Any expertise would have biased the use of the interface; the user would 

have known exactly where to look for certain information and thus would have been a 

poor test of how well the each interface design promoted learning. 

Overall, the results of the current study suggest that the data visualization is a 

superior interface for complex, spatial, inferential learning. However, it is still not clear 

that the same is true for hunt-and-find, simpler tasks. 

2.5. Conclusion 

The current study has demonstrated that believing in the power of luck (as an 

external locus does) makes inferencing easier during visualization interaction. It has also 

shown that certain trait anxiety markers improve seek-and-find iterative behaviors. More 

generally, this study has established that individual differences between users a) do 

impact the efficacy of visualization and web application interfaces and so b) should be 

considered as a part of a maturing theory of visualization and complex interface design. 

Domain-specific interface users often share certain common problem-solving 

tendencies, whether institutional or innate. For example, the tendency of intelligence 

analysts to adopt specific biases has been a point of study (Heuer, 1999). By studying 

the group-specific inherent traits or behaviors of an expert cohorts, we may be better 
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able to create visualizations that are discernibly more intuitively interactive in the 

environmental set for which they were designed. Because users’ engagement with the 

system is at least somewhat unique due to innate personality factors and to how in-

control they feel in their environment, a system that supports visual analysis or other 

complex cognitive behaviors must be designed to handle this individuality. Yet designing 

around human “pre-sets” need not be onerous. As this study demonstrates, a better 

understanding doesn’t mean real-time new user screening through use of hundreds of 

items in multiple psychometric measures; much of this information could be gathered 

during the requirements phase of interface design through quasi-experimental studies 

similar to this one. Once highly predictive items are isolated, much in the same way as 

the 9-item measure, fine-tuning an interface for each user’s “personal equation” could 

theoretically become quicker and more painless. 

The best way to design for a user’s cognitive individuality is still an emerging field 

of research. The conclusions of the current study will undoubtedly be edited and 

expanded as we and others use its findings to design more rigorous future research. But 

what cannot be disputed is that effective interface design for complex interaction 

depends on an understanding of the human cognition involved in such interaction. This 

study was a step toward that understanding. 
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Chapter 3. Towards the personal equation of 
interaction: The impact of personality factors on 
visual analytics interface interaction. 

3.1. Overview 

This chapter was originally published as Green, T. M., & Fisher, B. (2010, 

October). Towards the personal equation of interaction: The impact of personality factors 

on visual analytics interface interaction. In Visual Analytics Science and Technology 

(VAST), 2010 IEEE Symposium on (pp. 203-210). IEEE. This study builds on chapter 

two by evaluating the relationships between the psychometric items and additional 

outcomes. The whole measures (i.e. all items in the measure were used) were Locus of 

Control, Big Five Extraversion and Big Five Neuroticism. The  3 outcome measures were 

efficiency (completion times), task errors, and self-reported insights. The null hypothesis 

was that there would be no significant association between these whole psychometric 

items and outcomes. The alternate hypothesis was that the whole measures would 

predict all 3 outcomes. The alternate hypothesis was largely supported, as all 3 whole 

measures predicted interface learning efficiency  and self-reported insights but not task 

errors. 

3.2. Abstract 

These current studies explored the impact of individual differences in personality 

factors on interface interaction and learning performance behaviors in both an interactive 

visualization and a menu-driven web table in two studies. Participants were administered 

3 psychometric measures designed to assess Locus of Control, Extraversion, and 

Neuroticism. Participants were then asked to complete multiple procedural learning 

tasks in each interface. Results demonstrated that all three measures predicted 
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completion times. Additionally, results analyses demonstrated personality factors also 

predicted the number of insights participants reported while completing the tasks in each 

interface. We discuss how these findings advance our ongoing research in the Personal 

Equation of Interaction. 

3.3. Introduction 

The primary purpose of visual analytics is commonly defined as the facilitation of 

analytical reasoning through use of interactive visual interfaces (Wong & Thomas, 2004). 

Facilitating analytical reasoning, however, requires a comprehensive and operational 

understanding of the cognitive processes that make up analytical reasoning. Complex 

cognition includes a plethora of smaller processes that work together, including 

perceptual cognition, categorization, problem-solving, decision-making, judgment, and 

reasoning. These processes feed and inform each other throughout each stage of the 

analytical task; simply supporting each process individually is not enough. Visual 

analytics must also support the temporal and cognitive flow of reasoning. And yet, an 

operational understanding of analytical cognition has, to date, proven elusive. For 

example, as is often the case with behavioral experimentation generally, studies of 

cognition tend to involve small, simple, normative or “toy world” tasks, while interaction in 

the real world tends to be more complex, harder to predict, and thus harder to measure. 

Additionally, these evaluations focus on the more binary of cognitive processes. 

Especially in visualization studies, the cognitive variables measured are usually facets of 

vision, given attention, and tactile manipulation. While visual and motor effectiveness are 

important to interface interaction, they are only part of the story.  

Complex cognition is not binary nor necessarily sequential. Reasoning, in 

particular, uses a variety of heuristics, from quick elimination heuristics like Gigerenzer’s 

Take-the-Best (Gigerenzer and Goldstein, 1996) or satisficing (Simon, 2006) to much 

more complicated processes such as iterative reasoning, deductive analyses, or rule 

inferencing. Which heuristics are used and in what order depend on the task, the 

environment, and the user. These heuristics are often used combinatorially, feeding and 

informing the analysis until a solution or hypothesis has been satisfactorily reached. 



51 

Unfortunately, at this time, analytical reasoning behaviors can be described in 

part and in whole, but not necessarily predicted. There are no unifying theories of 

reasoning. And this difficulty of prediction is compounded by three types of user 

individual differences: institutional, environmental, and inherent. How humans work 

through reasoning tasks is impacted by institutional differences. Cognition is a social 

activity (Kaptelinin and Nardi, 2006), and domain-specific knowledge, jargon, learned 

methodologies, and other cultural factors can influence how analysis tasks are 

approached and what heuristics are used in solving them. In addition, these domain or 

expert cultures tend to have similar inherent differences; members of an expert cohort 

may share personality or learned proclivities (Boyatzis and Kolb, 1995, Heuer, 1999). 

Environmental differences – such as differences in the interface or tool used during 

visually enabled interaction – frame the task and can help or hinder the reasoning 

process. These differences are naturally of particular interest to visual analytics design, 

as effective interfaces can facilitate analytical reasoning. In this paper, we will highlight 

the impact of inherent individual differences. Individual differences of whatever variety 

are obviously not the only factors which demonstrably impact user interactive 

performance. But as we will show, individual differences – and inherent differences in 

particular – can predict certain types of performance. Further, these differences seem to 

influence performance differently, depending on the cognitive task being undertaken. 

Another reason to study inherent differences is that they, unlike environmental and to 

some degree institutional differences, are variables over which interface designers have 

no control. 

In our research toward the Personal Equation of Interaction, our goal is to know 

and understand the impact of these variables, as well as to develop a battery of 

predictive measures to aid in the development of interfaces which cater to the 

individuality of the user or user domain. The creation of the Personal Equation of 

Interaction at this current time is focused on inherent individual differences. Inherent 

differences are those of learning style, personality factors, self-beliefs, and other 

cognitive “pre-sets” which the user brings to the interface. We will demonstrate that 

these inherent differences can and do demonstrably impact interaction outcomes. 

Further, we can show that, if the inherent differences are known, interaction performance 

can be predicted, and so could, if part of a robust user profile, be used to develop design 
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requirements for expert systems design as well as real-time interface individuation. 

Inherent individual differences in problem-solving approaches can affect task orientation 

and motivation when a user is engaged in goal-oriented behaviors (Heppner and 

Anderson, 1984). In particular, personality factors similar to the ones evaluated in the 

studies reported here have been shown to impact cognition and cognitive performance 

in other learning environments. For example, personality factors predicted preferences in 

visual perception of landscapes (Macia, 1979). In an HCI study, Palmer found that 

interactive behaviors in information search can be categorized by personality factors 

(1991). In reasoning research, individual differences have been found to impact 

rationality and metareasoning (Palmer, 1991). These are just a few examples in a broad 

literature of how personality factors and other individual differences demonstrably affect 

complex cognition. 

The findings we currently report are part of this body of work. The question is not 

whether individual differences impact cognition, but how and when. We hope, in the 

creation of the Personal Equation, to answer several of these questions. Furthermore, 

we can use individual differences to improve our understanding of visually enabled 

analysis across knowledge domains. Research has demonstrated that users in a 

particular domain can share personality characteristics and learning preferences, both 

inherent and institutional. This implies that traits common to the user group can be 

aggregated into specific user profiles, informing superior design requirements and aiding 

in evaluation protocols. A personal equation of interaction could both a) provide 

guidelines for individuated interface designs which could broadly accommodate 

differences in learning style, reasoning heuristic preferences, and perceptual behaviors 

and b) develop profiles of expert or non-expert user groups, delineated by either 

knowledge domain or cognitive task, which would inform the interface design for specific 

user or task domains. 

As we discussed previously, individual differences have been found to have a 

bearing in traditional learning environments [e.g. 11]. And in an earlier study (Green, 

Jeong, and Fisher, 2010) we found that certain aspects of trait anxiety had an impact on 

task efficiency in both inferential and procedural tasks. Also, Rotter’s Locus of Control 

(Rotter, 1966)  predicted inferential task efficiency; we will review this finding in Section 



53 

3. For user group profiles, characteristics of user domains has been done in a limited

fashion (e.g. Hong et al., 2005); this research would further these aims. 

Learning is not generic. Learning heuristics and processes vary depending on 

human individuality, the learning environment, and the learning tasks. In other work, we 

discussed the impact of locus of control on inference learning in the form of category 

reasoning (Green, Jeong, and Fisher, 2010). The tasks used in these current studies are 

procedural. Procedural learning, broadly defined, is the “knowing how” of any sequential 

task. It is sometimes called skill learning, as it is the learning most common to motor and 

iterative tasks that require repetition to master (Sun, Merrill and Peterson, 2001); it is 

also referred to as script learning, which captures the idea that there is a “recipe” or 

“roadmap” to be followed. Procedural learning is thought to be either top-down (i.e. 

CLARION) (Sun, Merrill and Peterson, 2001), or, more commonly, to be bottom up, first 

assimilating the necessary declarative facts and then the use of that information into the 

deconstruction of the task procedure (Anderson, 1982). Procedural learning, due in part 

to repetition, can become “automatic,” requiring little conscious focus. For the purposes 

of these current studies, procedural learning is the ability to learn to manipulate an 

interface well enough to find and identify target information, or to answer straightforward 

questions about the target information. Procedural or script learning is integral to 

interface interaction at every level. Some research has been conducted with an eye 

toward procedural or target-finding tasks. But, as Plaisant has outlined (2004), many of 

these studies are tool evaluations of specific interfaces, and are designed to designate 

one interface as “better” than another, or done without an understanding of the learning 

which underlies task performance. 

Individual differences in reasoning ability have been found to impact procedural 

learning in non-interface task environments (e.g.  Hall et al.,1988). These current studies 

evaluate inherent differences in computer-mediated procedural tasks. In another vein, 

visualizations are generally considered preferable to other interfaces in generating 

“insight” (Chang et al., 2009). But this claim to date has been poorly supported by 

empirical research. Further, research has focused on the visualization and insight 

generation, but not necessarily on the tasks that support insight generation, or the 

degree to which user individuality impacts the frequency of insight. In this study, we 
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evaluate the insight generation by comparing the number of reported insights in the two 

interfaces while completing two types of procedural task: script learning, which involves 

the use of sequential instructions and interface learnability, and target identification, 

which can involve hunting for information through several layers of hierarchical 

organization. In addition, we explore the impact that individual differences have on the 

number of insights generated in both interfaces across task. 

The current studies were designed to explore 2 broad research questions.  

The first question was whether and to what degree Locus of Control, Big 

Five Neuroticism, and Big Five Extraversion would have a significant relationship with 

the outcome variables in task performance. It was hypothesized that some whole 

measures or highly-predictive clusters of items would trend with the outcomes. Based on 

previous work (Green, Jeong, and Fisher, 2010), we expected that the Locus of Control 

whole score would be one predictor, and that more extraverted and neurotic participants 

would be quicker in task completion. And based on behavioral literature[e.g. Messer, 

1972], we hypothesize that participants with an external locus would be quicker in 

identifying target information. 

The second question was whether and to what degree Locus of Control, 

Big Five Neuroticism, and Big Five Extraversion would have a significant relationship 

with the number of insights reported; it was hypothesized that, given the interrelationship 

between these constructs, whole score or individual items, would be found to predict 

insight generation in both interfaces. Based on previous locus of control literature [e.g. 

Weiss and Sherman,1973, Messer,1972], we predicted that participants with an internal 

locus might be more apt to self-report more insights. 

The answers to these questions will aid in the creation of the Personal Equation 

on Interaction, by identifying influential psychometric items for interactive behaviors and 

reported insights, which, in the long term will aid in the creation of predictive measures 

depending on the type of analytical task being undertaken. 
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3.4. Comparative Studies 

Two studies were conducted. Each study employed a within-participants design, 

and compared procedural learning behaviors in an information visualization and a web 

table. Study 1 tested procedural learning performance with a series of 5 questions in 

each interface. Study 2 tested procedural learning performance, with a total 6 questions 

in each interface (3 training and 3 task). 

The procedural task completion times in both studies were combined for the 

purpose of analysis. The design and findings of Study 2 have also been reported and 

discussed in Green, Jeong, and Fisher (2010).  

3.4.1. Interfaces 

Both studies asked participants to interact with two interfaces built to display 

genomic information. These interfaces were chosen as artifacts because both interfaces 

were fed by the same underlying dataset (GenBank), both interfaces supported the 

types of tasks we wanted to study, and the presentation and organization of data and 

interaction methodology was demonstrable different. One interface is the web-based 

National Center for Biotechnology Information (NCBI) MapViewer for genomic 

information, which is publically available and can currently be found at 

http://www.ncbi.nlm.nih.gov/mapview. MapViewer is a multiple-row-based hierarchical 

representation, and uses standard GUI manipulation, such as menus and hyperlinks. 

(See Figure 6.) 

The other interface is an interactive data visualization (GVis) of genomic 

relationships (Hong et al., 2005) which is not available publically. (See Figure 7.) GVis 

primary purpose is to represent relevant relationships (such as mapped genomes or the 

phylogenic organization) between two organisms. Users manipulate the interface 

through direct interaction, “drilling down” through each hierarchy of subcategory directly 

by pressing and holding down a mouseclick near the information of interest. 
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3.4.2.  Psychometric measures 

These psychometric measures we have chosen have been shown to capture the 

impact of these inherent constructs on human cognitive performance and motivation as 

discussed in the behavioral literatures (as discussed briefly in Section 1). Our purpose 

was to explore what impact they might have on analytical performance enabled by a 

visual interface. 

Figure 6. The NCBI MapViewer. 

Three psychometric measures were administered: the Locus of Control 

Inventory, as well as the Neuroticism and Extraversion subscales of the IPIP Mini Big 

Five Personality Inventory. The Internal-External Locus of Control Inventory (LOC) 

(Rotter, 1966) is a 39-item forced choice measure designed to evaluate the degree to 

which participants attribute life events to some action of their own, or to some 

uncontrollable action outside of themselves. 
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Lower LOC scores are associated with an “internal locus” of control, an inherent 

belief that events and outcomes are under a person’s control, and thus, success or 

failure depends largely on personal behavior and attitudes. Higher scores indicate an 

“external locus,” an inherent belief that events and outcomes are influenced by external 

factors such as, unforeseen circumstances, a higher power, or “good luck.” Rotter 

postulated that these loci were traits remaining stable over a person’s lifetime (1966). 

Research demonstrates that locus of control has an impact on a wide variety of human 

outcomes, including academic and workplace performance (. 

The Neuroticism and Extraversion subscales of the IPIP 20-item Mini Big Five 

Personality Inventory (Donnellan et al., 2006) ask participants the degree to which each 

listed characteristic applies to them. The Big Five factors have a long history in 

psychology and decades of literature on their scope and impact. Briefly, Extraversion 

defines the degree to which a person is open-minded, action-oriented and seeks the 

society of others. Neuroticism is distinguished by negativity and a propensity to be 

moody. In previous work (Green, Jeong, and Fisher, 2010), these traits have a 

demonstrated relationship to each other, and, in the case of Neuroticism, to locus of 

control.  
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Figure 7. The MainView of GVis 

3.4.3. Participants 

In total, 106 participants agreed to complete the study: 50 in the first study, 56 in 

the second study. 94 participants reported being right-handed; 11 were left-handed. 

Most (101) were undergraduates and received course credit for participation. Students 

reported having 22 different majors or academic concentrations, including Business, 

Nursing, Computer Science, and Psychology. The vast majority of all participants 101 

(96%) had taken fewer than 4 biology or biology-related classes. Novices were recruited 

specifically to better evaluate procedural learning with novel information; experts would 

have had a more advanced understanding of the knowledge ontology, which would have 

weakened the comparison between interface metaphors. All participants were asked to 

rate their ability and comfort level with a computer and mouse on a 5-item Likert-like 

scale. They were also asked to identify whether they had previous experience with the 

computer interfaces being investigated. 97 reported being comfortable or very 

comfortable with a computer; 79 reported having “very good” or “expert” computer ability. 

No one reported a computer comfort or ability level less than a 3 or “OK.” Almost all 
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(104) participants had used a web-based application before. 35 participants reported 

having used data visualization previously. None of the participants reported having a 

medical condition that might interfere with their use of a computer or mouse. 2 

participants reported being color-blind. 

3.4.4. Study Protocol 

After signing the informed consent, participants were asked to fill out an online 

self-report questionnaire that included the 3 psychometric measures and basic 

demographic information, with particular emphasis on self-perceived ability, experience 

and comfort with computers and computer interfaces. Participants in the first study were 

allowed to complete the questionnaire online before their session in the lab. All data 

were collected for post-hoc analysis with task performance data.  

In both studies, after completion of the self-report measures, participants began 

the procedural learning tasks in one of the two interfaces. The order of interface was 

counterbalanced for order effects; half of the participant used GVis first, and half used 

MapViewer first. 

In the first study, the tasks started with a brief demonstration of interface and 

interaction techniques, such as the use of hyperlinks or how to zoom into the 

visualization. After the demonstration, a short tutorial was administered to introduce 

participants to essential tools and concepts in the interface, and to allow participants to 

experiment with what was being learned. In some cases, step-by-step instructions were 

given. A researcher was on hand throughout the study to answer any questions. 

Following the tutorial was a series of 3 tasks designed to test procedural 

performance in finding target information: the participant was asked to identify a target 

located somewhere within the presented informational hierarchy. The question provided 

what base categorization or subclass the information was located within, but did not 

provide step-by-step instructions. 

Participants were also told to find the item as quickly as possible, as the task was 

being timed. As soon as the target was located on screen, the participant pushed a 
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“Found It” button on the screen. The time taken from the presentation of the question on-

screen to the moment the button was pushed was recorded as completion time. 

In the second study, participants were asked to demonstrate script learning or 

tool skill by answering 5 hunt-and-find questions. All tasks were open response. Each 

question included step-by-step “cues” to assist in finding the answer to each question. A 

cue was the next step or concept on the current page or in the current view to look for. 

Participants were given little or no help from the researchers while working through the 

question, but were allowed or encouraged to experiment with different interaction paths 

within the interface in order to find the answer.  

If the answer given was incorrect, the error was recorded and the researcher 

asked the participant to try again, until the correct answer was given. The total time from 

the initial reading of the question to the indication of the correct answer was recorded as 

the completion time. Participants were not told explicitly that they were being timed. 

A third recorded outcome variable was insight. Participants were asked after 

finishing each task in both studies to indicate whether they had “learned anything 

unexpected while finding the solution.” Insight was defined as “unexpected” to prompt for 

only new knowledge that the participant considered to be novel or surprising. If the 

participant reported a new insight, they were asked to describe what they had learned. 

After each participant had answered the questions in both interfaces, they were 

asked to specify which interface they liked better, and to give each interface a letter 

grade (“A” (superior) through “F” (failing)). A short debriefing ended the study session, 

and there were no follow-up sessions. 

3.5. Results 

In Study 1, the mean completion times for the procedural learning tasks in the 

MapViewer (M = 684.77, SD = 235.46) were more efficient than the completion times in 

the GVis (M = 684.77, SD = 288.49). In Study 2, the MapViewer procedural completion 

times were also faster (M = 133.54, SD = 84.00) than those in the GVis (M = 161.64, SD 
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= 111.40). Overall, participants preferred interacting with the visualization to interacting 

with the web table. This preference was indicated by post-study feedback. For example, 

when asked to give each interface a letter grade, from A (superior) to F (failing), 75 

(73%) gave the GVis an A or B; 57 (56%) gave an A or B to the MapViewer. Additionally, 

when asked, 64(61%) reported that they both preferred the visualization; 39 (37%) 

preferred the web table. 

3.5.1.  Completion times and personality factors 

The completion times for each condition for the procedural learning tasks in each 

study were merged into a single statistic, with N = 106. Participants completed tasks 

more quickly in MapViewer (M = 383.15, SD = 32.38) than in GVis (M = 426.86,SD = 

32.15). A paired t-test between total completion times in GVis and completion times in 

MapViewer was significant (t(100) = 2.11, p = .037, suggesting that the differences in 

completion times was due to more than random chance. A one way Analysis of Variance 

(ANOVA) was used to test for the impact of Locus of Control (LOC) across interface 

completion times. The ANOVA for GVis was significant (F(14, 88) = 1.89, p = .039) but 

the comparison for MapViewer was not (p = .099). In addition, LOC predicted completion 

times in both interfaces; a Pearson’s correlation between LOC and completion times was 

significant (GVis: r(105) = .234, p = .02, MapViewer: r(105) = .254, p = .01). (See 

Figures 8 and 9.) These findings suggest that participants with a more internal locus 

(those who believe they have control over personal life events) take less time finding 

target information than those with a more external locus. 

This correlational finding is the opposite of findings reported in an earlier study 

(Green, Jeong, and Fisher, 2010). This previous study used inferential tasks, and found 

that participants with a more external locus (those who did not believe that they were in 

control) tended to solve a series of inferential tasks more quickly than those with a more 

internal locus. These tasks were more cognitively complex than the current studies, and 

asked the participants to compare and contrast multi-dimensional objects and make 

decisions about similarities and differences. We will discuss this further in the Section 4.  
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ANOVAs to test for the impact of Neuroticism in both interfaces were significant: 

GVis: (F(16, 86) = 3.42, p < .001), MapViewer: (F (16, 85) = 5.14, p < .001). Neuroticism 

also was negatively correlated with completion times in both interfaces. GVis: ( r(103) = -

.47, p < .001, MapViewer: r(102) = -.54, p < .001). (See Figures 8 and 9.) ANOVAs to 

test for the impact of Neuroticism in both interfaces were significant: GVis: (F(16, 86) = 

3.42, p < .001), MapViewer: (F (16, 85) = 5.14, p < .001). Differences in interface 

completion times and Extraversion were significant across both interfaces: GVis: (F (14, 

88) = 5.37, p < .001). MapViewer: (F(14, 87) = 4.12, p < .001). These faster participants 

also tended to be more emotional and sociable. A summary of these findings can be 

found in Figure 13. 

3.5.2. Task Errors and Personality Factors 

The two studies measured tasks errors differently, and so must be analyzed 

separately. In Study 1, procedural tasks asked participants only to indicate when they 

had located the target (in seconds) across procedural tasks and the Locus of Control, 

Extraversion, and Neuroticism scores.  
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Figure 8. Correlations of GVis total completion times (in seconds) across procedural 
tasks and Locus of Control, Extraversion and Neuroticism scores.  



64 

Figure 9. Correlations of Map Views Total completion times (in seconds) across 
procedural tasks and locus of control, extraversion, and neuroticism 
scores 

Total Completion Times (in seconds) across procedural tasks and the Locus of 

Control, Extraversion, and Neuroticism scores. In Study 2, error was defined as giving 

the wrong answer to a question. Upon making an error, participants were asked to 

continue to try until they correctly solved the task. Each incorrect solution was recorded 

as an error. Kolomogorov-Smirnov Z was significant in both interfaces (GVis: p < .001, 

MapViewer: p < .001). Levene’s test of homogeneity was significant in for GVis (p = 

.004), but not MapViewer (p = .30), suggesting that sample distributions were not 

uniformly normal. Due to these two findings, we opted to conduct non-parametric tests 

for the purposes of the following analyses. 

Participants made more errors in GVis (M = 1.21, SD = 1.07), than they did in 

MapViewer (M = .69, SD = 1.07). Friedman’s chi square was significant (X2 (1) = 5.45, p 

= .02) Kendall’s tau was conducted between errors in each interface and psychometric 
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scores; no significant associations were found. Generally speaking, only the difference in 

interface had a significant impact on how many errors were made; participants were 

more effective in the MapViewer interface. A summary can be found in Figure 13. 

3.5.3.  Insight generation and personality factors 

Participants reported having more “unexpected” insights in the GVis (N = 73) 

than in the web-based MapViewer (N = 70). The distribution of the combined insights 

reported across both interfaces was not normal according to the Kolomogorov-Smirnov 

(GVis: p < .001, MapViewer: p < .001). Levene’s test of homogeneity was significant for 

GVis (p < .001), but not MapViewer (p = .373). As the distribution was not normal, a 

Friedman’s chi square was run between the mean number of insights generated in both 

interfaces, and was not significant: Friedman’s X2 (1) = 1.59, p = .208. Kendall’s 

Coefficient of Concordance = .015. This suggests that interface type did not have a 

significant impact on the number of insights generated. 

In an investigation of the impact of Locus of Control (LOC) on insight generation, 

a Friedman’s chi square was run between LOC scores and the mean number of insights 

generated in both interfaces and was significant. GVis: Friedman’s X2 (2) = 174.36, p < 

.001. Kendall’s Coefficient of Concordance = .83. MapViewer: Friedman’s X2 (1) = 

101.04, p < .001. Kendall’s Coefficient of Concordance = .96. 

As the sample was large (n > 50), Spearman’s rho was conducted to evaluate 

correlations between the psychometric scores and completion times. Locus of Control 

predicted the number of generated insights (GVis: R (103) = .20, p < .04; MapViewer: R 

(101) = .239, p = .016). Because both studies had a within participants design, a 

Kendall’s tau-b was conducted. LOC was not associated with the number of generated 

insights in both interfaces (GVis: p = .59, MapViewer: p = .46). 

These findings demonstrate that LOC had some impact on the number of 

insights the participants reported; persons with a more external locus tended to report a 

greater number of insights (Figure 10). 

We also explored the impact of Big Five personality traits Extraversion and 
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Neuroticism on insight generation in both interfaces. A Friedman’s chi-square between 

mean Extraversion scores across interfaces was significant. (GVis: Friedman’s X2 (1) = 

105.0, p < .001. Kendall’s Coefficient of Concordance = 1.0. MapViewer: Friedman’s X2 

(1) = 105.0, p < .001. Kendall’s Coefficient of Concordance = 1.0). Extraversion was 

associated with insight generation (GVis: τ = -.15, p = .051, MapViewer: τ = -.18, p = 

.027), and predicted the number of insights in both interfaces (GVis: R(103) = -.554, p < 

.001; MapViewer: R(101) = -.543, p < .001). These findings suggest the more insights 

were reported by participants that were less extraverted (Figure 4 11). 

A Friedman’s chi-square between mean Neuroticism scores across interfaces 

was significant: (GVis: Friedman’s X2 (1) = 105.0, p < .001. Kendall’s Coefficient of 

Concordance = 1.0. MapViewer: Friedman’s X2 (1) = 105.0, p < .001. Kendall’s 

Coefficient of Concordance = 1.0). Neuroticism was not significantly associated with 

insight generation (GVis: p = .716, MapViewer: p = .37), but did predict the number of 

generated insights in both interfaces (GVis: R(103) = -.415, p < .001; MapViewer: R(101) 

= -.509, p < .001). These findings suggest that more neurotic participants did not report 

as many insights as those who had lower Neuroticism scores (Figure 12). A summary is 

in Figure 13. 

3.6. Discussion 

The findings of these studies demonstrate that, even when the procedural tasks 

are somewhat different, inherent personality differences can predict interaction and 

behavioral outcomes across the interfaces. Aside from generally evaluating interface 

learnability, which we did in both studies, we studied procedural learning tasks in two 

slightly different ways. The first study focused on target identification; participants were 

asked to find an organism label on the screen: for GVis, this label was attached to a 

spherical glyph, for MapViewer, very often the label was also a textual hyperlink. Once 

the label had been obtained, the participant pushed the “Submit” button and the task 

was done.  

In the second study, we asked participants trivia questions whose answers had 

to be hunted through the interface. If they gave the wrong answer, we requested that 
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they keep looking. Like the first study, nothing other than an ability to use the interface 

and identify target labels was required. In both of these tasks, participants found the 

targeted information more quickly in the web table MapViewer; in Study 2, they also 

made fewer errors in MapViewer. Given the wide commercial use of web tables, it 

seems reasonable that most participants brought some prior knowledge of the 

interaction metaphor to the MapViewer tasks that they did not have for the data 

visualization. However, participants still strongly preferred GVis to MapViewer, even if 

they were not as effective in task performance. This may have been due to the novelty of 

GVis; most participants had never seen anything like it before. It also may have been 

due to data organization; many participants, in post-study open response, indicated a 

clear preference for GVis” organization and interaction. 

Locus of Control proved to be an influential personality trait no matter what the 

interface or task. The faster participants in both interfaces were persons who had a more 

internal locus of control, which is typified by a belief in personal control over life events. 

This finding is in close agreement with much of the available literature on locus of 

control. Persons were a more internal locus have been found to have better problem-

solving skills (Krause, 1986), to be more resolved to solve a task when it became 

difficult, and to be more likely to develop an intrinsic (internal) motivation to finish a 

difficult task (Weiss and Sherman, 1973). Thanks in part to positive behaviors like these, 

internal locus has also been found to lead to superior outcomes in academics, hospital 

recovery, and organizational environments. 
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Figure 10. Insights and Locus of control 
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Figure 11. Insights and Extraversion 

Figure 12. Insights and Neuroticism score 
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What is intriguing is that, while an internal locus led to faster procedural task 

outcomes, this is not necessarily the case when the task becomes more cognitively 

difficult. In a previous paper (Green, Jeong, and Fisher, 2010), we studied inferential 

learning. The tasks required participants to evaluate a multi-dimensional exemplar, and 

draw a conclusion about other organisms based on similarities or differences. We 

reported that participants who had a more external locus – those who believe that they 

are not in control, and who tend to believe in luck as a cause of events – solved 

inferential tasks in GVis more quickly than those with an internal locus. For a discussion 

of these results, please see (Green, Jeong, and Fisher, 2010). The results do not 

contradict our current findings, but rather expand on them. In these studies, we used a 

larger N, which likely made our analyses more sensitive to changes in participant scores. 

Further, we focused on only 3 constructs that seemed more highly predictive, unlike 

(2010) which used 6 psychometric measures. 

For one type of learning task performance to be predicted by the degree of 

internal locus and another type to be predicted by the degree of external locus lends 

credence to our introductory statement that, depending on task, inherent individual 

differences can predict interface performance. Yet while locus of control has been shown 

to be influential in a wide variety of human performance, as previously discussed, to 

date, it has not been considered by interface designers and evaluators. Based on our 

research, as well as a broad locus of control literature, we consider locus of control to be 

one construct in the Personal Equation of Interaction. In addition to Locus of Control, the 

Big Five personality factors of Neuroticism and Extraversion also predicted procedural 

task performance. The more extraverted or neurotic the participant, the more quickly he 

or she was able to identify target information. 

This is interesting, but little in the behavioral literature explains these correlations; 

for us, it is a subject of our ongoing research. Further, Neuroticism in these studies was 

found to be negatively correlated with Locus of Control (r(105) = -.284, p = .003). This 

does have some precedent in the literature. For example, Judge et al. (2006) evaluated 

several personality factors, including Locus of Control and Neuroticism, and found that 

they were interrelated and could be shown to be a part of the same construct. This 

means =that items from these measures trended together and were statistically 
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predictive of the same personality factor(s). Research like this affirms psychometric 

constructs can and do work together, Further, it lends credence to an approach that 

seeks to find items or clusters of items which could work together in the prediction of 

interaction efficacy. 

Insights were also predicted by personality as in factor scores. This is compelling 

because it suggests that the impact of a predictive Personal Equation may go further 

than efficacy or efficiency; it may extend to being able to predict some learning or 

problem-solving outcomes as well. Much depends on how the word “insight” is defined. 

In the visualization and visual analytics literature, insight is often undefined. When 

defined, it is often broadly defined, as in (North, 2006). This makes “insight” difficult to 

use as an evaluative interaction outcome, and thus, as briefly discussed earlier, leaves 

certain claims about the superiority of visual analytics interfaces unproven. Recently, 

“insight” has been defined within two categories: knowledge-based insight, and 

spontaneous insight (Chang et al., 2009). Spontaneous insight is a sudden solution to an 

unsolvable problem, and has often, in the psychological literature, been referred to as an 

“aha!” moment. Spontaneous insight was not evaluated in these studies. 

In these studies, we evaluated the number of knowledge-based insights reported 

across task and interface, which are generally defined as items or concepts learned or 

added to the user’s knowledge base. In evaluating the knowledge-based insights 

reported, we categorized insights on the basis of content: insights about how to use the 

interface itself were separated from insights about the informational content presented 

and manipulated. 

In both interfaces, roughly twice as many knowledge-based insights were 

reported about interface learnability (GVis: N = 51, MapViewer: N = 47) as were reported 

about the informational content (GVis: N = 22, MapViewer: N = 23). In both interfaces, 

the greatest number of interface learning insights was reported in the first question, 

which suggests that learnability started early. 

As the task set proceeded, the reported count of each insight type tended to 

even out somewhat, which is not unexpected; users started paying attention to content 

once manipulating the interface was less of an issue or became more automatic. 
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Overall, whether learning about the interface or the interface content, personality 

factors predicted reported learning as well as other interaction outcomes. These findings 

have immediate implications. For example, these studies have demonstrated that users 

who tend to be more extraverted and neurotic are also more likely to believe that they 

are in control of the task situation (internal locus). By extension, this also means highly 

neurotic or extraverted users tend to be better at interface manipulation and target 

identification. If the personality factors of the user were known beforehand, we could 

reasonably predict how quickly he or she would be able to learn a novel interface and 

find pertinent information. For even when the interaction metaphor was completely 

unfamiliar, as it was in the GVis visualization, neurotic/extraverted participants were able 

to learn to manipulate the data more quickly. 

 

Figure 13. Summary of findings. 

 However, what these findings do not do is demonstrably differentiate between 

interface and interactive techniques. The three evaluated personality factors impacted 

both interfaces similarly. Given the cognitive simplicity of the tasks, this is perhaps 

unsurprising. Ongoing research has been designed to evaluate learning styles which 

tend to guide focused attention and information organization during task, and where 

behavior research suggests more delineating personality factors for visualization 

technique might be found. 

A last note is on the use of novices in evaluations using an expert system; most 
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of the participants had little or no knowledge of biological concepts. However, the 

participants were still capable of ably find target information in both interfaces. Yet even 

with the more familiar archetype of the web interface, participants preferred the 

visualization. The intent of these studies was never to evaluate the efficacy of GVis per 

se; a formal evaluation of GVis as an expert system is reported in other literature [19]. 

The aim of these studies was to evaluate human cognition during learning interaction 

using both interfaces as working artifacts of a kind. In addition, we explored whether 

individual differences in personality factors and self-beliefs could have a large enough 

impact on interaction outcomes to warrant their inclusion in the Personal Equation of 

Interaction. 

For these reasons, we recruited non-experts who were unfamiliar with the 

knowledge domain. Expertise would have biased the user’s interaction; they would have 

had an expert knowledge of the genomic hierarchies, and thus known where to look for 

the requested information. This would have proven a poor evaluation of how each 

interface promoted learning. 

3.7. Conclusion 

The Personal Equation of Interaction is still very much a work in progress. In the 

short-term, it serves as an open discovery and proof of concept. We have shown that 

inherent differences impact interaction. Our ongoing research seeks to better define 

what differences impact what type of analytical task (for it seems reasonable to assume 

that one inherent set of differences will only generalize to one type or set of task 

constraints). For example, we are currently narrowing our task sets to study multiple 

decision points in specific types of category or inference reasoning. And further, we hope 

to explore whether that impact is temporally static or dynamic throughout the analytical 

process.  

In the longer term, we intend to isolate predictive matrices and validate a battery 

of measures that will successfully inform interface design based on the types of cognitive 

task undertaken. Ultimately, this is the Personal Equation of Interaction. These 

measures will likely involve more than personality factor matrices; other areas of 
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exploration include perceptual logics and use of decision-making heuristics. In addition 

to informing design, the Personal Equation could be used to provide real-time interface 

adaptation to accommodate user needs and preferences, and provide a basis for robust 

group profiles of users who share common differences, such as experts or users of a 

particular visualization technique. Visual analytics seeks to facilitate analytical reasoning 

through the use of interactive visual interfaces. In the Personal Equation of Interaction, 

we will provide a new tool in that pursuit. 
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Chapter 4. The personal equation of complex 
individual cognition during visual interface 
interaction 

4.1. Overview 

This chapter was originally published as an invited book chapter: Green, T. M., & 

Fisher, B. (2011). The personal equation of complex individual cognition during visual 

interface interaction. In Human Aspects of Visualization (pp. 38-57). Springer Berlin 

Heidelberg. The chapter does not report any new research but identifies and discusses 

key reasoning categories and elucidates how these categories might be studied as part 

of building a knowledge domain to improve the intuitive ease of visualization interaction.  

4.2. Abstract 

This chapter considers the need for a better understanding of complex human 

cognition in the design of interactive visual interfaces by surveying the availability of 

pertinent cognitive models and applicable research in the behavioral sciences, and finds 

that there are no operational models or useful precedent to effectively guide the design 

of visually enabled interfaces. Further, this chapter explores the impact of individual 

differences, and in particular, inherent differences such as personality factors, on 

complex cognition. Lastly, it outlines how knowledge of human individuality, coupled with 

what is known about complex cognition, is being used to develop predictive measures 

for interface interaction design and evaluation, a research program known as the 

Personal Equation of Interaction.  
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4.3.  Introduction 

Generally speaking, interactive visualizations are considered to have a number of 

advantages over more conventional visual interfaces for learning, analysis, and 

knowledge creation. Much of the support for these claims comes from a variety of 

sources, such as user evaluations, comparative studies of error rates, time to 

completion, etc., as well as and designer/developer intuition. One common claim 

concerns the development of insight. From early on, visualization has been proposed as 

a preferable interface approach for generating insight (e.g. Card, Mackinlay and 

Shneiderman, 1999, Saraiya, North and Duca, 2004, Spence, 1956). 

As a concept, however, insight is a construct that is often either loosely defined 

as some variety of meaningful knowledge or is left undefined (e.g. Saraiya, North and 

Duca, 2005, Springmeyer, Blattner and Marx, 1992). More recently there have been 

efforts to define insight, although not in ways that might enable it to be quantified. For 

example, North described insight as a broad construct, which is complex, deep, 

qualitative, unexpected, and/or relevant (2005), without characterizing the cognitive 

processes that give rise to it, or the outcomes that are generated by it. Chang et al. 

defined insight as comprising two categories: knowledge-building insight, which is a form 

of learning and/or knowledge generation, and spontaneous insight, which is method of 

problem-solving for previously intractable problems, commonly described as an a-ha! 

moment (2009).  

This dual definition has advantages over a unitary definition in that it supports 

focused analysis of the component aspects of the overall construct. Spontaneous 

insight, however, has been an elusive notion for researchers in several disciplines; 

neuroscientists and psychologists have studied the phenomenon, but as yet do not know 

how insight is triggered. 

By any definition, there is little empirical evidence that supports claims of 

visualization superiority in insight generation, though user evaluations are often 

conducted to demonstrate visualization efficacy over other types of interface. Plaisant et 

al. (2004) identified four current themes in the evaluative literature: controlled 

experiments comparing design elements, usability evaluation, controlled experiments 
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comparing two or more tools, and in situ case studies. In all four groups, evaluations and 

comparative studies have largely focused on perception, motor learning, focal attention, 

target recognition and/or target acquisition. For example, musing behaviors were used 

as a predictor of user focus in a geospatial visualization (Wong & Thomas, 2004). Jeong 

et al. compared two visualization tools to determine in which interface users were more 

efficient in finding outliers and identifying highly correlated items in a matrix (2010). 

Nodes were the subject of an evaluation of target identification in large tree tools 

(Plaisant, Grosjean and Bederson, 2002). And Wang et al. evaluated whether users 

could focus on the count of visualized objects (in this case, paper proposals) over a 

period of time (Beth and Piaget,1966). In these evaluations as well as in cognition as a 

whole, perceptual, cognitive, and motor processes are important to the overall 

interaction. However, each of these identified cognitive systems is a feeder processes. 

That is to say, they support and inform the more complex processes, such as reasoning, 

problem-solving, and knowledge generation, which form the backbone of systematic 

analysis or task solution. These complex processes are impacted demonstrably, as we 

will see, by the individuality of the interface environment, the knowledge domain, and the 

inherent differences within the user, over which visualization design has no control. To 

date, visualization evaluation has insufficiently considered the complexity of human 

cognition. This, in turn, has hampered the design of intuitive interfaces capable of mixed-

initiative collaboration. 

In this chapter, we will explore a variety of challenges to the consideration of 

cognitive complexity in visual analytics design, from the current lack of operational 

models and applicable research to a consideration of individual differences. We will then 

explore how an consideration of how these complex processes impact the 

understanding of common visual analytics tasks, and discuss a continuing exploration of 

how human individuality can be measured and charted, leading to a differentiating set of 

predictive measures that can not only predict interface performance, but guide 

visualization design. We call this the Personal Equation of Interaction. 

4.3.1. The Challenge of Complex Cognition 

Very little research examines the use of what is commonly known as higher 
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cognition during interaction, which includes processes such as reasoning, problem-

solving, and decision-making. Frequently, when a visualization design or evaluation 

argues that a specific technique or tool improves insight (which is learning and/or 

problem-solving) or analysis (which involves every major cognitive process), the 

evidence is actually task completion times for single-step tasks, improved target 

identification, or other simple outcomes. One reason for this, perhaps, is the practice of 

inferring the success of complex behaviors from measurements of simpler ones. A 

common example is the generalization of findings from simple, semantically-unrelated 

target acquisition tasks to human problem-solving as a whole, without a discussion of 

which of the many problem-solving theories or heuristics the finding might speak to (e.g. 

Dou et al., 2009, Robinson, 2008). This practice over-simplifies the complexity of 

cognition, but is understandable, given that our best complex cognitive models are black 

box or descriptive. We will now consider the best known of these descriptive models, the 

sensemaking model.  

4.3.2. The Sensemaking Loop 

The most familiar approach to descriptively outline task-oriented processes is 

Pirolli and Cards sensemaking loop (Pirolli and Card, 2005, Russel and Card, 1993). 

See Figure 14. Russell et al. defined sensemaking as the process of searching for a 

representation and encoding data in that representation to answer task-specific 

questions (1993). In the rest of this section, we will summarily explore the complexity of 

analytical cognition through a brief discussion of the sensemaking loop in the broader 

context of human reasoning. This seems necessary, for, as valuable as the 

sensemaking loop is to describing certain analytical tasks, its use tends to be 

overgeneralized in the visualization literature. Indeed, sensemaking is often the term 

given to most or all of the cognitive processes analysts employ during visual analytics 

tasks (e.g. Stasko et al., 2007, Pirolli and Card, 2005, Heer and Agrawala, 2007). 

Sensemaking, as defined in the previous paragraph, creates a mental or physical 

representation (i.e. a “mental model” or “story”). This singular representation may well be 

necessary for problem solving, but may not be in itself sufficient for generating valid 

implications. Analyses may create multiple alternative mental representations of a 
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situation in order to compare them in a variety of ways, using a variety of evaluative 

heuristics in order to draw their conclusions. 

At this larger scale of problem solving strategy, analytical cognition exhibits a 

great deal of variability, and is informed by both human and task individuality. For 

example, the sensemaking loop makes an effort to delineate top-down and bottom-up 

task descriptions. However, as some of Pirolli and Card’s participants indicated, the 

cognition involved in the early tasks of the loop can rarely be so cleanly categorized. 

Further, though seemingly simplistic, even the first steps of the sensemaking loop (the 

“lower-effort” tasks of searching and filter) requires complex cognition in the form of 

various reasoning heuristics to categorize, evaluate, and assemble pertinent information. 

These heuristics could be elimination heuristics like elimination-by-aspects (Wang et al., 

2008), or satisficing (Kozielecki, 1971) or they could be more complicated, such as the 

comparing possible shoebox members (concepts the analyst has gathered during 

sensemaking and think may be related to each other) to an ideal before addition. 

According to the Loop, pertinent shoebox members become part of and Evidence File 

which is used as part of the formal structure of the Schema, which is a structured 

narrative of how the evidence collected thus far fits together (Pirolli and Card, 2005). 

Thus, sensemaking effectively describes one key component of the complex cognitive 

processes involved in the generation of insight, it does not claim to capture higher levels 

of abstraction, i.e. generation of problem-solving strategy, nor does it attempt to capture 

lower-level pattern recognition processes that support its operation. 
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Figure 14. The sensemaking loop. From Russell and Card, 1993. 

The latter set of processes are arguably the most critical for visualization to 

support, since they are precisely those aspects that are most closely tied to the visual 

systems own information processing capabilities (i.e. Irving Rock’s logic of perception 

(1983)). Similarly, Cherubini’s “models to rules mechanization” (2006) suggests that the 

formation of schemata and hypothesis generation are not necessarily higher effort tasks. 

According to Cherubini, after human reasoning uses the generated model (which does 

require some cognitive effort to create in novel instantiations), the human infers a rule 

from the knowledge structure in the mental model. Or in his own words: 

After grasping the common structure of the problems, most people 
should be able to devise a simple rule to solve all problems with the same 
structure (i.e., a domain-specific rule), disregarding the number of possibilities 
underlying them.( Cherubini and Mazzocco, 2004)  
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This rule may be created after only one or two uses of a newly created model. 

Thus, depending on the information under consideration, hypothesis generation could 

actually require less cognitive bandwidth than the initial information search. 

At a higher level, the sensemaking loop articulately describes one subset of 

reasoning, that of reasoning types which generate inferred hypotheses or generalized 

rules, or abduction and induction. Abduction (or abductive reasoning) is process of 

approaching seemingly unrelated information with the assumption that the data points or 

concepts are indeed interconnected; abduction creates and infers relations between two 

previously unrelated data points; the end product of abductions series of inferences is 

the creation of a hypothesis which explains these relational inferences [41], and usually 

about a specific item or concept. This fits well with the structure of the sensemaking 

loop, which situates the search and compartmentalization of small, unassociated details 

in the early stages of the loop and builds from there to an identifiable hypothesis or story. 

The sensemaking loop also illustrates induction. Inductive reasoning, as is 

described in the behavioural literature, is generally referred to the process of making 

acceptable generalizations from the similarities of facts or properties (see for example 

Rips, 1975, Tversky, 1972). The validity or strength of the generalization depends in 

large degree upon the strength of these similarities. One of the characteristics of 

induction which makes induction different from abduction is that relationships are not as 

important to the successful generalization. Once a fact(s) or similarity has been 

accepted as valid, it or they become the basis of generalization; additional information 

may or may not be considered. Induction is a powerful form of reasoning that allows us 

to quickly categorize and infer rules; it is often referred to as a form of bottom-up 

reasoning, but can utilize top-down cognition as is needed. To some degree, the 

sensemaking loop describes induction, as this type of reasoning tends to build from 

smaller facts to a broader concept. However, unlike with hypothesis generation and 

analysis, induced generalizations do not necessarily require vetting, e.g. careful 

consideration of available evidence for the generalization. Induced hypotheses can jump 

past multiple steps, such as the shoebox or schema creation, straight to a generality.  

While abduction or induction may accurately describe behavior during discovery 
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or during exploration of novel problems for which the analyst does not already have a 

script or mental model to guide her as to what to do next, most problem-solving or 

decision-making tasks are driven by an articulated goal, theory or hypothesis from the 

start. These reasoning heuristics are neither abductive, which ends with a hypothesis, 

nor inductive, ending in an inferred rule, but rather deductive. 

One of the more actively studied reasoning types, deductive reasoning falls 

outside of the sensemaking loop. By deduction (or, for that matter, induction), we are 

referring to reasoning as the subject of decades of empirically conducted research, 

which is usually evaluated through use of normative tasks like those that we will briefly 

itemize in the next section. A discussion of the philosophy of deduction, such as the 

traditional deduction of Aristotle, propositional (or first order) deduction, or natural 

deduction (Jaskowski,1967, Gentzen, 1967), and the similarities or differences between 

these definitions, is neither intended nor implied. 

There are several theories of deduction in the behavioral literature, but we will 

focus on two of the broader categories of deduction, which assume that human 

deductive reasoning is either rule based or model based. This dichotomy of rules vs. 

models raises interesting issues for visual analytics interfaces. Rule-based theories 

assume that humans use a script or a formal sequential logic while working through a 

deductive task (e.g. Johnson-Laird, 1991, 1999). From this perspective, the content or 

information manipulated  during the task doesn’t demonstrably influence the reasoning, 

because the inferences drawn during induction are part of this formal process. From the 

rules perspective, for the development of more intuitive deductive visual analytics tools, 

it would only be important to uncover the pertinent rules the analyst would use; 

theoretically, these deductive rules would generalize to all similar visual analytics tasks. 

Model-based theories, however, are quite different. Models can be either 

concrete or abstract, complete or incomplete, pictorial or conceptual (e.g. Johnson-Laird, 

1991 and 1999). Models are also flexible; they can change as pertinent information 

changes, and can quantify degree (such as few or often), as well as causal conditions. 

Models depend heavily on semantic relationships, and so can be heavily influenced by 

the content of the information at hand. This, too, influences visualization design, for what 
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data is presented when, and in what context, can influence the development of the 

model, as well as its completeness and validity. From the model-based perspective, 

discovering quickly inferred rules is not nearly as helpful as assuring that the human has 

all pertinent information readily at hand. 

With pertinent information, the human can generate a mental model, which can 

be manipulated as needed to reasoning through the task to a valid conclusion. 

Schniederman’s Mantra (1996): Overview first, zoom and filter, details-on-demand 

assumes deductive reasoning. The big picture, or hypothesis, drives the interactive 

behavior. It is not surprising, then, as powerful as models would seem to be in the 

successful use of visual analytics interfaces, that they have a place in the visual 

analytics literature, even if the theory and implications of models are rarely discussed. 

This has been only a brief, general discussion of the sensemaking loop and how 

it fits into the broader context of common reasoning types. Human reasoning is about 

reaching a usable or verifiable conclusion, but the ways in which we reach these 

conclusions, as we have seen, can vary widely. For this reason, it is easy to see why 

analytical reasoning processes have yet to be operationalized in a manner that 

meaningfully informs research and design. For while descriptive models like the 

sensemaking loop do much to frame the big picture, intuitive interfaces will require a 

more detailed working-order understanding of what lies inside the frame. 

4.3.3. The Absence of Precedent 

As we saw in the last section, there is, as yet, no unifying theory of reasoning (if 

such a thing is even possible). What does exist is a complication of decades of research 

into specific laboratory tasks, usually characterized by small-scale problems, which are 

intended to uncover reasoning heuristics and biases. These are of limited use for real-

world applications, and in particular map poorly onto visually enabled human reasoning 

(e.g. interactive visualization for cognitive tasks). Further, the theories that motivate 

these studies are often bound to a particular task and environment. Thus the field of 

behavioural research as a whole is characterized by contradictory, often esoteric 

theories that fail to explain the narrative of reasoning from beginning of task to end. 
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For example, deductive reasoning is almost entirely studied in a laboratory trials. 
Both rule based and model-based deduction has traditionally studied by presenting 
participants with syllogisms and evaluating the conclusions that are drawn. Phillip 
Johnson-Laird often uses syllogisms to study aspects of reasoning, which can take 
forms such as this inference about object properties: Only one of the following 
statements is true: 

 
              At least some of the plastic beads are not red, or 
              None of the plastic beads is red. 
              Is it possible that none of the red beads is plastic? (Johnson-Laird,2008, 

pg. 150). 

 

Other common uses of syllogisms involve mental reasoning and inferences about 

spatial relationships, such as: 

 

              The cup is on the right of the plate. 
              The spoon is on the left of the plate. 

 The knife is in front of the spoon. 
  The saucer is in front of the cup. 
What is the relation between the knife and the saucer? (Johnson-

Laird,2008, pg. 130) 
 

Cherubini and Johnson-Laird (2004) studied qualified inferences in iterative 

reasoning through word problems like the following: 

 Everybody loves anyone who loves someone. 
 Anne loves Beth. 
 Does it follow that everyone loves Anne? 

  .. . . 

   Does it follow that Carol loves Diane? 

Cherubini and Mazzocco also evaluated the mental models to rules 

mechanization through use of a computer program loaded with a series of virtual card 

problems (2004) as illustrated in Figure 15. The participant was asked whether, based 

on the presented cards, a proposed sentence was certainly true.  

Gigerenzer, in his evaluation of “fast and frugal” reasoning heuristics, used what 
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he considered to be common knowledge about cities in questions about which he asked 

participants to make quick reasoning decisions. The questions were simple, such as Is 

this [city name] the capital of the country? (Gigerenzer, G., Goldstein, 1996). Gigerenzer 

postulated that humans could make quick decisions based on very simple elimination 

heuristics which depended on accumulated general knowledge. These decisions were 

found to be more accurate than more sophisticated human and computer reasoning 

simulations. The behavioral literature contains decades of research similar to the 

research we have discussed, with each study having its own novel, usually non-real 

world, problem formulation. Study problems are often designed to study some small 

subcategory of reasoning (iterative inferred, probabilistic, etc.) and very few or no 

studies are published which are designed to explain how humans solve a complex 

problem from start to finish. 

Perhaps it is not surprising then that, with all of this research, there is still a lack 

of precedent on how to conduct research into visually enabled reasoning. It is not at all 

clear how one might evaluate interfaces with respect to their ability to scaffold higher-

order cognitive tasks. Further, unlike many of the simpler cognitive tasks, higher 

cognition is almost never binary, sequential, or singly threaded. It is, in practice, 

dynamic, combinatorial, and capable (at least to some degree) of parallel processing. 

Which heuristics are used during complex cognition and when will depend on the task, 

the environmental framing, and, as we will now discuss, differences in how an individual 

assimilates and manipulates new information. 

4.4. Individual Differences 

Complex cognition, for all of its variety, is also influenced by human individuality. 

There is no standardized unit of human cognition. It is influenced, sometimes profoundly, 

by the users’ distinctive abilities and bottlenecks, beliefs about the world, preferred 

methods of categorizing and prioritizing information, and other individual differences. 

This is one reason that the modeling of reasoning has traditionally been difficult. Human 

behavioral research has demonstrated the impact of individual differences on learning 

and analysis in traditional environments. 
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There is also a plethora of examples in the behavioral literature of how individual 

differences impact cognition; for the sake of brevity, we will focus on the impact of 

personality factors, which also have a broad literature of their own. For example, 

personality factors predicted preferences and visual perception of landscapes (Macia, 

1979). Visual impairment in children is heavily influenced by individual personality 

differences (Corn, 1983). Individual differences also affect how humans categorize, 

including the categorizing of stereotyping and prejudice (Heaven, 2002). Palmer found 

that interactive behaviors in information search can be categorized by personality factors 

(Palmer, 1991). Another study found that problem-solving behaviors could be predicted 

by responses to the Thematic Apperception Test (Ronan, 1996). In reasoning behaviors, 

individual differences impact rationality and reasoning as well (Stanovich and West, 

2000, Stanovich, 1999). These are just a handful of studies in a deep literature of 

individuality and the impact of these differences on every major cognitive process, as 

well as behavioural outcomes, such as academic or organizational performance. 

The question is not whether individual differences impact cognition, but how we 

can use individual differences to improve our understanding of visually enabled analysis. 

In addition, users in a particular domain can share personality characteristics and 

learning preferences, both inherent and institutional, which implies that some common 

traits can be aggregated into specific user profiles which can inform superior design 

requirements and aid in evaluation protocols. These differences will be discussed as part 

of the Personal Equation of Interaction in a following self-titled section. 

 

4.4.1. The Human Cognition Model 

In earlier work (Green, T.M., Ribarsky, W., Fisher, 2008. 2009, Green and 

Ribarsky, 2008) we outlined an operational framework, the Human Cognition Model 

(HCM), whose objective was to inform customization of human-computer cognitive 

collaboration in mixed-initiative interactive systems. Today’s information visualization 

applications tend to be passive; primary interface processes sit and wait for user 

initiation. This is not a problem if the user knows exactly where to go and what to do. But 
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for the large semantically-rich datasets which visualizations are increasingly called upon 

to capture, and the complex analytical reasoning the visualization must scaffold and 

support, a truly intuitive interface must be capable of initiating a variety of processes on 

its own. 

The HCM identifies many of these tasks and the varieties of cognition the tasks. 

The central process identified by the HCM is Knowledge Discovery. (See Figure 16.) 

This was envisioned as a human and computer paired process: the interface presents 

information and the human user indicates interest in a specific area or point, which the 

computer in turn presents in a related context. If Knowledge Discovery is goal oriented, 

the human will, among other processes, use temporally moderated perception, semantic 

categorization, and elimination reasoning heuristics to search and filter through the 

information space. If the discovery is not goal-oriented, the user may browse, stopping 

the explore data items that stand out or that are associated to items of interest.  

Other processes in the HCM include information search by pattern and example. 

Search is an interesting cognitive task, as it is deceptively simple. Some types of search 

are simply target identification, utilizing perceptual logic, manipulating the interface and 

information space through a procedural script, and using the simplest of elimination 

heuristics (a binary filter that asks a question: Is this the specific item I’m looking for?). 

Other types of search can be much more  
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Figure 15. The human cognition model (Green & Ribarsky, 2008). 

complex. When the task is to find items similar to an exemplar, for example, all the 

cognitive processes from the simpler search tasks serve to feed more complex 

processes, such as inferential and deductive reasoning, which utilize more complicated 

models or rules for comparison and contrast. Thus, even in the more routine of interface 

tasks, complex cognition cannot be ignored. 

The HCM also outlines the creation and analysis of hypotheses. As discussed in 

previous sections, hypotheses can be created in a variety of ways, from the loose 

associations in abduction to the use of more demanding heuristics. Sometimes 

hypothesis are brought to the task by the user, and drive the interaction from the start. 

Wherever hypotheses are generated, they serve an important function. They drive 
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discovery and search behaviors, they determine how information is viewed and filtered, 

and they promote some data-derived conclusions over others. For these reasons, 

interfaces which promote the generation of valid hypotheses, either through framing, 

adaptive search, or more intuitive interaction, might be considered more valuable than 

others. 

Other pertinent processes discussed in the HCM literature (e.g. Green and 

Ribarsky, 2008) include an interface being aware of and predicting user intent in order to 

keep pertinent information visible, supporting human working memory, caching data 

subsets of interest to introduce them in a sequence and timing that will support the flow 

of reasoning and ongoing discovery, and conducting analyses and providing their 

findings in a contextual framework, which supports a variety of hypotheses generation. 

In short, the HCM sketches out an interface that collaborates on cognitive processes per 

se, informed by a growing understanding of human preferences, abilities and limitations. 

4.4.2. The Personal Equation of Interaction (PEI) 

Humans are cognitive individuals. As we have seen, a human’s individuality 

influences cognitive performance. These differences, as discussed in Section 3, shape 

the way we approach and perform cognitive tasks. We have discussed personality and 

self-beliefs in this chapter for sake of brevity, but we are also aware that humans also 

exhibit differences in psychophysical characteristics, such as perceptual categorization, 

focused attention, and haptic preferences. These individual variations interact with each 

other and the task to which they are applied in manners not yet understood. 

Further, as we have seen, there is great variety and complexity to analytical 

tasks, and so it makes sense that not all cognitive tasks would be equally impacted by 

the same inherent differences. For example, in our research, we have found that 

persons who tend to believe in that good things that happen to them are due to “luck” 

(an external locus of control) are predictably slower in target identification(Green, Jeong, 

Fisher, 2010). But the same cannot be said for more cognitively complex problems, such 

as comparing and contrasting multi-dimensional glyphs; for these tasks, believing in luck 

seems to give users a decided advantage. (See the section on Research in Personal 
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Equation of Interaction.) It makes sense, then, that not all cognitive tasks would be 

equally impacted by the same inherent differences; some reasoning tasks may be better 

predicted by one collection of inherent traits over others. 

The Personal Equation of Interaction Defined 

Our goal of parameterizing a general model in order to predict performance of a 

particular individual builds upon foundational work in human perception conducted in the 

early 19th century by Friedrich Bessel (1979). Bessel recognized that the variability of 

reports of astronomical observations could be separated into the differences between 

the average ratings of made by each individual observer (in statistical terms, the 

between-subject variance around the global mean) and variation within observations 

made by a given observer (the within-subject variance around that individual’s mean for 

a given task and situation). 

While within-subject variability could not be easily factored, the deviation from the 

overall mean judgment for a given individual was relatively consistent over a range of 

similar situations. The error for a given individual could be measured to generate a 

“personal equation” for that individual. This could be used to factor out their 

characteristic error to bring their data into agreement, more or less, with the global 

mean. This meant that data from fewer observers were needed in order to achieve the 

same level of precision. In addition, one could predict any given observer’s raw 

measurement to a reasonable degree of accuracy given the global mean and their 

personal equation. 

Much of the research (Po, Fisher and Booth, 2003, Fisher, 2009, Green, Fisher, 

Jeong, 2010) in our laboratory has been devoted to defining a modern of the personal 

equation, the “personal equation of interaction”. The PEI uses quantifiable of human 

perceptual, motor, and cognitive limitations during tasks and perceptual stimuli that are 

generated by modern visual information systems. In Po et al. al., we demonstrated that 

system variables such as cursor visibility and display lag interact with individual 

differences to produce characteristic patterns of behavior for subpopulations of 

individuals (Po, Fisher and Booth, 2003). These effects are unlikely to be observed by 

perceptual testing that does not focus on the particular of active visual information 
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displays and how they differ from those we experience in the physical world that have 

informed both human evolution and visual experience of individuals. 

There are three goals in current efforts in the PEI: first, to predict how a given 

individual will perform on a given task and information display; second, to build a 

framework for interface design that to support customization of a visual information 

system along dimensions that are psychologically valid (i.e. that would track aspects of 

individual differences in such a way that their accurate fit to an individual’s capabilities 

would measurably improve their performance with the system); and lastly, to build 

increasingly accurate and comprehensive estimates of personal equations and methods 

for assessing them. This includes both persistent differences between individuals (e.g. 

color blindness) and short-term shifts in capabilities (e.g. their performance stress). The 

latter could potentially be generated “on the fly” by an attentive system and applied as 

conditions changed to maintain optimal performance over changes in the capabilities of 

the human operator. 

Our approach builds on existing psychometrics methods and materials. However 

the goal of this particular line of inquiry is to build towards a natural science of human-

information interaction. By focusing on the specific kinds of changes in perceptual and 

interactive experience that are generated by modern visual information systems, we can 

address how changes in the and statistical regularities of information displays interact 

with the human visual system in general, and that of an individual observer in particular. 

For example, many studies in perception (e.g. Marr, 1982) show how our ability to parse 

complex visual scenes given limited perceptual information (the so-called “poverty of the 

stimulus”) is supported by our internal expectations, which in turn are built through a 

lifetime of sampling the statistical regularities of our physical environment. 

Phenomena such as change blindness (Grimes, 1966), Rensink, O’Regan and 

Clark, 1997) demonstrate the adaptation of human vision to an environment where 

abrupt changes are rare. Our visual system is not optimized to detect changes, but pays 

a small price for this in the physical world. Active updating of visual displays increases 

the frequency of abrupt display events, and the probability increases that one will 

coincide with the observer’s saccadic eye movement and so escape detection. Thus we 
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find that the study of human performance with information systems cannot simply rely on 

applying perceptual and cognitive science research taken from the literature. 

It is necessary to actively seek answers to questions that arise from the use of 

information systems in cognitive task performance, and to do so using methods from the 

natural sciences. It is an open question to what extent aspects of the PEI are inherent 

and what aspects are acquired through experience with complex visualizations. Some 

factors such as low vision, color and stereo blindness etc. clearly fall into the former 

category. Estimation of these factors might require psychophysical testing of a given 

individual, but may also be estimated by covariates of the given conditions, whether or 

not we can establish a causal link between them. To the extent that these covariates are 

predictive, they can be used to support the design and customization of information 

systems now, as well as contributing to ongoing research about human. 

The first clustering factor for individual differences is through cognitive 

experience, e.g. in a given institution or profession. Members of a professional or skilled 

cohort tend to share jargon and conceptual understanding. Additionally, they are often 

practiced in methodologies and task heuristics that are specific to the group. These 

methodologies become a part of the way in the user searches for and uses information, 

and can impact the conclusions drawn. They can also introduce group-specific biases 

that might not be found in the general user population. For these reasons among others, 

understanding an institutional user profile is important to the design of an expert system 

interface. A second factor might be perceptual and perceptuomotor through interaction 

with some specific environment. 

 We define the Personal Equation of Interaction as a compilation of predictive 

measures based upon inherent individual differences, including but not limited to 

personality; each measure will be validated to predict performance for one type of 

cognitive task integral to analysis. The PEI has three current and future end goals: the 

prediction of analytical performance based on differences (Green, Jeong and Fisher, 

2010, Green, Fisher and Jeong, 2010, the ability to inform real-time interface 

individuation, and the creation of fuller-bodied user profiles, broken down by the 

reasoning tasks performed. The first goal – that of performance prediction – is being 
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undertaken through a series of human research studies. Participants are asked to 

complete a series tasks similar to common interface tasks, such as interface learnability, 

target identification, categorization, etc. The measured outcomes vary by task, and 

include completion times, errors, self-reported insights and free response. In addition to 

the performance and qualitative feedback, participants are asked to complete hundreds 

of items from a battery of psychometric measures we have chosen for their inter-

relatedness and their relationships to learning outcomes in the behavioral literature. 

Post-study analysis includes evaluating the trending of the psychometric items with 

measured outcomes. In addition, follow-up testing such as factor analysis is done to 

isolate highly predictive items or groups of items, such as in (Green, Jeong, Fisher, 

2010) for a particular type of reasoning task. 

This allows us to delineate our findings by cognitive process and compare 

multiple interfaces or problem-solving environments in hopefully a more even fashion. 

Currently, we can predict on simple outcomes like completion times in a variety or 

common interface tasks; these findings are being replicated and expanded. Not 

surprisingly, this research is currently quite fluid, and continues to inform the second 

goal of what matrices will be needed to support real-time interface adaptation. In 

addition, having hundreds of participants complete these studies has allowed us to 

sketch out initial user profiles, or describe inherent characteristics of a user based how 

the user performs on an analytical task (Green, Fisher and Jeong, 2010). 

The goal of the PEI is not, at least in the short term, to tell designers and 

developers specifically which visualization techniques to use and which to avoid 

generically, but rather to give interface creators a robust understanding of what the 

individual analyst needs in order to optimally the analytical tasks that must be performed. 

The Personal Equation of Interaction does not replace interface design; it augments 

design by making designers aware of user strengths and weaknesses. It cannot replace 

user studies for a particular interface, but it provides new metrics with which to evaluate 

study outcomes. And as a research program, it amplifies visual analytics as the study of 

analytical reasoning supported by interactive visual interfaces by adding to the body of 

understanding on analytical reasoning and analytical reasoners. 



95 

These are aggregated to build an ever more comprehensive and accurate 

personal equation of interaction that could be used by an application to parametrically 

modify its display of in such a way as to optimize the cognitive performance of an 

individual decision-maker. As research we hope to find a way to integrate system 

models with models of human interaction to better predict the course of fluent human-

information interaction.  

Research in the Personal Equation of Interaction 

Our research has demonstrated that inherent differences can and do influence 

learning and analytical performance during interface interaction. In combination with the 

environmental and institutional variations, there is evidence that the impact of inherent 

differences could be used to derive a personal equation of interaction. 

Our recent research has demonstrated that personality factors can predict 

efficiency during varying task types (Green, Jeong, and Fisher, 2010). We designed a 

series of tasks we asked participants to complete in two visual interfaces using the same 

dataset: menu driven web application, and an information visualization using direct 

interaction on hierarchical graphs. These tasks were designed to test two very different 

types of learning: procedural and inferential. Procedural learning, as defined for this 

study, was the ability to use the interface to find target information. This type of learning 

tends to be inductive: a rule is inferred which generalizes to other similar target 

identification tasks in the interface. Other the other hand, the inferential learning tasks 

were highly deductive. Participants were asked to evaluate a multi-dimensional exemplar 

and find another conceptual object in the hierarchy that was similar to (or different from) 

the exemplar for the specified dimensions. This type of reasoning involves the creation 

of a mental model, which is then used to evaluate complex concepts to reach a valid 

conclusion. For each task, we tracked errors, completions, as well as qualitative 

feedback. 

In addition, we administered several longstanding and well-documented 

psychometric measures to participants (Green, Jeong and Fisher, 2010). These 

measures were created to measure personality traits such as (a tendency toward 

emotional instability), extraversion (a tendency toward sociability or seeking the 
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company of others), and trait anxiety, which is a tendency to be more anxious generally, 

regardless of the environment. Trait anxiety differs from state anxiety, which is the 

tendency to be anxious when in a situation that triggers anxiety. 

Figure 16. Items in the 9-item short measure. Adapted from Green, Jeong and Fisher, 2010. 

Another personality trait that proved to have a demonstrable impact was locus of 

control, which is a measure of how in control a person feels he or she is over the events 

in life. Persons with an external locus tend to believe strongly that they are not in control, 

and attribute events to factors outside themselves, such as luck, other people, or 

circumstances outside of their control. On the other hand, persons with an internal locus 

tend to believe that they are responsible for both positive and negative events in their 

lives. They are more likely to attribute events to some behavior or attitude of their own 

than to outside influences, and tend to give very little credence to luck.  

Other measures designed to test other personality factors, such as a discomfort 

with problem-solving situations where important factors are unknown (an intolerance of 

ambiguity) or self-regulation, which is the ability to hold it together emotionally when the 
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problem or situation difficult, were also evaluated but were not found to be particularly 

predictive in performance of the tasks under study. 

 Results of Study 1. Results demonstrated (Green, Jeong and Fisher, 2010) 

that whole score locus of control predicted inferential task efficiency in the data 

visualization; participants with a more external locus were able to complete the 

deductive inferential tasks more quickly. 

For the inductive procedural tasks, no singular full measure could predict 

behavior, which was not unexpected, given that none of these psychometrics were 

designed to evaluate these traits in this interface environments. But factor analysis 

uncovered 9 items, largely from the trait measure, that predicted target identification 

efficiency across both interfaces (Figure 17). Participants who were more trait anxious 

found target items more quickly, even when the target was buried several layers down in 

the hierarchy. 

Results indicated that no single personality factor measure could predict errors in 

either interface. 

Results of Study 2. Results of a similar study using procedural tasks (Green, 

Fisher and Jeong, 2010), currently under submission) expanded these findings 

somewhat. This study used the same interfaces and similar procedural tasks. The 

scores and outcomes of participants in both studies were combined for greater statistical 

power (N = 105). Results demonstrated that both neuroticism and extraversion predicted 

efficiency; the more neurotic/extraverted participants found items more quickly.  

Additionally, analysis of the combined set found that locus of control predicted 

procedural performance, in directly the opposite way to that of the inferential tasks. 

Participants with an internal locus (a belief that they were in control of life events) found 

targets more quickly than those with an external locus. This evidence alone 

demonstrates that not only that personality factors affect interface interaction 

performance, but that different tasks are impacted differently by inherent individual 

differences. See Figure 18. 
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Figure 17. Summary of Findings from Study 2.  

Discussion of Results. The existence of significant trending between 

personality factors and interface interaction outcomes is interesting for a variety of 

reasons. First, it demonstrates that even complex cognition can, at least to some 

degree, be predicted. Secondly, it demonstrates that inherent individual differences, over 

which we as designers have no control, could inform design if we knew the psychometric 

makeup of our target user group. This holds potential for experts systems, which are 

designed for users whose differences are likely to trend in similar ways. Thirdly, these 

studies open a promising doorway; if these few personality factors can predict 

performance, what else about complex cognition might we be able to predict if we knew 

more about our users, as well as about the expert cohorts for whom we design visually 

enabled interfaces? 

4.5.  Conclusion 

The reasoning used during task analysis is complex. In this chapter, we have 

discussed this complexity by highlighting a handful of reasoning heuristics. We have 

underscored this complexity with a discussion of Pirolli and Card’s sensemaking loop. 

And we have explored how this complexity complicates the current state of design and 

evaluation thanks to the absence of applicable reasoning research and pertinent 

precedent in the behavioural literature (. 

We have also broadly discussed the impact of human individuality on every 
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primary cognitive process, and surveyed our current research in pursuit the generation 

of new system development models that optimize the cognitive performance of human 

decision-makers. Optimization in this context must include complex criteria such as 

insight, innovation, creativity and awareness in uncommon, unique and novel problems 

and situations. Research has shown that inherent individual differences between users 

impacts the task and learning performance in visually embedded interfaces. Our 

previous work in the development of the Human Cognition Model continues to inform our 

research direction. Our ongoing research in the Personal Equation has highlighted the 

need to study not only inherent differences in personality factors, but also other user 

differences, including those in which affect other inherent individualities as well as 

differences in institutional cohort and environment. These individual differences in 

human capabilities are great enough that any unitary system will be at best a 

compromise between the needs of the various sub-populations of users. Our ongoing 

research seeks to take advantage of human individuality, rather than to ignore it. While 

still in the early stages of this research, we have already highlighted several inherent 

differences which predict performance, depending on reasoning task. We intend to 

explore further, with the expectation of isolating and understanding influential individual 

differences and how they impact interface interaction, which could benefit visual 

analytics interface designers by informing design requirements and opening up new 

areas for innovation. 
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Chapter 5. Impact of personality factors on 
interface interaction and the development of user 
profiles: Next steps in the personal equation of 
interaction 

5.1. Overview 

This chapter was originally published as Green, T. M., & Fisher, B. (2012). 
Impact of personality factors on interface interaction and the development of user 
profiles: Next steps in the personal equation of interaction. Information 
Visualization, 11(3), 205-221.  This chapter builds on previous chapters by adding a 
learning profile to what is already known about the Personal Equation of Interaction. We 
used the participants from Chapter 3, and used the correlations between participants’ 
whole measure scores. In other words, we administered every item from previously 
normed psychometric assessments, and looked at the statistical relationships between 
the assessment scores to build an learning profile of highly efficient procedural learners. 
The profile described these learners as being more verbal than visual, moody, reflective, 
and uncomfortable with new environments or tasks. As this reported research built on 
previous work and the profile was built to be descriptive, not test a hypothesis, there is 

no H0 or Ha for this chapter. 

5.2. Abstract 

These current comparative studies explore the impact of individual differences 

personality factors on interface interaction and learning performance behaviors in both 

an interactive visualization and a menu-driven web table in two studies. Participants 

were administered three psychometric measures designed to assess Locus of Control, 

Big Five Extraversion, and Big Five Neuroticism. Participants were then asked to 

complete procedural learning tasks in each interface. Results demonstrated that all three 

measures predicted completion times. Additionally, analyses demonstrated that 

personality factors also predicted the number of insights participants reported while 

completing the tasks in each interface. Furthermore, we used the psychometric findings 

in conjunction with a follow-up psychometric survey with a further 50 participants to build 
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initial user profiles based on the cognitive task being undertaken. We discuss how these 

findings advance our ongoing research in the Personal Equation of Interaction.  

 

5.3. Introduction to comparative studies 

The primary purpose of visual analytics is commonly defined as the facilitation of 

analytical reasoning through the use of interactive visual interfaces (Wong and Thomas, 

2004). Facilitating analytical reasoning, however, requires a comprehensive and 

operational understanding of the cognitive processes that make up analytical reasoning. 

Complex cognition includes a plethora of smaller processes that work together, including 

perceptual cognition, categorization, problem-solving, decision-making, judgment, and 

reasoning. These processes feed and inform each other throughout each stage (target 

identification, mental modeling, rule inferencing, etc.) of an analytical task. Thus, simply 

supporting each process individually is not enough. Visual analytics must also support 

the temporal and cognitive flow of reasoning. And yet, an operational understanding of 

analytical cognition has, to date, proven elusive. For example, as is often the case with 

behavioral experimentation generally, studies of cognition tend to involve small, simple, 

normative or ““toy world”” tasks, whereas interaction in the real world tends to be more 

complex, harder to predict, and thus harder to measure. 

Additionally, these evaluations focus on what are often considered less complex 

cognitive processes. Especially in visualization studies, the cognitive variables measured 

are usually facets of vision, given attention, and tactile manipulation. While visual and 

motor effectiveness are important to interface interaction, they are only part of the story.  

Another point of interest is the generally accepted superiority of visualizations. 

Research to date has largely focused on the visualization and insight generation, but not 

necessarily on the tasks that support insight generation, or the degree to which user 

individuality impacts the frequency of insight. Insight, as defined for the purposes of this 

study, is knowledge gained from the use of the interface. This knowledge can be about 

the content, i.e. about genomes and their ontological relationships. Or it can be about 
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the interface, and how best to navigate it. We asked participants after each task to tell us 

if they learned anything novel or unexpected while completing the task. We chose to use 

words such as “novel” in the directions to encourage the participant to focus on 

knowledge they had gained uniquely from the performance of the task. 

This insight differs from spontaneous insight, or the so-called “a-ha!” moment, 

which is a seemingly spontaneous solution to what is considered to be an unsolvable 

problem. In this study, we evaluate the insight generation by comparing the number of 

reported insights in the two interfaces while completing two types of procedural task: 

script learning, which involves the use of sequential instructions and interface 

learnability; and target identification, which can involve hunting for information through 

several layers of hierarchical organization. In addition, we explore the impact that 

individual differences have on the number of insights generated in both interfaces across 

the task. 

Complex cognition is not necessarily sequential. That is to say, human thinking is 

not something that is easily turned on or off, nor is it appropriate to define the hard 

thinking that humans can do as simply a series of step-by-step processes. Reasoning, in 

particular, can be complicated. It uses a variety of heuristics, from quick elimination 

heuristics like Gigerenzer's Take-the-Best (Gigerenzer and Goldstein,1996) or satisficing 

(Simon, 1991) to much more complicated processes such as iterative reasoning, 

deductive analysis, or rule inferencing. Which heuristics are used and in what order 

depend on the task, the environment, and the user. These heuristics are often used 

combinatorially, feeding and informing the analysis until a solution or hypothesis has 

been satisfactorily reached (Stanovich, 1999). Unfortunately, at this time, analytical 

reasoning behaviors can be described in part and in whole, but cannot necessarily be 

predicted. There are no unifying theories of reasoning. And three types of user individual 

differences compound this difficulty of prediction: institutional, environmental, and 

intrapersonal. 

How humans work through reasoning tasks is impacted by institutional 

differences. Cognition is a social activity (Kaptelinin and Nardi, 2006), and domain-

specific knowledge, jargon, learned methodologies, and other cultural factors can 
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influence how analysis tasks are approached and what heuristics are used in solving 

them. In addition, these domain or expert cultures tend to have similar intrapersonal 

differences; members of an expert cohort may share personality leanings or learned 

proclivities (Boyatzis and Kolb, 1995, Heuer, 1999). Environmental differences – such as 

differences in the interface or tool used during visually enabled interaction – frame the 

task and can help or hinder the reasoning process. These differences are naturally of 

particular interest to visual analytics design, as effective interfaces can facilitate 

analytical reasoning. 

In this paper, we will highlight the impact of intrapersonal individual differences. 

Individual differences of whatever variety are obviously not the only factors which 

demonstrably impact user interactive performance. But, as we will show, individual 

differences – and intrapersonal differences in particular – can predict certain types of 

performance. Intrapersonal differences interact with environmental and institutional 

differences to influence human behavior. A complete Personal Equation of Interaction 

will take all three types of difference into consideration. But, for now, we will start with 

intrapersonal differences, which, in their relationship to interaction and analytical 

behaviors, are the least well understood. Further, these differences seem to influence 

performance differently, depending on the cognitive task being undertaken. 

Another reason to study intrapersonal differences is that they, unlike 

environmental and to some degree institutional differences, are variables over which 

interface designers have no control. Learning is not generic. Learning heuristics and 

processes vary depending on human individuality, the learning environment, and the 

learning tasks. In other work, we discussed the impact of locus of control (LOC) on 

inference learning in the form of category reasoning (Green, Jeong and Fisher, 2010). 

The tasks used in these current studies are procedural. Procedural learning, broadly 

defined, is the “knowing how” of any sequential task. It is sometimes called skill learning, 

as it is the learning most common to motor and iterative tasks that require repetition to 

master (Sun, Merrill and Peterson, 2001); it is also referred to as script learning, which 

captures the idea that there is a “recipe” or “roadmap” to be followed. Procedural 

learning is thought to be either top down (i.e. CLARION (Sun, Merrill and Peterson, 

2001)) or, more commonly, to be bottom up, first assimilating the necessary declarative 
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facts and then the use of that information into the deconstruction of the task procedure 

(Anderson, 1982). Procedural learning, due in part to repetition, can become 

“automatic,” requiring little conscious focus. For the purposes of these current studies, 

procedural learning is the ability to learn to manipulate an interface well enough to find 

and identify target information, or to answer straightforward questions about the target 

information.  

Tasks such as these are not as complex as real-world tasks in and of 

themselves. But search-and-find behaviors interface learning, and other procedural 

tasks are the backbone of interaction in any interface. These simple but powerful 

behaviors are used over and over at every level of the visually-enabled analytical 

process. 

The task protocols used in these studies are not meant to be indicative of real-

world tasks so much as they are intended to be an early test area from which to explore 

the degree to which personality factors impact human reasoning behaviors. Future 

research will build on these tasks in protocols that will attempt to more closely replicate 

real-world tasks.  

Procedural or script learning is integral to interface interaction at every level. 

Some research has been conducted with an eye toward procedural or target-finding 

tasks. But, as Plaisant has outlined (2004) many of these studies are tool evaluations of 

specific interfaces, and are designed to designate one interface as ““better”” than 

another, or done without an understanding of the learning which underlies task 

performance. 

Individual differences in reasoning ability have been found to impact procedural 

learning in non-interface task environments (Hall et al.,1988) These current studies 

evaluate intrapersonal differences in computer-mediated procedural tasks. 

In our research toward the Personal Equation of Interaction, our goal is to know 

and understand the impact of these variables, as well as to develop a battery of 

predictive measures to aid in the development of interfaces which cater to the 

individuality of the user or user domain. The creation of the Personal Equation of 
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Interaction at this current time is focused on intrapersonal individual differences. 

Intrapersonal differences are those of learning style, personality factors, self-beliefs, and 

other cognitive “pre-sets” which the user brings to the interface. We will demonstrate that 

these intrapersonal differences can and do demonstrably impact interaction outcomes. 

Further, we can show that, if the intrapersonal differences are known, interaction 

performance can be predicted, and so could, if part of a robust user profile, be used to 

develop design requirements for expert systems design as well as real-time interface 

individuation. 

Intrapersonal individual differences in problem-solving approaches can affect 

task orientation and motivation when a user is engaged in goal-oriented behaviors. In 

particular, personality factors similar to the ones evaluated in the studies reported here 

have been shown to impact cognition and cognitive performance in other learning 

environments. For example, personality factors predicted preferences in visual 

perception of landscapes (Macia, 1979). 
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Figure 18: The NCBI Viewer 
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Figure 19: The main view of GVis. 

 

There are not many examples, but procedural learning similar to the tasks in this 

study have also been found to be impacted by personality factors. For example, in an 

human–computer interaction study, Palmer found that interactive behaviors in an 

information search could be categorized by personality factors (1991). In reasoning 

research, individual differences have been found to impact rationality and metareasoning 

(Stanovich, 1999). These are just a few examples in a broad literature of how personality 

factors and other individual differences demonstrably affect complex cognition. The 

findings we currently report are part of this body of work. 

The current studies were designed to explore two broad research questions. The 

first question was whether and to what degree LOC, Big Five Neuroticism, and Big Five 

Extraversion would have a significant relationship with the outcome variables in task 
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performance. It was hypothesized that some whole measures would trend with the 

outcomes. 

Based on previous work (Green, Jeong, and Fisher, 2010) we expected that the 

LOC whole score would be one predictor, and that more extraverted and neurotic 

participants would be quicker in task completion. And based on behavioral literature, 16 

we hypothesize that participants with an external locus would be quicker in identifying 

target information. 

The second question was whether and to what degree LOC, Big Five 

Neuroticism, and Big Five Extraversion would have a significant relationship with the 

number of insights reported; it was hypothesized that, given the interrelationship 

between these constructs, it would be found to predict insight generation in both 

interfaces. Based on previous LOC literature (e.g. Weiss and Sherman, 1973), we 

predicted that participants with an internal locus might be more apt to self-report more 

insights. 

5.4. Comparative studies  

Two studies were conducted. Each study employed a within-participants design, 

and compared procedural learning behaviors in an information visualization and a web 

table. Study 1 tested procedural learning performance with a series of five questions in 

each interface. 

Study 2 tested procedural learning performance, with a total of six questions in 

each interface (three training and three task). The procedural task completion times in 

both studies were combined for the purpose of analysis. The design and findings of 

Study 2 have also been reported and discussed (Green, Jeong and Fisher, 2010) 

5.4.1. Interfaces  

Both studies asked participants to interact with two interfaces built to display 

genomic information. These interfaces were chosen as artifacts because both interfaces 
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were fed by the same underlying dataset (GenBank), both interfaces supported the 

types of tasks we wanted to study, and the presentation and organization of data and 

interaction methodology was demonstrable different. One interface is the web-based 

National Center for Biotechnology Information (NCBI) MapViewer for genomic 

information, which is publically available and can currently be found at 

http://www.ncbi.nlm.nih.gov/mapview. MapViewer is a multiple-row-based hierarchical 

representation, and uses standard graphical user interface (GUI) manipulation, such as 

menus and hyperlinks. (See Figure 19). 

The other interface is an interactive data visualization (GVis) of genomic 

relationships ( which is not available publically (see Figure 20). The primary purpose of 

GVis is to represent relevant relationships (Hong, Jeong and Shaw , 2005) such as 

mapped genomes or the phylogenic organization) between two organisms. Users 

manipulate the interface through direct interaction, “drilling down” through each hierarchy 

of subcategory directly by pressing and holding down a mouseclick near the information 

of interest. 

5.4.2. Psychometric measures 

The psychometric measures we have chosen have been shown to capture the 

impact of these intrapersonal constructs on human cognitive performance and 

motivation, as discussed in the behavioral literature (as discussed briefly in the 

“Introduction to comparative studies” and “Comparative studies” sections). Our purpose 

was to explore what impact they might have on analytical performance enabled by a 

visual interface. Three psychometric measures were administered that were common to 

both studies: the LOC Inventory, as well as the Big Five neuroticism and Big Five 

Extraversion subscales of the International Personality Item Pool (IPIP) Mini Big Five 

Personality Inventory. 

The Internal–External LOC Inventory19 is a 39- item forced-choice measure 

designed to evaluate the degree to which participants attribute life events to some action 
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of their own, or to some uncontrollable action outside of themselves. Lower LOC scores 

are associated with an ““internal locus”” of control, an intrapersonal belief that events 

and outcomes are under a person’s control, and thus, success or failure depends largely 

on personal behavior and attitudes. Higher scores indicate an ““external locus,”” an 

intrapersonal belief that events and outcomes are influenced by external factors, such as 

unforeseen circumstances, a higher power, or ““good luck.”” Rotter postulated that 

these loci were traits remaining stable over a person’s lifetime.19 Research 

demonstrates that LOC has an impact on a wide variety of human outcomes, including 

academic and workplace performance (Hong, Jeong and Shaw, 1973, Cacioppo, Petty 

and Feinstein, 1996). 

The Big Five Neuroticism and Big Five Extraversion subscales of the IPIP 20-

item Mini Big Five Personality Inventory (Donnellan, Oswald and Baird, 2006) ask 

participants the degree to which each listed characteristic applies to them. The Big Five 

factors have a long history in psychology and decades of literature on their scope and 

impact. Briefly, Big Five Extraversion defines the degree to which a person is open 

minded, action oriented and seeks the society of others. Big Five Neuroticism is 

distinguished by negativity and a propensity to be moody. In previous work, as well in 

other literature (Judge, Erez and Bono 2002) these traits have a demonstrated 

relationship to each other, and, in the case of Big Five Neuroticism, to LOC. 

As previously stated, we hypothesized that participants with an external locus 

would be quicker in identifying target information, that persons with a higher internal 

locus would self-report more insights, and that Big Five Extraversion and Big Five 

Neuroticism would also be associated with superior performance. 

5.4.3. Participants  

In total, 106 participants agreed to complete the study: 56 in the first study, 50 in 

the second study. Ninety-four participants reported being right handed; 11 were left 

handed. Most (101) were undergraduates and received course credit for participation. 

Students reported having 22 different majors or academic concentrations, including 

business, nursing, computer science, and psychology. 
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The vast majority of all participants (101, 96%) had taken fewer than four biology 

or biology-related classes. Novices were recruited specifically to better evaluate 

procedural learning with novel information; experts would have had a more advanced 

understanding of the knowledge ontology, which would have weakened the comparison 

between interface metaphors. Experts would have needed to learn the interfaces like 

any other user, but their institutionalized methods of exploration – the way they were 

taught to organize the domain-specific information – would have made this a study more 

about interface suitability than about procedural learning and target identification. 

All participants were asked to rate their ability and comfort level with a computer 

and mouse on a five-item Likert-type scale. They were also asked to identify whether 

they had previous experience with the computer interfaces being investigated. Ninety-

seven reported being comfortable or very comfortable with a computer; 79 reported 

having ““very good”” or ““expert”” computer ability. No one reported a computer comfort 

or ability level less than a three or ““OK.”” Almost all (104) participants had used a web-

based application before. Thirty-five participants reported having used a data 

visualization previously. None of the participants reported having a medical condition 

that might interfere with their use of a computer or mouse. Two participants reported 

being color blind. 

5.4.4. Study Protocols 

After signing the consent form, participants were asked to fill out an online self-

report questionnaire that included the three psychometric measures and basic 

demographic information, with particular emphasis on self-perceived ability, experience 

and comfort with computers and computer interfaces. Participants in the first study were 

allowed to complete the questionnaire online before their session in the lab. All data 

were collected for post-hoc analysis with task performance data. 

In both studies, after completion of the self-report measures, participants began 

the procedural learning tasks in one of the two interfaces. The order of interface was 

counterbalanced for order effects; half of the participant used GVis first, and half used 

MapViewer first. 
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In the first study, the tasks started with a brief demonstration of interface and 

interaction techniques, such as the use of hyperlinks or how to zoom into the 

visualization. After the demonstration, a short tutorial was administered to introduce 

participants to essential tools and concepts in the interface, and to allow participants to 

experiment with what was being learned. In some cases, step-by-step instructions were 

given when the user requested them. A researcher was on hand throughout the study to 

answer any questions. 

Following the tutorial was a series of three tasks designed to test procedural 

performance in finding target information: the participant was asked to identify a target 

located somewhere within the presented informational hierarchy as quickly as possible. 

The question provided what base categorization or subclass the information was located 

within, but did not provide step-by-step instructions. As soon as the target was located 

on screen, the participant pushed a “Found It” button on the screen. The time in seconds 

taken from the presentation of the question on screen to the moment the button was 

pushed was recorded as completion time. 

In the second study, participants were asked to demonstrate script learning or 

tool skill by answering five hunt-and-find questions. All tasks were open response. Each 

question included step-by-step “cues” to assist in finding the answer to each question. A 

cue was the next step or concept on the current page or in the current view to look for. 

Participants were given little or no help from the researchers while working through the 

questions, but were allowed or encouraged to experiment with different interactions 
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Figure 20. GVIS Correlations across Procedural Tasks completion times and personality traits. 
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Figure 21. Correlation across tasks in MapViewer between completion times and personality 
traits. 
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Figure 22. Scatter Plot overlay of Correlation of Generated Insights and Locus of Control 
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Figure 23. Scatterplot overlay of generated insights and Big Five Extraversion. 
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Figure 24. Scatterplot overlay of correlation between generated insights and Big Five 
Neuroticism. 

within the interface in order to find the answer. If the answer given was incorrect, the 

error was recorded and the researcher asked the participant to try again until the correct 

answer was given. These errors were the only type of error recorded; this study was not  

designed to evaluate interaction logs or perceived “errors” or deviations from researcher-

defined normative interaction paths. The total time in seconds from the initial reading of 

the question to the indication of the correct answer was recorded as the completion time.  

Participants were not asked to move as quickly as possible in the second study, 

largely because while the first study was designed to more closely approximate a speed 

test, the second was somewhat more complicated and it was felt that an emphasis on 

speed would falsely increase the rate of reported errors. As the results for both studies in 

completion time were similar, we felt both study protocols provided an interesting 

dichotomy for comparison. 
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After participants had answered the questions in both interfaces, they were 

asked to specify which interface they liked better, and to give each interface a letter 

grade (“A” (superior) through “F” (failing)). Task sessions in the laboratory for both 

studies lasted approximately one hour. A short debriefing ended the study session, and 

there were no follow-up sessions. 

5.5. Results 

In Study 1, the mean completion times for the procedural learning tasks in the 

MapViewer (M = 635.81, SD = 288.49) were slightly faster than the completion times in 

the GVis (M = 684.77, SD = 235.46). In Study 2, the MapViewer procedural completion 

times were also faster (M = 133.54, SD = 84.00) than those in the GVis (M = 161.64, SD 

= 111.40). 

Overall, participants preferred interacting with the visualization to interacting with 

the web table. This preference was indicated by post-study feedback. For example, 

when asked to give each interface a letter grade, from A (superior) to F (failing), 75 

(73%) gave the GVis an A or B; 57 (56%) gave an A or B to the MapViewer. Additionally, 

when asked, 64 (61%) reported that they preferred the visualization; 39 (37%) preferred 

the web table. 

5.5.1. Completion times and personality factors 

The completion times in seconds for each condition for the procedural learning 

tasks in each study were merged into a single dataset, with n = 106, by running one set 

of analyses on both sets together. Participants completed tasks more quickly in 

MapViewer (M = 383.15, SD = 32.38) than in GVis (M = 426.86, SD = 32.15). A paired t-

test between total completion times in GVis and completion times in MapViewer was 

significant (t(100) = 2.11, p = 0.037, suggesting that the differences in completion times 

was due to more than random chance. 

A one-way analysis of variance (ANOVA) was used to test for the impact of LOC 

across interface completion times. The ANOVA for GVis was significant (F(14,88) = 
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1.89, p = 0.039) but the comparison for MapViewer was not (p = 0.099). In addition, LOC 

predicted completion times in both interfaces; a Pearson’s correlation between LOC and 

completion times was significant (GVis: r(105) = 0.234, p = 0.02, MapViewer: r(105) = 

0.254, p = 0.01) (see Figure 21). 

These findings suggest that participants with a more internal locus (those who 

believe they have control over personal life events) take less time to find target (Figure 

21). Correlations of GVis Total Completion Times (in seconds) across procedural tasks 

and the Locus of Control, Big Five Extraversion, and Big Five Neuroticism scores.  This 

correlational finding is the opposite of findings reported in an earlier study (Green, 

Jeong, and Fisher, 2010). This previous study used inferential tasks, and found that 

participants with a more external locus (those who did not believe that they were in 

control) tended to solve a series of inferential tasks more quickly than those with a more 

internal locus. These tasks were more cognitively complex than the current studies, and 

asked the participants to compare and contrast multidimensional objects and make 

decisions about similarities and differences. We will discuss this further in the 

“Personality factors and predictors” section. 

We used ANOVAs to test for the impact of Big Five Neuroticism in both 

interfaces were significant: GVis: (F(16,86) = 3.42, p < 0.001), MapViewer: (F(16,85) = 

5.14, p < 0.001). Big Five Neuroticism also was negatively correlated with completion 

times in both interfaces. GVis: (r(103) = 20.47, p < 0.001, MapViewer: r(102) = 20.54, p 

< 0.001) (see Figure 22). ANOVAs to test for the impact of Big Five Neuroticism in both 

interfaces were significant: GVis: (F(16,86) = 3.42, p < 0.001), MapViewer: (F(16,85) = 

5.14, p < 0.001). Big Five Neuroticism also was negatively correlated with completion 

times in both interfaces (Figure 22): GVis: (r(103) = 20.47, p \ 0.001) MapViewer: (r(102) 

= 20.54, p < 0.001). 

Differences in interface completion times and Big Five Extraversion were 

significant across both interfaces : GVis: (F(14,88) = 5.37, p < 0.001); MapViewer: 

(F(14,87) = 4.12, p < 0.001).  
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In summary, these faster participants tended to be more emotional (high Big Five 

Neuroticism) and more sociable (high Big Five Extraversion). A summary of these 

findings can be found in Figure 26.  

5.5.2. Task errors and personality factors  

The two studies measured tasks errors differently, and so must be analyzed 

separately. In Study 1, procedural tasks asked participants only to indicate when they 

had located the target information, so no errors were made or recorded. In Study 2, error 

was defined as giving the wrong answer to a question. Upon making an error, 

participants were asked to continue to try until they correctly solved the task. Each 

incorrect solution was recorded as an error.  

Kolmogorov–Smirnov Z was significant in both interfaces (GVis: p < 0.001, 

MapViewer: p < 0.001). Levene’s test of homogeneity was significant in for GVis (p = 

0.004), but not MapViewer (p = 0.30), suggesting that sample distributions were not 

uniformly normal. Owing to these two findings, we opted to conduct non-parametric tests 

for the purposes of the following analyses. 

Participants made more errors in GVis (M = 1.21, SD = 1.07) than in MapViewer 

(M = 0.69, SD = 1.07). Friedman’s chi-squared was significant (x2 (1) = 5.45, p = 0.02) 

Kendall’s tau was conducted between errors in each interface and psychometric scores; 

no significant associations were found. 

Generally speaking, only the difference in interface had a significant impact on 

how many errors were made; participants were more effective in the MapViewer 

interface. A summary can be found in Figure 26. 

Insight generation and personality factors Participants reported having more 

““unexpected”” insights in the GVis (n = 73) than in the web-based MapViewer (n = 70). 

The distribution of the combined – knowledge and interface – self-reported insights 

reported across both interfaces was not normal according to the Kolmogorov–Smirnov 

test (GVis: p < 0.001, MapViewer: p < 0.001). Levene’s test of homogeneity was 

significant for GVis (p < 0.001), but not MapViewer (p = 0.373). As the distribution was 
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not normal, a Friedman’s chi-squared was run between the mean number of insights 

generated in both interfaces, and was not significant: Friedman’s x2 (1) = 1.59, p = 

0.208. Kendall’s coefficient of concordance was found to be 0.015. This suggests that 

interface type did not have a significant impact on the number of insights generated. 

In an investigation of the impact of LOC on insight generation, a Friedman’s chi-

squared was run between LOC scores and the mean number of insights generated in 

both interfaces and was significant. GVis: Friedman’s x2 (2) = 174.36, p < 0.001, 

Kendall’s coefficient of concordance = 0.83; MapViewer: Friedman’s x2 (1) = 101.04, p < 

0.001, Kendall’s coefficient of concordance = 0.96. 

Because both studies had a within-participants design, a Kendall’s tau-b was 

conducted. LOC was not associated with the number of generated insights in both 

interfaces (GVis: p = 0.59; MapViewer: p = 0.46). 

We also explored the impact of Big Five personality traits Big Five Extraversion 

and Big Five Neuroticism on insight generation in both interfaces. A Friedman’s chi-

squared between mean Big Five Extraversion scores across interfaces was significant 

(GVis: Friedman’s x2 (1) = 105.0, p < 0.001, Kendall’s coefficient of concordance = 1.0; 

MapViewer: Friedman’s x2 (1) = 105.0, p < 0.001, Kendall’s coefficient of concordance = 

1.0). Big Five Extraversion was associated with insight generation (GVis: t = 20.15, p 

=0.051; MapViewer: t = 20.18, p = 0.027), and predicted the number of insights in both 

interfaces (GVis: R(103) = 20.554, p < 0.001; MapViewer: R(101) = 20.543, p < 0.001). 

These findings suggest the more insights were reported by participants who were less 

extraverted (Figure 24).  

A Friedman’s chi-squared between mean Big Five Neuroticism scores across 

interfaces was significant: (GVis: Friedman’s x2 (1) = 105.0, p \ 0.001, Kendall’s 

coefficient of concordance = 1.0; MapViewer: Friedman’s x2 (1) = 105.0, p \ 0.001, 

Kendall’s coefficient of concordance = 1.0). Big Five Neuroticism predicted the number 

of generated insights in both interfaces (GVis: R(103) = 20.415, p \ 0.001; MapViewer: 

R(101) = 20.509, p \ 0.001). These findings suggest that more neurotic participants did 

not report as many insights as those who had lower Big Five Neuroticism scores (Figure 

25). A summary of these findings can be found in Figure 26. 
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5.6. Introduction to an early profile of efficient users  

The Personal Equation of Interaction has several end goals. The first is to be 

able to predict how well, if certain cognitive factors about the user/user group are known, 

those users will perform in a given environment. 

Our report in “Comparative studies” and “Results” sections has been framed in 

such a way as to apply to this objective. Another end-goal, as previously discussed, is to 

adapt interfaces to allow the user to change certain aspects of the interface to best suit 

their known cognitive, perceptual or learning styles. This real-time individuation will 

become easier as we learn more about user individual differences across tasks and 

interface metaphors. 

A third end-goal is to develop methodologies for the creation of robust user 

profiles: profiles which consider individual differences in the user group within the 

construct of a knowledge or expert domain. This goal in and of itself has several possible 

offshoots. One is an in-depth understanding of the knowledge domain with its 

instructional differences. This has been done elsewhere. 7 Another is to be able to 

describe what types of tasks users will perform best based not only on an understanding 

of their intrapersonal differences, such as personality factors described here, but on a 

knowledge of what types of learning or reasoning the user will employ in order to reach 

analytical goals. This is a paradigm shift from the traditional first-wave human–computer 

interaction perspective of seeing the human as an information-processing machine with 

a standard taxonomy of interactions. It requires looking at what users do with an 

interface, and specifically what types of cognitive task will be utilized to reach those 

goals. 
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Figure 25. A summary of chapter findings. 

In this section, we will sketch out early user profiles based on the work reported 

here as well as newly completed research. These profiles will not be based on the user’s 

membership in an expert cohort or the user’s use of a specific interface, but rather on 

what type of cognitive task the user was employing during interaction and completion of 

assigned task.  

 

 

Figure 26. A summary of the correlations between all aspects of the Personal Equation. 

 



127 

We can use individual differences to improve our understanding of visually 

enabled analysis across knowledge domains. Research has demonstrated that users in 

a particular domain can share personality characteristics and learning preferences, both 

intrapersonal and institutional (Heuer, 1999). This implies that traits common to the user 

group can be aggregated into specific user profiles, informing superior design 

requirements and aiding in evaluation protocols. A personal equation of interaction could 

both (a) provide guidelines for individuated interface designs which could broadly 

accommodate differences in learning style, reasoning heuristic preferences, and 

perceptual behaviors and (b) develop profiles of expert or non-expert user groups, 

delineated by either knowledge domain or cognitive tasks that would inform the interface 

design for specific user or task domains. 

In other words, the Personal Equation’s goal is to predict interface performance 

by measuring personality factors and other user cognitive proclivities. Based on that, and 

because we know that experts of a certain kind tend to be similar in certain ways, if we 

can describe a superior analyst – his or her personality, learning styles, and world-view – 

we can use that information to predict the expert cohort’s strengths and weaknesses, 

and, when developed to a predictive degree, use that information to inform interface 

design. 

As previously discussed, we hope to describe groups of users based on their 

membership in an expert group. There are two ways to do this: describe the users and 

observe which tasks the users perform in a superior manner, or observe the 

performance and evaluate user personality factors after the task. In this paper we report 

early user profiles based on both methods. We use the findings of empirical studies to 

delineate users into groups of superior performers/inferior performers. 

We then use the personality traits matrices of these performers to start a profile. 

However, only a few personality factors are reported in these current empirical studies, 

and we would like to explore a more robust profile, even at these early stages. 

Because profiling is a form of descriptive modeling and requires large number of 

participants, we use additional participants who completed only a battery of personality 

measures in conjunction with the empirical study results. Using the user performance 
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groups delineated by the empirical study, we will evaluate correlations between persons 

who share personality characteristics and explore other learning proclivities which might 

be associated.  

These profiles are not meant to be predictive models; they are intended as a 

chalk outline of what characteristics a superior performer in a given task might have. 

Describing an analyst and predicting behavior based on that description is a primary 

goal of the Personal Equation, and these profiles are a quick peek at what that 

description might look like. 

5.7. Personality factors as predictors  

The field of personality psychology has a long history in defining and assessing 

personality. Most of the research done to define personality theories can roughly fall into 

one of two categories: structure-oriented theories and process-oriented theories. 

Structure-oriented theories of personality are those that focus on how personality 

is structured and on traits which are stable, life-long, and can be reliably discriminated 

from others through psychometric testing. 23 Process-oriented theories, on the other 

hand, tend to focus on how a person organizes his or her thoughts and actions, such as 

how well a person copes with negative life events or whether or not a person is 

antisocial. 23 In this paper, we primarily discuss structure-oriented theories. 

Further, structure-oriented personality theories can be grouped in multiple ways. 

Single-trait theories, such as LOC, trait anxiety, self-regulation, need for cognition, and 

tolerance of ambiguity, which we will describe in greater detail in the following sections, 

tend to be invariant between persons, play a demonstrative role in individual behavior, 

and can be reliably measured on a continuum, where some people have the trait to a 

higher or larger degree than others.23 On the other hand, multi-trait theories, such as 

the Big Five21 personality inventory, which we also use, tend to describe the individual 

at a higher level, and are driven by the assumption that there are a limited number of 

broad personality traits which more holistically describe human behavior. This is one 

reason we include scores from all five of the Big Five personality index in our descriptive 



 

129 

expert profile; even though every subscale may not seem to be an obvious predictor of 

behavior, these traits are broad, and do interact. 

Lastly, learning styles, such as the Index of Learning Styles (Felder and 

Soloman, 2001) measures the manner in which an individual acquires knowledge and 

approaches changes in information. Single-trait theories have a deep literature on their 

impact on cognitive and learning performance. For the purposes of this short review, we 

will emphasize examples in technology-related research. For example, Kagan and 

Douthat demonstrated that extraversion and neuroticism predicted FORTRAN exam 

scores (Kagan and Douthat, 1985) As we discussed previously, individual differences 

have been found to have a bearing in traditional learning environments (Pintrich, Roeser 

and Wand De ReGroot, 1994) And in an earlier study (Green, Jeong, and Fisher, 2010), 

we found that certain aspects of trait anxiety had an impact on task efficiency in both 

inferential and procedural tasks. 

Also, Rotter’s Locus of Control(1966) predicted inferential task efficiency in our 

previous work; we will review this finding in the “Introduction to an early profile of efficient 

users” section. For user group profiles, personality characteristics of user domains have 

been done in a limited fashion7; this research would further these aims. 

In addition, one or all of the Big Five personality traits have been shown to 

influence behavior. Each of the traits was found to predict academic performance in 

college-level students in Australia (Poropat, 2009). The Big Five trait conscientiousness 

was found to predict the programming performance of students in a pair programming 

class (Salleh et al., 2010) Further, our previous work has demonstrated that extraversion 

and neuroticism are both predictors of procedural tasks.  

Research in learning styles is somewhat more scattered, but there is evidence 

that the way in which a human organizes information can impact outcomes. For 

example, studies done with 170 college students in introductory Java programming 

courses found that students who were more reflective, intuitive, verbal, and global 

thinkers tended to have higher performance scores on coursework, but especially on 

exams.29 This was a primary motivator in the early expert profiles we discuss in the 

“Personality factors as predictors” section. We use these intercorrelations to describe 
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user groups based on how they organize information and the type of task they are 

undertaking. 

Lastly, these personality constructs can and do trend together, either as multiple 

contributors to a single outcome or as corresponding factors. This can demonstrate 

some overlap in the tested constructs, but it may also demonstrate a synergy of traits 

that work together to impact performance. For example, Judge et al. found that LOC and 

neuroticism were intercorrelated and tended to trend together in their study of trait 

assessment (2002). Early user profile For the purposes of this early profile, we will use 

psychometric measures previously reported (LOC, Big Five Extraversion, and Big Five 

Neuroticism) in addition to several new measures described below. One hundred 

participants took part; 50 of whom were those from Study 2. In addition, 50 participants 

also completed the psychometrics but did not the study tasks, and were used to explore 

correlations between psychometric whole scores. Participants from Study 1 were not 

used for this profile. 

These profiles are not predictive models. This work is in its early stages, and 

what is presented here is a first stab at a description of an analyst profile and what it 

might look like. What follows will be used to inform future work. 

Our exploration of what personality factors impact cognitive task outcomes and 

interface interaction is ongoing. As part of that continuing exploration, we asked 50 

undergraduate students in interdisciplinary studies classes to complete a new battery of 

psychometric measure online. These participants in Study 3 did not perform interface 

tasks and were included in this analysis and in these profiles only to support and extend 

the descriptions of efficient users, as previously discussed in the Introduction. In other 

words, the performance of participant data in Study 2 was used to define what an 

“efficient” learner is. We isolated participants whose completion times were the fastest in 

both tasks and both interfaces, or in the bottom 25 percentile of all participant completion 

times (GVis: 4.88 seconds, MapViewer: 4.76 seconds) as efficient learners. Six 

participants were more efficient for all procedural tasks in both interfaces. We evaluated 

the psychometric scores of these participants, specifically how these more efficient 

learners trended on each of the original three measures: Big Five Extraversion and 
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Neuroticism, as well as LOC. From there, we extrapolated these early informal profiles 

based on how the participants in Study 3 performed on the original three measures. We 

used bivariate correlations to search for trending and associations between all 

psychometric measures. 

The findings from the analyses of these measures will be used in this paper to 

sketch a fuller-bodied profile of more efficient users segregated only by the types of 

learning/reasoning they are employing during interface interaction, not by expert domain 

or interface type. This profile is a work in progress, and will very certainly adapt to new 

findings in ongoing research as they accrue. 

Several psychometric measures were added to those original three measures 

already reported. These additional measures were as follows: the other three Big Five 

personality factors of Agreeableness, Intellect/ Imagination, and Conscientiousness 

(Donnellan et al., 2006), the Need for Cognition scale (Cacioppo et al., 2006) and the 

Index of Learning Styles, which has four subscales: (Active/Reflective, Sensing/Intuitive, 

Sequential/Global, and Visual/Verbal) (Felder and Soloman, 2006).  

For the other Big Five personality inventory, we used a condensed version of a 

20-item Mini-IPIP, and used only the psychometric items of Big Five Extraversion and 

Big Five Neuroticism which were common to both studies. The other three factors in the 

Big Five have been included in this profile here as all five are submeasures of the one 

holistic Big Five personality model or inventory. 

The Big Five personality factor of Agreeableness (Donnellan et al., 2006) is 

generally defined as a person’s tendency to get along or go along with others. Agreeable 

persons are considered considerate of others and desirous of working cooperatively 

(Schwarzer, Diehl and Schmitz, 1999) 

The Big Five personality factor of Intellect/Imagination is also called Openness 

(Donnellan et al., 2006). Persons with high Intellect/Imagination scores tend to be 

intellectually curious, and appreciative of novel ideas and experiences. 
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The Big Five Factor of Conscientiousness21 is used to describe the degree to 

which a person is organized, self-motivated to achieve, and effective at defining goals 

and creating plans to carry out those goals, as compared with persons who are more 

spontaneous and perhaps more unstructured. 

Cacioppo and Petty’s Need for Cognition scale (1996) evaluates the degree to 

which a person seeks out cognitively challenging experiences. Persons with a high need 

for cognition enjoy challenging problems or puzzles, and find fulfillment in tackling 

difficult problems. We used the short form of the measure, which has 18 items. 

The Beck Anxiety Inventory (BAI) (Beck et al.,1988) is a 21-item Likert-type scale 

which asks the participant to evaluate how often common anxiety symptoms were 

experienced over the previous month, from 0 (not at all) to 3 (severely – bothered me a 

lot). The BAI was designed to diagnosis ““trait”” anxiety, a tendency to be prone to 

anxiety generally, even when stressors are not present. Persons with high trait anxiety 

have been shown to be alert and more responsive in other laboratory performance 

environments, and trait anxiety has been shown to be an intercorellary of LOC (Archer, 

1979). The Self-Regulation Scale (SRS) (Schwarzer, Diehl and Schmitz, 1999) is a 10-

item Likert-type measure which evaluates “post-intentional” regulation of focused 

attention and emotional maintenance throughout the completion of a goal oriented task, 

or, in other words, the ability to maintain sustained focus despite distractions, 

uncertainty, and/or emotional events. 

The Scale of Tolerance–Intolerance of Ambiguity (TOA) is a 16-item Likert 

measure designed to appraise the degree to which the participant self-evaluates novel, 

complicated, or apparently unsolvable situations as threatening (Budner, 1962). In other 

words, it measures how comfortable the user is with uncertainty. Tolerance of ambiguity, 

as measured by the TOA, is not, like the SRS, a measure of coping ability per se, but an 

appraisal of self-beliefs, similar to the LOC. 

Both self-regulation and tolerance of ambiguity as constructs are, at least 

superficially, related to the previously mentioned traits; we chose these measures to 

explore other persistent personality characteristics that might have an impact on 

procedural or inference learning. 
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The Index of Learning Styles (ILS)24 evaluates four dimensions or continuums of 

cognitive or learning styles; learning styles are often defined as trait-like proclivities to 

perceive and process information in distinctive ways. These measures were added to 

our battery after observing that many participants offered evocative feedback over which 

interface was better organized, suggesting that their observations were due to more than 

just opinion or preference for familiarity, but might be due to the way the participant 

themselves preferred to organize information, and this influences their choices. 

The first of the ILS subscales, Sensing/Intuitive, defines the two ends of ILS”s 

first continuum; scores closer to Sensing indicate a practical learning style oriented to 

facts and empirical knowledge, whereas Intuitive scores indicate a more theoretical style 

with an emphasis on underlying ideas.  

The ILS Visual/Verbal continuum puts participants who prefer information 

presented as pictures and graphs (Visual) at one end and participants who prefer words, 

including written or oral explanations, at the other (Verbal). The ILS Active/Reflective 

scale defines learners who prefer to think and learn by doing, perhaps through 

collaboration with others, as compared with learners who prefer to learn or think by 

reflecting on the problem, usually alone or with a few others. 

Finally, the ILS Sequential/Global dimension reflects two ends of another 

spectrum, with learners who prefer to see a problem one step at a time, tackling 

problems in a bottom-up fashion at one end and learners who are top-down, big-picture 

holistic learners at the other. 

These additional psychometrics were found to be closely related to many of the 

previously discussed personality factors, as we will now discuss. Relationships between 

factors For the evaluation of personality factors evaluated both in the study reported 

here and in the current work, we aggregated the datasets (n = 100). Generally speaking, 

we found that there were relationships and/or associations between the 

constructs of LOC, trait anxiety, the tolerance of ambiguity, extraversion and 

neuroticism. 
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For the relationships between the personality factors specific to the ongoing 

work, we constrained our analyses of all factors to just that dataset (n = 50). We will 

itemize those findings here, and discuss them further in the following subsections.  See 

the previous subsection for descriptions of the psychometric measures. 

Self-regulation was negatively correlated with Beck’s Anxiety Inventory (r(49) = 

20.520, p \ 0.001) and positively correlated with Tolerance of Ambiguity (r(49) = 0.310, p 

= 0.029). This suggests that persons with higher self-regulation tend to have lower trait 

anxiety and are more tolerant of ambiguity. 

The Big Five factor of Agreeableness was positively correlated with Big Five 

Extraversion (r(49) = 0.281, p = 0.048), Tolerance of Ambiguity (r(49) = 0.347, p = 

0.013), the Big Five factor Intellect/Imagination (r(49) = 0.434, p = 0.002), and the Need 

for Cognition (r(49) = 0.314, p = 0.028). This would indicate that persons who are more 

agreeable are also likely to be more extraverted, tolerant of ambiguity, have higher 

intellect (i.e. open to new experiences), and be more open to challenging and novel 

stimuli.  

The Big Five factor of Intellect/Imagination was positively correlated with 

Tolerance of Ambiguity (r(49) = 0.434, p = 0.002), Agreeableness (r(49) = 0.434, p = 

0.002), Need for Cognition (r(49) = 0.385, p = 0.006), and the ILS Sensing/Intuitive (r(49) 

= 0.424, p = 0.002). These findings suggest that persons with a higher intellect score are 

also more tolerant of ambiguity, are more agreeable, have a higher need for cognition, 

and tend to be intuitive. 

The Big Five factor of Conscientiousness was positively correlated with the Index 

of Learning Styles (ILS) Sequential/Global (r(49) = 0.331, p = 0.019). In other words, 

more conscious persons tend also to be global thinkers. The ILS subscale Active/ 

Reflective was positively correlated with Big Five Neuroticism (r(49) = 0.352, p = 0.012). 

These statistics indicate that persons who are more reflective are more neurotic, and 

persons who are more active are less so. 

The ILS subscale Sensing/Intuitive was positively correlated with Need for 

Cognition (r(49) = 0.391, p = 0.002) and Intellect/Imagination (r(49) = 0.424, p = 0.002). 
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This would suggest that participants who are more intuitive are also more likely to be 

more open to novel and challenging experiences. 

The ILS subscale Visual/Verbal was negatively correlated with Tolerance of 

Ambiguity (r(49) = 20.292, p = 0.040). In other words, participants who tend to be more 

visual also tend to be intolerant of ambiguity. The ILS subscale Sequential/Global was 

positively correlated with Conscientiousness (r(49) = 0.331, p = 0.002). This suggests 

that participants who are more global thinkers may also be more conscientious. 

In the next subsections, we will use these statistical findings to sketch out profiles 

of users segregated by superior cognitive task performance in one or both of the 

interfaces, which was defined in “Introduction to an early profile of efficient users” section 

as faster completion times on the interface tasks. We will use Pearson’s r correlations to 

establish trending and relationships between personality factors, as these are often used 

as the basis of establishing relationships between psychometric constructs.22 Future 

work will utilize follow-up tests in addition to Pearson’s r, such as Cronbach’s alpha and 

factor analysis, to evaluate the strength and subtleties of some of these relationships, 

but the use and implications of these additional analyses are beyond the scope of our 

current discussion. 

5.8. Early profile of the efficient procedural learner  

In this subsection we will discuss participants who were more efficient in the 

procedural learning tasks or those tasks that involved target identification and interface 

learnability and were cognitively simple. These participants tended to have an internal 

locus; in other words, these participants believe that they have some control over events 

that happen to them. 

More efficient procedural learners are more likely to be trait anxious, i.e. anxious 

all the time, whether or not there is a trigger for stress present. Further, research has 

demonstrated that certain aspects of trait anxiety seem more predictive than others, 

especially those constructs that involve fear or foreboding. Not surprisingly, then, more 

efficient procedural learners in both interfaces also tend to be less open to new 
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experiences (Donnellan, 2006) and are relatively intolerant of environments, situations, 

and tasks that are unfamiliar or contain the unknown (Budner, 1966) In a similar vein, 

these participants were more distractible, and less likely to stay on task when distracted. 

They are more moody or emotional, but also more social than their counterparts. 

More efficient procedural learners have a lower need for cognition; they do not 

seek challenges and like the predictable. Put another way, they generally do not need to 

be intellectually stimulated in order to feel satisfied with their lives. They tend to think 

about problems by reflecting, i.e. they prefer not to make a move until they have thought 

through the steps of a problem’s solution. They like well-established approaches to 

(preferably) simple problems. They are better at memorizing facts than discovering new 

ways to solve a problem, and tend to be practical in their choice of methods. Further, 

these more efficient procedural learners are more comfortable exploring new concepts 

through words, whether spoken or written, over pictures, graphs, or images. For a 

summary of this profile, please see Figure 22. 

Thus, in conclusion, based on completion times, users who were able to 

complete target identification tasks more quickly tended to be low information users who 

disliked uncertainty, social situations, and new challenges, and were more likely to allow 

their emotions to dictate their behavior. 

 

5.9. Discussion 

Aside from generally evaluating interface learnability, which we did in both 

studies, we studied procedural learning tasks in two slightly different ways. The first 

study focused on target identification. Participants were asked to find an organism label 

on the screen: for GVis, this label was attached to a spherical glyph; for MapViewer, very 

often the label was also a textual hyperlink. Once the label had been obtained, the 

participant pushed the “Submit” button and the task was done. 
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In the second study, we asked participants trivia questions, the answers to which 

had to be hunted for through the interface. If they gave the wrong answer, we requested 

that they keep looking. Like the first study, nothing other than an ability to use the 

interface and identify target labels was required. In both of these tasks, participants 

found the targeted information more quickly in the web table MapViewer; in Study 2, they 

also made fewer errors in MapViewer. Given the wide commercial use of web tables, it 

seems reasonable.  See Figure 28. 

 

 

Figure 27 . A summary of the user profile of a more efficient procedural learning in both interfaces 

  

Most participants brought some prior knowledge of the interaction metaphor to 

the MapViewer tasks that they did not have for the data visualization. However, 

participants still strongly preferred GVis to MapViewer, even if they were not as effective 

in task performance. This may have been due to the novelty of GVis; most participants 

had never seen anything like it before. It also may have been due to data organization; 

many participants, in post-study open response, indicated a clear preference for GVis” 

organization and interaction. 

LOC proved to be an influential personality trait no matter what the interface or 

task. The faster participants in both interfaces were persons who had a more internal 
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LOC, which is typified by a belief in personal control over life events. This finding is in 

close agreement with much of the available literature on LOC. 

Persons with a more internal locus have been found to have better problem-

solving skills,20 to be more resolved to solve a task when it became difficult,  and to be 

more likely to develop an intrinsic (internal) motivation to finish a difficult task (Weiss and 

Sherman, 1973). Thanks in part to positive behaviors like these, internal locus has also 

been found to lead to superior outcomes in academics, hospital recovery, and 

organizational environments. 

What is intriguing is that, while an internal locus led to faster procedural task 

outcomes, this is not necessarily the case when the task becomes more cognitively 

difficult. In a previous paper (Green, Jeong, and Fisher, 2010) we studied inferential 

learning. The tasks required participants to evaluate a multidimensional exemplar, and 

draw a conclusion about other organisms based on similarities or differences. We 

reported that participants who had a more external locus – those who believe that they 

are not in control, and who tend to believe in luck as a cause of events – solved 

inferential tasks in GVis more quickly than those with an internal locus. The results, 

which we discuss, do not contradict our current findings, but rather expand on them. In 

these studies, we used a larger sample size, which likely made our analyses more 

sensitive to changes in participant scores. Further, we focused on only three constructs 

that seemed more highly predictive, unlike previous work, which used six psychometric 

measures. 

For one type of learning task performance to be predicted by the degree of 

internal locus and another type to be predicted by the degree of external locus lends 

credence to our introductory statement that, depending on task, intrapersonal individual 

differences can predict interface performance. Yet while LOC has been shown to be 

influential in a wide variety of human performance, as previously discussed, to date, it 

has not been considered by interface designers and evaluators. 

Based on our research, as well as a broad LOC literature, we consider LOC to be 

one construct in the Personal Equation of Interaction. In addition to LOC, the Big Five 

personality factors of Big Five Neuroticism and Big Five Extraversion also predicted 



 

139 

procedural task performance. The more extraverted or neurotic the participant, the more 

quickly he or she was able to identify target information. 

This is interesting, but little in the behavioral literature explains these correlations; 

for us, it is a subject of our ongoing research. Further, Big Five Neuroticism in these 

studies was found to be negatively correlated with LOC (r(105) = 20.284, p = 0.003). 

This does have some precedent in the literature. 

For example, as previously discussed, Judge et al. (2002) evaluated several 

personality factors, including LOC and Big Five Neuroticism, and found that they were 

inter-related and could be shown to be a part of the same construct. This means that 

items from these measures trended together and were statistically predictive of the same 

personality factor(s). Research like this affirms that psychometric constructs can and do 

work together. Further, it lends credence to an approach that seeks to find items or 

clusters of items which could work together in the prediction of certain interaction 

behaviors. 

This was also the case as we sought to use whole psychometric scores to 

describe users who target identified information more quickly than their counterparts. 

This early user profile is one of the first to describe user personality by cognitive task 

rather than by membership in a particular user group (e.g. computer science students or 

intelligence analysts). Given future work, user profiles based on cognitive task could be 

used to aid interface design by painting a picture of the “ideal” user group for an 

interface, depending on which types of task the interface was designed to support. For 

example, in our profile, ideal users are described as being intolerant of uncertainty; this 

informs interaction design by suggesting that interface affordances and interaction 

metaphors involved in target identification should be painfully clear and more learnable 

that might be required in other areas of the interface more tailored to other types of 

cognitive task. 

And in a similar vein, this profile encourages interface designers to see the 

interface as a tool to support cognition, to consider that types of cognitive task and 

process that interface is being designed to support, and to consider the needs of those 

processes during design and evaluation. 
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Insights were also predicted by personality as in factor scores. This is compelling 

because it suggests that the impact of a predictive Personal Equation may go further 

than efficacy or efficiency; it may extend to being able to predict some learning or 

problem-solving outcomes as well. In these studies, we asked participants to self-report 

what they viewed to be novel, newly learned knowledge. This is a simple procedure 

often used in the learning and behavior sciences, and, although imperfect, served its 

purpose as a boundary-finding measure. Further studies will be designed to more 

carefully evaluate what learning occurs during task. Much depends, too, on how the 

word “insight” is defined. In the visualization and visual analytics literature, insight is 

often undefined, and when defined, it is often broadly defined (Chang et al., 2009). This 

makes “insight” difficult to use as an evaluative interaction outcome, and thus, as briefly 

discussed earlier, leaves certain claims about the superiority of visual analytics 

interfaces unproven. Recently, “insight” has been defined within two categories: 

knowledge-based insight, and spontaneous insight. Spontaneous insight is a sudden 

solution to an unsolvable problem, and has often, in the psychological literature, been 

referred to as an “aha!” moment. Spontaneous insight was not evaluated in these 

studies. 

In these studies, we evaluated the number of knowledge-based insights reported 

across task and interface, which are generally defined as items or concepts learned or 

added to the user’s knowledge base. 

In evaluating the knowledge-based insights reported, we categorized insights on 

the basis of content: insights about how to use the interface itself were separated from 

insights about the informational content presented and manipulated. In our studies, we 

asked participants to report knowledge-based insights. 

In both interfaces, roughly twice as many knowledge-based insights were 

reported about interface learnability (GVis: n = 51, MapViewer: n = 47) as were reported 

about the informational content (GVis: n = 22, MapViewer: n = 23). In both interfaces, 

the greatest number of interface learning insights was reported in the first question, 

which suggests that learnability started early. As the task set proceeded, the reported 

count of each insight type tended to even out somewhat, which is not unexpected; users 
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started paying attention to content once manipulating the interface was less of an issue 

or became more automatic. 

Overall, whether learning about the interface or the interface content, personality 

factors predicted reported learning as well as other interaction outcomes. These findings 

have immediate implications. For example, these studies have demonstrated that users 

who tend to be more extraverted and neurotic are also more likely to believe that they 

are in control of the task situation (internal locus). By extension, this also means highly 

neurotic or extraverted users tend to be better at interface manipulation and target 

identification.  

If the personality factors of the user were known beforehand, we could 

reasonably predict how quickly he or she would be able to learn a novel interface and 

find pertinent information. For even when the interaction metaphor was completely 

unfamiliar, as it was in the GVis visualization, neurotic/extraverted participants were able 

to learn to manipulate the data more quickly. 

However, what these findings do not do is demonstrably differentiate between 

interface and interactive techniques. The three evaluated personality factors impacted 

both interfaces similarly. Given the cognitive simplicity of the tasks, this is perhaps 

unsurprising. 

Ongoing research has been designed to evaluate learning styles that tend to 

guide focused attention and information organization during tasks, and where behavior 

research suggests more delineating personality factors for visualization technique might 

be found. A last note is on the use of novices in evaluations using an expert system; 

most of the participants had little or no knowledge of biological concepts. However, the 

participants were still capable of ably finding target information in both interfaces. Yet 

even with the more familiar archetype of the web interface, participants preferred the 

visualization. 

The intent of these studies was never to evaluate the efficacy of GVis per se; a 

formal evaluation of GVis as an expert system is reported in other literature (Hong et al., 

2005). The aim of these studies was to evaluate human cognition during learning 
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interaction using both interfaces as working artifacts of a kind. In addition, we explored 

whether individual differences in personality factors and self-beliefs could have a large 

enough impact on interaction outcomes to warrant their inclusion in the Personal 

Equation of Interaction. 

For these reasons, we recruited non-experts who were unfamiliar with the 

knowledge domain. Expertise would have biased the user’s interaction; they would have 

had an expert knowledge of the genomic hierarchies, and thus known where to look for 

the requested information. This would have proven a poor evaluation of how each 

interface promoted learning. 

 

5.10. Conclusion 

 

The Personal Equation of Interaction is still very much a work in progress. In the 

short term, it serves as an open discovery and proof of concept. We have shown that 

intrapersonal differences impact interaction. Our ongoing research seeks to better define 

what differences impact what type of analytical task (for it seems reasonable to assume 

that one intrapersonal set of differences will only generalize to one type or set of task 

constraints). 

For example, we are currently narrowing our task sets to study multiple decision 

points in specific types of category or inference reasoning. And, further, we hope to 

explore whether that impact is temporally static or dynamic throughout the analytical 

process. 

In the longer term, we intend to isolate predictive matrices and validate a battery 

of measures that will successfully inform interface design based on the types of cognitive 

task undertaken. Ultimately, this is the Personal Equation of Interaction. These 

measures will likely involve more than personality factor matrices; other areas of 
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exploration include perceptual logics and use of decision-making heuristics. In addition 

to informing design through use of user profiles like the one described here, the 

Personal Equation could be used to provide real-time interface adaptation to 

accommodate user needs and preferences, and provide a basis for robust group profiles 

of users who share common differences, such as experts or users of a particular 

visualization technique. Visual analytics seeks to facilitate analytical reasoning through 

the use of interactive visual interfaces. In the Personal Equation of Interaction, we will 

provide a new tool in that pursuit.   
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Chapter 6. Discussion 

So much depends upon reasoning, but it cannot be seen. Only its outcomes can be 

measured. Thus, reasoning’s journey must be inferred through what actions it takes after 

a decision is reached. Human reasoning is the process by which interface learning 

solves novel problems. To a large degree, reasoning is concealed. This might explain 

why comparatively few cognitive researchers study reasoning per se but prefer to study 

its outcomes through judgment, learning, and decision-making. 

However, what if we could do more than just observe its faint trail as it leads us 

through the cognitive process? What if instead we could predict its outcomes? In some 

ways, this current research was an attempt by one reasoning researcher to tackle 

reasoning from an unexpected angle and to predict what reasoning would do before the 

task was attempted, and through this prediction, understand the reasoner not only by 

performing the task at hand but also by using the predictors that the reasoner brings to 

the task.  

The understanding of reasoning cognition is the primary driver of this research. 

Prediction is the means of obtaining that understanding. Being able to predict 

performance through even simple measures, such as time-to-target and self-reported 

insights or learnings, is one way to overcome reasoning’s invisibility. The mere idea that 

one could predict visual analysis by first administering a three-minute, nine-item Likert 

survey before task serves to lifts the invisibility curtain for a peek at the mastermind 

behind it. 

From the beginning of this line of research, the idea that the complexity of 

reasoning and learning could be bounded by the way a user or analyst answers a short 

series of questions has been a key motivator. Truthfully, it would not have mattered what 

the questions were, only that they were statistically normed to the degree that 

differences could be detected between groups and that those groups would systemically 
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behave in predictable ways. This explains why this research corpus has made little 

attempt to defend the concept of personality or, indeed, to take a position in a debate on 

the source of personality. What does it matter? All that matters is that the surveys 

administered elicit consistent, predictive answers to the question of learning 

performance.  

Although the concept of interface individuation was discussed briefly in Chapter 

1, there has been little effort to map personality onto the task of interface design. Careful 

thought was given to the choice of interface across the studies; the interfaces shared a 

dataset and a knowledge base but little else. Design could certainly glean much from 

this line of research, but we do not purport that one interface paradigm is better than 

another. Indeed, if this research demonstrates anything, it is that no one interface is best 

for all users.  

6.1. Chapter 2 

In Chapter 2, the results demonstrated that task and interface were predicted   by 

the psychometrics. Most of the items in the 9-item PEI were anxiety-based, or described 

some fear of the unknown. For the inferential tasks, the biggest indicator of performance 

was locus of control. As we discussed in Chapter 2 the degree of control an individual 

feels over his or her life circumstances has long been regarded as a demonstrative 

predictor in the human behavioral literature. 

In this study, the belief in a lack of control – or an external locus – was only 

predictive of completion times in the data visualization.  GVis was developed in response 

to a request for a better way to locate and analyze the spatial and semantic relationships 

between ontological biological structures (Chapter 2.3); compare-and-contrast behaviors 

should, then, be easier to see and solve in GVis. Additionally, the performance 

outcomes, non-significant trending between MapViewer outcomes and the sporadic 

psychometric scores, as well as the varying nature of the participant feedback suggest 

that combination of variables influenced MapViewer complex performance behaviors, 

perhaps due to the difference in required interaction. Often, tasks that required one or 

two mouse clicks in a single view in GVis were much more complicated in the 
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MapViewer, requiring multiple mouse clicks and changes of view. For example, unlike 

the straightforward presentation of mapped genes in GVis through direct interaction 

(holding down a single mouse click on the visualized target), determining the existence 

of a mapped gene for an organism in MapViewer required the user to hunt for the 

organism name in the list of organisms, possibly reorganizing the list through primary 

and secondary sorts, locating and clicking on the small single letter “G” on the far right of 

the application view, which served as a hyperlink to a separate page. If a gene existed, 

information about its mapping was presented. If the gene did not exist, the hyperlink led 

to a page presenting a frustrated-looking male icon and the explanation, “No information 

found for given taxid.” Locus of control played a role in the MapViewer inferential task 

outcomes, but not one strong enough to show any predictive strength. 

In the procedural tasks, the 9-item short measure is moderately negatively 

correlated with completion times. This suggests that more trait-anxious (i.e. persons that 

tend to be anxious all the time as compared to anxious only when presented when 

threatening stimuli), uncommunicative, and/or prone to emotional instability a person is, 

the less time they tend to take finding requested items while interacting with novel 

information. This might seem counterintuitive at first glance. However, according to 

Spence-Taylor Drive Theory (Spence, Farber, and Schmitz, 1999), persons with higher 

trait anxiety tend to identify target information more quickly than the non-anxious when 

the task does not require either iterative or complex reasoning processes. Other studies 

have found that persons with higher trait anxiety are more attentive to presented 

information and can identify target threats more quickly than those less anxious (Ionnou, 

Mogg, and Bradley, 2004). While the causes for this “exception” are still subjects of 

debate, it has been proposed that trait anxious persons have developed adaptive 

heuristics than can make advantageous use of their anxiety (Spence et al., 1966). The 

results of the current study would suggest that certain aspects of trait anxiety tend to 

make users more attentive and better able to identify target information until the task 

becomes complex, requiring more complicated reasoning heuristics and lessening the 

effectiveness of the adaption. In other words, trait anxiety helps analysts develop 

cognitive tools that are highly sensitive to new stimuli, and which allow rapid 

identification of items of interest (or potential threat). 
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Additionally, the 9-item short measure scores positively correlated with LOC 

scores (r = .37, p <.01), suggesting that persons who were more 

anxious/uncommunicative were also more likely to attribute consequences of life events 

to forces outside their control, such as luck or divine intervention.  Scores on the whole 

Beck’s Anxiety Inventory, however did not correlate. Given that LOC scores were a 

predictor of more efficient completion times in the more complex, inferential task, it 

seems reasonable that a relationship exists between the aspects of anxiety captured by 

the 9-item short measure and locus of control. 

The items in the 9-item short measure were culled from 6 measures designed to 

measure anxiety, extraversion, neuroticism (or emotional instability), self-efficacy, and 

self-beliefs about control over personal circumstances. Subsequent analysis of the 9-

item short measure found it to have moderate internal consistency and to meet the 

requirements for a reliable psychological assessment. However, it is unreasonable to 

expect that any new measure would be fully validated after one evaluative trial. While we 

are fairly confident the 9-item short measure has captured trending in this study, we 

recognize that further trials are required before the 9-item short measure could be 

considered predictive or reliable in a generalizable way.  

This replication would include a variety of types of task developed for the 

procedural and inferential learning. End-goal target identification is only one type of 

“how-to” interface learning. Use of specific interface functionalities such as the use 

search box or the use of help capabilities could also be tasks. Inference tasks to could 

involve a wide variety of visualized content. Expert systems which use knowledge 

schemas other than genomics would also be utilized. By using a variety of knowledge 

schemas, we demonstrate that the 9-item measure can predict interface learning and not 

just genomic interface learning.   

 Additionally, and perhaps even more importantly, a variety of interfaces would 

also be used to test the breadth of the learning generalizability. There are numerous 

styles and types of GUI. And data visualization’s presentation and interaction paradigms 

increase in both quantity and novelty year over year. Because the goal of the PEI is to 

predict analysis outcomes and not the superiority of one interface over another, testing 
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its predictive capacity repeatedly with a variety of visual interfaces allows us to 

demonstrate the degree of its ability to predict reasoning no matter the environment. 

In summary, Chapter 2 set the stage for the study of cognitive outcome 

predictors. We found the boundaries of the degree to which a standard data visualization 

evaluation could be predicted by inherent individual differences. In addition, having 

found that this protocol did an acceptable job of testing participant procedural and 

inferential learning, we used this protocol in the studies that followed.  

The research in Chapter 2 is joined by other research in data visualization and 

interface interaction. Ziemkiewicz, Ottley, and Crouser used locus of control to predict 

the performance of participants which were presented information in a variety of 

visualized contexts or metaphors (2013). Psychometrics such as locus of control has 

been used in the evaluation of data visualization techniques (see for example Yi, 2010). 

6.2. Chapter 3 

In Chapter 3, we built on Chapter 2 by evaluating the relationships between the 

PEI and additional reasoning outcomes. We predicted two additional outcome 

measures: task errors and self-reported insights. Whole measure scores (i.e. all items in 

the measure were used) from Locus of Control, Big Five Extraversion and Big Five 

Neuroticism were used as predictors. 

Locus of Control proved to be an influential personality trait no matter what the 

interface or task. The faster participants in both interfaces were persons who had a more 

internal locus of control, which is typified by a belief in personal control over life events. 

This finding is in close agreement with much of the available literature on locus of 

control. Persons were a more internal locus have been found to have better problem-

solving skills (Krause, 1986), to be more resolved to solve a task when it became 

difficult, and to be more likely to develop an intrinsic (internal) motivation to finish a 

difficult task (Weiss and Sherman, 1973). Thanks in part to positive behaviors like these, 

internal locus has also been found to lead to superior outcomes in academics, hospital 

recovery, and organizational environments. 
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This research has a variety of implications and informs new work. One obvious 

implication is that it changes the way interfaces are evaluated or ‘graded’. Interaction 

paradigms, as we saw in Chapters 2, 3 and 5, often employ cognitive-based schemes, 

such as GUI’s fondness for text, even when supporting target identification. 

Visualizations, by contrast, lead the user to interact with glyphs or other graphical 

depictions. Because the user may have a demonstrable proclivity for either text or 

graphics, but not both, an interface’s evaluation should include a description of the 

user’s individual differences. If the GUI is seen as effective for users who prefer text, 

then is may be seen as performing well. However, understanding that users who prefer 

graphics or spatial displays will not adapt to the interaction paradigm as easily prevents 

the interface from being reviewed too harshly, provided that the evaluators understand 

the user’s proclivities beforehand.  

Much the same way as we did in Chapter 2, our tasks required participants to 

evaluate a multi-dimensional exemplar, and draw conclusions about other related 

concepts based on similarities or differences. We reported that participants who had a 

more external locus – those who believe that they are not in control, and who tend to 

believe in luck as a cause of events – solved inferential tasks in GVis more quickly than 

those with an internal locus. For a discussion of these results, please see Chapter 2. 

The results do not contradict Chapter 3’s reported findings, but actually expand them. In 

Chapter 3, we used a larger participant group, which likely made our analyses more 

sensitive to changes in participant scores. Further, we focused on only 3 whole 

constructs that seemed more highly predictive, unlike in Chapter 2  which culled items 

from 6 whole measures. 

In Chapter 3, we demonstrated that one type of learning task performance was 

predicted by the degree of internal locus and another type was  predicted by the degree 

of external locus. And this lends credence to one underpinning assumption that  inherent 

individual differences can predict multiple types of analysis performance, albeit 

differentially. Based on our research, as well as a broad locus of control literature, we 

consider locus of control to be one construct in the Personal Equation of Interaction. In 

addition to Locus of Control, the Big Five personality factors of Neuroticism and 

Extraversion also predicted procedural task performance. The more extraverted or 
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neurotic the participant, the more quickly he or she was able to identify target 

information. 

Further, Neuroticism in these studies was found to be negatively correlated with 

Locus of Control (r(105) = -.284, p = .003). This does have some precedent in the 

literature. For example, Judge et al. (2006) evaluated several personality factors, 

including Locus of Control and Neuroticism, and found that they were interrelated and 

could be shown to be a part of the same construct. This demonstrates that items from 

these measures trended together and were statistically predictive of the same 

personality factor(s). Research like this affirms psychometric constructs can and do work 

together, Further, it lends credence to an approach that seeks to find items or clusters of 

items which could work together in the prediction of interaction efficacy, especially if the 

whole measure scores fail to reach an acceptable degree of prediction. 

And lastly, the interrelationships between these whole measures or constructs 

highlights again in both Chapters 2 and 3 why we were able to identify specific trends 

between psychometrics and outcomes. This is true even though in Chapter 2 we used 

individual items and in Chapter 3 we used whole measures. The intercorrelations 

between different but complementary inherent constructs allows us to build not only 

predictive tools but – as we will do in Chapter 5 – build profiles that allow us to describe 

and thus identify individuals in any target user population that are likely to use our 

interfaces the most effectively or perhaps intuitively. 

Chapter 3 gave us a more complete picture of how inherent differences predict 

interface learning cognition. Insights were also predicted by personality as in factor 

scores. This is compelling because it suggests that the impact of a predictive Personal 

Equation may go further than efficacy or efficiency; it may extend to being able to predict 

some learning or problem-solving outcomes as well. Much depends on how the word 

“insight” is defined. In the visualization and visual analytics literature, insight is often 

undefined. When defined, it is often broadly defined, as in (North, 2006). This makes 

“insight” difficult to use as an evaluative interaction outcome, and thus, as briefly 

discussed earlier, leaves certain claims about the superiority of visual analytics 

interfaces unproven. Recently, “insight” has been defined within two categories: 
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knowledge-based insight, and spontaneous insight (Chang et al., 2009).  

Spontaneous insight is a sudden solution to an unsolvable problem, and has 

often been referred to as an “aha!” moment. In problem solving and related 

neuroscience research, spontaneous insight has been defined as  the name of “the 

process by which a problem solver suddenly moves from a state of not knowing how to 

solve a problem to a state of knowing how to solve it (Mai et.al , 2004).  

Spontaneous insight differs from the self-reported research in a variety of ways. 

For example, spontaneous insight does not depend on many of the more gradual 

cognitive heuristics we engage in the tasks in these studies (Kounios, 2004). Secondly, it 

tends to happen when the analyst is not focused on the problem to be solved, unlike the 

focus required in these studies in order to complete those tasks, as is typical of interface 

learning (Mai et.al , 2004). Interface learning depends on iterative learning that builds a 

scaffold between what is known and what is about to be known. This step-by-step 

process may use a variety of cognitive tools, but does so in a comparatively  

straightforward way. 

Or in other words, interface learning uses defined heuristics, a clear (if highly 

repetitive) path to task completion, and conscious choice between exemplars or choices. 

In spontaneous insight, the reasoner rarely can describe how the problem solution was 

achieved. The process appears to depend on unconscious problem  re-organization and 

spontaneous understanding (Kounios, 2004).  

In these studies, by contrast, we asked for conscious observations of learning. 

The participant not only recognized that they had learned something, but what they had 

learned and often, how they learned it. We evaluated the number of knowledge-based 

insights reported across task and interface, which are generally defined as items or 

concepts learned or added to the user’s knowledge base. In evaluating the knowledge-

based insights reported, we categorized insights on the basis of content: insights about 

how to use the interface itself were separated from insights about the informational 

content presented and manipulated.  

In both interfaces, roughly twice as many knowledge-based insights were 
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reported about interface learnability (GVis: N = 51, MapViewer: N = 47) as were reported 

about the informational content (GVis: N = 22, MapViewer: N = 23). In both interfaces, 

the greatest number of interface learning insights was reported in the first question, 

which suggests that learnability started early. 

As the task set proceeded, the reported count of each insight type tended to 

even out somewhat, which is not unexpected. Users started paying more attention to 

content once manipulating the interface was less of an issue or became more automatic. 

These self-reported insights are not unlike those reported in Saraiya, North, and 

Duca (2005), which grouped their self-reported insights by what the context of those 

insights and allowed the participants to freely respond, or Plaisant (2004), which 

described them as basic building blocks for interface evaluation. Pousman, Stasko, and 

Mateas also suggested that insights should be garnered and separated by the context or 

substance of insight. (2007 See also Yi, et al, 2008.)  

Overall, whether learning about the interface or the interface content, personality 

factors predicted reported learning performance as well as insights. These findings have 

immediate implications. For example, these studies have demonstrated that users who 

tend to be more extraverted and neurotic are also more likely to believe that they are in 

control of the task situation (internal locus). By extension, this also means highly neurotic 

or extraverted users tend to be better at interface manipulation and target identification. 

If the personality factors of the user were known beforehand, we could reasonably 

predict how quickly he or she would be able to learn a novel interface and find pertinent 

information. For even when the interaction metaphor was completely unfamiliar, as it 

was in the GVis visualization, neurotic/extraverted participants were able to learn to 

manipulate the data more quickly. 

A last note is on the use of novices in evaluations using an expert system; most 

of the participants had little or no knowledge of biological concepts. However, the 

participants were still capable of ably finding target information in both interfaces. Yet 

even with the more familiar archetype of the web interface, participants preferred the 

visualization. 
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The intent of these studies was never to evaluate the efficacy of GVis per se; a 

formal evaluation of GVis as an expert system is reported in other literature (Hong et al., 

2005). The aim of these studies was to evaluate human cognition during learning 

interaction using both interfaces as working artifacts of a kind. In addition, we explored 

whether individual differences in personality factors and self-beliefs could have a large 

enough impact on interaction outcomes to warrant their inclusion in the Personal 

Equation of Interaction. 

For these reasons, we recruited non-experts who were unfamiliar with the 

knowledge domain. Expertise would have biased the user’s interaction; they would have 

had an expert knowledge of the genomic hierarchies, and thus known where to look for 

the requested information. This would have proven a poor evaluation of how each 

interface promoted learning. 

6.3. Chapter 4 

In Chapter 4, we sought to fit the complexity of the PEI into the complexity of 

reasoning itself. In particular, we discussed the types of reasoning used during task 

analysis, what made each unique, and how each fit into the whole of the lifecycle of 

visual analysis. Chapter 4 did not report new research but it did fit the PEI research 

within the boundaries of our previous work, such as the Human Cognition Model or 

Pirolli and Card’s Sensemaking Model (2005).  

We also broadly discussed the impact of human individuality on every primary 

cognitive process, and surveyed our current research in pursuit the generation of new 

system development models that optimize the cognitive performance of human decision-

makers. Optimization in this context must include complex criteria such as insight, 

innovation, creativity and awareness in uncommon, unique and novel problems and 

situations. Research has shown that inherent individual differences between users 

impacts the task and learning performance in visually embedded interfaces. Our 

previous work in the development of the Human Cognition Model continues to inform our 

research direction. The Personal Equation has highlighted the need to study not only 

inherent differences in personality factors, but also other user differences, including 
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those in which affect other inherent individualities as well as differences in institutional 

cohort and environment. These individual differences in human capabilities are great 

enough that any unitary system will be at best a compromise between the needs of the 

various sub-populations of users. Or phrased another way, Chapter 4 demonstrates why 

no one interface visualization and interaction paradigm could possibly be considered 

ideal for each and every analyst and each and every analytical goal. 

The great white whale of the ‘intuitive’ interface is not only complicated by the 

complexity of information, the limited scale of the presentation screen, the varying 

degrees of confidence in the data and its validity, but by the analyst themselves. As we 

saw in Chapter 2,3,and 5, there is enough variation within each analyst and each expert 

cohort to a) distinguish between analyst groups or clusters and b) systemically predict 

outcomes as an interaction of both the analyst and interaction differences. 

6.4.  Chapter 5 

In Chapter 5, we used what we have learned in the previous chapters to build a 

psychometric profile of superior procedural learners. Or put another way, we described 

users that are best at target identification. What we learned was that trends between 

psychometric whole measures such as those we reported in Chapter 3 were very useful 

not only in predicting desired learning behaviors but also in describing why these 

analysts were superior to their less efficient counterparts. By extending on the work in 

Chapter 3, we were also able to extend the profile beyond the 3 whole measures used in 

Chapter 3 to multiple complementary inherent constructs such as tolerance of ambiguity, 

the need for cognition, and the ability to self-regulate. We used these additional whole 

measures to build a profile which described these superior learners in a more 

meaningful way.  

Profiles previously have been used in the psychological and organizational 

research to describe and understand an expert profile. The intent for these profiles is to 

understand not only what makes these cohorts similar but also why they are superior to 

the general population at their chosen skills or expertise. Sometimes these profiles are 

built by administering a battery of previously normed measures of personality or ability, 
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as in Fazel-Zarandi and Fox (2011). Warbah et al ( 2007) used personality measures 

other psychological constructs to better understand an expert cohort of nurses. Another 

way to build an expert profile is to use objective measures of expertise, such as those 

used in the Expert Seeker as implemented at National Aeronautics and Space 

Administration (NASA), which culls human resource records for similarities within an 

industry expert cohort in training, education, and experience (Becerra-Fernandez and 

Fox, 2000. For similar research outside of NASA, see Balog and De Rijke, 2007.)  This 

type of profile would likely enhance a PEI-based profile, and allow associations to be 

drawn between the PEI and what types of training and experience profile-members 

sought and achieved. For example, let us hypothetically assume that all data 

visualization developers have a global-visual profile. These developers prefer 

information to be presented in a top-down graphical fashion. More diagrams, fewer 

paragraphs of text. Big ideas first, then the details. The “why” before the  “what.” It 

seems not only logical but probable that these visual developers would tend to seek and 

achieve training and expertise in computer graphics, visual design, and/or computational 

knowledge representations. The PEI sits in the intersection or interplay of inherent 

differences between what makes us unique and what we self-select as desired 

knowledge and career.  

Of course, this chapter leaves the profile of the analysts best at inferential 

research yet to be done. In some ways it would likely be similar to the current profile and 

quite different in others. As we saw in Greensmith, 2016, the overlap between 

classification and inferential predictors was such that one assessment could be created 

that predicted the outcomes of both tasks, even if the assessment predicts these 

outcomes with varying degrees of prediction. Classification in categorization is similar in 

some ways to the work of target identification in procedural interface learning. Both are 

deductive reasoning process that use rules to correctly label concepts. Both can involve 

iterative sessions of comparison between multi-attribute artifacts or complex ideas. 

Thus, we should not be surprised if the profile of the superior inferential interface learner 

is market similar to that of the superior procedural learner.  

The Personal Equation of Interaction can be used in a variety of ways to predict 

analysis outcomes and inform interface design. We can tightly predict one type of 
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cognitive task outcome, using the PEI to create a predictor such as target identification. 

We can use previously normed whole measures to predict the superiority of one 

interface over another for more loosely defined group of target users. And, by extension, 

we can use the relationships between these whole measures to build an analyst 

persona or profile which can by turn define or inform the design of a more intuitive 

interface for those analysts. It is this interplay between the interface, the Personal 

Equation of Interaction and cognition that we will explore further in the next chapter. 
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Chapter 7. Conclusion 

At the beginning of this dissertation, we stated the following research question: 

What is the Personal Equation of Interaction for Interface Learning? 

We have explored the idea of using self-report psychometric items that are culled 

from normed measures as attributes of a mathematical equation that would allow us to 

predict cognitive performance during interface learning. We have created tasks that, 

although administered in a laboratory, mimicked the types of tasks an analyst would 

undertake when exploring a graphical representation of data, including target 

identification and inferring information about one category though the understanding of 

another. By using items in the Big Five Personality Factors and Locus of Control 

measures, we have built the first Personal Equation of Interaction (PEI) for Interface 

learning, which satisfactorily predicted variance in the accuracy of interface learning. 

As a research program, the PEI tackled the question of how to predict the 

accuracy, efficacy, and learning in a visual interface. In Chapter 2, we introduced the 

interfaces and tasks that would be used in all studies. We tabulated a dimension-

reduced measure to predict task performance, isolating items from trait anxiety, 

extraversion, neuroticism, and locus of control measures. We explored the domain of the 

PEI by evaluating analysts’ performance in both a traditional GUI interface and a data 

visualization. By comparing two very different representational paradigms, we were able 

to control for certain assumptions that tend to be built into software design, such the 

superiority of data visualization over the GUI interface. We found both novel and familiar 

effects, but the PEI was able to predict the task performance of participants in both 

interfaces. 

In Chapters 3 and 5, we also explored the influence of the individual. Using the 

same interfaces and tasks as used in Chapter 2, we again used items from normed 
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psychometric measures as predictors of task performance. Similar to our findings in 

Chapter 2, we found that items isolated from the measurement of constructs such as 

Neuroticism (sometimes called moodiness), Extraversion, and Locus of Control were 

influential in predicting interface learning outcomes. 

In Chapter 5, we went from prediction to profiling, using the self-report data from 

more than 100 participants to evaluate the personalities of analysts who were the most 

accurate. The analysts that had an internal locus and were both more extraverted and 

more neurotic were faster than those who did not. Conversely, the externally locused, 

less extraverted, and less neurotic participants learned more from the interface than their 

faster counterparts learned. 

In Chapter 4, we sought to place the PEI within the context of other cognitive 

research done in information visualization and visual analytics. We briefly categorized 

the types of reasoning that have often been studied, and then we used those category 

definitions to describe the findings of other work, such as the sensemaking loop and the 

human cognition model. The sensemaking loop was a solid example of abduction, for 

example. In the work presented here, we claim to understand reasoning by predicting it 

and by allowing prediction to group similar cognitive tasks. 

Now that we have a PEI, what can we do with it? The Holy Grail of research that 

uses the differences between analysts as a map to interface design would naturally be 

interface individuation. Interface individuation is the use of the deep understanding of the 

analyst’s preferences, needs, and goals, which allows the interface to modify itself in real 

time to best support the analyst. To date, interface individuation has focused on the 

human computer interaction, as emphasized in GUI design, such as color, token 

placement, and white space. The PEI extends individuation into the realm of design for 

interface reasoning. Each visual interface—wittingly or unwittingly—is designed to 

support a specific list of inter-related cognitive tasks. As we demonstrated, the 

performance of these cognitive tasks can be predicted through the measurement of the 

PEI. This requires the understanding of the target user beyond personas and cognitive 

walkthroughs to a quantifiable formula for optimal design. For example, if a designer 

knows that the target use of an upcoming project is the quick identification of crime 
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hotspots during a city-wide emergency (classification), and if the designer understands 

that the target user is an analyst who is likely to experience some performance anxiety, 

the designer will understand that the analyst will likely lean towards inherent and 

institutional proclivities. The PEI gives the designer a way to measure these proclivities 

and profile the target user in a more predictive way. Because the PEI identifies user 

weaknesses (e.g., users that tend to score lower also tend to take more time during 

target identification), the designer now has been informed that the visualization approach 

needs to be individuated to the target user in order to mitigate this weakness. In the 

example of emergency services, if we know that the analyst (or the expert cohort to 

which the analyst belongs) has a tendency to learn best through a global organization 

style and has very little tolerance for ambiguity, the designer would likely choose an 

interface that started with a bird’s eye overview of the situation and would allow for the 

analyst to then focus on items of interest. Furthermore, an intolerance for the obtuse 

would encourage the use of clean design that seeks to disambiguate both the interface 

and its functionality. Clear choices about the representation of uncertainty in data would 

also be wise.  

On the other hand, if the designer is tasked with an interface to be used by 

primary school teachers managing the scheduling of multiple classrooms 

simultaneously, similar knowledge would likely lead to a quite different design. For 

analysts who tend to think sequentially and from the bottom up, prefer text to pictures, 

and are likely to have an internal locus and higher trait anxiety, an interface that is 

global, pictorial, and minimized text would not be the best choice. A better choice would 

be an interface that allowed the analyst to enter information one step at a time, give 

verbal feedback about issues or conflicts, and provide textural confirmation. This 

interface might never really give an overview because one would likely not be 

necessary. Furthermore, because these analysts have an internal locus and higher trait 

anxiety, we know that they would likely be very quick to find the functionality they need, 

but if not, would stick to the task until they have achieved it. (We explored this briefly in 

Chapter 5, when we contributed this efficacy to Spence Drive Theory, which suggests 

that anxious persons adapt to new situations and therefore can find targets more 

quickly.) This is a high-level example, but it illustrates that only a little knowledge about 

the PEI could contribute to design. Specific examples, such as using the PEI to 
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determine whether a target audience is more or less visual, can also determine the 

degree to which visualized semantic representations, such as composite glyphs should 

be used. 

The idea that individual differences predict cognitive performance is not new; it 

has been used in the behavioral sciences for decades. The PEI is novel because it 

attempts to quantify specific differences that directionally predict cognitive outcomes 

during interface interaction. However, the proposed research does not seek a single 

unified metric of prediction. This would immediately be met with a myriad of exceptions, 

in the same way that complete cognitive architectures have been challenged by the 

infinite ingenuity of cognitive adaptation and accommodation. Human cognition is too 

fraught with potential to rest the dull inevitability of a single explanatory variable. Rather 

than seek to predict the entirety of a cognitive process using a single PEI, this research 

leans on the Gestalt wisdom that the whole is greater than the sum of its parts. By 

integrating the measurement of multiple assessments, the PEI has its own way of 

emerging in making predictions for a larger reasoning outcome. It must be said, 

however, that forecasting a future is not the cause of that future. Thus, the PEI is not the 

outcome but is one of many answers to the question of why people—the user, the 

analyst, and the designer—do the things they do. 

7.1.1. Ever onward and upward 

Where do we go from here? Chasing the invisible across the space of complexity 

tends less to be less linear than it is a Gestalt. Having stumbled upon a seemingly 

consistent method for predicting learning outcomes, we find the ongoing program of 

research cluttered with more questions than ever. Breaking down visual learning into its 

reasoning modularities and studying those modularities through the many iterations of 

the analysis (e.g. classification, categorical inference, rule mechanization, and so forth) 

begs this driving question: Is there a personal equation for each type of reasoning 

cognition? Alternatively, will one equation predict all?  

This current research is a study of final outcomes. There was no attempt to study 

how analysts may have reasoned through each iteration of the study tasks; only the final 
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answer was captured. This suggests that, at least on some level, the PEI may indeed 

serve multiple purposes. However, demonstrating such generalizability demands a 

systemic plod through the reasoning heuristics, one cognitive task at a time.  

The PEI for Interface Learning is a short measure that can predict how well an 

analyst can find and synthesize the information presented through an interface. It would 

be unlikely to predict a very different cognitive task; the work in the previous chapters 

demonstrates that what makes one superior at task completion does not make one 

superior at synthesis. Within this limited scope, it explains what interface likely would 

work the best for the target user group, why some analysts would be able to work more 

effectively or efficiently, and where there likely would be opportunities to improve design. 

7.1.2. Implications 

Based on this research, it is easy to see the interface as the coordination of 

cognitive tasks. Each overarching analytical goal employs a variety of cognitive tasks or 

processes. In particular, analytical goals use iterations of decision making. And each 

iteration involves other reasoning heuristics that enable and impel the decision being 

made. Consider the comparison of two concepts. Regardless of interface, comparison 

requires the learning of the conceptual category before it can be compared to anything 

else.  This learning contributes to basic categorizational tasks such as classification – 

the naming of a concept – as well as inferential categorization. Inferential categorization 

is the understanding of a category’s definitions well enough to infer what the category 

will look like from its name or label. For example, we learn to define a ‘dog’ by learning 

its component shapes or template, its associated colors and textures, as well as its 

movements, sounds, and smells. Thus, whenever one observes a four-legged animal 

that wags its tail, pants, barks, and seems social, one might define that animal as a dog. 

This is classification. 

Perception of object  attenuation  breakdown of determining observable characteristics  classification 

Inferential categorization, on the other hand, could be called classification in 

reverse. If I see a dog, I will assume its characteristics. It should have 4 legs and might 

lick my hand if I am friendly. Classification and inferential categorization employ different 
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reasoning heuristics. Classification depends heavily on deductive and normative rules. I 

should be able to define the category in such a way that separates that category from 

other categories. Conversely, inference assumes details from category labels. That dog 

should have 4 legs. If it does not, this violation of the category rules will force the 

reasoner to evaluate the category inductively, using satisficing or heuristics such as 

elimination-by-aspects until one finds a satisfactory explanation. 

Classification of object  identification of observable category attributes  inference of missing attributes 

Interfaces, intentionally or not, support the completion of a wide variety of 

analytical goals, which in turn are made possible by a wide taxonomy of cognitive 

heuristics. This research demonstrates that analyst proclivities impact the outcomes of 

those cognitive heuristics to demonstrative degree. For this reason, this research 

supports the building of a cognitive task taxonomy to inform visual interface design. This 

taxonomy would include analytical goals that the interface supports. In these studies, for 

example, the interfaces were built to support the classification of genomes and an 

evaluation of their characteristics. These analytical goals include the use of reasoning 

tasks or processes with outcomes such as perception, attenuation, classification, 

decision-making, judgement, as well as generation and comparison of hypotheses. Each 

one of these processes is a component that feeds and informs the analytical process 

outcome. And as our research demonstrates, each of these processes is influenced by 

individual differences. 
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Figure 29. A simple diagram of the integration of the PEI in informed design. 

By breaking down the analytical goals that the interfaces were intended to 

support, a hierarchical and/or conceptual node-link diagram emerges which 

demonstrates the order, weight, and inter-dependencies between these processes in the 

accomplishment of the goal. What remains is to define the Personal Equation of 

Interaction (PEI) that predicts superior performance for each of these cognitive 

outcomes. These PEIs will likely overlap to some degree, as recent research as 

demonstrated (Greensmith, 2016). In other words, there will like be a number of 

psychometric items that predict most of all of the cognitive tasks involved in the 

completion of the analytical goal. By defining what characterizes a superior user of the 

interface, we can define design guidelines for design that better supports analytical 

goals. 

Understanding analyst proclivities depending on the cognitive processes 

undertaken allows us to design interfaces that best support those proclivities. As we 

discussed earlier, our more recent research has demonstrated that the best visual 

classifiers are have an internal locus and tend to see the world from the bottom-up or 

sequentially. These are analysts who believe they are in charge of events that affect 

them, and they prefer to learn by accomplishing one step at a time. So we should design 

an interface that is text-based and makes it very clear through both interaction paradigm 

and sandbox or workspace layout what steps are necessary to accomplish classification. 



 

168 

Further, this PEI-informed interface may be great for associated types of task 

that as best accommodated by textual, sequential analysts. A robust PEI which 

describes and predicts superior performers for each type of cognitive process would 

allow for a richer design process. If a designer knows how his target audience differs 

from the world (e.g. more extraverted is more apt to prefer graphics, etc), and he knows 

what cognitive tasks are required to accomplish the analytic goal (for example, 

identifying which glyph or node is part of the target concept), then a PEI- based 

taxonomy provides an evidence based method for designing an interface which seems 

immediately familiar. The Personal Equation can aid that design process by identifying 

how the target user likes to think about the world and organize information.  

So, in summary, one PEI is a building block in what would be a larger program of 

evidence-based, user-centric interface design. The PEI can predict performance of each 

key cognitive task by associating individual differences with task performance. The 

individual psychometric constructs can be used as a profile of the best task performers. 

Or in other words, the PEI tells us why the best users are the best. 

 In addition, by breaking down a larger analytical goal into a taxonomy of 

cognitive tasks, the PEI becomes a system of equations that can predict performance 

aspects of the analytic goal. This is done by describing superior outcomes for each 

cognitive tasks that contributes to the goal, and identifying the psychometric persona of 

analysts who undertake the successful completion of the goal. This persona describes 

how these analysts like to organize information; implementing the preferred 

organizational schema not only makes the interface seem more intuitive, it aids in 

superior visual analytics. 

 

 


