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Abstract 

There is now an extensive literature on modeling the implied volatility surface (IVS) as a function 

of options’ strike prices and time to maturity. The polynomial parameterization is one of these 

approaches and it provides a simple and efficient way for practitioners to estimate implied 

volatility. This project tests the predictive capability of this methodology in the post-financial crisis 

market. Using data for the period from July 1st, 2012 to June 30th, 2015 for European puts and 

calls of the S&P 500 index options, we estimate a vector autoregressive model to capture the 

dynamics of the IVS. Our results show that this methodology has better predictive capability on 

IVS of index options in post-financial crisis market than on IVS of equity options in pre-financial 

crisis period. 

Keywords:  Volatility surface; Volatility dynamics 
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1. Introduction 

Volatility has always been a central topic for measuring risk in financial market. Accurate 

estimation can contribute to good performances in speculation and hedging. The introduction of 

implied volatility surface (IVS) is one of the methods to analyse volatility across options’ strike 

prices and time to maturity. Thus, various models of surface construction and its dynamics were 

developed and have been improved over time.  

A recent paper named “Can we forecast the implied volatility surface dynamics of equity options? 

Predictability and economic value tests” (Bernales and Guidolin, 2014) examined whether 

dynamics of the IVS of individual equity options contains exploitable predictability patterns. They 

used a polynomial deterministic model to construct IVS and fitted a vector autoregressive model 

to estimate dynamics of IVS from January 4, 1996 to December 29, 2006. They did not include 

the data during financial crisis, which is an outlier by historical standards. Their result indicated 

that this methodology is effective in estimating IVS of equity options and predicting its dynamics. 

As proved by Goncalves and Guidolin (2006), this methodology also works for IVS of index 

options before financial crisis.  

However, five years after financial crisis, the market has changed in a number of ways as US 

economy kept growing but slowed down, US Federal Reserve cut down interest rate and kept it at 

a low level, and S&P 500’s bull market continued for four years. Therefore, the predictability of 

IVS in post-financial crisis market and predictive capability of this approach need to be tested and 

that is what we aim to achieve in this paper.  
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This project uses the data of index options quoted in American market after financial crisis, from 

July 1st, 2012 to June 30th, 2015. To model IVS of index option and its dynamics, we follow the 

same methodology adopted by Bernales and Guidolin (2014). There are also some alternative ways 

of modeling volatility surface, such as non-parametric model (Burke, 1988), semi-parametric 

model (Borovkova and Permana (2009) and Heston’s SV model (1993). However, according to 

Goncalves and Guidolin (2006), the polynomial deterministic approach introduced by Dumas et 

al. (1988) yields a better fit to option data. Another advantage of this methodology is that “all the 

explanatory variables are fully observable and correspond to simple transformations of key 

contract parameters.” (Bernales and Guidolin, 2014) Nevertheless, such parametrizations has 

limited performance in estimating IVS of options with extremely long or short time to maturity as 

well as options deep in the money or deep out of the money, so before fitting the surface we filter 

the data to eliminate those options. 

Our results show that the polynomial deterministic model adequately fits observed data after 

financial crisis and the vector autoregressive model provides effective prediction about dynamics 

of IVS, which is consistent with existing literatures.  

This paper is organised as follows: Section 2 reviews the literatures of IVS and its dynamics 

modeling. Section 3 describes the data and summary statistics. Section 4 introduces the parametric 

model used for IVS modeling and results of estimation. Section 5 presents the vector 

autoregressive model used to capture the dynamics of IVS and results of back testing. Section 6 

gives conclusions and future work. 
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2. Literature Review 

The creation of Black-Scholes model (1973) contributes to the option pricing method, which is 

widely used by traders in financial markets. However, the assumptions of this model are so 

unrealistic, making it difficult to satisfy the real market conditions. These assumptions include a 

continuous-time economy, same lending and borrowing rates, no taxes and no short selling, etc. It 

has been criticised that the BS model can be biased in predictable ways, owing to the constant 

volatility and lognormal distribution assumptions (Hull and White, 1987). This leads to the 

constant underestimation of the option value.  

Other than pricing procedure, practitioners also use BS model to derive the implied volatility (IV) 

for trading purpose. Similarly, as stock returns are likely to show skewness and fat tails rather than 

following a normal distribution, it is dangerous to have a blind trust in this implied volatility. This 

is in line with early study (Canina and Figlewski, 1993), stating that bias occurs when utilising IV 

to predict future volatility, as their empirical evidence shows no correlation between IV of S&P 

100 index options and future realised volatility, thus IV provides little incremental information 

beyond historical volatility. In contrast, Jorion (1995) and Fleming (1998) believe that volatility 

implied from option price offer relevant information in terms of future volatility, and practitioners 

can use it as a good estimate of future volatility. The capability of predicting IV is particularly 

critical in hedging with complex derivatives because IV predictions do not rely on the historical 

price or volatility due to instantaneous adjustment of new information in option price. In addition, 

Fengler (2005) proves that predicting IV is more effective than time-series based method in 

predicting future volatility. Recent paper also agrees with the predictability of IV in foreign 

exchange, stock and bond market (Busch, Christensen, and Nielsen, 2011). 
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Furthermore, when plotting IV against strike price with a fixed maturity, a smile pattern can be 

observed, reflecting fat tails in the return distribution. This IV smile also varies across different 

time to maturity and over different periods (Homescu, 2011). The variation of IV across different 

strike prices and time to maturity is widely referred as the implied volatility surface (IVS). Unlike 

estimates based on historical data, IVS is broadly accepted as a variable that is assumed to offer 

the current insight of market risk (Bakshi et al., 2000). Therefore, IVS becomes a useful tool for 

trading analysis. Traders can use actively traded options with the full range of the strike prices and 

time to maturity to value a specific option that is not easily visible in the market, and they can 

assure their option price is consistent with the market, without violating no-arbitrage constraint. 

They also use it to hedge against potential changes in the IVS or changes in the underlying prices 

(Daglish, Hull and Suo, 2007). Therefore, market makers continuously screen and bring their IVS 

up-to-date, and risk management reviews the movement of the IVS to learn the effect of a large 

market movement on entire portfolio (Fengler, Hardle and Mammen, 2007).  

In order to implement the IVS for application in a realistic way, a suitable construction model is 

needed. One widely accepted way is to build the volatility surface using stochastic volatility model 

(Heston 1993). This is a closed-form solution to price options, assuming volatility is a stochastic 

process. It aims to overcome the weakness regarding skewed return in the Black-Scholes model. 

So one can describe the option model in terms of the first four moments of the spot return, and it 

can be extended to price stock options, bond options, and currency options. Further extension of 

Heston model to a multifactor volatility process, which considers correlations between assets’ 

returns and their volatility, better fits the smile effect and offers more flexibility (Fonseca, Grasselli 

and Tebaldi, 2008).  
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While the stochastic volatility calibrates the longer time to maturity well, volatility surface based 

on Levy process handles short-term skew better. Nevertheless, it is challenging to calibrate a Levy-

based model in practice. It has been shown that spontaneous calibration of Levy process with 

several maturities produce less precise result of implied volatility smile, compared with that of 

single maturity (Cont and Tankov, 2006). Konikov and Madan (2002) also suggest imposing strict 

conditions on homogeneous Levy processes, such as constant risk-neutral variance and inverse 

relationship between the term and kurtosis. Therefore, considering the implied volatility of options 

with different time to maturity, it is difficult to maintain the empirical success of Levy process. 

Volatility surface based on parametric method has been also extensively used in the literatures.  

Ncube (1996) once used OLS regression to perform an empirical estimation of time-varying 

volatility, indicating that this technique is superior to benchmark method for estimation when 

analysing FTSE 100 Index European options. One paper also examines implied volatility of the 

FTSE options by fitting a parametric model to forecast the surface across moneyness, and suggests 

improving this model for more precise estimation of the recent volatility expectation (Alentorn, 

2004). Practitioners also designed a model of stochastic volatility inspire (SVI) parametrization to 

study the surface (Gatheral, 2006). However, arbitrage may exist in the SVI and many recent 

papers attempt to study how to build a non-arbitrage interpolation of implied volatilities (Fengler 

2009; Glaser and Heider 2012). For example, Gatheral and Jacquier (2014) calibrate the SVI 

parameterization through analysing recent S&P 500 option data, aiming to avoid butterfly and 

calendar spread arbitrage. Bloch (2012) also introduces a new parametric model using weighted 

shifted lognormal distributions in generating volatility surface. Specifically, instead of modeling 

volatility itself, Bloch decided to model the probability distribution function (PDF) which could 

be converted to option price and then implied volatility. 
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Many research papers study how to use non-parametric representations for surface modelling as 

well. In this method, researchers use interpolation technique to smooth option prices and keep the 

shape of price function. It works well whether the sample satisfies the convexity and decreasing 

constraints or not, and empirical study on S&P 500 index option shows that this method is accurate 

and robust (Wang, Yin and Qi, 2004). Rather than focusing on prices, directly smoothing implied 

volatility with the help of constrained local quadratic polynomial function provides another 

perspective for nonparametric modelling (Benko et al, 2007). In order to overcome the estimation 

bias of non-parametric design due to the large bandwidth in the time-to-maturity dimension, 

Fengler, Hardle and Mammen (2007) introduce a semi-parametric factor model that approximates 

the IVS in a finite dimensional function space is introduced and studied using DAX index option 

data. 

The attractiveness of IVS is that its movement can be predictable, which facilitates the process of 

forecasting in the trading market. Practitioners use option prices to derive the forward-looking 

facts regarding the asset returns and realised volatility. Likewise, time variation in the IVS can be 

successfully captured using statistical model, and the predictability may provide economic benefits 

(Gonçalves and Guidolin, 2006). Researchers discuss several models that describe dynamics of 

IVS in their papers. One of them is a simple vector autoregressive model that explains information 

in past dynamics. Bernales and Guidolin (2014) use this model as a benchmark to study the 

dynamics of equity and index options IVS. The ad-hoc “Strawman model”, which is a simple 

random walk process for the parameters of deterministic IVS, uses current values to predict the 

shape of IVS. Another powerful technique for forecasting is Principal Components Analysis 

(PCA), which is a non-parametric method to describe the dynamics of a number of variables, and 

often used in a linear regression as predictors (Konstantinidi et al., 2008). A recent paper also 
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presents an innovated model assuming most traders build their expectation on implied volatility 

based on the spot price. Then spot price could drive ATM volatility, skewness, and curvature and 

these three parameters could explain IVS (Bloch, 2012). 

 

3. Data and Summary Statistics 

As mentioned before, we are trying to check if the methodology used by Bernales and Guidolin 

(2014) in modeling IVS and its dynamics will work for index options in post-financial crisis 

market. Therefore, we go through almost the same procedure as they do in data collection and 

cleaning but make a few adjustments because of the limitation of our data source. 

Firstly, we download the data of all the Put and Call options of S&P 500 traded in CBOE from 

OptionMatrix of WRDS database, which includes Price Date, Expiration Date, Strike Price, 

Highest Ask Price, Lowest Bid Price and Implied Volatility. Bernales and Guidolin (2014) took 

both American and European style while we only take European style. In addition, they calculate 

the implied volatility with binomial model for American options and BS model for European 

options, while we directly use the implied volatility provided by WRDS. The period of their data 

is between 1996 and 2006 because financial crisis is considered as outliers in the historical time 

series. Our data period is from July 1st, 2012 to June 30th, 2015. The reason we choose this period 

is that we attempt to examine the predictability of IVS in post-financial crisis market and we have 

to collect enough data for back testing. Usually, we need at least 300 observations to conduct 

regression and one day forecast. With rolling horizon technique, we need 600 observations to 

implement one-day forecast for 300 times. That is why we get the option data of last three years. 

Bernales and Guidolin (2014) also get the data of 150 most frequently traded equity options as 
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they focus on providing the dynamics of implied volatility of equity options taking into account 

the cross-section effect from Index options.  

Secondly, we make a few calculations using the data we extract for the purpose of filtering and 

regression later. Time to maturity is the number of days between price date and expiration date 

divided by 360. The option price is the average of highest ask price and lowest bid price and the 

spot price of index is downloaded from Bloomberg. We also get the policy rate of each day in the 

past 3 years from Federal Reserve System and match it with the price date of all the options we 

have. For some price dates, the interest rate information is missing. Therefore, we assume it equal 

to the last available interest rate. For policy rate of each day, the format we get is the spot rate of 

1 month, 3 months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years and 30 

years. Then, we fit a spot curve for each sequence and find the spot rate of the expiration day on 

the spot curve. Because the spot rates we get from the Federal Reserve System are calculated with 

the yields of government bonds, we assume the spot rate to be semi-annually compounded. Then 

the discount factor between option price date and expiration date would be: 

𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟 = 1 1 + 𝑟 2 1∗3 

where 𝑟 is spot rate and 𝑇 is time to maturity in years. 

Lastly, we filter the data according to four exclusionary criteria, as same as what Bernales and 

Guidolin (2014) did in their research. First, we eliminate all the options for which the prices fall 

outside of the no-arbitrage bounds, which are calculated by put-call parity relationships: 

𝐹𝑜𝑟	𝐶𝑎𝑙𝑙	𝑂𝑝𝑡𝑖𝑜𝑛𝑠:	𝑚𝑎𝑥	(0, 𝑆A − 𝐾 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟) ≤ 𝐶 ≤ 𝑆A 

𝐹𝑜𝑟	𝑃𝑢𝑡	𝑂𝑝𝑡𝑖𝑜𝑛𝑠:	𝑚𝑎𝑥	(0, 𝐾 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟 − 𝑆A) ≤ 𝑃 ≤ 𝐾 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟 
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where 𝐾 is strike price and 𝑆A is spot price of the index. Secondly, we exclude the option contracts 

expiring in less than 6 days and more than one year because the IVS does not capture implied 

volatility of options with either very long or very short time to maturity well. Then, we eliminate 

option contracts whose moneyness is less than 0.9 or more than 1.1, since the prices of deep ATM 

or OTM options are usually outliers in observations. The last exclusionary criteria is option price 

under $0.375. Same with Bernales and Guidolin (2014), we keep the option contracts with zero 

trading volume because as long as the quotes are shown on trader’s monitor, they will affect 

traders’ expectations of the market. 

Table 1 

Summary statistics of implied volatility across moneyness and time to maturity for S&P500 options 

 Short (6-120 days) Medium (120 -240 days) Long (240-360 Days) 

K/S Frequency Mean 
(IV) 

SD 
(IV) Frequency Mean 

(IV) 
SD 
(IV) Frequency Mean 

(IV) 
SD 
(IV) 

[0.9,0.94] 17.10% 20.82% 4.11% 1.76% 18.42% 1.74% 1.46% 18.68% 1.62% 
(0.94,0.98] 20.36% 16.88% 2.92% 1.80% 16.53% 1.72% 1.46% 17.32% 1.63% 
(0.98,1.02] 21.01% 13.15% 2.49% 1.91% 14.59% 1.66% 1.44% 15.86% 1.59% 
(1.02,1.06] 17.50% 11.33% 2.49% 1.81% 13.00% 1.66% 1.44% 14.60% 1.66% 
(1.06,1.1] 7.91% 12.67% 4.61% 1.61% 11.71% 1.76% 1.44% 13.46% 1.66% 

Table 1 is the summary of our filtered data and it shows the differences between implied volatility 

across moneyness and time to maturity. To give a big picture of the data we use, we add the 

measurement of frequency, which is defined by: 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑝𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑡ℎ𝑖𝑠	𝑔𝑟𝑜𝑢𝑝
𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑜𝑝𝑡𝑖𝑜𝑛𝑠	𝑖𝑛	𝑡𝑜𝑡𝑎𝑙  

We find the most frequently quoted options are the ATM options with short time to maturity. 
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4. Modeling Volatility Surface 

The model we use to construct implied volatility surface is the same with the model adopted by 

Bernales and Guidolin (2014), proved to be effective in capturing characters of IVS in different 

asset classes and periods. This model assumes that the implied volatility can be explained by 

moneyness and time to maturity and its advantage is that all the explanatory variables are 

observable in the market, which is beneficial in forecasting and simulation. This deterministic 

linear function is  

𝜎N 𝑀, 𝑇 = 𝛽QAN + 𝛽RAN 𝑀 + 𝛽1AN 𝑀1 + 𝛽SAN 𝑇 + 𝛽TAN (𝑀 ∗ 𝑇) + 𝜀NA 

where 𝜀NA  represents the random error term that is assumed to be white noise. 𝜎N 𝑀, 𝑇  is the 

observed implied volatility of the option with respect to moneyness 𝑀 and time to maturity 𝑇. 

𝛽QAN , 𝛽RAN , 𝛽1AN , 𝛽SAN , 𝛽TAN  are the parameters we want to estimate. “𝛽QAN  is the intercept coefficient in the 

Black and Scholes world, where volatility is constant. The moneyness slope of IVS is characterised 

by the coefficient  𝛽RAN . 𝛽1AN  captures the curvature of the IVS in the moneyness dimension. 𝛽SAN  

reflects the maturity slope and 𝛽TAN  describes the possible interactions between the moneyness and 

time to maturity dimensions.”(Bernales and Guidolin, 2014). In previous researches, there are 

different ways in describing the moneyness and the one we use here is the time-adjusted 

moneyness: 

𝑀 =
𝑙𝑛𝐾 𝑆A 𝑑𝑖𝑠𝑐𝑜𝑢𝑛𝑡	𝑓𝑎𝑐𝑡𝑜𝑟

𝑇
 

Then, we estimate the IVS for each trading day in the past 3 years and we get the time series of all 

coefficients as well as R-Square and RMSE (root-mean-square error). The statistics are calculated 



18	
	

and listed in Table 2. The mean of R-square is 89.5% with a standard deviation of 5.5% and the 

mean of RMSE is 0.012 with standard deviation of 0.003. 

 

 

Figure 1. Best and Worst Estimated IVS according to measurement of R-square and RMSE 

Compared with the research of Bernales and Guidolin (2014), R-square of our estimation is higher 

and RMSE is lower. Moreover, the standard deviations of these two measurements are relatively 

small. It means that the quality of estimation in this model is better and more stable in post-

financial crisis market than before. Same with the research of Bernales and Guidolin (2014), the 



19	
	

estimation indicates that the implied volatility is decreasing as a function of moneyness as well as 

the interaction between moneyness and time to maturity while it is increasing as a function of time 

to maturity and square of moneyness. Using Ljung-Box test with 1 and 3 lags, we find that all the 

coefficients show significant autocorrelation, which justifies our adoption of VAR model in 

estimation the dynamics of IVS. 

Table 2 

Summary Statistics of deterministic IVS model coefficients  

Coefficient Mean SD Skewness Kurtosis Min Max Times of Non-Sig Lag1 Lag3 
beta0 0.13 0.02 1.01 4.09 0.08 0.21 0 505 1221 
beta1 -0.12 0.09 -0.47 2.25 -0.34 0.06 33 164 426 
beta2 0.04 0.02 -0.49 4.82 -0.05 0.10 15 485 1172 
beta3 0.45 0.20 -0.15 2.20 -0.01 0.93 3 164 402 
beta4 -0.39 0.21 0.26 2.29 -0.88 0.16 27 151 391 
R-Square 0.89 0.05 -0.49 2.58 0.68 0.98  143 392 
RMSE 0.01 0.00 0.62 3.82 0.01 0.03  108 250 

 

5. Modeling Dynamics of IVS 

In the research of Bernales and Guidolin (2014), they focus on modeling the dynamics of equity 

options’ IVS with VARX model, taking into account the cross section effect from IVS of index 

options. They also compare the predictive capability of VARX model with three benchmark 

models, which are VAR model, ad-hoc ‘Strawman’ model and random walk model. As we are 

trying to model the dynamics of index option IVS, VAR model is our best choice because it is 

closest to Bernales and Guidolin’s design. The VAR model we use is: 

ΒA = Υ + ΦYΒAZY

[

Y\R

+ ΕA 
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where  ΒA = βAQ, βAR, βA1, βAS, βAT
_
 is the vector of estimated  coefficients, Υ is constant vector 

whose size is the same with ΒA and ΦY is 5*5 matrix of coefficients. Same as what Bernales and 

Guidolin (2014) do with IVS of equity options, we adopt 3 as the number of lags in our regression. 

Using rolling horizon technique, we want to conduct forecast as many times as we can to test the 

predictability of this methodology. That means we use ΒR, Β1, ΒS, …ΒSa1, ΒSaS for regression and 

forecast ΒSaT with ΒSaR, ΒSa1, ΒSaS. Then, we use Β1, ΒS, …ΒSaS, ΒSaT for regression and forecast 

ΒSab with ΒSa1, ΒSaS, ΒSaT….With 663 coefficient vectors, we can conduct forecast like this for 

300 times. With each forecast, we can predict the IVS of the next day. On the forecast surface, we 

can find the forecast IV of all the options traded on that day and then, we could get: 

𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡:	ΣSaT, ΣSaT, … Σaa1, ΣaaS 

𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛:	ΣSaT, ΣSaT, … Σaa1, ΣaaS 

where ΣN = 𝜎NR, 𝜎N1, 𝜎NS, … , 𝜎N
ef _  is the vector of forecast IV on 𝑖  day and ΣN =

𝜎NR, 𝜎N1, 𝜎NS, … , 𝜎N
ef _ is the vector of observed IV on day 𝑖 . 

We then examine the predictability of IV with two measures: RSME (root-mean-square error) and 

MAE (mean absolute error) which are defined by: 

𝑅𝑀𝑆𝐸 =
𝜎N
Y − 𝜎N

Y 1ef
Y\R

aaS
N\SaT

𝑛NaaS
N\SaT

 

𝑀𝐴𝐸 =
𝜎N
Y − 𝜎N

Yef
Y\R

aaS
N\SaT

𝑛NaaS
N\SaT
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By comparison, both measurements of prediction in our research are lower than that in Bernales 

and Guidolin’s research. 

Table 3 

Performance of model on IVS of equity (1996-2006) and SPX (2012-2015) options 

Predictability Measurement RMSE MAE 
Equity IVS Dynamics(1996-2006) 0.046 0.037 
SPX IVS Dynamics(2012-2015) 0.018 0.012 

 

6. Conclusion and Future Work 

According to our research, the parametric deterministic model and vector autoregressive model 

have better predictive capability on IVS of index options in post-financial crisis market than IVS 

of equity options in pre-financial crisis market, which could be explained by following reasons. 

The first reason is that, in Bernales and Guidolin’s research, polynomial deterministic model fits 

the IVS of index options better than equity options because a single stock contains specific risk 

besides systematic risk and its volatility is more difficult to capture. Moreover, equity options are 

usually less liquid than index options, resulting in larger bid/ask spread, which makes the price of 

equity options less sensitive to market expectation. The other reason why this approach captures 

dynamics of IVS better in post-financial market is that the market after financial crisis is much 

more active than before. The average number of daily bid/ask quotes from 2005 to 2006 is 635, 

while it is 1962 from 2014 to 2015. More observations help us to capture the features of IVS and 

its dynamics more precisely, making great contribution to better performance of this methodology. 

However, this approach provides small error in predicting IVS in post-financial crisis market might 

also because we only use data of three years, while previous research adopts ten years’ data. 
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Volatility clustering enables model to fit observations better in short period. Moreover, although 

this project adopts the same approach with previous research, our data source and data cleaning 

procedure are not exactly the same with theirs. This might also cause the difference in predictive 

capability of this approach. 

In Bernales and Guidolin’s research, they adopt the GLS (Generalized Least Square) method in 

estimating the parametric model, which, according to Hentschel (2003), has better performance in 

IVS modeling. Therefore, researchers could test the predictability of this methodology under 

different fitting procedures in the future.  
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