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Abstract

Medical image segmentation, the task of partitioning an image into meaningful parts, is
an important step toward automating medical image analysis and is at the crux of a va-
riety of medical imaging applications, such as computer aided diagnosis, therapy planning
and delivery, and computer aided interventions. However, existence of noise, low contrast
and objects’ complexity in medical images preclude ideal segmentation. Incorporating prior
knowledge into image segmentation algorithms has proven useful for obtaining more accu-
rate and plausible results on targeted objects segmentation.

In this thesis, we develop novel techniques to augment optimization-based segmentation
frameworks with different types of prior knowledge to identify and delineate only those
objects (targeted objects) that conform to specific geometrical, topological and appearance
priors. These techniques include employing prior knowledge to segment multi-part objects
with part-configuration constraints and encoding priors based on images acquired from
different imaging equipment and of differing dimensions. Our objective is to satisfy two
important aspects in optimization-based image segmentation: (1) fidelity-optimizability
trade-off, and (2) space and time complexity.

Particularly, in our first contribution, we adopt several prior information to build a faithful
objective function unconcerned about its convexity to segment potentially overlapping cells
with complex topology. In our second contribution, we improve the space and time complex-
ity and augment the level sets framework with the ability to handle geometric constraints
between boundaries of multi-region objects. In our first two contributions we opt for ensur-
ing the objective function is flexible enough (even if it is non-convex) to accurately capture
the intricacies of the segmentation problem. In our third contribution, we focus on opti-
mizability. We propose a convex formulation to augment the popular Mumford-Shah model
and develop a new regularization term to incorporate similar geometrical and distance prior
as our second contribution while maintaining global optimality. Lastly, we efficiently incor-
porate different types of priors based on images acquired from different imaging equipment
(different modalities) and of dissimilar dimensions to segment multiple objects in intraop-
erative multi-view endoscopic videos. We show how our technique allows for the inclusion
of laparoscopic camera motion model to stabilize the segmentation.
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Chapter 1

Introduction

1.1 Thesis Context

Image segmentation is the process of partitioning an image into smaller meaningful regions
based in part on some homogeneity characteristics. The goal of segmentation is to delineate
(extract or contour) target objects for further analysis. Medical image segmentation (MIS)
is at the crux of a variety of medical imaging applications, such as computer aided diagnosis,
therapy planning and delivery, and computer aided interventions. For example, segmenta-
tion of organs or tissue types in medical images is a necessary first step for measuring tumour
burden (or volume) from positron emission tomography (PET) or computed tomography
(CT) scans [Hatt et al., 2009, Bagci et al., 2013], analyzing vasculature from magnetic
resonance angiography (MRA) (e.g. measuring tortuosity) [Bullitt et al., 2003, Yan and
Kassim, 2006], grading cancer from histopathology images [Tabesh et al., 2007], perform-
ing fetal measurements from prenatal ultrasound (US) [Carneiro et al., 2008], performing
augmented reality in robotic image guided surgery [Su et al., 2009,Pratt et al., 2012], build-
ing statistical atlas for population studies and voxel-based morphometry [Ashburner and
Friston, 2000], etc.

Despite great advances in image segmentation, the accurate automatic (or even semi-
automatic) partitioning of medical images with complex configurations of tissues and objects
remains a challenging problem. Several traditional segmentation algorithms have been
proposed for assigning labels to pixels; these include thresholding [Otsu, 1975,Sahoo et al.,
1988], region-growing [Adams and Bischof, 1994, Pohle and Toennies, 2001, Pan and Lu,
2007], and watershed [Vincent and Soille, 1991,Grau et al., 2004,Hamarneh and Li, 2009].
Existence of noise, low contrast and objects complexity in medical images typically cause
the aforementioned methods to fail. In addition, all these traditional methods assume that
objects’ entire appearance have some notion of homogeneity while this is not necessarily the
case for complex objects. This is where more elaborate prior information about the targeted
objects becomes helpful. Many objects in medical images consist of multiple regions, where
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each region has a meaningful geometric relationship, or interaction, with other regions of
the object. For example, in histology and microscopy images, each cell consists of a cell
membrane, nucleus and nucleolus, where the cell membrane contains the nucleus, and the
nucleus contains nucleolus. These interactions between an object’s regions have often been
ignored in microscopic histology image segmentation or enforced via some ad-hoc post-
processing (e.g. via parameter sensitive morphological operations or thresholding) [Wu
et al., 2012,Mao et al., 2006,Al-Kofahi et al., 2010,Yang et al., 2008].

To overcome noise and handle complex objects in medical images, many attempts have
been made to incorporate prior knowledge into the task of segmentation, since inclusion of
shape, appearance and topological priors have proven useful for obtaining more accurate
and plausible segmentation results. The majority of state-of-the-art image segmentation
methods are formulated as optimization problems, i.e. energy minimization or maximum-a-
posteriori estimation, mainly because of their: 1) formal and rigorous mathematical formu-
lation, 2) availability of the mathematical tools for optimization, 3) capability to incorporate
multiple (competing) criteria as terms in the objective function, 4) ability to quantitatively
measure the extent by which a method satisfies the different criteria/terms, and 5) ability
to examine the relative performance of different solutions.

In energy-based segmentation problems two important aspects need to be considered:
(1) the trade off between fidelity and optimizability [McIntosh and Hamarneh, 2012,Ulén
et al., 2013], and (2) space and time complexity. Fidelity describes how faithful the energy
function is to the data and how accurate it can model intricate problem details. Optimiz-
ability determines how easily we can optimize the objective function and attain the global
optimum. Generally, the better the objective function models the problem (e.g. by us-
ing more prior information), the more complicated the objective function becomes and the
harder it is to optimize. If we instead sacrifice fidelity to obtain a globally optimizable
objective function, the solution (albeit global) might not be accurate enough for our seg-
mentation purpose. Ideally, an energy function is designed in a way that is faithful to the
underlying segmentation problem and easy to be optimized at the same time.

The second aspect is the space and time complexity. In practice, the space and time
complexity become important when we deal with very large images which is often the case
in medical image analysis, e.g. 100s of millions pixels of microscopy images, and 3D volume
scans.

1.2 Thesis Contributions

In this thesis, we will explore incorporating prior knowledge into medical image segmen-
tation frameworks to better model the underlying segmentation problems (increase the
fidelity) while considering the optimizability and space and time complexity. By incorporat-
ing prior expert information into segmentation frameworks, we are able to segment specific
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objects (targeted objects) solely and improve the accuracy and plausibility of the results
especially when training data is unavailable. Our objective is to explore the two afore-
mentioned aspects in optimization-based image segmentation: (1) fidelity-optimizability
trade-off, and (2) space and time complexity.

Particularly, after giving a concrete overview of the different types of prior expert knowl-
edge that have been utilized to improve image segmentation in Chapter 2, in our first contri-
bution (Chapter 3), we adopt several prior information to segment overlapping multi-region
cells in microscopy and histology images [Nosrati and Hamarneh, 2013]. Most existing
methods have only considered simple structured cells and ignored their complex composi-
tion [Ali et al., 2011,Cheng et al., 2011,Bernardis et al., 2011]. In addition, previous works
addressed cell overlapping, for single-region cells using post-processing techniques [Wu et al.,
2012,Yang et al., 2008,Mao et al., 2006] (e.g. finding connected components and using pa-
rameter sensitive morphological operations [Mao et al., 2006]). Unlike previous works, in
this work we build a faithful objective function, unconcerned about its convexity, to segment
potentially overlapping multi-region cells with complex topology. Our framework allows for
leveraging a variety of expert knowledge or priors like shape, appearance, edge polarity,
pose, topology, adjacency, and user interaction. To optimize such complex objective func-
tion and to deal with imminent problems like initialization and local optima, we adopt a
global optimization evolutionary computation method, genetic algorithm (GA), which can
attain solutions close to the global optimum, does not require Euler Lagrangian or energy
gradient calculations, is generally parallelizable, and allows for arbitrarily complex objective
functions. Finally, to deal with the spatially recurring aspect in cell segmentation, we use
genetic algorithms with tribes [Turner et al., 1996] to obtain multiple distinct solutions for
our framework.

In our second contribution (Chapter 4), we improve the space and time complexity
and augment the level sets framework with the ability to handle two important and in-
tuitive geometric constraints, containment and exclusion of regions, along with distance
constraints between boundaries of multi-region objects [Nosrati and Hamarneh, 2014,Nos-
rati and Hamarneh, 2015]. The distance constraints imposed in our level sets framework
include minimum distance, maximum distance, and attraction/repulsion forces between dif-
ferent regions/surfaces. By applying our framework to diverse medical image segmentation
tasks such as segmentation of cells in microscopic images, cardium in magnetic resonance
images (MRI), brain in dynamic positron emission tomography (dPET) images, and lunge
vessels in computed tomography images, we demonstrate the accuracy and generalizabil-
ity of our method. In these two contributions we opt for ensuring the objective function
is flexible enough (even if it is non-convex) to accurately capture the intricacies of the
segmentation problem.

In our third contribution (Capter 5), we turn our attention to optimizability [Nosrati
et al., 2013]. We propose a convex formulation to augment the popular Mumford-Shah
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model [Mumford and Shah, 1989] and develop a new regularization term to incorporate
similar geometrical and distance prior as our second contribution while maintaining global
optimality. Our method is able to handle multiple instances of multi-part objects defined
by these geometrical constraints using a single labeling function. We show that the pro-
posed convex continuous method is superior to other state-of-the-art methods, including
its discrete counterparts, [Delong and Boykov, 2009] and [Ulén et al., 2013], in terms of
memory usage and metrication errors1. Using a continuous framework provides several ad-
vantages over discrete methods: 1) no metrication error; 2) less memory usage; 3) efficient
parallelizability, and 4) allowance for sub-pixel resolution.

While our previous contributions enforce geometrical priors into segmentation frame-
works, in Chapter 6 we enforce priors based on images acquired from different imaging
equipment (different modalities) and of dissimilar dimensions [Nosrati et al., 2014,Nosrati
et al., 2015]. Specifically, we develop an efficient technique to segment multiple objects
in intraoperative multi-view endoscopic videos based on priors captured from preoperative
data. Our technique imitates the surgeon skill in leveraging information from 3D preop-
erative data into the analysis of visual cues in the 2D intraoperative data by formulating
the problem of finding the 3D pose and non-rigid deformations of tissue models driven by
features from 2D images. We present a closed-form solution for our formulation and demon-
strate how it allows for the inclusion of laparoscopic camera motion model to stabilize the
segmentation in the presence of a large objects occlusion.

We also created an interactive online database (http://goo.gl/gy9pyn) to categorize
existing works based on the type of prior knowledge they use. Our online database is
interactive so that researchers can contribute to keep it up to date.

1.3 Auto-Bibliography

The chapters of this thesis are largely based on the following publications.

Chapter 2

Masoud S. Nosrati and Ghassan Hamarneh. “Incorporating prior knowledge in medical
image segmentation: a survey”, Submitted to Medical Image Analysis (MedIA), 2015.
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Masoud S. Nosrati and Ghassan Hamarneh. “Segmentation of cells with partial occlusion
and part configuration constraint using evolutionary computation”, Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), vol. 8149, pages 461-468, 2013.

1Metrication error is defined as the artifact which appear in graph-based segmentation methods due to
penalizing region boundaries only across axis-aligned edges.
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Chapter 2

Incorporating prior knowledge in
MIS: a review

In this chapter, we review works related to our contributions in this thesis. We begin by
reviewing the fundamentals of optimization-based image segmentation techniques (Section
2.1). In Section 2.2, we give a concrete overview of the different types of prior knowledge
devised to improve image segmentation. Prior information can take many forms: user
interaction; appearance models; boundaries and edge polarity; shape models; topology
specification; moments (e.g. area/volume and centroid constraints); geometrical interaction
and distance prior between different regions/labels; and atlas or pre-known models. We
compare the different methods utilizing prior information in image segmentation in terms
of the type of prior information utilized, domain of formulation (continuous vs. discrete)
and optimization techniques (global vs. local) used. Finally, in Section 2.3, we summarize
our notes on the existing works.

2.1 Fundamentals of image segmentation

As mentioned earlier, formulating image segmentation as an optimization problem allows for
incorporating multiple criteria and prior information as terms into an objective functional.
In this section, we briefly review the fundamentals of optimization-based techniques for
MIS.

2.1.1 Optimization-based image segmentation

Given an image I : Ω ⊂ Rn → Rm, image segmentation partitions Ω into k disjoint regions
S = {S1, · · · , Sk} ⊂ S such that Ω = ∪ki=1Si and Si∩Sj = ∅, ∀i 6= j. S is the solution space.
The aforementioned partitioning is referred to as a crisp binary (when k = 2) or multi-region
(k > 2) segmentation. In a fuzzy or probabilistic segmentation, each element in Ω (e.g. a
pixel) is assigned a vector p of length k quantifying the memberships or probabilities of
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belonging to each of the k classes, p = [p1, p2, · · · , pk] where pi ≥ 0, i = 1, · · · , k and∑k
i=1 pi = 1. This task of image partitioning can be formulated as an energy minimization

problem. An energy function, E : S → R, usually consists of several objectives that
are divided into two main categories regularization terms Ri : S → R and data terms
Di : S → R. The regularization terms correspond to priors on the space of feasible solutions
and penalize any deviation from the enforced prior such as shape, length, etc. The data
terms measure how strongly a pixel should be associated with specific label/segment. These
objectives (regularization and data terms) can then be scalarized as:

E(S) = λ
∑
i

Ri(S) +
∑
j

Dj(S) . (2.1)

The optimization problem is then formulated as:

S∗ = arg min
S
E(S) = arg min

S
λR(S) +D(S; I) , (2.2)

where S∗ = {S∗1 , · · · , S∗k} are the optimal solutions and, for simplicity, R and D represent
all the regularization and data terms, respectively. λ is a constant weight that balances the
contribution/importance of the data term and the regularization term in the minimization
problem. One example of such energy is written as:

S∗1 , · · · , S∗k = arg min
S1,··· ,Sk

{
λ

k∑
i=1

∫
∂Si

dx+
k∑
i=1

∫
Si

Di(x)dx
}
, (2.3)

where the first term (regularization term) measures the perimeter of the segmented regions
Si and penalizes large perimeters, thus favouring smooth boundaries. Di(x) : Ω → R,
associated with region Si, measures how strongly pixel x ∈ Ω should be associated with
region Si. In Section 2.2.3, we discuss different types of regularization terms used in image
segmentation problems.

An optimization-based image segmentation problem can also be formulated as a maxi-
mization problem:

S∗ = arg max
S

P (S|I) , (2.4)

where S∗ is the optimal segmentation. Using Bayes’ theorem, (2.4) can be written as:

S∗ = arg max
S

P (I|S)P (S)
P (I) ≡ arg max

S
P (I|S)P (S). (2.5)

In (2.4) and (2.5), P (S|I) is the posterior probability that defines the degree of belief in S
given the evidence I (or some features of I), P (I|S) is the image likelihood measuring the
probability of the evidence in I given the segmentations S, and p(S) is the prior probability
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Figure 2.1: Image as a mapping. Continuous
vs. discrete domain and image values.
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Figure 2.2: Energy function: continuous vs.
discrete. S is the space of possible segmenta-
tions.

that indicates the initial (prior to observing I) degree of belief in S. Maximizing the
posterior probability (2.5) is equivalent to minimizing its negative logarithm:

S∗ = arg min
S
− logP (I|S)− logP (S). (2.6)

The probability (2.6) and energy (2.2) notations are related via the Gibbs or Boltzmann
distribution. Ignoring the Boltzmann’s constant and thermodynamic temperature, as they
do not affect the optimization, by substituting P (I|S) ∝ e−D(S;I) and P (S) ∝ e−λR(S) into
(2.6) we obtain (2.2).

To avoid terminological confusion, we emphasize that to improve a segmentation, prior
knowledge can be incorporated into either the regularization term or the data term (or
both). Hence, the prior knowledge should not be confused with the prior probability in
(2.5).

2.1.2 Domain of formulation: continuous vs. discrete

In general, a segmentation problem can be formulated in a spatially discrete or continu-
ous domain. In the community that advocates continuous methods, it is assumed that the
world we live in is a continuous world (continuous Ω). However, images captured by digital
cameras are discrete both in space and color/intensity. The discretization in space is called
sampling (discrete Ω) and the discretization in color/intensity or value space is called quan-
tization. Given this categorization, we have four different cases for image representation
(Figure 2.1).
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Energy optimization problems can also be formulated in a discrete or continuous do-
main. Depending on the solution space (discrete vs. continuous) and the energy values,
four possible cases can be considered for an energy functional (Figure 2.2). In the spa-
tially discrete setting, the energy function is defined over a set of finite variables (nodes
P ⊂ Ω and edges), leading to Markov random field (MRF) formulation. In MRF for-
mulations, solution is often calculated using graph cut methods, e.g. max-flow/min-cut
algorithms or graph partitioning methods. In the spatially continuous setting, the optimal-
ity conditions for the continuous energy functional are written in terms of a set of partial
differential equations (PDE). The minimization problem in (2.3) is a continuous version of
a multi-region segmentation functional, often called minimal partition problem in the PDE
community [Nieuwenhuis et al., 2013]. Note that in Figure 2.2, the objective function is a
cost or an energy function that has to be minimized. Nevertheless, an objective function
can also be a fitness or utility function that has to be maximized.

In the discrete setting, the segmentation task begins with an undirected graph, G(P, E),
that is composed of vertices P and undirected edges E . Each node of the graph (p ∈ P)
represents a random variable (f ip) taking on different labels (i ∈ L = {l1, · · · , lk}) and
each edge encodes the dependency between neighbouring variables. The corresponding
optimization problem in the discrete domain is

min
f

{ ∑
pq∈N i

V (f ip, f iq) +
∑
p∈P

Dp(fp)
}

(2.7)

s.t.
∑
i∈L

f ip = 1, ∀p ∈ P ,

where V (the pairwise term) is the regularization term that encourages spatial coherence
by penalizing discontinuities between neighbouring pixels, D (the unary term) is the data
penalty term, f ∈ BL×P are the binary variables (f ip = 1 if pixel p ∈ P belongs to region
i ∈ L and f ip = 0 otherwise) and N i is the neighbourhood which is typically defined as
nearest neighbour grid connectivity.

There are several advantages and drawbacks associated with discrete and continuous
methods:

• Parameter tuning: in the continuous domain, PDE-based approaches typically
require setting a step size during the optimization procedure. In the PDE community,
it is stated that the Euler-Lagrange equation provides a sufficient condition for a
stationary point of the energy functional. Let u be a differentiable labeling function in
a continuous domain and E(u) be an energy functional. The Euler-Lagrange equation
applied to E is:

∂E

∂u
− d

dx

(
∂E

∂ux

)
− d

dy

(
∂E

∂uy

)
= 0 , (2.8)
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Figure 2.3: Metrication artifacts. Brain segmentation using (a) classical max-flow algorithm
or graph cuts (GC) and (b) combinatorial continuous max-flow (CCMF) [Couprie et al.,
2011]. (c,e) Zoomed regions of (a). (d,f) Zoomed regions of (b).
(Images adapted from [Couprie et al., 2011] by permission)

where ux and uy are the derivatives of u in x and y directions, respectively. The
minimizer of E may be computed via the steady state solution of the following update
equation:

∂u

∂t
= −∂E

∂u
, (2.9)

where ∂t is an artificial time step size. A step size too large leads to a non-optimal
solution and numerical instability, while a step size too small increases the convergence
time. One way to ensure numerical stability during the optimization is to place an
upper bound on the time-step using the Courant-Friedrichs-Lewy (CFL) condition
[Courant et al., 1967]. Also, optimal step sizes can be computed automatically as
proposed by [Pock and Chambolle, 2011]. On the other hand, in discrete domain,
graph cuts-based methods do not require such parameter tuning and have proven to
be numerically stable.

Note that other parameters in the segmentation energy function, including weighting
parameters to balance the energy terms (e.g. λ in (2.2)) and hyper parameters within
each energy term or objective (e.g. number of histogram bins in calculating the
regional/data term) are common between continuous and discrete approaches. Setting
parameters can be done based on training data (learning-based) [Gennert and Yuille,
1988,McIntosh and Hamarneh, 2007] or adaptively and based on the image content
[Rao et al., 2010].

• Termination criterion: While graph based methods have an exact termination
criterion, finding a general-purpose termination criteria for PDE-based methods is
difficult. However, performing a fixed number of iterations and/or iterating until the
change in the solution or energy is smaller than a predefined threshold are ways for
stopping the optimization procedure.
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• Metrication error: The computation results obtained from graph-based methods
are often biased by the discrete graph setting and in case of a 4-connected neighbour-
hood graph, blocky structures (also known as metrication error) can be seen in the
results. Figure 2.3 compares the discrete and continuous version of a max-flow algo-
rithm. As seen in Figure 2.3, the contours obtained by graph cuts are noticeably blocky
in the areas with weak regional cues (weak data term), while the contours obtained
by the continuous method are smooth. The discrete nature of graph-based methods
makes it difficult to efficiently implement a convex regularizer like total variation in
the discrete domain. Metrication error can be reduced in graph-based methods by
increasing the graph connectivity, e.g. [Boykov and Kolmogorov, 2003], but that also
increases memory usage and computation time. Instead, in the continuous domain,
there is no such limitation and regularizers can be implemented efficiently that makes
the PDE approaches free from metrication error. Note that although approaches with
continuous energy formulation do not have the limitation of discrete approaches, in
the implementation stage, due to the discrete nature of digital images, all continuous
operations are estimated by their discrete versions.

• Parallelization: Unlike PDE approaches that are easily parallelizable on GPUs,
graph-based techniques are not straightforward to parallelize. As an example, the
max-flow/min-cut, a core algorithm of many state-of-the-art graph-based segmenta-
tion methods, is a P-complete problem, which is probably not efficiently paralleliz-
able [Goldschlager et al., 1982, Nieuwenhuis et al., 2013] due to two reasons: (1)
augmenting path operations in min-cut/max-flow algorithms are interdependent as
different augmentation paths can share edges; (2) the updates of the edge residuals
have to be performed simultaneously in each augmentation operation as they all de-
pend on the minimum capacity within the augmentation path [Nieuwenhuis et al.,
2013]. Several attempts have focused on parallelizing the max-flow/min-cut computa-
tion. Push-relabel algorithms [Boykov et al., 1998,Delong and Boykov, 2008] relaxed
the first issue mentioned above but the update operations are still interdependent.
Other techniques split the graph into multiple parts and obtained the global optimum
by iteratively solving sub-problems in parallel [Strandmark and Kahl, 2010, Liu and
Sun, 2010] while [Shekhovtsov and Hlaváč, 2013] combined the path augmentation
and push-relabel techniques.

• Memory usage: With respect to memory consumption, the continuous optimization
methods are often the winner. While continuous methods require few floating point
values for each pixel in the image, the graphical models require an explicit storage of
edges as well as one floating value for each edge. This difference becomes important
when we deal with very large images and when the large number of graph edges

11
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Figure 2.4: One dimensional example of a (a) non-convex, (b) convex, (c) pseudoconvex
and (d) a quasiconvex function. Red and green dots indicate the local minimum and the
global solution, respectively. Red and green circles represent local and global optimum,
respectively.

required to be implemented, e.g. 100s of millions pixels of microscopy images, and 3D
volumes [Appleton and Talbot, 2006].

• Runtime: The runtime variance in graph-based methods is higher than PDE-based
methods. For example, considering the α-expansion [Boykov et al., 2001] as a popular
multi-label optimization technique, the number of max-flow problems that need to be
solved highly depends on the input image and the chosen label order. In addition,
the number of augmentation steps needed to solve a max-flow problem depends on
the graph structure and edge residuals [Nieuwenhuis et al., 2013]. On the other hand,
PDE-based methods have less runtime variance as they perform the same computation
steps on each pixel.

For more qualitative and quantitative comparison between continuous and discrete do-
main, refer to [Nieuwenhuis et al., 2013,Couprie et al., 2011].

2.1.3 Optimization: convex (submodular) vs. non-convex (non-submodular)

In the continuous domain of energy, a function can be non-convex, convex, pseudoconvex
or quasiconvex (Figure 2.4). We define each of these terms mathematically.

An energy function E : S → R is convex if

• the energy domain S (or the solution space) is a convex set and (2.10)

• ∀S1, S2 ∈ S and 0 ≤ λ ≤ 1

E(λS1 + (1− λ)S2) ≤ λE(S1) + (1− λ)E(S2).

A set S is a convex set if S1, S2 ∈ S and 0 ≤ λ ≤ 1 ⇒ λS1 + (1 − λ)S2 ∈ S. If E is
differentiable in S1 ∈ S, E is said to be pseudoconvex at S1 if

∇E(S1) · (S2 − S1) ≥ 0, S2 ∈ Ω⇒ E(S2) ≥ E(S1). (2.11)
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Pseudoconvex functions share the property of convex functions that, if ∇E(S) = 0, then S
is a global minimum of E. We call E a quasiconvex function if

• the energy domain S is a convex set and (2.12)

• the sub-level sets Sα = {S ∈ S|E(S) ≤ α} are convex for all α .

The pseudoconvexity is strictly weaker than convexity. In fact, every convex function is
pseudoconvex. For example, E(S) = S + S3 is pseudoconvex and non-convex. Also, every
pseudoconvex function is quasiconvex, but the relationship is not commutative, e.g. E(S) =
S3 is quasiconvex and not pseudoconvex.

In this thesis we focus on convex and non-convex optimization problems; more details on
quasiconvex problems can be found in [dos Santos Gromicho, 1998]. In the continuous do-
main, an optimization problem must meet two conditions to be a convex optimization prob-
lem: 1) the objective function must be convex, and 2) the feasible set must also be convex.
The drawbacks associated with non-convex problems are that, in general, there is no guaran-
tee to find the global solution and results strongly depend on the initial guess/initialization.
In contrast, for a convex problem, a local minimizer is actually a global minimizer and
results are independent of the initialization. However, non-convex energy functional often
give more accurate models (see Section 2.1.4).

The corresponding terminologies for convex and non-convex problems in the discrete
domain are submodular and non-submodular (supermodular) problems, respectively. Let
E be a function of n binary variables and E(f1, ..., fn) =

∑
iE

i(fi)+
∑
i<j E

ij(fi, fj). Then
the discrete energy functional E is submodular if the following condition holds

Eij(0, 0) + Eij(1, 1) < Eij(0, 1) + Eij(1, 0). (2.13)

For higher order energy terms, e.g. Eijk(fi, fj , fk), E is submodular if all projections of E of
two variables are submodular [Kolmogorov and Zabin, 2004]. To define projection, suppose
E has n binary variables. If m < n of these variables are fixed, then we get a new function
E′ of n−m binary variables; E′ is the projection of E.

Submodular energies can be optimized efficiently via graph cuts. [Greig et al., 1989]
were the first to utilize min-cut/max-flow algorithms to find the globally optimal solution
for binary segmentation in 1989. Later in 2003, [Ishikawa, 2003] generalizes the graph cut
technique to find the exact solution for a special class of multi-label problems (more detail
on Ishikawa’s approach in Section 2.2.5).

In recent years, many efforts have been made to bridge the gap between convex and
non-convex optimization problems in the continuous domain through convex approxima-
tions of non-convex models. Historically, the two-region segmentation problem (foreground
and background) was convexified in 2006 by [Chan et al., 2006] and the multi-region seg-
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Figure 2.5: Fidelity vs. optimizibility. Ideally, an energy function is designed in a way that
is faithful to the underlying segmentation problem and, at the same time, easy to optimized.

mentation problem was convexified in 2008 by [Chambolle et al., 2008] and [Pock et al.,
2008] for the first time (more detail on continuous multi-region segmentation problem in
Section 2.2.5).

2.1.4 Fidelity vs. Optimizibility

In energy-based segmentation problems there is a trade-off between fidelity and optimizabil-
ity [Hamarneh, 2011,McIntosh and Hamarneh, 2012,Ulén et al., 2013]. Fidelity describes
how faithful the energy function is to the data and how accurate it can model and cap-
ture intricate problem details. Optimizability determines how easily we can optimize the
objective function and attain the global optimum.

Generally, the better the objective function models the problem, the more complicated
it becomes and the harder it is to optimize. If we instead sacrifice fidelity to obtain a
globally optimizable objective function, the solution might not be accurate enough for our
segmentation purpose.

In the image segmentation literature, many works have focused on increasing the fidelity
and improving the objective functions by (i) adding new energy terms, e.g. edge, region,
shape, statistical overlap and area prior terms [Gloger et al., 2012,Shen et al., 2011,Andrews
et al., 2011b, Bresson et al., 2006, Pluempitiwiriyawej et al., 2005, Ayed et al., 2009, Ayed
et al., 2008]; (ii) extending binary segmentation methods to multi-label segmentation [Vese
and Chan, 2002,Mansouri et al., 2006, Rak et al., 2013]; (iii) incorporating spatial rela-
tionships between labels, objects, or object regions [Felzenszwalb and Veksler, 2010, Liu
et al., 2008, Rother et al., 2009, Colliot et al., 2006,Gould et al., 2008]; and (iv) learning
objective function parameters [Alahari et al., 2010, Nowozin et al., 2010, Szummer et al.,
2008,McIntosh and Hamarneh, 2007,Kolmogorov et al., 2007].
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Other works chose to improve optimizibility by approximating non-convex energies with
convex ones [Lellmann et al., 2009,Bae et al., 2011a,Boykov et al., 2001,Chambolle et al.,
2008].

In an ideal case, we are interested in methods that improve both (optimizibility and fi-
delity), i.e. increase optimizibility without sacrificing the fidelity or even increase the fidelity
at the same time, Figure 2.5.

2.1.5 Uncertainty and Fuzzy / probabilistic vs. crisp labelling

In an MIS problem, ideally, we are interested in finding an optimal ground truth labeling
for an image, where each label represents a structure of interest. However, as medical
images are approximate representations of physical tissues and also due to noise coming
from other structures inside the body and/or imaging devices, sometimes it is difficult to
precisely define a ground truth labeling. Even the manual segmentation of an image by
several experts have some inter-expert (different experts) and intra-expert (same expert at
different times) variability due to ambiguities in the image. Therefore, it is beneficial to
encode uncertainty into segmentation frameworks [Koerkamp et al., 2010]. This information
can be used to highlight the ambiguous image regions so to prompt users’ attention to
confirm or manually edit the segmentation of these regions.

Uncertainty in objects boundaries may arise from numerous sources, including graded
decomposition, image acquisition artifacts, partial volume effects, and image segmentation
methods intentionally designed to output probabilistic fuzzy results [Grady, 2006, Zhang
et al., 2001]. Figure 2.6 demonstrates an example of how uncertainty information is encoded
in an energy function. E1 and E2 in Figure 2.6 are two 1-D energy functions with the same
optimal solution. However, segmentations near the minimal solution in E1 have almost
similar energy values (high uncertainty) as opposed to solutions near the same optimal point
in E2 (less uncertainty/more certain). In fact, using the energy E1, a small perturbation in
the image (e.g. an additional noise) may change the segmentation result noticeably. Given
a probability distribution function, P (x) in (2.4), over the label space, one way to calculate
the uncertainty at pixel x is to use Shannon’s entropy as: h(x) = −

∑
P (x) log2(P (x)).

The entropy can be used as an energy term in a segmentation energy function. In this case,
lower entropy corresponds to larger certainty and vice versa.

As stated in Section 2.1.1, in addition to crisp labelling where each pixel is mapped to
exactly one object label, we have probabilistic and fuzzy labelling that are two common
ways to encode uncertainty into a segmentation framework. In probabilistic labelling a
probability of each label at each pixel is reported [Wells III et al., 1996,Grady, 2006,Saad
et al., 2008,Saad et al., 2010b,Changizi and Hamarneh, 2010,Andrews et al., 2011a,Andrews
et al., 2011b] while fuzzy labelling reports a partial membership of each pixel belonging to
each class of labels by a membership function [Bueno et al., 2004,Howing et al., 1997].
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Figure 2.6: One dimensional example of two energy functions with (a) less vs. (b) more
certain solutions.

One important issue with probabilistic methods is that most standard techniques for
statistical shape analysis (e.g. principal component analysis (PCA)) assume that the prob-
abilistic data lie in the unconstrained real Euclidean space, which is not valid as the sample
space for a probabilistic data is the unit simplex. Neglecting this unit simplex in statistical
shape analysis may produce invalid shapes. In fact, moving along PCA modes results in
invalid probabilities that need to be projected back to the unit simplex. This projection
discards uncertainty information. [Pohl et al., 2007] proposed a method based on the log-
arithm of odds (LogOdds) transform that maps probabilistic labels to an unconstrained
Euclidean vector space and its inverse maps a vector of real values (e.g. values of the signed
distance map at a pixel) to a probabilistic label. A shortcoming of the LogOdds transform
is that it is asymmetric in one of the labels, usually chosen as the background, and changes
in this label’s probability are magnified in the LogOdds space. This issue was addressed
by [Changizi and Hamarneh, 2010] and [Andrews et al., 2014] using the isometric log-ratio
(ILR) transformation to isometrically and bijectively map the simplex to the Euclidean real
space. They analyze data in the Euclidean real space and then back-transform the results
to the unit simplex. More recently, [Andrews and Hamarneh, 2015] proposed a generalized
log ratio transformation (GLR) that offers more refined control over the distances between
different labels.

2.1.6 Sub-pixel accuracy

In the spatially discrete setting, objects are converted into a discrete graph. This dis-
cretization causes loss of spatial information, which causes the objects’ boundaries to align
with the axes or graph edges, Figure 2.7(b). On the other hand, the continuous domain
does not have such shortcoming. In other words, sub-pixel accuracy allows for assigning
a label to one part of a pixel and another label to the other part. This sub-pixel label
assignment causes the segmentation accuracy to exceed the nominal pixel resolution of the
image, Figure 2.7(a). However, as images are digitalized in computers, the accuracy of a
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(a) Sub-pixel accu-
racy

(b) Grid artifact (c) Fuzzy representa-
tion

Figure 2.7: A sample segmentation (a) with and (b) without sub-pixel accuracy. (c) Rep-
resenting sub-pixel accuracy using a fuzzy representation.

crisp segmentation is always limited to the image pixel resolution. One way to represent
sub-pixel accuracy is to use a fuzzy representation by defining the degree of membership to
be proportional to the area covered by that label at each pixel, Figure 2.7(c).

We should emphasize that although in the continuous domain, image representation
and energy formulations are continuous (Figure 2.2(a) and Figure 2.1(a)), implementation
of these methods to image processing involves a discretization step (e.g. estimating a
derivative by discrete forward difference). However, in the continuous setting it is possible
to obtain a real pixel value (or label value), whereas in the discrete setting the value of labels
are discrete, e.g. integer values. Nevertheless, theoretically continuous models correspond
to the limit of infinitely fine discretization.

2.2 Prior knowledge for targeted image segmentation

In this section, we review the prior knowledge information devised to improve image seg-
mentation. Table 2.1 presents some of these important priors have been used in the liter-
ature and compares them in terms of attaining a globally vs. locally optimal solution and
metrication error, domain of action (continuous vs. discrete), and other properties. We
also created an interactive online database (http://goo.gl/gy9pyn) to categorize existing
works based on the type of prior knowledge they use. We made our website interactive so
that researchers can contribute to keep the database up to date.

2.2.1 User interaction

Incorporating user input into a segmentation framework may be an intuitive and easy way
to characterize the desired object and obtain usable results. In an interactive segmentation
system, the user input is used to encode prior knowledge about the target object. The
specific prior knowledge that the user is considering is unknown to the method, but only
the implication of such prior knowledge (e.g. pixel x must be part of the object) is passed
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Table 2.1: Some important prior information for targeted image segmentation
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[Cootes et al., 1995]
[Cootes and Taylor, 1995]

[Rousson and Paragios, 2002] 7 X 7 7 7 7 7 7 7 7 7 7 7 X X 7

[Chen et al., 2002]
[Tsai et al., 2003]

[Slabaugh and Unal, 2005]
[Zhu-Jacquot and Zabih, 2007] 7 X 7 7 7 7 7 7 7 7 7 7 7 X 7 7

[Veksler, 2008] 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7 X

[Song et al., 2010] X X 7 7 7 7 7 X 7 7 7 7 7 X 7 X

[Andrews et al., 2011b] X X 7 7 7 7 7 X 7 7 7 7 7 X X X

[Han et al., 2003]
[Zeng et al., 2008] 7 7 X 7 7 X 7 7 7 7 7 7 7 7 7 X

[Vicente et al., 2008] 7 7 X 7 7 7 7 7 7 7 7 7 7 7 7 7

[Foulonneau et al., 2006] 7 X 7 X X 7 7 7 7 7 7 7 7 7 X X

[Ayed et al., 2008] 7 7 7 X 7 7 7 7 7 7 7 7 7 7 X 7

[Klodt and Cremers, 2011] 7 7 7 X X 7 7 7 7 7 7 7 7 7 X X

[Lim et al., 2011] 7 7 7 X X 7 7 7 7 7 7 7 7 7 7 7

[Wu et al., 2011] 7 7 7 7 X 7 7 X X X 7 7 7 7 X

[Zhao et al., 1996] X 7 7 7 7 7 X 7 7 7 7 7 7 7 X X

[Samson et al., 2000] X 7 7 7 7 7 X 7 7 7 7 7 7 7 X 7

[Li et al., 2006a] X 7 7 7 7 X X 7 X X X 7 7 7 7 X

[Zeng et al., 1998] 7 7 7 7 7 X 7 7 X X X 7 7 7 X 7

[Goldenberg et al., 2002] 7 7 7 7 7 X 7 7 X X X 7 7 7 X 7

[Paragios, 2002] 7 7 7 7 7 X 7 7 X X X 7 7 7 X 7

[Vazquez-Reina et al., 2009] 7 7 7 7 7 X 7 7 7 7 X 7 7 7 X 7

[Ukwatta et al., 2012] 7 7 7 7 7 X 7 7 X 7 7 7 7 7 X X

[Rajchl et al., 2012] X 7 7 7 7 X X 7 7 7 7 7 7 7 X X

[Delong and Boykov, 2009] X 7 7 7 7 X X 7 X 7 X 7 7 7 7 X

[Ulén et al., 2013] X 7 7 7 7 X X 7 X 7 X 7 7 7 7 X

[Schmidt and Boykov, 2012] X 7 7 7 7 X 7 7 X X X 7 7 7 7 7

[Liu et al., 2008] X 7 7 7 7 7 7 7 7 7 7 X 7 7 7 7

[Felzenszwalb and Veksler, 2010] X 7 7 7 7 7 7 7 7 7 7 X 7 7 7 X

[Strekalovskiy and Cremers, 2011]
[Strekalovskiy et al., 2012] X 7 7 7 7 7 7 7 7 7 7 X 7 7 X X

[Bergbauer et al., 2013]
[Zhu and Yuille, 1996]

[Brox and Weickert, 2006] X 7 7 7 7 7 7 7 7 7 7 7 X 7 X 7

[Delong et al., 2012a] X 7 7 7 7 7 7 7 7 7 7 7 X 7 7 7

[Yuan et al., 2012] X 7 7 7 7 7 7 7 7 7 7 7 X 7 X X

[Iosifescu et al., 1997]
[Collins and Evans, 1997] X X 7 7 7 7 7 7 7 7 7 7 7 X X 7

[Prisacariu and Reid, 2012]
[Sandhu et al., 2011]

[Prisacariu et al., 2013] 7 X 7 7 7 7 7 7 7 7 7 7 7 X X 7
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on to the interactive algorithm. Given a high-level intuitive user interaction, the end-user
need not know about the low-level underlying optimization energy function.

The work proposed by [Kass et al., 1988] is perhaps one of the early works to incorpo-
rate user interaction into the segmentation framework where they enforce spring-like forces
between snake’s control points to affect the energy functional and push the snake out of a
local minima into another.

User input is incorporated in several ways, e.g. by mouse clicking (or even via eye
gaze [Sadeghi et al., 2009]) and providing seed points, by specifying the subsets of object
boundary or specifying sub-regions (bounding boxes) that contain the object of interest.

In the first form (providing seed points), the user specifies labels for some pixels inside
and outside the target object by mouse-clicking or brushing. This allows a user to enforce
a hard constraint on labeled pixels. For example, in a binary segmentation scenario in the
discrete setting, one can enforce fforegroundp = 1 if p ∈ foreground and f backgroundp = 0 if
p ∈ background in (2.7).

In the continuous domain, [Paragios, 2003], [Cremers et al., 2007] and [Ben-Zadok et al.,
2009] proposed a level set-based method in which a user can correct the solution interactively
by clicking on incorrectly labelled pixels. Let φ be the level set function (often is represented
by the signed distance map of the foreground) where φ > 0 and φ < 0 represent inside and
outside the object of interest, respectively. [Cremers et al., 2007] added the following user
interaction term to their energy functional along with data and regularization terms:

Euser(φ) = −
∫

Ω
L(x)sign(φ(x))dx . (2.14)

L : Ω→ {−1, 0,+1} reflects the user input and is defined as:

L(x) =


+1 if x is marked as ’object’

−1 if x is marked as ’background’

0 if x is not marked

. (2.15)

[Ben-Zadok et al., 2009] used an energy functional similar to [Cremers et al., 2007]. As-
suming that {xi}ni=1 denotes the set of user input, which indicates the incorrectly labelled
regions, they defined M : Ω→ {0, 1} as:

M(z) =
n∑
i=1

δ(z − xi) , (2.16)

where δ is the Dirac delta function. The function L : Ω→ R is defined as:

L(x) = H(φ(x)) + (1− 2H(φ(x)))
∫
z∈λ

M(z)dz , (2.17)
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where H is the Heaviside step function and λ is the neighbourhood of the coordinate x.
L(x) = 0 if the user’s click is within the segmented region and L(x) = 1 if it is on the
background. L(x) = H(φ(x)) if x is not marked. The user interaction term proposed
by [Ben-Zadok et al., 2009] is then defined as:

Euser(x) =
∫
x∈Ω

∫
x′∈Ω

(
L(x′)−H(φ(x))

)2
K(x,x′)dx′dx , (2.18)

where K(x,x′) is a Gaussian kernel.
Another form of user input is object boundary specification where all or part of the

object boundary is roughly specified by drawing a contour (in 2D) or initializing a surface
(in 3D) around the object’s boundary. This form of user input is more suitable for 2D
images as providing a manual rough segmentation in 3D images (as is the case for most
of medical images) is not straightforward. Examples that require the user to provide an
initial guess close to objects’ boundary include Wang et al.’s work [Wang et al., 2007] in the
discrete setting, and edge-based active contours (e.g. gradient vector field (GVF) [Xu and
Prince, 1997,Xu and Prince, 1998] and geodesic active contour [Goldenberg et al., 2001]) in
the continuous setting. Live-wire, proposed by [Barrett and Mortensen, 1997], is another
effective tool for 2D segmentation that benefits from user-defined seeds on the boundary
of the desired object. The 2D live-wire uses the gradient magnitude, gradient direction,
and canny edge detector to build cost terms. After providing an initial seed point on the
boundary of the object, live-wire calculates the local cost for each pixel starting from the
provided seed and finds the minimal path between the initial seed point p and the next
point q chosen by the user. The 2D live-wire was extended to 3D by [Hamarneh et al.,
2005].

Another form of user input, and probably the most convenient way for a user, is the
sub-region specification where a user is asked to draw a box around the targeted object. This
bounding box can be provided automatically using machine learning techniques in object
detection. In the discrete setting, GrabCut proposed by [Rother et al., 2004] is one of the
most well-known methods with this kind of initialization. [Lempitsky et al., 2009] proposed a
method which shows how a bounding box is used to impose a powerful topological prior that
prevents the solution from excessively shrinking and splitting, and ensures that the solution
is sufficiently close to each of the sides of the bounding box. [Grady et al., 2011] performed a
user study and showed that a single box input is in fact enough for segmenting the targeted
object. In the continuous setting, this kind of user input (sub-region specification) is taken
into account by methods like geodesic active contours [Caselles et al., 1997] in which the
user initializes the active contour around the object of interest.

Similar interaction is utilized in 3D live-wire [Hamarneh et al., 2005] as implemented
in the TurtleSeg software1 [Top and et al., 2011, Top et al., 2011]. In 3D live-wire, few

1www.turtleseg.org
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slices in different orientations of a 3D volume are segmented using 2D live-wire. Then,
the segmented 2D slices are used to segment the whole 3D volume by generating additional
contours on new slices automatically. The new contours are obtained by calculating optimal
paths connecting the points of intersection between the new slice planes and the original
contours provided semi-automatically by the user.

[Saad et al., 2010a] proposed another type of interactive image analysis in which a user
is able to examine the uncertainty in the segmentation results and improve the results, e.g.
by changing the parameters of their segmentation algorithm. For an expanded study on
interaction in MIS, interested readers may refer to [Saad et al., 2010b,Saad et al., 2010a].

2.2.2 Appearance prior

Appearance is one of the most important visual cues to distinguish between different struc-
tures in an image. Appearance is described by studying the distribution of different features
such as intensity values in gray-scale images, color, and texture inside each object. In most
cases, appearance models are incorporated into the data term in (2.2) and (2.7). The
purpose of incorporating appearance prior is to fit the appearance distribution of the seg-
mented objects to the distribution of objects of interest, e.g. using Gaussian mixture model
(GMM) [Rother et al., 2004]. In the literature, there are two ways to model the appearance:
1) adaptively learning the appearance during the segmentation procedure, and 2) knowing
the appearance model prior to performing segmentation (e.g. by observing the appearance
distribution of the training data). In the former case, the appearance model is learned as the
segmentation is performed [Vese and Chan, 2002] (computed online). In the second case, it
is assumed that the probability of each pixel belonging to particular label is known, i.e. if
Fi(x) represents a particular set of feature values (e.g. intensity/color) associated with each
image location for ith object, then it is assumed that P (x|Fi(x)) is known (or pre-computed
offline). This probability is usually learned and estimated from the distribution of features
inside small samples of each object.

Figure 2.8 illustrates the probability of different structures (the kidney, the tumour, and
the background) in an endoscopic scene. A lower intensity in Figures 2.8(b-d) corresponds
to higher probability.

To fit the segmentation appearance distribution to the prior distribution, a dissimilarity
measureD is usually needed whereD(gi, ĝi) measures the difference between the appearance
distribution of ith object (gi) and its corresponding prior distribution ĝi. This dissimilarity
measure can be encoded into the energy functional (2.2) directly as the data term or via a
probabilistic formulation. For example, considering the appearance prior of an object in a
scalar valued image I, ĝi would be the mean (µi) and variance (σ2

i ) of the intensity of the
desired object. Then, assuming a Gaussian approximation of the object’s intensity I, the
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(a) (b)

(c) (d)

Figure 2.8: Examples of regions probabilities. (a) Original endoscopic image. (b-d) Prob-
ability of background, kidney and tumour for the frame shown in (a). A lower intensity in
(b-d) corresponds to higher probability.

corresponding probability distribution will be:

P (x|ĝi) = 1√
2πσ2

i

e
− (I(x)−µi)

2

2σ2
i . (2.19)

Other than scalar-valued medical images such as MR [Pluempitiwiriyawej et al., 2005] and
US [Noble and Boukerroui, 2006]), appearance models can be extracted from other types
of images like color image (e.g. skin [Celebi et al., 2009], endoscopy [Figueiredo et al.,
2010]), other vector-valued images (dynamic postiron emission tomography, dPET, [Saad
et al., 2008]), and tensor-valued or manifold-valued images [Feddern et al., 2003,Wang and
Vemuri, 2004b,Weldeselassie and Hamarneh, 2007]. For the vector-valued images, one can
use multivariate Gaussain density as an appearance model. The formulation is similar to
(2.19) with the use of the covariance matrix Σi instead of σ2

i . Regarding the tensor-valued
images, several distance measures in the space of tensors have been proposed such as:

• Log-Euclidean tensor distance defined as:

DLE(Ti, T̂i) =
√
trace

((
logm(Ti)− logm(T̂i)

)2)
,
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where Ti and T̂i are a tensor from ith region and its corresponding prior tensor model,
respectively.

• The symmetrized Kulback-Leibler (SKL) divergence (also known as J-convergence)
[Wang and Vemuri, 2004b] defined as:

DSKL(Ti, T̂i) = 1
2

√
trace(T−1

i T̂i + TiT̂
−1
i )− 2n ,

where n is the size of the tensors Ti and T̂i (n = 3 in DT-MRI). This measure is affine
invariant.

• The Rao distance [Lenglet et al., 2004] defined as:

DR(Ti, T̂i) =

√√√√1
2

n∑
i=1

log2(λi) ,

where λi denotes the eigenvalues of T−1/2
i T̂iT

−1/2
i (n = 3 in DT-MRI).

Intensity and color information are not always sufficient to distinguish different objects.
Hence, several methods proposed to model objects with more complex appearance using
texture information as a complementary feature [Huang et al., 2005,Malcolm et al., 2007,
Santner et al., 2009]. [Bigün et al., 1991] introduced a simple texture feature model consists
of the Jacobian matrix smoothed by a Gaussian kernel (Kσ) that results in three different
feature channels, i.e. in case of a 2D Image the features are Kσ ∗ (I2

x, IxIy, I
2
y ). However,

these features ignore the non-textured object that might be of interest. Therefore, [Rousson
et al., 2003] proposed to use the following texture features in order to segment objects with
and without texture: (I, I2

x
|∇I| ,

IxIy
|∇I| ,

I2
y

|∇I|).
More advanced texture features such as those based on Haar and Gabor filter banks

have shown many successes in medical image segmentation [Huang et al., 2005,Malcolm
et al., 2007,Santner et al., 2009]. [Koss et al., 1999] and [Frangi et al., 1998] are two works
that utilized advanced features to segment abdominal organs and to measure vesselness,
respectively. In [Frangi et al., 1998], the eigenvalues of the Hessian matrix are used for
measuring the vesselness of pixels in images. This measure is used for liver vessel seg-
mentation both in a variational framework [Freiman et al., 2009] and in a graph-based
framework [Esneault et al., 2010]. Statistical overlap prior is another strong appearance
prior that has been proposed by [Ayed et al., 2009]. Their method embeds statistical infor-
mation (e.g. histogram of intensities) about the overlap between the distributions within
the object and the background in a variational image segmentation framework. They used
the Bhattacharyya coefficient measuring the amount of overlap between two distributions,
i.e. DB(gi, ĝi) =

∑
z

√
gi(z)ĝi(z) ∀z ∈ Z if I : Ω → Z. [Ben Ayed et al., 2009] used this

strong prior to segment left ventricle in MR images.
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Other features such as frequency, bag of visual words, gradient location and orienta-
tion histogram (GLOH) [Mikolajczyk and Schmid, 2005], DAISY [Tola et al., 2008], GIST
(spatial envelop) [Oliva and Torralba, 2001], local binary pattern (LBP) [Heikkilä et al.,
2009], SURF [Bay et al., 2006], histogram of oriented gradient (HOG) [Dalal and Triggs,
2005], and scale invariant feature transform (SIFT) [Lowe, 2004] are sometimes helpful as
appearance features [Bosch et al., 2007].

Sometimes the appearance of structures is too complicated that regular features cannot
describe them accurately. To extract the appearance characteristics of such structures dif-
ferent machine learning techniques have been proposed. These machine learning techniques
learn the appearance either by combining several features like texture, color, intensity, HOG,
etc., and feed the combined feature vectors to a classifier like random decision forest (RF) or
support vector machine (SVM) [Tu et al., 2006], or by learning a dictionary which describes
the object of interest [Mairal et al., 2008,Nieuwenhuis et al., 2014,Nayak et al., 2013].

In general, appearance features can be extracted in the following domains based on the
type of the medical data:

• spatial domain: several methods have been developed to segment 2D or 3D static
images [Chan et al., 2000, Cootes et al., 2001, Vese and Chan, 2002, Feddern et al.,
2003,Wang and Vemuri, 2004b,Huang et al., 2005,Malcolm et al., 2007,Santner et al.,
2009];

• time domain: in dynamic medical images, it is beneficial to consider the temporal
dimension along with the spatial dimensions. For example, extracting appearance
features in temporal direction would be very informative in dPET images, where each
pixel in the image represents a time activity curve (TAC) that describes the metabolic
activity of a tissue as a result of tracer uptake [Saad et al., 2008]. Other examples
include [Mirzaei et al., 2013] where spatio-temporal features are used to distinguish
tumour regions in 4D lung CT (3D+time) and [Amir-Khalili et al., 2014] where the
likelihood of vessel regions are calculated based on temporal and frequency analysis.

• scale domain: for some objects with more complex texture, it is useful to estimate
the appearance model in different scales for more accurate results and ensure that the
model is scale invariant [Han et al., 2009,Mirzaalian and Hamarneh, 2010].

Regardless of where the appearance information comes from, it is encoded into the data
energy term (D) in order to assign each pixel a probability of belonging to each class of
objects.

2.2.3 Regularization

The regularization term corresponds to priors on the space of feasible solutions. As an
example, the regularization term in (2.3) and (2.7) ensures that the region boundaries
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are smooth. Several regularization terms have been proposed in the literature. The most
famous one is the Mumford-Shah model [Mumford and Shah, 1989] that penalizes the
boundary length of different regions in a spatially continuous domain, i.e.

∑n
i=1 |∂Si|. The

corresponding regularization model in the discrete domain is Pott’s model that penalizes any
appearance discontinuity between neighbouring pixels and is defined as

∑
p,q∈N wpqδ(Ip 6=

Iq).
The regularization term in the discrete setting is biased by the discrete grid and favours

curves to orient along with the grid, e.g. in horizontal and vertical or diagonal directions
in a 4-connected lattice of pixels. This produces grid artifacts, also known as metrication
error (Figure 2.3). On the other hand, the regularization term in the continuous settings
does not have such an issue and allows for accurately representing geometrical entities such
as curve length (or surface area) without any grid bias.

Some other regularization terms in the level set notation (φ) are listed as follows :

• Length regularization:
∫

Ω |∇H(φ(x))|dx. We recall that H(.) is the Heaviside step
function.

• Total variation (TV):
∫
Ω |∇φ(x)|dx which smooths only the tangent direction of the

level set curve. This term is used especially when a single function φ is used to
segment multiple regions, i.e. φ is not necessarily a signed distance function. It is
worth mentioning that there are two variants of the total variation term: the isotropic
variant using `2 norm,∫

Ω
|∇φ(x)|2dx =

∫
Ω

√
|φx1 |2 + · · ·+ |φxN |2 dx , (2.20)

and the anisotropic variant using `1 norm,∫
Ω
|∇φ(x)|1dx =

∫
Ω
|φx1 |+ · · ·+ |φxN |dx . (2.21)

The anisotropic version is not rotationally invariant and therefore favours results that
are aligned along the grid system. The isotropic version is typically preferred but
cannot be properly handled by discrete optimization algorithms as the derivatives are
not available in all directions in the discrete settings.

• H1 norm:
∫
Ω |∇φ(x)|2dx which is a pure isotropic smoothing at every pixel x.

A comparison of the above mentioned regularization terms can be found in [Chung and
Vese, 2009].

Higher order regularization terms were also proposed to encode more constraints on
the optimization problem. For example, [Duchenne et al., 2011] introduced the ternary
term (along with unary and pairwise terms in the standard MRF) for graph matching
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Figure 2.9: Curvature regularization term. (a) Approximating the curvature term by tesse-
lating the image domain into a cell complex. eij is the boundary variable and f1, f2, f3 and
f4 are its corresponding region variables. (b) Vessel segmentation top: without curvature
and bottom: with curvature regularization term. (Image (b) adapted from [Strandmark et al.,
2013] by permission)

(and not image segmentation) application and [Delong et al., 2012b] proposed an efficient
optimization framework to optimize sparse higher order energies in the discrete domain.

Curvature regularization is another useful type of regularization that has been shown to
be able to capture thin and elongated structures [Schoenemann et al., 2009,El-Zehiry and
Grady, 2010]. In addition, there is evidence that cells in the visual cortex are able to detect
curvature [Dobbins et al., 1987].

Although curvature regularization term has been used in the local optimization frame-
works easily, e.g. in a level set formulation [Leventon et al., 2000a] and Snakes model [Kass
et al., 1988], however, it is much more difficult to incorporate such prior in a global opti-
mization framework. [Strandmark and Kahl, 2011] proposed several improvements to im-
pose curvature regularization within a global optimization framework. They defined the
curvature term as:

∫
∂S k(x)2dx, where ∂S is the boundary of the foreground region and k

is the curvature function. They approximated the above mentioned curvature term with
discrete computation techniques by tessellating the image domain into a cell complex, e.g.
hexagonal mesh, a collection of non-overlapping basic regions whose union gives the whole
domain. They recast the problem as an integer linear program (along with the data term
and length/area penalty terms) and optimized the total energy via linear programming
(LP) relaxation. Figure 2.9(a) shows how [Strandmark and Kahl, 2011] discretized the
image domain by cells. If fi, i = 1, · · · ,m denote binary variables associated to each cell
region and ei be the boundary variable, then the curvature regularization term is written
as a linear function:

∑
i,j bijeij , where eij denotes the boundary pairs and

bij = min{li, lj}
(

α

min{li, lj}

)2

. (2.22)

li is the length of edge i and α is the angle difference between two lines.
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Later, [Strandmark et al., 2013] extended their previous work [Strandmark and Kahl,
2011] and proposed a globally optimal shortest path method that minimizes general func-
tionals of higher-order curve properties, e.g. curvature and torsion. Figure 2.9(b) illustrate
the usefulness of curvature prior on vessel segmentation.

2.2.4 Boundary information

Boundary and edge information is a powerful feature to delineate the objects of interest in an
image. To incorporate boundary information, it is often assumed that the object’s boundary
is more likely to pass between pixels with large intensity/color contrast or, more generally,
regions with different appearance (as captured by any of the measures in Section 2.2.2).
As objects’ boundaries are locations where we expect discontinuities in the labels, this
information is usually linked to the regularization term in (2.2) such that the regularization
penalty is decreased in high contrast regions (most likely objects’ boundaries) to allow for
discontinuity in labels. The functions wij = exp(−β‖Ii−Ij‖22) and w′ij = 1/1+β‖Ii−Ij‖22 are
two examples of a boundary weighting function where Ii and Ij represent the intensity/color
value associated with pixels i and j in image I, respectively [Grady, 2012]. These boundary
weights are used as multiplication factors along with the regularization terms mentioned in
Section 2.2.3. Geodesic active contour [Caselles et al., 1997], normalized-cut [Shi and Malik,
2000], and random walker [Grady, 2006] are three examples that employed such boundary
weighting technique.

Boundary and edge detectors typically involve first and second order spatial differen-
tial operators. Several methods have been proposed to calculate first and second order
differences in scalar images [Canny, 1986,Frangi et al., 1998] and color images [Shi et al.,
2008,Tsai et al., 2002]. However, some medical images (e.g. diffusion tensor MRI or DT
MRI) are manifold-valued. To address this, [Nand et al., 2011] extended the first order
differential as g(x) =

√
λê where λ and ê are respectively the largest eigenvalue and corre-

sponding eigenvector of S(x) = J(x)TJ(x) and J(x) is the Jacobian matrix generalizing
the gradient of a scalar field to the derivatives of the 3D DT image. Similarly, the authors
extended the second order differential as G′(x) = G(x)+G(x)T

2 where G(x) is the Jacobian
matrix of g(x), i.e. Gij = ∂gi

∂xj
. Similar approach has been proposed for boundary detection

in color images, e.g. in color snakes [Sapiro, 1997] and in detecting boundaries of oral lesions
in color images proposed by [Chodorowski et al., 2005].

Boundary polarity: A problem with the aforementioned boundary models is that
they describe a boundary point that passes between two pixels with high image contrast
without accounting for the direction of the transition [Boykov and Funka-Lea, 2006,Grady,
2012]. [Singaraju et al., 2008] considered the transition direction in boundary detection. For
example, it is possible to distinguish between boundaries from bright to dark and from dark
to bright (boundary polarity). This boundary polarity is incorporated into a graph based
framework by replacing each undirected edge, eij , by two directed edges, eij and eji, such
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(a) (b)

Figure 2.10: Cardiac right ventricle segmentation (a) without encoding edge polarity and
(b) with encoding edge polarity by specifying the bright to dark edges as the desired ones.
Note how the incorrect boundary transition (the yellow arrow) in (a) has been corrected by
specifying boundary polarity in (b).

that their weight is calculated as:

wij =

exp(−β1‖Ii − Ij‖22) ifIi > Ij

exp(−β2‖Ii − Ij‖22 otherwise
, (2.23)

where β1 > β2. In (2.23), boundary transition from bright to dark is less costly than
boundary transition from dark to bright. One example of encoding boundary polarity is
shown in Figure 2.10, where the boundary ambiguity is resolved by specifying the boundary
polarity, i.e. in this example, bright to dark boundary.

The assumption of high contrast in objects’ boundaries might not be always valid in
many medical images, e.g. soft tissue boundaries in CT. In addition, the two proposed
contrast models, wij and w′ij , are suitable for objects with smooth appearance and not for
textured objects. One possible way to address these aforementioned issues (low contrast
image and textured objects) is to utilize the piecewise constant case of Mumford-Shah
model [Mumford and Shah, 1989] and replace Ii with τ(Ii), where τ is a function that maps
the pixel content to a transformed space where the object appearance is relatively constant
[Grady, 2012]. The Mumford-Shah model segments the image into a set of pairwise disjoint
regions with minimal appearance variance and minimal boundary length. Among the most
popular methods that adopted the Mumford-Shah model is the active contours without
edges (ACWOE) method proposed by [Chan and Vese, 2001]. As an example [Sandberg
et al., 2002] proposed a level set-based active contour algorithm to segment textured objects.
Another example is the work proposed by [Paragios and Deriche, 2002] where boundary and
region-based segmentation modules were exploited and unified into a geodesic active contour
model to segment textured objects.

28



2.2.5 Extending binary to multi-label segmentation

In many medical image segmentation problems, we are interested in segmenting multiple
objects (e.g. segmenting retinal layers from optical coherence tomography [Yazdanpanah
et al., 2011]). Unlike a large class of binary labeling problems that can be solved globally,
multi-label problems, on the other hand, cannot be globally minimized in general. In
2001, [Boykov et al., 2001] proposed two algorithms (α-expansion and α-β swap) based on
graph cuts that efficiently find a local minimum of a multi-label problem. They consider
the following energy functional:

E(f) =
∑
p∈P

Dp(fp) +
∑

{p,q}∈N
Vpq(fp, fq) , (2.24)

where P is the set of all pixels, f = {fp|p ∈ P} is a labeling of the image, Dp(fp) measures
how well label fp fits pixel p and Vpq is a penalty term for every pair of neighbouring pixels p
and q and encourages neighbouring pixels to have the same label. The second term ensures
that the segmentation boundary is smooth. Methods of proposed in [Boykov et al., 2001]
require Vpq to be either a metric or semimetric. V is a metric on the space of labels L if it
satisfies the following three conditions:

V (α, β) = 0⇔ α = β (2.25)

V (α, β) = V (β, α) > 0 (2.26)

V (α, β) ≤ V (α, γ) + V (γ, β) , (2.27)

for any labels α, β,γ ∈ L. If V only satisfies (2.25) and (2.26) then V is a semimetric.
[Boykov et al., 2001] find the local minima by swapping a pair of labels (α-β-swap) or
expanding a label (α-expansion) and evaluate the energy using graph cuts iteratively. Later
in 2003, Ishikawa [Ishikawa, 2003] showed that, if Vpq(fp, fq) is convex and symmetric in
fp − fq, one can compute the exact solution of the multi-label problem. Ishikawa used the
following formulation:

E(f) =
∑
p∈P

D(fp) +
∑

(p,q)∈N
g(`(fp)− `(fq)) , (2.28)

where D(.) in the first term (data term) is any bounded function that can be non-convex
and g(.) is a convex function and the function ` gives the index of a label, i.e. `(label i) = i.
The term g(`(fp) − `(fq)) expresses that there is a linear order among the labels and the
regularization depends only on the difference of their ordinal number. Ishikawa showed that
if g(.) is convex in terms of a linearly ordered label set, the problem of (2.28) can be exactly
optimized by finding the min-cut over a specially constructed multi-layered graph in which
each layer corresponds to one label.
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Figure 2.11: Multi region level set methods proposed by (a) [Vese and Chan, 2002], (b)
[Mansouri et al., 2006], and (c) [Chung and Vese, 2009].

In the continuous domain, [Vese and Chan, 2002] extended their level sets-based method
to multiphase level sets. To segment N objects, their method needs dlog2Ne level set
functions. The number of regions is upper-bounded by a power of two (Figure 2.11(a)).
Therefore, the actual number of regions the method yields is sometimes not clear as it de-
pends on the image and the regularization weights. This issue happens specifically when
number of regions of interest is less than 2dlog2 Ne. [Mansouri et al., 2006] proposed to as-
sign an individual level set function to each object of interest (excluding the background),
i.e. their method needs N − 1 non-overlapping level set functions to segment N objects
(Figure 2.11(b)). [Chung and Vese, 2009] proposed another method that uses a single level
set function for multi-object segmentation. They proposed to use different layers (or lev-
els) of a level set function to represent different regions as opposed to just using the zero
level set (Figure 2.11(c)). None of the aforementioned continuous methods guarantee the
globally optimal solution for multi-label problems. [Pock et al., 2008] proposed a spatially
continuous formulation of Ishikawa’s multi-label problem. In their method, the non-convex
variational problem is reformulated as a convex variational problem via a technique they
called functional lifting. They used the following energy functional:

E(u) =
∫

Ω
ρ(u(x),x)dx+

∫
Ω
|∇u(x)|dx , (2.29)

which can be seen as the continuous version of Ishikawa’s formulation (2.24). u : Ω→ Γ in
(2.29) is the unknown labeling function and Γ = [γmin, γmax] is the range of u. The first
term in (2.29) is the data term, which can be a non-convex function, and the second term
is the total variation regularization term which is a convex term. In the functional lifting
technique, the idea is to transfer the original problem formulation to a higher dimensional
space by representing u in terms of its supper level sets ϕ defined as:

ϕ(x, γ) =

1 if u(x) > γ

0 otherwise
. (2.30)
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Now, (2.29) can be re-written in terms of the supper level set function as:

E(ϕ) =
∫

Σ
ρ(x, γ)|∂γϕ(x, γ)|dΣ +

∫
Σ
|∇ϕ(x, γ)|dΣ , (2.31)

which is convex in ϕ and Σ = [Ω×Γ]. The minimization of E(ϕ) is not a convex optimization
problem since ϕ : Σ→ {0, 1}. Hence, ϕ is relaxed to vary in [0, 1]. We emphasize that the
method of [Pock et al., 2008] cannot always guarantee the globally optimal solution of the
original problem (before ϕ is relaxed and when ϕ is binary). [Brown et al., 2009] utilized
functional lifting technique proposed by [Pock et al., 2008] and suggested a dual formulation
for the multi-label problem. Their method guarantees a globally optimal solution. Recently,
inspired by Ishikawa, [Bae et al., 2011b] proposed a continuous max-flow model for multi-
labeling problem via convex relaxed formulations. Not only can their continuous max-flow
formulations obtain exact and global optimizers to the original problem, but they also
showed that their method is significantly faster than the primal-dual algorithm of [Pock
et al., 2008].

2.2.6 Shape prior

Shape information is a powerful semantic descriptor for specifying target objects in an image.
In our categorization, shape prior can be modelled in three ways: geometrical (template),
statistical and physical.

Geometrical model (template)

Sometimes the shape of the target object is known a priori (e.g. ellipse or cup-like shape).
In this case, the shape can be modelled either by parametrization (e.g. an ellipse can be
parametrized by its center coordinate, major and minor radius and orientation) or by a non-
parametric way (e.g. by its level set representation) and incorporated into a segmentation
framework.

One way to incorporate a geometrical shape model into a segmentation framework is
to penalize any deviation from the model. In the continuous domain, given two shapes
represented by their signed distance functions φ1 and φ2, a simple way to calculate the
dissimilarity between them is given by

∫
Ω(φ1 − φ2)2dx. The problem with this measure

is that it depends on Ω, i.e. as the size of Ω is increased, the difference becomes larger.
An alternative is to constrain the integral to the domain of φ1, i.e.

∫
Ω(φ1 − φ2)2H(φ1)dx,

as proposed in [Rousson and Paragios, 2002]. The aforementioned formulas are usable if
the pose of the object of interest (location, rotation and scale) is known. If the pose of an
object is unknown, one can include the pose parameters into the shape energy term and
optimize the energy functional with respect to both pose parameters and the level set as
has been done in [Chen et al., 2002,Pluempitiwiriyawej et al., 2005]. The authors in [Chen
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Figure 2.12: A star shape with a given center c. p an q are two points on the line passing
through c. If p is labeled as object, then q must also be labled as the abject.

et al., 2002] imposed the shape prior on the extracted contour after each iteration of the
level set function. [Pluempitiwiriyawej et al., 2005] described the shape of an ellipse with
five parameters including its pose parameters. They also optimized their energy functional
by iterating between optimizing the shape energy term and the regional term.

In the discrete domain, the method of [Slabaugh and Unal, 2005] is one of the primary
works to incorporate an explicit shape model into a graph-based segmentation framework.
They proposed the following extra term (in addition to data and regularization terms) that
constrained the segmentation to return an elliptical object

Eellipse(f , θ) =
∑
i∈P
|M θ

i − fi| , (2.32)

where M θ is the mask of an ellipse parametrized by θ. As minimizing such a term is not
straightforward, the authors optimized the energy functional iteratively, i.e. by finding the
best f for a fixed θ and then optimizing θ for a fixed f . For complex shapes that are hard to
parametrize, an alternative approach is to fit a shape template to the current segmentation
as proposed in [Freedman and Zhang, 2005]. [Veksler, 2008] proposed to incorporate a more
general class of shapes, known as star shapes, into graph-based segmentation. In Veksler’s
work, it is assumed that the center point (c) of the object is given. According to their
definition, “an object has a star shape if for any point p inside the object, all points on
the straight line between the center c and p also lie inside the object” (Figure 2.12). The
following pairwise term was introduced to impose the star shape prior:

EStarpq (fp, fq) =


0 if fp = fq

∞ if fp = 1 and fq = 0

β if fp = 0 and fq = 1

. (2.33)
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This prior is particularly useful for segmentation of convex objects, e.g. optic cum and disc
segmentation [Bai et al., 2014].

Statistical model

In many practical applications, objects of the same class are not identical or rigid. For
example, in medical images, the shape of organs vary from one subject to another or even
over time and so, assuming a fixed shape template may be inappropriate. A typical way
to capture the intra-class variation of shapes is to build a shape probability model, i.e.
P (shape). Now, two questions have to be investigated: 1) how to represent a shape;
explicitly like point cloud, boundary-based (e.g. surface mesh), medial-based (e.g. m-
reps [Pizer et al., 2003]), or implicitly (e.g. level set), and 2) what probability distribution
model to adopt, e.g. Gaussian distribution, Gaussian mixture model, or kernel density
estimation (KDE).

[Cootes et al., 1995] generated a compact shape representation and performed PCA
(assuming Gaussian distribution) on a set of training shapes to obtain the main modes
of variation. The idea is to model the plausible deformations of object’s shape (S) by its
principal modes of variation:

S = S +
k∑
i=1

wiPi , (2.34)

where S is the average shape, Pi is the ith principal component and wi is its corresponding
weight (or shape parameter). [Cootes et al., 1995] used object’s coordinates to represent S.
Given an initial estimation of the position of an object, the segmentation is performed by
directly optimizing an energy functional over the weights wi. This model is later improved
by [Tsai et al., 2001,Tsai et al., 2003,Leventon et al., 2000b] and [Van Ginneken et al., 2002].
For example, [Leventon et al., 2000b] represented S by its level sets to automatically handle
topological changes during the contour evolution. [Tsai et al., 2003] used the same level
set-based shape representation as [Leventon et al., 2000b] and incorporated the shape prior
in a region-based energy functional as opposed to an edge-based energy proposed in [Cootes
et al., 1995]. [Van Ginneken et al., 2002] proposed to use a general set of local image
structure descriptors including the moments of local histograms instead of the normalized
first order derivative profiles used in [Collins et al., 1995].

Similar to [Tsai et al., 2003] in the continuous domain, [Zhu-Jacquot and Zabih, 2007]
employed an iterative approach that accounts for shape variability in a graph-based setting.
At each iteration, they optimize the weights of principal modes of variations and the set of
rigid transformation parameters given a tentative segmentation. Then, the segmentation
is updated given the fitted shape template by minimizing an energy functional consisting
a regional term. The procedure is repeated until convergence. Recently, [Andrews et al.,
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2014] proposed a probabilistic framework and incorporated shape prior to segment multiple
anatomical structures. They utilized PCA in the isometric log-ratio space as PCA assumes
that the probabilistic data lie in the unconstrained real Euclidean space. This is not a valid
assumption as the sample space for a probabilistic data is the unit simplex and PCA may
generate invalid probabilities, and hence, invalid shapes.

In the above mentioned PCA-based methods, aligning the shapes before computing
the principal modes of variation is necessary and to do this alignment, it is often needed
to provide point-to-point correspondence between landmarks of different subjects. This
might be a tedious task. Hence, some methods proposed to capture shape variations in the
frequency domain by representing shapes by the coefficients of its discrete cosine transform
(DCT) [Hamarneh and Gustavsson, 2000], Fourier transform [Staib and Duncan, 1992] or
spherical wavelet transform [Nain et al., 2006].

While PCA is a popular linear dimensionality reduction technique, it has the restrictive
assumption that the input data is drawn from a Gaussian distribution. If the shape varia-
tion does not follow a Gaussian distribution, we might end up with invalid shapes or unable
to represent valid shapes. In this case, a more accurate estimation of shape parameters
might be obtained by GMM as proposed in [Cootes and Taylor, 1999]. In addition, PCA is
only capable of describing global shape variations, i.e. changing a parameter corresponding
to one eigenvector deforms the entire shape, which makes it difficult to obtain a proper local
segmentation. To control the statistical shape parameters locally, [Davatzikos et al., 2003]
presented a hierarchical formulation of active shape models, using the wavelet transform. In
their method, a hierarchical representation of a deformable contour in terms of its wavelet
transform is followed by PCA. The statistical properties extracted by PCA are used as
priors in the contour’s deformation. Some of these priors capture the global shape charac-
teristics of the object boundaries, whereas, some of them capture local and high-frequency
shape characteristics. [Hamarneh et al., 2004] also proposed a method to locally control
the statistical shape parameters. They used the medial-based profile for shape representa-
tion and developed spatially-localized feasible deformations using hierarchical (multi-scale)
and regional (multi-location) PCA and deform the medial profile at certain locations and
scales. [Üzümcü et al., 2003] proposed to use independent component analysis (ICA) in-
stead of PCA which does not assume a Gaussian distribution of the input data and can
capture localized shape variations. However, ICA representation for shape variability is
not as compact as PCA. [Ballester et al., 2005] proposed to use principal factor analysis
(PFA) as an alternative to PCA and argued that PFA provides more “interpretable” modes
of variations and is better suited for medical image analysis. PFA represents the observed
D-dimensional data O as a linear function F of an L-dimensional (L < D) latent variable
z and an independent Gaussian noise err as: F(O) = Λz +µ+ err, where Λ is the D×L
factor loading matrix defining the linear function F , µ is a D-dimensional vector represent-
ing the mean of the distribution of O, and err is a D-dimensional vector representing the
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noise variability associated with each of the D observed variables. Authors in [Ballester
et al., 2005] concluded that PFA is adequate for the study of shape variability and provides
better “interpretability” than PCA as PFA models covariance between variables whereas
PCA determines the factors which account for the total variance.

PCA and ICA are both linear factor analysis techniques. However, it is difficult for
these approaches to cope with non-linear shape variations. Techniques such as kernel PCA
[Schölkopf et al., 1998] and KDE are two alternatives to describe the non-linear data. The
works proposed by [Cremers et al., 2006,Kim et al., 2007,Lu et al., 2012] are example papers
that used non-linear dimensionality reduction techniques (e.g. kernel PCA and KDE) to
incorporate shape prior into the image segmentation framework. For more information
about other linear and non-linear factor analysis techniques refer to [Fodor, 2002,Bowden
et al., 2000]

In addition to representation of shapes by a set of points (as usually done in e.g. PCA cf.
(2.34)), a shape can be described by distance and angle information between different land-
marks of an organ’s shape [Wang et al., 2010,Nambakhsh et al., 2013]. [Wang et al., 2010]
proposed a scale-invariant shape description by measuring the relative distances between
pair of landmarks in a triplet, while [Nambakhsh et al., 2013] modeled the left ventricle
(LV) shape in the cardium by calculating the distance between each point on the surface of
the LV and a reference point in the middle of the LV provided by a user. More reviews on
statistical shape models for 3D medical image segmentation can be found in [Heimann and
Meinzer, 2009].

Beside the aforementioned statistical methods, some methods employed learning algo-
rithms to impose a shape model into segmentation [Zhang et al., 2012, Kawahara et al.,
2013]. In [Zhang et al., 2012], authors proposed a deformable segmentation method based
on sparse shape composition and dictionary learning. In another work, [Kawahara et al.,
2013] augmented the auto-context method [Tu and Bai, 2010] and trained sequential clas-
sifiers to learn what shape-features (e.g. volume of a segmentation) a good segmentation
should have. Auto-context [Tu and Bai, 2010] is an iterative learning framework used for
segmentation, which jointly learns the appearance and regularization distributions where
the predicted labels from the previous iteration are used as input to the current iteration.

Physical model

In some medical applications, the biomechanical characteristics of tissues can be estimated.
In this case, physical characteristics of a tissue can be incorporated into the segmentation
framework as additional prior information to obtain more reliable segmentation.

Incorporating material elasticity property in image segmentation was first introduced in
1988 by [Kass et al., 1988] in which spring-like forces between snake’s points is enforced.
Following Kass’ snakes model, several researchers also examined ways to extract vibrational
(physical) modes of shapes based on finite element method (FEM); these include methods
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proposed by [Karaolani et al., 1989], [Nastar and Ayache, 1993] and [Pentland and Sclaroff,
1991]. In these frameworks, an object is modelled based on its vibrational modes similar to
(2.34) where Pi represents vibrational modes instead of statistical modes.

When the physical characteristics of a tissue are known and several samples from the
same tissue are available, one can take advantage of both statistical and physical models to
obtain more accurate segmentation, as done by [Cootes and Taylor, 1995] and [Hamarneh
et al., 2008] where statistical and vibrational modes of variation are combined into a single
objective function.

[Schoenemann and Cremers, 2007] encoded an elastic shape prior into a segmentation
framework by combining the shape matching and segmentation tasks. Given a shape tem-
plate, they proposed an elastic shape matching energy term that maps the points of the
evolving shape to the template based on two criteria: 1) points of similar curvature should
be matched, and 2) a curve piece of the evolving shape should be matched to a piece of the
template of equal size. Their method ensures the globally optimal solution.

2.2.7 Topological prior

Many anatomical objects in medical images have a specific topology that has to be preserved
after segmentation in order to obtain plausible results. There are two types of topology
specification in the literature: connectivity and genus. Connectivity specification ensures
that the segmentation of a single object is connected2. The genus information ensures that
the final segmentation does not have any void region (if the object is known to be connected)
or incorrectly fill void regions when the object is known to have internal holes [Grady,
2012]. For example, a doughnut-shape initial segmentation should keep its shape (doughnut)
during the segmentation process.

[Han et al., 2003] proposed a level set-based method for segmenting objects with topol-
ogy preservation. Their method is based on the simple point concept from digital topol-
ogy [Bertrand, 1994]. A simple point is one that does not change the topology of the seg-
mentation when it is added to or removed from a segmentation. Specifically, the proposed
method checks the topological number at each iteration to detect any topology changes
during the contour evolution. If the segmentation algorithm adds or removes only simple
points from an initial segmentation, then the new segmentation will have the same genus
as before.

Inspired by [Han et al., 2003], [Zeng et al., 2008] introduced topology cuts and cast the
formulation of [Han et al., 2003] in a discrete setting. They showed that the optimization
of their energy functional with topology preserving is NP-hard. In another work, [Vicente
et al., 2008] proposed an interactive method in the discrete domain to segment objects with

2Formally, a segmentation S is connected if ∀x, y ∈ S, ∃Pathxy, s.t. if z ∈ Pathxy, then z ∈ S.
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(a) (b) (c)

(d) (e) (f)

Figure 2.13: Incorporating topology constraint into medical image segmentation frame-
works. Top row: Segmentation of a carpal bones CT image [Han et al., 2003]. Bottom
row: Segmentation of cardiac ventricles [Zeng et al., 2008]. (a) Initialization. (b,c) Seg-
mentation without (b) and with (c) topological constraint. (Images adapted from [Han
et al., 2003] and [Zeng et al., 2008] by permission)

topology preserving. Their algorithm guarantees the connectivity between two designated
points. The authors showed that their method will sometimes find the global optimum,
while guaranteeing connectivity of the designated points. Figure 2.13 shows examples of
encoding topological constraint in segmenting capral bones and cardiac ventricles.

2.2.8 Moment prior

In most segmentation methods that impose shape prior, deviations of the observed shape
from training shapes are usually suppressed by the shape prior imposed. This is undesirable
in medical image segmentation where pathological cases (abnormal cases that deviate from
the training shapes of healthy organs) occur. Lower-order moments constraints seem to be
an alternative to avoid this limitation.

• 0th order moment (size/area/volume): The 0th order moment corresponds to
the size of an object. [Ayed et al., 2008] proposed to add the area prior into the level
set framework to speed up the curve evolution and to prevent leakage in the final
segmentation. Given an image I and the approximate area value of the target object
(A), their area energy term is defined as:

EArea(x) = 1
A2

(∫
Ωin

dx−A
)2 ∫

Ωin
g(I(x))dx , (2.35)
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where Ωin is the region inside the current segmentation and g(.) attracts the evolving
contour toward the high gradient regions (object boundaries).

• 1st order moment (location/centroid): In case of having some rough information
about the centroid of the target object, this valuable information can be encoded into
a segmentation framework using the 1st order moment as proposed in [Klodt and
Cremers, 2011] (see below for more details).

• Higher-order moment: Generally, we can impose moment constraints of any order
to refine the segmentation and capture fine-scale shape details. [Foulonneau et al.,
2006] proposed to encode higher-order moments into a level sets framework using a
local optimization scheme. Recently, [Klodt and Cremers, 2011] proposed a convex
formulation to encode moment constraints. They used the objective function in the
form of

E(u) =
∫
ρ(x)u(x)dx+

∫
g(x)|Du(x)|dx , (2.36)

where u ∈ BV : Rd → {0, 1} is the labeling function and Du is the distributional
derivative (Du(x) = ∇u(x) for a differentiable u). Relaxing u to vary between 0 and
1, (2.36) becomes a convex optimization problem over the convex set BV : Rd → [0, 1].
The global minimizer of the original problem (E(u) before relaxing u) is obtained by
finding the global minimum of the relaxed energy functional, u∗, and thresholding u∗

by a value µ ∈ (0, 1).

[Klodt and Cremers, 2011] imposed the 0th order moment (i.e. area constraint in a
2D image) by bounding the area of u between c1 and c2 where c1 ≤ c2 such that u
lies in the set

C0 =
{
u
∣∣c1 ≤

∫
Ω
udx ≤ c2

}
. (2.37)

The exact area prior can be imposed by setting c1 = c2. The 1st moment (i.e. centroid
constraint) is imposed by constraining the solution u to the set C1 as:

C1 =
{
u
∣∣µ1 ≤

∫
Ω xudx∫
Ω udx

≤ µ2

}
, (2.38)

where µ1, µ2 ∈ Rd. The set C1 ensures that the centroid of the segmented object lies
between µ1 and µ2. The centroid is fixed when µ1 = µ2.

In general, the nth order moment constraint is imposed as:

Cn =
{
u
∣∣A1 ≤

∫
Ω(x1 − µ1)i1 · · · (xd − µd)idudx∫

Ω udx
≤ A2

}
, (2.39)
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(a) (b) (c)

Figure 2.14: CT segmentation (b) without and (c) with moments constraints. The area
constraint limits the segmentation to the size of the ellipse that was clicked by the user (a)
that resulting in more accurate result. (Images adapted from [Klodt and Cremers, 2011] by
permission)

where i1 + · · ·+ id = n, A1,A2 ∈ Rd×d are symmetric matrices and A1 ≤ A2 element
wise. [Klodt and Cremers, 2011] proved that all these sets are convex. In their work,
the above constraints (2.37)-(2.39) are all hard constraints. Alternatively, all of the
aforementioned constraints can be enforced as soft constraints by including them
into the energy functional using Lagrange multipliers. [Klodt and Cremers, 2011]
mentioned that, in practice, imposing moments of more than the order of 2 is not
very useful as users cannot interpret these moments visually and the improvements
are very small.

In the discrete settings, [Lim et al., 2011] encoded area, centroid and covariance (2nd

order constraint) constraints into a graph based method. While their method does not
guarantee a globally optimal solution, it can impose non-linear combinations of the afore-
mentioned constraints as opposed to [Klodt and Cremers, 2011]. Figure 2.14 illustrates an
example application of using moment constraints in CT segmentation.

2.2.9 Geometrical and region interactions prior

Anatomical objects often consist of multiple regions, each with a unique appearance model,
and each has meaningful geometrical relationships or interactions with other regions of the
object. Over the past decade, much attention has been given to incorporating geometrical
constraints into the segmentation objective function.

In the continuous domain, several methods have been proposed based on coupled surfaces
propagation to segment a single object in an image [Zeng et al., 1998,Goldenberg et al.,
2002,Paragios, 2002]. [Vazquez-Reina et al., 2009] defined elastic coupling between multiple
level set functions to model ribbon-like partitions. However, their approach was not designed
to handle interactions between more than two regions. [Bloch, 2005] briefly reviewed the
main fuzzy approaches that define spatial relationships including topological relations (set
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relationships and adjacency) as well as metrical relations (distances and directional relative
position). None of the aforementioned methods guarantee the optimal solution.

[Wu et al., 2011] proposed a method for segmenting a region bounded by two cou-
pled terrain-like surfaces by minimizing the intraclass variance. While their method yields
globally optimal solution, it is limited to handling objects that can be “unfolded” into two
coupled surfaces and can only segment a single object in an image.

[Ukwatta et al., 2012] also proposed a method that is based on coupling two surfaces
for carotid adventitia and lumenintima segmentation. The advantage of their work over
previous works is that they optimized their energy functional by means of convex relaxation.
However, their method could only segment objects with coupled surfaces. Using the same
framework as [Ukwatta et al., 2012], [Rajchl et al., 2012] presented a graphical model to
segment the myocardium, blood cavities and scar tissue. Their method used seed points as
hard constraints to distinguish the background from the myocardium. [Nambakhsh et al.,
2013] proposed an efficient method for LV segmentation that iteratively minimizes a convex
upper bound energy functional for a coupled surface. Their method implicitly imposes a
distance between two surfaces by learning the LV shape.

In the discrete domain, [Li et al., 2006a] proposed a method to segment “nested objects”
by defining distance constraints between the object’s surfaces with respect to a center point.
As their formulation employed polar coordinates, their method could only handle star-
shaped objects. Two containment and exclusion constraints between distinct regions have
been encoded into a graph-cut framework by [Delong and Boykov, 2009] and [Ulén et al.,
2013]. If only containment constraint is enforced, then both approaches guarantee the
global solution. For a two-region object scenario (region A, B and background), the idea
of [Delong and Boykov, 2009] is to create two graphs for A and B, i.e. G(PA, EA) and
G(PB, EB). The segmentations of A and B are represented by the binary variables fA and
fB, respectively. The geometrical constraints between regions A and B are enforced by
adding an additional penalty term WAB defined in Table 2.2. This interaction term, W ,
is implemented in the graph construction by adding inter-layer infinity edges for each pixel
(Figure 2.15(a)). Delong and Boykov employed what is known as the interaction term W

Table 2.2: Energy terms for encoding containment and exclusion constraints between regions
A and B in (2.40) [Delong and Boykov, 2009].

A contains B
fAp fBq WAB

pq

0 0 0
0 1 ∞
1 0 0
1 1 0

A excludes B
fAp fBq WAB

pq

0 0 0
0 1 0
1 0 0
1 1 ∞
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Figure 2.15: Enforcing containment constraint between objects A and B. (a) Graph con-
struction to enforce A contains B proposed by [Delong and Boykov, 2009]. (b) Enforcing
1-pixel distance between A and B boundaries shown for one pixel only.

as follows:

∑
pq∈NAB

WAB
pq (fAp , fBq ) , (2.40)

where NAB is the set of all pixel pairs (p, q) at which region A is assigned some geometric
interaction with region B. Table 2.2 lists energy terms for the region interaction constraints
proposed in [Delong and Boykov, 2009]. The proposed graph-based method in [Delong and
Boykov, 2009] guarantees the globally optimal solution for containment solution since its
energy term is submodular. However, the energy for the exclusion constraint is nonsub-
modular and thus harder to optimize. In some cases, because exclusion is supermodular
everywhere, it is possible to make this term submodular by flipping the meaning of layer B’s
variables so that fBp = 0 designates the region’s interior. Nonetheless, there are many use-
ful interaction energy terms that cannot be modelled and optimized efficiently by [Delong
and Boykov, 2009] and other approximation like quadratic pseudo-boolean optimization
(QPBO) [Kolmogorov and Rother, 2007, Rother et al., 2007] or αβ-swap [Boykov et al.,
2001] should be used for their optimization.

2.2.10 Spatial distance prior

In the literature, works that incorporate spatial distance prior may be categorized as follows:

• Minimum distance: In some applications the minimum distance between two struc-
tures must be enforced to ensure that sufficient separation between regions exists to
obtain plausible results (e.g. distance between carotid adventitia and lumenintima).
Examples of methods that employ this constraint include [Zeng et al., 1998,Golden-
berg et al., 2002, Paragios, 2002] in the continuous settings and [Wu et al., 2011, Li
et al., 2006a, Delong and Boykov, 2009, Ulén et al., 2013] in the discrete settings.
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Looking at (2.40) for example, [Delong and Boykov, 2009] (and similarly, [Ulén et al.,
2013]) enforce the minimum distance between two regions by defining the NAB in
(2.40). Figure 2.15(b) shows how 1-pixel margin between region boundaries is en-
forced by [Delong and Boykov, 2009,Ulén et al., 2013].

• Maximum distance: In other medical applications, maximum distance between
regions is known a priori. For example, in cardiac LV segmentation, maximum dis-
tance between LV and its myocardium can be approximated. Enforcing a maxi-
mum distance between LV and its myocardium boundaries prevents the myocardium
segmentation from growing too far from the LV. Maximum distance between two
boundaries/surfaces is enforced as proposed in [Zeng et al., 1998,Goldenberg et al.,
2002,Paragios, 2002] in the continuous settings. There is not much work on incorporat-
ing maximum distance between region boundaries in discrete settings except for [Wu
et al., 2011] and [Schmidt and Boykov, 2012]. In [Wu et al., 2011] the maximum
distance along with minimum distance prior for segmenting two-region ribbon-like
objects can be enforced. To the best of our knowledge, the only work that solely fo-
cused on incorporating maximum distance in the discrete settings between regions for
multi-region object segmentation is the approach proposed by [Schmidt and Boykov,
2012]. They modified the framework of [Delong and Boykov, 2009] by adding the Haus-
dorff distance prior to the MRF-based segmentation framework to impose maximum
distance constraints. They showed that incorporating this prior into multi-surface
segmentation is NP-hard due to the existence of supermodular energy terms.

• Attraction/repulsion distance: In applications like multi-region cell segmenta-
tion, distance between regions should be in a specific range. Maintaining a specific
distance between different regions is enforced by enforcing attraction and repulsion
forces between region boundaries as proposed in [Zeng et al., 1998,Goldenberg et al.,
2002,Paragios, 2002] in the continuous settings. [Vazquez-Reina et al., 2009] specifi-
cally focused on attraction/repulsion interaction between two boundaries. They de-
fined elastic couplings between level set functions using dynamic force fields to model
ribbon-like partitions. Note that none of the above mentioned methods guarantee the
globally optimal solution.

In the discrete domain, [Wu et al., 2011] imposed attraction/repulsion forces between
two surfaces by controlling the minimum and maximum distances between them. [De-
long and Boykov, 2009] (similarly [Ulén et al., 2013, Schmidt and Boykov, 2012])
enforced the attraction/repulsion forces between pairs of regions, e.g. A and B, by
penalizing the intersection of A and B (i.e. area/volume of A− B). Such constraint
is encoded in (2.40) using the penalty terms defined in Table 2.3. In fact, contain-
ment and attraction are similar constraints but with different orientation. In the
containment setting mentioned in Table 2.2, replacing infinity value with a positive
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Table 2.3: Energy terms for encoding containment with attraction/repulsion between A
and B regions.

A attracts B
fAp fBq WAB

pq

0 0 0
0 1 0
1 0 α
1 1 0

value for WAB
pq (0, 1) > 0 creates a spring-like repulsion force between inner and outer

boundaries.

In graph-based methods, e.g. [Delong and Boykov, 2009,Ulén et al., 2013], increasing the
distance (or thickness) between regions requires more edges to be added to the underlying
graph, which increases the memory usage and computation time. In fact, to impose a
distance constraint of w pixels between two regions, [Delong and Boykov, 2009] and [Ulén
et al., 2013] need to add O(w2) extra edges per pixel. Therefore, although these graph-
based methods are highly efficient in segmenting images with reasonable size and thickness
constraint, they are not that efficient for large distance constraints.

In addition to the above mentioned approaches, methods based on the artificial life
framework (deformable organisms) also employ spatial distance constraints to maintain the
organism’s structure [Hamarneh et al., 2009, Prasad et al., 2011]. In these models, the
deformable organism evolves in a restricted way such that the distance between its skeleton
and its boundary is restricted to be within a certain range.

2.2.11 Adjacency prior

Recently, several methods focused on ordering constraints and adjacency relationships on
labels for semantic segmentation. As an example, “sheep” and “wolf” are unlikely to be next
to each other and label transition from “sheep” to “wolf” should be penalized [Strekalovskiy
et al., 2012].

In the discrete settings, [Liu et al., 2008] proposed a graph-based method to incorporate
label ordering constraints in scene labeling and tiered3 segmentation. They assumed that
an image is to be segmented into five parts (“centre”,“left”, “right”, “above” and “bottom”)
such that a pixel labeled as “left” cannot be to the right of any pixel labeled as “center”, etc.
[Liu et al., 2008] encoded such constraints into the pair-wise energy term (regularization),
i.e.

∑
(p,q)∈N Vpq(fp, fq). For example, if pixel p is immediately to the left of q, to prohibit

fp =“center” and fq =“left”, then one defines Vpq(“center”,“left”) = ∞. Generalizing this
rule to other cases gives the following settings for Vp,q:

3Tiered labeling problem partitions an input image into multiple horizontal and/or vertical tiers.
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(a) Input image (b) Without label ordering
constraint

(c)

Figure 2.16: Tiered labelling. (a) Input image. Segmentation result (b) without and (c)
with label ordering constraints. (Images adapted from [Strekalovskiy and Cremers, 2011]
by permission)

fp\fq L R C T B
L 0 ∞ wpq wpq wpq

R ∞ 0 ∞ ∞ ∞
C ∞ wpq 0 ∞ ∞
T ∞ wpq ∞ 0 ∞
B ∞ wpq ∞ ∞ 0

fp\fq L R C T B
L 0 ∞ ∞ ∞ wpq

R ∞ 0 ∞ ∞ wpq

C ∞ ∞ 0 ∞ wpq

T wpq wpq wpq 0 ∞
B ∞ ∞ ∞ ∞ 0

p is the left neighbour of q p is the top neighbour of q

Figure 2.16 illustrates a sample example of a tiered labelling. From optimization point of
view and according to [Liu et al., 2008], α-expansion technique is more likely to get stuck
in a local minimum when ordering constraints are used, as α-expansion acts on a single
label (α) at each move. In order to improve on α-expansion moves, authors introduced two
horizontal and vertical moves and allowed a pixel to have a choice of labels to switch to as
opposed to just a single label α. Although their proposed optimization approach leads to
better results (compared to α-expansion approach), the globally optimal solution is still not
guaranteed. [Felzenszwalb and Veksler, 2010] proposed an efficient dynamic programming
algorithm to impose similar constraints as [Liu et al., 2008] but with much less complexity.
Their method computes the globally optimal solution in the class of tiered labelings.

In the continuous domain, [Strekalovskiy and Cremers, 2011] proposed a generalized la-
bel ordering constraint which can enforce many complex geometric constraints while main-
taining convexity. This method requires that the constraint term obeys the triangle in-
equality, a requirement that was later relaxed by introducing a convex relaxation method
for non-metric priors [Strekalovskiy et al., 2012]. To do so, authors enforce non-metric
label distances in order to model arbitrary probabilities for label adjacency. The distance
between different labels4 operates only directly on neighbouring pixels. This often leads to
artificial one pixel-wide regions between labels to allow the transition between labels with
very high or infinite distance. For example, both the “wolf” and “sheep” labels can be next
to “grass” but they cannot be next to each other [Strekalovskiy et al., 2012]. The method

4Note that this distance is between label classes and is not a spatial distance.
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proposed in [Strekalovskiy et al., 2012] creates an artificial “grass” region between “wolf”
and “sheep” to allow for this transition. Obviously this one-pixel wide distance between
“wolf” and “sheep” will not make the sheep feel secure. Hence, larger neighbourhood than
one pixel is needed to impose the proximity and propagate the co-occurrence penalty. [Berg-
bauer et al., 2013] addressed this issue and proposed a morphological proximity prior for
semantic image segmentation in a variational framework. The idea is to consider pixels as
adjacent if they are within a specified neighbourhood of arbitrary size. Consider two regions
i and j and their indicator functions ui and uj , respectively. To see if i and j are close to
each other, the overlap between the dilation of the indicator function ui denoted by di and
the indicator function of uj is computed. The dilation of ui is formulated as:

di(x) = max
z∈Se

ui(x+ z), ∀x ∈ Ω (2.41)

with a structuring element Se. For each pair of region i and j, the proximity penalty term
is defined as:

∑
1≤i≤j≤n

∫
Ω
A(i, j)di(x)uj(x)dx , (2.42)

where A(i, j) indicates the penalty for the co-occurrence of label j in the proximity of label
i such that A(i, i) = 0. This penalty term is relaxed and added to an energy functional
(along with regional and regularization terms), which is then optimized with the help of
Lagrange multipliers.

To the best of our knowledge, the adjacency and proximity priors as described above
have not been utilized in medical image segmentation yet.

2.2.12 Number of regions/labels

In most segmentation problems, the number of regions is assumed to be known beforehand.
However, it is not the case in many applications and considering a fixed number of labels
in these cases often causes over-segmentation.

The intuitive way to handling this problem is to penalize the total number of labels. For
the given maximum number of regions/labels (at most n labels), which is available in most
applications, [Zhu and Yuille, 1996] proposed to partition images based on the following
energy functional in the continuous domain:

min
Ωi

n∑
i=1

{∫
Ωi
ρ(`i,x)dx+

∫
∂Ωi

ds

}
+ γM , (2.43)

where Ωi is the region corresponding to label `i; ρ(`i,x) is the data term that encodes the
model of `i at pixel x; the second term is the regularization term; and M in the third term
is the number of non-empty partitions (known as label cost prior). [Zhu and Yuille, 1996]

45



optimized the above energy functional using a local optimization technique which converges
to a local minimum. This approach was later adapted in the level set formulation by [Kadir
and Brady, 2003,Ben Ayed and Mitiche, 2008,Brox and Weickert, 2006] that allow region-
merging. A convex formulation of such constraint was proposed by [Yuan et al., 2012].
They enforced the label cost prior into multi label segmentation by solving the following
convex optimization problem:

min
u(x)

n∑
i=1

{∫
Ω
ui(x)ρ(`i,x)dx+

∫
∂Ω
|∇ui(x)|dx

}
+ γ

n∑
i=1

max
x∈Ω

ui(x) ,

s.t.
n∑
i=1

ui(x) = 1, ui(x) ≥ 0; ∀x ∈ Ω. (2.44)

In the discrete domain, [Delong et al., 2012a] developed an α-expansion method to
optimize a general energy functional with incorporated label cost in a graph-based frame-
work. Along with a unary (data) and pairwise (regularization) terms, [Delong et al., 2012a]
penalized each unique label that appears in the image by introducing the following term:

∑
l∈L

hl · δl(f) (2.45)

δl(f) =

1 ∃p ∈ Ω : fp = l

0 otherwise
, (2.46)

where hl is the non-negative label cost of label l.

2.2.13 Motion prior

The segmentation and tracking of moving objects in videos have a wide variety of applica-
tions in medical image analysis, e.g. echocardiography [Dydenko et al., 2006]. [Paragios and
Deriche, 1999] used motion prior to constrain the evolution of a level set function. They
integrated the motion estimation and tracking into the level set-based framework assuming
that the motion is linear. [Dydenko et al., 2006] proposed a method to segment and track
the cardiac structure in high frame rate echocardiographic images. Under an affine motion
model, the motion field is estimated from the level set evolution. More complex motion
prior is used in object tracking. For example, to track the LV in echocardiography, [Or-
derud et al., 2007] employed the Kalman filter, which is an optimal recursive algorithm
that uses a series of measurements observed over time to estimate the desired variables (i.e.
displacement in motion estimation).

As these methods focused more on tracking, which is outside the scope of this report,
we refer interested readers to [Tang et al., 2012].
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2.2.14 Model/Atlas

Atlas-based segmentation has also been particularly useful in medical image analysis appli-
cations. An atlas has the ability to encode (non-pathological) spatial relationships between
multiple tissues, anatomical structures or organs. In atlas-based image segmentation, the
image is non-rigidly deformed and registered with a model or atlas that has been labelled
previously. Applying the inverse transformation of the labels to the image space gives the
segmentation. However, atlas-based segmentation has so far been restricted to single (al-
beit multi-part or multi-region) object instance, i.e. it does not address spatially-recurring
objects in the scene. Also, atlases usually are built from datasets of manually segmented
images. These manual segmentations may not always be available, or it might not be
straightforward to define a representative template for a given object. Several methods
focused on such segmentation [Gee et al., 1993, Collins et al., 1995, Collins and Evans,
1997, Iosifescu et al., 1997].

The performance of atlas-based segmentation techniques relies on an accurate registra-
tion. Surveying registration methods is beyond the scope of this report. Interested readers
may refer to [Sotiras et al., 2013], [Hill et al., 2001], and [Tang and Hamarneh, 2013] for
more details on image registration.

In the field of computer vision (non-medical), a few techniques used 3D models of
objects (more realistic but more complex) to segment 2D images. [Prisacariu and Reid,
2012] proposed a variational method to segment an object in a 2D image by optimizing a
Chan-Vese energy functional with respect to six pose parameters of the object model in 3D.
The idea is to transform the object’s model in 3D so that its projection on the 2D image
delineates the object of interest. Consider segmenting a single object in an image with the
following energy functional:

E(φ(x)) =
∫

Ω
ρf (x)H(φ(x)) + ρb(x)(1−H(φ(x)))dΩ , (2.47)

where ρf and ρb are two monotonically decreasing functions, measuring matching quality
of the image pixels with respect to the foreground and background models, respectively.
Instead of optimizing E(φ) with respect to the level set function φ, authors in [Prisacariu
and Reid, 2012] proposed to minimize E(φ) with respect to the pose parameters (ξi) of the
object of interest in 3D space:

∂E

∂ξi
= (ρf − ρb)

∂H(φ)
∂ξi

= (ρf − ρb)δ(φ)
[
∂φ
∂x

∂φ
∂y

]  ∂x
∂ξi
∂y
∂ξi

 . (2.48)

Unlike [Prisacariu and Reid, 2012], [Sandhu et al., 2011] derived a gradient flow for the task
of non-rigid pose estimation for a single object and used kernel PCA to capture the variance
in the space of shapes. Later, [Prisacariu et al., 2013], introduced non-rigid pose parameters

47



into the same optimization framework. They captured 3D shape variance by learning non-
linear probabilistic low dimensional latent spaces, using the Gaussian process latent variable
dimensionality reduction technique. All three aforementioned works ( [Prisacariu and Reid,
2012,Prisacariu et al., 2013,Sandhu et al., 2011]) assume that the camera parameters (for
3D to 2D projection) are given.

2.3 Chapter summary

In this chapter we reviewed and summarized previous works that incorporated different
types of prior information in their segmentation framework. This review form the basis
for this thesis. Specifically, Chapter 3 will build upon the review of prior information in
Section 2.2.1-2.2.10, presenting a method for segmentation of overlapping multi-region cells
in microscopy/histology images. Chapter 4 and 5 present two new segmentation frameworks
to delineate multi-region objects with part configuration constraints outlined in Sections
2.2.9 and 2.2.10 with the focus on space and time complexity as well as optimizability.
Chapter 6 presents an efficient method to segment multi-region structures in multi-view
endoscopic videos using 3D pre-operative model and laparoscopic camera motion model,
the priors discussed in Sections 2.2.13 and 2.2.14.
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Chapter 3

Evolutionary computation
technique for targeted
spatially-recurring multi-part
object segmentation

Histology and microscopy image analysis plays a crucial role in studying diseases such as
cancer and in obtaining reference diagnosis (e.g. biopsy histopathology). Automatically
segmenting cells in such images is one of the preliminary steps toward automatic image
analysis and computer-aided diagnosis. In spite of recent advances in segmenting cells
based on some homogeneity and smoothness characteristics, segmenting complex cells with
a non-homogeneous appearance (with multiple internal regions) remains challenging. This
problem becomes even more challenging when these complex cells overlap. Previous works
addressed cell overlapping, for single-region cells, using post-processing [Wu et al., 2012,
Yang et al., 2008,Mao et al., 2006] (e.g. finding connected components and using parameter
sensitive morphological operations [Mao et al., 2006]). However, cells in histology and
microscopy images typically consist of multiple regions (e.g. membrane, nucleus, nucleolus),
each with a unique appearance model (intensity, color or texture) and unique geometric
characteristics (e.g. cell size and shape prior). Furthermore, well defined spatial interactions
usually exist between different regions of a cell (e.g. membrane contains nucleus, and nucleus
contains nucleolus). Most existing methods have only considered simple structured cells and
ignored their complex composition [Ali et al., 2011,Cheng et al., 2011,Bernardis et al., 2011].

There are many types of priors that benefit the segmentation of spatially-recurring cells
with appearance inhomogeneity along with cell-overlapping. Incorporating several energy
terms enables us to describe the problem in more detail and thus obtain a more accurate
formulation. On the other hand, adding more terms to the objective function generally
makes it more complicated and harder to optimize.
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In this chapter, we opt for ensuring the objective function is flexible enough (even if it
is nonconvex) to accurately capture the intricacies of the cell segmentation problem. To
optimize such objective function and to deal with imminent problems like initialization and
local optima, we adopt a global optimization evolutionary computation method, genetic
algorithm, which can attain solutions close to the global optimum, does not require Euler
Lagrangian or energy gradient calculations, is generally parallelizable, and allows for arbi-
trarily complex objective functions. Our framework allows us to leverage a variety of expert
knowledge or priors by adding them as additional terms in the objective function without
being overly concerned about convexification. Finally, to deal with the spatially recurring
aspect in cell segmentation, we use genetic algorithms with tribes [Turner et al., 1996] to
obtain multiple distinct solutions for our framework.

3.1 Methods

Given an n-channel 2D image I : Ω ⊂ R2 → Rn, the goal is to segment the objects of
interest (cells) in I. We represent the boundary of each object (or each part of a multi-
region object) by Xi = {x1, · · · ,xn} ∈ Ω, where i indicates the ith part/region. Next, we
review the useful priors in microscopy images that we can leverage.

• Shape: When an object has a specific geometrical shape (e.g. circle, ellipse, rectillipse,
etc.) we model it by shape parameters such as b = {radius, major axis, eccentricity, etc.}.
When no clear geometrical representation exists, we model a shape (e.g. ith region’s shape)
by its statistical (from m training samples) and vibrational properties as:

Xi ≈ X̄i + P c
ibi , (3.1)

where X̄i is the average of a set of pose-normalized training shapes and

P c
i = P stat + βP vib (3.2)

is the combined (statistical Pstat and vibrational Pvib ) covariance matrix [Hamarneh et al.,
2008,Cootes and Taylor, 1995], β ∝ 1/m is the balancing parameter and bi = (b1i , · · · , bti)T

is a vector of shape parameters. We use the Mahalanobis distance to measure the validity
of a novel shape Xj by:

F shi (Xj) = e−
√

(Xj−X̄i)T (P ci )
−1(Xj−X̄i) . (3.3)

• Appearance: Histology/microscopy images typically have different discriminative color
channels, c = {c1, · · · , cq}, where ci is a color channel, e.g. R, G, B, etc. Further, cells (and
their constitutive regions) might also have different discriminative texture, t = {t1, · · · , tr},
where ti is a texture channel, e.g. multi-scale Gabor or Haar-like features. To leverage cell
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appearance (color+texture), we concatenate c and t into a regional appearance vector r
calculated within inner and outer bands around Xj , Ωj

in,d and Ωj
out,d, with thickness d.

This band-localization is important since cells can contain inner parts (e.g. nucleus) and
can be adjacent to other objects (e.g. other cells), both of which can pollute the regional
appearance measures if a band is not used. In addition, by using an inner versus outer band,
we are encoding the boundary polarity (e.g. dark to bright). We define the appearance
fitness function for object i as:

F api (Xj) = 1
2

( 1
|Ωj
in,d|

∫
Ωj
in,d

P (x ∈ Oi)dx+ 1
|Ωj
out,d|

∫
Ωj
out,d

P (x ∈ Bi)dx
)

(3.4)

where P (x ∈ Oi) and P (x ∈ Bi) are the probabilities of a given pixel x ∈ Ωj
in,d ∪ Ωj

out,d,
belonging to object i (Oi) and its background (Bi), respectively, and are estimated by
training a random forest (RF) consisting of Nb binary decision trees. To segment an R-
region object in I, R + 1 patches within R different regions of the object plus background
are selected (i.e. regions L = {0, · · · , R}) to train the RF. After training, for each pixel x,
the feature channels, r(x), are propagated through each tree resulting in the probability
Pj(x ∈ k|r(x)), for the jth tree, where k ∈ L. These probabilities are combined into a
forest’s joint probability:

p(x ∈ k|r(x)) = 1
Nb

Nb∑
j=1

pj(x ∈ k|r(x)) (3.5)

to determine the probability of x belonging to class k. Note that Oi, Bi ∈ L.

• Edge: Since boundaries of cells and their parts exhibit appearance discontinuities, we
incorporate edge information in the image by defining the following edge fitness term:

F ed(Xj) = 1
|Xj |

∮
Xj

e−g(Xj) , (3.6)

where g(.) = 1/(ε+λ), λ is the maximum eigenvalue of the structure tensor JTJ (generalizes
scalar field gradients to those of vector fields), where J is the Jacobian matrix of the weighted
feature channels, wTr, and the vector w, resulting from training the RF, is the importance
of each feature channel in discriminating inside versus outside of an object (i.e. maximizes
boundary edge response).

• Pose: Each cell has a specific size, orientation and position in the image. Given the training
data, we estimate the average area (Ā) and the principal orientation (θ̄) of cells and use
them for imposing constraints on the solutions. We specify the position of a cell by its
centroid, xc = (xc, yc).

51



• Geometrical constraints: In addition to the shape and appearance properties of an object
(color, texture, edge, shape and pose), in multi-region objects, meaningful geometrical
relationships typically exist between different object’s regions, e.g. regions contain/exclude
others. To enforce containment and exclusion between two regions, e.g. Xj is contained in
Xi, or, Xi and Xj are excluded from one another, the following constraints are imposed:

D(xj)
contain
≥
≤

exclude

0 , ∀xj ∈Xj , D(x) = SDM(Xi) , (3.7)

where SDM(Xi) is the signed distance map of Xi and is positive inside and negative
outside Xi. Eq. (3.7) is a general constraint for convex and non-convex shapes. How-
ever, for convex shapes, as we typically have in microscopy images, we adopt the following
simplification for containment (i contains j):

||xcj − xi|| − ||xcj − xj ′|| ≥ 0 , (3.8)

and exclusion (i and j are excluded from one another):

||xcj − xi|| − ||xcj − xj ′|| < 0, ∀xi ∈Xi , (3.9)

for faster computation, where x′j ∈
−−→
xcjxi ∩Xj and xcj = (xcj , ycj) is the spatial position of

Xj .

• Inter-part adjacency: In biomedical applications, the minimum (dmin) and maximum
(dmax) distances between two adjacent regions of an object are sometimes known. Bounding
the minimal and maximal distances between two adjacent boundaries (e.g. i and j) from
below and above, respectively, prevents segmentation leakage and improves the results. We
impose these constraints by:

min(fij , fji) ≥ dminij , max(gij , gji) ≤ dmaxij , (3.10)

where

fij = min
xi∈Xi

min
xj∈Xj

||xi − xj || and (3.11)

gij = max
xi∈Xi

min
xj∈Xj

||xi − xj || . (3.12)

For efficiency, we only calculate and restrict fij and gij (not fji and gji).

• User interaction: User interaction is another useful prior. This prior can be applied
on the boundary and/or the region of an object by providing corresponding seed points,
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Figure 3.1: Chromosome structure for (a) a single-region and (b) a two-region object. The
position of the second region, (∆x

j ,∆
y
j ), is computed relative to the first object’s position.

(c) Tribe-based GA. No migration is allowed between tribes.

sbi and sri , and force the solution to satisfy the following constraints sri ∈ Ωi
in,d=∞ and

sbi ∈ Ωi
in,d=ε ∪ Ωi

out,d=ε.

Fitness function: The overall fitness function (for an R-region cell) is constructed by
integrating all above mentioned information as:

Ftotal(X) =
R∑
i=1

(
F shi (X) + F api (Mi(X)) + F ed(Mi(X))

)
, (3.13)

subject to

Shape and pose : |bji | ≤ 3
√
λji |θi − θ̄i| ≤ 3

√
λθi |Area(Xi)− Āi| ≤ 3

√
λAi

User interaction : sri ∈ Ωi
in,∞ sbi ∈ Ωi

in,ε ∪ Ωi
out,ε

Geometry : eq.(3.7) (3.14)

Adjacency : eq.(3.10),

where

X = X + P cb , (3.15)

Mi(X) = siRiX + T i . (3.16)

Mi is a similarity transformation with rotation Ri, scaling si, and translation T i. λji in
(3.13) is the jth eigenvalue of ith region’s covariance matrix and λAi and λθi are the area and
orientation variance of ith region, respectively, obtained from the training data.
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(a) (b) (c)

(d) (e) (f)

Figure 3.2: Fish blood cells segmentation. (a) Original image. (b) Initial population. (c)
Tribes formation. (d) Converged population. (e) Individuals with best fitting score in each
tribe. (f) Final result.

To find the best fit for such a complex fitness function (3.13), we adopt GA as a global
optimization tool. Although GA does not strictly guarantee the global solution, our re-
sults confirm the ability of this approach to accurately segment the spatially-recurring,
multi-region cells with partial overlap. In GA, each individual solution is represented by a
chromosome consisting of several genes (Figure 3.1(a)). The first four genes describe the
individual’s pose information, xci and yci are the spatial position of ith region and θi, si and
b1i , · · · , bti are its orientation, scale and shape parameters.

Encoding multi-region object’s information into GA: For simplicity and to con-
serve space, here we consider a two-region object scenario. Assuming a cell consists of two
regions: X1 and X2, where X1 contains X2, we compute Ā and θ̄, as well as the shape
parameters, b, for X1 and X2, separately, as described before. We represent the cell while
encoding the interaction between its regions by concatenating the two chromosomes of X1

and X2. However, the position of X2, (xc2, yc2), is computed relative to X1’s position, (xc1,
yc1), and its corresponding genes are replaced by ∆x and ∆y (Figure 3.1(b)). ∆x and ∆y

allow X2 to move in small distances around its relative position to (xc1, yc1). The average
relative distance between X1 and X2 as well as limits on ∆x and ∆y are learned from the
training data.

Each object (cell) typically recur in different parts of the image domain. To deal with
such spatially recurring aspect of cell segmentation, we use GA with tribes to obtain multi-
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Table 3.1: Comparison against state-of-the-art methods on counting lymphocytes on HIMA
dataset

Method md sd mN sN

[Kuse et al., 2010] 3.04 3.40 14.01 4.4
[Panagiotakis et al., 2010] 2.87 3.80 14.23 6.3
[Graf et al., 2010] 7.60 6.30 24.50 16.2
[Cheng et al., 2010] 8.10 6.98 26.67 12.5
[Kuse et al., 2011] 3.14 0.93 4.30 3.09
[Bernardis et al., 2011]

(ρ = 5) 3.22 3.92 5.40 3.68
(ρ = 4) 2.84 2.89 8.20 4.75
(ρ = 2) 1.12 0.71 16.75 7.47

Our method 1.40 0.77 6.30 4.20

ple distinct solutions (i.e. cells). In tribes-based GA, the whole population is grouped into
several tribes. During the GA evolution and in the gene crossover phase, any two selected
parents must be from the same tribe. In fact, tribes are too choosy about who is allowed
to join them (Figure 3.1(c)); they do not accept any stranger (no migration is allowed) and
even children who are not similar to the tribe’s population are rejected. This tribes-based
GA allows for the desired multiple distinct solutions. We choose the tribes’ membership
based on the spatial position of each member (cell), i.e. (xc, yc).

Initialization and implementation: We used 6 channels of colors (RGB+ HSV) and
3-channel Gabor features as our regional cues. Gabor filters were calculated in 8 differ-
ent orientations and 3 different scales and were summed up across orientations to obtain
rotational-invariance texture features. For RF, we used Nb = 50 binary trees. We randomly
spread 10, 000 random chromosomes over the image wherever the probability of existing cells
obtained from RF is large enough, i.e. P (x ∈ O|r(x)) > 0.6 (Figure 3.2(b)). dminij and dmaxij

were set based on the training dataset. Although our method can handle user interaction,
none was used in our experiments. The crossover and mutation rates were fixed to 0.7 and
0.01, respectively, in all of our experiments. Individuals that are within a distance of ` pixels
from each other establish a tribe (Figure 3.2(c)). We implemented our method in MATLAB
in a way that all individuals are evaluated simultaneously in parallel. After convergence,
Figure 3.2(d), the best solution in each tribe is examined (Figure 3.2(e)). We use the final
fitness measure as a confidence measure, where the user can request displaying e.g. the top
10% confident segmentation. According to our fitness function, the ideal fitness score is 3.
In all of our experiments we kept the solutions that are higher than 2.4 (top 20% confident
segmentation) as the final solution (Figure 3.2(f)).
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Figure 3.3: Sample results on HIMA dataset [Gurcan et al., 2010]. Red contours: our
segmentation result; gold+: our segmentation centroid; green dots: ground truth.

3.2 Experiments

3.2.1 Single-region overlapping cells segmentation

In our first experiment, we evaluated our method on stained breast cancer tissue images used
in ICPR 2010’s HIMA contest on ‘Counting Lymphocytes on Histopathology Images’ [Gur-
can et al., 2010]. We benchmarked our results against the state-of-the-art methods, includ-
ing the contest’s finalists. We used the centroid of the segmented cells to compare our results
against the expert annotated ground truth (GT). Table 3.1 quantitatively compares our re-
sults against the competing methods. The evaluation criteria are based on the Euclidean
distance, dE , between the GT and centroid of the segmented lymphosytes, as well as the
absolute difference, N , between the true number of cells in GT and detected cells. m and s
in Table 3.1 are mean and standard deviation, respectively. In Table 3.1, [Bernardis et al.,
2011] reported results for different thresholds, ρ, on the same dataset. While for some cases
(e.g. ρ = 2) they achieved better distance accuracy, dE , than our method, they found less
true cells (bigger N). On the other hand, they obtained better detection rate (smaller N)
for ρ = 5 but with less accuracy, dE . We emphasize that their method has been designed for
single-region cells only. Figure 3.3 demonstrates how our method distinguishes the merged
cells. Our method can not only detect and segment the single-region cells but also delineate
the different boundaries of a multi-region cell.

3.2.2 Multi-region overlapping cells segmentation

To further showcase our method, we ran a second experiment on another dataset, MICR,
consisting of 20 different histology and microscopy images with multi-region cells. Our re-
sults in Figure 3.4 verify the use of proposed constraints (geometrical, thickness and shape)
as compared to ubiquitous unconstrained image segmentation methods; graph cuts (GC),
and constrained methods; Delong and Boykov [Delong and Boykov, 2009] (DB). While
GC is not designed to segment cells, its results show the issues and difficulties involved
in segmenting complex, multi-region cells. Delong and Boykov’s method incorporates con-
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Figure 3.4: Sample results on MICR dataset. Note how the proposed method segments
only the targeted cells. Same data term was used for all experiments.
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Figure 3.5: Sample segmentation shown in Figure 3.4. (b-d) Fitness and DSC of the
best individual of each tribe vs. generation number for the three tribes (1st, 2nd and 3rd)
corresponding to the three cells in (a), for 20 different runs on (a).

tainment constraint in the GC framework, however, their method is unable to segment the
targeted objects solely (Figure 3.4). Table 3.2 quantitatively compares our method with
watershed (WS), GC and DB on both HIMA and MICR datasets using Dice similarity
coefficient (DSC).

Using non-optimized MATLAB code on standard 2.3 GHz CPU, the running time of
our algorithm ranged between 60-300 s/image, which depended primarily on the number of
cells per image, which varied between 2-60 for both HIMA and MICR.

3.2.3 Reproducibility test

Due to the random initialization and evolution in GA, they may not always produce the same
result. To examine the reproducibility of the proposed approach, in our third experiment,
we ran our method 20 times on sample images and monitored the fitness and DSC vs.
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Table 3.2: Accuracy comparison using DSC (mean± std)

Dataset Watershed Graph cuts [Delong and Boykov, 2009] Our method
HIMA 0.68± 0.12 0.72± 0.09 0.72± 0.08 0.81± 0.03
MICR 0.65± 0.13 0.69± 0.20 0.76± 0.18 0.91± 0.01

generation (Figure 3.5). The results confirm that our method converges to almost similar
results (similar DSC) although we randomly initialized the population at each run. From
Figure 3.5, the fitness values for the 1st and 2nd cells are lower than the 3rd simply because
the first two cells overlap. The variations between different runs can be reduced by increasing
the size of initial population but at the cost of computational complexity.

3.3 Chapter Summary

Segmenting spatially recurring complex objects consisting of different regions with varying
shapes, colors and textures remains a challenging problem in biomedical image segmen-
tation. Another layer of complexity is added once these multi-region objects overlap. In
this chapter we showed how to address this complexity holistically by incorporating several
intuitive priors into an objective function without being overly concerned about its opti-
mization. The proposed high level priors help us to segment only the targeted objects (cells)
in an image. The proposed method has its own pros and cons:

• Pros:
The proposed method

– segments overlapping multi-region cells (unlike many existing works that deal
with single region cells)

– attains solutions close to the global optimum

– does not require Euler-Lagrangian or energy gradient calculations

– is generally parallelizable

– allows for arbitrarily complex objective functions

• Cons:
On the other hand, our method

– does not guarantee global optimal solution

– has many parameters to tune

– has a slow runtime; runtime depends primarily on number of cells per image

In Chapter 4, we focus on improving the the time and space complexity in solving the
similar segmentation problem.
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Chapter 4

Augmentation of level set
segmentation with geometric and
distance constraints

As our previous method is not efficient on large images with many cells, in this work, we
aim to improve the time and space complexity by moving away from GA and explicit shape
representation to a PDE-based approach and implicit shape representation. We choose
to use the level set framework. The level set-based methods have been widely used in
computer vision over the years and proven to be useful for medical image segmentation
[Toennies, 2012, Mitiche and Ayed, 2010, Paragios, 2002, Angelini et al., 2004, Li et al.,
2006b] due to their several advantages such as 1) parametrization independence, 2) the
ease of implementation, 3) their ability to deal with topological changes, 4) the ease of
extendibility from a curve in 2D to higher dimensions (e.g. surfaces and hyper-surfaces),
and 5) their ability to impose different image data and prior knowledge terms and control
their contributions in segmentation tasks. However, we believe that the formulations based
on level sets have not reached its full potential yet. In this contribution, we augment the level
set framework with the ability to handle two intuitive geometric relationships, containment
and exclusion, along with a distance constraint between boundaries of multi-region objects.
We chose these two constraints due to their descriptive power in segmenting compound
objects.

Level set’s important property of automatically handling topological changes of evolving
contours/surfaces enables us to segment spatially-recurring objects (e.g. multiple instances
of multi-region cells in a large microscopy image) while satisfying the two aforementioned
constraints. Also, using level sets embedding functions that are based on distance trans-
forms (as is usually done) enables us to naturally enforce optional distance constraints
between different regions. Our framework can enforce attraction forces as well as minimum
and maximum distances between regions’ boundaries. The downside, however, is a local op-
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timization framework in which the final segmentation solution depends on the initialization.
In fact, here, we sacrifice the optimizibility (local instead of global solution) in exchange
for lower space complexity (less memory usage) and faster runtime (especially for large
microscopic images) as well as no grid artifacts. Nevertheless, the result from validating
our method on synthetic and several biomedical applications, mainly on multi-region cell
segmentation in microscopy images and cardiac segmentation in MR images, showed the
utility and advantages of this augmented level set framework (even with fully automatic or
rough initialization that is distant from the desired boundaries).

Table 4.1 compares certain features of our work with popular and state-of-the-art meth-
ods that encoded geometrical and distance constraints in their segmentation framework.

The remaining of this chapter is organized as follows. We start describing our constraints
and geometric interaction terms for segmenting a two-region object in Section 4.1. The
extension to multi-region is described in Section 4.1.4. Section 4.1.5 details the optimization
procedure. Section 4.2 presents our experimental validation and evaluation in different
applications. Following a note and example results of a special case of distance constraints
in Section 4.3, we conclude this chapter in Section 4.4.

4.1 Methods

We first introduce the concepts of containment and exclusion, the two intuitive geometrical
constraints, we use in this work to segment an image with two-region objects.

Containment: We say region A contains region B if B is completely encapsulated by
A, i.e. A ∩ B = B. We also add an optional distance constraint to this term; allowing us
to specify that B is inside A with a distance of d pixels between their boundaries, perhaps
with an attraction/repulsion force between their boundaries.

Exclusion: We say region A and B are excluded from one another if they are disjoint,
i.e. A ∩ B = ∅. We also add an optional distance constraint to this term; allowing us
to specify that A and B are disjoint with a minimum distance of d pixels between their
boundaries. For clarity, we first formulate the containment and exclusion energy terms for
two-region objects (surrounded by the background).

4.1.1 Containment energy

Let Ω be a bounded open subset of Rn where n is the image dimension (in this work
n = 2 or 3) and I : Ω → R is a given image (scalar field)1. In our formulation, Ci

represents the boundary (or surface) of the ith region in a multi-region object. We also
define φi(x) : Ω→ R as the signed distance function corresponding to Ci, where φi(x) > 0
is inside and φi(x) < 0 is outside the region i. Ci and φi are related by the zero level set

1Our method extends directly to non scalar fields, e.g. color images, vector fields, or tensor fields, by
modifying the data terms, as in [Wang and Vemuri, 2004a,Chan et al., 2000]
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Table 4.1: A comparison of certain features of commonly used state-of-the-art methods and
our proposed method.

Method C
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[Wu et al., 2011] X 7◦ X X X 7 7 X
[Zhao et al., 1996] 7 X 7 7 7 X X X

[Samson et al., 2000] 7 X 7 7 7 X X 7

[Li et al., 2006a] X 7 X X X 7 X X
[Zeng et al., 1998] X 7 X X X X 7 7

[Goldenberg et al., 2002] X 7 X X X X 7 7

[Paragios, 2002] X 7 X X X X 7 7

[Vazquez-Reina et al., 2009] X 7 X 7 7 X 7 7

[Ukwatta et al., 2012] X 7 7 X† 7 X 7 X
[Rajchl et al., 2012] X X 7 7 7 X X X

[Delong and Boykov, 2009] X X X∗ X 7 7 X X
[Ulén et al., 2013] X X X∗ X 7 7 X X

[Schmidt and Boykov, 2012] X 7 X∗∗ X X 7 X 7

our work X X X X X X X 7

◦ Works for special cases only.
† The distance constraint is imposed after pre-segmenting the inner region.
‡ Exclusion constraint is a non-submodular constraint and the specified methods cannot
guarantee the global solution for such constraint.
∗ Changing the distance constraints requires reconstructing the graph. Further, increasing
the thickness increases the storage memory requirements. In contrast, in our work we can
change the thickness by simply changing a parameter, i.e. d in (4.1) or |Cij | in (4.7), and
memory usage in our case is independent of thickness constraint.
∗∗ The attraction force between regions has not been discussed in [Schmidt and Boykov,
2012]. However, since they include containment similar to [Delong and Boykov, 2009], it
seems that they are able to enforce attraction between regions’ boundaries.
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(a) (b)

Figure 4.1: Containment constraint between two red and green regions. (a) Attraction and
repulsion applied to the red and green boundaries when the red region contains the green
one. (b) Surface (zero level set) evolution (from left to right): red contains green with a
predefined distance between them.

of φi; i.e., Ci = {x|φi(x) = 0}. Using the signed distance functions enables us to efficiently
control the relative distance d between the objects surfaces. Given the two regions i and
j, our containment energy, such that i contains j with a distance of d pixels between their
surfaces is

EC(φi, φj ; d) =
∫

Ω
‖ φi(x)− φj(x)− d ‖2 dx. (4.1)

If d = 0, minimizing EC encourages φi and φj to be identical. Adding a positive or negative
constant d to a signed distance function φ, dilates and shrinks the region specified by φ,
respectively. To better illustrate (4.1), we re-write (4.1) as:∫

Ω
‖ (φi(x)− d)− φj(x) ‖2 dx , (4.2)

that penalizes the difference between φj(x) and the shrunk φi, i.e., φi(x) − d. This causes
the surface i to contain j while maintaining the distance of d pixels between them. EC in
(4.1) creates attraction and repulsion between i and j surfaces, by penalizing the area in
which φi and φj are different.

Figure 4.1(a) shows the attraction and repulsion along the boundaries of i and j when i is
encouraged to contain j. Figure 4.1(b) shows how the two surfaces i and j attract each other
while maintaining the predefined distance d between them by solving the Euler-Lagrange
equation for (4.1):

∂φi
∂t

= −2(φi − φj − d), ∂φj
∂t

= 2(φi − φj − d), (4.3)

where t is an artificial time variable.

4.1.2 Exclusion energy

In many segmentation applications, there might be a need to exclude objects from one
another; e.g., we might be interested in segmenting the regions that reside outside another
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Figure 4.2: Exclusion (i excludes j): (a) Shared area between regions i and j (the shaded
area) is penalized by (4.4). (b) Adding a positive constant d to φi dilates region i and
penalizes any region j that is within distance d pixels from i (shaded area). (c) Surface
evolution (from left to right): Green and red are excluded from one another with a predefined
distance between them.

region. Following [Zhao et al., 1996], we enforce an exclusion constraint on two regions by
penalizing the area that the two regions share. The proposed energy term for excluding
regions i and j from one another is

EE(φi, φj) =
∫

Ω
H(φi(x))H(φj(x))dx, (4.4)

where H(.) is the regularized Heaviside function. Figure 4.2(a) shows how the shared area
between two regions is penalized (without any distance between the regions). Similar to
(4.1), the distance condition between two surfaces can be easily added for the exclusion
term as well. The distance d can be added to either φi or φj in (4.4). Adding a positive
constant value d to φi dilates region i and ensures that any region j within the distance
of d pixels from i is penalized (white shaded area in Figure 4.2(b)). Similarly if d > 0 is
added to φj , φi will be pushed away from j by d pixels. Note that adding d to both φi and
φj causes a final distance of 2d pixels between the two surfaces. Figure 4.2(c) shows a 3-D
evolution of surfaces i and j by solving the Euler-Lagrange equation for (4.4):

∂φi
∂t

= −δ(φi)H(φj),
∂φj
∂t

= −δ(φj)H(φi), (4.5)

where δ(z) = dH(z)/dz is the regularized Dirac delta function.

4.1.3 Regional and regularization terms

The above mentioned energy terms control the geometrical interactions between regions
of an object and are independent of image data. Assuming piecewise constant regional
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intensities and adopting the total variation regularization, we employ the standard Chan-
Vese formulation [Chan and Vese, 2001] to minimize the intra-region variance considering
the geometric, e.g. containment, between regions. For a three-region (i, j and background)
scenario in which i contains j, the regional term is:

EI(φi, φj ; ρi, ρj , ρbg) =
∫

Ω

(
ρj(x)H(φj(x))

+ ρi(x)H(φi(x))H(−φj(x))

+ ρbg(x)H(−φi(x))
)
dx

+
∫

Ω
|∇H(φi(x))|dx

+
∫

Ω
|∇H(φj(x))|dx,

(4.6)

where ρi = |I(x) − µi|2, µi is the intensity prior for region i and H(φi) and H(−φi) in-
dicate the inside and outside region i, respectively. The last two terms in (4.6) are the
regularization terms that smooth the surfaces i and j by penalizing their surface area.

So far, we introduced our constraints for segmenting an image with two-region objects
and background. In the next section, we extend our framework to segment objects with
more than two-regions.

4.1.4 Extension to multi-region objects

To extend our framework to multi-region objects segmentation, we introduce an R × R

constraints matrix, C, that encodes the containment and exclusion constraints, where R
is the number of regions of an object in the image to be segmented. Our motivation
to introduce C is to provide a framework where one can encode geometrical constraints
(containment/exclusion) easily and intuitively. Table 4.2 shows how we encode containment
and exclusion constraints into matrix C.

Table 4.2: Encoding containment and exclusion into matrix C

Constraint Matrix C
i contains j Cij > 0

i and j are disjoint Cij < 0 AND Cji < 0
i and j have no constraint Cij = Cji = 0

(4.7)

In addition to encoding the containment and exclusion constraints, we also encode the
distance constraint into C such that Sij = sign(Cij) defines the containment or exclusion of
objects i and j (Sij > 0 means i contains j and Sij = Sji < 0 means i and j are excluded

64



from one another), and |Cij | indicates the distance between these two regions. Note that
sign(C) is symmetric with respect to exclusion, i.e., if i excludes j, j also excludes i.

We extend EC in (4.1) to more than two regions by identifying all positive entries in C
(i.e. containment) as follows:

EtotalC (Φ; C) =
R∑
i=1

∫
Ω

 ∏
j|Cij>0

‖ φi(x)− φj(x)− Cij ‖2
 dx, (4.8)

where Φ = {φ1, ...φR}.
Exclusion energy can also be extended to multi-region objects by adding an exclusion

term (as describes in (4.4)) for any pair of objects that must adhere to an exclusion con-
straint. Given matrix C, the total exclusion energy is:

EtotalE (Φ; C) =
R∑
i=1

R∑
j>i

Sij(Sij − 1)
2

∫
Ω
H(φi − Cij)H(φj − Cji)dx.

(4.9)

where the term Sij(Sij−1)
2 is equal to one, only if Cij = Cji < 0, i.e., i excludes j, and it

is zero otherwise. Since matrix C is symmetric with respect to exclusion, it is sufficient to
incorporate only the upper triangle of C in (4.9).

Finally, to extend the regional energy term and to simplify the formulation, we note
that regions not contained by any other region are contained by the background. So we
add a dummy background row (say row 0) to matrix C that is positive in the columns that
do not have any positive value (i.e. are not contained by other regions). Recalling that
ρi = |I −µi|2 and defining ρ = {ρ0, ρ1, ..., ρR}, we extend (4.6) to multi-region by searching
each row of C for positive values (containments) as follows:

EtotalI (Φ; C,ρ) =
R∑
i=0

∫
Ω

ρiH(φi(x))
∏

j|Cij>0
H(−φj(x))

 dx
+

R∑
i=1

∫
Ω
|∇H(φi(x))|dx, (4.10)

where ρ0 = ρbg and φ0 = 1. The first and second terms in (4.10) are the multi-region
extension of the regional and regularization terms in (4.6), respectively.
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Combining (4.8-4.10), the total energy functional becomes:

Etotal = λ1E
total
I + λ2E

total
C + λ3E

total
E , (4.11)

where the positive constants λ1, λ2 and λ3 control the contribution of each term in the
segmentation.

4.1.5 Optimization

To minimize the functional in (4.11), we follow the approach of Chan and Vese [Chan and
Vese, 2001] and derive the Euler-Lagrange equation. The objective function (4.11) is a
weighted sum of non-negative terms and it will become zero if and only if all its terms
are zero. To minimize EtotalC in (4.8), note that a region, represented by φ`, can contain
other regions and can be contained by other ones (i.e., φ` can appear as either φi = φ` or
φj = φ` in (4.8)). For region φ`, the Euler-Lagrange equation associated to EtotalC in (4.8)
is calculated as:

FC` =∑
j|C`j>0

2(φ` − φj − C`j)
∏

k 6=j|C`k>0
‖ φ`(x)− φk(x)− C`k ‖2

−
R∑
i=1

Si`(Si` + 1)
(

(φi − φ` − Ci`)
∏

j 6=`|Cij>0
‖ φi(x)− φj(x)− Cij ‖2

)
= 0,

(4.12)

where the term Si`(Si`+1)
2 is equal to one, only if Ci` > 0, i.e., ` is contained by i, and is zero

otherwise.
Deriving the Euler-Lagrange for EtotalE in (4.9) for the level set φ` results in the following

equation:

FE` =
R∑
i=1

S`i(1− S`i)
2 δ(φ` − C`i)H(φi − Ci`) = 0. (4.13)

To minimize EtotalI in (4.10) for a specific level set, φ`, it should be noted that φ` can
appear in the product term in (4.10) (like φj in (4.10)) when Ci` > 0, i.e., Si`(Si`+1)

2 = 1.
For the level set φ`, the Euler-Lagrange equation associated to (4.10) is:
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F I` = ρ`δ(φ`)
∏

j|C`j>0
H(−φj)

−
R∑
i=0

Si`(Si` + 1)
2

ρiH(φi)δ(φ`)
∏

j 6=`,Cij>0
H(−φj)


− div

( ∇φ`
|∇φ`|

)
= 0. (4.14)

Having (4.12), (4.13) and (4.14), the update equation of region φ` is calculated as:

∂φ`
∂t

= −
(
λ1F

I
` + λ2F

C
` + λ3F

E
`

)
. (4.15)

Finally, in implementing the proposed method the level sets φ should remain signed distance
maps during the optimization procedure, otherwise the distance priors do not work properly.
To do so, the level sets functions are re-initialized to signed distance functions after every
few (∼ 5) iterations.

To ensure that our level set-based framework is numerically stable, we place an upper
bound for the time-step ∂t, using the CFL condition [Courant et al., 1967]. The stability
condition is:

Fmax∂t ≤ min(hx, hy, hz), (4.16)

where hx, hy and hz are the grid spacing in the x, y and z direction, respectively, and
Fmax is the maximum absolute force (also known as speed function) applied to the level
set at each iteration and is calculated from (4.12),(4.13),(4.14). For hx = hy = hz = 1,
at each iteration we make sure that ∂t ≤ 1/Fmax. Violating the CFL condition results in
instabilities.

4.2 Experiments

In this section, we present several experiments and show the applicability and utility of
our framework on different biomedical applications. However, our comprehensive quanti-
tative validation mainly focuses on two important medical applications: (a) histology and
microscopy image segmentation and (b) left and right cardiac ventricles segmentation. We
also compare our method to the analogous discrete works of Delong and Boykov (DB) [De-
long and Boykov, 2009] and Ulén et al. (USK) [Ulén et al., 2013] on both synthetic and
real data and analyze the metrication error, running time and memory usage.
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(a) Original image (b) ACWOE (c) GC: 4- connected

(d) GC: 8- connected (e) GC: 16- connected (f) Our method
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Figure 4.3: Synthetic three-region object segmentation. (b) ACWOE’s result. (c-e) DB
graph cuts based method [Delong and Boykov, 2009] with different connectivities. (f)
Our segmentation results. (g) Metrication error vs. memory usage: red curve: GC-based
method; blue circle: ACWOE; green circle: our method.

4.2.1 Synthetic data

In our first experiment, we compare our method with DB in terms of metrication error and
memory usage on a simple synthetic example.
Metrication error: We compared our method with its counterpart graph-based method
[Delong and Boykov, 2009] in terms of metrication artifact. In Figure 4.3(a), we are inter-
ested in segmenting the 3-region elliptic object. Figure 4.3(b) shows a segmentation without
imposing any geometrical constraint (here we used multiphase ACWOE [Vese and Chan,
2002]). DB’s results for 4, 8 and 16 graph connectivity are shown in Figures 4.3(c-e). Note
the metrication artifacts in (c) and (d).

In this experiment, we quantify the metrication error bymetrication error = (DSCc−DSCd),
where DSCc and DSCd are Dice similarity coefficient for continuous and discrete meth-
ods, respectively. The DSC measures the segmented regions overlap and is given by
2|A ∩ B|/(|A| + |B|), where A and B are the ground truth and the segmentation result
regions, respectively. Since we used the same data term for DB and our method, and since
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(a) (b)

(c) (d)

Figure 4.4: Cell segmentation in a microscopy image. (a) Original image, 250× 395 pixels.
Arrows show abnormal cells. (b) Result of DB, 33.90 MB. (c) Our result (thickness= 2
pixels, 1.50 MB). (d) Our result when segmenting only normal looking (elliptical) cells
(thickness=10 pixels, 1.50 MB). Note that DB needs 313.41 MB extra memory (347.31 MB
in total) to impose a thickness constraint of 10 pixels while the memory usage of our method
is independent of thickness constraint.

the DSC of our continuous method is one for this synthetic data (DSCc = 1), the only source
of error in DB’s work is due to the gridding bias. The metrication error in graph based
methods can be reduced by increasing the graph connectivity at the expense of increasing
the memory usage.
Memory usage: The memory consumption of our method and the graph-based methods
are compared in Figure 4.3(g). The red curve in Figure 4.3(g) illustrates the metrication
error vs. memory usage of DB for 4, 8 and 16 connectivity, while the blue and green circles
represent ACWOE and our method, respectively. To remove the metrication error, DB
needed 16 connectivity, Figure 4.3(e), requiring 36 times more memory than our method
(7.92 MB vs. 0.22 MB). We emphasize that DB needs more memory largely due to exploring
the whole search space to find the global solution. The larger the size of the image (e.g.
higher resolution 2D microscopy images that can be in the order of 100s of mega-pixels or 3D
volumes), the more important it is to pay attention to this increased memory consumption.
In this work, we sacrificed the optimality (i.e. via our local optimization with level sets) for
memory efficiency.
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Figure 4.5: Urethra segmentation in a histology image. The constraint matrix is set such
that the urethra epithelium (A) contains the urethra lumen (B) and excludes the other
regions with similar intensity with B, i.e. the corpus spongiosum (C). Here A, B and C are
represented by red, green and blue colors, respectively.

4.2.2 2D histological and microscopic images

Histology and microscopy image analysis is becoming increasingly crucial for studying dis-
eases such as cancer and for obtaining reference diagnoses. Two important features that can
be seen frequently in many histology and microscopy images are (a) the existence of multiple
objects of the same class (e.g. cells) in a single image, and (b) the geometric interactions
between the objects’ regions. The latter includes containment and exclusion between the
objects and different parts of the objects (e.g. a cell and its sub-cellular components, such
as nucleus and nucleolus).

Figure 4.4 compares our method with DB in fish blood cell segmentation. Figures 4.4(b)
and (c) show DB’s and our results, respectively. Note the gridding artifacts in DB’s work
(red boxes). In both ours and DB’s work, we can adjust the distance (thickness)
between different regions to control which objects are segmented. To exclude the abnormal
cells (red arrows in Figure 4.4(a)) from the segmentation, we increase the imposed thickness
constraint between two regions from 2 pixels to 10 pixels, Figure 4.4(d). In DB, increasing
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the thickness requires graph reconstruction with additional edges. The new graph needs
an extra ∼313.41 MB memory, an almost 10-fold increase. In contrast, we emphasize that
in our method, thickness can be increased by simply changing the value of d in (4.1) or
equivalently |Cij | in (4.7) and it does not affect the memory usage.

Figure 4.5(a) shows how the containment and exclusion constraints are encoded into
matrix C to segment and distinguish the urethra from other regions with similar inten-
sity/color in a histological image of the ureter (Figure 4.5(b)). Note how our method is
able to distinguish the urethra from other similar regions by forcing it to be contained in the
urethral epithelium (Figure 4.5(e)), while the conventional active contours without edges,
or any other method without containment and exclusion constraint, is incapable of distin-
guishing the urethra from other similar regions based solely on image pixel values (Figure
4.5(d)).

We tested our algorithm on 20 histology and microscopy images and used the DSC to
evaluate the performance of our method. Figure 4.6 presents qualitative results on histology
and microscopy data. The first and the second rows in Figure 4.6 show the original image
and initialization overlaid on the original image. The third row shows multi-phase ACWOE
results. The fourth and fifth rows show USK results with 4-connected and 8-connected
graphs, respectively, and the bottom row shows the proposed method’s results. These
results illustrate the importance of geometrical constraints in histology/microscopy image
segmentation and also show the effects of metrication error (4th and 5th rows). We note that
we tried to get the best results as we could for USK’s method by exhaustively searching for
the best regularization weight and thickness (minimum distance) constraint. As is seen in
Figure 4.6, the metrication error in the 8-connected graph (5th row) is improved compared
to the 4-connected graph (4th row) but not completely resolved. Penalizing boundaries
of objects only across axis aligned edges in graph-based methods makes it difficult for a
convex regularizer like TV to be implemented in the discrete domain efficiently. Boykov
and Kolmogorov [Boykov and Kolmogorov, 2003] proposed a method to roughly overcome
this issue. However, their method requires extra memory and computational time due to
adding extra edges to the graph. On the other hand, the continuous frameworks, including
level set framework, can efficiently encode general convex regularizers like TV.

We emphasize that in this experiment there was no need to initialize too close to the
solution and we performed fully automatic initialization for almost all of the cases, Fig-
ure 4.6(a-e, g). Indeed, using the regions close to the image boundary was sufficient for
initialization. However, to show the effect of the initialization on the results, we ran our
algorithm starting from three different initializations (Figure 4.7). Note that the obtained
results from the first two initializations, Figure 4.7(a,b), are almost identical, despite signif-
icant difference in their initialization. Yet the third result is affected by the initialization,
Figure 4.7(c).
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(a) (b) (c) (d) (e) (f) (g)

Figure 4.6: Segmentation of histology and microscopy images. 1st row: Original image. 2nd
row: Initialization. 3rd row: ACWOE results. 4th row: USK’s method with 4-connectivity.
5th row: USK’s method with 8-connectivity. 6th row: Our results. The images from left to
right are: (a,b) Microscopy images of blood cells, (c,d,f) histological cross sections of testes
histology and (e,g) neuron histology. Note that in case of no exclusion constraint USK is
equivalent to DB.
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(a) (b) (c)

Figure 4.7: Effect of initialization on the results. Top row: initializations. Bottom row:
results after convergence. Despite significant different initializations in (a) and (b), the
obtained results are almost identical. Yet the third result (c) is clearly affected by the
initialization.

Table 4.3: DSC and memory usage comparison

ACWOE [Vese and
Chan, 2002] USK [Ulén et al., 2013] Our method

Regions that have not been
contained by other regions

0.88± 0.05 4-C: 0.89± 0.04 0.91± 0.02
8-C: 0.90± 0.05

Regions that contained by
(or excluded from) others

0.54± 0.14 4-C: 0.89± 0.05 0.90± 0.04
8-C: 0.90± 0.04

Overall 0.68± 0.07 4-C: 0.89± 0.04 0.91± 0.03
8-C: 0.90± 0.05

Memory
usage (MB)

4-C: 120± 99.30 1.86± 1.37
8-C: 167± 101.60

We evaluated our segmentation method by measuring the overlap between segmented
and ground truth regions using DSC. We report the DSC for contained regions and not-
contained regions separately in Table 4.3. As expected, our results for contained regions
improved dramatically over the conventional ACWOE as the latter only considers the image
intensity/color for its external energy term. In many histology and microscopy images,
regions of interest and the background might have similar intensities making ACWOE
insufficient for this task. For the same reason, other methods that do not enforce such
constraints are not able to segment the contained regions properly. For the regions that have
not been contained by other regions, both methods have a similar accuracy. However, our
method indirectly improves the performance for these regions as well due to the attraction
and repulsion created by the containment energy terms. The average memory usage to
segment this microscopic histology dataset is 120 MB and 1.86 MB for USK (4-connected
graph) and our method, respectively.
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Figure 4.8: CPU runtime versus thickness/distance constraint.

Comparing the computation time of our method with a global graph based method,
e.g. DB, is critical as we use local optimization and convergence time depends on how close
we initialize the contours. In addition, the computation time for graph based methods,
e.g. DB, highly depends on the thickness/distance constraint and largely varies from one
image to another. To have a fair run time comparison, we created a 500 × 500 synthetic
image consisting of several two-region nested objects with different distance between their
regions. To initialize our method, we place the initial contours at the border of the image,
e.g. similar to Figure 4.6(d,g). Figure 4.8 compares the runtime between our method
and DB for different thickness constraints. To impose a distance constraint of T pixels
between two regions, DB and USK need to add O(T 2) extra edges per pixel. Therefore,
these graph based methods are highly efficient in segmenting images with reasonable size
and thickness constraint. On the other hand, for large distance constraints DB and USK
are not that efficient (considering that they still provide us with the global solution) while in
our framework the runtime is almost constant with respect to different distance constraints.

4.2.3 Cardiac ventricles segmentation

We also evaluated our framework on left and right cardiac ventricles segmentation. To this
end, we used two different 3D datasets: 1) The Sunnybrook Health Science Centre dataset
for left ventricle segmentation used in the MICCAI 2009 challenge [Centre, 2009], and 2)
The Rouen University Hospital data for right ventricle segmentation used in the MICCAI
2012 challenge [Hospital, 2012].

Left ventricle segmentation: LV segmentation is an important step for the diagnosis
of cardiovascular diseases. Accurate calculation of key clinical parameters such as ejection
fraction, myocardium mass, and stroke volume depends on accurate segmentation of endo-
cardial and epicardial boundaries of the left ventricle. We used our framework to segment
the left ventricle. To model the LV, we encode the constraint “myocardium contains the
left ventricle” into our framework.
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Figure 4.9: A representative sample of LV segmentation using our method for one subject
at different slice levels: Basal (first row), mid-cavity (second row) and apical (third row).

We evaluated our method on the Sunnybrook Health Science Centre dataset. This
dataset consists of 30 short-axis cardiac cine-MR images (15 volumes for training and 15
volumes for validation) obtained by a 1.5T GE Signa MRI. All the images were obtained
during 10-15 second one breath-hold with a temporal resolution of 20 cardiac phases over
the heart cycle2.

The ground truth of endocardial and epicardial contours have been provided by an
experienced cardiologist in all slices at end-diastole (ED) and end-systole (ES) phases.

Figure 4.9 shows the result for one subject over different slice levels: basal, mid-cavity
and apical. The red and green curves indicate the epi- and endocardial boundaries, respec-
tively. The distance between the epi- and endocardial boundaries (myocardium thickness) is
not fixed but decreases from basal to apical level. Hence, we cannot choose a fixed distance
prior d for LV segmentation (c.f. (4.1)). Instead, we allow d to vary linearly from the first
slice, at the basal level, to the last slice, at the apical level from 9 mm to 4 mm. Figure 4.9
shows that although the pixel intensity of the papillary muscles (the darker regions inside
the green contours) and the myocardium is similar, the proposed method is able to exclude
the papillary muscles from the myocardium. This is because of the attraction between
the two epi- and endocardium contours enforced by the containment energy term. Figure
4.10 displays the result of ACWOE as well as the effect of the containment term on LV

2Due to different breath-holds between slice acquisition there could be misalignments between different
short axis slices. Ideally, these slices must be properly aligned in a pre-processing stage prior to segmentation.
However, to use the provided ground truth and for fair comparison with other methods, we use the cardiac
data as provided with simple noise reduction and smoothing.
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(a) (b) (c)

Figure 4.10: Effect of the containment term on LV segmentation. (a) Endocardium (green)
and epicardium (red) initialization, (b) ACWOE result, (c) Our result with containment en-
ergy term. Note how the containment constraint improves the LV segmentation by creating
attraction and repulsion on epi- and endocardial boundaries.

segmentation. Without the containment constraint, the level set cannot segment the left
ventricle properly, Figure 4.10(b), while this issue has been addressed in Figure 4.10(c) via
the attraction between the two red and green contours.

Since there is no applicable exclusion constraint for LV segmentation, we set λ3 = 0 in
(4.11). Hence, we have two free parameters to set for LV segmentation: λ1 and λ2 control
the contribution of the regional intensity term and the containment term. From an energy
minimization point of view, one of the parameters can be fixed and we have only one free
parameter to set. We set λ1 = 1 and varied λ2 from 0 to 10 to find the best value in the
training set provided in the Sunnybrook dataset. The obtained optimum value for λ2 is 3.8.

For initialization, we provided the initial contours (similar to Figure 4.10(a)) in the
mid-axial cardiac slice of the 3D scan of each subject. The level sets then evolve in 3D.

We quantitatively evaluate our segmentation method based on two measures:

1) The average distance error: measures the perpendicular distance between the
resultant contour and the corresponding manually drawn expert contour, averaged
over all contour points. The smaller the average distance value implies that the two
contours match more closely.

2) The DSC described earlier.

Tables 4.4 and 4.5 compare the proposed method’s performance with other competing meth-
ods that were evaluated on the same dataset. Figure 4.11 visualizes the average distance
error (in mm) obtained from the proposed method for all cases in the Sunnybrook vali-
dation dataset. One of the important clinical parameters for cardiac diagnosis is the left
ventricular volume. The LV volume determined by the proposed method and by manual
expert segmentation have been compared in Figures 4.12(a) and (b) for 16 different subjects
(volumes) over the two ES and ED phases of the cardiac cycle.

Figure 4.12(b), illustrates the Bland-Altman plot [Martin Bland and Altman, 1986],
which is used to compare two clinical measurements and shows the difference between the
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Table 4.4: LV segmentation results (Sunnybrook dataset): DSC

Method LV endo. LV epi.
[Marak et al., 2009] 0.86± 0.04 0.93± 0.02
[Casta et al., 2009] ? ± ? 0.93 ± ?
[Lu et al., 2009] 0.89± 0.03 0.94± 0.02

[Wijnhout et al., 2009] 0.89± 0.03 0.93± 0.01
[OŠBrien et al., 2009] 0.81 ± ? 0.91 ± ?

[Constantinides et al., 2009] 0.89± 0.04 0.92± 0.02
[Huang et al., 2009] 0.89± 0.04 0.94± 0.01

[Jolly, 2009] 0.88± 0.04 0.93± 0.02
[Ulén et al., 2013] 0.86± 0.05 0.92± 0.02

Our method 0.90± 0.03 0.94± 0.01

“?”: Not reported in the corresponding paper

Table 4.5: LV segmentation results (Sunnybrook dataset): Average distance error

Method LV endo. LV epi.
[Marak et al., 2009] 2.60± 0.38 3.00± 0.59
[Casta et al., 2009] ? ± ? 2.72 ± ?
[Lu et al., 2009] 1.91± 0.63 2.07± 0.61

[Wijnhout et al., 2009] 2.28 ± ? 2.29 ± ?
[OŠBrien et al., 2009] 3.16 ± ? 3.73 ± ?

[Constantinides et al., 2009] 2.35± 0.57 2.04± 0.47
[Huang et al., 2009] 2.11± 0.41 2.06± 0.39

[Jolly, 2009] 1.97± 0.48 2.26± 0.59
[Ulén et al., 2013] ? ± ? ? ±?

Our method 1.89± 0.29 1.98± 0.33

“?”: Not reported in the corresponding paper

two measurements versus their average value. The Bland-Altman plot is useful for detecting
any systematic bias between the two measurements and identifying possible outliers. The
limits of agreement in a Bland-Altman analysis is usually specified asmean(difference)±1.96×
std(difference), where mean(.) and std(.) are the average and the standard deviation of the
data, respectively. If the difference is within mean±1.96std then it is deemed not clinically
important, i.e. the two methods (our proposed method and the expert segmentation) can
be used interchangeably. The average time for segmenting one phase (ES or ED) in a single
volume on a 3.4 GHz Intel(R) CPU with 16 GB RAM is about 65 seconds.
Left and right ventricles segmentation: Studies show that the right ventricular (RV)
function may be effective for diagnosing cardiovascular diseases such as pulmonary hyper-
tension, congenital heart disease, and coronary artery disease [Noseworthy et al., 2008].
Myocardial left and right ventricular segmentation is a suitable application for our frame-
work since it exhibits both containment and exclusion geometrical constraints. In the
cardiac model, the myocardium contains both the left and right ventricles while left and
right ventricles are excluded from one another (Figure 4.13(a)). We use our framework to
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Figure 4.11: Box plots showing the average distance error (mm) between the obtained
results and the ground truth for LV, (a) endocardium, and (b) epicardium segmentation of
the Sunnybrook dataset. Results are shows for 16 different cases (along the x-axis). The
top and bottom line of each box indicate the first and third quartiles of the measurements,
respectively. The red line in the middle of each box shows the median. The whiskers from
each box show the largest and smallest observation and the “+” symbol show the outliers.

encode these geometrical constraints and segment the whole heart as an object consisting
of multiple parts.

We evaluated our method on both the Sunnybrook and the Rouen datasets. The Rouen
dataset consists of 16 short-axis cardiac MR volumes obtained using a 1.5T MRI. All the
images were obtained during 10-15 second one breath-hold with a temporal resolution of
20 cardiac phases over the heart cycle. The ground truth of the right ventricle endocardial
and epicardial contours have been provided by Rouen University Hospital. In both these
datasets, we segmented the myocardium and the left and right ventricles simultaneously.
Since the Sunnybrook and the Rouen datasets provide the ground truth segmentation only
for LV and RV, respectively, we only report the results for the parts for which ground truth
has been provided, i.e. the LV for the Sunnybrook and RV for the Rouen dataset.

We use three simple elliptic cylinders as initialization surfaces for LV, RV and my-
ocardium. The centres and radii of these elliptic cylinders are different for three basal,
mid-cavity and apical slice levels (Figure 4.13(b)). In this experiment we have three dis-
tances between the endo- and epicardium in the left ventricle (dL), the endo- and epicardium
in the right ventricle (dR) and, the distance between the left and right ventricles (dLR). Sim-
ilar to LV segmentation in Section 4.2.3, we allow dL to vary from 9 mm to 4 mm from the
basal to the apical level. In this experiment we set dR = 4 mm and dLR = 6 mm. To have a
suitable estimation of the weights λ1, λ2 and λ3 in (4.11), we tune these weights using the
leave-one-out cross validation technique over the dataset. Figure 4.13(d)-(h) illustrates
qualitative cardiac segmentation results for the case SC-HF-I-5 in the Sunnybrook dataset
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Figure 4.12: Scatter plots of the proposed method results against the ground truth for LV
volume in mm3. (a) Regression analysis for LV volume measurement. (b) Bland-Altman
plot comparing the proposed method and the ground truth on LV volume measurement.
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Figure 4.13: Myocardium and left and right ventricles simultaneously segmented using the
proposed geometrical constraints. (a) Cardiac model. Myocardium contains left and right
ventricles, while left and right ventricles are excluded from one another. (b) 3D model used
for initialization. (c) 3D rendering of the segmentation of case SC-HF-I-5 from Sunnybrook
dataset. (d)-(h) 2D cross sections of the segmentation result of (c).

and Figure 4.13(c) shows its corresponding 3D rendering. Due to the regularization term
in our level-set formulation, the RV insertion points might be over smoothed. This issue
can be addressed by post-processing or by imposing a spatially-varying regularization into
the level set framework. Figures 4.14(a) and (b) show the linear regression analysis for LV
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Figure 4.14: Scatter plots of the proposed method against the manual segmentation (ground
truth) for LV and RV area measurement in mm2. (a,b) Regression and correlation analysis
of the area of (a) LV from the Sunnybrook dataset, and (b) RV from Rouen training dataset
in two ED and ES cardiac phases. (c,d) Bland-Altman plot for (c) LV area and (d) RV area
measurement.

Table 4.6: Simultaneous LV and RV endocardium segmentation results

Region DSC Average distance error (mm)
Left ventricle 0.89± 0.03 2.15± 0.41
Right ventricle 0.87± 0.02 1.79± 0.41

and RV area (mm2) respectively, obtained by the proposed method and the ground truth
for each single slice of ED and ES phases in the Sunnybrook and Rouen volumes. The
correlation value between the proposed method and the ground truth is 0.963 and 0.978
for LV and RV segmentation, respectively. Also, the Bland-Altman plot for LV and RV
segmentation are shown in Figures 4.14(c) and (d).

Note that while in our segmentation approach we segment the full myocardium (Figure
4.13), we only compare the LV and RV endocardium with the ground truth and not the
epicardium, since the two Sunnybrook and Rouen datasets have provided ground truth
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Figure 4.15: Brain dPET segmentation. (a) Average TAC for each functional region in
the ground truth. (b) Raw image (last frame of the dynamic sequence, which is typically
visualized by clinicians). (c) Ground truth. (d) Initialization. (e) Multi-phase ACWOE
(no constraints). (f) Saad et al. [Saad et al., 2008]. (g) Our result with containment
constraint but without enforcing any exclusion constraint. (h) Our result with containment
and exclusion constraint. Note how the putamen is contained by the white matter (red) as
it should be whereas (e) and (f) are anatomically incorrect. Also, note how the putamen
(yellow) and cerebellum (green) are properly detached in (h) as opposed to (e-g).

for only the LV and RV epicardium, respectively. Table 4.6 reports the DSC and average
distance error for simultaneous LV and RV segmentation.

4.2.4 Brain dynamic-PET segmentation

To test our framework on more complex application, we applied our method to dPET
images, where, at each pixel in the image, a time activity curve describes the metabolic
activity of a tissue as a result of tracer uptake, Figure 4.15(a). Figure 4.15 shows an
example of segmenting a dPET image, I : Ω ⊂ R2 → R40. Note the low signal-to-noise
ratio (SNR) of the dPET image (Figure 4.15(b)), which is the result of not having enough
time to collect a large number of photons within the short time intervals needed to capture
the tracer kinematics. Our spatial relationships include: 1) the skull contains gray matter;
2) gray matter contains white matter; 3) white matter contains putamen; 4) putamen and
cerebellum must be excluded from one another. From Figure 4.15, the problems of putamen
surrounding cerebellum (yellow around green), mentioned in [Saad et al., 2008], are now
clearly solved (Figure 4.15(h)). Despite the low signal to noise ratio in the dPET image and
with a not great initialization (Figure 4.15(d)), our method’s ability to incorporate geometric
constraints results in an improved and anatomically plausible segmentation compared to
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Figure 4.16: Enforcing (a) minimum and (b) maximum distance between regions i and j
using (4.18) while i contains j. The shaded area shows the region that is penalized by
(4.18).

the results reported in (e) and (f). We also compared our method with and without the
exclusion constraint. As shown in Figure 4.15(g), without the exclusion constraint, we
still can get the incorrect result of putamen surrounding cerebellum (yellow around green)
due to their TAC similarity. By enforcing the exclusion constraint between putamen and
cerebellum, we ensure that the final result is anatomically plausible (Figure 4.15(h)). We
emphasize that a bad and irrational initialization will result in a wrong segmentation due
to our local optimization framework. We empirically set λ1, λ2 and λ3 to 0.68, 0.04 and
0.15, respectively, to balance between data, containment and exclusion terms. In fact, here,
a very small weight for geometric constraint was enough to place the contours in the correct
ordering to satisfy the geometric constraints.

4.3 A note on containment constraint without attraction forces

In this section, we discuss a special case of containment constraint in our framework with
a corresponding result on real data. In the proposed framework, by having equation (4.1)
(and its extended version (4.8)), there is always interactions (attraction/repulsion) between
the surfaces with containment constraint. There are cases in which the attraction between
two regions with containment constraint is not important, e.g. there might be several small
disjoint regions j contained by region i. To address this case, we replace (4.1) with the
following modified energy term for the case in which i contains j:

ENDC (φi, φj) =
∫

Ω
H(−φi(x))H(φj(x))dx. (4.17)

The way the above equation works is similar to the exclusion equation (4.4). ENDC penalizes
region j that falls outside region i. Thanks to the level set’s nature, we can enforce min-
imum and maximum distance (but without attraction/repulsion forces) between regions’
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boundaries by modifying (4.17) as follows

ENDC (φi, φj) =
∫

Ω
H(−φi(x) + dmin)H(φj(x))dx

+
∫

Ω
H(φi(x))H(−φj(x)− dmax)dx,

(4.18)

where the first term enforces minimum distance of dmin pixels between two i and j regions
and the second term ensures that i does not grow farther than dmax pixels from j’s boundary.
The term H(φi−dmin) corresponds to the shrunk version of i by dmin pixels. The first term
in (4.18) penalizes region j that falls outside the shrunk i. On the other hand, the term
H(φj + dmax) expands the zero level set of φj by dmax pixels. The second term in (4.18)
penalizes region i that falls outside the expanded j. Figure 4.16 shows the mechanism of
how (4.18) works.

One practical example of encoding containment between two regions but without any
attraction/repulsion forces between their boundaries is lung blood vessels segmentation. In
this case, blood vessels have to be contained in the lungs probably without any specific
distance constraint between them. Here, we set dmin = 1 pixel. In this example, the
lung stands out with high contrast and it is unlikely that the corresponding surface grow
irrationally far from the blood vessels. Hence, we ignored the maximum distance (one may
set dmax arbitrary large). Figure 4.17 shows 3D blood vessel segmentation in a lung. Figure
4.17(a) shows an unbiased initialization. Note how the incorrect segmentation in Figures
4.17(b) and (c) performed by ACWOE (without containment constraint) has been improved
by our framework using (4.18) as the containment energy term (Figures 4.17(d) and (e)).

4.4 Chapter summary

In this chapter, we augmented the level set framework with two important geometric con-
straints, containment and exclusion, along with a distance prior for segmenting spatially-
recurring multi-region objects. We showed that only adding the containment and exclusion
terms into the level set framework can improve the segmentation results in a number of
applications, even when only a simple intensity/color-based data term is used.

By comparing our local optimization-based framework in the continuous domain with
its counterpart methods in the discrete domain [Delong and Boykov, 2009,Ulén et al., 2013],
we draw the following conclusions:

1) Metrication error: This issue might not be an overwhelming issue in many
medical applications, however, it remains a known issue with discrete (graph-based)
methods, which makes it difficult to efficiently implement a convex regularizer like
total variation in the discrete domain. On the other hand, due to our continuous
formulation, our method is free from metrication error.
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(a)

(b) (c)

(d) (e)

Figure 4.17: Lung and its blood vessels segmentation. (a) Initialization. (b) 3D ACWOE
result. (c) ACWOE segmentation result in a 2D slice. (d) The proposed method result
using (4.18) as the containment term. (e) The proposed method’s result shown in a 2D
slice.

2) Memory usage: Due to the graphical representation of an image, the graph
based methods, e.g. [Delong and Boykov, 2009] and [Ulén et al., 2013], consume more
memory compared with our framework. This also is due to the fact that [Delong and
Boykov, 2009] and [Ulén et al., 2013] explore the whole search space to find the global
solution as opposed to our method that only finds a locally optimal solution.

3) Runtime: In general, global graph based methods are highly efficient in finding
the optimal solution. However, the computation time and memory usage in these
methods, [Delong and Boykov, 2009] and [Ulén et al., 2013], depend intricately on the
distance (thickness) constraint between regions due to the need for adding extra edges
per pixel. The runtime and memory usage in our framework, on the other hand, is
almost constant with respect to different distance constraints rendering our method
suitable for segmenting very large microscopy images (100s of mega-pixels).

4) Initialization and numerical stability: While our method’s results depend
on the initialization and needs to satisfy the CFL condition for numerical stability,
graph based methods avoid such requirements and have proven to be numerically
stable. Nevertheless, we showed favourable results even with fully automatic or rough
initialization that are distant from the desired boundaries.

The summary of pros and cons of our method proposed in this chapter are as follows:
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• Pros:
The proposed method

– is parameterization-independent (defined over image domain)

– can easily encode knowledge as energy terms

– is implemented via update equations that can be implemented easily

– handles topological changes (split and merge)

– is easily extendible from curve in 2D to surfaces and higher dimensions

– (compared to discrete methods)

∗ has no metrication error
∗ consume less memory
∗ has less variation in computation time

• Cons: On the other hand, our method

– has initialization dependency issue

– does not guarantee the globally optimal solution

In Chapter 5, we turn our attention to optimizability and propose a continuous convex
formulation to augment the popular Mumford-Shah model [Mumford and Shah, 1989] and
develop a new regularization term to incorporate similar geometrical and distance prior as
our second contribution while maintaining global optimality.
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Chapter 5

Continuous convex formulation for
multi-region object segmentation
with geometric constraints

In our previous work (Chapter 4), results depended on initialization and globally optimal
solution was not guaranteed. In this chapter we address these issues by proposing a convex
formulation and augment the popular Mumford-Shah model [Mumford and Shah, 1989]
to incorporate containment and detachment constraints between different regions with a
specified minimum distance between their boundaries. Our method is able to handle mul-
tiple instances of multi-part objects defined by these geometrical constraints using a single
labeling function while maintaining global optimality. We demonstrate the utility and ad-
vantages of these two constraints and show that our proposed convex continuous method is
superior to other state-of-the-art methods, including its discrete counterparts, [Delong and
Boykov, 2009] and [Ulén et al., 2013], in terms of memory usage, and metrication errors.

The remaining of this chapter is organized as follow. We introduce the containment
and detachment constraints in Section 5.1.1. We show how to encode these two constraints
in a continuous segmentation framework and show how our formulation can be convexified
by functional lifting technique in Section 5.1.2. Section 5.1.3 explains how the energy is
optimized. Different examples as well as comparisons with other popular state-of-the-art
methods are given in Section 5.2, followed by our conclusions in Section 5.3.

5.1 Methods

5.1.1 Problem formulation

In this section we explicitly define containment and detachment and show how we encode
them in a Mumford-Shah based model while maintaining global optimality.

86



Ω i

Ω h

Ω h

(a) Standard labeling function setting

Ω i

Ω j

Ω h

(b) Our setting

Figure 5.1: The inside vs. outside ambiguity in (a) is resolved by our containment constraint
in (b).
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Figure 5.2: Containment vs. similar configurations (h: background). According to (5.3),
“object i contains object j” in (a) with Th(Ωh,Ωi,Ωj) ≥ w, but the relationship between i
and j in (b) and (c) is not containment.

We first consider a containment constraint in a 3 region segmentation. We divide the
image domain, Ω ⊂ R2, into three non-overlapping parts (Figure 5.1(b)): the outside or
background region Ωh, the outer region Ωi, and the contained region Ωj , where Ω = Ωh ∪
Ωi∪Ωj . In many binary segmentation applications that use relaxed labeling functions, label
values below 1/2 correspond to background and values above 1/2 correspond to foreground.
We extend this definition as follows. Given a label set Γ = [0, 1], we define our labeling
function u : Ω→ Γ, such that

0 ≤ u(x) < 1/3 ⇐⇒ x ∈ Ωh

1/3 ≤ u(x) < 2/3 ⇐⇒ x ∈ Ωi

2/3 ≤ u(x) < 1 ⇐⇒ x ∈ Ωj .

(5.1)

To precisely define containment, we introduce a function that measures the thickness of
the outer region Ωi:

Th(Ωh,Ωi,Ωj) = min
x1∈Ωj

min
x2∈Ωh

‖x1 − x2‖ . (5.2)
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We define containment for 3 regions as:

Definition 1 (Containment). We say object i contains object j with thickness w if and
only if

Th(Ωh,Ωi,Ωj) ≥ w . (5.3)

We note that Ω = Ωh ∪ Ωi ∪ Ωj is assumed here.
An example is shown in Figure 5.2(a) where the light gray object, i, contains the dark

gray object, j, with a minimum thickness of w. The related configurations between i and j
seen in Figure 5.2(b) and (c) are not containment based on our definition in (5.3). However,
(b) can be seen as containment in a 4 region segmentation: i contains the interior white
region, and the interior white region contains j.

Given an input image1 I : Ω ⊂ R2 → R, for objects i and j and the background h, let
µi, µj and µh be constant approximations of the regional intensities and define gk(x) =
|I(x) − µk|2 for k = {h, i, j}. To segment I such that i contains j we solve the following
energy minimization problem:

argmin
u∈D

E(u,g)

= argmin
u∈D

∫
Ω
|∇xu(x)|+ ρ(x, u(x),g)dx , (5.4)

D =
{
u
∣∣ u(x) = 0 for x ∈ ∂Ω and

Th(Ωh,Ωi,Ωj) ≥ w
}
.

Here ∇x is the gradient in x and y directions, g = (gh, gi, gj), and ρ(x, u(x),g) : Ω→ R+

is a non-negative data term that encourages u to satisfy (5.1), e.g.

ρ(x, u(x),g) =


gh(x) if 0 ≤ u(x) < 1/3
gi(x) if 1/3 ≤ u(x) < 2/3
gj(x) if 2/3 ≤ u(x) < 1

. (5.5)

For convenience, we often let ρ be a function of g implicitly, and write ρ(x, u(x)).
Constraining u to D, E(u,g) ensures that object j and object h have no shared bound-

aries, resulting in j being contained in i. In other words, the segmentation corresponding to
u cannot abruptly change from object j to object h, and thus the value of u cannot change
from u ≥ 2/3 to u ≤ 1/3 in a distance less than w.

1Our method can be extended to vector valued images, e.g. color images or tensor fields, by modifying
the data terms, as in [Chan et al., 2000], [Wang and Vemuri, 2004a]
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(a) Unconstrained seg-
mentation

u=1/3

u=2/3

(b) u corresponding to (a)

(c) Constrained segmen-
tation

u=2/3

w

u=1/3

1/3

(d) u corresponding to (c), |∇xu| ≤ 1/3w

Figure 5.3: Constrained vs. unconstrained labeling function u. In (a), the 3-region labeling
function u, as defined in (5.1), is used to segment the white object from the black back-
ground, while the intermediate region has zero thickness. In (b), we see the u corresponding
to (a). Without a thickness constraint, u is allowed to become discontinuous, skipping over
the interval corresponding to the intermediate region, i.e. Ωi in (5.1). In (c), we see how the
segmentation changes when the thickness constraint (5.3) is enforced, with the intermediate
region being hallucinated around the white object. In (d), we see the u corresponding to
(c). By bounding the rate of change of u, a band of thickness w must be assigned to the
intermediate region.

This leads us to the fact that the constraint Th(Ωh,Ωi,Ωj) ≥ w can be replaced by the
following more convenient constraint:

|∇xu| ≤
1

3w , (5.6)

which limits the rate that u can change spatially. This lets us rewrite D as:

D =
{
u

∣∣∣∣ u(x) = 0 for x ∈ ∂Ω, |∇xu| ≤
1

3w

}
. (5.7)

To better understand the equivalence of these constraints, let’s consider the example
shown in Figure 5.3. Here, a black and white image is segmented into three regions, with
µh corresponding to black pixels, µi corresponding to (non-existent) gray pixels, and µj cor-
responding to white pixels. Figure 5.3(b) illustrates the labeling function u corresponding
to the segmentation in Figure 5.3(a), with no thickness constraint. Here, u becomes discon-
tinuous (unbounded |∇xu|) in order to avoid assigning any pixels to the exterior object i.
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By enforcing the restriction |∇xu| ≤ 1
3w , u is not able to jump from < 1/3 (background) to

≥ 2/3 (white object) in less than distance w (Figure 5.3(d)). By restricting u, we force the
white object to be contained by an intermediate region of thickness of w (cf. Figure 5.3(c)).
We note that if w is large enough, the energy increase from hallucinating the intermediate
region in Figure 5.3(c) will become greater than the energy increase from not segmenting
the inner white region, and the result will be u = 0 across the image.

Using a similar formulation to containment, we can incorporate a constraint ensuring
two regions are detached.

Definition 3 (Detachment). Object i and object j are detached with thickness w if and
only if

Th(Ωi,Ωh,Ωj) ≥ w. (5.8)

In other words, object j does not share a boundary with object i, thereby ensuring a sepa-
ration between i and j by enforcing the labeling function u to pass through the background,
h, as it travels from i to j. To encode detachment, we simply swap gh and gi in (5.4).

Now, we note that the data term (5.5) is not convex, making standard gradient descent
based optimization schemes prone to local minima. In the next section, we discuss how to
convexify (5.4) and thus find a globally minimizing segmentation.

5.1.2 Function convexification

We use a “functional lifting” technique similar to the one proposed by [Pock et al., 2008]
(motivated by Ishikawa’s work in the discrete Markov random field setting [Ishikawa, 2003])
to transfer our energy functional to a higher dimensional space, where it becomes convex.
The objective is to solve the following minimization problem:

argmin
u∈D

{∫
Ω
|∇xu(x)|dx+

∫
Ω
ρ(x, u(x))dx

}
. (5.9)

The first term is a convex TV term, but the second term ρ(x, u(x)) can be non-convex. To
lift the original energy to a higher dimensional space, we represent u in terms of its super
level set, ϕ : Ω× Γ→ {0, 1} by:

ϕ(x, γ) = 1{u≥γ}(x) =
{

1 if u(x) ≥ γ
0 otherwise

. (5.10)

u can be recovered from ϕ via the layer-cake formula:

u(x) =
∫

Γ
ϕ(x, γ)dγ. (5.11)
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The TV term in (5.9) can be re-written with respect to ϕ using the generalized co-area
formula [Fleming and Rishel, 1960]:

∫
Ω
|∇xu(x)|dx =

∫
Ω

∫
Γ
|∇xϕ(x, γ)|dγdx. (5.12)

By observing2 that δ(u(x) − γ) ≡ |∂γϕ(x, γ)|, where δ(·) is the Dirac delta function, the
data term in (5.9) can then be re-written as [Pock et al., 2008]:

ρ(x, u(x)) =
∫

Γ
ρ(x, γ)δ(u(x)− γ)dγ

=
∫

Γ
ρ(x, γ)|∂γφ(x, γ)|dγ.

(5.13)

Now, using (5.12) and (5.13), the equivalent form of (5.9) is

argmin
{ϕ|u∈D}

∫
Ω

∫
Γ
|∇xϕ(x, γ)|+ ρ(x, γ)|∂γϕ(x, γ)|dγdx. (5.14)

Note that the non-convex function ρ does not depend on ϕ any more and (5.14) is convex
in ϕ. As the last stage of convexification, ϕ in (5.10), is relaxed so it varies continuously
between zero and one, i.e. ϕ ∈ Ω × Γ → [0, 1]. To recover u, we threshold ϕ and apply
(5.11).

Now, it is not immediately clear what form the constraint {ϕ|u ∈ D} will take. If we
ignore the thickness constraint from D, we could use ϕ ∈ D1 where

D1 =
{
ϕ
∣∣ϕ(x, 0) = 1, ϕ(x, 1) = 0, ∂γϕ ≤ 0

}
. (5.15)

It is evident from (5.10) that every ϕ constructed from the super level sets of some u are
in D1.

We now present a theorem describing how to enforce the thickness constraint in ϕ. Let
∇3ϕ be the gradient of ϕ in all components, i.e. ∇3ϕ = (∂xϕ, ∂yϕ, ∂γϕ).
Theorem 1. If

|∇xϕ|
|∂γϕ|

≤ 1
3w , (5.16)

then constraint |∇xu| ≤ 1
3w is satisfied by any u constructed by thresholding ϕ at some value

and applying (5.11).
Proof: The gradient of ∇3ϕ at point (x, y, γ) is perpendicular to its level set surface at
that point. That is, if we let Lν to be the ν-level surface of ϕ, let v1 be tangent to Lν at
(x, y, γ), and let v2 = ∇3ϕ(x, y, γ), then 〈v1, v2〉 = 0.

Based on (5.10), u is a level set of ϕ no matter where ϕ is thresholded. The standard
technique for finding a vector tangent to the surface defined by u is to choose a unit vector

2From (5.10), it is observed that the derivative of ϕ with respect to γ is zero everywhere except where ϕ
changes, i.e. u(x) = γ.
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in x and y and set the γ component equal to the rate of change of u in the chosen direction.
Specifically, this means

v =
(
∂xu

|∇xu|
,
∂yu

|∇xu|
, |∇xu|

)
(5.17)

is tangent to the surface u, and thus is orthogonal to ∇3ϕ at any point (x, y, u(x, y)). Thus

0 = 〈v,∇3ϕ〉 (5.18)

= 〈∇xu,∇xϕ〉
|∇xu|

+ ∂γϕ|∇xu| (5.19)

|∇xu| = −
〈∇xu,∇xϕ〉
|∇xu|

· 1
∂γϕ

(5.20)

|∇xu| ≤
|∇xϕ|
|∂γϕ|

≤ 1
3w , (5.21)

where the last step uses 〈a,b〉|a| ≤ |b|. �

The objective now is to solve:

argmin
ϕ∈D2

∫
Ω

∫
Γ
|∇xϕ|+ ρ|∂γϕ|dγdx, (5.22)

D2 =
{
ϕ ∈ D1

∣∣∣∣|∇xϕ| ≤ |∂γϕ|3w

}
. (5.23)

5.1.3 Optimization

Due to the discontinuity in the Euler-Lagrange equation of (5.22), we use a primal-dual
algorithm, [Chan et al., ,Chambolle, 2005], to obtain the global solution. Defining the dual
variable p = (p1, p2, p3)T , we can write the total variation part of (5.22) as:

|∇xφ(x, γ)| = max
|p′|≤1

〈p′(x, γ),∇xφ(x, γ)〉 , (5.24)

where p′ = (p1, p2). In (5.22), recalling that −1 ≤ ∂γφ ≤ 0, it can be easily shown

ρ(x, γ)|∂γφ(x, γ)| = max
−p3≤ρ

p3(x, γ)∂γϕ(x, γ). (5.25)
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(a) (b) (c)

Figure 5.4: Valid sets for dual variables p. (a) Set C1 [Pock et al., 2008] (without any
geometrical constraint). (b-c) Set C2; the truncated cone that impose our constraint (5.16).
(b) When (5.16) is not satisfies p becomes ∞. (c) When (5.16) is satisfied we obtain the
same solution as (a).

Using these dual variables, the optimization problem of (5.22) becomes a min-max problem:

argmin
ϕ∈D2

{∫
Ω

∫
Γ

(
max
|p′|≤1

〈p′(x, γ),∇xφ(x, γ)〉+

max
−p3≤ρ

p3(x, γ)∂γϕ(x, γ)
)
dγdx

}
(5.26)

= argmin
ϕ∈D2

{∫
Ω

∫
Γ

max
p∈C
〈∇3ϕ,p〉

}
, (5.27)

Combining the constraints in (5.24) and (5.25) gives [Pock et al., 2008]:

C = C1 =
{
p ∈ R3

∣∣∣∣√p2
1 + p2

2 ≤ 1, p3 ≥ −ρ
}
, (5.28)

a cylinder with radius one, open on one end (cf. Figure 5.4(a)). Recalling that ∂γϕ ≤ 0,
p3 that maximizes (5.27) is always as negative as possible, i.e. p3 = −ρ. Thus for C = C1,
the maximizing p is always on the circle at the base of the cylinder, highlighted in red in
Figure 5.4(a).

Unfortunately, while minimizing ϕ over D1 can be done efficiently, the gradient magni-
tude constraint D2 imposes (in order to enforce the thickness constraint) makes the mini-
mization of (5.27) for ϕ difficult.

We will show that by moving the burden of enforcing the thickness constraint to the dual
space, the optimization problem becomes much easier. Specifically, we will constrain ϕ to
D1, and introduce a new space for the dual variables, C2, satisfying the following properties:

1. C2 is convex;

2. if ϕ satisfies (5.16) then

max
p∈C2
〈∇3ϕ,p〉 = max

p∈C1
〈∇3ϕ,p〉 ; (5.29)

93



3. if ϕ does not satisfy (5.16) then (5.27) becomes arbitrarily large and that choice of ϕ
will be disallowed:

max
p∈C2
〈∇3ϕ,p〉 =∞ . (5.30)

Note that since (5.16) must be enforced at each spatial location, conditions 2 and 3 must
also hold at each spatial location, thus the integrals are dropped from (5.27).
Theorem 2. A set that satisfies the three above conditions is the truncated cone defined
by:

C2 =
{

p
∣∣∣∣√p2

1 + p2
2 ≤ 3w(p3 + ρ) + 1, p3 ≥ −ρ

}
. (5.31)

Proof. As a truncated cone, C2 is convex, so condition 1 is satisfied. To show 2 and 3 are
satisfied, we will determine, for a given ∇3ϕ, the value of

max
p∈C2
〈∇3ϕ,p〉 . (5.32)

We first note that the circle at the base of the truncated cone is the same as the circle at
the base of the cylinder defined by C1. Thus, if the p maximizing (5.32) lies on this circle
(the red set in Figure 5.4(c)), then (5.29) is satisfied. We now simplify this problem by
reducing the possible forms for ∇3ϕ and p.

Since the condition (5.16) and C2 are rotationally symmetric with respect to the first
two components, we can assume the second component of ∇3ϕ is 0, i.e. rotating ∇3ϕ does
not change (5.32). Further, if ∇3ϕ is scaled by some constant, the maximizing p is not
changed. Thus, we let ∇3ϕ = (`, 0, a), where ` = |∇xϕ| is held constant and ∂γϕ = a ≤ 0
is the only free parameter.

The maximizing p is always on the boundary of C2, since scaling p until it is on the
boundary increases (5.32). Further, the first two components of the maximizing p must
align with the first two components of ∇3ϕ, so p2 = 0.

If p is on the circle at the base of the cone, it would take the form p = (b, 0,−ρ), where
0 ≤ b ≤ 1 is a free variable, and (5.32) becomes

max
p
〈p,∇3ϕ〉 = max

b
(b`− aρ) , (5.33)

which is maximized for b = 1, i.e. a p on the edge of the circle (the red set in Figure 5.4(c)),
so no maximizing p is on the inner part of the circle.
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If p is on the surface of the cone, it would take the form p = (3w(b+ ρ) + 1, 0, b) (from
(5.31)), where b ≥ −ρ is a free variable. This gives

max
p
〈p,∇3ϕ〉 = max

b
(`(3wb+ 3wρ+ 1) + ab) (5.34)

= max
b

(b(3w`+ a) + 3wρ`+ `). (5.35)

If (3w`+ a) ≤ 0, (5.35) is maximized by minimizing b, i.e. b = −ρ. This corresponds to p
on the edge of the circle (the red set in Figure 5.4(c)), which implies (5.29) is satisfied. If
(3w` + a) > 0, (5.35) is maximized by b → ∞, and (5.32) gets arbitrarily large, satisfying
(5.30) (cf. Figure 5.4(b)).

To complete the proof, we note that (3w`+a) ≤ 0 is equivalent to the thickness constraint
(5.16):

(3w`+ a) ≤ 0

3w|∇xϕ| ≤ −∇γϕ (5.36)

|∇xϕ| ≤
|∇γϕ|

3w . (5.37)

�

To find the optimal solution for ϕ ∈ D1 and p ∈ C2, we perform the following primal
and dual steps [Chambolle, 2004]:
Primal step Find the minimum ϕ for a fixed p:

ϕk+1 = argmin
ϕ∈D1

∫
Ω×Γ
〈∇3ϕ,p

k〉+ (ϕ− ϕk)2

2tϕ
. (5.38)

Dual step Find the maximum p for a fixed ϕ:

pk+1 = argmax
p∈C2

∫
Ω×Γ
〈∇3ϕ

k+1,p〉+ (p− pk)2

2tp
. (5.39)

tϕ and tp are the step sizes of the primal and dual update equations (here we used tϕ = 0.01
and tp = 5). The solutions of (5.38) and (5.39) are derived from the Euler-Lagrange
equations and projecting the obtained solutions to their valid sets. Algorithm 1 shows the
alternating minimization scheme that is used to update ϕ and p in (5.38) and (5.39).

The update equations in lines 1 and 3 in Algorithm 1 are easily obtained by deriving the
Euler-Lagrange equation for (5.38) and (5.39), respectively. We use Euclidean projector to
reproject ϕk+1 and pk+1 onto the sets D1 and C2, respectively.

In our numerical implementation and discretization, assuming that ∆x and ∆y are spa-
tial step sizes in x and y directions and ∆γ is the label discretization step, we approximate
(x, y, γ) ∈ Ω×Γ by (i∆x, j∆y, k∆γ), where (i, j, k) is the discrete location on the following

95



Algorithm 1: Finding the global optimizer of (5.9).
Input: I: Image; w: thickness constant; µi: average regional intensities, tp and tϕ:

time steps.
Output: Labeling function u.
- Initialize labeling function, u0 (the output does not depend on the initialization).
- Initialize dual variable p to zero.
- Form the super-level set function ϕ0 from u0 using (5.10).
repeat

1. Update ϕ: ϕk+1 = ϕk + tϕdiv3p
k.

2. Project ϕk+1 onto the set D1.
3. Update p: pk+1 = pk + tp∇3ϕ

k+1.
4. Project pk+1 onto the set C2.

until convergence;
Recover u by thresholding ϕ at 0.5 and using (5.11).

Cartesian grid:

{
(i, j, k) |1 ≤ i ≤M, 1 ≤ j ≤ N, 1 ≤ k ≤ O

}
,

andM , N and O denote the size of the grid. We use forward and backward finite differences
to approximate ∇3ϕ and div3p, respectively:

(∇3ϕ)i,j,k =(
ϕi+1,j,k − ϕi,j,k

∆x ,
ϕi,j+1,k − ϕi,j,k

∆y ,
ϕi,j,k+1 − ϕi,j,k

∆γ

)T
(div3p)i,j,k =
p1
i,j,k − p1

i−1,j,k
∆x +

p2
i,j,k − p2

i,j−1,k
∆y +

p3
i,j,k − p3

i,j,k−1
∆γ

Here, we set ∆x = ∆y = 1 and ∆γ = 0.05.
After finding the global solution for the relaxed optimization problem, the labeling

function u is recovered by thresholding ϕ at 0.5 and applying (5.11). It can be proven that
thresholded minimizers of the relaxed problem are the minimizers of the binary problem
(5.14). We follow Theorem 2 of [Pock et al., 2008] to prove that the thresholded minimizers
of the relaxed problem (ϕ ∈ D1) are the minimizers of the binary problem (5.14).
Theorem 3. Let ϕ∗ ∈ D1 be the solution of the relaxed problem. Then for almost any
threshold µ ∈ [0, 1] the characteristics function 1{ϕ∗≥µ} ∈ {0, 1} is also a minimizer of the
binary variational problem (5.14).
Proof by contradiction [Pock et al., 2008]. Since the relaxed problem is homogeneous
of degree one, we make use of the generalized co-area formula to decompose it by means of
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the level sets of ϕ.

E(ϕ) =
∫

Ω

∫
Γ
|∇ϕ(x, γ)|+ ρ(x, γ)|∂γϕ(x, γ)|dγdx

=
∫ 1

0

(∫
Ω

∫
Γ
|∇1{ϕ≥µ}|+ ρ(x, γ)|∂γ1{ϕ≥µ}|dγdx

)
dµ

=
∫ 1

0
E(1{ϕ≥µ})dµ.

(5.40)

Assume to the contrary that 1{ϕ∗≥µ} ∈ {0, 1} is not a global minimizer of the binary problem
(5.14), i.e. there exists a binary function ϕ′ ∈ {0, 1} with E(ϕ′) < E(1{ϕ∗≥µ}) for a set of
µ ∈ [0, 1]. This directly implies that:

E(ϕ′) =
∫ 1

0
E(ϕ′)dµ <

∫ 1

0
E(ϕ∗ ≥ µ)dµ = E(ϕ∗), (5.41)

which means that ϕ∗ is not a global minimizer of E(.), contradicting our assumption. �

We note that our framework can be extended to multiple nested regions by dividing Γ
into more than 3 intervals in (5.1). The thickness constraint between consecutive regions
can be set by adjusting w and the interval length for each region in (5.1).

5.2 Experiments and discussion

In this section, we demonstrate advantages of our work over popular state-of-the-art seg-
mentation methods and compare our framework with the analogous discrete work of Delong
and Boykov (DB) [Delong and Boykov, 2009].

5.2.1 Synthetic data

In our first experiment, we compare our method with DB in terms of memory usage and
metrication error on a simple synthetic example.

Metrication error is defined as the artifacts which appear in graph-based segmentation
methods due to penalizing region boundaries only across axis aligned edges. In Figure
5.5, the goal is to segment the three-region object from the background. Figure 5.5(b-d)
resulted from DB’s method for 4, 8 and 16 graph connectivity. Note the metrication artifacts
in Figure 5.5(b-c). Increasing the graph connectivity reduces metrication error, but also
increases memory usage.

Memory usage of our method and the graph-based methods is seen in Figure 5.5(f).
The red curve in Figure 5.5(f) illustrates the metrication error (1 - Dice similarity coeffi-
cient(DSC)) vs. memory usage of [Delong and Boykov, 2009] for 4, 8 and 16 connectivity,
while the green circle represents our method. Here, removing the metrication error in the
graph-based method requires 16 connectivity, even for these smooth objects. This requires
∼10 times more memory than our method (0.80 vs. 7.92 MB).
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(a) Original image (b) GC: 4-connected (c) GC: 8-connected

(d) GC: 16-connected (e) Our result
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(f) Metrication error vs. memory usage

Figure 5.5: Synthetic three-region object+background segmentation. (b-d) DB graph cuts
based method [Delong and Boykov, 2009] with different connectivities. (e) Our segmentation
results. (f) Metrication error vs. memory usage: red curve: GC-based method; green circle:
our method.

5.2.2 Microscopy/Histology cell segmentation

We applied our method to a set of 20 different histology and microscopy images consist of
multiple instances of multi-region cells. In these experiments, we show how containment
and detachment with thickness constraints are useful for cell segmentation and compare
our method with DB [Delong and Boykov, 2009] in terms of memory usage and metrication
error.

Figure 5.6 shows a typical microscopy image with multiple cells, where nuclei are typi-
cally contained inside a cell membrane. Figure 5.6(b) and (c) show the segmentation results
with a thickness of w = 2 pixels for DB (with 4-connectivity) and our method, respectively.
Metrication error can be clearly seen in Figure 5.6(b). Our method also requires less memory
(7.91 MB vs. 33.90 MB).

Changing the thickness of the containing region allows us to control which objects are
segmented. In Figure 5.6(a), to exclude the abnormal cells (arrows) from the segmentation,
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(a) (b) (c)

(d) (e)

Figure 5.6: Cell segmentation in a microscopy imagery. (a) Original image, 250 × 395
pixels. Arrows show abnormal cells. (b) Result of [Delong and Boykov, 2009], 33.90 MB.
(c) Our result (thickness= 2 pixels, 7.91 MB) . (d) Our result to segment only normal
looking (elliptical) cells (thisckness=10 pixels, 7.91 MB). Note that [Delong and Boykov,
2009] needs ∼ 313.41 MB extra memory (347.31 MB in total) to impose thickness of 10
pixels while the memory usage of our method is independent of thickness constraint. (e)
Segmenting isolated nuclei by imposing detachment constraint (5.8).
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Figure 5.7: Memory efficiency: DB (in red) vs. ours (in green). ©: 3-region segmentation;
∆: 4-region segmentation. Memory usage ratio (DB/ours) for 3 regions: 14.63 ± 4.52 and
for 4 regions: 32.40± 8.35.

we increase the thickness of the outer region (membrane) from 2 to 10 pixels, resulting
in Figure 5.6(d). In DB, increasing the thickness requires more edges be added to the
underlying graph, and increasing the thickness from 2 to 10 pixels requires an extra ∼313.41
MB memory, an almost 10-fold increase. Thickness can be increased in our method by
simply changing the value of w. Figure 5.6 (e) demonstrates the usage of a detachment
constraint (cf. (5.8)), identifying nuclei that are not surrounded by a cell membrane.

Figure 5.8 shows results for 7 other images, comparing segmentations generated using
a continuous method without a containment constraint [Pock et al., 2008], DB with 4
connectivity, and our method. These results illustrate the importance of a containment
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Table 5.1: DSC and memory usage comparison (20 images).

Method DSC Memory (MB)
No containment [Pock et al., 2008] 0.6478± 0.06 8.9± 7.2

DB [Delong and Boykov, 2009] 0.9065± 0.08 180.0± 204.7
Ours 0.9158± 0.07 8.9± 7.2

constraint (first column) and also show the effects of metrication error (second column).
Table 5.1 summarizes the mean accuracy and memory usage of the 3 methods across all
20 images, and Figure 5.7 compares the memory usage vs. image size of our method and
DB across all 20 images. We note that some of the images (e.g. the bottom two rows
in Figure 5.8) have 4 regions segmented, and Figure 5.7 shows that the memory usage in
graph-based methods tends to increase proportionally more than our continuous method
in these cases. On average, our method converges after 200 iterations for a 256 × 256
image. Using non-optimized MATLAB code on a standard 2.3 GHz CPU with 6GB RAM,
the graph cuts-based method [Delong and Boykov, 2009] tends to run 2-3 times faster than
our method but with more memory usage.

5.3 Chapter summary

We introduced a variational framework to augment the conventional Mumford-Shah model
for segmenting multi-region objects. We proposed a labeling function that allows us to
enforce useful geometric constraints such as containment and detachment. By using this
framework, a user can easily apply high level intuitive geometric constraints to improve seg-
mentation results without the need for a deep understanding of how the method works. Our
method compares favourably with analogous graph-based methods in terms of metrication
error and memory efficiency.

100



Figure 5.8: Incorporating geometrical constraint into the segmentation of histology and
microscopy images. Left column: Pock’s method [Pock et al., 2008] (without geometri-
cal constraint); middle column: graph-based method [Delong and Boykov, 2009]; right
column: our method.
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Chapter 6

Endoscopic video segmentation in
robot-assisted minimally invasive
surgeries using prior information

While our previous contributions enforce geometrical priors into segmentation frameworks,
in this chapter we enforce priors based on images acquired from different imaging modalities.
Particularly, we employed 3D models as well as camera motion prior to segment multiple
objects in a 2D multi-view endoscopic video.

Robotic minimally invasive surgery (RMIS) systems have been gaining popularity due
to their many advantages compared to traditional minimally invasive surgery and open
surgeries including greater precision, improved dexterity and enhanced 3D immersive visu-
alization for surgeons [Pratt et al., 2012]. In RMIS, image-guided localization and delin-
eation of tissues, e.g. tumour and kidney in partial nephrectomy, is an important step that
can significantly enhance the surgeon’s perception of the surgical scene and facilitate their
decision-making. However, accurate identification of various tissues in an intraoperative
video is by no means an easy task due to the limited viewing area, presence of occluding
objects (e.g. surgical tools), data acquisition noise (e.g. specular light reflection, blood
and smoke), as well as similarity in the visual appearance of different tissues. To localize
different tissues, surgeons rely on (mentally) combining the information they recall from
preoperative scans, often CT, with the information they see in the intraoperative stereo
endoscopic video feed, a task that requires exceptional skill. Advances in intraoperative
imaging has introduced some other modalities into the operating room, e.g. ultrasound
and X-ray [Estépar and Vosburgh, 2014]. However, the feasibility, quality, and information
content of such data still markedly lags behind the typically high resolution 3D preop-
erative data, and endoscopic imaging remains the staple modality in minimally invasive
surgeries. Using efficient 2D and 3D computer vision techniques to support the analysis of
endoscopic images alleviates the need for using additional equipment, e.g. fiducial markers,
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and helps to relax the handling of multiple intraoperative data streams. Yet, the aforemen-
tioned complications related to noise and clutter pose many challenges in endoscopic video
segmentation.

Some recent works in endoscopic image segmentation proposed the use of level set-
based approaches [Figueiredo et al., 2010, Figueiredo et al., 2012] while others focused on
parameter-sensitive morphological operations and thresholding techniques [Dhandra and
et al., 2006, Mewes et al., 2011]. However, practical success of such methods is limited
as they mostly rely on image color/intensity, do not use preoperative information, and
focus on segmenting a single object. Other contributions focused on feature tracking, e.g.
[Puerto-Souza and Mariottini, 2013], while [Mountney and Yang, 2010] proposed a method
to estimate laparoscopic camera and periodic organ motion. Both methods cannot handle
free-form deformation of organs and the latter method assumed the camera has (on average)
constant velocity, which is often not the case in minimally invasive surgery.

In this chapter, we propose a technique that imitates surgeons skill in leveraging preop-
erative information into the analysis of intraoperative endoscopic visual cues. Our approach
encodes the fused information within an energy optimization process to efficiently segment
multiple structures in endoscopic videos. Our work is inspired by the work of [Prisacariu
and Reid, 2012] in the (non-medical) computer vision area where the segmentation of an
object in an image was obtained by finding the six pose parameters of its 3D model. In
minimally invasive surgery, six degrees of freedom are not enough as tissues non-rigidly
deform. Unlike [Prisacariu and Reid, 2012], [Sandhu et al., 2011] used kernel PCA to
capture the shape variation and estimated the non-rigid pose of a single object. Their
method, however, segments a single object in a single view image. Applying the methodol-
ogy of [Prisacariu and Reid, 2012] and [Sandhu et al., 2011] to robotic surgery applications
is also not straightforward as images in endoscopic videos are highly noisy and cluttered.
Moreover, [Sandhu et al., 2011] does not leverage stereo vision and is incapable of handling
large occlusions (large portions of objects are occluded, e.g. by tools), both of which are
common in minimally invasive surgery. In our formulation, we provide a closed-form so-
lution (unlike [Prisacariu and Reid, 2012,Sandhu et al., 2011]) to segment multiple tissues
in a multi-view endoscopic video (here we use stereo video) based on prior knowledge ex-
tracted from preoperative data. Our approach thus simultaneously estimates the 3D pose
of tissues in the preoperative domain as well as their non-rigid deformations from their
preoperative state. Furthermore, our framework allows for the inclusion of motion priors
on laparoscopic camera motion to stabilize the segmentation/pose tracking in the presence
of a large occlusion. Such feature is especially useful in RMIS as camera motion signals can
be easily read using the robot’s API and incorporated into our formulation to obtain even
more accurate and robust results. In this work, we enforce a motion prior on the cameras
only; nonetheless, our flexible mathematical formulation allows for incorporating of general
non-rigid motion or temporal deformation priors on various tissues. Our method runs in
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real-time on a single CPU core which makes it suitable for robotic surgical systems as they
are typically limited in computational resources.

We validate the utility of our technique on ex vivo data as well as in vivo clinical data
from laparoscopic partial nephrectomy surgery and demonstrate its robustness in segment-
ing stereo endoscopic videos.

6.1 Methods

For ease of exposition, we start by describing our method for segmenting a single object in
a single image, given its 3D segmentation in the preoperative domain. Later, we show how
we extend our framework to segment multiple objects in multiple 2D images (multi-view
data). Let Xpre

i ∈ R3 be point i of a 3D model obtained from segmented preoperative 3D
data. The goal is to spatially transform and deform the model non-rigidly in 3D such that
its silhouette on the 2D color image, I : Ω ⊂ R2 → R3, delineates the object of interest in I,
i.e. the silhouette encapsulates the foreground. The silhouette of a 3D model is obtained by
projecting the model from 3D to 2D given the projection function π and the corresponding
camera’s focal point fm and principal point cm. We represent the foreground by the level
set function φ such that, for a pixel xi ∈ Ω in I, φ(xi) > 0 if xi belongs to the foreground,
φ(xi) < 0 if xi belongs to the background, and φ(xi) = 0 if xi is on the object’s boundary.
Every 2D point xi on the foreground is related to its corresponding 3D point Xpre

i by

xi = π
(
T (Xpre

i ; ξ)
)
, (6.1)

where T deforms Xpre
i and transforms it from the preoperative domain to Xsrg

i ∈ R3

in the surgical domain. ξ = {ξq, ξw} is the set of pose ξq = {q1, · · · , qn} and shape
ξw = {w1, · · · , wm} parameters. We use the weights of shape variation modes as ξw. To
segment a tissue in the 2D image I given its 3D model, we define the following residual for
the ith pixel, xi ∈ Ω as:

ei = −ρf (xi)H(φ(xi)) + ρb(xi)(1−H(φ(xi))), (6.2)

where ρf and ρb are the regional terms measuring the agreement of the image pixel xi with
the foreground and background statistical models and H(.) is the Heaviside step function.
Ideally ei would be zero for a perfect model-to-data fit, however, due to noise, ei will have
a distribution P (ei|ξ), which can be modelled as N (0, σ) when ξ is close to the solution
(Figure 6.1(a)). The residual value for all pixels e is calculated assuming that the noise is
independent across pixels. The objective is to find the most likely transformation parameters
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ξ given the residual e by maximizing the following posterior probability:

ξ∗ = arg max
ξ

P (ξ|e) = arg min
ξ
−
∑
i

logP (ei|ξ)− logP (ξ) . (6.3)

The second term in (6.3) is the prior on the transformation. Here, we enforce a prior only
on pose parameters (ξq) which can also be considered as camera motion parameters (due
to their relative rigid motion); however, one can use this term to enforce a prior on the
tissues’ non-rigid deformation. The camera motion prior can be obtained either from the
robotic surgical system or the prediction of a Kalman filter. The uncertainty in the motion
estimation is modelled with a Gaussian meaned around the predicted pose parameter ξ̂
with covariance Σξ, i.e. P (ξ) ∼ N (ξ̂,Σξ). We minimize (6.3) by taking its derivative and
setting it to zero:

∑
i

∂ logP (ei|ξ)
∂ξ

+ ∂ logP (ξ)
∂ξ

=
∑
i

−1
σ
ei
∂ei
∂ξ
− 1

Σξ
(ξ − ξ̂) = 0. (6.4)

As ei is not linear in ξ, to solve (6.4) efficiently we linearize ei with respect to ξ using the
first order Taylor approximation:

elini (ξ) = ei(0) + ∂ei(ξ)
∂ξ

∣∣
ξ=0∆ξ = ei(0) + Ji∆ξ, (6.5)

where Ji is the Jacobian of the ith pixel’s error with respect to ξ. Substituting (6.5) into
(6.4) and using matrix notation, we have:

(−1
σ
JTJ + Σ−1

ξ )∆ξ = 1
σ
JTe(0) + Σ−1

ξ (ξ̂ − ξt−1) , (6.6)

where J is the stacked matrix of all Ji pixel-wise Jacobians and ξt−1 is the pose in the previ-
ous frame. At each frame of video, the linear system of equations (6.6) is solved efficiently for
∆ξ (by Choleskey decomposition) with which we update the transformation/deformation
parameters ξ. For this linearization, we assumed ∆ξ is small. This assumption is valid
given the high video capture rate of current surgical systems, e.g. daVinci with ∼30 FPS.
To handle larger transformations, one may apply a coarse-to-fine scheme. The gradient of
the ith pixel’s error with respect to `th component of ξ (`th element of Ji ) is calculated as:

Ji(`) = ∂ei
∂ξ`

= (−ρf − ρb)
∂H

∂φ

∂φ

∂x

∂x

∂ξ`
= (−ρf − ρb)δ(φ)∇xφ

∂x

∂ξ`
, (6.7)

where δ(.) is the Dirac delta function. Given the camera parameters fc and cc, every
2D point x = (x, y) in I is related to at least one corresponding 3D point Xsrg =
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(Xsrg, Y srg, Zsrg) by:

x = fc
Zsrg

Xsrg + cc , (6.8)

y = fc
Zsrg

Y srg + cc . (6.9)

Hence,

∂x

∂ξ`
= fc

Zsrg2 (Zsrg ∂X
srg

∂ξ`
−Xsrg ∂Z

srg

∂ξ`
) . (6.10)

We similarly calculate ∂y
∂ξ`

. 3D pointXsrg is related toXpre by the transformation function
T such that:

Xsrg = T (Xpre; ξ) = R(ξq)Xpre + t(ξq) , (6.11)

where R and t are rotation (linear) and translation matrices and can represent any rigid
(linear) transformation upon the choice of pose parameters in T , ξq = {q1, · · · , qn}. There-
fore, ∂Xsrg

∂qi
, ∂Y srg∂qi

and ∂Zsrg

∂qi
in (6.10) are easily calculated upon the choice of transformation

function.
To handle non-rigid deformation, we generate a catalog of realistic 3D deformed shapes

for the organs of interest (Figure 6.1(b)) using DeformIt [Hamarneh et al., 2008]. Having
this catalog, we obtain the modes of variation through principal component analysis such
that a novel 3D shape of an organ/tissue can be estimated as:

Xpre = Xpre +Uw , (6.12)

whereXpre is the coordinates of the average shape of the organ of interest, U = {u1, · · · , uK}
are the K principal modes of variation and w = ξq = {w1, · · · , wK} are their weights. We
chose the number of principal modes explaining 97% of the variance in the training set.
The derivative of a 3D point Xsrg in the surgical domain with respect to w` is calculated
as:

∂Xsrg

∂w`
= R

∂Xpre

∂w`
= R · u` , (6.13)

where u` is the `th mode of variation in U .
We now describe the extension to segmenting multi-object in multi-view images.

Having N tissues of interest in the preoperative data and M views in the intraoperative
domain, we extend our framework to segment multiple objects in multi-view images by
computing a level set function for each object. Also, all the pixels from all views contribute
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toward calculating the residual. The residual of pixel xi belonging to the nth tissue is
calculated as:

ei =
M∑
m=1

(
− ρnf,m H(φnm(xi)) + ρnb,m (1−H(φnm(xi)))

)
, (6.14)

where ρnf,m and ρnb,m are the regional terms and φnm is the level set of the nth object in themth

image. Note that in the multi-view scenario, the extrinsic camera parameters (Rext
m , textm )

have to be considered in calculating the Jacobian, i.e. R in the above equations is replaced
by Rext

m R.
To make our method more robust, we leverage a variety of image features (normalized

RGB and YCbCr and local color histogram) to calculate the regional terms, ρnf,m and ρnb,m
in (6.14), for different tissues in all 2D views. We estimate the probability of a given pixel x
belonging to the nth object (On), P (x ∈ On|Im), and its background (Bn), P (x ∈ Bn|Im),
in the mth image, Im, by training a random forest consisting of Nb binary decision trees
(here Nb = 20). To train a RF, we select few 20× 20 patches on different tissues in 2% of
all frames from the same patient, i.e. ∼10 frames out of ∼600 frames. In practice, surgeons
may select these patches with the help of surgical tools. The regional terms are calculated
as:

ρnf,m(x) = − logP (x ∈ On|Im) (6.15)

ρnb,m(x) = − logP (x ∈ Bn|Im) . (6.16)

6.2 Materials

We evaluated our framework on 10 ex vivo lamb kidney datasets as well as three in vivo
clinical partial nephrectomy data. We constructed the set of ex vivo phantoms using lamb
kidneys and implanted artificial tumours outside and inside each kidney to emulate a par-
tially exophytic and completely endophytic tumour, respectively. CT volumes and stereo
video sequences of our phantoms were captured by a Somatom CT scanner (Siemens, Ger-
many) and a daVinci S system (Intuitive Surgical, USA), respectively. We segmented the
kidney and tumours in each CT using the TurtleSeg software [Top and et al., 2011]. We
simulated deformations of each kidney and tumour in respectively ∼40 and ∼15 different
ways using DeformIt [Hamarneh et al., 2008] (Figure 6.1(b)). To obtain ground truth seg-
mentation for stereo videos, we used the “Rotobrush” tool of After Effect (Adobe Systems
Inc., USA) as a semi-automatic segmentation tool allowing for visual inspection and correc-
tion. For initialization, we manually aligned the preoperative model with the intraoperative
image by choosing ∼6-8 landmarks in the CT and the first frame of the stereo video.
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Figure 6.1: (a) Residual distribution. (b) Few samples from our kidney and tumour catalog.
Segmentation result in the presence of artificial tools (black cross) largely occluding the
kidney and tumour phantoms using (c) ACWOE, (d) our method without any motion prior
and (e) our method with motion prior. Green: kidney; Red: exophytic tumour; Blue:
endophytic tumour; Yellow: ground truth.

0 200 400
0.92

0.94

0.96

0.98

Frame

D
S
C

Non-rigid

Rigid

(a)

0 200 400 600
0

0.2

0.4

0.6

0.8

1

Frame

D
S

C

 

 

AE 

ACWOE

No MP

MP

(b)

0.9

0.92

0.94

0.96

Rigid Non-rigid

D
S
C

(c)

0.2

0.4

0.6

0.8

ACWOE AE Without MP With MP

D
S

C

(d)

Figure 6.2: DSC vs. frame of a phantom for (a) rigid vs. non-rigid transformation and,
for (b) ACWOE, AE [Bai and et al., 2009] and our method with and without motion prior
(MP vs. No MP). Box plot representation of DSC for the whole dataset is presented in
(c) for rigid vs. non-rigid transformation and in (d) for ACWOE, AE and our method
with/without motion prior over the occlusion periods.

6.3 Experiments

Our first experiment on ex vivo data focused on evaluating our method w.r.t. using
a rigid vs. deformable transformation model. Figure 6.2(a) shows an example DSC vs.
time for one of our phantoms. It is seen in Figure 6.2(a) that, as expected, incorporat-
ing the non-rigid deformation of tissues improves the final results. Note that the method
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in [Puerto-Souza and Mariottini, 2013] does not handle non-rigid deformation and [Mount-
ney and Yang, 2010] can only estimate the non-rigid deformation for organs with periodic
motion, whereas our method does not pose any such constraints. Results for all the ex vivo
phantom datasets are shown in Figure 6.2(c).

In our second experiment, we artificially occluded large portions of the kidney and tu-
mour in the videos (Figure 6.1(c-e)) and contrasted the performance of our method with and
without the motion prior. We also compared with the state-of-the-art video segmentation
method proposed by [Bai and et al., 2009], implemented in the After Effect software (AE),
and with the level-sets based ACWOE [Vese and Chan, 2002] as considered in [Figueiredo
et al., 2010,Figueiredo et al., 2012] for endoscopic video segmentations. In this experiment,
we used the constant velocity model as our motion prior. Note that there is no explicit
limitation on our motion prior term and more complicated motion priors can be seamlessly
deployed into our framework, e.g. using the surgical robot’s API signals. To compare our
method with AE, we provided AE with an accurate segmentation for the first frame and,
since this software is only able to segment a single object in a single view image, we used
it multiple times to segment the kidney and tumours in the left and right view channels.
Figure 6.2(b) illustrates the DSC vs. time when using ACWOE, AE and our method with
and without motion prior for a phantom case. The dips in Figure 6.2(b) are caused by
the occluding objects. The figure demonstrates how incorporating a motion prior stabilizes
the segmentation and pose tracking and helps overcome large tissue occlusions that may
occur in minimally invasive surgery. Obviously, AE and ACWOE are not able to show the
internal tissues, e.g. the endophytic tumours shown in blue in Figure 6.1(e), as they do not
use any preoperative information. They also are both fragile when a large occlusion occurs.
Figure 6.2(d) compares the results of ACWOE, AE and our method with/without motion
prior for all the ex vivo phantom datasets during the occlusion periods.

In our third experiment we tested our method on three different clinical cases of
partial nephrectomy. For each patient, we prepared a ∼20-second stereo endoscopic video
from the surgical system with a frame rate of 30 FPS, i.e. ∼600 frames. Segmenting CT
and preparing the ground truth was performed similar to the ex vivo phantom data. Each
stereo video took ∼3.5 hours to segment semi-automatically using AE to create the ground
truth. Quantitative and qualitative results on the real in vivo cases are illustrated in Figure
6.3. Despite existing clutter and tool crossings, our method was able to achieve a DSC close
to 0.85 on these challenging real in vivo cases with an average runtime of 0.045 seconds per
frame using non-optimized MATLAB code on a single core 3.40 GHz CPU.

6.4 Chapter summary

Leveraging both preoperative data as well as endoscopic visual cues, we proposed a novel
formulation with closed form solution for segmenting multiple tissues in multi-view en-
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Figure 6.3: Clinical partial nephrectomy results. (a) DSC for three clinical cases. (b)
Qualitative results of (1st column) ACWOE (blue arrows indicate errors), (2nd column) our
method without motion prior and, (3rd column) our method with motion prior. Green:
kidney; Red: tumour; Yellow: ground truth.

doscopic videos. Our formulation further incorporated a motion prior in our optimization
framework to stabilize the segmentation and pose tracking. One shortcoming of our method
is the use of statistical deformable model which might not represent patient-specific tissue
deformations. In addition, sudden camera motion will cause our tracking to fail. However,
in cases where access to the surgical robots’ API is available, one can easily feed in the
camera motion signals into our formulation, as a camera motion constraint, which would
enable handling the complex camera motion.
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Chapter 7

Conclusion and Future Work

7.1 Thesis summary

Existence of noise, low contrast and objects’ complexity in medical images are main reasons
to preclude ideal segmentation. Incorporating prior expert knowledge into segmentation
frameworks has proven useful for obtaining more accurate and plausible results. In this
thesis, we proposed several techniques to bridge the gap between experts’ and clinicians’
knowledge and computer vision approaches by incorporating different prior information into
segmentation frameworks. Incorporating such information (e.g. geometry and topology of
objects) helps clinicians to segment targeted object solely and more accurately especially
when training data is unavailable. In our proposed techniques, we moved toward improving
both fidelity and optimizability in MIS and proposed new formulations to enforce useful
topological and geometrical constraints by which a user can easily apply high level intu-
itive geometric constraints to improve segmentation results without the need for a deep
understanding of how the method works.

In Chapter 3, unlike existing methods that have only considered simple structured
(single-region) cells in overlapping cell segmentation problems, we adopted several prior
information to build a faithful objective function unconcerned about its convexity to seg-
ment potentially overlapping multi-region cells with complex topology. In Chapter 4, we
moved toward improving the space and time complexity and augmented the level sets frame-
work with the ability to handle geometrical and different spatial distance constraints. In
Chapter 5, we focused on the optimizability aspect of the segmentation task and improved
our work on Chapter 4 by proposing a continuous convex formulation to augment the pop-
ular Mumford-Shah model. More specifically, we developed a new regularization term to
incorporate similar geometrical and distance prior as our proposed method in Chapter 4
while maintaining global optimality. Our continuous methods, proposed in Chapters 4 and
5, compared favourably with analogous graph cuts-based methods in terms of metrication
error and memory and time efficiency. In Chapter 6, we proposed a novel and efficient
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formulation with closed-form solution for segmenting multiple structures in multi-view en-
doscopic videos. We showed how to leverage both preoperative data as well as endoscopic
visual cues to obtain more accurate and robust segmentations in the highly noisy, cluttered,
and occasionally occluded environment of endoscopic video. We also encoded a motion prior
in our optimization framework to stabilize the segmentation and pose tracking process. In
cases where access to the surgical robots’ API is available, we can easily feed in the camera
motion signals into our formulation, as a camera motion constraint, which may increase the
accuracy even further.

7.2 Discussion and future work

In this section, we summarize the take-home lessons from our experiments that can be help-
ful in guiding the methods and future research in the area of medical image segmentation.

Segmentation techniques are aimed at partitioning (crisply or fuzzily) an image into
meaningful parts (two or more). Traditional segmentation approaches (e.g. threshold-
ing, watershed, or region growing) proved incapable of robust and accurate segmentation
due to noise, low contrast and complexity of objects in medical images. By incorporat-
ing prior knowledge of objects into rigorous optimization-based segmentation formulations,
researchers developed more powerful techniques capable of segmenting specific (targeted)
objects.

It is important to appreciate that, although incorporating richer prior into an objective
function may increase the fidelity of the energy functional (by better modelling the under-
lying problem), this typically comes at the expense of complicating its optimization (lower
optimizibility). On the other hand, focusing on optimizibility by simplifying the energies
might decrease the fidelity of the energy functions. In other words, be wary of segmen-
tation algorithms that always converge to the globally optimal but inaccurate solution, or
ones that rely heavily on intricate initialization or meticulously tweaked parameters. Con-
sequently, recent research surveyed has focused on developing methods that increase the
optimizibility of energy functions (e.g. by proposing convex or submodular energy terms)
without sacrificing the fidelity.

In addition to the optimizability-fidelty tradeoff that is impacted by the choice of priors,
it is important to observe the runtime and memory efficiency of proposed medical image
segmentation algorithms. For example, graph-based approaches may not be very efficient
in handling very large images and they often produce artifacts like grid-bias errors (also
known as metrication error) due to their discrete nature.

Despite the great advances that have been made in terms of increasing the fidelity and
optimizibility of various segmentation energy models, there is still more to be done. We
believe that through ongoing research, new methods will be proposed that allow for models
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that are faithful to the underlying problems, while being globally optimizable, memory- and
time-efficient regardless of image size, and are free from any artifacts like metrication error.

In extending prior information in medical image segmentation, there are several direc-
tions to explore. One direction may focus on consolidating all of these previously mentioned
priors such that a user (or an automatic system) can add one or more of these priors as a
module to the segmentation task at hand. Such system is expected to minimize user in-
puts like manual initialization. Although many efforts have been made to convexify energy
terms, many priors (especially when combined together) are non-convex (non-submodular)
and hard to optimize. As convex relaxation and convex optimization techniques are becom-
ing popular recently, research emphasis that focuses on convexification of energy functions
with as many priors as needed would be an important step toward automatic image seg-
mentation.

In optimization-based segmentation that encodes a set of desired priors, it is important
to consider how to combine their respective energy (or objective) terms. The most common
approach for dealing with such a multi-objective optimization is to scalarize the energies
(via a linear sum of terms). Aside from choosing which priors are relevant and which
mathematical formulae encode them, how to learn and set the contribution weight of each
term needs to be explored carefully especially when there is not enough training data.
When large sets of training data are available, machine learning techniques have been used
to discover a good set of weights that adapt to image class, weights that change per image,
and spatially adaptive weights.

The priors we reviewed and introduced in this thesis have been specifically and carefully
designed to address particular segmentation problem. Another potential complementary
approach that is worthy of future exploration is to attempt to learn the priors (not only
their weight in the objective function) from available training data.

Future research directions could also focus on combining the hand-crafted features with
machine learning techniques in case of availability of training data. For example it makes
sense to use expert knowledge when the training data is not available and increase the
contribution of machine learning techniques as more data becomes available and/or expert
knowledge is harder to collect.

Finally, we mentioned that segmenting a medical image allows for easier (and auto-
matic) analyzing the data (e.g. measuring the volume of different structures). Whether we
absolutely need to segment an image in order to analyze it, remains an open question. One
may consider developing machine learning-based techniques that, for example, predict an
object’s volume directly from image features.
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