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Abstract

The focus of this paper is the practical evaluation of the challenges and capabilities of combination of ontologies and rules in 
the context of realtime ubiquitous application. The ec(h)o project designed a platform to create a museum experience that consists 
of a physical installation and an interactive virtual layer of three-dimensional soundscapes that are physically mapped to the 
museum displays. The retrieval mechanism is built on the user model and conceptual descriptions of sound objects and museum 
artifacts. The rule-based user model was specifically designed to work in environments where the rich semantic descriptions are 
available. The retrieval criteria are represented as inference rules that combine knowledge from psychoacoustics and cognitive 
domains with compositional aspects of interaction. Evaluation results both from the laboratory and museum deployment testing 
are presented together with the end user usability evaluations. We also summarize our findings in the lessons learned that provide 
a transferable generic knowledge for similar type of applications. The ec(h)o proved that ontologies and rules provide an excellent 
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. Introduction

Audio museum guides have existed for some time
s a means of overcoming the scheduling inflexibility
f group tours by museum docents. While beneficial in
any respects, the audio guides are limited by their lin-
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ear sequence and non-interactive structure. Bed
[3] developed a prototype utilizing portable mini-d
players and an infra-red system to allow museum
tors to explore at their own pace and sequence. As
seum visitors approached artifacts on display, rele
audio information would be triggered on the mini-d
player and heard through headphones. Hypera
[16] provided visitors with palmtop computers a
developed specific user models for adaptive sys
within a museum setting. MEG[2] is a portable digita
museum guide for the Experience Music Projec
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Seattle that allows visitors 20 hours of audio and video
on demand. Visitors make their selections either by use
of the keyboard within the PDA device or by pointing
the device at transmitters located adjacent to artifacts.

In the previous works, the relationship of the digital
content to the artifacts is either pre-planned and fixed,
or the digital content is not networked and limited to the
local device; in some cases both limits are true. ec(h)o
employs a semantic web approach to the museum’s
digital content, thus it is networked, dynamic, and user-
driven. The interface of ec(h)o does not rely on portable
computing devices; rather it utilizes a combination of
gesture and object manipulation recognized by a vision
system.

The dynamic and user-driven nature of ec(h)o re-
quires a highly responsive retrieval mechanism with a
criteria defined by psychoacoustics, content, and com-
position domains. The retrieval mechanism is based on
a user model that is continually updated as a visitor
moves through the exhibition and listens to sound ob-
jects. The criteria are represented by rules operating on
the ontological descriptions of sound objects, museum
artifacts, and user interests.

One of the main goals of ec(h)o is to achieve an en-
hanced experience for the museum visitors without in-
serting an extra layer of technology between the visitor
and the museum exhibit. Two mechanisms contribute
to an accurate retrieval of sound objects in ec(h)o: the
user model and ontology descriptions of objects.

With the development of the semantic web[4] the
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successful deployment and adoption of these technolo-
gies. This paper aims at addressing some of these issues
through the development of a ubiquitous system with
some extreme requirements testing the capabilities of
the emerging technological platform.

The paper is organized as follows. First we present
the ec(h)o architecture and then we describe ontolo-
gies used in the ec(h)o. Section4 describes the user
model and Section5 outlines the retrieval mechanisms
for sound objects. Before we show the results of the
evaluation in Section7 we describe the implementa-
tion challenges and lessons learned in Section6.

2. ec(h)o Architecture

The platform for ec(h)o is an integrated audio,
vision, and location tracking system installed as an
augmentation of an existing museum exhibition instal-
lation. The platform is designed to create a museum
experience that consists of a physical installation, an
interactive layer of three-dimensional soundscapes
that are physically mapped to museum displays, and
the overall exhibition installation.

Each soundscape consists of zones of ambient
sound and “soundmarks” generated by dynamic audio
data that relates to the artifacts the visitor is experienc-
ing. The soundscapes change based on the position of
the visitor in the space, their past history with viewing
the artifacts, and their individual interests in relation
t of
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se of ontologies as a formalism to describe knowle
nd information in a way that can be shared on the

s becoming common. Adoption of the standard for
ntology web language (OWL)[21] is propelling this

rend toward large scale application in different
ains. However, the utility of the ontologies is limit
y the processing mechanisms that are smoothly
rated with this form of representation. Therefore th

s an effort on the way to formalize the logic layer
ntologies. The semantic web rule language (SW

21] is proposed as an important step in this direct
uilding on the experience of the previous work
uleML [5]. Eventually the availability of standar

zed rule language for the semantic web will mak
ossible to use both ontologies and rules as a

or innovative applications that are connected to
emantic web. The understanding of capabilities
mplications of this combination will be essential
o the museum collection. To achieve this type
udio experience the overall system must be integ
ith a position tracking system that has a frequ
pdate cycle and a high level of spatial resolut

pattern of the user’s movement can indicate
ype of museum visitor[19] as well as user intention
17].

When the user stops in front of an artifact, sh
resented with three sound objects spatially positio

o the left, center, and right. By way of a gesture-ba
nteraction, the visitor can interact with a sin
rtifact or multiple artifacts in order to listen to rela
udio information. The audio delivery is dynam
nd generated by agent-assisted searches inferr
ast interactions, histories, and individual intere
he source for the audio-data is digital objects

he case of ec(h)o, we developed a large sampl
f digital objects that originated from the partn
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Fig. 1. ec(h)o High level architecture.

museums. These digital objects were used to populate
the network of object repositories.

The ec(h)o architecture (Fig. 1) consists of four
independently functioning modules: position tracking
module, vision module, sound delivery module, and
reasoning module. Two main types of events trigger
the communication between the modules: the user’s
movement through the exhibition space and the user’s
explicit selection of the sound objects.

3. Semantic description of objects

We have identified two types of information as es-
sential for ec(h)o:

• the content description of the user interests (user
model), sound objects, and museum artifacts, and

• psychoacoustics and sound characteristics of the
sound objects.

3.1. Ontologies for describing content

The ec(h)o interaction model is based on the se-
mantic description of the content of the sound objects.
We have developed a sound object ontology describing
objects with several properties. As the ability to link
to other museum collections is an important feature of
ec(h)o, our ontology builds significantly on the stan-
dard conceptual reference model (CRM) for heritage
c s

definitions and a formal structure for describing the
implicit and explicit concepts and relationships used
in cultural heritage documentation. To describe sound
objects we use CRM TemporalEntity concept for mod-
eling periods and events and Place for modeling lo-
cations. We describe museum artifacts using the full
CRM model.

The content of the sound object is not described di-
rectly but annotated with three entities: concepts, top-
ics, and themes. The concepts describe the domains
that are expressed by the sound object such as evolu-
tion, behaviour, lifestyle, diversity, habitat, etc. Since
the collections in individual museums are different, so
are the concept maps describing these collections. A
topic is a more abstract entity that is represented by
several concepts, such as botany, invertebrates, marine
biology, etc. To facilitate the mappings between topic
ontologies in individual museums we have mapped the
topics to the Dewey decimal classification[8] whenever

Table 1
Content related properties of sound objects

Property Domain Range

hasTheme SoundObject Theme
hasTopic SoundObject Topic
hasPrimaryConcept SoundObject Conceptof interest
hasSecondaryConcept SoundObject Conceptof interest
relatesToTemporalEntity SoundObject CRMTemporalEntity
relatesToPlace SoundObject CRMPlace

MuseumArtifact
describesArtifact SoundObject MuseumArtifact
ontent developed by CIDOC[7]. The CRM provide
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Fig. 2. ec(h)o Content ontologies.

possible. Finally, themes are defined as entities sup-
ported by one or more topics, for example, the theme
of “bigness” in invertebrates and marine biology.

Table 1shows content related properties with their
domains and ranges.

In Fig. 2 the sound object ‘IN00327’ is annotated
with concepts ‘Anatomy’ and ‘Genus Info’, has a topic

‘From Head to Toe’, and supports the theme ‘What Can
You Tell Me About That’. The sound object ‘IN00327’
describes the artifact ‘C3-18’ that is modeled as an in-
stance of ‘Biological object’ type in the CRM model
described by the ‘Common dolphin skull’ object. The
exhibit ‘E3’ from the exhibit ontology holds the in-

formation about the artifacts in the particular exhibit.
In addition, ‘E3’ is annotated with concepts ‘Collect-
ing’, ‘Anatomy’, ‘Scientific Techniques’, ‘Diversity’,
and ‘Appearances’.

The ontologies for ec(h)o were modeled in
DAML + OIL. The DAML + OIL representation1 of the
IN000327 audio object is shown below

In ec(h)o the ontological concepts are transformed
into the Jess facts that represent RDF triples (see imple-

1 For readability we use XML entities to refer to namespaces
in this paper. For example, &psch; refers to the namespace
http://echo.iat.sfu.ca/owl/psychoacoustic.daml, other references are
self-explanatory.

http://echo.iat.sfu.ca/owl/psychoacoustic.daml
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mentation section for details). The above DAML + OIL
description of the audio object IN000327 is represented
with the following facts (with PropertyValue being a
fact name used for all RDF triples):

For details on creation of content and related ontolo-
gies see[23].

3.2. Psychoacoustics and sound characteristics
ontologies

The auditory interface of ec(h)o follows an ecolog-
ical approach to the sound composition. It provides
the basic mechanisms of navigation and orientation
within the information space. Three areas are taken
into account: psychoacoustic, cognitive, and compo-
sitional problems in the construction of a meaning-
ful and engaging interactive audible display. Psychoa-
coustic characteristics of the ecological balance include
s
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Table 2shows the psychoacoustics ontology that
defines the characteristic of the sound objects that are
used by the composition rules.

4. The user model

In the core of the ec(h)o’s reasoning module is
a user model[22] that is continually updated as the
user moves through the exhibition and selects sound
objects.

Fig. 3 shows an interaction schema of the user
model with other modules. There are two main up-
date sources in the system. First, as the user moves
through the exhibition, the speed of the movement
due to stopping or slowing down at different artifacts
provide updates to the user model. The user’s behav-
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pectral balancing of audible layers. Cognitive aspects
f listening are represented by content-based criteria.
ompositional aspects are addressed in the form of the
rchestration of an ambient informational soundscape
f immersion and flow that allows for the interactive

nvolvement of the visitor.

able 2
sychoacoustic properties for the Sound Object

roperty Domain Range

asSpectralDensityCenter SoundObject <Number>
asSpectralDensityWidth SoundObject <Number>
asBandwidth SoundObject <Number>
elatesToEnvironment SoundObject PhysicalEnvironment
elatesToEvent SoundObject CRMEvent
asSource SoundObject SourceTypeValue

(e.g. AnimalSound,
HumanEnvironmnet-
Sound)

ior type is compu
geneity of the use
down in front of a
in topics represe
ests and intention
marks. For examp
increased for thos
rent user interests
tion of the numbe
if the user’s recog
room.

The second so
considers the use
a sound object.
creased user inte
object and update
scribe the user mo
below.
ted based on the speed and h
r’s movement. Stopping and slow
n artifact are interpreted as inte
nted by the artifact. The user in
s influence the presentation of so
le, soundmark radius and volum
e artifacts that correspond with
. Another example can be the re
r of soundmarks in the exhibiti
nized intent is to quickly cross

urce of updates to the user m
r’s direct interaction when selec
In the model, this maps to an
rest in topics presented by the s
s the user’s interaction history. W
del and retrieval mechanism in d
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Fig. 3. Interaction of user model with other modules.

4.1. User model components

Interaction historyis a record of how the user inter-
acts with the ec(h)o-augmented museum environment.
Two types of events are stored in the interaction his-
tory: the user’s movement and the user’s selection of
objects. The user’s path through the museum is stored
as discrete time-space points of locations on the path. A
second type of information stored in Interaction His-
tory is the user’s selections in the form of URLs of
sound objects.
User behaviorin the museum context is well studied

in museum studies[9] and is used in several systems
personalizing the user experience[18,19]. In the case
of ec(h)o, several categorizations were used; for exam-
ple, one user may go through almost every artifact that
is on his/her way, and another user may be more se-
lective and choose artifacts that have certain concepts.
Our categorization of user types is based on Spara-
cino’s work [19] and it classifies users in three main
categories: (1) the avaricious type who approaches ar-
tifacts in a deliberate and sequenced manner, (2) the se-
lective type who explores certain concepts thoroughly,
and (3) the busy type who wants a general idea of the
exhibitions by browsing quickly through the museum.

In ec(h)o, the user behavior is not static. It continually
updates by considering the location data accumulated
in the previous 5 min; in addition to considering topics
of previously selected sound objects.
User interestsare represented as a set of weighted

concepts from the ontology. In ec(h)o each arti-
fact/exhibition is annotated with a set of concepts.
The sound objects address a set of particular concepts
as well. The system updates the user interests in re-
sponse to two update channels described above. The
interaction of the user and artifacts and sound objects
is stored in the Interaction History that together with
the user behavior type are used to infer the visitor’s
interests.

The following ruleconcept-evol-choose--
-1 shows an example of how concepts of interest are
updated in the user model. The?*user-model-
concepts* object accumulates contributions from
all activated rules first and indicates that the user model
has to be updated. After all contributions are made,
the rule update-user-model---1 (with lower
salience value) fires and recalculates the user interests
values. It then inserts facts representing values of user
interests into the knowledge base. These facts are used
in the ranking of sound objects (described in Section5).
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The?*user-model-concepts* is a Java ob-
ject that is more suitable for recalculation of user inter-
ests than inference engine constructs (see Section6.5
for discussion). In our inference engine (Jess), it can be
simply bound to a global variable with the following
statement:

4.2. Generalization of user model for semantic
web applications

When designing a user model for ec(h)o we consid-
ered other application domains where the user model
is needed. Another active research area of our lab is
eLearning, specifically intelligent support to learners
a
r
i
r
s
q

have designed our user model in a modular fashion that
benefits from two easily scalable technologies: ontolo-
gies and rule-based systems.Fig. 4shows the general-
ized flow of processing that keeps track of user interests
with generic parts in bold.

The user observations and actions are related to the
application-specific objects and the environment that
can be modeled using ontologies. In ec(h)o, we use the
CIDOC CRM ontology for modeling museum artifacts
and the ontologies we developed for sound objects
and exhibition (space). In other domains the objects
and environment can be modeled in similar ways; for
example, in the eLearning domain we model learning

sign
tions
ms.
in

epts
ment
nd automatic just-in-time assembly of learning mate-
ial. A core part of the user model is maintaining user
nterests that also reappear in other contexts either di-
ectly as user interests or as user knowledge, abilities,
kills, etc. Recognizing many similarities between re-
uirements from ec(h)o and eLearning domains, we

objects, courses, curr
(pedagogical processe
correspond to user’s int

In the Concept Map
Fig. 4, we use inferenc
relevant to user interes

Fig. 4. Part of user model responsible for interest adjustment (generic comp
iculum, and learning de
s). We found that user ac
eraction with learning syste
ping and Extraction block
e rules to extract the conc
ts and level of user engage

onents are in bold).
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with these concepts. For example, when a user selects
a sound object annotated with primary and secondary
concepts of interest, the system extracts these two con-
cepts and assigns them two different levels of engage-
ment (‘activated concepts of interest’ link inFig. 4).

As the name suggests, the Interest Adjustment block
is responsible for adjusting the user interest as a reac-
tion to user actions. In our design, this is a generic
component that has two parameters: maximum level
of individual interest, and a maximum for a sum of
all interests. Based on a set of activated concepts and
previous values for interest, the algorithm re-computes
the values accordingly. Both components are imple-
mented as rule sets and therefore the model can be
easily adapted to other applications.

5. Inference-based sound object retrieval

We have identified the following requirements for
the retrieval of appropriate sound objects:

1. Content-relevant to the viewed artifact;
2. Content-relevant to the user interests;

3
4 per-

he
f cts
o

5. Provide for exploration of a subject in depth;
6. Provide for the fluidity in experience both in content

and sound experience;
7. Provide a mix of informational and entertaining ob-

jects.

The retrieval process in ec(h)o can be broken into
several steps. The input into the process is user inter-
ests, interaction history and semantic descriptions of
sound objects. In the process the criteria listed above
contribute to overall ranking for each sound object.

The following rulec1---1 contributes to the rat-
ing of object?in2. The object ?in2 is a candidate
object to replace previously listened to object?in1
(represented by thereplace fact). The object?in2
is a candidate because it matches the concept of user
interest?c (factuser-concept) within the context
of the current exhibition?e (factis-about). The ob-
ject rating is a combination of level of user interest in
the concept and level by which the concept is repre-
sented by the sound object. The rating is added to the
?*object-ratings* java object (see discussion in
Section6.5).

m
t hese
f ec-
o
c

b-
j :
. Content invites to exploration of other areas;

. Content is plausible from the psychoacoustics
spective.

In addition to the criteria for an individual object t
ollowing criteria apply to the sequence of the obje
ffered to the user:
The object-concept facts were created fro
he semantic representation using rules below. T
acts also include different levels for primary and s
ndary concepts (rulesconcept-level-c1 and
oncept-level-c2):

The?*object-ratings* is bound to a Java o
ect that simplifies the calculation of object ratings
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The composition criteria considers the next object in
the context of the objects the user listened to previously.
The selection is based on theme, topic, concepts, and
described artifacts. An example of such rules is a rule
that increases the rating of the sound objects that conti-

nue to provide more information about an artifact desc-
ribed by the previous selected sound object. The rule
artifactzartifact---1 below adds ratings to

the sound object that describes the same artifact as the
o
d
p
t

i
a

a

was offered for a particular artifact. This allows sys-
tem to keep focus on the artifact. As guide objects are
related to specific artifacts the rule makes sure that log-
ical ordering between two consecutive sound objects is
not violated.

When all the rules contributing to the ratings of
sound objects are applied the object with highest rating
is selected to replace the object user listened to (rule
calculate-best-object---1).

The salience value in the rulecalculate-best-
object---1 guarantees that the rule is applied after

cts

bjects
by ex-
jects
lica-
lation
bject being replaced. The rule checks whether can-
idate object?in2 describes the same artifact?a as
revious object?in1 while?in2 cannot be an exhibi-

ion object but an actual artifact within the exhibition.

Another rule supporting ec(h)o’s interaction model
s the ruleguide1---1 that favors objects annotated
s a guide sound object2 after a previous guide object

2 Guide objects provide information that is specific to a particular
rtifact. The guide sound objects are still designed to be independent,

all rules contributing to th
replacing this particular so

however in certain cases it is not d
once the user listened to other gu
plicitly specifying such undesirabl
are expert objects that provide m
ble across several exhibitions, e.g
between evolution and diversity.
e ratings of sound obje
und object?in1.

esirable to offer some guide o
ide objects. This is prevented
e ordering. Second type of ob
ore generic information app
. sound objects describing re
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For more details of information retrieval aspects
inec(h)o see[11].

6. Implementation

The ec(h)o system was fully implemented, de-
ployed, and tested in the setting of the real exhibition
space in Nature Museum in Ottawa in March 2004.
The system used radio frequency based position track-
ing system with an update rate of up to 1.6 seconds.
The vision and audio delivery systems were developed
in our lab in the MAX/MSP environment.

The reasoning module is fully implemented with
all features described in the previous section. During
the development we embedded the reasoning engine
in the Tomcat environment in order to facilitate on-
line editing of knowledge models as shown inFig. 5.
However, for the final deployment we removed the
reasoning engine from the Tomcat environment for
the performance reasons. All communication with the
reasoning engine was accomplished through a UDP
connection.

6.1. Reasoning engine implementation

The real-time nature of the ec(h)o environment was
the driving force for the selection of the implementation
platform that would support the reasoning engine. As

shown inFig. 5, the Jess inference engine is in the center
of the reasoning module. We have used DAMLJessKB
to load DAML + OIL ontologies into Jess (for details
see[13]). DAMLJessKB uses Jena toolkit to convert
ontologies into RDF triples which are converted to Jess
facts (see examples in Section3). When converted, on-
tologies are loaded into the Jess; the rules representing
DAML + OIL semantics (provided by DAMLJessKB)
infer all the missing relations in the RDF graph. This
happens at the start time and prepares the system to
respond to the input in a real-time fashion. However,
this nice theoretical assumption was challenged by the
reality of our implementation, which we summarize in
the following sections.

6.2. Memory requirements of ontological
representations

Ec(h)o makes use of several ontologies that need to
be loaded into the Jess knowledge base.Table 3summa-
rizes the number of classes, properties, and instances
for each ontology used in ec(h)o.

During the loading process the ontologies are con-
verted into RDF triples and the full DAML + OIL se-
mantics is applied, generating complete RDF tree for
the knowledge models.Table 4shows the number of
triples for ontology models only and then for ontology
models and instances before and after applying seman-
tic rules.

schem
Fig. 5. Implementation
 a of the reasoning module.



15

Table 3
Ontologies used in ec(h)o

Ontology No. of
classes

No. of
properties

No. of
instances

Conceptsof interests 2 1 39
CRM 62 139 209
Exhibition 1 3 149
Psychoacoustics 52 26 2412a

Theme 1 0 7
Topic 1 0 16
Topic dewey 107 0 0

a There are 613 instances representing sound objects. The remain-
ing number represents prefaces – short sound objects introducing the
main object.

As we can see in the first row ofTable 4, the number
of facts increased by 75% after applying DAML + OIL
semantics. The same wasn’t true for the facts repre-
senting instances. We explain this by instances linking
to concepts and other instances through properties.
As we do not have a rich system of properties
in our ontologies the number of inferred facts is
smaller.

Table 4
Number of facts representing ontologies in Jess at the startup

No. of facts Before applying
semantics

After applying
semantics

Ontology models only 8321 14411
Ontologies including

instances
40910 65505

6.3. Rules

Although the numbers listed inTable 4are relatively
moderate, the real influence of the number of facts is
felt in combination with forward chaining rules in Jess.
Jess implements the RETE algorithm to build a network
to keep track of possible combinations of facts support-
ing rule activations. With a large number of facts with
similar patterns representing RDF triples, the number
of possible combinations can be potentially huge.

Another aspect of ec(h)o that was influential for the
rule set design is the sequential nature of the retrieval
process. The processing chain from the rule perspective
is shown inFig. 6. The processing is triggered by an
observation that is inserted into the knowledge base as

s in the
Fig. 6. Rule set
 processing chain.
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a fact. First, the system updates user and environment
models, then proceeds with the ranking of objects con-
sidering updated user and environment models; finally,
it applies the interaction criteria to select next recom-
mended objects. To achieve the sequencing we had to
prioritize between groups of rules using salience val-
ues which consequently had some undesirable effects.
We describe particular challenges and lessons learned
in the section below.

6.4. Performance

The final implementation of the reasoning engine
ran on a Pentium M 1.5 GHz with 768 MB of RAM.
The final demonstration served two concurrent users
(of maximum four possible). The reasoning engine re-
ceived input about the location of each user approxi-
mately every two seconds. This input caused a short
50% spike in processor activity when the user moved
within the same exhibit and a short 100% spike when
the user changed exhibits. After receiving input about
user selection of a sound object, the processor perfor-
mance briefly reached 100% and completed the selec-
tion of a new sound object below the 1 s limit (this
was well below the time the user actually listened to
sound objects, which was typically 5–20 s). The mem-
ory usage during load time reached above 512 MB and
then stabilized around 372 MB (these numbers measure
memory used by Java JVM).

The use of a forward chaining inference engine has
p nd-
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i ob-
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showed up when we scaled up to the full set of over
600 sound objects. Another aspect that challenged
us was simultaneous support for multiple users. We
discuss some of these challenges that have general
implications for similar systems.

6.5.1. Problem 1: rich semantics can cause
significant computational delays
6.5.1.1. Problem.The rules for selecting sound ob-
jects use several criteria for fluency of a dialogue. The
criteria depend on ontological annotation of themes,
topics, concepts, etc. With richly annotated objects the
system was not able to select new sound objects in real-
time.

6.5.1.2. Cause.Different criteria are represented by
individual rules and when fired they contribute a value
towards the final score for the objects. Some criteria
are satisfied for many sound objects. For example, the
criterion that keeps coherency of theme in the dialogue
is activated many times as all sound objects are catego-
rized only into seven themes, which are present in the
exhibition. The criterion itself has little decisive power
but consumes many resources.

6.5.1.3. Solution.After we analyzed results from the
preliminary user testing we eliminated some of the
rules/criteria. This had a minimal impact on the quality
of the end user experience and significantly reduced
the number of rule activations. In general, the semantic
a man-
n n but
r s.

6
e
6 the
r all
u the
s vid-
u

6 ce
v ules
w the
r sec-
o r the
fi nce
roved itself to be an efficient mechanism for respo
ng to the dynamic nature of the user input. The sys
oading time was relatively long as a lot of parsing
nitial inference is performed on the ontologies and
ect descriptions. After the startup phase the amou
nference is limited to updates from the user input
ulting in quick responses.

.5. Challenges and lessons learned

From the implementation perspective (we will t
bout qualitative evaluation in the next section)
easoning engine had the only criterion: a real t
esponse to other parts of the ec(h)o system. A
eveloped content incrementally we did most

he reasoning engine design and development
limited set of 150 sound objects recorded e

n the process. As a result some of the challen
nnotation that categorizes an object in a coarse
er should not be used in a generative computatio
ather used for filtering out of unsuitable candidate

.5.2. Problem 2: concurrency has to be treated
xplicitly
.5.2.1. Problem.In the case of concurrent users,
easoning modules waits until sound objects for
sers are computed and delivers all of them at
ame time. This caused significant latency for indi
al users.

.5.2.2. Cause.In ec(h)o we had to work with salien
alues (rules with higher salience value fire before r
ith a lower value). In the case of multiple users,

ules interfered with each other. For example, if a
nd user makes a choice before a computation fo
rst user is finished then rules with a higher salie
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for the second user start firing. This causes computa-
tion for the first user to be pending until all the rules for
the second user with higher salience values fire. With
an increasing number of visitors the latency increased.

6.5.2.3. Solution.We found the solution with help
from the Jess community. We categorized the users into
groups and assigned an identical set of critical rules
for each group. The set of rules is activated only for
users belonging to the group, so the users from dif-
ferent groups do not block each other. In general, the
same problem can occur when the reasoning engine is
exposed as a web service and a multiple access to the
service is allowed.

6.5.3. Problem 3: know-your-tool or carefully
consider implications of implementation platform
6.5.3.1. Problem.A rule that gets activated many
times with a ‘not’ clause positioned early on the list
of preconditions takes a long time to fire.

6.5.3.2. Cause.‘not’ Pattern can only match an ab-
sence of a fact. In our case, it is evaluated only when
the fact is asserted (then it fails) or when the pattern im-
mediately before the ‘not’ clause on the rule left hand
side is evaluated. Therefore patterns following the ‘not’
clause are evaluated at the runtime. Combining this
with a large number of candidate facts resulting from
the ontology representations causes significant delays.

6.5.3.3. Solution.Position a ‘not’ clause as the last
pattern on the left hand side of the rule.

6.5.4. Problem 4: do not use rules for extensive
numerical computations
6.5.4.1. Problem.Computing multi-criteria numeri-
cal preferences required assertion of extensive number
of facts and use of salience values resulting in growing
response times for subsequent iterations.

6.5.4.2. Cause.As several criteria are used to con-
tribute preference values to the overall score of each
sound objects, we need a mechanism ensuring that all
contributions are made before making sound object se-
lection decision. There are two possible approaches:
first, add all the contributions as facts and then fire
summation rule; or, keep adding contribution to one
fact, which means retracting and re-asserting it into the
knowledge base. The second approach is more time
consuming. Both approaches require use of salience
values to make sure all contributions were made.

6.5.4.3. Solution.Build a simple extension in Java (or
other language) that will perform the computation and
make it accessible through the inference engine exten-
sion mechanism (direct call to Java in the case of Jess).
This will speed up computation as generating large vol-
ume of facts and build up of the Rete network for rule
activations will be avoided. The salience will still be

of facts
Fig. 7. Number
 in iteration steps.
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Fig. 8. Response time in iteration steps.

needed to ensure that all contributions were made. The
rules in Section4.1 illustrate the solution.Figs. 7 and 8
show the effect of moving computation from the knowl-
edge base to the external Java module.

7. Evaluation and discussion

ec(h)o is a complex interdisciplinary research
project that has to be evaluated from different perspec-
tives. As the evaluation of ubiquitous computing sys-
tems is extremely complex[20] we have found Miller’s
and Funk’s[14] view of the problem of evaluation
of ubiquitous computing systems from the traditional
‘validation’ and ‘verification’ perspective very useful.
In validation we evaluate whether the system performs
the functions it was built for based on the requirements
specification. Verification tests the system against the
reality by checking whether the system provides the
envisioned benefits. Finally, the evaluation of techni-
cal aspects of the system implementation can provide
insights to the developers of a similar system.

Following Miller’s and Funk’s approach allowed us
to focus our evaluation on the areas where we resear-
ched novel approaches in the adaptive ubiquitous sys-
tems. We also avoided the evaluation of the aspects of
the system that are not well defined or understood and
the evaluation results would provide very little value.

Our validation efforts concentrated on the sys-
tem components for which we either had predicted

outcomes or have established the criteria for such out-
comes. Specifically, we have validated the flexibility
and responsiveness of the user model and effectiveness
of the object recommendation component. We have
verified our solution with the targeted end user group
through extensive questionnaires and videotaped
interviews.

In this section we provide an overview of the eval-
uation results as those are reported in detail elsewhere
[10]. A detail account is given for the evaluation aspects
related to rules and ontologies.

7.1. Suitability of ontologies and rules for user
modeling

In the context of our work, the user model performs
a function of a recommender system[15]. “Recom-
mender systems represent user preferences for the
purpose of suggesting items to purchase or examine”
[6]. Several types of recommendation techniques have
been developed: collaborative, content-based, demo-
graphic, utility based, and knowledge-based. Often
the researchers combine several techniques to achieve
maximum effect. The knowledge-based recommender
systems perform favorably with respect to the introduc-
tion of new users and new items (so called ‘ramp-up’
problem[12]) which is an important feature for ubiq-
uitous computing environments. The knowledge rec-
ommender systems require three types of knowledge
[6]: catalog knowledge or knowledge about objects to
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be recommended, functional knowledge of mapping
between user needs and objects, and user knowledge.

From this perspective we have used ontologies ex-
tensively to describe knowledge about objects, envi-
ronment, and the user. As multiple criteria were used
to determine the user interests, a rule-based approach
provided us with the flexibility that enabled us to evolve
the system through several iterations. Furthermore, to
be able to respond to the specifics of the application
we have parameterized the influence of inputs from the
user and ubiquitous environment such as maximum in-
terest value, object selection, and location change con-
tributions towards user’s interests, etc. The purpose of
the parameterization was to fine-tune our generic user
model framework. We performed an extensive testing
for the suitable combination of parameters in the lab
setting with early input from the test users.

The user model uses a spring model to keep interests
balanced. The level of interest is represented by the real

number and can range from 0 to 10 (the value was set
with respect to other values used for ranking objects).
The sum of all interests never exceeds the value of 30. In
the model we consider only positive influence from the
user interaction that directly increases the level of some
of the interests. When this increase causes an imbalance
(the sum is above 30), the implemented spring model
proportionally decreases values of other interests.

Fig. 9 show the sequence of steps and evolution of
interests in each step. In the first step three concepts are
selected by the user. The circle icon indicates concepts
introduced to the model by the visually represented
exhibit concepts (Steps 2, 11, and 15). In the rest of the
steps the user selected sound objects. The square icon
indicates primary concept and triangle icon secondary
concept in the selected sound object.

The rule-based model proved to be very flexible
and responsive to the parameters. The representation
of the knowledge in the form of ontologies made the

tion of
Fig. 9. Evolu
 user interests.
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design and implementation of the model very easy with
the clear way of accessing the knowledge. The use
of the DAMLJessKB module accompanied with the
DAML + OIL language semantics made the inference
in the knowledge base transparent, which enabled us
to concentrate on the model implementation instead on
navigating and inferring static knowledge.

7.2. End user verification

As Miller and Funk[14] point out the verification
evaluates the system from the perspective of provided
value. Typically, the qualitative methods are used and
end user testing is involved. The qualitative methods
are more suitable for novel approaches and new areas
of research to verify the potential of those.

In ec(h)o we have conducted in depth usability test-
ing of the system while deployed in the real museum
setting. An extensive testing was done with 6 subjects.
The subjects were briefly trained on how to use the sys-
tem (learning phase), and then had an opportunity to
ask questions. They used the system on their own for a
period of 10–20 min. After this session, they completed
a modified version of Ben Schneiderman’s acceptance
test. Finally, we conducted and videotaped interviews
with the subjects. In addition to those tests, we had
one museum expert evaluating the content side of the
system in depth.

The overall use of the system was rated relatively
high. For example, when asked to rank between 1 and
5 ent
q tem,
t cored
4 tion
a igh;
f ence
s stem
m elec-
t ked
t sys-
t

pe-
c the
a he
r ns.
S rred
m stem
f

It is difficult to draw conclusions from the number
of testers we had. The expert reviews were strongly
in favor of the approach and the system. The reviews
were helpful in catching potential inconsistencies and
challenges.

Hatala and Wakkary[10] provides more detailed
discussion on the ec(h)o evaluation results from the
user modeling perspective.

7.3. Efficiency of ontologies and rules for
ubiquitous real-time applications

As the implementation section already presented
concrete results and lessons learned from using ontolo-
gies and forward chaining rules in ec(h)o, in this section
we summarize the outcomes and highlight a potential
of used technologies for the realtime applications.

The ec(h)o implementation was based on technolo-
gies that were available, stable, and supported by tools
in 2003. W3C’s Ontology Web Language has since
superseded the DAML + OIL ontology language. This
would be our candidate language if we were developing
the systems now.

The representation of DAML + OIL (or OWL)
ontologies in the forward chaining system knowledge
base reflects their RDF representation in the form of
triples. This form of representation creates an enor-
mous number of syntactically similar facts resulting
in potential performance problems. However, these
problems can be overcome by using unordered facts
[ hat
t cs at
s all
e ns
w g in
s per’s
p and
a r to
d rties
b

ting
f ber
o en-
d re-
s of
u our
c out
o and
on a Likert scale (5 being best) over five differ
uestions relating to the overall reaction to the sys

he averaged response was 3.6. The evaluation s
.6 for ease of use and 2.8 for satisfaction. Naviga
nd engagement of the audio information rated h

or example, appropriateness of the audio experi
cored 4.0. This leads us to believe that the sy
eets or satisfies many of the current advances of

ronic guide systems. Participants were explicitly as
o compare the system to experiences with other
ems and the prototype ranked favorably.

Difficulties exist in relating sound objects to a s
ific artifact. In certain cases visitors didn’t mind
mbiguity while others clearly found it frustrating. T
esults also differ in the ‘attitude’ related questio
ome users had strong feelings about their prefe
odes of interaction; others approached the sy

rom the more playful perspective.
13]. A major benefit for the real-time systems is t
he inference applies ontology language semanti
tartup time, inferring the full graph representing
xisting relations. During the runtime only relatio
ith newly created instances are inferred resultin
peedy updates to the system. From the develo
erspective the uniformity of the representation
vailability of the full relation graph makes it easie
evelop rules referring to the ontologies and prope
etween objects.

There are many best practices available for wri
orward-chaining rule systems. With the large num
f syntactically uniform facts some of the recomm
ations need to be observed rigorously otherwise
ulting in a big performance hit. A good knowledge
nderpinnings of the inference system is needed (in
ase a Rete network and algorithm) particularly ab
rdering facts in the precondition part of the rules
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using the not clauses in the rules. Also, carefully con-
sidering the delegation of certain tasks such as numer-
ical computation to the external modules can improve
the performance significantly.

One specific aspect of the multi-user real-time appli-
cation that we were not able to resolve satisfactorily is
the possible collision of rules for individual users. The
problem occurs when the salience values are used to se-
quence processing steps. Our approach grouped users
and assigned them their own rule sets so the users from
different groups did not collide. A more robust solu-
tion would call for the dynamic creation of modules
for each user with the full management of these mod-
ules to avoid exhausting of the system resources.

Another related effort in the Semantic Web com-
munity in the area of rules is Rule Markup Language
(RuleML) aiming at interoperability between inference
environments. However, we have not considered the
RuleML since other requirements such as performance
had a priority over the interoperability. We also wanted
to benefit from the ability to experiment with and ex-
tend our selected inference engine.

8. Conclusions

In this paper we have presented the design and im-
plementation of an augmented audio reality system for
museum visitors named ec(h)o. Each visitor experience
is tailored to the visitor’s interests. The user interests
a ex-
h he
s ed on
t eria,
a es to
d stics,
a ound
o nfer-
e and
t lica-
t

eams
f ign,
a for-
m the
r ple-
m ys-
t orks

cited through the paper in several directions. First, it ex-
tends the work of the Alfaro et al. work[1] by building
a rich model of the concepts represented by the sound
objects. In ec(h)o, the content presented to the user is
not pre-processed for possible linkages as in the sys-
tems using Rhetorical Structure Theory[24]. Our ap-
proach replaces pre-processed linkages with a retrieval
mechanism based on composition and interaction cri-
teria formulated in the form of the rules and applied to
semantically-annotated independent objects.

The requirements of the real-time ubiquitous ap-
plication required us to face the challenges stemming
from the combination of two powerful technologies:
ontologies and forward-chaining rules. We have sum-
marized our findings in the lessons learned that provide
a transferable generic knowledge for similar type of ap-
plication. The ec(h)o proved that ontologies and rules
provide an excellent platform for building a highly-
responsive context-aware interactive application.

Acknowledgements

Work presented in this paper is supported by a Ca-
narie Inc. grant under the E-Content program. The au-
thors would especially like to thank Mark Graham and
his colleagues in the Nature Museum in Ottawa for
their enthusiastic support of this project. We would also
like to thank our colleagues and participants in sev-
eral workshops who contributed to the development of
t en,
D y,
J

R

ing
on-

.
ist-

reate
In-

uto-
ctors

, Sci.

ML:
ional
re inferred from the user’s movement through the
ibition as well as from the visitor’s interaction with t
ound objects. The sound objects are retrieved bas
heir relevance to the user interests, narrative crit
nd psychoacoustic criteria. ec(h)o uses ontologi
escribe concepts, temporal and spatial characteri
nd psychoacoustic and sound characteristics of s
bjects. In the core of the system is a rule-based i
nce engine that powers the retrieval mechanism

he user model specifically designed for the app
ions using rich semantic descriptions.

The system is a result of convergent research str
rom research in object repositories, interaction des
uditory display, knowledge representation, and in
ation retrieval. The ontologies combined with

ule-based inference proved to be a powerful im
entation platform well suited for this type of the s

ems. We believe this has enabled us to extend w
he project, namely Kenneth Newby, Dale Evernd
oreen Leo, Gilly Mah, Robb Lowell, Mark Brad
ordan Willms, and Phil Thomson.

eferences

[1] I. Alfaro, M. Zancanaro, M. Nardon, A. Guerzoni, Navigat
by knowledge, in: Proceedings of the Eighth International C
ference on Intelligent User Interfaces, 2003, pp. 221–223

[2] D. Andolesk, M. Freedman, Artifact as Inspiration: Using Ex
ing Collections and Management Systems to Inform And C
New Narrative Structures. 2001, in: Archives and Museum
formatics Museums and the Web 2001, 2001.

[3] B.B. Bederson, Audio augmented reality: a prototype a
mated tour guide, in: Conference Companion on Human Fa
in Computing Systems, 1995, pp. 210–211.

[4] T. Berners-Lee, J. Hendler, O. Lassila, The semantic web
Am. (2001).

[5] H. Boley, S. Tabet, G. Wagner, Design rationale of Rule
a markup language for semantic Web rules, in: Internat
Semantic Web Working Symposium, 2001.



22

[6] R. Burke, Hybrid recommender systems: survey and experi-
ments, User Model. User-Adapt. Interact. 12 (2002) 331–370.

[7] N. Crofts, I. Dionissiadou, M. Doerr, M. Stiff, Definition of
the CIDOC Object-Oriented Conceptual Reference Model, July
2001, 2001.

[8] DDC, Dewey Decimal Classification,http://www.oclc.org/
dewey.

[9] D. Dean, Museum Exhibition: Theory and Practice, Routledge,
London, 1994.

[10] M. Hatala, R. Wakkary, User Modeling and Semantic Tech-
nologies in Support of a Tangible Interface Submitted to
UMUAI, November 2004, pre-print version available from
http://www.sfu.ca/∼mhatala/pubs/.

[11] M. Hatala, L. Kalantari, R. Wakkary, K. Newby, Ontology and
rule based retrieval of sound objects in augmented audio reality
system for museum visitors, in: Proceedings of the 2004 ACM
Symposium on Applied Computing, 2004, pp. 1045–1050.

[12] J.A. Konstan, J. Riedl, A. Borchers, J.L. Herlocker, Recom-
mender Systems: A GroupLens Perspective, in: Recommender
Systems: Papers from the 1998 Workshop, 1998, pp. 60–64.

[13] J. Kopena, W.C. Regli, DAML Jess KB: a tool for reasoning
with the semantic web, IEEE Intell. Syst. 18 (2003) 74–77.

[14] C. Miller, H.B. Funk, Verification Through User value: Or How
to Avoid Drinking Your Own Bathwater in Ubicomp Evalu-
ations, in: Ubicomp’01 Workshop: Evaluation Methodologies
for Ubiquitous Computing.

[15] P. Resnick, H.R. Varian, Recommender Systems, Commun.
ACM 40 (1997) 56–58.

[16] M. Sarini, C. Strapparava, Building a User Model for a Museum
Exploration and Information-Providing Adaptive System, in:
Second Workshop on Adaptive Hypertext and Hypermedia at
HYPERTEXT’98, 1998.

[17] C. Schlieder, T. Vogele, A. Werner, Location Modeling for In-
tentional Behavior in Spatial Partonomies, in: Ubicomp 2001
Workshop on Location Modeling for Ubiquitous Computing,

[ les,
sitor

[ riven
ally-
Web,

[ ex-
lo-

[

[ ser
ms,

[ va,
The
ug-
u-
inia,

[24] M. Zancaro, O. Stock, I. Alfaro, Using cinematic techniques in
a multimedia museum guide, in: Museums and the Web, 2003.

Dr Marek Hatala is an Assistant Professor
at School Interactive Arts and Technology
and a director of Laboratory for Ontological
Research at Simon Fraser University Surrey
in British Columbia, Canada. Before this
appointment Dr Hatala was a Research
Fellow at the Knowledge Media Institute at
The Open University, UK and an Assistant
Professor at The Technical University of
Kosice, Slovakia. Dr Hatala holds his PhD
in Cybernetics and Artificial Intelligence.

His main research interest areas are knowledge representation,
ontologies and semantic web, user modeling, intelligent information
retrieval, organizational learning and eLearning. In the last four years
Dr Hatala focused on building a scalable distributed infrastructure
for e-learning systems and middleware enabling interoperability
between heterogeneous repositories. The infrastructure connects
repositories in Canada, US, UK, Australia and Europe. His current
research projects look at how semantic technologies can be applied
to achieve interoperability in highly distributed and heterogeneous
environments, what are the social and technical aspects of building
a distributed trust infrastructures, and what role the user and user
group modeling can play in interactive and ubiquitous environments.

Ron Wakkary is Associate Professor in
the School of Interactive Arts & Technol-
ogy at Simon Fraser University in British
Columbia. His research includes interaction
design, and design methods and practice for
interactive systems. He has served on the
Canadian Culture Online Advisory Board to

ge,
te
de-
for

t odern
A e is
c bile
E e, and
r ocial
S

e-
Si-
ia.
FU
om-
s

e-
2001, pp. 63–70.
18] B. Serrell, in: S. Bitgood (Ed.), The Question of Visitor Sty

Visitor Studies: Theory, Research and Practice, vol. 7.1, Vi
Studies Association, Jacksonville, AL, 1996, pp. 48–53.

19] F. Sparacino, The museum wearable: real-time sens or-d
understanding of visitors’ interests for personalized visu
augmented museum experiences, in: Museums and the
2002.

20] M. Spasojevic, T. Kindberg, Evaluating the CoolTown user
perience, in: Ubicomp’01 Workshop: Evaluation Methodo
gies for Ubiquitous Computing, 2001.

21] W3C, “OWL: Ontology Web Language,” 2003.http://www.
w3.org/2001/sw/WebOnt/.

22] W. Wahlster, A. Kobsa, in: A. Kobsa, W. Wahlster (Eds.), U
Models in Dialog Systems, User Models in Dialog Syste
Springer-Verlag, New York, Inc., 1989.

23] R. Wakkary, K. Newby, M. Hatala, D. Evernden, M. Droume
in: D. Bearman, J. Trant (Eds.), Interactive Audio Content:
Use of Audio for a Dynamic Museum Experience through A
mented Audio Reality and Adaptive Information Retrieval, M
seums and the Web 2004 Selected Papers, Arlington, Virg
2004, pp. 55–60.
advise the Minister of Canadian Herita
and is on the Banff New Media Institu
Research Advisory Board. He has lead
sign and technology research projects

he Canadian Nature Museum, Nokia Research, Museum of M
rt, the Guggenheim Museum, and Electronic Arts Intermix. H
urrently leading the Am-I-able Network for Responsive and Mo
nvironments, a research network funded by Canadian Heritag

esearch on the everyday complexity of design funded by the S
ciences and Humanities Research Council.

Leila Kalantari is pursuing a master’s d
gree at School of Computing Science,
mon Fraser University, British Columb
During her undergraduate studies at S
she worked as Research Assistant for C
putational Logic Lab, Intelligent System
Lab and Laboratory for Ontological R
search.

http://www.oclc.org/dewey
http://www.oclc.org/dewey
http://www.sfu.ca/~mhatala/pubs/
http://www.w3.org/2001/sw/webont/
http://www.w3.org/2001/sw/webont/

	Rules and ontologies in support of real-time ubiquitous application
	Introduction
	ec(h)o Architecture
	Semantic description of objects
	Ontologies for describing content
	Psychoacoustics and sound characteristics ontologies

	The user model
	User model components
	Generalization of user model for semantic web applications

	Inference-based sound object retrieval
	Implementation
	Reasoning engine implementation
	Memory requirements of ontological representations
	Rules
	Performance
	Challenges and lessons learned
	Problem 1: rich semantics can cause significant computational delays
	Problem
	Cause
	Solution

	Problem 2: concurrency has to be treated explicitly
	Problem
	Cause
	Solution

	Problem 3: know-your-tool or carefully consider implications of implementation platform
	Problem
	Cause
	Solution

	Problem 4: do not use rules for extensive numerical computations
	Problem
	Cause
	Solution



	Evaluation and discussion
	Suitability of ontologies and rules for user modeling
	End user verification
	Efficiency of ontologies and rules for ubiquitous real-time applications

	Conclusions
	Acknowledgements
	References


