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Abstract

This thesis explores attention retargeting—a concept related to visual saliency where

the content or composition of an image is altered in an effort to guide the viewer’s attention.

Attention retargeting is currently in its infancy with numerous unexplored possibilities, no

common methodology for evaluating performance, and no unified framework. The difficulty

of attention retargeting as a saliency inversion problem lies in the lack of one-to-one map-

ping between saliency and the image domain, in addition to the possible negative impact

of saliency alterations on image naturalness. Several approaches from recent literature to

solve this challenging problem are reviewed in this context. Two novel attention retargeting

methods are proposed to efficiently compute a region’s propensity for drawing attention af-

ter it has been modified. The first method manipulates the orientation of a selected region,

while the second modifies its hue. Both methods are applied to maximize the saliency of se-

lected regions in various images. The likelihood of drawing attention towards the modified

regions is evaluated through eye-tracking. Subjective experiments, in which participants

are told to decide which image looks better between two alternatives, are used to measure

the relative naturalness of the modification. An experiment was conducted to determine

whether subliminal flicker is capable of drawing attention in natural images without the

viewer’s knowledge. Flicker was introduced to selected regions in a set of images by alter-

nating the contrast in these regions from high to low at a frequency of 50 Hz. A comparison

of eye-tracking data between participants who viewed the flickering images against those

who viewed the original images suggests that subliminal flicker may, on average, repel at-

tention rather than attract it.

Keywords: attention retargeting; visual saliency; subliminal cues; image processing
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Chapter 1

Introduction

Attention retargeting is a newly emerging field of research in which the content of

an image or video is altered in an effort to guide a viewer’s attention. The origins of

attention retargeting are closely tied to visual saliency, a topic that addresses the question

“where do we look?” As electronic devices steadily improve, remarkable developments in

multimedia, such as ultra high definition television and high framerate video, are becoming

commonplace. Whether we recognize it or not, our eyes are spoiled beyond belief. With

the emergence of these technologies and the progress made in saliency research, a new

question—“where should we look?”—has become equally relevant.

The most immediately obvious application of attention retargeting is in advertising. A

noteworthy example would be a large-scale application to the YouTube thumbnails belong-

ing to a user’s videos to help draw viewers. Another possible application is in visualization

tools. Certain aspects in the creation of complex plots and diagrams could be automated,

such as color selection, line styles, and overall layout, to implicitly guide the viewer and

help improve clarity. Attention retargeting may also be applied to error concealment in

video, where attention-grabbing artifacts are masked to improve subjective quality. Im-

age summarization techniques could also benefit from attention retargeting. For example,

distracting regions could be de-emphasized to guide a viewer’s attention along a specific

trajectory. Other applications include education, gaming, design and media arts.

Attention retargeting is a relatively unexplored topic with few contributions. Some of

the main issues associated with this topic are: 1) unexplored possibilities in terms of visual

features modified to manipulate saliency; 2) the potentially damaging effects of saliency

alterations on image naturalness; 3) high computational complexity inherited in part from
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saliency computation; 4) no well-established measure of performance; 5) no unified frame-

work. The collective work presented in this thesis addresses each of these issues. Since

attention retargeting builds upon principles of early attention, we begin with a discussion

of visual saliency. We describe attention retargeting as a saliency inversion problem and

provide some general approaches to solving it based on existing work—a modest step to-

wards a unified framework. This clarifies fundamental differences in the methodology of

existing attention retargeting models.

1.1 Visual Saliency

A full, detailed analysis of every object within view at any single point in time is an

incredibly complex task, far beyond the capabilities of human visual processing [37]. And

yet, most would agree that the simple act of seeing is a rather effortless endeavor; sitting

on a couch watching television is not often thought of as a taxing activity. To cope with

the vast amount of input obtained through our eyes [16], our attentional mechanisms will

focus on a few key areas for in-depth analysis using a two-stage process [36].

The initial processing narrows down the list of potentially relevant areas in the scene by

identifying objects that appear to pop out in terms of basic visual features, such as color,

orientation, and motion [38]. An interesting or conspicuous object (in the context of these

visual primitives) can be perceived within 25 - 50 ms [16] in an effortless manner. The

second stage of attention involves a more complex, detailed processing out of the viewer’s

own volition. Although the deliberate nature of this mechanism can override the attention

given to the objects that popped out in the first stage, it cannot be deployed at such a

fast rate. This means that if the scene suddenly changes, we involuntarily draw our gaze

toward objects that are sufficiently salient in the pre-attentive stage regardless of any intent

to avoid them. For example, you’ll likely be distracted for a quick moment by the backlit

screen of a cell phone in a dark movie theater the instant someone in front of you takes

it out to start texting. Soon afterwards however, you resolve to ignore it and return your

focus onto the movie.

Visual saliency primarily refers to the initial stage of visual attention. A region of

interest (ROI) is salient if it is perceptually different from its local surroundings in terms

of basic visual features. An example of this is illustrated in Fig. 1.1(a). Among the three

2



(a) (b)

Figure 1.1: Illustration of visual saliency in terms of (a) orientation and (b) color.

circular regions, most would agree that the one on the bottom left is the most salient.

This is because the bottom-left region is orthogonal, and hence, the most dissimilar to the

vertical grating surrounding it, whereas the difference is far less pronounced for the other

two regions. In an analogous example with color shown in Fig. 1.1(b), most would agree

that the bottom-right circle is the most salient.

A popular architecture for visual saliency computation is illustrated in Fig. 1.2. This

architecture was originally proposed in [17] and has been utilized in several other works [31,

21, 13, 11, 9]. A typical model first extracts a set of visual features that drive early attention

from the input stimuli. In the subsequent stage, conspicuities are identified within each fea-

ture channel by computing local dissimilarity among features corresponding to each region

of the input. For example, the image intensity map can be divided into non-overlapping

square patches, each of which is compared against their adjacent patches. This operation,

frequently referred to as “center-surround,” produces a conspicuity map for each feature

channel, which details the particular feature’s influence on overall saliency in the original

image. Each conspicuity map must be normalized to ensure that their values fall within

a common range and to punish uniformity. Finally, the normalized conspicuity maps are

linearly combined.

The final result is a grayscale image called a saliency map, as illustrated in Fig. 1.3 (top-

right). Highly salient regions that are predicted to draw viewer’s attention are denoted by

pixels with high values (bright), whereas non-salient regions that are likely to be neglected

are given low values (dark). The above architecture can be applied to predict saliency in

videos as well. The input would be a sequence of frames rather than an image, and temporal

3



Figure 1.2: A popular model for visual saliency computation. (Diagram adapted from [17])

features, such as flicker and motion, would be utilized in addition to spatial features to

produce a saliency map for each frame in the video.

Although the general problem of computational attention modeling remains largely un-

solved, the past few decades of research demonstrate a fairly decent grasp of predicting

visual saliency [1]. This is significant because the involuntary nature of visual saliency

makes it a powerful tool for orienting attention. We may then pose an interesting prob-

lem: if we can compute visual saliency with reasonable accuracy, how can we alter it to

manipulate a viewer’s attention?

4



1.2 Attention Retargeting

Attention retargeting refers to modifying an image or video in an effort to alter viewer’s

gaze patterns in a desired way. This can be thought of as a saliency inversion problem,

as illustrated in Fig. 1.3. Given an image and a map of desired saliency (called a target

saliency map), we want to obtain the modified image that matches our desired saliency as

the inverse of the target saliency map. Unfortunately, this is an ill-posed problem since

there is no one-to-one mapping between saliency and images. This is largely due to the fact

that saliency can stem from various different features. As illustrated in Fig. 1.3, the desired

change in saliency can be achieved through the manipulation of features like intensity, color,

or spatial frequency, among others. This problem can persist even when the retargeting is

constrained to a single feature, since saliency is based on context. For example, the saliency

of a ROI can be altered by raising the intensity of the ROI, or decreasing the intensity of

its surroundings, or a combination of the two.

The fact that a desired change in saliency can be obtained in many ways leads to the

impression that modifying saliency is easy. This is a difficult point to contest; a drastic

change in the intensity of a region can easily make it stand out, and an application of

Gaussian blurring to reduce visual conspicuities may serve to conceal it. Although modifying

saliency may be simple in itself, doing so in a manner that preserves the naturalness of the

original image is not. The concept of naturalness in images is fairly subjective and difficult

to measure.

Attention retargeting is relatively unexplored and lacks a unified framework. We begin

the following subsection with a general approach to this problem. Examples and ideas for

improvement are provided with a brief overview of existing work in the field.

1.2.1 Iterative Black-Box Approach

The simplest approach to attention retargeting is to use saliency computation as a black

box in an iterative optimization procedure, as shown in Fig. 1.4 (excluding the the signal

drawn in red). At each iteration, the saliency S of the image I is obtained after it has been

modified with respect to a chosen set of features. These features can be different from those

used to compute saliency. The goal is to minimize the error between the saliency S and the

target saliency T , given by e = T − S. In order to maintain the naturalness of the input

5
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Figure 1.3: Image and corresponding saliency (top). Target saliency map and possible
retargeted images (bottom).

image, a set of constraints can be introduced to prevent overmodification. The process

ends when e becomes small enough, or when the modifications can no longer produce an

appreciable change in saliency towards the intended goal.

An example of this simple approach can be found in the work of Wong and Low [40]. In

their proposed model, the user divides an image into N segments and enumerates them in

order of importance. A target importance value Ti is assigned to each segment, where i = 1

is the most important segment and i = N is the least important. Modifications are made to

the intensity, color saturation, and sharpness of the original image until the average saliency

within each segment matches the target importance value for the corresponding segment.

6



Figure 1.4: Attention Retargeting as an optimization procedure. The signal shown in red
indicates that the model uses intermediate outputs of saliency computation (feature and

conspicuity maps) to help determine the correct modification at each step.

Specifically, the saliency error is defined as

e =
N∑
i=1

|N (Ti)−N (Si)|, (1.1)

where Si is the average saliency of the ith segment, and N (·) is a normalization operator

defined as N (Xi) = Xi/
∑N

j=1Xj . A set of bound constraints specifies the upper and

lower bounds for the average intensity, color saturation, and sharpness of any segment. In

addition, it is assumed that the intensity and color saturation should never be lowered on

the most important segment, and that the more important the segment, the sharper it

should be.

The main disadvantage of this approach is the limited insight into why the images are

modified the way they are. This limitation stems from the use of saliency computation as a

black-box function, which only lets us observe the effect of a modification after the change
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to the image has been made. If N (Ti) − N (Si) is small for some i, no modifications are

necessary in that region. If N (Ti) − N (Si) is large and positive then we have to increase

saliency, and if N (Ti) − N (Si) is large and negative then we have to decrease saliency in

order to match the target saliency. All we can do is modify the image where |N (Ti)−N (Si)|

is large, recompute the saliency, and see whether the cost function is actually minimized.

Since the modification may not necessarily alter saliency in the right direction, an excessive

number of iterations may be needed.

1.2.2 Feedback from Saliency Computation

Rather than relying solely on the movement of the cost function to guide our modi-

fications, we may take advantage of intermediate outputs from the saliency computation

block if it contains feature channels that are pertinent to the modifications being made.

For example, let us consider a saliency detector that extracts spatial frequency information

from blocks of I to produce a feature map βf . Center-surround operations are applied on

βf to produce the conspicuity map βc, describing the saliency of I that originates from

spatial frequency. The modification in this example is either blurring or sharpening (e.g.,

via Gaussian or Laplacian filters) applied to specific regions of I, which decrease or increase

their spatial frequency, respectively, by varying degrees.

Consider the case where saliency must be reduced in a particular region. If βc is small in

this region, then the feature associated with it does not contribute to saliency and does not

need to be modified. Conversely, if βc is large then the feature in βf must be altered in the

opposite direction. In our example, if βf indicates high spatial frequency in that region of I

then we need to blur it; otherwise, we need to sharpen it. Similar logic is applied in the case

where saliency must be increased in a particular region. A large βc in this region indicates

that it is already salient with respect to its corresponding feature, hence no modification

is needed. If βc is small in this region, then the corresponding region of I must be made

salient with a modification that alters the feature in βf in the opposite direction, as before.

Thus, the information extracted during saliency computation β = {βf , βc} can be used to

guide the direction and possibly even the magnitude of the modifications at each step. This

improved algorithm, shown by the addition of the red signal in Fig. 1.4, can be thought of

as a steepest descent algorithm for attention retargeting.

8



Hagiwara et al. apply this methodology in their attention retargeting model [12]. They

reverse engineer a simplified version of the well-known saliency model by Itti et al. [17],

which decomposes an RGB image into a set of four color features r = R − (G + B)/2 for

red, g = G−(R+B)/2 for green, b = B−(R+G)/2 for blue, and y = (R+G)/2−|R−G|/2−B

for yellow, and an additional intensity feature v = (R + G + B)/3. Conspicuity maps are

then obtained for each feature and combined to compute saliency. In their model, Hagiwara

et al. first select a ROI whose saliency is to be maximized. They determine the change in

the image channels ∆R, ∆G, ∆B needed to increment saliency at each pixel as a function of

the features and their corresponding conspicuity maps. Since the saliency of the ROI is to

be maximized relative to the rest of the image, each pixel within the ROI is modified by ∆α

(calculated individually for each pixel), and pixels outside are modified by their respective

−∆α, where α ∈ {R,G,B}.

1.2.3 Direct Mapping

The optimization procedure in Fig. 1.4 uses feedback from saliency computation to

estimate how the image is to be modified in a series of steps. Mapping an additive or

multiplicative change to the saliency map (or conspicuity map of a particular feature) di-

rectly onto the image domain is a highly non-trivial task. However, one of the earlier works

on attention retargeting by Su et al. [33] demonstrates that this is indeed possible. Since

there currently are no generalizations of this approach, we illustrate the concept of direct

mapping by summarizing the methodology of Su et al.. Their method de-emphasizes dis-

tracting textures by decreasing the spatial variation in textured regions. In their approach,

they compute the texture-based saliency of an image using steerable filter banks (Fig. 1.5)

and then propagate changes in saliency backwards to the steerable coefficients. Since image

decomposition through Gabor filters allows near perfect reconstruction, the new image is

easily obtained from the modified steerable coefficients.

After the image is decomposed, the local frequency content for each subband sn is

computed. Since sn is band-limited, full-wave rectification must be performed before local

averaging with a Gaussian filter. The resulting average response sLn is called a “power map.”

The next step is to extract conspicuities within each subband, which is accomplished by

applying a high-pass filter to each corresponding power map. The overall goal will be to use

the coefficients in the texture conspicuity maps sHn to modify the steerable coefficients sn

9



Figure 1.5: Computation of visual saliency from texture using steerable filter banks.

in a manner that produces a more uniform composition in highly-varying textured regions.

This task can also be thought of as a modification to the local frequency content stored in

the power map.

However, propagating the coefficients sHn backwards can be problematic due to the

non-linear rectifying operation performed earlier. Note that all power map coefficients are

positive and must remain as such after any modification. Therefore, the logarithm of the

power map is taken prior to high-pass filtering and all subsequent modifications using the

conspicuity map coefficients sHn are performed on the log power map to ensure that negative

values cannot be produced on the power map. The desired modification is a reduction in

texture variation, which corresponds to a removal of high frequency regions in the power

map. This is accomplished simply by subtracting the conspicuity map coefficients sHn

from the log power map coefficients ln(sLn). Note that addition to the log power map

coefficients corresponds to multiplication to the original steerable coefficients. Therefore,

this modification can be propagated backwards directly onto sn as a scaling operation with

the coefficients sHn

s′n = sne
−ksHn , (1.2)

where k is some constant. The modified image can be easily reconstructed as the linear

combination of the modified subbands s′n. Unlike previous optimization-based approaches,

this method manages to propagate additive changes directly from the saliency map back

onto the image.

10



1.2.4 ROI-Based Retargeting

In many cases, it is only desirable to draw attention to a specific ROI, or perhaps a few

ROIs. For example, the target saliency map in the bottom of Fig. 1.3 indicates that we

want the flamingo in the top right of the image to draw more attention than the rest of

the image. To this end, we may supply a simple binary mask of the desired ROI with the

objective of making this region most salient relative to the rest of the image. The absence of

the target saliency as an input highlights a big redundancy—the lack of need for full-scale

saliency computation—in the approaches outlined in Section 1.2.1 for ROI-based attention

retargeting. Saliency computation typically requires center-surround differences over the

whole image. With our simplified goal of either increasing or decreasing saliency within a

single region, it suffices to perform this operation on the ROI and its surroundings alone,

rather than the entire image. Our models, presented in Chapters 2 and 3, illustrate the

advantages of avoiding this inefficiency.

Aside from benefits to computational complexity, this simplification may also allow

more freedom in the problem formulation, particularly in the objective function used in the

optimization. For example, a recently proposed model by Nguyen et al. used a graph-based

optimization for attention retargeting [29]. The input image is segmented into patches,

and the set of patches i comprising the ROI undergo color transfer from a set of candidate

patches xi. The candidate patches are mined from a large image dataset and correspond

to the same objects found in the ROI so that color transfer only occurs between similar

objects in an effort to maintain naturalness. The ideal selection of candidate patches for

color transfer to the ROI is found by minimizing

E(x) =
∑

i ∈ ROI

Ed(xi) + λ
∑
i

∑
j ∈ N(i)

Es(xi, xj). (1.3)

The data cost Ed is designed to consider global center-surround differences, rather than

local ones. It demands that the ideal candidate patch be highly dissimilar from the entire

image content outside of the ROI. The smoothness energy Es is designed to punish dissim-

ilarity between neighboring patches that are of a similar color, e.g., belonging to the same

object, and encourage it otherwise. In contrast to the data cost Ed, this considers local

center-surround differences to further enhance saliency. At the same time, it ensures that

different objects in the ROI remain individually consistent in appearance.

11



1.3 Organization

This thesis is organized as follows. In Chapter 2, we present our method for attention

retargeting by directly modifying the orientation of a ROI in an image. We also evaluate

our method using eye-tracking to confirm its effectiveness in drawing attention. Our second

attention retargeting method, which operates on the color of a ROI in an image, is presented

in Chapter 3, with a similar eye-tracking evaluation. An additional subjective experiment

is conducted to verify the naturalness of the results. Chapter 4 discusses the plausibility of

subliminal attention guiding in natural images. We describe our experiments to determine

whether subliminal flicker in natural images is capable grabbing a viewer’s attention and

present some preliminary results. Conclusions and suggestions for future work are presented

in Chapter 5.
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Chapter 2

Attention Retargeting by Manipulating

Orientation

This chapter describes the attention retargeting model we proposed in [23], which esti-

mates the relative changes in saliency of a ROI if it were to be rotated. This is accomplished

by summarizing the orientation content of a selected ROI and its local surroundings using

the procedure described in Section 2.2. The section that follows shows how a rotation of

the ROI can be concisely represented so that center-surround differences can be quickly

computed for all possible rotations. Finally, we apply our method to a set of natural images

and verify its effectiveness in guiding attention through eye-tracking.

2.1 Iterative Approach

Suppose we apply the iterative approach described in Section 1.2.1 with the goal of

modifying the saliency of an image by manipulating its orientation. This procedure is

summarized below in Algorithm 1. The saliency computation in step 7) would typically

include an orientation feature channel, which for example extracts orientation information

using Gabor filters. These feature maps and corresponding conspicuity maps can be used

as described in Section 1.2.2 to determine more accurately the direction of rotations in step

4) of Algorithm 1.

This procedure is unsatisfactory for several reasons. First, the concept of rotating every

individual piece of an image in order guide attention to a particular region (or perhaps

a few) is quite silly, and would most likely produce results suitable only for an abstract
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Algorithm 1

1: Segment the original image into N disjoint segments (e.g., using superpixel segmenta-
tion).

2: Initialize the rotation angle of the ith segment ϕi = 0◦, where i = 1, ...N .
3: For each segment i
4: change the rotation angle ϕi = ϕi ±∆ϕ.
5: rotate the ith segment in the original image by ϕi degrees.
6: Inpaint the gaps produced by the rotations.
7: Compute the saliency S of the resulting image.
8: If the error between saliency S and target saliency T is small enough, stop; otherwise,

go to step 3).

art project. The noise introduced by having to inpaint gaps left by rotating N different

segments further compounds this issue. Second, the iterative nature and the need to run

inpainting in step 6) and saliency computation in step 7) may lead to high computational

complexity. This will likely be the case even if we restrict our rotations to only a small

subset of segments, leaving the rest unmodified. And finally, the procedure (if successful)

does not provide any direct insight as to why the chosen rotation angles draw our attention

to the desired areas of the image.

We propose a method of computing relative ROI saliency directly for any given rotation

angle. Since we only wish to draw attention to a particular region, we apply the methodology

in Section 1.2.4. This enables us to efficiently predict the rotation angle at which the relative

saliency is maximized without any iterative procedure—a previously unexplored concept.

In addition, our procedure makes it clear why saliency is maximized as intended.

2.2 Edge Distributions

Our first task is to obtain distributions that specify the occurrence of edges over a range

of orientations in the ROI and its surroundings. A well-established method of detecting

collinearity among feature points in an image, referred to here as the standard Hough

Transform, was developed decades ago [14, 7]. A mapping of point coordinates onto a

discrete 2D parameter space (the so-called Hough space) is performed based on the polar

representation of a line:

ρ = x cos θ + y sin θ. (2.1)
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Given the coordinates, x and y, of a pixel in the image, the parameter ρ is solved using (2.1)

for all θ ∈ [0, 180◦) to yield a sinusoidal curve in the Hough space. The points at which

these curves intersect indicate the angle-radius parameters of lines that best fit the set of

input pixels in the image. In practice, the Hough space is a 2-D histogram whose bins are

incremented at each point of the sinusoidal curve obtained from (2.1) over a set of angles

θ ∈ [0, 180◦).

In our method, we wish to treat this 2D histogram as a joint probability density function

(pdf) p(θ, ρ) of the line parameters so that we can obtain the marginal density p(θ), which

describes the likelihood that an edge in the region is oriented at an angle θ ∈ [0, 180◦).

Unfortunately, the standard Hough transform is not well-suited for this operation. Since

each point (x, y) contributes a single vote in the histogram for all values of θ, marginalizing

the histogram yields a uniform distribution with a height equivalent to the number of input

points considered.

To overcome this problem, we utilize a statistical Hough transform [5], which uses kernel

densities to estimate the edge content in the Hough space as a continuous pdf. At each

pixel i with coordinates (xi, yi) the orientation θi of the pixel can be estimated as

θi(xi, yi) = arctan

(
Iy(xi, yi)

Ix(xi, yi)

)
, (2.2)

where Ix and Iy are the two components of the spatial gradient of the image intensity I(x, y).

Intuitively, if the pixel i lies on a strong edge, we can be more confident in our estimate of

θi, hence the uncertainty of our estimate is inversely proportional to the gradient magnitude

σθi(xi, yi) =
1√

I2x(xi, yi) + I2y (xi, yi)
. (2.3)

Using the set of observations {(θi, xi, yi)}i=1...M we model the edge content in the Hough

space as proposed in [5]. The joint pdf of the line parameters (θ, ρ) and the pixel coordinates

(x, y) is expressed as

p(θ, ρ, x, y) = p(ρ|θ, x, y)p(θ, x, y). (2.4)

However, ρ is deterministic through (2.1) when x, y, and θ are known, hence [5] models the

conditional pdf using the Dirac delta function as follows:

p(ρ|θ, x, y) = δ(ρ− x cos θ − y sin θ). (2.5)

15



The remaining term in (2.4) is estimated given the set of observations {(θi, xi, yi)}i=1...M

by using kernels [5]:

p(θ, x, y) =

M∑
i=1

1

σxi

Kx

(
x− xi
σxi

)
1

σyi
Ky

(
y − yi
σyi

)
1

σθi
Kθ

(
θ − θi
σθi

)
, (2.6)

where pi is the prior on the observation (θi, xi, yi). In our implementation, we set Kx, Ky,

and Kθ to be Gaussian kernels. Due to the single pixel precision of the image coordinate

plane, we set the widths of the spatial kernels σxi = σyi = 1, for all i. We also consider

all observations within the ROI to be equiprobable, i.e., pi = 1/M . The analysis of the

region surrounding the ROI needs to emphasize local data, since this is what governs low-

level saliency. We model this by convolving a Gaussian function with a full width at half

maximum of 5◦ of visual angle along the ROI’s border. The priors are then formed by

normalizing the resulting grayscale map such that
∑M

i=1 pi = 1.

After plugging (2.5) and (2.6) back into (2.4) and integrating with respect to variables

x and y, an estimate of the Hough transform is obtained

p(θ, ρ) =
M∑
i=1

1

σθi
Kθ

(
θ − θi
σθi

)
Ri(θ, ρ)pi, (2.7)

where Ri(θ, ρ) is the Radon transform of the spatial kernels

Ri(θ, ρ) =

∫ ∫
δ(ρ− x cos θ − y sin θ)

1

σxi

Kx

(
x− xi
σxi

)
1

σyi
Ky

(
y − yi
σyi

)
dx dy. (2.8)

The pdf in (2.7) is integrated with respect to ρ to obtain our “edge distribution,”

p(θ) =

∫
p(θ, ρ)dρ. (2.9)

2.3 Relative ROI Saliency Prediction

The procedure in Section 2.2 is performed independently on the observations within the

ROI and outside the ROI to obtain their respective edge distributions, pR(θ) and pS(θ).

The example in Fig. 2.1(b) illustrates the edge distribution for the ROI (solid red plot)

and its surroundings (solid blue plot) in the image shown in Fig. 2.1(a). The large peaks

in pR(θ), located around 0◦/179.5◦ and 90◦, indicate that the tile in the selected region

is predominantly composed of horizontal and vertical edges. The plot of pS(θ) indicates

a similar composition of edges in its surroundings. If the ROI were rotated in a counter-

clockwise direction by 45◦, for example, the tile’s edges would then be oriented primarily
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Figure 2.1: Illustration of the method used to predict relative saliency of the ROI in (a):
(b) shows the edge distributions of the ROI (red) and surround (blue); (c) shows the KLD

S(ϕ) between ROI and surround edge distributions as a function of rotation angle ϕ.

around 45◦ and 135◦. Hence, a counter-clockwise rotation of the ROI can be represented as

a leftward circular shift of pR(θ), as illustrated in Fig. 2.1(b) by the dashed red plot.

The region’s relative saliency is predicted by the dissimilarity between the two edge dis-

tributions, which is measured as their symmetric Kullback-Leibler (KL) divergence. Specif-

ically, the predicted relative ROI saliency for rotation angle ϕ is obtained as

S(ϕ) =
1

2
D (pS(θ)||pR(θ + ϕ)) +

1

2
D (pR(θ + ϕ)||pS(θ)) , (2.10)

where D(·||·) is the KL divergence [22]. An example of the predicted saliency of the ROI in

Fig. 2.1(a) as it is rotated counterclockwise is shown in Fig. 2.1(c). As expected, the saliency

of the region peaks when its edges are most dissimilar to the edges in its surroundings—at

rotations of about 45◦ and 135◦. Furthermore, its saliency is predicted to decrease back to

17



its original level as the rotation approaches 90◦, at which point its edges would be oriented

similarly to the edges in its surroundings.

This demonstrates what can be accomplished by avoiding full-scale saliency computa-

tion, as mentioned in Section 1.2.4. We can rapidly compute the center-surround difference

of the ROI due to the concise representation of this modification as a circular shift of a

1-D distribution. The result, shown in Fig. 2.1(c), is a complete inverse mapping of relative

ROI saliency to rotation angle (note that a one-to-one mapping between saliency and images

still does not exist, despite only a single feature being modified). The approach taken here

chooses features in a manner that allows a simpler representation of the modification being

made, and utilizes a center-surround operation that avoids redundancy by only focusing on

the ROI. These two aspects grant the ability to rapidly predict the outcome of all possible

modifications of the particular feature, in this case orientation.

2.4 Evaluation and Results

We applied our method on 40 natural images from a dataset collected by Judd et al. [20],

which includes eye-tracking data from 15 viewers. In each image, we used this data to help

select an uninteresting region located away from areas that viewers generally fixated upon.

To speed up computations, only edge pixels, identified by Canny edge detection [2], were

considered in our analysis of the area outside of the ROI. Once the predicted relative ROI

saliency was obtained, we rotated the ROI in each image to the angle at which the relative

saliency was maximized and filled the missing background regions using the inpainting

method from [4].

Eye-tracker data was collected from a total of 24 nonexpert participants using a head-

mounted Locarna “Pt-Mini” eye-tracker. Participants were divided into two groups of 12.

One group viewed the modified image set, while the other viewed the unmodified set. In

either test, each image was displayed for 5 seconds in fixed order with a 3-second pause

in between. During the 3-second pause, a small crosshair was shown on the center of the

display and participants were asked to fixate on it. This was done to ensure that the current

image did not affect the gaze data of the image that followed. Participants were seated 80

cm from a 19′′ display with a native resolution of 1280×1024 in a room with an ambient
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Figure 2.2: Histograms of the duration of fixations near the ROI.

light of 180 lx. The resolution of the display was chosen so that all of the images could be

viewed at their native resolution.

Gaze data can be divided into two categories: fixations, in which the viewer’s gaze

has stabilized on a single location, and saccades, in which the viewer’s gaze rapidly moves

towards a new location. We define a fixation as a set of consecutive data points that

are within a proximity of 1◦ of visual angle for a minimum of 0.2 seconds [6]. A fixation

was determined to be close to the ROI if it was located within a certain radius from the

ROI’s centroid. This radius was chosen to be 5% of the image’s diagonal, which on average

corresponded to 63 pixels or 1.3◦ of viewing angle. Since fixations can vary in length, it is

inadequate to simply count them, given that more value should be placed towards longer

fixations. Histograms of the duration of fixations close to the ROI for either group are

shown in Fig. 2.2. The histogram corresponding to the control group (participants looking

at unmodified images) is shown in blue, while that for the test group (participants looking

at modified images) is shown in red. An increase in the overall number of fixations by a

factor of 1.83 is observed in the test group relative to the control (99 fixations out of a total

of 4024 across all images for the test group and 54 out of 4053 for the control). We also

observe that viewers are more likely to fixate on the ROI of the modified images for longer

periods of time.
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In addition to drawing attention directly onto the ROI, our goal is to guide the viewer’s

attention towards the ROI’s general vicinity. An increase in the relative saliency of a ROI

can be considered successful if we observe a shift in the gaze pattern towards the ROI. Some

examples of these gaze shifts are illustrated using fixation heatmaps in Fig. 2.3. A video

showing several examples of gaze data visualizations on modified images in our experiment

has been made available at [41].

2.5 Conclusion

Orientation, though one of the most fundamental visual features that drive early at-

tention, has never been previously considered in attention retargeting. In this chapter, we

propose a method to predict the amount of attention a ROI is expected to draw after it

has been rotated. Existing iterative approaches are inadequate for our goals since they are

unintuitive and likely carry large computational costs, even when a single ROI is consid-

ered. In our novel approach, we analyze the orientation content of a region and its local

surroundings and measure the difference between the two as the region’s orientation is mod-

ified. We select uninteresting regions in a set of natural images and rotate each one at the
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Figure 2.3: Examples of original and modified images used in our experiments with
heatmap visualization of fixations. Each 2-by-2 array that corresponds to an image is
organized as follows: original image (top-left); modified image (top-right); heatmap of
fixations for original image (bottom-left); heatmap of fixations for modified image

(bottom-right).

angle where the region’s relative saliency is predicted to be maximized, filling in the missing

gaps with inpainting. The eye-movements of participants who viewed the modified images

are compared against a control group who viewed the original images. We demonstrate an

overall increase in the number of fixations near the modified regions as well as an increase

in their duration. Furthermore, we observe shifts in gaze towards the general vicinity of the

modified region, which suggests that the region’s saliency was successfully augmented.
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Chapter 3

Attention Retargeting by Color

Manipulation

The methodology from the previous chapter is extended to maximize the saliency of a

selected ROI by modifying its color, with an additional focus on maintaining the naturalness

of the original image. The first section provides motivation and discusses the underlying

concepts. The rest of the chapter is organized similar to the previous, with an added

subjective experiment to gauge the naturalness of the images produced by the proposed

method. The material in this chapter has been presented in [24].

L

c

h

Figure 3.1: Illustration of the relevant attributes of color: Lightness (top), hue (middle),
and chromaticity (bottom).
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(a) (b) (c)

Figure 3.2: Chromaticity-based (b) and hue-based (our result) (c) saliency enhancement
for the original image (a).

3.1 Basic Principles

To begin, we explain the various attributes of color relevant to this chapter. Lightness

(or intensity) is the overall amount of light that is perceived to be emitted from a stimulus.

Hue is the extent to which a color resembles red, blue, yellow, or green, or a combination of

these. Chromaticity (or saturation) refers to the amount of white light that dilutes a hue.

Generally, when one thinks of color, they think of it in terms of hue as described above.

In this work, we will only focus on modifying the hue component of color while leaving other

attributes unaltered. Although lightness and chromaticity modifications can significantly

alter saliency, this usually comes at a hefty price—a destructive effect on the image’s per-

ceived naturalness. An example of this is shown in Fig. 3.2(b), where the chromaticity of

the ROI has been raised to enhance its saliency. The modification to the ROI in Fig. 3.2(b)

is likely to draw attention, perhaps even more so than that of our result in Fig. 3.2(c).

However, there is a sense that the flower in Fig. 3.2(b) disobeys the overall structure of

lighting and color in the image and looks unnatural, especially compared to the correspond-

ing flower in Fig. 3.2(c). These issues with lightness and chromaticity are what befall the

methods in [40] and [12].

Of course, restricting modifications to hue only does limit our approach in certain cases.

However, manipulating lightness and chromaticity in a responsible manner that maintains

naturalness is a burden that raises complexity, which runs counter to our goal of developing

24



a fast, efficient method of saliency enhancement. Finally, we aim to provide insight as to

why the modifications to color increase saliency—a task best accomplished by focusing on

hue, the attribute that best characterizes what we perceive as color.

To accomplish our goals, we utilize CIE Lch color space, the polar representation of CIE

L*a*b* [32]. The three components of the Lch color space relate to L*a*b* as:

L = L∗, c =
√

(a∗)2 + (b∗)2, h = arctan
b∗

a∗
. (3.1)

In addition to decoupling lightness, chromaticity, and hue, this color space has the advantage

of being perceptually uniform. This means that the Euclidean distance between two points

within the space directly corresponds to the perceived difference between the colors at those

points [18].

Suppose that we are given a homogeneously-colored image with hue h0 and a selected

ROI. Since saliency at the lowest level is governed by local conspicuities in principal visual

features, it then follows that the adjustment that maximizes saliency in the ROI is the one

that makes it most dissimilar to its surroundings. By fixing L and c in (3.1), this adjustment

is a 180◦ rotation to the hue, which results in the largest possible displacement in the color

space while keeping L and c constant (see Fig. 3.3). Any out-of-gamut colors that result

from this modification need to be clamped so that they can be represented in sRGB color

space.

Of course, natural images are usually not composed of a single hue. Both ROI and its

surround are likely to contain many different hues. A convenient way to represent the hue

content of ROI and/or its surround is through the hue histogram or hue distribution. If

there are many pixels at a certain hue, there will be a peak at that hue value in the hue

distribution. Given the hue distributions in the ROI and the surround, the task is to obtain

ROI hue distribution that is most dissimilar to the hue distribution in the surround. This

problem is analyzed in the following subsections.

3.2 Hue Distributions

We model the hue information within the ROI and its surroundings by the corresponding

hue distributions while taking into account the uncertainty inherent in the representation

of hue. Note that as chromaticity c decreases towards 0 in equation (3.1), meaning that
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Figure 3.3: Optimal hue adjustment to maximize the saliency of a ROI in a
homogeneously-colored image.

a∗, b∗ → 0, the value of hue h becomes uncertain. Physically, this means that a shade of

gray is hard to categorize as red, blue, green, or yellow.

To obtain a measure of this uncertainty, we follow the route taken by [10]. Consider

a function of several measurements u = q(û1, û2, ..., ûN ). For independent measurements

with corresponding standard deviations σû1 , ..., σûN
, the uncertainty in u is given by [34]

σu =

√√√√ N∑
i=1

(
∂q

∂ûi
σûi

)2

. (3.2)

Applying this to h in (3.1) with σ2
a∗ = σ2

b∗ = α, we obtain

σh =
α

c
. (3.3)

Since we are only concerned with the uncertainty originating from the structure of hue (i.e.,

σh → ∞ as c → 0), we set α equal to the largest value of chromaticity of all pixels present

in the image. In addition to limiting σh within the range [1,∞], which is a nice property for

kernel density estimation, this makes σh a relative measure of uncertainty for each image.

This is reasonable since we would expect relevant observations in vibrantly colorful images

to come from pixels with high chromaticity, whereas more lenience would be given in the

case of bland, faded images.
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(a) (b) (c)

Figure 3.4: Example image showing the ROI outlined in green (a), and the hue-adjusted
ROI using Gaussian (b) and Dirac (c) kernel density estimates.

For h ∈ [0, 360◦) degrees, the hue distribution can be constructed using kernel density

estimation

p(h) =
1

M

M∑
i=1

1

σhi

K

(
h− hi
σhi

)
pi, (3.4)

where M is the total number of pixels under consideration, hi is the hue observed at pixel i

with corresponding uncertainty σhi
, and pi is the prior. We considered Gaussian (N (hi, σ

2
hi
))

and Dirac (K(h) = δ(h − hi)/σhi
) kernels in this work. Using the Dirac kernel turns the

kernel density estimation (3.4) into a simple task of computing a weighted histogram, which

is significantly faster, especially since one has to consider the wrap-around property of hue

(h + 360◦ = h) when computing p(h) with Gaussian kernels. When analyzing the ROI,

we consider each observation hi to be equiprobable, i.e., pi = 1/M . The priors of the

surrounding region are modeled just as in Section 2.2. A Gaussian function with a full

width at half maximum of 6◦ of visual angle is convolved around the ROI’s border. The

resulting grayscale map is normalized such that
∑M

i=1 pi = 1 to give the values of the priors.

3.3 Optimal Hue Adjustment

Let the obtained hue distributions of ROI and surround be denoted pR(h) and pS(h),

respectively. Consider the image in Fig. 3.4(a), where the ROI is outlined in green. Fig. 3.5

shows the distribution of hues for the ROI, indicated in red, and surroundings, indicated
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Figure 3.5: Illustration of hue adjustment using Gaussian (top) and Dirac (bottom) kernel
density estimates: (a) and (c) show hue densities of the ROI (red) and surround (blue);

(b) and (d) show KLD S(ϕ) between ROI and surround hue densities as a function of hue
shift ϕ.

in blue, obtained using Gaussian and Dirac kernel density estimates (Fig. 3.5(a) and

Fig. 3.5(c), respectively). Using this representation, a clockwise rotation ϕ of the hue in

the CIE Lch space for all observations within the ROI corresponds to a rightward circular

shift of pR(h) as illustrated in Fig. 3.5(a) and (c) by the dashed red lines. Following the

discussion in Section 3.1, the adjustment that maximizes the saliency of the ROI relative

to its surroundings is the one that makes pR(h) most dissimilar to pS(h). We measure the

dissimilarity between distributions as their KL divergence:

S(ϕ) = D (pS(h)||pR(h+ ϕ)) . (3.5)
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The plots in Fig. 3.5(b) and (d) are obtained by computing (3.5) with the corresponding

distributions in Fig. 3.5(a) and (c) for all adjustments ϕ in 1◦ steps. Since Gaussian kernels

tend to produce smooth, continuous distributions, we generally find that the resulting S(ϕ)

has a clearly-defined maximum. Thus, the optimal adjustment in this case is simply the

one that maximizes S(ϕ), i.e., ϕopt = arg maxS(ϕ).

When using Dirac kernels, it is common to obtain several different values of ϕ that

maximize S(ϕ) due to flat peaks. An example is shown in Fig. 3.5(d), where it appears

that any ϕ in the interval [195◦, 270◦] degrees is suitable. A reasonable approach would be

to take the median of this set as the solution. This procedure is summarized in Algorithm 2.

The optimal hue adjustment obtained with this procedure using k = 0.9 on the S(ϕ) of Fig.

3.5(d) is marked with a circle.

Algorithm 2

1: Select threshold k ≤ 1.
2: Find the set Φ = {ϕ : S(ϕ) ≥ k ·maxS(ϕ)}.
3: For each connected interval Φi in Φ (taking into account the periodicity of hue)
4: calculate the the length ||Φi||1.
5: calculate ϕopt,i = median(Φi).
6: ϕopt = ϕopt,i∗ , where i∗ = arg max||Φi||1.

Once ϕopt is obtained, all observations within the ROI are adjusted as h′i = hi+ϕopt. All

out-of-gamut pixels are clamped when converting the image back to sRGB color space. Note

that the result of hue adjustment with Dirac kernels and Algorithm 2, shown in Fig. 3.4(c),

very closely approximates the result obtained using Gaussian kernels in Fig. 3.4(b), with

the advantage of being much faster.

3.4 Evaluation and Results

We applied our method to 34 images taken from the datasets by Judd et al. [20] and

Nguyen et al. [29] (which were resized by a factor of 1.6 using bicubic interpolation). The

Dirac kernel-based procedure was utilized with k = 0.9 to modify the ROIs. A MATLAB

implementation of our method is available at www.sfu.ca/∼ibajic/software.html.
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Figure 3.6: Histograms of the mean duration of fixations within the ROI per viewer.

3.4.1 Eye-Tracking Tests

Eye-tracking data was collected from a total of 20 nonexpert participants using a head-

mounted Locarna “Pt-Mini” eye-tracker. The control group, consisting of 12 participants,

viewed the unmodified images, while the remaining participants (test group) viewed the

modified images. Participants placed their head on a chin rest at a distance of 70 cm from

a 19′′ display with a native resolution of 1280×1024 in a room with an ambient light of 190

lx. Apart from the initial resizing of the images from Nguyen et al. [29], all images were

shown at their native resolution. Each image was displayed for 4 seconds in fixed order

between two 1.5-second pauses.

A set of consecutive gaze data points are classified as a fixation if they lie within a

proximity of 1◦ of visual angle from each other for a minimum of 0.167 seconds [6]. To

account for possible eye-tracking errors, we dilate the binary mask of the ROI for each image

using a circular disk with a radius of 0.5◦ of visual angle and consider a fixation to be on the

ROI if it is located within this dilated mask. Histograms of the mean duration of fixations

on the ROI per viewer for either group are shown in Fig. 3.6, with blue corresponding to

the control group and red corresponding to the test group.

A histogram count of the duration of fixations on the ROI for each group was computed

and subsequently normalized by the number of participants in each group. The histogram

shows an average of 53 and 19 fixations on the ROI per viewer (out of an average total
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Figure 3.7: Examples of original and modified images used in our experiments with
heatmap visualization of fixations. Each 2-by-2 array that corresponds to an image is
organized as follows: original image (top-left); modified image (top-right); heatmap of
fixations for original image (bottom-left); heatmap of fixations for modified image

(bottom-right).

of 296 and 286 per viewer across all images) for the test and control groups, respectively.

In addition to an overall increase in the total number of fixations on the ROI for the test

group (by a factor of 2.79), a persistent increase in the lengths of these fixations is apparent.

These results indicate that viewers are likely to fixate on the ROI of the modified images

more often and for longer periods of time, compared to the ROI in the original image.

Some examples of modified images are shown in Fig. 3.7 alongside fixation heatmaps that

illustrate the shift in attention towards the modified ROIs.

3.4.2 Naturalness Evaluation

To evaluate the naturalness of our modified images, we conducted a subjective compar-

ison between our images and those modified with other attention retargeting methods. In
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(a) (b) (c)

Figure 3.8: Examples of attention retargeting to the rightmost penguin’s head (a)
Monochrome effect (b) Gaussian blurring (c) Proposed method.

each trial, two images were displayed side-by-side for 4 seconds on a mid-gray background.

One of the images was obtained by our method and the other was obtained using a different

method. Each image was equally likely to appear on either side, i.e., 17 of our images

randomly appeared on the left, while the other 17 randomly appeared on the right. The

images were shown on a 27′′ ASUS LCD monitor with a resolution of 1920×1080. Ideally,

we would have liked to compare our method against another state-of-the-art color-based

saliency manipulation method. We contacted the authors of [40], [12], and [29], but were

not able to obtain implementations of their methods. Hence, we chose a comparison similar

to the one made in [29], against 1) “Monochrome” effect, in which the entire image is con-

verted to grayscale, except for the ROI and 2) “Gaussian blurring,” in which a Gaussian

filter (σ = 3) is applied to the entire image, except for the ROI. Examples are shown in

Fig. 3.8.

For every trial, participants were asked “which of the two images looks more natural?”

in a Two Alternative Forced Choice (2AFC) task [35]. In a 2AFC, the participant is forced

to make a decision between the two available images regardless of how uncertain they are.

This methodology is more robust to measurement noise than scale-based quality ratings,

such as the 5-point scale used in the naturalness evaluation found in [29]. This is because

the naturalness of an image, which can be defined as “the degree of correspondence between

the visual representation of the image and knowledge of reality as stored in memory,” [19]

is a fairly subjective and abstract concept. Mapping different degrees of naturalness to a

fixed set of numbers cannot be accurately done unless the participant is trained beforehand.

Our naturalness evaluation was conducted separately from the eye-tracker tests, with a

total of 24 participants. A two-sided chi-square χ2 test was performed on the voting results

of each image (Table 3.1) under the null hypothesis that both images are equally natural.
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Under the null hypothesis, we expect an average of 12 votes for our image and 12 votes for

the opposing image. The null hypothesis is rejected if p < 0.05, which indicates that there is

a significant difference in terms of naturalness between the two images. In our comparison

against the monochrome effect, the null hypothesis is rejected for 19 images, all of which

have a significantly higher number votes in favor of our method. Against Gaussian blurring,

the null hypothesis is rejected for 16 images, 15 of which favor our method, with only 1 in

favor of the Gaussian blur. These results suggests that our method produces images that

are equally or more natural looking compared to the monochrome effect, and equally or

more natural most of the time compared to Gaussian blurring.

3.5 Conclusion

Systematic manipulation of color to guide visual attention may prove challenging, espe-

cially with the burden of maintaining the natural look of the original image. In this work,

we developed a saliency manipulation method that modifies hue while keeping intensity

and chromaticity constant. We describe the hue content of a ROI and its surroundings

using a polar representation of a perceptually uniform color space, which allows us to easily

determine the optimal hue adjustment to maximize the dissimilarity between the ROI and

its surroundings. In addition to being simple and effective, the methodology makes it clear

why saliency is changed as intended. We apply our method to maximize the saliency of

selected ROIs in a set of natural images and confirm its effectiveness in guiding attention

through eye-tracking. The naturalness of the results was evaluated in a separate set of

subjective experiments.
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Table 3.1: A comparison of the proposed method to monochrome effect and Gaussian
blurring based on the voting results of our subjective experiments.

Image Monochrome Proposed p-value Blur Proposed p-value

Uniforms 5 19 0.0043 4 20 0.011

adsaliency09 8 16 0.1025 3 21 0.0002

adsaliency14 14 10 0.4142 11 13 0.6831

adsaliency21 4 20 0.0011 2 22 0.0000

adsaliency26 9 15 0.2207 3 21 0.0002

adsaliency27 10 14 0.4142 11 13 0.6831

adsaliency31 3 21 0.0002 5 19 0.0043

i1011319098 6 18 0.0143 12 12 1.0000

i1031604161 4 20 0.0011 9 15 0.2207

i1066946823 11 13 0.6831 17 7 0.0412

i1185710392 7 17 0.0412 2 22 0.0000

i1235260142 11 13 0.6831 9 15 0.2207

i1267668332 4 20 0.0011 10 14 0.4142

i1295408832 5 19 0.0043 6 18 0.0143

i1429029695 7 17 0.0412 6 18 0.0143

i1540552783 9 15 0.2207 10 14 0.4142

i169636965 11 13 0.6831 12 12 1.0000

i1795912442 8 16 0.1025 13 11 0.6831

i1870142757 7 17 0.0412 7 17 0.0412

i1893435749 1 23 0.0000 8 16 0.1025

i2132553812 7 17 0.0412 5 19 0.0043

i2145105890 5 19 0.0043 1 23 0.0000

i2145575787 3 21 0.0002 2 22 0.0000

i2186383189 12 12 1.0000 14 10 0.4142

i2200082985 8 16 0.1025 15 9 0.2207

i2240569900 7 17 0.0412 10 14 0.4142

i2259160448 6 18 0.0143 4 20 0.0011

i2263931014 8 16 0.1025 12 12 1.0000

i2273330095 9 15 0.2207 9 15 0.2207

i2288435981 3 21 0.0002 5 19 0.0043

i436895919 11 13 0.6831 8 16 0.1025

i441014928 1 23 0.0000 0 24 0.0000

ioffice indoor 7 17 0.0412 13 11 0.6831

toronto84 12 12 1.0000 12 12 1.0000
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Chapter 4

Subliminal Orienting

Subtlety is an important aspect of attention retargeting. Modifications that degrade an

image so severely that they detract from the viewing experience are of limited practical use,

regardless of whether they guide a viewer’s attention as intended. It would be of great value

to be able to guide attention in the least intrusive manner possible. Ideally, the modifications

wouldn’t be perceivable at all, thus guiding attention subliminally. Retargeting attention in

images and videos without any perceivable alteration from the original stimuli may seem like

an implausible concept. However, it is a topic of research in neuroscience and psychology

that has received a fair bit of interest [28].

Although the studies reviewed in [28] demonstrate that it is possible to guide attention

without awareness, they all use synthetic stimuli, and they use reaction time as a proxy for

attention. It is uncertain whether such effects on attention would be observed if similar cues

were to be applied in natural images and videos. Since reaction-time target detection tasks

are less suitable for natural stimuli, investigation of subliminal orienting in natural images

and videos would require eye-tracking as a more direct measure of visual attention. The

only study to have done this is the work by Huang et al. [15], who briefly displayed a circular

blob prior to displaying an image in an attempt to subconsciously draw attention toward

the blob’s location. The work in this chapter builds upon that of Cheadle et al. [3], which

showed that subliminal flicker is capable of drawing attention in reaction-time tasks with

simple synthetic stimuli. We test whether the same effect is observed in natural stimuli.

The material in this chapter has been presented in [25].
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Figure 4.1: Experimental setup used in [3] to investigate the effects of subliminal flicker on
attention.

4.1 Subliminal Flicker

A study by Cheadle et al. measured the response times of participants in a 3AFC task

to investigate subliminal flicker as a cue for orienting attention [3]. The display used in their

experiment consists of three Gabor patterns, equally spaced on an invisible circle around

the black fixation cross at the center, as shown in Fig. 4.1. In a subset of trials, one of the

three Gabor patterns flickered—its contrast alternating from maximum to minimum—at

a frequency of 50 Hz (corresponding to a 100 Hz refresh rate). The flicker is no longer

discernable at such a high frequency and the flickering Gabor patch appears identical to the

other two. Afterwards, the spatial frequency of one of three Gabor patches was changed.

Participants were told to locate this sudden change in spatial frequency as fast as possible.

Their reaction times were found to be, on average, 15 ms faster in cases where the flicker

is presented in the same location as the subsequent change. This implies that the flicker,

though imperceptible, drew the subject’s attention to its location, notifying them of the

change ahead of time.

These findings are important because they suggest that attention can be retargeted

without perceivable modifications. However, it has not been shown that the attentional

orienting effects of subliminal flicker occur in natural stimuli. To investigate this, we apply

the same type of flicker used in [3] to selected regions in a set of natural images and measure
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(a) (b)

Figure 4.2: Example image with (a) low-contrast ROI and (b) high-contrast ROI. These
images are shown sucessively at 100 Hz to create a 50 Hz flicker. The ROI here is the

container with the orange top in the lower left part of the image.

the resulting changes in attention through eye-tracking. The following section outlines our

experiment.

4.2 Experiment on Natural Images

We selected 25 natural images from a dataset by Judd et al. [20] that varied in com-

plexity from simple landscape images to scenes containing complex salient features, such as

faces and text. Within each image, we selected ROIs away from those that drew a large

number of fixations in eye-tracking data included in this dataset. ROIs were chosen to either

be on the left or right side of the image with no ambiguity. The ROI in each image was

modified to create two different versions of each image: one with a high contrast ROI and

one with a low contrast, as shown in Fig. 4.2. This was done by maximizing the variation

in contrast without forcing values outside the dynamic range, meanwhile ensuring that the

time-averaged contrast was equivalent to that of the original ROI. When these two modified

images are alternately shown in rapid succession, henceforth denoted as “flicker,” the ROI

appears identical to the original image. The code used to generate these stimuli is available

at www.sfu.ca/∼ibajic/software.html.
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Figure 4.3: Format of the eye-tracking test for flickering images.

4.2.1 Eye-Tracking Test

Participants wore a head-mounted Locarna Pt-Mini eye-tracker, while maintaining a

viewing distance of 70 cm via a chin rest. The eye-tracker was calibrated prior to each test

using 9 reference points displayed on the monitor used for testing. The localization task was

performed after the eye-tracking test, at a viewing distance of 70 cm without the chin rest.

All tests were shown on a ViewSonic Graphics Series G220f CRT monitor with a resolution

of 1024×768 at a refresh rate of 100 Hz in a room with an ambient light of 200 lx.

Each stimulus was shown for 4 seconds on a blank (mid-level grey) screen, followed by a

black crosshair displayed for 1.5 seconds at the center of a blank screen. Participants were

told to fixate on the crosshair whenever it appeared, which helped us judge the accuracy

of the eye-tracker throughout the test. A blank screen was displayed for 1.5 seconds after

the crosshair was shown to prevent any center bias for the upcoming stimulus. The test

group of subjects was shown the flicker images, one with high-contrast ROI and one with

low-contrast ROI, alternating at a frequency of 50 Hz, throughout their entire 4-second

duration. The control group was shown the original static images. All stimuli appeared in

random order in each test.

Eye-tracking data was collected from 22 nonexpert participants (17 male, 5 female),

between the ages of 18-30, with either normal vision or corrected-to-normal vision via

contact lenses. A control group of 11 participants viewed the original, static images. The

other 11 participants (test group) viewed the flickering images.

We define a fixation as a set of consecutive gaze data points that lie within 1◦ of visual

angle from each other for a minimum of 0.167 seconds [6]. A fixation is considered to

be on the ROI if it is located within the mask of the ROI after it has been dilated with a

40



C
o
u
n
t
o
f
fi
x
a
ti
o
n
s
o
n
R
O
I

Duration (seconds)

 

 

0.17 0.29 0.42 0.54 0.67+

20

40

60

80

100

120
unmodified
modified

Figure 4.4: Histograms of the duration of fixations within the ROI.

circular disk with a radius of 1◦ of visual angle to account for possible eye-tracking errors. A

histogram count of the duration of fixations on the ROI for the control group (blue) and the

test group (red) is shown in Fig. 4.4. The number of fixations on the ROI were 125 and 162

out of a total of 2226 and 2403 across all images for the test and control groups, respectively.

Thus, we observe a decrease in the overall number of fixations on the ROI in the test group

relative to the control by a factor of 0.77. Heatmap visualizations of the fixation data for all

images are available with the supplementary material at www.sfu.ca/∼ibajic/software.html.

4.2.2 Localization Task

Participants were provided with written instructions, which asked them to locate a

flicker within each image. Each stimulus was shown for 4 seconds in random order, followed

by a 1.5-second blank screen. During this time, participants were asked to decide whether

the flicker was on the left or right side of the image via arrow key inputs on a keyboard. An

input could be changed at any time before the next stimulus appeared. If participants chose

incorrectly, a beeping sound was played to help motivate them to improve their performance.

The localization task was performed by all 22 participants after they completed the

eye-tracking test. If the flicker were truly imperceptible, we would expect the average

localization accuracy over many subjects and images to be 0.5, called the chance level.

However, our set of images is relatively small and side-biased because out of 25 images,
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15 have ROI on the left and only 10 on the right. To remove this bias, we consider all

possible datasets that can be formed by removing 5 images with ROI on the left. In total,

there are
(
15
5

)
= 3003 possible unbiased datasets that can be formed by removing 5 left-ROI

images. We compute the 95% confidence interval for the mean accuracy in each one of

these unbiased datasets and obtain the average of all left endpoints and all right endpoints.

The final side-bias-corrected confidence interval is [0.50, 0.63]. Since the chance level lies

on the boundary of this interval, the data suggests that the flicker is subliminal at the 95%

confidence level.

4.3 Conclusion

The results of this preliminary study seem to indicate that subliminal flicker, on average,

works to repel attention away, rather than draw it to its location in natural images. The

histogram in Fig. 4.4 shows a decrease in the overall number of fixations on the ROI of the

flickering images, relative to the original flicker-free images. This effect can be observed in

various fixation heatmaps for each image as well. Fixations appear to be more scattered

in the original static images. Among the test images, there were a few cases that showed

increased concentration of fixations near the flickered ROI, however, their number was

small compared to those images that showed the opposite effect. The impact of image

content on the ability of subliminal flicker to draw attention is an issue that requires further

investigation.

A more detailed analysis is necessary to determine whether the fixations between the

test group and the control group are significantly different, and until signifance is confirmed,

further speculation as to the underlying causes of these differences cannot be made. Based

on our current evidence, it appears that on average, subliminal flicker does not attract

attention in natural images.
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Chapter 5

Conclusions

5.1 Summary of Contributions

This thesis presents an introduction to attention retargeting and its connection to visual

saliency. We define attention retargeting as a saliency inversion problem and specify the

main challenges involved. Some general approaches to this problem are presented with ex-

amples from existing work in an attempt to arrange these works within a unified framework,

which was previously nonexistent. Though we do not claim that our problem definition and

subsequent analysis is definitive, we hope that the foundation laid here will help provide a

new perspective on the existing methodologies.

We propose two novel attention retargeting methods to predict the extent to which a

viewer’s gaze will be drawn towards a ROI after that region is modified. The first operates on

orientation—a previously unexplored visual feature for attention retargeting—by rotating

the ROI. The second operates on the color of the ROI. Both methods map relative ROI

saliency to their respective visual modifications in an efficient manner. We choose the

modification that maximizes the relative saliency of the ROI for our evaluations. In addition,

the methodology makes it clear why this modification maximizes relative saliency.

There are two issues to consider when evaluating attention retargeting models: 1) Does

the retargeting guide attention as intended? 2) Does the retargeting harm image natural-

ness? We used eye-tracking in our evaluations as a direct measure of visual attention. A

group of participants views the modified dataset, while a control group views the original

dataset. To demonstrate an increase of attention on the ROI when viewing the modified

dataset, we take into account both the number of fixations on the ROI, as well as their
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lengths. An increase in these two attributes over the control group reliably indicates that

viewers tend to be drawn to the ROI of the modified images more often. Heatmap visu-

alizations of fixations are also provided to illustrate the general gaze patterns among all

viewers of a particular group. As a reliable measure of naturalness, we conduct subjective

tests where participants are forced to decide which image looks better in a comparison of

two images, both of which are modified by two different retargeting algorithms. We hope

that our evaluation methodology serves as a good model for future research in the field.

We also analyzed the plausibility of subliminal flicker as a means for drawing attention

in natural images without the viewer’s knowledge. We alternated the contrast from high to

low at a frequency of 50 Hz within selected regions in a set of natural images. Eye-tracking

data was collected on a group of participants that viewed the flickering images and another

group that viewed the original static images. A subsequent localization task was used to

determine whether the flicker was truly subliminal. A comparison of the eye-tracking data

between the two groups indicated that subliminal flicker may, on average, repel attention

rather than attract it.

5.2 Future Work

As a relatively unexplored topic, attention retargeting presents a wide array of possi-

bilities for improvement. Though we may still be far from a saliency inversion algorithm

capable of projecting changes from a target saliency map onto a desired set of features in

an image with minimal harm to its naturalness, several intermediate steps can be taken.

The straightforward approach of reverse-engineering existing saliency models may provide

valuable insight into attention retargeting. A reliable measure of naturalness, especially for

ROI-based modifications, may be of critical importance. Methods to predict how changes in

a combination of image features affect saliency can be a crucial development. Furthermore,

it may also be worthwhile to investigate the differences in gaze patterns on retargeted im-

ages between specific demographics, e.g., a comparison between men and women, teenagers

and seniors, artists and accountants, etc. Finally, the plausibility of subliminal orienting in

natural images and video remains an open issue. We hope that our work sparks interest in

attention retargeting and motivates others to contribute.
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