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Abstract

Background: A variety of DNA binding proteins are involved in regulating and shaping the packing of chromatin.
They aid the formation of loops in the DNA that function to isolate different structural domains. A recent
experimental technique, Hi-C, provides a method for determining the frequency of such looping between all distant
parts of the genome. Given that the binding locations of many chromatin associated proteins have also been
measured, it has been possible to make estimates for their influence on the long-range interactions as measured by
Hi-C. However, a challenge in this analysis is the predominance of non-specific contacts that mask out the specific
interactions of interest.

Results: We show that transforming the Hi-C contact frequencies into free energies gives a natural method for
separating out the distance dependent non-specific interactions. In particular we apply Principal Component Analysis
(PCA) to the transformed free energy matrix to identify the dominant modes of interaction. PCA identifies systematic
effects as well as high frequency spatial noise in the Hi-C data which can be filtered out. Thus it can be used as a data

driven approach for normalizing Hi-C data. We assess this PCA based normalization approach, along with several
other normalization schemes, by fitting the transformed Hi-C data using a pairwise interaction model that takes as
input the known locations of bound chromatin factors. The result of fitting is a set of predictions for the coupling
energies between the various chromatin factors and their effect on the energetics of looping. We show that the
quality of the fit can be used as a means to determine how much PCA filtering should be applied to the Hi-C data.

Conclusions: We find that the different normalizations of the Hi-C data vary in the quality of fit to the pairwise
interaction model. PCA filtering can improve the fit, and the predicted coupling energies lead to biologically
meaningful insights for how various chromatin bound factors influence the stability of DNA loops in chromatin.
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Background

Eukaryotes organize their DNA on a range of length scales
into a packaged structure known as chromatin. At the
smallest length scale, DNA is wrapped around histones to
form nucleosomes that aid the condensing of the DNA.
Histones can be chemically modified, that depending on
the type of modification, can mark the chromatin as either
being in a silent, heterochromatic state or active, euchro-
matic state. These histone modifications are passed down
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from one cell to the next, thus forming one part of a cell’s
epigenetic regulatory machine [1,2]. On longer length
scales chromosomes fold into topological domains in the
space of the nucleus. Such organization may contribute to
separate heterochromatin and euchromatin via the forma-
tion of sequestering loops (ranging from 1 to 500 kbp in
length) within each type of domain [2]. The likelihood of
long-range contacts between distant loci involves specific
factors/proteins participating in chromatin organization,
thereby mediating the contact frequency of specific DNA
loops [3,4]. Some of these proteins condense the DNA
making heterochromatin regions [5] while others are asso-
ciated with euchromatin [2,3,6-12]. It remains unclear to
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what extent their impact on looping is a result of being in
a particular epigenetic background, as euchromatin and
heterochromatin may influence long range interactions as
well.

The recent development of the High-throughput Chro-
mosome capture method (Hi-C) [13-18] has provided a
valuable tool to study the 3D organization of chromo-
somes on a genome-wide level. This method measures
the frequency of contact between any two segments along
the genome. Using this data, a variety of methods have
aimed to predict the underlying 3D structure of the chro-
mosomes [15,19-22]. On large scales, DNA confinement
plays a role in structuring the chromatin, and modeling
has shown that such effects can lead to inheritable terri-
tories [23]. Nevertheless, many studies have also shown
that the overall organization found in the Hi-C data cor-
relates with the underlying domain structure of the chro-
matin and the corresponding bound proteins in those
domains [13,14,20] as identified by Chromatin immuno-
precipitation (ChIP-chip or ChIP-seq). It has thus been
possible to intersect these two data sets to infer the
influence of chromatin associated proteins in long-range
interactions. As such, it has been shown that the insula-
tor protein CTCF facilitates looping between distant sites
provided the additional presence of Cohesin and/or medi-
ator complexes [24]. CTCF has been found to be enriched
at boundaries between heterochromatic and euchromatic
domains and sometimes aids the regulation of enhancer-
promoter interactions [3,24]. In Drosophila, a number of
additional insulator proteins that bind insulator sequences
have been identified: BEAF32, dCTCF, GAF, Zw5 and
Su(Hw). They have been found to interact with each
other thereby stabilizing long-range interactions among
distant insulator sites [25]. Such looping involves further
insulator protein cofactors such as CP190, Chromator or
Cohesin [14,24,25]. These insulator proteins form a net-
work of interactions that may contribute to structure and
isolate active domains from inactive chromatin within the
Drosophila genome [24].

The assembly of chromatin into silent domains has a
similar network of interactions that are confined within
such domains [14] or that involve long-range interactions
between distant silent domains [26]. Important contribu-
tors to these interactions within heterochromatin are the
PolyComb-Group (PCG) proteins that play key roles in
the spreading of the silent state upon binding of PCG and
co-factors to specific DNA sequences called Polycomb
Response Elements (PREs). Hence, analogous to how
insulators aid the structuring of euchromatin domains,
PCG proteins have their own associated set of interactions
that aid the formation of heterochromatin.

Here we aim to quantify the effective energetics of
interaction between different chromatin regulators from
the measured Hi-C contact frequencies. For this purpose
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it is crucial to disentangle the effect of different con-
tributing factors within the Hi-C data itself. The largest
contributing factor to the observed frequency of contacts
in Hi-C data is the distance dependent likelihood of con-
tact between loci due solely to the polymer nature of
the DNA. This distance dependent likelihood acts as a
background that helps to hide the specific contacts that
exist between chromatin regulatory factors. The distance
dependent scaling of this background contact frequency
has been shown to be consistent with a confined polymer
model [23,27-29]. Other contributing factors to Hi-C data
are systematic biases introduced as a result of the nature
of the experimental protocol. For example, it is known
that the Hi-C procedure generates biases due to the
sequence and length of contacting DNA segments [14].
Thus, depending on various DNA features, some loci may
be observed more frequently than expected. Several nor-
malization methods have been proposed to correct for
these biases [14,30,31] (for a Review see [32]). However,
which normalization method provides the most signifi-
cant information between the specific contact frequencies
and the underlying bound factors has not been surveyed
in detail before.

In this paper we introduce a method for transforming
the measured Hi-C contact frequencies into free ener-
gies. The method is based on an equilibrium statistical
mechanics approach, where we assume that the frequency
of contact between two genomic locations is related to the
free energy of forming that particular contact state. Due
to the additive nature of free energy, Principal Compo-
nent Analysis (PCA) provides a convenient tool for then
decomposing these free energies into a set of independent
modes of interaction. PCA identifies a length dependent
background looping energy, systematic biases, and then a
series of modes of increasing spatial frequency with which
to express the data. We can reconstruct the transformed
Hi-C data using the PCs, leaving those out that are due
to systematic biases as well as those which are high fre-
quency noise. Our approach is a data driven method for
normalizing Hi-C data.

We assess our normalization scheme, as well as two
other methods by fitting the free energy data to an interac-
tion model involving the locations of known DNA bound
chromatin factors. We model the energy of interaction
between two loci as a linear superposition of pairwise
interactions between all the bound chromatin factors at
those two locations. Given that the energy of interaction
and the bound occupancies for the various factors are
measured, the model can be fit to predict the couplings
between factors. Our fitted couplings show a complex
interplay of interactions between the chromatin factors,
capturing many known biological relationships. We use
the quality of fit of the model as a criterion to determine
how many PCs should be filtered. Interestingly we find
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that other normalization schemes that correct for various
biases are less well fit by this pairwise model than our PCA
based normalization scheme.

Methods

Genomic datasets

We have used the Hi-C dataset for Drosophila
Melanogaster reported in Sexton et al. [14]. This

data consists of a list of genomic locations for pairs of
sequences that were found to be in contact, and the
number of times each sequence pair was sequenced. We
have also downloaded genome wide binding profiles and
enriched binding regions from modencode.org for the
following chromatin factors (insulators: BEAF, CP190,
dCTCE, GAFE, ZWS5, epigenetic marks: H3K27Me3,
H3K4me3; dosage compensation complex: MOF;
PolyComb-Group proteins: Pc, Pho, PCL2; Cohesin:
SMC3; Other factors: Nurf, Chromator, Polll) [33].
All coordinates are with respect to Release 5 of the
Drosophila Melanogaster genome.

Free energy matrix

Hi-C measures the number of times two genomic loca-
tions come into contact. From this data, a contact matrix
can be built at a given level of resolution. The genome
is partitioned into non-overlapping bins of fixed size (i.e.
10 kb, 20 kb etc) and the contact matrix element, Cijis
the number of times sequences in bin i were found to be
in contact with sequences in bin j. Using the data from
Sexton et al. we have constructed a contact matrix at 10 kb
resolution for the Drosophila Melanogaster genome. (Fol-
lowing the approach of Sexton et al., for each sequence
pair we only count the contribution to a particular C;;
element once, rather than the number of times it was
sequenced. This is argued to remove some of the sequence
dependent bias in the Hi-C protocol).

Assuming the Hi-C measurements represent an equilib-
rium distribution, we can associate the contact frequency
between bins i and j with a free energy, F;;, via C;;
exp(—F;;/kgT). Thus we can transform the above contact
matrix into a matrix of free energies defined by,

By _ (Cij) + F 1)
ksT gL 0-

We set kgT = 1 for the sake of simplicity in the rest
of this study, and set Fy = 0 as it just defines a refer-
ence energy. This free energy contains both an energetic
(enthalpic) contribution, arising from specific interactions
between DNA bound factors, and an entropic contribu-
tion, that is due to the assortment of conformations that
the polymer of DNA can adopt. ( We have added a pseudo-
count of 1 to all C;; to fill in locations i, j where the contact
matrix was zero. Other methods to fill in missing values,
such as interpolating between F;, yield similar results).
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Normalizing the Hi-C contact matrix

The contact matrix created from the raw Hi-C data is
not corrected for any potential systematic biases (aside
from counting each sequence pair only once). Before
applying the free energy transformation, Eq. 1, we also
have used two separate normalization procedures that
correct for biases in the data. The first method, ICE
(see [30] for details), normalizes the contact matrix so
that each bin has the same number of interactions as any
other. The second method that we use was introduced in
Sexton et al. [14] and uses a probabilistic model to correct
for various systematic biases. This method does not nor-
malize all the bins to have the same number of interactions
genome-wide.

Free energy decomposition: principal component analysis
based normalization

The free energy, F;; between bin i and j, can be decom-
posed into two terms,

Fij = Fj_j + 8F;j, (2)

where Fj_; is the average free energy at a fixed genomic
distance, j — i, and is found by averaging over all such
distances genome-wide, and 8F;; is the free energy differ-
ence from this average that depends on the two interacting
bins. The genome-wide average free energy, is computed
via Fr = (1/N) >, Fii+k» where N is the number of F;
at a given separation k. We impose a fixed range on
the genomic separation, namely k = —k....k, with a
separation cutoff k..

The average free energy, Fi represents the dominant dis-
tance dependent energy and results from the free energy
cost for making a loop in the DNA with genomic distance,
k. (Additional distance dependences due to chromatin
structure may still remain in §F;;). Polymer physics sug-
gests that Fy ~ « log|k| [34], which grows logarithmically
with distance. This is akin to the probability of contact as
a function of separation for a random polymer going as
pr ~ |k|=*, with Fy o< —logpy.

The free energy fluctuations away from the average,
8F;j, will contain additive contributions from specific
interactions due to chromatin factors, biases due to the
protocol and potentially additional distance dependent
energies arising from differences in the polymer nature of
chromatin at different loci. Principal Component Analysis
(PCA) provides a method for decomposing data fluctua-
tions into a linear combination of independent modes. In
order to apply PCA, we need a set of observations. Here,
the observations correspond to the set of fixed length free
energy profiles, one for each bin in the genome. For each
bin, i, the corresponding free energy profile is the list of
interaction energies F;; . where k = —k ...k, and has a
fixed length of 2k + 1. ( We also only use those bins i that
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are +/ — k, = 60bins from the beginning and end of a
chromosome. Thus only a subset of all bins (10819 of the
11546 10 kb bins) are used in creating a list of free energy
profiles to be analyzed). Each principal component rep-
resents a particular spatial pattern of interaction energy
and its corresponding eigenvalue, the amount of variance
it accounts for in the free energy fluctuations. We find that
the spatial frequency of a given PC increases with decreas-
ing variance. The free energy between bin i and j can be
decomposed using PCA as
By =FBatiT[aep+gen]. O
where, ¢ is the o eigenvector and only depends on
the genomic separation k = j — i. The coefficient, C?,
is the projection of the i free energy profile onto the
ot eigenvector, C = > kP8 Fiirk — F). In the analy-
sis that follows we have used a genomic separation cutoff
of k., = 60 bins which at a resolution of 10 kb corre-
sponds to free energy profiles and eigenvectors that range
from [ —600, ..., 600]kb. Matrix elements corresponding
to bins i and j that have |i—j| > k. are excluded from analy-
sis. (We have found that for the Drosophila Hi-C data [14]
at a resolution of 10 kb, for |i — j| > 600 kb the statistics of
counts becomes too sparse and F is not well determined).
We can use PCA to filter out principal components
(PCs) that are identifiable with systematic biases or noise,
leading to a smoothened set of interaction energies, §F.
The specific interaction energy can be reconstructed via

1
;oL BB BB
0F; =20 [Ci $-i TG "%’] ’ (4)
B

where the sum is over only the eigenvectors that are not
identified with systematic biases and whose eigenvalues lie
above the noise cutoff, and j — i is restricted to the range
[_kcr cee rkc]'

Calculating chromatin coupling energies

We model the specific energy of interaction, 5F; 7 between
bins i and j as a sum of pairwise interactions between the
bound chromatin factors at those two locations. This can
be written as

5F) = X Juw [SIS) + 5181, (5)
=

where, 0 < Sf‘ < 1 is the occupancy of chromatin factor
w at bin i (and can be determined from binding data), and
Ju,v is the symmetric coupling energy between chromatin
factors w and v.

To obtain the S!', we use the locations of enriched
regions for a given factor u that are available for down-
load at modencode.org. A given enriched region has a
beginning and end genomic coordinate as well as a log-
odds score which can be thought of as a binding energy.
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For a given bin i in the genome, the total binding energy
E! for factor p is found by adding up the log-odds
scores for all of its enriched regions that overlap with
the bin. Statistical physics gives a prescription for con-
verting these binding energies into occupancies via S!' =
1/ (14 exp [—(E/ — €")/o"]) where we take € to be the
average binding energy over the bound bins, and o the
standard deviation which is related to an effective temper-
ature. Given the measured SFL(J and S¥, Eq. 5 presents a
linear system that can be fit directly to obtain the J,, ,. We
use least-squares fitting to solve this linear system.

Results and discussion

Using the analysis techniques described in ‘Methods” we
determine the long-range coupling energies, /,,,,, between
a set of chromatin factors by combining the frequencies of
interaction as measured by Hi-C and the factors’ genome-
wide binding locations. Drosophila makes an excellent
model organism on which to test this analysis as the mea-
sured Hi-C dataset [14] is of sufficient resolution (down
to 10 kb resolution) and there exist a number of mea-
sured binding sites for chromatin factors [12,33]. Here
we consider insulator associated proteins (BEAF, dCTCF,
GAFE, Zw5 and CP190) as well as Poly-comb group pro-
teins (Pc, PCL, Pho) that have, respectively, been shown
to be responsible for setting up euchromatic [24,25] and
heterochromatic [14,26] domains via looping interactions.
We also include factors such as Cohesin, Chromator and
Polll that are know to be associated with insulators. We
will show that our PCA methodology can be used to filter
out biases as well as high frequency noise in the Hi-C data.
Using our interaction model we assess our PCA normal-
ization procedure against other normalizations methods
based on how well it can fit the corrected Hi-C data. In
the end a biologically meaningful set of predictions for the
effective energetic couplings between chromatin factors is
made.

Distance dependent free energy

One of the challenges in analyzing Hi-C data is the exis-
tence of systematic biases due to the measurement pro-
tocol and several normalization procedures have been
put forward to correct for them. We wish to determine
whether these normalization procedures have any effect
on the predicted coupling energies between chromatin
factors. Using the original published Hi-C dataset for
Drosophila [14] we have constructed several different
contact matrices at a resolution of 10 kb (see Methods).
The contact matrix gives the number of times that a given
10 kb bin is in contact with another, non-overlapping
10 kb bin in the genome. We have made a contact matrix
based on the original observations, termed raw in what
follows. In Sexton et al. [14], they presented a hierarchical
probabilistic model to correct for various biases in the raw
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data (see Methods). We have applied this method to the
raw contact matrix leading to a normalized contact matrix
that we label hierarchical. We also apply another proposed
normalization procedure termed ICE [30] that normalizes
each genomic location to have the same total number of
observed interactions (see Methods). This leads to three
Hi-C contact matrices and they will be labeled as: raw,
raw + ICE, and hierarchical. Each of these will be trans-
formed into free energies and filtered by PCA to see if it
can improve the fit to the interaction model we presented
in Methods and detail below.

For each contact matrix we apply our free energy trans-
formation (see Eq. 1 in ‘Methods’), leading to three dif-
ferent free energy matrices that represent the energetics
of interaction between genomic locations. Regardless of
whether the contact matrix was normalized or not, the
dominant contribution to the free energy is due to the
distance dependent entropic cost of looping the DNA
polymer between two genomic locations. We determine
this distance dependent background free energy, Fy by
averaging together all free energy matrix elements F;; that
are at a fixed genomic separation k = j — i (see Methods).
In Figure 1 we plot Fy for the three different free energy
matrices used in the analysis. It can be seen that the free
energy associated with this looping increases with the
linear separation. We have fit each of the three average
free energies to the prediction for that of a random poly-
mer, namely that Fy ~ «log|k|, where « is the scaling
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exponent. For an ideal random polymer in 3D, the scal-
ing exponent would be predicted to be « = 3/2. From the
Drosophila Hi-C data, we find that the four matrices have
average free energies that have roughly the same scaling
(¢ = 1.140.1). This result is in agreement with that found
for other Hi-C datasets where, @ ~ 1. We now show how
the free energy fluctuations around the average can be fur-
ther decomposed into an independent set of interaction
modes using Principal Component Analysis (PCA).

PCA of free energy profiles
From each free energy matrix, we create a list of free
energy profiles, one for each genomic bin. A given
free energy profile shows how that particular genomic
segment interacts with the surrounding region (see
Methods). Besides the background free energy above, each
profile will have free energy fluctuations, §F, that are
potentially due to interactions between bound factors, or
systematic biases. We use PCA to identify the indepen-
dent contributions to the fluctuations in the free energy.
The top principal components (PCs) represent common
patterns of interaction that are present at many locations
in the genome. The aim is to then identify which PCs
represent systematic effects as well as those that are just
associated with noise in the Hi-C data. These can then be
filtered out to create a corrected set of free energy profiles.
We performed PCA on each of the three matrices. In
Figure 2 we show the top four principal components

0
raw
raw+ICE
—1}| = - hierarchical
-2
-3
—4}
-5
- 10°
and 1.12 for the raw, raw + ICE and hierarchical matrices.

10* 102

distance (bp)

Figure 1 Average free energy of interaction. The genome-wide average free energy, F, as a function of genomic separation (a 600 kb window at
10 kb resolution) for free energies derived from three contact matrices (shown in legend). All show that the average free energy cost associated with
forming a loop grows with the linear separation between genomic bins. Fitting a polymer model, Fx ~ « log |k| (see Methods) gives @ =1.09, 1.085
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(PCs) for the raw + ICE free energy matrix. Each PC
shows the variation in the free energy as a function of
the genomic separation from the bin located at k = 0.
Positive free energies correspond to repulsive interactions
whereas negative ones are attractive, and thus represent
stabilizing interactions. It should also be noted that for
each PC there is also the inverse interaction profile that
is obtained by multiplying the PC by —1. These PCs can
also be interpreted as a set of spatial modes with which
to represent the data, akin to a Fourier decomposition.
The characteristic spatial frequency of a PC increases as
the corresponding eigenvalue (variance) associated with it
decreases. Many of the PCs corresponding to small eigen-
values represent high-frequency noise. In what follows,
we show that this noise can be filtered out by recon-
structing the specific interaction energies (Eq. 4) without
including them in the sum. The PCs resulting from the
different free energy matrices are similar but do have key
differences as shown in Additional file 1: Figure S2. (We
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note that the top PCs still emerged if a smaller subsam-
ple of free energy profiles was used, reducing the effect
of nearby correlated bins, see Additional file 2: Figure S3).
For example, if ICE normalization has not been performed
on the raw matrix the first PC is an overall constant offset
since the bins of the free energy matrix have different
means. Also the spatial frequencies differed between the
PCs derived from the raw or raw + ICE matrices com-
pared to those from the hierarchical matrix. We attribute
this to the distance scaling correction that is applied in the
hierarchical normalization method. This will turn out to
have consequences in how well the interaction model fits
the hierarchical normalized Hi-C data.

Interaction profiles and chromatin structure

Prior PCA analysis on Hi-C data highlighted the exis-
tence of chromatin compartments, namely topological
domains that have interactions amongst themselves but
not with each other [13]. The insulator and polycomb

50 20 20

0
position (10kb)

50 40 20

(]
position (10kb)

Figure 2 Free energy principal components and chromatin-binding profiles. Shown are the first four principal components (A, B, C, D) calculated
genome-wide from the F;; matrix created from the raw + ICE contact matrix (top plots). Below each free energy profile are heat maps of the
genome-wide average binding profiles for the selected chromatin factors (see Text). The top heat map corresponds to the positive free energy
interaction profile (blue curve), and the bottom heat map for that of the inverse profile (red curve). Red regions in the heat maps represent
locations of higher occupancy and blue regions represent lower occupancy. The range of the heat maps goes from 0.0 (blue) to 1.0 (red).
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group factors of interest in this manuscript are thought
to interact to generate such compartmentalization. These
domains, which are strongly associated with euchromatin
or heterochromatin, can exist on a range of scales. Our
free energy PCs also show such a structure, with the
first (or second, depending on normalization) PC marking
a domain between such compartments. With increas-
ing number, and decreasing variance in free energy, the
PCs show such interactions at smaller and smaller spatial
scales. As such, PCs form a basis with which to decom-
pose a given energy interaction profile into various spatial
scales.

In order to help clarify the interpretation of the energy
interaction profiles represented by each PC, we look at the
distribution of bound chromatin factors associated with
each PC. In Figure 2, we show the PCs calculated from
the raw + ICE free energy matrix and the corresponding
average binding profiles of our selected chromatin factors
as heat maps. Each average binding profile was computed
using only those genomic locations where the specific
energy interaction profile had a significant projection onto
the given PC. In particular, the energy profile can have
either a negative or positive projection (see Additional file
3: Figure S1, B), and so we create two sets of bins: those
bins, i, that have projections C} > 20, and those with
projections C{ < —20, (corresponding to the inverse
PC profile), where o2 is the eigenvalue (variance) of the
a" PC. We then extract binding profiles (Sf‘ ) from the
genome-wide binding data of each chromatin factor that
are centered on each set of locations. These then get
averaged together to give the average binding profile that
shows the underlying chromatin structure associated with
the given principal component computed from the Hi-C
data.

For example, for the raw + ICE free energy matrix,
PC1 represents a domain boundary between euchromatin
(marked by H3K4me3) and heterochromatin (marked by
H3K27me3). Those genomic locations that have a positive
projection onto PC1 (middle heat map) have euchromatin
factors bound on the left and heterochromatin factors
bound on the right. Looking at the associated free energy,
euchromatic DNA shows a larger cost in free energy
(positive values) associated with looping likely due to it
having greater entropy, due to being more open and hence
more disordered. As such, PC1 may represent the mutual
exclusion of interactions between euchromatin and het-
erochromatin domains that are physically insulated from
one another [13,14]. Figure 2 shows that for the top PCs
derived from the raw + ICE matrix, strong correspon-
dences exist between the type of the interaction and the
underlying bound factors (i.e. locations that are bound
by insulator factors have attractive (negative) interactions
with other domains bound by insulators). We found sim-
ilar strong statistics (see Additional file 4: Figure S4) for
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the PCs derived from the raw free energy matrix, but
found much weaker correlations between the PCs and
underlying bound factors for the hierarchical matrix.

Coupling energies between chromatin factors

Using PCA we can filter out various PCs (using Eq. 4),
yielding corrected specific interaction energies S§F; J
between locations i and j (see Methods). For matrices not
treated with ICE, the first PC simply represents a DC off-
set that is present in each energy profile. This corresponds
to the biases identified by ICE. In reconstructing the spe-
cific interaction energies, dF; o we leave out this PC for the
non-ICEd matrices. Reconstructing the interaction ener-
gies using a subset of the remaining PCs, smooths the data
and filters out noise. We now assess how much filtering to
perform based on how well the pairwise interaction model
fits the data.

In Figure 3(A-C) we show the specific interaction ener-
gies for a portion of chromosome 2L. As can be seen PCA
filtering dramatically smoothens the data, highlighting
domains of attractive (blue) and repulsive interactions
(red). As a comparison we show the energies computed
from hierarchical normalized data for the same region.
The two normalized energy matrices agree in many
domains, but do possess differences, such as the size of
the interacting domain situated around 9 Mb. Many of
these interactions are due to specific contacts between
chromatin factors at the given loci. We highlight this con-
nection by showing the pairwise self contacts, Sf‘ S, for
the same region for the insulator BEAF and the poly-
comb factor Pc (Figure 3D,E). For example, some of the
attractive energies (blue region near 8Mb in the §F;; heat
maps) are likely due to interactions between insulators
(BEAF-BEAF domain in Figure 3D), whereas other attrac-
tive interactions (region between 5 Mb and 6 Mb) could
be due to interactions between the polycomb group of fac-
tors (Pc-Pc domain in Figure 3E). We now assess how well
the interaction energies are fit to a model that takes the
distribution of contacts between bound factors as input.

For each set of interactions energies, either filtered by
PCA or some other normalization method, we fit Eq. 5
to determine a fitted set of coupling energies J, ,. (We
have fit all the chromosomes at once, as well as chro-
mosome by chromosome, allowing us to determine how
much the fitted J’s vary by chromosome). We use x?2
and the Pearson correlation coefficient to determine how
much PC filtering, if any should be applied to the interac-
tion energies. (All of the fits are statistically significant, as
determined by a permutation test, which gave r ~ 0). In
Figure 4, we show that for the interaction energies derived
from the raw and raw + ICE matrices, that PCA filtering
can improve the quality of the fit. Figure 4A shows that
using the first 35 PCs leads to the best genome-wide fit
of the data by the model (for the non-ICED matrix, we
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Figure 3 Specific energies of interaction and associated chromatin factor contacts. Shown in (A, B, C) are the energies of interaction
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the interaction energies (A, B, €) with the locations of pairwise contacts (D, E) highlights how these contacts could be generating the observed
interactions.

also left out the DC offset PC). Interestingly, using ICE
reduced the overall quality of the fit compared to the raw
matrix, though PC filtering was able to improve the fit-
ting for both. This reduction in fit quality is potentially
not surprising as any normalization method is remov-
ing information present in the original data. We found
that applying any form of PC filtering to the interaction
energies derived from the hierarchical normalized matrix
always made the fit worse. As a summary, in Figure 4B,C
we show the chromosome by chromosome x? and Pear-
son correlation coefficient for the various fits of the model
to both PC filtered and unfiltered data. PC filtering of
the energies computed from the raw matrix give the best
overall fit. The distance dependent scalings applied in
the hierarchical normalization method lower the correla-
tion between the interaction energies and the underlying
bound chromatin factors, lessening the quality of the fit.
In Figure 5, we show the fitted coupling energies from
the fits to the raw, raw + PC filtered and hierarchical

data. As mentioned PCA filtering improved the fit, yet
the resulting /’s show an overall agreement between the
different data sets. Here we show the average /s over
all the chromosomes (left heat maps) and their associ-
ated standard deviations (right heat maps). The parameter
error estimates show that many of the couplings are con-
sistently predicted from one chromosome to the next.
An inspection of the fitted couplings that are consistent
across chromosomes show that many of the insulators
and factors that are linked to euchromatic domains have
attractive (negative) interactions, speaking to their abil-
ity to stabilize loops in such domains [24,25]. Many of
these have effective repulsive (loop hindering) interac-
tions with polycomb group proteins (PCL, Pc), though
some have attractive interactions with Pho. Other things
that are shared between these sets of J are the associ-
ations between BEAF, Chromator and Cohesin and the
transcriptional machinery factors, Polll and Nurf. Inter-
estingly, the predicted interactions between CTCF and
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such factors are more complex, highlighted by the effec-
tive positive interactions. We should also point out that
a given J represents a pair’s effect on looping and should
not be interpreted as a prediction of whether they interact
or not. Factors may very well interact (i.e. have attractive
protein-protein interactions) but yet have a destabilizing
effect on loop formation. We note that within both the
insulator and polycomb group, some pairs of factors are
predicted to effectively raise the energy of loop forma-
tion. We also point out that other models could also be
fit, for instance leaving out self-interactions, that may help
to reveal more specific interactions, though potentially
reducing the quality of the fit.

It should be recalled that these are interactions deter-
mined at a resolution of 10 kb, so factors that might
juxtapose side-by-side at boundaries that form on finer
length scales would get grouped together. Experiments

that probe at finer resolutions would be valuable in sorting
out potential conglomerated interactions. Nevertheless,
our findings highlight how using PCA can help improve
the quality of fit of Hi-C data to a model for chromatin fac-
tor interactions and that a consistent set of couplings can
be predicted, which can be explored experimentally.

Conclusions

In this paper we have described a method for normaliz-
ing Hi-C data using principal component analysis (PCA).
PCA decomposes the free energy into various contribu-
tions, including a distance dependent entropic free energy,
potential systematic biases, and specific energies of inter-
action potentially arising from DNA bound factors. We
assessed the performance of the PCA based normalization
method, along with two others, by fitting the corrected
data to a pairwise interaction model that took as input
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Figure 5 Chromatin factor coupling energies from fitting. The fitted coupling energies, J,,,,, between chromosome associated factors. The left heat
maps show the chromosomal average J's, and the right heat map the associated standard deviations in the average values. The following free
energy matrices were used: A) raw, B) raw + PC filtering (optimal number of PCs used was 35) and C) hierarchical.

the locations of bound chromatin factors. This allowed
us to determine the coupling energies between chro-
matin bound factors from the energies of interaction as
determined from Hi-C data. As a test case, we calcu-
lated the couplings between insulators, polycomb-group,
other chromatin factors and some of the transcriptional
machinery. These factors are responsible for setting up
the domains/compartments in the DNA, yielding the two
compartmental model that can broadly classify chromatin
structure. Recent work has shown that a simple A/B inter-
acting copolymer model can capture many of the observed
patterns found in Hi-C data [35]. Polymer simulations
including a simple insulator interaction has also shown

how compartments can be formed [36]. Our work, is a
first step toward trying to break apart the interactions
within such compartments into their constitutive parts.
The couplings found here could help further such simula-
tions by including a richer set of interactions. Of course,
this requires a reliable set of predictions for interactions
and we have shown that correcting the Hi-C data using
PCA, can improve the quality of the fit.

The methods presented here are readily applicable to
the Hi-C and bound factor data obtained in other organ-
isms, and should provide a common framework in aiding
the correction and ultimate functional analysis of such
data. Our work may thus provide the community with
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a valuable tool not only to predict the strength of Hi-
C interactions due to chromatin associated factors, but
also to better evaluate the specific variations encountered
depending on cellular contexts and/or conditions.

Additional files

Additional file 1: Figure S2. Principal component analysis on free energy
matrices. First five principal components derived from §F;; matrix. (A), (B),
(C) and (D) respectively represent the data from the contact matrices
raw + ICE, raw, hierarchical + ICE and hierarchial (see Methods).

Additional file 2: Figure S3. Sub-sampling yields similar PCs. First nine

principal components derived from the free energy profiles created from
the raw matrix. Shown in red are the PCs calculated from sub-sampling a
1/3 (= 3500) of the free energy profiles.

Additional file 3: Figure S1.PCA spectrum and projections. (A)
Spectrum of eigenvalues (variances) for the raw + ICE free energy matrix.
(B) Histogram of projection of bins in 8F;; on the first PC. (Left inset) Free
energy profile for a genomic location with a large negative projection and
(right inset) a location with large positive projection.

Additional file 4: Figure S4. Statistics between bound factors and free
energy principal components. Statistics on the correlation between the
PC's derived from the raw + ICE matrix with the selected chromatin factors.
For each binding factor and each PC, the Kolmogorov-Smirnov test, was
performed to test the projections for all bins bound by that factor to those
that were not. The first column is the P-value, and the next column is the
percentage of bins bound by the factor with projections > 2.0 and the last
column represents fraction of bins bound by the factor with projections

< —2.0 projection.
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