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Abstract

In this thesis, we proposed two novel methods for blastomere extraction and trophecto-

derm segmentation in an attempt to aid physicians in determining embryo’s viability. Accu-

rate assessment of embryo’s viability can play a vital role towards optimization of in-vitro

fertilisation (IVF) treatment outcomes.

The first proposed automatic method is developed to identify blastomeres in human

embryo HMC (Hoffman Modulation Contrast) images of day-1 to day-2. Our algorithm

applies isoperimetric graph partitioning, followed by a novel region merging algorithm to

approximate blastomeres positions. Ellipsoidal models are then used to approximate the

shape and the size of each blastomere. The proposed algorithm is evaluated on a dataset

of 40 embryo images and it exhibits an average blastomere extraction accuracy of 80%.

The second method segments Trophectoderm (TE) regions in embryos of day-5 (also

known as blastocysts) by first eliminating the inhomogeneities of the blastocysts surface

using Retinex theory. A level set algorithm is then used to segment TE regions. We have

tested our method on a dataset of 85 images and have achieved a segmentation accuracy

of 85% for grade A, 89% for grade B and 92% for grade C.

Keywords: In-vitro fertilisation, Blastomeres, Trophectoderm, Embryo viability, Blastocyst.
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Chapter 1

Introduction

1.1 Introduction

Assisted reproductive technology (ART) came into light with the birth of Louise Brown in

1978. Since the introduction of ART as a treatment for infertility, the number of treatment

cycles for couples has steadily increased. In the last two decades, the use of fertility

treatment has increased dramatically as a result of a trend toward delayed childbearing.

Economic and social climates, as well as pursuit of advanced careers have influenced a

significant number of women to defer childbearing to their mid 30s and early 40s. Unfortu-

nately, female reproductive capacity declines from a peak in the second and third decades

of life so that by the age of 40 there is a significant reduction in fertility with a high chance

of miscarriage. The Canadian Community Health Survey reports that about an average of

13.6% (11.5% to 15.7% ) of Canadian women suffer from infertility (data for 2009-2010)

which translates to about 900,000 infertile women between ages 18-44.

In-vitro fertilisation (IVF) is a process used to achieve successful pregnancies by fertil-

izing an egg with a sperm outside the female’s body. A key component of IVF treatment

offered to infertile couples involves a controlled hormonal hyper-stimulation of the ovaries

in order to enable the retrieval of several oocytes (female eggs). After the eggs are re-

trieved, the semen of the male partner is allowed to liquefy at room temperature and is

prepared for fertilization by removing inactive cells and seminal fluid. The eggs are then

combined with the sperm in a separate dish that contains special culture medium ready for

fertilization. After that the dish is then placed back inside of an incubator. As a result of

1
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fertilization, a zygote is formed. Therefore, the success rate of IVF highly depends on opti-

mal conditions of the culture in the laboratory. In addition, the success rate depends on the

methods used for viable embryo (developed during Day 1 to Day 5 IVF process) selection.

Currently, the quality of embryos is being analyzed by medical professionals to assess the

probability of a healthy fetus from an embryo. Despite the continuous efforts of researchers

to optimize existing protocols and procedures, implantation rates for IVF embryos remain

relatively low with a clinical pregnancy rate of 30% per transfer [1]. This is partly related to

the high variability in developmental competence of the embryos produced during an IVF

cycle and difficulties in determining which of the generated embryos has the highest po-

tential leading to live birth. For this reason, IVF clinics across the world often transfer more

than one embryo per cycle to increase the odds that a viable embryo will be transferred.

While this approach has helped to maintain the current IVF pregnancy rates, it has also

led to large numbers of multiple pregnancies (MP). The potentially negative consequences

of MPs include pre-eclampsia, maternal haemorrhage, operative delivery, uterine rupture

and preterm labour [2]. MPs can easily be prevented by transferring fewer embryos to the

patient’s uterus, if the quality of embryos can be determined precisely and therefore trans-

ferring only the embryo with the highest implantation potential. Multiple pregnancies can

be reduced by actively promoting single embryo transfer (SET). The use of SET has in-

creased in clinical practice simultaneously with a requirement for an acceptable pregnancy

rate. In order to develop a system capable of effectively selecting the most viable embryos,

a strong improvement needs to be made in the current morphological evaluation methods.

This results into the need of highly skilled embryologists capable of assessing the quality of

embryos or development of an automatic method that will allow less skilled embryologists

to assess the quality of embryos with the help of automated systems. The Canadian statis-

tics indicates the number of IVF initiated cycles in Canada for 2007, 2008, 2009, and 2010

are 8,972, 9,868, 10,390, and 11,718 respectively. Each cycle of IVF cost an average of

CAD $ 11,000. Despite the availability of this procedure in most places these days, its high

cost limits the number of time that a couple can afford to use this procedure as an infertility

option. Here, we hope to develop automatic methods to decrease the dependence to ex-

pensive and highly skilled embryologists as well as increase the probability of selecting the

embryo with the highest implantation rate.
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Figure 1.1: Pre-implantation embryonic stages (adapted from [3]).

This dissertation addresses the problem of automatic identification of two different com-

ponents of an embryo. We believe this is a step towards developing automated technolo-

gies that can assess the quality of an embryo at different stages of its growth outside the

patient’s body and help to grade it using its morphological characteristics. Following sec-

tions will provide an overview of the pre-implantation embryo development. Additionally,

a review of current embryo grading techniques, followed by the difficulties faced by these

methods are presented. Finally, the aim and objective of this thesis are discussed.

1.2 Development of the Pre-implantation Embryo

Fertilization is the first step in human embryo development. Fertilization is produced on

penetration of spermatozoon through the extracellular multilayer glycoprotein membrane

known as the zona pellucida (ZP). The spermatozoon membrane further fuses with the

oocyte membrane to produce a fertilized oocyte [4]. Once fertilized, the oocyte is denoted

as zygote (1-cell stage) as shown in Fig. 1.1. Next, zygote enters into its first mitotic

division resulting into two embryonic cells known as first clevage. The 1st cleavage cycle is

completed with the 1st division early on day 2, about 24-29 hours after fertilization [5]. The

two embryonic cells divide during the 2nd and 3rd cleavage cycles, forming a 3 and a 4 cell

embryo on day 2. Further cleavages result in the formation of more than 4 cells, followed
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by a final round of cell divisions, before the embryo starts compacting into a morula on day

4. Shortly after the morula stage a fluid filled cavity develops. This cavity, also known as

the blastocoel, defines the blastocyst stage [4]. On day 5, the embryonic cells differentiate

and turn into the inner cell mass (ICM), which will later develop into the fetus, and the

trophectoderm (TE), respectively which later creates the plecenta. TE is responsible for

the formation and subsequent expansion of the blastocoel [6]. Escape of the mammalian

embryo from the surrounding zona pellucida (ZP), referred to as hatching, usually occurs on

day 5-6. An outline of the cellular and embryonic stages of a human embryo development

is presented in Fig. 1.1.

1.3 Embryo Grading

Embryo examination and grading have resulted in an improved success rate of pregnan-

cies in IVF over the past few years. In addition, embryo grading has reduced the number

of transferred embryos leading to multifetal pregnancies. Grading systems currently use

developmental rate and cell morphology to assess the quality of embryos. In order to as-

sess the viability, embryos are removed tentatively from the incubator and observed under

the microscope at a few, discrete and well defined inspection times [7]. Despite the varied

embryo grading schemes used by different fertility clinics, most laboratories grade embryos

based on the degree of fragmentation, presence and number of nuclei and size, number

and symmetry of blastomeres. On the other hand, blastocysts are primarily evaluated with

respect to the expansion of the blastocoels and the number and cohesive property of cells

in the ICM and TE [8]. However, all different scoring systems can be grouped into three

main systems: zygote, cleaved embryo and finally blastocysts scoring systems [9].

1.3.1 Zygote Scoring System

In the zygote scoring system, the evaluation is performed 16-18 hours after fertilization

and it evaluates the pronuclear size and symmetry, size, number, quality and distribution of

nucleoli and appearance of cytoplasm as shown in Fig. 1.2. The most popular system was

introduced by Scott et al. [10] that has been widely accepted and reported for its usefulness

in the selection of good embryos leading to better implantation rates. This system uses five

grades based on both number and distribution of nucleoli in the pronuclei described in
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Figure 1.2: Pre-implantation embryonic stages.

Table 1.1: Grades are based on number and distribution of nucleoli in the pronuclei.

Grade Definition
1 Equal numbers of nucleoli aligned at the pronuclear junction. The ab-

solute number of nucleoli ranges between three to seven.
2 Equal numbers of nucleoli of equal size in the same nuclei but one

nucleus having alignment at the pronuclear junction and the other with
scattered nucleoli.

3 Equal numbers and sizes of nucleoli which are equally scattered in the
two nuclei.

4 Unequal numbers and/or sizes of nucleoli.
5 Pronuclei that are not aligned.

Table. 1.1.

According to the experiments performed by Scott et al. [10], 49.5% of zygotes with equal

number of nucleoli resulted into blastocyst formation while this number was only 29% for

zygotes with unequal number of nucleoli. Hence, zygotes of grade 1, 2 and 3 are preferred

for IVF implantation.

1.3.2 Cleaved Embryos System

In the cleaved embryos system, features including (i) Number of cells (blastomeres) (ii)

Appearance and size of blastomeres (iii) Cytoplasm defects (fragments) are evaluated 40-

48 hours after fertilization. These features are shown in Fig. 1.3.
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Figure 1.3: Pre-implantation embryonic stages.

The Cleaved Embryo system has been adopted by many researchers including Puis-

sant et al. [11], Staessen et al. [12], Steer et al. [13] and Zeibe et al. [14]. However, several

other grading techniques have been introduced by other research groups, and many clin-

ics use their preferred grading system. Puissant et al. [11], for example, used the scoring

technique shown in Table. 1.2.

Table 1.2: Embryo Scoring.

Score Definition
1 Fragments over >1/3 of embryonic surface.
2 Embryos with more fragments but over <1/3 of the embry-

onic surface.
3 Embryos with few or no fragments but with unequal blas-

tomeres (>1/3 difference in size).
4 Embryos with clear, regular blastomeres and either no frag-

mentation or a maximum of five small fragments.

According to the experiments performed by Puissant et al. [11], 32% of the embryos

with grade 3 or 4 successfully resulted into a fetus, while this number was only 21% for

embryos with grades 1 or 2. Hence, embryos of grades 3 or 4 are preferred over embryos

of grades 1 or 2.

On the other hand, Zeibe et al. [14] graded embryos based on morphological criteria as

described in Table. 1.3.

According to the experiments performed by Zeibe et al. [14], the implantation rate (21%)
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Table 1.3: Embryo grading based on Morphology.

Morphology Score Definition
1.0 Equally-sized symmetrical blastomeres.
2.0 Uneven sized blastomeres.
2.1 Embryos with 10% fragmentation.
2.2 Embryos with 10-20% fragmentation.
3.0 20-50% blastomeric fragmentation.
4.0 50% blastomeric fragmentation.

and pregnancy rate (43%) after transfer of embryos of score 1.0 were significantly higher

than that of embryos of score 2.0 (14 and 32% respectively). Transferring embryos of

score 2.1 resulted in significantly higher implantation rates (26%) as compared to embryos

with score 1.0. Transferring embryos of score 2.2-3.0 resulted in a significantly lower im-

plantation (5%) and pregnancy (15%) rates. Another important finding was that embryos

of quality score 2.0 had a significantly lower implantation rate compared to embryos with

quality scores of 1.0 and 2.1 with significantly lower pregnancy rates compared to embryos

of quality score 1.0.

The authors also analyzed the implantation and pregnancy rates with respect to the

number of blastomeres or cells in an embryo. The transfer of 4-cell embryos resulted in

significantly higher implantation and pregnancy rates (23 and 49%) compared to 2-cell and

3-cell embryos. Furthermore, the transfer of 4-cell embryos resulted in a significantly higher

pregnancy rate compared to embryos that had cleaved beyond the 4-cell stage. From these

experiments it was concluded that the pregnancy rate is only acceptable for 2-4 cell or day

1-3 embryos and decreases beyond day-3 embryo images. The suboptimal performance

of embryos developed beyond day 3, has led many clinics to maintain their day 2 or day

3 embryo transfer practice. The reasons for this high rate of embryonic loss during early

development are unclear, but could include chromosomal abnormalities, suboptimal culture

conditions or inadequate oocyte maturation.

1.3.3 Blastocysts Scoring System

A blastocysts scoring system grades embryos on day 5 of their development. The day 5

stage is also known as blastocyst stage. This system grades the viability of embryos based
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on the level of expansion of ZP, TE cell layer and ICM cells enclosing a fluid filled cavity as

shown in Fig. 1.4.

Cavity mass

ICM

TE

Blastocyst

Outer ZP
boundary

Inner ZP
boundary

TE’s inner boundary

TE’s outer
boundary

Figure 1.4: Human embryo on day 5 (blastocyst stage) of its creation.

The blastocyst embryo grading systems proposed by Dokras et al. [15] and Gardner et

al. [8] have been widely accepted for blastocyst grading. Dokras et al. [15] uses blastocoel’s

development rate and its characteristics to grade an embryo. The embryo is graded as

BG1, BG2, or BG3. On the other hand, Gardner et al. [8] focuses on blastocoel size and

developmental characteristics of the ICM and TE to grade the blastocyst. First, a blastocyst

is graded from 1 to 6 according to its level of ZP expansion. Next, the blastocyst is graded

further using the characteristics of ICM from A to C with A being the best score and C being

the worst. Finally, it is graded according to the quality of TE. A is associated with the best

grade while C is associated with the worst score as shown in Table. 1.4.

Despite the large number of published studies, there is no agreement on the most ac-

curate method for embryo grading. The grading systems adopted mostly rely on factors

such as the embryologists, knowledge, experience and the IVF clinic by itself. However,

for the work in this thesis, we aim to propose a system capable of automatically extracting

the features used to grade an embryo. Here, we will not be grading an embryo, rather

we automatically segment different components of an embryo to allow eventually, auto-

matic grading by machine using a sequence of images instead of discrete and scattered

observations.
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Table 1.4: Gardner’s system (top) embryo development grading (bottom) ICM and TE grad-
ing

Grade ZP grade or Expansion quality
1 Blastocoel cavity less than half the size of embryo.
2 Blastocoel cavity more than half the size of embryo.
3 Blastocoel cavity completely filling the embryo.
4 Blastocoel cavity larger than that of early embryo.
5 Hatching out of ZP.
6 Hatched out of ZP.

Grade TE quality
a Many cells in a cohesive layer.
b Few cells in a loose epithelium.
c Very few large cells.

Grade ICM quality
A Many tighly packed cells.
B Several loosely grouped cells.
C Very few cells.

1.4 Thesis Objective

The main objective of this thesis is to develop an intelligent system to identify and seg-

ment blastomeres in day 1-day 2 human embryos as well as TE region in blastocyts. This

potentially can help embryologists in selecting the embryo with the highest probability of im-

plantation. Successful implantation of an embryo depends on the development of embryo

on day 1, 2, 3 and 5. Size and shape of blastomere on Day 1, 2 and 3 are strong indicators

of the embryo viability. The probability of an embryo producing a fetus also highly depends

on the thickness of TE in blastoceol (Day 5). Hence, we aim to design a system capable of

identifing the blastomers from day-1 to day-2 and TE from day 5 embryo images.

Blastomere extraction is a complex problem due to fragmentation in embryo images.

In addition, overlapping and irregularly shaped blastomeres could increase the complexity

of the recognition problem as shown in Fig. 1.5. The first row shows blastomere images

with different percentage of fragmentation. The second row depicts images with different
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Figure 1.5: Examples of day 1-day 2 embryos with different qualities.

number of blastomeres. Finally, the third row presents the blastomere with even and uneven

sizes.

TE segmentation analysis is also a vital part of many embryo grading systems. The

complex nature of patterns and shapes of an embryo makes it very difficult to segment the

TE regions as depicted in Fig. 1.6. The first row of this figure showcases blastocysts with

TE containing a large number of cells in the cohesive layer. In addition, the TE is clearly

differentiable from ICM. The second row presents examples in which TE is connected to

the ICM. The third row shows blastocyst images with TE containing only few cells in the

cohesive layer.
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Figure 1.6: Examples of blastocyst embryo quality.

1.5 Contributions

In this work, two contributions have been made:

1. We proposed and implemented an automatic blastomere identification and modelling

approach in an attempt to aid IVF scientists in determining embryo’s viability. This

method uses isoperimetric graph partitioning to segment the image into approximate

blastomere regions. The false regions are merged using a novel region merging

algorithm, and further ellipsoidal models are employed to approximate the shape and

the size of blastomeres.

2. We developed a fully automatic method for segmentation and measurement of TE

region in day 5 human embryos. This system can be further used to compute the

width of the TE, which can be useful for automatically training and grading TE quality

[16].
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1.6 Thesis Organization

The remainder of the thesis is divided into four chapters. Chapter 2 presents our proposed

graph based algorithm that is used to approximate the shape and the size of blastomeres.

Chapter 3 details the proposed partial differential equation based algorithm for TE seg-

mentation. Finally, Chapter 4 presents the conclusion along with suggestions for future

work.



Chapter 2

Blastomere Detection

Fertility specialists have linked size, shape and position of blastomeres in humans embryos

with the viability of such embryos [17]. Such parameters play a vital role in manual em-

bryo grading. The most common approach used for estimating these parameters includes

observation and measurement of such parameters using digital 2D microscopic images of

embryos. These images represent the embryo, a 3D-like translucent side-lit structure, in

a 2D form that is easy for human interpretation, as shown in Fig. 2.1. Difficulties arise

with automatic image analysis because of the side-lit nature of HMC images, as well as

partial or full overlaps between blastomeres, cellular fragmentation, and irregular shapes

and sizes.

A handful of attempts have been made to automatically segment blastomeres using 3D

modeling approaches. Wong et al. [18] presented an automatic tracking method based on

particle filter to track the cleavage of embryos. Tian et al. [19] proposed a preprocessing

method to obtain part of singly connected blastomere edges from a single embryo image.

Least square curve fitting (LSCF) method was further applied on these edges to auto-

matically extract blastomeres. Pedersen et al. [20] proposed a 3D modeling system for

blastomeres through Z-stack images using a multiphase variational level set with manually

extracted contours. Giusti et al. [21] proposed a system for analyzing blastomeres (cells

in day 1 to day 3 of the embryo’s development) using 3D volumes of microscopic HMC

embryo images. Both methods required upwards of 20 images at various focus levels to

complete an entire model for one embryo. They first transfered each image to an acyclic

graph associated with a predefined energy. By searching for the path of lowest energy, the

3D contour generator curve was found. Thus the segmentation was achieved.

13
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Figure 2.1: HMC images for different blastomere categories (a) one cell (b) two cells (c) three cells
(d) four cells.

Here, we propose a novel method for segmenting blastomeres during day 1 and day

2 of the embryonic development using a single image, thus reducing the computational

complexity. The algorithm uses a graph partitioning and region merging method followed

by a model based shape fitting technique to extract blastomeres in an attempt to aid physi-

cians in determining embryo’s viability. We discuss experimental results on a dataset of

40 embryo images, and expand on the advantages and drawbacks of our method while

comparing our method to other approaches.

The chapter is divided into the following sections. Section 2.1 describes the proposed

algorithm. Section. 2.2 presents the implementation of the algorithm. Section. 2.3 illus-

trates the details of the dataset used for the experimentation. Finally, Section 2.4 presents

the step-by-step experimental results leading to blastomere segmentation.

2.1 Proposed Algorithm

The blastomere extraction algorithm proposed in this chapter comprises four components.

The first component segments the image into regions that correspond to the blastomeres

using isoperimetric graph partitioning. Due to non-uniform illumination while imaging and

cellular fragmentation within each embryo, the resulting regions (we refer to them as parti-

tions) might not correspond to a complete blastomere. To obtain regions that each corre-

spond to one complete blastomere, we propose the second component of the algorithm, a

novel region merging algorithm that utilizes length, vesselness [22], and entropy [23] of the

borders between regions. These regions are good indicators of the position of blastomeres;

however, accurate blastomere shapes are required. To represent blastomeres shapes, the

third and the final step of the algorithm utilizes candidate ellipsoidal models that are fitted

to the edges of the image via a least-squares fitting approach. Among all found candidates,
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Figure 2.2: Proposed system’s flowchart for blastomere identification.

those that best represent combinations of merged regions are selected. A couple of phys-

ical constraints are used to further filter outlying candidates. These physical constraints

include the minimization of the unused space within an embryo and a state of equilibrium.

Fig. 2.2 displays the block diagram of the proposed method. Details of each process are

presented next.

2.1.1 Isoperimetric Segmentation

This section details the application of isoperimetric graph segmentation for blastomere ex-

traction on HMC human embryo images. In order to better understand isoperimetric graph

segmentation, the fundamentals of graph-based segmentation are provided followed by

details of isoperimetric graph segmentation.

2.1.1.1 Graph Partitioning

Graph partitioning, originally introduced by Boykov and Kolmogorov [24], aims to select

subsets of graph vertices such that the subsets share a minimal number of spanning edges.

Graph partitioning uses min-cut algorithm to segment image graphs into vertex subsets

(foreground and background) while satisfying a certain cardinality constraint. An example
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Figure 2.3: Foreground and background is labelled using wide brush strokes. Hard constrained
segmentation is accordingly performed using the foreground and background seed pixels.

of the image to be segmented is presented in Fig. 2.3. The example shows an object

present in front of a background. The user marks the ”foreground” and ”background” pixels

using free-form, wide-brush strokes. The system uses the marked pixels as foreground

and background seeds to perform image segmentation.

Once the object to be segmented is labelled by the user, image segmentation frame-

work classifies any image pixel p to either the foreground or the background. The label

assigned to the image pixels are stored in the label vector X as mentioned below:

X = xp, where xp ∈ {frg, bkg} (2.1)

For an optimal segmentation the label vector X should result in the minimization of an

energy function that is defined by:

E(X) = (1− λ)
∑
p∈P

E1(xp) + λ
∑
p,q∈N
xp 6=xq

E2(xp, xq) (2.2)

In the above equations, P represents the set of all image pixels, N is the set of neigh-

bouring pairs of pixels (8-connectivity chosen), E1 is called the region term, E2 the bound-

ary term, and λ a constant that controls the relative significance of the two terms. For
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a given labelling, xp ∈ (frg, bkg), E1(xp) is low if p indeed fits to be a foreground/ back-

ground pixel as segmented. For two adjacent pixels with different labels p, q ∈ N, xp 6= xq,

E2(xp, xq), is low if p and q have high grayscale differences, which implies they’re indeed fit

to represent a border. A soft constraint can be used for the border pixels, however the pix-

els marked by the user should necessarily follow the hard constraint. Hence, the resulting

segmentation should hold the following labels:

∀p ∈ F, xp = frg (foreground)

∀p ∈ B, xp = bkg (background)
(2.3)

Where F (and B) are the user marked foreground (and background) pixels respectively.

2.1.1.2 Segmentation as a Graph Cut

The image is now treated as an undirected weighted graph G ∈ (V,E) where for each pixel

p there exists a node in V , and for each 8-connectivity pixels-pair there exists an edge in E.

Two special terminal nodes called source and sink were added to present ”foreground” and

”background”, respectively. Edges were added from each pixel-node to the two terminal

nodes. The edges between neighbouring pixels are represented by n-links [24] while edges

from a pixel-node to a terminal node are denoted by t-links as shown in Fig. 2.4.

A cut in a graph is the subset of the edges that, if removed, splits the graph into two

sub-graphs. The cost of the cut is measured by the sum of weights of the cut edges. The

minimal cut is the cut with minimal sum-of weights out of all possible cuts. The problem

of finding a minimal cut is closely related to the max-flow problem. Max-flow method can

segment the graph in low order polynomial time to obtain a globally optimal solution [25].

Each possible image graph segmentation can be described as a cut that separates the

source (foreground) from the sink (background). The minimal cut will generate the optimal

segmentation with respect to the properties built into the edge weights. In order to obtain

the best segmentation, correct weights need to be selected that will result in minimization

of Equation. 2.2.
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Figure 2.4: Foreground/Background pixel nodes are marked in white/brown (resp.). The source
and sink terminal nodes are drawn outside the image. n-links are drawn in yellow and t-links in
white/brown. Links with high weight are shown thick. Min-Cut algorithm best separates the source,
with all the foreground pixels, from the sink, with all the background pixels.

2.1.1.3 Defining the Edge Weights

Edge weights should reflect the soft as well as the hard constraints. The soft constraints

should reflect the probabilities that a specific ”unmarked” pixel p belong to either foreground

or background. These probabilities are based on the pixels that the user labelled initially.

These probabilities are estimated by using the foreground and background marked pixels

to generate the normalized histograms Hfrg(I) and Hbkg(I), respectively. The hard con-

straints should be reflected in very high/very low edge weights that will force the marked

pixels to be in the desired side of the cut.

p w(p, S) w(p, T )

∀p ∈ F K 0
∀p ∈ B 0 K
∀p ∈ U − lnHbkg(p) − lnHfrg(p)

Table 2.1: Graph Cut Table

Next, the arc weights for the t-links of both hard and soft constraints are defined in

Table. 2.1. K, is a large enough constant that is not included in the minimal cut. Note that

U = P −(F ∪B) is the set of uncertain pixels to be segmented. To better understand Table.
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Figure 2.5: Defining the edge weights. (a) User marks only one seed pixel for foreground and one
for backgrounds (marked O and B respectively) (b) A Weighted graph is generated. Weights for
t-links to background terminal node T and for n-links are shown (t-links to foreground terminal S are
equivalent). (c) Minimal cut. (d) Imposed segmentation.

2.1, consider an example with a pixel p with high probability to be classified as foreground

frg, where Hfrg(p) is relatively high. As a consequence − logHfrg(p) will be relatively

small resulting in a lower weight on p in t-link. In the final segmentation, this edge will have

a higher probability of belonging to the cut. Therefore, p is detached from T and placed in

S side (foreground) of the cut. The graph segmentation process is presented in Fig. 2.5. In

order to correctly separate between pixels that have opposite frg/bkg labels, we must give

such neighbouring pairs a low-cost weight on their link (so their connecting edge will be

included in the cut). The following cost function assigns a low cost to pixels with different

intensities:

W (p, q) = exp(−(Ip − Iq)2

2σ2
)

1

dist(p, q)
, where xp 6= xq (2.4)
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Note that here, the normalization is performed based on the distance (dist in Eq. 2.4)

between pixels as the adjacent pixels can relate by diagonal directions. The pixels that are

far apart have small or zero adjacent weight. Once the adjacent weights are computed,

the n-links weights are multiplied by λ while the t-links weights by (1 - λ), as explained

in Equation. 2.2. The minimal cut with respect to the weights will result into the best

segmentation according to the overall energy. This is clear from the definition of minimal

cut; however, it is also proven mathematically in [24].

2.1.1.4 Isoperimetric Partitioning

Isoperimetric partitioning, proposed by Leo Grady [26], solves a linear system of equations

instead of an eigenvector problem for graph partitioning. The isoperimetric algorithm is

similar to spectral partitioning in its use and capabilities (e.g., multilevel spectral partition-

ing [27] and geometric-spectral partitioning [28]). However, it requires the solution to a

large, sparse system of equations instead of solving the eigenvector problem for a large,

sparse matrix. This contrast in isoperimetric partitioning makes it faster and numerically

more stable.

A graph is a pair G = (V,E) with vertices v ∈ V and edges e ∈ E ⊆ V × V . An edge,

e, spanning two vertices vi and vj , is denoted by eij . Let n = |V | and m = |E| where |.|
denotes cardinality. A weighted graph has a coefficient assigned to each edge called a

weight. The weight of edge eij , is denoted by w(eij) or wij . Since weighted graphs are

more general than unweighted graphs (i.e., w(eij) = 1 for all eij ∈ E in the unweighted

case), all the results are developed for weighted graphs.

Graph partitioning has been strongly influenced by properties of a combinatorial formu-

lation of the classic isoperimetric problem. One such example is finding the shape with

minimum perimeter for a fixed area [29]. The approach to graph partitioning used here is

a polynomial time heuristic for the NP-hard [30] problem of finding a graph with minimum

perimeter for a fixed area. Cheeger [31] defined the isoperimetric constant h of a manifold

as:

h = infS
|∂S|
V olS

(2.5)

where S is a region in the manifold, V olS denotes the volume of region S, |∂S| is the area

of the boundary of region S, and h is the infimum of the ratio over all possible S. For a
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compact manifold, V olS ≤ 1
2V olTotal, and for a noncompact manifold, V olS <∞ [30]. For

a graph, G, the isoperimetric number, hG is:

hG = infS
|∂S|
V olS

(2.6)

where S ⊂ V and

V olS ≤
1

2
V olV (2.7)

In finite graphs, the infimum in Equation 2.6 becomes minimum. The boundary of a set, S,

is defined as ∂S = {eij | i ∈ S, j ∈ S̄} and on a weighted graph:

|∂S| =
∑
eij∈∂S

w(eij) (2.8)

In the context of graph partitioning, combinatorial volume is typically taken as:

V ols = |S| (2.9)

For a given set of nodes, S, the ratio of its boundary to its volume is named as the isoperi-

metric ratio and denote it by h(S). The isoperimetric sets for a graph, G, are any S for

which h(S) = hG. A good partition is defined to be one with a low isoperimetric ratio.

Therefore, the goal is to maximize V olS while minimizing |∂S|. Finding isoperimetric sets is

an NP-hard problem [30], and the algorithm used is a heuristic one for finding a set with a

low isoperimetric ratio that runs in polynomial time. An indicator vector that takes a binary

value at each node is defined by:

xi =


0, if vi ∈ S.

1, otherwise.
(2.10)

A specification of x also defines a partition. The n× n matrix L of a graph is defined as:

Lvi,vj =


di, if i = j.

−w(eij), if eij ∈ E

0, otherwise

(2.11)
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where di denotes the weighted degree of vertex vi

dij =
∑
eij

w(eij) ∀eij ∈ E (2.12)

The notation Lvi,vj is used to indicate that the matrix L is being indexed by vertices vi
and vj . This matrix is also known as the admittance matrix in the context of circuit theory

or Laplacian matrix [32].

By definition of L we have:

|∂S| = xTLx (2.13)

and V olS = xT r where r denotes the vector of all ones. Maximizing the volume of S subject

to V olS = k for some constant k 1
2V olV may be done by asserting the constraint:

xTLx = k (2.14)

The minimum value of the isoperimetric constant hG for a graph G for minimum value

of isoperimetric constant h is defined as:

hG = minx
xTLx

xTd
(2.15)

Here L is the the Laplacian matrix, d is the vector representing nodes degree, and x is the

real solution. In order to solve for a particular solution x0, the node with the largest degree

in L is chosen as the ground node vg. The gth row and column of the Laplacian matrix L

are removed and the modified matrix is denoted as L0. The gth row is represented as x0,

while the vector of nodes’ degree is denoted by d0. Equation (2.15) can be solved as a

linear system by reformulating it as a constrained optimization with a Lagrange multiplier.

The real solution of x0 is obtained by solving the following linear system:

L0 = x0 × d0 (2.16)

The solution x0 is classified as foreground or background, if it is greater or smaller than a

cut value of α, defined by the user. The process is continued for each segment until the

isoperimetric constant value of all partitions becomes smaller than a stop value of 0.05,

adopted from the original work in [26].
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Figure 2.6: Partitions that corresponds to: (a) regions with different brightness values despite
being from the same blastomere. (b) Cellular fragmentation. (c) An ellipsoidal hypothesis with the
highest border- and area-overlap is a over-imposed on the segmented region.

2.1.2 Proposed Region Merging Algorithm

Any partitioning method including isoperimetric partitioning may produce unwanted parti-

tions within a blastomere due to directional illumination of the subject and/or cellular frag-

mentation as shown in Figs. 2.6(a) and (b), respectively. To eliminate false partitions, a

novel region merging algorithm is introduced. The algorithm uses the length, the en-

tropy [23], and the vesselness of each partition as well as its area to merge partitions.

The vesselness is defined by edges and their strength and is computed after enhancing

the input image using a multi-scale enhancing filter [22]. Equation (2.17) assigns low Po-

tential values to partitions with small areas or short lengths as they more likely correspond

to cellular fragmentation or are due to non-uniform illumination of the surface of an embryo.

For each partition, the entropy is computed as a measure of the amount of disorder in the

image [23] and the vesselness is computed using Frangi’s [22]. Once all four attributes are

computed for each partition, the Potential of each partition is computed by:

Potential = 1− e−(
∑3

i=1Xi×Wi)×area (2.17)

Here Xi is the attribute (length, entropy and vesselness), Wi is the weight for a specific

attribute and area is the area of the region to which the partition belongs to. All partitions

with Potential values below a merging threshold are removed. In order to estimate the

merging threshold and weights in Equation (2.17), we performed test trials on 10 training

images. These 10 images are selected from the dataset so that they include 1 to 4 cells. In

particular, we have chosen 2 images of one cell, 2 images of two cell, 3 images of three cell

and 3 images of four cell embryos. The training dataset contains higher number of training
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images for embryos with higher number of blastomeres as these images can have high

fragmentation and cell overlaps. This can result into large number of false partitions that

essentially requires more examples to capture the variability of the conditions and obtain

a better estimate of the weights. Once isoperimetric partitioning segments our images

into approximate regions corresponding to blastomeres, the region merging algorithm is

applied to merge regions with similar characteristics. The weights in Equation. 2.17 are

manually adjusted in order to merge the maximum number of regions. Finally, after taking

the average of the optimal weights for all 10 images, we arrived to the weight values of 0.5,

0.3 and 0.2 for length, vesselness and entropy, respectively. We also used these weights

to compute Potential for each partition using Equation (2.17). The merging threshold was

computed by taking the average value of Potential of all partitions, which for this work was

0.8.

2.1.3 Ellipse Model Fitting Using Partition Set

The region merging algorithm generated an improved, yet reduced partition set compared

to the initial isoperimetric segmentation results; however, these regions are better in in-

dicating the position than the exact shape or profile of the blastomeres. To combat this

problem, we propose generating ellipsoidal models from the edge image, then finding the

ellipses that best fit our segmented regions.

The edge image is generated by first smoothing the original image using anisotropic

diffusion [33]. It is a nonlinear diffusion method that applies an inhomogeneous process on

the image to reduce the diffusivity at those locations with higher likelihoods of being edges.

This likelihood is measured by |∇u|2. The anisotropic diffusion filter is based on:

∂tu = div(g|∇u|2∇u) (2.18)

Next, a Hessian based edge detector [34] is applied to create the edge image. The

Hessian edge detector defines an edge on a pixel, if and only if, there are some points in

the pixel’s neighbourhood that have negative slope zero crossings of the second directional

derivative. This derivative is taken in the direction of a nonzero gradient at the pixel’s

center. All the pixels following this properly are marked as an edge while remaining all

pixels are replaced with a zero magnitude edge. Finally, a direct least-squared ellipse fitting

algorithm [35] is applied to each pair of edges to produce a set of candidate ellipses. The
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best ellipses are chosen as those with the highest percentage border and area overlap with

the segmented regions. An example of one such best ellipse (with high border overlaps

with the region) is shown in blue in Fig. 2.6(c).

2.1.4 Elimination of False Hypotheses

The set of candidate ellipses consists of true hypotheses representing true blastomeres

as well as false ones generated due to noise, fragmentation, cell overlaps, and lighting

conditions. Some examples of ellipse candidates generated for different images are shown

in Fig. 2.7. The false hypotheses must be removed. Details of the removal procedure are

presented next.

(a) (b) (c) (d)

Figure 2.7: Result of ellipse fitting on four sample images.

2.1.4.1 Large Hypotheses Removal

In this part, ellipsoids covering large area of the embryo are removed from the candidate

set. In case of one cell embryo images, majority of ellipsoids cover the entire area of the

embryo while few ellipsoids may include some background as well. To remove such large

ellipses, the image region covered by the entire set of found ellipses is computed. Each

ellipse aims to capture a blastomere in the image; therefore all ellipses cover the majority

of the embryo area. However, overfitting of some of the ellipses may include certain pixels

from the background resulting in a larger area as compared to true blastomeres existing in

the image. This difference in area is utilized to remove those large candidates that extend

beyond the true area of the embryo. Removal of large hypothesese in embryo images

containing more than two blastomeres is presented with an example. Fig. 2.8(a) shows

an example of one such case overlapping with more than 50% with the embryo area. The
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area of the embryo is estimated by dilating the edge image 100 times followed by an erosion

process carried out the same number of times. The estimated area is shown in Fig. 2.8(b).

Figure 2.8: (a) A large ellipse hypothesis. (b) Estimated embryo area.

Further, we performed test trials on 10 training images to determine the maximum area

covered by an ellipsoid below which it is classified as a true candidate hypothesis. Through

these training images, we determined that ellipsoids with an area overlap less than 70%

with the embryo area should be in the candidate set. The area covered by an ellipsoid is

computed using the following:

Rk =

∑M
i=1

∑N
i=1H(i, j)∑M

i=1

∑N
i=1A(i, j)

× 100 (2.19)

Where H is the M × N hypothesis binary mask, A is the M × N binary mask of the

embryo and Rk is the percent area coverage for hypothesis k. After applying this process

to samples shown in Fig. 2.7(d), we will have all the large hypotheses removed while

maintaining hypotheses that are more similar to the profile of the true blastomeres that

exist in the image, as shown in Fig 2.9.

Figure 2.9: Large hypothesis is removed from the ellipse set.
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2.1.4.2 Similar Hypotheses Removal

This step removes redundant ellipses that are too similar in shape, size, and spatial lo-

cation. Similarity between two hypotheses H1 and H2 is computed using the following

equation:

S =
H1 ∩H2

H1 ∪H2
× 100 (2.20)

Here H1 and H2 are M × N binary mask of the two hypotheses and S is the similarity

measure between hypotheses k1 and k2. The smaller hypothesis at the intersection of

H1 and H2 is removed if S is greater than 95%. An example after the application of this

process on the embryo image shown in Fig. 2.7(a) is presented in Fig. 2.10.

Figure 2.10: Similar hypotheses removed from the set of candidate ellipses: (a) included 21 hy-
potheses while (b) includes the reduced hypothesis set of 14 ellipses.

2.1.5 Set Based Candidate Selection

The set of ellipses that best represent the merged regions of an embryo must satisfy two

physical constraints common to every embryo. These constraints are: (i) The centroid of

each embryo is near to the centroid of the polygonal shape defined by the centroids of

all candidates. (ii) Blastomeres rarely fully overlap of completely covered fall behind one

another, resulting in their 2D views to completely covered or fall inside another cell. As

the number of blastomeres in an embryo are unknown, the ellipsoidal models generated in

the previous section are grouped into sets that contain 2 to 4 blastomere candidates. The

physical constraints are explained in more details in the next section.
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2.1.5.1 Centroid Proximity

Blastomeres spatially arrange themselves inside an embryo in a way that minimizes the

unused space. We refer to this as the state of the equilibrium. This fact is used to retain

equilibrium states with cardinality of 2 to 4 that are distributed evenly throughout the em-

bryonic volume. Examples of such equilibriums for two, three and four blastomeres are

shown in Figs. 2.11 (a), (b) and (c), respectively.

Figure 2.11: Visualization of the state of Equilibrium.

To determine the distribution of the hypotheses within an embryo, a polygon can be

constructed out of their centers. For a two blastomere embryo, the constructed shape is a

line, for a three blastomere embryo, it is a triangle, and for a four blastomere embryo, it is

a rectangle. From Fig. 2.11, it can be observed that the central point of the line, triangle,

and rectangle appear to be near to the center of embryo’s mass. Although the center

point, or midpoint, of a line can easily be found, the center of an irregular polygon often

does not exist, because it is unlikely that a point can be found that is equally spaced from

each vertex. However, the centroid, or weighted center, of an irregular polygon can be

determined. For a non-intersecting, closed polygon with n vertices, (x0, y0).....(xn, yn), the

location of the centroid is defined as (Cx, Cy) [36], where:

Cx =
1

6A

n−1∑
i=0

(xi + xi+1)(xiyi+1 − xi+1yi) (2.21)

Cy =
1

6A

n−1∑
i=0

(yi + yi+1)(xiyi+1 − xi+1yi) (2.22)
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A =
1

2

n−1∑
i=0

(xiyi+1 − xi+1yi) (2.23)

The centroid of an equilibrium can be calculated and then compared with the actual

center of the embryo in the image. To find the actual center of the embryo, the binary

embryo image is used. This image is eroded with a disk structuring element of radius 7 to

smooth the outer edges and remove unwanted outer regions not corresponding to actual

blastomere. The resulting image is a fully enclosed shape as shown in two examples of

Fig. 2.12.

Figure 2.12: (a) Input image (b) It’s binary embryo mark with embryo centroid marked with red. (c)
Another input image (d) It’s Binary embryo mark with embryo centroid marked with red.

Once the centroid of the equilibrium and the embryo mask are generated, the distance

between them is used as an indicator to estimate the distribution of equilibrium. For the

centroid of the equilibrium, (Cx, Cy), and the centroid of the embryo, (Ex, Ey), the Euclidean

distance is used to estimate the distance, d, between the two. It is expected that this

distance is minimum for the set that best represent the actual locations of blastomeres. It

was experimentally determined that setting a maximum centroid distance of 10 pixels, can

help to remove most of the false sets that contradict the equilibrium state.
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Figure 2.13: The figure shows sample of Equilibriums consisting of 2-4 hypotheses.

2.1.5.2 Contained and Disjoint Hypotheses Removal

To further reduce the number of equilibriums, the characteristics of embryos with two, three,

and four blastomeres were taken into consideration. Equilibrium set is further reduced by

removing the hypothesis with no or excessive overlap with other hypotheses. This process

is based on two very simple principles:

1. Disjointness: There are never disjoint blastomeres in an embryo. For example, in a

two blastomere embryo, there will always be an overlap between the two blastomeres.

2. Containment: Blastomeres very rarely fully overlap or contain each other. For exam-

ple, in a three blastomere embryo, a true blastomere will never fully contain the other

two.

Fig. 2.13 provides a range of sample equilibriums generated from the embryo shown

in Fig. 2.12(a). These samples are obtained after verification of the centroid constraint

mentioned in Section 2.1.5.1. It can be seen that the equilibriums in Fig. 2.13 do not follow

the two principles described above. In Fig. 2.13(a), one ellipsoid contains another ellipsoid

while in Fig. 2.13(b), both ellipsoids are disjoint. Finally, Fig. 2.13(c) contains both disjoint

and as well as contained ellipsoids. As these equilibriums don’t follow the characteristics of

a true embryo, it is appropriate, that such equilibriums should be found and removed from

the set of candidate equilibriums.

The first step taken to remove bad equilibriums is to generate a list of hypotheses that

are disjoint and a list of hypotheses that are contained. The disjoint case is when there

is a sizeable gap between hypotheses. In some cases there is a very small gap between

hypotheses and it must be ensured that such equilibriums are not removed. Also, for
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containment, some hypotheses are almost fully contained in another hypothesis. It must

be ensured that such equilibriums are removed.

To find disjoint hypotheses the original hypothesis list is used. To account for hypothe-

ses that do not overlap, a morphological process is used that utilizes the binary image of

each candidate. The relationship between two binary hypotheses B1 and B2 are deter-

mined using the following equation:

Dis = B1 ∩B2 (2.24)

B1 and B2 are disjoint if Dis is equal to 0%.

To find contained hypotheses, a similar approach is used. Once again, all combinations

of two hypotheses are compared. To account for hypotheses that almost fully overlap with

each other, the following algorithm has been used:

Cont = B1 ∪B2 (2.25)

B1 and B2 are contained if Cont is equal to B1 or B2.

2.1.6 Final Equilibrium Selection

The process for selecting the best equilibrium from those remaining, for one to four cell

embryo images, utilizes the edgemap of the original image. Ideally, every edge point in

the original image should belong to only one hypothesis. For this reason, the amount of

the overlap between the boundaries of the equilibirum and the edge map is used as an

indicator of the quality of the equilibrium. Therefore, the best equilibrium is selected as the

equilibrium with the highest percentage of overlap with the edge image.

To find the best equilibrium that captures the blastomeres in an embryo image, the fol-

lowing operations are applied. In the first step, small connected edges that do not actually

correspond to blastomere edges are removed. The raw edge image containing these small

edge fragments is shown in Fig. 2.14(a). The edge image is cleaned by removing edges

with less than 10 pixels length as shown in Fig. 2.14(b). All the equilibriums are further

dilated and overlapped on the cleaned edge image. An example of a dilated binary equi-

librium is shown in Fig. 2.14(c). The intersection between the equilibrium boundary and

the edge map (for one case) is shown in Fig. 2.14(b). By summing the edge points in
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(a) (b) (c)

(d) (e)

Figure 2.14: (a) Edge representation (b) Refined edge representation (c) Best equilibrium.

Fig. 2.14(d), the percentage of pixels overlapping with the equilibrium are calculated. This

process is repeated for all remaining equilibriums and the equilibrium with the highest num-

ber of overlap is chosen as the best candidate set. Fig. 2.14(e) shows the best equilibrium

set selected by this process.

2.2 Dataset

In order to compute the accuracy of the proposed algorithm, we have used a dataset of 50

HMC human embryo images. The dataset is divided into 10 training and 40 testing images.

All the blastomers existing in these images were manually extracted by the authors. We

utilize the results of the manual identification as our Ground Truth (GT) and compare the

output of our algorithm with those.

2.3 Algorithm Implementation

An HMC embryo image containing three blastomeres, as shown in Fig. 2.15(a), is selected

to demonstrate step by step results of the proposed algorithm. In this case, one blastomere

is contained within another blastomere. This blastomere in 3D space spatially falls behind

the 2D plane at which the image is focused on. As mentioned earlier, our method will not
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detect that specific blastomere. Isoperimetric partitioning segments the input image, into

8 regions using a cut value α of 0.6 (Section 2.1) as shown in Fig. 2.15(b). The algorithm

successfully segments one blastomere while generates multiple segments within the three

remaining. Length, vesselness and entropy along with the area of the regions, to which a

partition belongs to are computed in the subsequent step to merge superfluous partitions,

as described in Section 2.1.2. Examples of a good (large region on the bottom of the image)

and a bad (small region on the top of the image) partition over-imposed on the vesselness

and the entropy image are shown in Figs. 2.15(c) and 2.15(d), respectively. The values of

vesselness and entropy are shown using intensity mapping. The brightness values in Fig.

2.15(c) represents highly vesseled regions, and the dark regions in Fig. 2.15(d) represents

low entropy values.

(a) (b) (c) (d)

Figure 2.15: (a) Input image. (b) Isoperimetric partitioning of the input image. Values of (c)
vesselness, (d) entropy, of the input image.

Fig. 2.16 shows the results for the region merging process. Here, the region merging

algorithm has merged three of the seven regions as shown in Figs. 2.16(a) to 2.16(c).

Fig. 2.16(d) shows the regions after the merging process is completed.

(a) (b) (c) (d)

Figure 2.16: Step by step region merging leading to the removal of three of the seven regions using
potential threshold of 0.8. The regions merged in each step are represented with white border.

Here, the algorithm has not merged the remaining false partitions caused by the non-

uniform illumination that resulted in high entropy and gradient values. The ellipsoidal

shape of the blastomeres is further exploited to conform each ellipse using a pair of edges
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generated via Hessian edge operator, and a least-squared fitting method, as shown in

Fig. 2.17(a). All ellipsoidal candidates generated are shown in Fig. 2.17(b). From all gener-

ated candidates, we select those that have 90% or more overlap in their areas and bound-

aries with those of the partitions.

(a) (b) (c)

(d) (e) (f)

Figure 2.17: (a) Ellipse fitting using least-squared method using an edge pair. (b) Ellipse candi-
dates are generated using all edge pairs. A good ellipse candidate has a large intersection with the
segmented regions (c) and their boundaries (d). A bad candidate has smaller region and boundary
overlaps as shown in (e) and (f).

Examples of good and bad candidate ellipses are presented in Figs. 2.17(c) to 2.17(f).

Figs. 2.17(c) and (d) show an ellipsoidal candidate with more than 90% overlap with the

area and boundary values. On the contrary, the area and the boundary overlap of a bad

ellipsoidal candidate is small, for the example in Figs. 2.17(e) and 2.17(f). Fig. 2.18 repre-

sents some ellipse candidate sets before applying the equilibrium constraint.

(a) (b) (c) (d)

Figure 2.18: Hypotheses sets with cardinality of 1 to 4.
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As the embryo images contains a maximum of four blastomeres, the ellipsoids are

grouped into sets of 2 to 4 cell equilibriums. The sets with centroids that are less than

10 pixels away from the centroid of the embryo are retained, while others are removed

as outliers. This further reduces the blastomeric candidates, as shown in Fig. 2.19(a).

In this case, one blastomere is fully fallen behind another and therefore are removed,

Fig. 2.19(b). The accuracy of the ellipse modeling on blastomeres is computed using the

intersection of the obtained results with those of the manually identified ground truth as

shown in Fig. 2.19(c).

(a) (b) (c)

Figure 2.19: Blastomeres: (a) satisfying the equilibrium, (b) after removal of contained candidates.
(c) Final results are displayed on the top of ground truth.

2.4 Parameters, Experimentation and Results

The proposed algorithm is tested on a dataset of 40 HMC embryo images with ten images

for each of the one, two, three and four blastomere embryos. Blastomere extraction is a

difficult problem due to fragmentation, uneven size of blastomeres and occlusion between

neighbouring blastomeres. The algorithm is applied for blastomere extraction using a single

set of parameters for all images. Qualitative and quantitative evaluations, comparisons with

other methods, as well as performance aspects in terms of implementation and portability

are presented next.

2.4.1 System Parameter Settings

The proposed system has a few parameters that are set according to the characteristics of

the input images. In this section, we explain the reason behind the values selected for such

parameters as this knowledge might help to port our system for input images of different
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sources. We consider these parameters to be the most important ones in the success of

our algorithm for other images.

2.4.1.1 Isoperimetric partitoning

Isoperimetric algorithm is utilized to segment the input image into regions corresponding to

blastomeres as shown in Fig. 2.15(b). The algorithm differentiates the foreground from the

background based on the value of α (0.6 for this work) as mention in Section 2.1.1.4. In

order to select the optimal value of alpha (α), isoperimetric partitioning is applied on training

images with different alpha values. In each case, the alpha value that segments an embryo

image into regions that closely resemblance blastomere cells in the image, is selected. The

final alpha value is computed by taking the average of all alpha values corresponding to

each training image. Furthermore, isoperimetric partitioning is a recursive process and the

process is continued for each segment until the isoperimetric constant value of all partitions

becomes smaller than a stop value of 0.05 taken from the original work mentioned in [26].

2.4.1.2 Region Merging Algorithm

Region merging algorithm is used to merge regions generated by isoperimetric segmenta-

tion that don’t correspond to a real blastomere. The algorithm uses the length, the entropy,

and the vesselness of each partition as well as its area to merge unwanted regions for-

mulated in Equation. 2.17. All partitions that are below a merging threshold are removed

resulting into merging of unwanted regions as explained in Section 2.1.2. In order to com-

pute a proper value of the merging threshold that somehow fits all of our input images

empirically, the merging algorithm was applied to a 10 embryo images. In each case, the

value of the merging threshold was adjusted such that all the false partitions that don’t cor-

respond to a real blastomere are merged. The estimated weights corresponding to length,

entropy and vesslness along with the merging threshold are presented in Table. 2.2.

Table 2.2: Empirically estimated mean threshold and weights used in Region Merging al-
gorithm.

Merging Threshold W1 (Length) W2 (Vesselness) W3 (Entropy)
0.8 0.5 0.3 0.2
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2.4.1.3 Ellipsoid Fitting

Figure 2.20: Sample results for the proposed algorithm. Each row represents input images with a
certain number (1 to 4) of cells.

Ellipsoids generated from the edge image are fitted on the reduced partition set to find

the ellipses that best correspond to the segmented regions as explained in Section. 2.13.

Edges of the input image are computed by first smoothing the image using anisotropic

diffusion [33] and then applying a Hessian based edge detector [34]. A least-squared

ellipse fitting algorithm [35] is further used to produce a set of candidate ellipses for each

pair of edges. The parameters used by the above three methods are presented here:
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1. Anisotropic diffusion: Anisotropic diffusion is used to reduce noise in embryo images

without blurring the edges of blastomeres as mentioned in Section. 2.1.3. Diffusion

with an integration constant of 0.3 and a gradient modulus threshold of 30 was applied

to all the images presented in this work.

2. Hessian based edge detector : We used a Hessian-based edge operator to generate

the edge model for our embryo images. The operator filters each image using a 5 ×
5 Gaussian kernel with a standard deviation of 10 pixels before extracting the edges.

3. Least-squared ellipse fitting: Least-squared ellipse fitting is used to fit ellipsoids

shapes on the reduced region set obtained after region merging. The fitting algo-

rithm fits ellipsoids with a maximum error tolerance of 10−5 and a maximum of 200

iterations for the Gauss-Newton step for all the regions in the reduced region set.

2.4.1.4 Set Based Candidate Selection

Set based candidate selection chooses the best ellipse for each region and places them

in a reduced region set from the total ellipse candidates using the least squared error

minimization method. The algorithm uses the following measures to eliminate less probable

ellipse candidates:

1. Large candidate removal : Large ellipsoids in the candidate set are less likely to be a

best fit for any region as explained in Section. 2.1.4.1. Hence, ellipsoids which occupy

more than 70% of the embryo area are removed.

2. Similar candidate removal : The ellipsoid set may contain multiple candidates that are

very similar in shape, size, or spatial location. Ellipse candidates with a similarity

index more than 95% are eliminated from the candidate set.

3. Contained and Disjoint : According to the characteristics of embryos with two to four

blastomeres, the blastomeres never contain other blastomeres within an embryo im-

age. Utilizing these properties, an ellipse candidate having more than 90% overlap

with another candidate is removed from the candidate set. In addition, disjoint blas-

tomeres are never present within an embryo image. Based on the disjoint property

of blastomeres, the ellipse candidates with no area overlap are also eliminated from

the candidate set.
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Figure 2.21: (a) Percentage of blastomeres detected in each category. (b) Accuracy of the mod-
els fitted to the blastomeres in each category. (c) Percentage of blastomere candidates correctly
segmented in all four-cell embryo images.

2.4.2 Qualitative Evaluation

In this section, we present some typical results for our proposed algorithm as shown in

Fig. 2.20. The results presented in Fig. 2.20 show that the algorithm can accurately extract

the blastomeres in the cases of one and two cell images. However, with increase in number

of blastomeres, the algorithm under-fits and over-fits ellipsoids to blastomeres due to the

factors mentioned in Section. 2.1.2. Hence, the algorithm is not able to perfectly extract

the blastomeres in embryo images with more than two cells.

2.4.3 Quantitative Evaluation

Quantitative evaluation of the results demonstrate the performance of the proposed algo-

rithm based on three measures: (i) Identification of blastomeres (ii) Identification of the

shape of the blastomeres, and (iii) Comparison with state of the art. Fig. 2.21(a) visualizes

the accuracy of the proposed detector in identifying blastomeres within an embryo image

containing different number of cells. All blastomeres in 10 one-cell embryo images were
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identified correctly resulting in 100% accuracy. Unfortunately, the results for the images of

2, 3 and 4 cells are less accurate. The second performance measures the accuracy of the

detector based on the shape of the blastomeres. The shape accuracy obtained by finding

the overlap between the true boundaries of blastomeres and those found by our algo-

rithm, presented in Fig. 2.21(b). Finally, the proposed algorithm is compared with the state

of the art algorithm proposed by Giusti et al. [21]. The proposed algorithm is compared

with Giusti’s method by measuring the number of blastomeres identified by both algorithm

within a four cell embryo image. Currently, the only reported work in this area is by Giusti et

al. [21], which has an accuracy of 71%. Our proposed algorithm is capable of identification

and modeling of blastomeres in HMC images of human embryos with an average accuracy

of 80% with a standard deviation of 10.03%. As observed from the graphs, single cells

are easier to segment comparing to four or more cells due to the fact that there are more

overlaps between the blastomeres that seem to make the task harder in these cases.

(a) (b)

Figure 2.22: Average running time for (a) blastomere detection for each category, (b) region merg-
ing for different number of regions.

2.4.4 Performance

The proposed system is implemented in Matlab 7 and tested on a PC (CPU Intel Core2

Quad 2.26 GHz with 2 GB RAM). The input images are 620 × 500 pixels. The entire

extraction process takes an average of 4.2, 6.2, 12.8 and 21.0 seconds to complete for
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one, two, three and four cell embryo images, respectively as shown in Fig. 2.22(a). Due

to the complexity of images with more blastomeres, the average time for segmenting such

images is higher than the ones with lower number. The average time for segmenting blas-

tomeres as a function of number of partitioned regions is also presented for each category

in Fig. 2.22(b).



Chapter 3

Trophectoderm Segmentation

3.1 Introduction

Accurate assessment of embryos viability is an extremely important task in the optimiza-

tion of IVF treatment outcome. One of the common ways of assessing the quality of a

human embryo is grading it on its fifth day of development based on morphological quality

of its three main components: Trophectoderm (TE), Inner Cell Mass (ICM), and the level

of expansion or the thickness of its Zona Pellucida (ZP). In this work, we propose a fully

automatic method for segmentation of TE region of blastocysts (day five human embryos).

Researchers are continuously making efforts towards developing techniques and measures

that enhance the chance of selecting viable embryos. These efforts have led to the devel-

opment of grading systems that are used to bench mark embryos into different categories

according to their potentials in leading to live birth. A morphological grading system crafted

by Gardner and Schoolcraft [37] is widely adopted by IVF clinics for selecting the embryo

with the highest quality based on three morphological measures [38]. Despite the availabil-

ity of such scoring metric, it is very difficult to choose one embryo over its siblings without

knowing the relative contribution of each parameter. Experiments by Ahlstrom et al. [39]

has shown the superiority of grading TE over other measures, which can be further used

to select the embryo(s) with the highest implantation potential from a group of embryos.

The study also presented an essential need for a strong TE layer for successful hatching of

an implanted embryo. Hence, it is extremely important and necessary to analyze the TE’s

quality to assess the quality of an embryo at the blastocyst stage.

42
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In the past, medical professionals have manually analyzed human embryos and further

guessed the probability of live birth associated with such embryos. Bendus et al. [40]

proved that the involvement of human embryologists may lead to significant differences

between the scores allocated to a set of embryos by different embryologists. It is impossible

to avoid such difference in these scores resulting in a direct impact on the likelihood of IVF

success. This difference can potentially be avoided by taking aid from automatic methods

that are capable of computing more robust and precise scores.

A number of attempts have been made in the past to analyze human embryos using

semi-automatic techniques. Hnida et al. [41] presented a semi-automatic software to an-

alyze human embryo’s morphology. FertiMorph, a semi-automatic system by IHMedical

A/S, Copenhagen, Denmark, was proposed for analyzing the blastocyst size in a sequence

of embryo images. They used variational level set algorithm proposed by Li et al. [42] to

segment the TE’s inner boundaries.

Although some semi-automatic methods have been developed in the past, full automa-

ton has yet not been achieved due to the complex nature of patterns and shape of different

components of an embryo at different stages. In addition, a significant error can occur

in automatic identification due to the image quality and debris in the neighborhood of an

embryo’s growing environment. In this paper, we propose a robust and automatic seg-

mentation method for TE that performs accurately even in the presence pf partial views of

other embryos and occasional debris in the blastocyst background. We utilize the Retinex

algorithm [43] to de-emphasize cells in the cavity area and further apply a level set algo-

rithm [44] to segment TE regions in the blastocyst image. The superiority of our algorithm

over previous work is demonstrated using blastocyst images of all TE grades.

The chapter is divided into the following sections. Section 3.2 describes the blasto-

cyst grading system. The previous work in computer-based embryo image processing and

analysis is also presented in that section. Section 3.3 explains details of the proposed seg-

mentation algorithm. Section 3.4 overviews our image acquisition device and its settings

as used for capturing our dataset images. Section 3.5 describes the ground truth estab-

lishment. Finally, Section 3.6 details related parameters and the experimental results on

our database of HMC embryo images. It also provides performance related details.
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3.2 Blastocyst Grading

Before providing more details of the proposed method, it is essential to develop an under-

standing of blastocyst components and grading. Each blastocyst consists of cavity that is

filled with fluid enveloped by single layer of cells known as Trophectoderm (TE). In addition

to TE, the cavity contains a set of cells known as the Inner Cell Mass (ICM) that is respon-

sible for the formation of definitive structures of the fetus. Each embryo has a glycoprotein

membrane surrounding the cells inside of the embryo named Zona Pellucida (ZP). The

ZP membrane helps maintain the proximity of the blastomeres before compaction which

occurs after day 3 of development. The image of a human blastocyst with its different

components is displayed in Fig. 3.1.

Cavity mass

ICM

TE

Blastocyst

Outer ZP
boundary

Inner ZP
boundary

TE’s inner boundary

TE’s outer
boundary

Figure 3.1: Human embryo on day 5 (blastocyst stage) of its creation.

Gardner’s grading system [8] ranks blastocysts from 1 to 6 for development, A or B or C

for ICM’s quality, and A or B or C for TE’s quality. Since the objective of the proposed work

in this paper is only to segment TE region, we only describe the TE quality measures. TE

quality of A represents many cells in a unified tightly packed layer, B denotes few cells in a

loose-fitted epithelium, and C characterizes a collection of few large cells. Fig. 3.2 depicts

three images of a blastocyst with different TE grades.

Currently, the decision on which embryo to transfer is made on the basis of morpholog-

ical assessments of embryos conducted by embryologists and endocrinologists in the IVF
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A B                            C

Figure 3.2: Sample images of three grades of TE (A to C).

laboratories [8],[45],[46]. There are a number of morphological features that have shown

some association with embryo viability, but it is not always clear how these features should

be weighted relative to one another. Moreover, the available grading systems mostly rely

on the visual information that are observed by embryologists and therefore are subjective

and highly dependent on the level of expertise and experience of the observers (and to

some extent intra-observer) [40]. Automated image analysis could add objectivity to the

processes of embryo assessment and selection, and consequently lead to better identifi-

cation of viable embryos.

3.2.1 Previous Work in Computer Based Embryo Analysis

Much of the clinical research in IVF is focused on analyzing different aspects of an embryo

while under development and ultimately grading it according to its morphology, size and

shape at different stages of growth, fragmentation, development rate etc. Most aspects of

such analysis, however, are performed manually. While there are some user interface and

software tools that could assist researchers to perform region and boundary identification

as well as computing various measures, there are very few machine-vision based systems

that could perform any of the above tasks automatically.

A number of previous works (although not that many) have been presented for iden-

tification and grading of different components of human embryos in Hoffman Modulation

Contrast (HMC) microscope images. Pedersen and Olsen [20] used level sets by Zhao-

Chan [47], to model embryos’ boundaries. Karlsson et al. [48] described an automatic

area-based segmentation system for identification of the inner and outer circumferences
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of ZPs with 88% success rate using 48 samples. Morales et al. [49] presented a system

using Canny edge detection [50] and active contours to highlight ZP contours. Filho and

Noble [51] presented a semi-automatic blastocyst grading system. They utilized training

sets to establish fundamental characteristics of class centeroids and then they classified

each region according to its distance from classes’ centers using support vector machines

(SVM). The feature vectors that represented each embryo were composed of a set of mo-

ments calculated based on the embryo image histogram. They identified the outer and

inner boundaries of TE regions and computed the fractal dimension correlating with the

number of TE cells.

As presented in the above reviews automatic analysis of embryo images has not yet

attracted much attention from the image analysis and computer vision community and only

very few researchers have reported their work on this field. The potential for making a

contribution in this area is significant. In this chapter, we propose a novel method that

automatically identifies TE regions. We extend on the preliminary work reported by Santos

Filho et al. [51] through presenting a full feature extraction procedure. We present the

pre-clinical results of our approach and suggest some potential avenues of future work.

The main contribution of this work is in introducing a fully automatic machine based

system for identification of TE regions in images of human embryo blastocysts. The system

requires no manual pre- or post-processing of the input images.

3.3 Proposed Method

The segmentation algorithm proposed in this work comprises of three main components.

The first component is the Retinex algorithm that is used to smoothen the cavity area of the

embryo. The second component of the algorithm is the level-set algorithm used to segment

the TE regions. The third and final step of the algorithm is a post-processing procedure

that is aimed for final cleaning and segmentation. Fig. 3.3 displays the block diagram of the

proposed method. Details of each section is described next.

3.3.1 Retinex Theory

The 2D projection of a 3D spherical embryo, the transparency of the embryos’s shell, and

the focus/fixation of the imaging device could create visual artifacts that appear as shadows
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Figure 3.3: Proposed system flowchart for segmentation of TE regions.

and ghost like cells on the cavity regions of blastocyst images. The image data in the cavity

region includes low frequency components with small slopes that are similar to those of

non-uniform illumination.

In order to remove these low frequency components, we make use of Retinex algo-

rithm [52]. This algorithm exploits the property of human visual system to achieve color

constancy by reducing the impact of the illumination component on the reflectance compo-

nent of an image. Retinex is also utilized for digital image enhancement and lightness/color

rendition [53].

According to this theory, the observed color/intensity of an object depends on the light

reflection property of the object and not the absolute value of the intensity of the light

source. Therefore, by computing the ratio of light and shade in an image, one may cor-

rect the gray scale values of the image in shaded areas. The Retinex algorithm has been

modified and presented in many different ways for various applications with different ef-

ficiencies [54–56]. The first group of Retinex algorithms were of random walk type [52].

They compute the relative relationship between light and shade by walking along all 1D
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paths in the entire image and computing reflection values (at each pixel) that depend on

the average value of the light to shadow ratio of all pixels in a global scale. The second

group of Retinex algorithm [55, 56] use Homomorphic filtering [57]. They utilize the fact

that illumination in an image is expected to be spatially smooth while the sharp details

are associated with the reflectance. The third group of Retinex algorithm are based on an

iterative spatial comparison of the image pixels to gradually adjust the maximum bright-

ness [58, 59]. The fourth group of Retinex algorithms focus on improving the efficiency

of the algorithm [43, 60]. Through different assumptions these methods make the Retinex

algorithm a candidate for Poisson formulation. For this, often the image Laplacian and a

thresholding method are utilized to highlight or extract image discontinuities.

In this work we have adopted the Retinex algorithm proposed by Morel et al. [43]. On an

image, paths are defined by a set of pixels starting from a pixel x and ending at a random

stopping pixel y [52]. At image boundaries, these random paths approximate Brownian

paths. Isotropic Brownian paths are function of radial distance from a pixel coordinate

and hold similar values in all directions subject to the same parameter settings and similar

gradient slopes in the image plane.

We further adopt the formulation of discrete random walks over an image grid from [61].

This formulation considers a collection ofN walks or paths 1, · · · , k, · · ·N , starting at xt and

ending at an arbitrary pixel y. nk denotes the number of pixels of the path k, and xi and

xi+1 (i = {1, ...nk−1}) represent two consecutive points in the path k. All these paths for

the collection of N walks that are formulated on an image I of M × N pixels are defined

on the discrete rectangular grid R, with xt as the starting pixel and y as ending pixel. The

Neumann boundary condition [62] is forced by converting the image into a symmetric and

periodic image of size 2M × 2N pixels by first mirroring the image across its right, and

then bottom sides. Morel et al. [43] considers a target pixel y is met when the random walk

from xt and x̂t both stop at y. Here x̂t is conjugate to xt in the image plane which is both

symmetric and periodic. The random walk is expected to stop in finite-bounded time n(y).

The symmetric random walk is hence defined as:

xyt =

 xt if t <= n(y)

y otherwise
(3.1)

The relative lightness of a random walk starting at x and stopping at y is defined as:
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L(x; y) = E

n(y)∑
t=1

δ

(
log

(
I(xyt )

I(xyt+1)

))
(3.2)

here E is the expectation or the average over all the paths in the image plane. For a fixed

contrast threshold t, δ is defined by:

δ(s) =

s |s| ≥ t0 |s| < t
(3.3)

Equation 3.3 represents that if the log difference of pixel values between adjacent pixels

is less than a predefined threshold (t), one may perceive no change in the lightness of those

pixels. In case the of Retinex algorithm, the definition of lightness holds for a standard

random walk. The relative lightness L(x, y) in a chromatic channel is the unique solution

to the Poission’s equation with the Neumann boundary condition given by: −∆xL(x, y) = F (x) if x 6= y, xεR

∂L
∂n = 0 if x = ∂R

(3.4)

here ∆x is defined as the Laplacian operator with respect to x and F (x) is defined as:

F (x) = v

(
I(x)

I(x−0)

)
+ v

(
I(x)

I(x+0)

)
+

v

(
I(x)

I(x0−)

)
+ v

(
I(x)

I(x0+)

) (3.5)

and

v(x) = δ(log(x)) (3.6)

The above equation is identical to Poisson’s equation as formulated by Perez et al. [62].

Here the main objective is to remove the gradient of lightness on the left side for first

condition of the Equation 3.4, which are less than a specified threshold t. In order to

evaluate the derivative of L(i, j), it is essential for us to solve the function F (i, j) using the

discrete Laplace operator on the image plane defined as:
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∆v(i, j) = v(i+ 1, j) + v(i− 1, j) + v(i, j + 1)+

v(i, j − 1)− 4v(i, j)
(3.7)

here (i, j) represent the coordinates of a pixel point in the image domain R. The small

gradients of the image are eliminated using Equation 3.3.

The lightness value in the frequency domain can be obtained more efficiently by solving

the the Poisson equation in the Fourier space using the discrete Fourier transform:

− L̂(k, l) =
F̂ (k, l)(

4− 2cos2πk
N − 2cos2πl

N

) , for(k, l) 6= (0, 0) (3.8)

The lightness values are then converted back to the discrete image domain R using

inverse discrete Fourier transform. The lightness value for each point on the grid is normal-

ized to a band of [0-255].

As mentioned earlier, the main purpose of the Retinex algorithm in our system is to

smooth the cavity region in blastocyst images. The main characteristic of the cavity is that

it includes more low frequency components comparing to the TE or ICM regions. Such

pre-processing leads to a better performance of the level set algorithm in identification of

TE inner boundaries. Fig. 3.4 shows a typical blastocyst image before (a) and after (b) the

application of Retinex algorithm.

(a)                                        (b)

Figure 3.4: (a) Input blastocyst image. (b) Blastocyst image after the application of Retinex.
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Figure 3.5: (a) Illustration of a circle embedded within a cone. (b) Illustration of how one
closed contour embedded in a surface is related to two closed contours on another level.

3.3.2 Level-Set Background

In image processing and computer vision applications, the level-set method was introduced

independently by Caselles et al. [63] and Malladi et al. [64] in the context of active contour

(or snake) models [65] for image segmentation. To distinguish it from Snakes, it is some-

time called implicit (vs. explicit for Snakes) or geometrical (vs. parametrical) Active Contour

Models. The segmentation problem reduces to finding curve(s) to enclose regions of inter-

est. Intuitively, we can model the curves directly using control points.

The idea behind the level-set method is to imbed a curve within a surface. In our case,

we imbed a two-dimensional curve within a three-dimensional surface. To illustrate this

point, Fig. 3.5(a) shows how a circle can be imbedded into a cone. By indirectly modelling

curves, the above mentioned problems of splitting and merging curves are addressed with-

out the need to treat them as special cases. Fig. 3.5(b) shows how a curve can split into

two by moving along the surface of the level-set. Using this idea, we can morph the surface

to achieve our desired topology at a specific contour level.

3.3.2.1 Level-Set Formulation

Early active contour models are formulated in terms of a dynamic parametric contour

c(s, t) : [0, 1] × [0,∞) → R2 with a spatial parameter in [0,1], which parameterizes the

points in the contour, and a temporal variable . The curve evolution can be expressed as
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∂C

∂t
= FN (3.9)

where F is the speed function that controls the motion of the contour, and N is the

inward normal vector to the curve C. The curve evolution in Equation 3.9 in terms of a

parameterized contour can be converted to a level-set formulation by embedding the dy-

namic contour C(s, t) as the zero level set of a time dependent level-set function φ(x, y, t).

Assuming that the embedding level-set function φ takes negative values inside the zero

level contour and positive values outside, the inward normal vector can be expressed as:

N = −5φ
5φ

(3.10)

where5 is the gradient operator. Then, the curve evolution Equation 3.10 is converted into

the following partial differential equation (PDE):

∂φ

∂t
= F | 5 φ| (3.11)

which is referred to as a level set evolution equation.

The equivalent in the level-set model is to choose the propagation speed term defining

F . The requirements will be similar: we want to incorporate a regularization term (”in-

ternal”), a term that will encourage stopping at edges (”external”) and an inflation term

(”external-balloon”). To account for regularization, Malladi et al. [64] suggested a curvature

dependant speed F = F (k) , for example, F = −k (concave points go faster in the normal

direction. To get an inflation force we add a constant term F0:

F (k) = F0 − k (3.12)

and so we are left with the edge-stop term. The above speed term is multiplied further by

function:

g(x, y) =
1

1 + | 5Gσ ∗ I(x, y)|
(3.13)

This function behaves as an inverse of a gradient operator. It therefore, approaches

zero in the vicinity of an edge, bringing the velocity to a stop. Smoothing by a Gaussian

filter helps skipping weak edges. Putting it all together in (2.10) we will get:
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∂φ

∂t
+ g(x, y)(F0 − k)| 5 φ| = 0 (3.14)

Incorporating the classical equation for the curvature k:

k = div(−5φ
5φ

) =
φyyφ

2
x − φxφyφxy + φxxφ

2
y

(φ2
x + φ2

y)
3/2

(3.15)

and changing the sign F0 (can be positive or negative), we get the final level-set flow as a

PDE:

∂φ

∂t
= g(x, y)| 5 φ|(F0 + div(−5φ

5φ
)) (3.16)

3.3.3 Piecewise Method

Let Ω be the image domain, and I : Ω → R be a gray level image. In [66], a segmentation

of the image I is achieved by finding a contour C, which separates the image domain Ω

into disjoint regions Ω1, ....,ΩN , and a piecewise smooth function u that approximates the

image I and is smooth inside each region Ωi. This can be formulated as a problem of

minimizing the following Mumford-Shah functional:

FMS(u,C) =

∫
Ω

(I − u)2∂x+ µ

∫
Ω\C

| 5 u|2∂x+ ν|C| (3.17)

where |C| is the length of the contour C. In the right hand side of Equation 3.17, the first

term is the data term, which forces u to be close to the image I, and the second term is

the smoothing term, which forces to be smooth within each of the regions separated by the

contour C. The third term is introduced to regularize the contour C.

Let Ω1, ....,ΩN be the regions in Ω separated by the contour C, i.e. Ω \ C = ∩Ni=1Ωi.

Then, the contour C can be expressed as the union of the boundaries of the regions,

denoted by C1, ...., CN , i.e. C = ∩Ni=1Ci. Therefore, the above energy FMS(u,C) can be

equivalently written as:

FMS(u1, ...., uN ,Ω1, ....,ΩN ) =

N∑
i=1

(

∫
Ωi

(I − ui)2∂x+ µ

∫
Ωi

| 5 ui|2∂x+ ν|Ci|) (3.18)
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where ui is a smooth function defined on the region Ωi. The methods aiming to minimize

this energy are called piecewise smooth (PS) models. In [67], [68], level-set methods were

proposed as piecewise smooth (PS) models for image segmentation.

The variables of the energy term FMS include N different functions, u1, ...., uN . The

smoothness of each function ui in Ωi is ensured by imposing a smoothing term µ
∫
Ωi

| 5

ui|2∂x in the functional FMS . To minimize this energy, N PDEs for solving the functions,

associated with the corresponding smoothing terms, are introduced and have to be solved

at each time step in the evolution of the contour C. This procedure is computationally

expensive. Moreover, the PS model is sensitive to the initialization of the contour C or the

regions Ω1, ....,ΩN [66].

In a variational level set formulation [69], Chan and Vese simplified the Mumford-Shah

functional to the following energy:

FCV (φ, c1, c2) =

∫
Ω

|(I(x)− c1)|2H(φ(x))∂x+

∫
Ω

|(I(x)− c2)|2H(φ(x))∂x+ν

∫
Ω

|H(φ(x))|∂x

(3.19)

where H is the Heaviside function, and φ is a level set function, whose zero level con-

tour C = {x : φ(x) = 0} partitions the image domain Ω into two disjoint regions Ω1 =

{x : φ(x) > 0} and Ω1 = {x : φ(x) < 0}. The first two terms in Equation. 3.19 are the data

fitting terms, while the third term, with a weight ν > 0, regularizes the zero level contour.

Image segmentation is therefore achieved by find the level set function φ and the constants

c1 and c2 that minimize the energy FCV . This model is a piecewise constant (PC) model,

as it assumes that the image I can be approximated by constants c1 and c2 in the regions

Ω1 and Ω2, respectively.

3.3.4 Level-Set Based Segmentation

Level-set algorithm has been widely used for identification and tracking of boundaries and

shapes. In particular, level set is very good for following changes in shapes and topologies.

For the purpose of blastocyst analysis, the level set by Li et al. [42] has been previously

used by [16] in a semi-automatic manner. In this work, we aimed to utilize the level set

algorithm to automatically identify TE regions as the outer and inner boundaries of TE

regions seem to look distinctive. However, what we noticed was that despite the fact that
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the cavity region includes low frequencies and damped edges, the level set algorithm still

has difficulties in stopping at the right boundaries and often leaks into the cavity region.

For this reason, we utilized the Retinex algorithm to further smooth the cavity region, as

a pre-processing step, before the application of the level set algorithm for the TE region.

As it is not possible to completely smooth out the cavity region, a more sophisticated level

set capable of segmenting in the presence of some inhomogeneities in the form of cells

is necessary. Therefore we use a new level set proposed by Li et al. [44], capable of

segmenting in the presence of intense inhomogeneities.

In order to cope with intensity inhomogeneities in an image, Li formulated a method

based on a model that considers the composition of an image as:

I = BJ + n (3.20)

here J is the original or true image, B is the biased field which represents the intensity

inhomogeneity and n is additive noise (zero mean Gaussian). I is an image function in

image domain (Ω) defined over all real values (R). Bias Field B can be easily predicted

by a neighborhood constant of each point in the image due to its slowly varying property.

The true image J takes N distinct values from c1 · · · cn in the disjoint region Ω1 · · ·Ωn,

respectively. Based on the assumptions stated above, our objective is to minimize the

energy in a variational framework by finding the optimum regions {Ω̂}Ni=1, the constants

{ĉ}Ni=1 and the estimation of bias field B̂. Hence, the image segmentation and the bias field

estimation are found simultaneously through energy minimization.

In order to compute the local intensity property, a circular neighborhood, defined by

Oy , {x : |x − y| ≤ ρ} with a radius ρ centered at each point y ∈ Ω, is considered. By

assuming that the bias field is changing slowly, the value of B(x) for a point x in the circular

neighborhood of Oy is considered near to B(y) or:

B(x) = B(y) for x ∈ Oy (3.21)

with the assumption that the intensities of B(x)J(x) in each region Oy ∩ Ωi are close to

constant B(y)ci,

B(x)J(x) = B(y)ci for x ∈ Oy ∩ Ωi (3.22)
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we have:

I(x) = B(y)ci + n(x) for x ∈ Oy ∩ Ωi (3.23)

Hence, the intensity in the set (Iiy = {I(x) : x ∈ (Oy ∩ Ωi)}) forms a cluster with a centroid

of mi = B(y)ci, which is believed to be a sample picked out of a Gaussian distribution with

a mean value of mi. Image segmentation and bias field estimation are computed using the

above formulated local intensity clustering property.

The neighborhood intensities of Oy can be classified into N clusters with centers of

mi = B(y)ci for i = {1 · · ·N} using the clustering properties derived above. This is

achieved via an iterative K-means algorithm that minimizes the clustering criteria in a

continuous form [70]. Clustering criteria for classifying the intensities in Oy for a window

function K is defined as:

εy =

N∑
i=1

∫
Oy

K(y − x)|I(x)−B(y)ci|2dx (3.24)

where

K(u) =


1
a exp(−|u|

2

2σ2 ) for |u| < ρ

0 otherwise
(3.25)

The convolution window K(y − x) is constructed as a w × w mask, with w > 4 ∗ σ + 1,

defined as the Gaussian kernel in Equation 3.25. The radius ρ for the neighborhood Oy

should be chosen carefully depending on the intensity inhomogeneities. For more localized

intensity inhomogeneity, smaller ρ and σ should be used. The classification of local inten-

sities depends on the minimization of the clustering criterion function εy. The classification

is precise, if the value of εy is as small as possible. We need to optimize εy over the entire

domain Ω such that εy is minimum for all ys in Ω. This can be realized by minimizing the

integral of εy for all ys in image domain Ω.

ε=̂

∫
εydy (3.26)

or:

ε=̂

N∑
i=1

∫
Oy

(
K(y − x)|I(x)−B(y)ci|2dx

)
dy (3.27)

By minimizing the energy with respect to regions Ω1 · · ·Ωn, constants c1 · · · cn and bias
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field B, segmentation can be achieved. In order to minimize the energy, the energy term is

formulated in terms of the level-set function φ, constant vector c = {c1 · · · cn} and bias field

B as:

ε(φ, c,B) =

∫ N∑
i=1

ei(x)Mi(φ(x))dx (3.28)

where ei defined as:

ei(x) =

∫
K(y − x)|I(x)−B(y)ci|2dy. (3.29)

The variational level set formulation uses the energy ε as a data term as defined by:

T (φ, c,B) = ε(φ, c,B) + vL(φ) + µR(φ) (3.30)

where the energy term L(φ) is defined as:

L(φ) =

∫
|∇H(φ)|dx (3.31)

here H is a heavy side function, and the energy term R(φ) is defined as:

Rp(φ) =

∫
p|∇φ|dx (3.32)

We minimize the energy T (φ, c,B) with respect to each of its variables (φ, c, and B) in

each iteration. The result of the energy minimization for each variable is as follows:

• Energy Minimization with respect to φ:

The energy is minimized with respect to φ by keeping c and B constant. After mini-

mization the final gradient flow ∂T/∂φ is expressed as:

∂T

∂φ
= −δ(φ)(e1 − e2) + vδ(φ)div

(
∇(φ)

|∇(φ)|

)
+µdiv (dp(|∇(φ)|∇(φ)))

(3.33)

where5 is the gradient operator, div is the divergence operator and dp is defined as:

dp(s)=̂
p

s
(3.34)
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• Energy Minimization with respect to c:

formulation is stated as below for a constant φ and B. Most favorable c vector, ĉ =

{ĉ1, · · · , ĉN}, which minimizes the energy is given by:

ĉ =

∫
(B ∗K)Iuidy∫

((B2 ∗K))uidy
i = 1, B,N (3.35)

• Energy Minimization with respect to B:

For fixed φ and c, the formulation is stated as:

B̂ =
(IJ (1)) ∗K
J (2) ∗K

(3.36)

In the above equation, J (1) =
∑N

i=1 ciui and J (2) =
∑N

i=1 ci
2ui . In the case of N > 2

or multiphase level set formulation, one may use more than two level set functions to

formulate the energy function. In this application, however, we utilize a value of 2 for

N as our clustering algorithm will cluster the image into two regions (TE and none

TE).

Fig. 3.6 represents the output of the level set algorithm in cyan over-imposed on the

smoothed version of the input image.

(a)                                        (b)

Figure 3.6: (a) Input blastocyst image. (b) Output of the level set algorithm.
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3.3.5 Post-processing of Level Set Output

In this section, we perform a post-processing step to clean up and better represent the

output of the level set algorithm. This is a necessary step as the output of the level set

algorithm correspond to TE regions and other regions including ICM, floating cells outside

the blastocysts, and some debris. Our main goal here is to precisely identify and modify

those segments that correspond to the TE regions while removing those segments that

correspond to others.

Here, we start with the Canny edge detector [50] that is applied on the output of the

level set algorithm. Naturally, the edge detection in here will identify the boundaries of

the segments identified by the level set. The resultant binary output contains a set of

edges that correspond to TE segment boundaries and those of other regions. These edges

may contain discontinuities that sometimes originate from TE regions with lower qualities,

natural discontinuities that may exist at the outer boundaries of the TE region, and perhaps

the non-customized parameter setting of the Canny edge detector. It should be noted that

for all the processed images that are presented in this work, only one set of parameters is

utilized for the Canny operator. These parameters include a lower threshold of 0.12 and a

higher threshold of 0.3 that are found empirically.

Next, the discontinuities within or in-between the TE segments are padded using a

morphological dilation operation that expands the TE segments by a structuring element

of disk shape with a radius 3 pixels. The discontinuities within a TE segments (holes) and

in-between the majority of TE segments are filled out after the dilation operation. However,

this process is unable to fill those discontinuities in-between TE segments at larger prox-

imity. Usually for TEs with lower qualities, it is observed that the number of disconnected

TE segments is larger. In order to identify those segments that truly correspond to the TE

region, we first find the center of gravity of the blastocyst mass. Here, we take advantage

of the spherical shape and the circular 2D footprint of an embryo which indicate that the

exterior points of the TE (which are also located on the inner ZP) have similar distances

from the centroid of the embryo.

We find the center of gravity for all the segments found by the level set algorithm. This

center might be a bit off from the real centroid of the embryo especially in images with

debris and parts from other cells. We then radiate 72 beams with a separation of 5 degrees

from the center of the mass towards outside. These beams intersect with the boundaries of
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the TE regions as they move outwards. Indeed, the first and last intersections of the beams

with the level set segments are recorded. We expect the second intersection of the beams

to be right on the inner boundary of the ZP (also on outer boundary of the TE region)

and therefore should have smooth variation comparing to the neighboring intersections.

We use this property and identify those points where the intersection deviates more than

±5 pixels from the median of the neighboring second intersections. The retained segments

most likely correspond to the TE segments due to their equidistant property from the center

of the mass. In addition, this process removes the segments that correspond to the debris,

inside or outside the cavity region. However, this process fails to remove those segments

corresponding to the ICM region in cases where the ICM is connected to the TE’s interior

boundary.

For those beams that intersect with the ICM, the distance of the first intersection from

the center of the mass is much shorter than those cases when the beams first intersection

occurs at the interior boundary of the TE region. In order to identify those intersections with

the ICM, we maps the pixels from the image, i.e. Cartesian system (CS) to the points in the

polar system (PS). The conversion process includes the computation of the distance and

the angle for each TE pixel with respect to the embryo’s center using the following formulas:

D =
√

(y − y0)2 + (x− x0)2 (3.37)

A = tan−1 y − y0

x− x0
× 180

π
(3.38)

here D is the distance and A is the angle w.r.t to (x, y) which is a TE pixel coordinates in

CS. (x0, y0) is the pixel coordinates of the embryo center in CS.

Further, we use a K-means clustering approach to cluster the beams into two groups

according to the distance of their first intersection with the radiated beams. Between the

two found clusters, the one with the smaller centroid (shorter distance from the center of

the mass) most likely corresponds to the intersection of the beams with regions in which the

ICM is connected to the TE region. All those intersections are replaced with the centroid

location of the other cluster. Next, the image is converted back to CS from PS using the

following formulas:

x = D. ∗ cosd(A) + x0; (3.39)
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(a)                                             (b)                                            (c)

(d)                                             (e)                                            (f)

(g)                                             (h)                                            (i)

Figure 3.7: (a) Canny edge detector applied on the output of level set. (b) Canny edges are
dilated. (c) Beams are radiated from the center of the mass. (d) The first and the last in-
tersections of the segments with the beams are recorded. (e) Segments corresponding to
the intersecting points are retained. (f) TE segments are converted to the polar coordinate
system (CS). (g) Regions with high variation are identified and removed using K-means
clustering. (h) Removed intersections are substituted with the cluster mean and are ad-
justed locally using level set algorithm. (i) Segments are converted back into the Cartesian
CS and overlaid on the input image.

y = D. ∗ sind(A) + y0; (3.40)

here D is the distance and A is the angle w.r.t to (x0, y0) which is a TE pixel coordinates

in PS and (x0, y0) is the pixel coordinates of the embryo’s center in CS. Then, the level

set is locally applied to each replaced point to allow the adjustment according to the local

properties. A maximum one standard deviation from the centroid is allowed in this final

adjustment.

At this point, TE segments are identified by all those regions in between the first and the

second intersections with the beams. A simple erosion of one pixel is applied to remove
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the exterior pixels that were added during the earlier dilation operation. Fig. 3.7 displays a

visual representation of the post-processing procedure.

3.4 Image Acquisition

The blastocyst images used in the experimentation have been acquired using an Olympus

IX71 inverted microscope with a Nomarski (DIC) optics. The software used for capturing

our images is the Research Instrument (RI) Cronus 3. The microscope includes a built-in

magnification changer of 1×/1.6×; however, all the images are captured at 1.6× and a lens

objective of 20×.

3.5 Ground Truth

In order to compute the accuracy of the proposed algorithm, We have used a dataset of

100 (85 test and 15 training images) HMC human blastocyst images. These embryos

were graded and their different components were manually extracted by expert embryolo-

gists: Mrs. Carole Lawrence and Mr. Jason Au, both from Pacific Center for Reproductive

Medicine. We utilize the results of the manual identification as our Ground Truth (GT) or

gold standard and compare the output of our algorithm with that.

3.6 Parameters, Experimentation and Results

The proposed method is tested using 85 HMC human embryo images containing embryos

of grades A, B and C. These images each include one complete blastocyst with some

debris or other cells in the background. Some of these images may include partial views of

neighboring embryos in them. We assume that the region associated with the embryo of

interest is larger than any other part in the image. A single set of parameters is used for all

images. Qualitative and quantitative evaluations, comparisons with other methods, as well

as performance aspects in terms of implementation and portability are presented next.
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Figure 3.8: Few blastocyst images selected from the training dataset.

3.6.1 System Parameter Settings

Like any complex system, the proposed system has a few parameters that are set accord-

ing to the characteristics of the input imagery. In this section, we explain the rational behind

the values chosen for such parameters as we think this might help to port our system for

input images from different sources. In order to customize the system for other kind of input

images (captured by different groups and laboratories and perhaps with other HMC micro-

scopes or at different settings), some of these parameters must be adjusted. We consider

these parameters to be the most important ones in the success of our algorithm for other

images.

3.6.1.1 Retinex

As explained earlier, the Retinex algorithm is utilized to remove small gradients inside and

outside the blastocyst region, as shown in Fig. 3.4. In the Retinex algorithm, the level

of smoothness of the output image depends on the value of threshold t in Equation 3.3.

Clearly, this threshold must be set according to the application, and types and settings of

input images. Fig. 3.9 shows a blastocyst image after application of the Retinex algorithm

at three different t settings.

To find a proper value for t that somehow fits all of our input images empirically, the

Retinex algorithm was applied on 15 training embryo images of different TE grades. The

training dataset of 15 images was chosen from the dataset of 100 images (85 test images)

such that it captures different variants of blastocyst qualities/characteristics. Few of the

training images are shown in Fig. 3.8. As shown in the sample images, this dataset contains

blastocyst images with different TE thickness. Also, in these images ICM appears at various

locations including center and sides. This implies that in some of the images the ICM is
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a b

c d

Figure 3.9: Different threshold values for Retinex algorithm: (a): Original image, (b): t=10,
(c): t=20, (d): t=40.

connected to the TE layers and in some it doesn’t. In each case, the value of the threshold

was adjusted manually, so that the best output in terms of maximum smoothing of the cavity

region was achieved. The threshold values, for all cases of different grades, as shown in

Table 3.1, were averaged. The average value was then used as the parameter t whenever

the Retinex algorithm was called throughout all of our experiments.

Table 3.1: Empirically estimated threshold t.

TE Grade Mean Threshold t
A 24.3
B 26.7
C 24.4

Average 25.1
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3.6.1.2 Level-set

In the succeeding step, level set algorithm is applied to the output of Retinex algorithm. The

parameter N in the level set algorithm is set to 2 as we utilize the level set as a two-phase

case. Parameter σ is set to 4, µ to 1.0, while 5t to 0.1. A mask size of 17 × 17 pixels in

accordance to the value of σ is utilized. All these values are set according to the suggestion

by [44]. The value of v is set to 0.001× 2552 since our data range is [0, 255].

3.6.1.3 Post-processing

The parameters of Canny edge detector in the Post-processing Section include a lower and

an upper thresholds that are set to 0.12 and 0.3, respectively. These two values are found

empirically. A morphological dilation with a structuring element of disk shape (radius of 3

pixels) is then applied to the output of the Canny edge detector.

As explained in Section 3.3.5, we have used a star shape radiating beam set to choose

proper segments associated with the TE region. We have used a separation of 5 degrees

for those beams. A smaller value of such separation would allow catching those tiny seg-

ments that may exist in the TE region. We have not noticed significant differences in the

quality of the detected TE by reducing this parameter. However, we noticed that our run-

ning time could increase slightly. Increasing this parameter, however, might cause missing

few segments that ultimately might affect the accuracy slightly. We have also allowed a 5

pixel deviation in the exterior boundaries of neighboring TE segments. This value is set

according to the resolution of our HMC images as well as usual offsets that may exist be-

tween the real center of a blastocyst and the center of gravity of the blastocyst mass which

is used in the beam radiation process.

3.6.2 Performance

The proposed system is implemented in Matlab 7 and tested on a PC (CPU Intel Core2

Quad 2.26 GHz with 2 GB RAM). The input images are 720 × 479 pixels. The entire

extraction process takes an average of 34 seconds to complete.
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Table 3.2: Three example (best, average and worst case scenarios) outputs of the pro-
posed algorithm along with the GT and difference between the two for sample images for
grade A TEs.

Proposed Method Ground Truth Difference Accuracy
[%]

100

77.05

27.38

3.6.3 Qualitative Evaluation

Table. 3.2, 3.3, 3.4 represents typical results for several HMC human embryo images for TE

grade A, B and C with the extracted TE boundaries overlaid on the input images. The table

also presents the TE ground truth boundaries extracted by the embryologist and differences

between the TE boundaries extracted by the algorithm and ground truth, overlaid on the

input images. To demonstrate the performance of the system clearly and with no bias,

we have categorized the visual data by their grade and according to the quality of the

output generated by our system. In this Table the first column represents TEs’ actual

grades, which were determined by our expert embryologists. The second column, Quality,



CHAPTER 3. TROPHECTODERM SEGMENTATION 67

Table 3.3: Three example (best, average and worst case scenarios) outputs of the pro-
posed algorithm along with the GT and difference between the two for sample images for
grade B TEs.

Proposed Method Ground Truth Difference Accuracy
[%]

100

85.34

43.35

represents the quality of the results and in each case we show the best, the average, and

the worst results. We think that such information may provide some perspective for the

readers of this paper. The third column, Proposed method, shows the visual presentation

of the output regions generated by our algorithm. The boundaries of the detected TE

regions are shown with red lines. The column of Ground Truth demonstrates the ground

truth, which are manually marked with green lines by our experts.

Column Difference depicts the difference between the output of our algorithm and the

GT. Finally, the column Accuracy, lists the computed shape accuracy in each case in per-

centage.
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Table 3.4: Three example (best, average and worst case scenarios) outputs of the pro-
posed algorithm along with the GT and difference between the two for sample images for
grade C TEs.

Proposed Method Ground Truth Difference Accuracy
[%]

100

90.14

74.63

3.6.4 Quantitative Evaluation

After the segmentation of TE regions, we compute the accuracy of the segmentation by

comparing our results with the ground truth (GT). We have generated ground truth masks

for all the embryo images based on the manual segmentation done by our expert embryol-

ogists. Fig. 3.10 show a sample case, where the GT mask (a) and the TE region found by

our algorithm (b), are displayed next to each other.

To evaluate the proposed method quantitatively, we have used the McKeowns shape
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(a)                                                     (b)

Figure 3.10: TE region masks (a) marked by the expert (b) identified by the proposed
algorithm automatically.

accuracy factor [71] using the following equation:

TEs = 1− |AGT −ATE |
AGT

(3.41)

Here the area of TE region in the ground truth (AGT ) is compared against the area of the

automatically detected TE region by our proposed algorithm (ATE). In addition to shape

accuracy, additional metrics are required to obtain a complete assessment as errors of

pixel labeling are not taken into account in the shape accuracy. Therefore three metrics

of correctness, completeness, and overall quality are computed. Correctness measures

the degree to which detected TE pixels are indeed TE pixels, whereas completeness mea-

sures the degree to which true TE pixels are detected by the system. Overall quality is

normalization between the previous two.

Correctness =
TP

TP + FP
(3.42)

Completeness =
TP

TP + FN
(3.43)

OverallQuality =
TP

TP + FP + FN
(3.44)
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here, TP represents true positives (correctly extracted TE pixels), FP false positives (incor-

rectly extracted TE pixels), and FN false negatives (missed TE pixels). Optimal values for

the four metrics are 1, and the Overall Quality cannot be higher than neither Correctness

nor Completeness. The shape accuracy in % for each grade is shown in Table 3.5.

Table 3.5: Shape accuracy of TE regions for 85 test images.

Grade No. of Mean Shape Min/Max Shape
images tested Accuracy [%] Accuracy [%]

A 32 84.64 27.38/100
B 41 88.98 43.35/100
C 12 91.72 74.63/100

Total 85 87.75 27.38/100

Table 3.6 represents correctness, completeness and overall quality measures for our

dataset of 85 images.

Table 3.6: Quantitative results for 85 test blastocyst images

Blastocyst Mean Shape Mean Correctness Mean Completeness Mean Overall
Grade Accuracy[%] [%] [%] Quality [%]

A 84.6 79.8 74.2 67.6
B 88.9 85.5 82.3 76.8
C 91.7 84.6 78.4 72.3

Combined 87.7 83.3 78.7 72.7

In Fig. 3.11, the results of the shape accuracy measure is plotted against the grade of

ZP. We wanted to see if the algorithm has any bias toward the level of expansion. From

these results, we could not see any bias. However, we still thought that it might be informa-

tive to show these results as they highlight the distribution of our image dataset.

We also present the results of the shape accuracy measure plotted against the cavity

area in pixels as shown in Fig. 3.12. The area of the cavity was manually computed. The

aim of this analysis was to see if the algorithm has any bias toward the level of expansion

in cavity area. In this case as well, no definitive pattern was observed.

In [16], Filho et al. proposed a semi-automatic system for classification of TE grades

in day 5-human blastocysts. In their work, authors identify the TE’s inner boundaries using

Li et al. [42] variational level set. The initialization of the level set was performed manually.
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Figure 3.11: The Shape Accuracy for all the tested data against the level of expansion of
the embryos or ZP thickness.

They estimated the TE region as the area confined by the ZP’s inner and TE’s inner bound-

aries. Once the TE region was extracted, fractal dimension of the signal was calculated and

used to approximate the regularity of the TE thickness. The fractal dimension was utilized

as a feature by SVM algorithm to classify (or grade) the TE. They report a classification

accuracy of 0.53 and 0.92 for TE grades of b and c respectively.

The main focus of the proposed work by Filho [16] is the classification of grades, for

which the area of the TE region is segmented semi-automatically. Since, the classification

accuracy depends on the fractal dimension of the TE region, it is vital to estimate the TE

area as accurate as possible. However, an automated algorithm for accurate identification

of TE region plays a crucial role in a complete analysis of embryos during the growth

period and it provides more details about the growth dynamics and therefore, eliminates

interpolation of the knowledge from discrete observations.

The method proposed in this paper is capable of segmenting the TE automatically in
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Figure 3.12: The Shape Accuracy for all the tested data against the normalized cavity size.

the presence of inhomogeneities in the cavity region and debris in the neighborhood. To

our best knowledge, this is the first time that a fully automated method for segmentation

of the TE in human’s blastocyst is reported. We believe that our algorithm can be used

in systems such as the one proposed by Filho to automate and remove the requirement

for human intervention as much as possible. Removal of the debris through the Retinex

algorithm [43] plays a critical role and facilitates extraction of the true boundaries using an

advanced level set [44].

The proposed system can effectively and automatically segment TE regions in blas-

tocyst images of grades A, B and C. We require only one condition in which the size of

the embryo of interest must be larger than the remaining embryos in the image. We have

tested our method on a dataset of 85 images and have been able to achieve a segmenta-

tion accuracy of 84.64% for grade A, 88.98% for grade B and 91.72% for grade C embryos.

To our best knowledge, the presented results in here are the best reported results for the

segmentation of Trophectoderm regions.



Chapter 4

Conclusions

In this thesis, two algorithms were developed to automatically identify two different compo-

nents of human embryos at past time different growth times.

The first method focused on finding ellipsoidal models that represent blastomeres from

day-1 and day-2 in HMC images of human embryos with no prior knowledge about the ex-

act number of cells or their sizes, level of fragmentation, occlusion and overlap. The image

is first divided into regions representing blastomeres using isoperimetric graph segmenta-

tion. The generated regions as a result of this segmentation were mapped to individual

blastomeres. These regions were merged with their neighbouring regions using a new pro-

posed region merging technique. Ellipsoidal models were further fitted to the regions using

a least-squared error minimization method. We showed results and presented the overall

accuracy through a set of 40 test images. The average segmentation accuracy was 80%.

Most blastomers can be successfully identified in the image. In some cases, although the

blastomers are correctly identified, there is an offset in the location, and theie shape might

have identified to be smaller than the real size.

The second method aims to segment trophectoderm (TE) from day 5 blastocyst images

with no prior knowledge. In the first step, debris inside and outside the cavity is removed

using Retinex algorithm. Level-set is further applied to segment TE from the rest of the

embryo regions. In cases where the ICM is connected to the TE, level-set algorithm extracts

the combined TE and ICM mass. A K-Means algorithm was then applied to separate TE

regions from such mass. We presented several examples and highlighted the accuracy

of our method (88%) using 85 test images. Width of the segmented TE can be further

computed and used as a measure to assess the quality of a human embryo.

73
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4.1 Summary of Contributions

In this thesis, the following contributions are made:

4.1.1 Blastomere Extraction

The proposed algorithm in the 2nd chapter, is the first reported method capable of extract-

ing blastomers only using image processing and computer vision. Our method does not

require any specific prior knowledge and also produce better results (80%) comparing to

the state of the art by Giusti et al [21] (71%).

4.1.2 Trophectoderm Segmentation

The proposed algorithm in the 3rd chapter, is the first reported method that can effectively

segment the trophectoderm of all grades automatically. The previous algorithms manually

removed the debris from the cavity and initialized the level-set in the close proximity, al-

lowing it to converge to TE boundaries. The proposed method, however, overcame these

limitations as it automatically eliminates the inhomogeneities of the blastocysts surface us-

ing the Retinex theory. In addition, an improved level-set capable of handling intensity

inhomogeneties was used which made the proposed algorithm robust to some level of

illumination variation and intensity inhomogeneities.

4.2 Future Research

For the future direction of the research, we identify the following areas of improvement for

the overall system. The improvements are listed separately for each method.

4.2.1 Blastomere Extraction

1. Developing a sampling algorithm to select only ellipses that satisfy some satisfying

pre-defined conditions of shape and size. This will improve the computational com-

plexity of the algorithm.

2. Improving the region merging algorithm so that it can automatically select the weight

for each feature. Currently we used a training set and these values are set for all the
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data. Customizing these weights automatically for each image can certainly improve

the overall quality of the recognition.

3. Improving the integrity of the used edge detection method, as the quality of the el-

lipses generated in the blastomere extraction method depends heavily on the quality

of the detected edges.

4. Implementing the blastomere extraction algorithm in C/C++ will allow to process input

images faster and for our work to be more suitable for processing time-lapse series

images. Such image series often includes thousands of images.

4.2.2 Trophectoderm Segmentation

1. Improving the Retinex algorithm so that it can automatically choose the smoothing

threshold for each image.

2. Using the texture and other local features of TE in addition to the image gradient to

improve the segmentation accuracy.

3. Using the enhanced moving K-Means instead of standard K-Means to allow better

separation of TE from ICM.

4. Implementing the level-set algorithm in C/C++ for faster convergence that lead to

improvement in the computational complexity of the algorithm and its applicability to

the time-lapse series images.
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