
 

 

 

 

 

COMPARISON OF SPATIAL HEDONIC HOUSE PRICE MODELS:  

APPLICATION TO REAL ESTATE TRANSACTIONS IN VANCOUVER WEST 

 

By 

 

Wai Man Chan 

BSc Statistics, University of British Columbia, 2007 

 

 

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

 

MASTER OF SCIENCE IN FINANCE 

 

 

In the Master of Science in Finance Program  

of the  

Faculty 

of 

Business Administration 

 

 

© Wai Man Chan 2014 

SIMON FRASER UNIVERSITY 

Summer 2014 

 

 
All rights reserved. However, in accordance with the Copyright Act of Canada, this work 

may be reproduced, without authorization, under the conditions for Fair Dealing. 

Therefore, limited reproduction of this work for the purposes of private study, research, 

criticism, review and news reporting is likely to be in accordance with the law, 

particularly if cited appropriately. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/56378544?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 1 

Approval 

Name: Wai Man (Raymond) Chan 

Degree: Master of Science in Finance 

Title of Project: COMPARISON OF SPATIAL HEDONIC HOUSE 

PRICE MODELS:  APPLICATION TO REAL 

ESTATE TRANSACTIONS IN VANCOUVER 

WEST 

Supervisory Committee: 

   ___________________________________________  

 Dr.  Andrey Pavlov 

Senior Supervisor 

Professor of Finance 

   ___________________________________________  

 Steven Adang 

Second Reader 

Lecturer  

Date Approved:   ___________________________________________  

 



 

 2 

Abstract 

This study compares hedonic house price models for single family properties in Vancouver West, 

Canada.  The real estate literature has shown that traditional hedonic models based on OLS are 

unable to handle spatial effects inherent in housing markets, prompting the application of spatial 

econometric methods.  This study compares four hedonic house price models: (i) classical OLS 

model, (ii) OLS model with neighborhood code dummies, (iii) Spatial Durbin Model, and (iv) 

Geographically Weighted Regression.  The latter two models are common spatial econometric 

techniques that researchers have used.  Models are compared based on model
2R , out-of-sample 

prediction error, and ability to remove spatial effects from the data.  Results indicate that 

Geographically Weighted Regression is the best performing model.  In addition, classical OLS 

overestimates effects and is unable to address spatial effects.  All four models predict a similar 

impact of property attributes on sale price. 

 

Keywords:  Hedonic Model; Spatial Hedonic Model; Spatial Durbin Model; Geographically 

Weighted Regression; Vancouver West Real Estate 
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1: Introduction 

The real estate market is a very important one in all economies.  In addition to providing 

housing for households, real estate activity is linked to many sectors of the economy, primarily 

construction, finance, and insurance.  For 2012, Statistics Canada reports that the “Real Estate 

and Rental and Leasing” sector accounted for about 12% of the Canadian economy (GDP), and 

the construction sector accounted for about 7% of the Canadian economy1.   

Concerns over rapid appreciation in prices, risk from residential mortgages, and record 

levels of household debt have prompted regulators of the Canadian financial system to pay close 

attention to the Canadian real estate market.  For example, in July of 2013, the Finance Minister 

reduced the maximum amortization period from 30 years to 25 years for insured mortgages.  It 

marked the fourth time the Finance Minister restricted mortgage lending rules in as many years.   

The Office of the Superintendent of Financial Institutions (OSFI), Canada’s prudential regulator 

of financial institutions and private pension plans, issued a draft guideline on residential mortgage 

underwriting practices and procedures in June of 20122.   

Providing updated fair market value of residential properties is therefore extremely 

valuable to financial regulators, financial institutions, municipal assessors, housing index 

compilers, market participants, real estate developers, investors, and many others.  Unlike 

traditional financial assets like stocks and bonds, estimating the fair value of a residential 

property is non-trivial.  A private firm could conduct an appraisal to estimate the fair value of an 

individual property, but doing so for all properties in a region would be prohibitively costly.   

In the real estate literature, hedonic modelling is the most widely used method to estimate 

the fair market value of real estate properties.  The hedonic model from Rosen (1974) postulates 

that products are sold as a package encompassing its attributes.  Each attribute has a price, called 

the implicit price.  The implicit prices of each attribute are revealed from observed prices of 

differentiated products and the specific amount of each attribute associated with the product.  

This framework is suitable for real estate properties, as each property is sold as a package with 

non-separable attributes (square feet, lot size, number of bedrooms, etc.) and the price of each 

attribute is not known precisely.   

                                                      
1 https://www.ic.gc.ca/app/scr/sbms/sbb/cis/gdp.html?code=11-91&lang=eng 
2 http://www.osfi-bsif.gc.ca/Eng/fi-if/rg-ro/gdn-ort/gl-ld/Pages/b20.aspx 

https://www.ic.gc.ca/app/scr/sbms/sbb/cis/gdp.html?code=11-91&lang=eng
http://www.osfi-bsif.gc.ca/Eng/fi-if/rg-ro/gdn-ort/gl-ld/Pages/b20.aspx
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The traditional hedonic model uses linear regression (OLS) to estimate a relationship 

between the value of a property and a set of housing characteristics.  This relationship can then be 

used to predict the market value of unsold properties with known characteristics.  However, 

researchers have discovered many drawbacks with the traditional hedonic model, among them the 

lack of treatment for spatial effects (Dubin, 1992; 1998).   

This paper applies recent spatial econometrics techniques towards constructing hedonic 

pricing models for single family homes in Vancouver West.  Using the OLS model as the 

benchmark, four models are considered; classical OLS, OLS with neighborhood code dummies, 

Spatial Durbin Model, and Geographically Weighted Regression.  The models are estimated with 

approximately 5,000 sale records collected through the multiple listing service (MLS).  The 

models are compared with respect to model
2R , out-of-sample prediction error, and ability to 

remove spatial autocorrelation.  For this paper, Moran’s I is used to assess the degree of spatial 

autocorrelation remaining in model residuals.   

This paper is organized into 6 sections.  Section 2 provides a literature review of hedonic 

models and spatial effects.  The dataset with descriptive statistics are discussed in section 3.  

Section 4 details the spatial econometric techniques used in this paper.  Results from the four 

models are given in Section 5.  Section 6 concludes the paper.       
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2: Literature Review 

2.1 Hedonic Pricing Method 

Lancaster’s (1966) work on consumer theory laid the theoretical basis for hedonic price 

modelling (Rosen, 1974).  Lancaster argued that consumers derive utility from the characteristics 

of the product, rather than the product itself.  However, the market with respect to the product’s 

characteristics is often not explicit and is hidden in the background of product price 

determination.   

The hedonic price model from Rosen asserts that products are sold as a package 

encompassing its attributes.  This is certainly the case for houses, since the housing attributes 

associated with a home are non-separable.  If the marginal or implicit price of each housing 

attributes can be estimated, then the price of a house would equal to the summation of all its 

marginal or implicit prices. 

Despite its conceptual appeal and simplicity, Pavlov (2000) points out two substantial 

drawbacks with the hedonic pricing method.  The first is the misspecification of the functional 

form.  Rosen’s work provides little guidance with respect to the actual functional form relating 

the price of the product and its attributes.  Can and Megbolugbe (1997) finds that an incorrect 

functional form leads to unreliable and biased estimates.  The second drawback is the sensitivity 

to omitted variables.  For a product as complex as a house, it is inevitable that researchers cannot 

identify and measure all price-determining attributes.   

The hedonic pricing method is typically implemented with the classical linear regression 

model, and estimated using ordinary least squares (OLS).  The dependent variable in the model is 

the sale price of a property, and the independent variables in the model are the attributes of that 

property.  In a broad literature review, Malpezzi (2002) identifies the following types of 

attributes:  structural (living area, lot size, age, number of rooms, etc.), locational (absolute 

location of the dwelling, proximity to central business district, etc.), neighborhood (availability of 

public schools, income levels, population density, etc.), contract conditions (appliances/furniture 

included in sale, time to possession, etc.) and time specific attributes.  The study also finds that 

most researchers use a semi-log or log-log specification.  The advantage of these specifications 

compared to linear form is that implicit prices vary with the quantity of housing attributes and 

mitigates the problem of heterosecedasticity.   
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There has been a vast number of published work in the real estate literature that makes 

use of hedonic regression analysis to explain house prices with housing characteristics.  In 

addition to the Malpezzi (2002) literature review above, Sirmans et al. (2005) examined hedonic 

pricing models for over 125 empirical studies.  The study concludes that both the magnitude and 

direction of certain characteristics (such as number of rooms) differ across studies.      

2.2 Spatial Effects 

The hedonic pricing method implemented though OLS accounts for spatial effects 

through locational attributes (absolute location of the dwelling, proximity to central business 

district, etc.) and neighborhood attributes (availability of public schools, income levels, 

population density, etc.).  However, it does not account for spatial interaction effects (or 

“spillover” effects) between properties.  In the real estate literature, the spatial interactions is 

called the “adjacency” effect (Can, 1992).  Moreover, OLS assumes a constant relationship 

between the dependent variable and the independent variables.  That is, the relationship is 

invariant to space and time, which is unlikely the case for the housing market. 

Bitter and Krause (2012) identified the increased use of advanced spatial methods in 

published studies as one of the leading trends in real estate valuation research.  The authors state 

that spatial dependence, spatial heterogeneity, anisotropic phenomena and boundary effects make 

obsolete the basic monocentric urban economic model, which yields the simple non-linear decline 

of house values from the central business district.  In place of the monocentric urban economic 

model, cities are characterized by, quoting the authors, “polycentric urban regions complete with 

localized amenities (or disamenities), geographic heterogeneities, fragmented municipal 

governments, and complex systems of land use regulations.” 

From Anselin (1998), there are two major types of spatial effects:  spatial autocorrelation3 

and spatial heterogeneity.  Spatial autocorrelation refers to a functional relationship between 

observations.  Spatial heterogeneity, on the other hand, refers to the lack of uniformity arising 

from space, leading to spatial heterosecedasticity and spatially varying parameters.   

2.2.1 Spatial Autocorrelation 

The classical OLS method for hedonic modelling relies on several assumptions.  One of 

the assumption is that the error terms are uncorrelated.  Moreover, OLS assumes the price of a 

                                                      
3 In the real estate literature, spatial autocorrelation is also referred to as spatial dependence. 
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property is related to only its characteristics, but not the characteristics of other properties.  But 

the real estate literature have put forth strong evidence that spillover effects between properties 

exist, casting doubt on the above two assumptions.  In this case, OLS estimation would be 

inefficient and possibly biased.   

Section 2.2 of Elhorst (2014) describes three types of interaction effects that explain the 

dependency among observations.  The first are endogenous interaction effects, where the 

dependent variable of observation i  is related to the dependent variable of another observation j .  

In the real estate literature, this interaction is referred to as the adjacency effect (Can, 1992).  One 

explanation for the adjacency effect is that buyers consult listing prices of nearby properties prior 

to making an offer.  Similarly, sellers and listing agents use listing prices in the neighborhood to 

determine listing prices.  Therefore, it is reasonable to expect that this effect is present for the 

housing market.   

The second effect is exogenous interaction effect, where the dependent variable of 

observation i  is related to the independent variables of another observation j .  At first glance, it 

seems unlikely that the price of a property depends on the attributes of nearby houses.  But 

Braisington et al. (2005) suggests that houses with characteristics atypical within a block (for 

example, having the largest or smallest living area) would result in a discounted sale price.   

The third effect relates to the dependency among the disturbance terms.  That is, i  is 

positively (or negatively) related to j   for distinct observations i  and j .  A few examples that 

lead to this are minor misspecifications, incorrect spatial delineations of geographical variables, 

and omitted neighborhood characteristics (Osland, 2010).  For instance, suppose house i  is 

located near an airport, and this information is not captured in the hedonic model.  Then we 

would expect the model to overestimate its market price, because buyers demand a discount to 

compensate for increased noise level.  In terms of the hedonic model, this translates to a large 

negative value for i .  Similarly, the model would also overestimate market prices of houses in 

the proximity of house i , leading to spatial dependency among the disturbance terms.    

2.2.2 Spatial Heterogeneity 

In the OLS hedonic pricing model, the regression parameters represent the implicit prices 

of housing attributes.  They are assumed constant for all observations.  An implication is that the 

implicit prices are assumed constant through space.  Spatial heterogeneity refers to the case where 
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this assumption is invalid.  In the real estate literature, there has been strong evidence to support 

spatial heterogeneity.   

For example, Pavlov (2000) suggests that omitted variables influence not only the 

intercept of the model, but also the implicit prices of attributes.  Consider some omitted variables 

that are related to construction quality.  In the OLS model without the omitted variables, an 

additional square feet of marble floors (high construction quality) would be valued equally as an 

additional square feet of carpeted floor (lower construction quality).  It appears reasonable that 

the implicit price of an additional square feet (and other physical characteristics) should be related 

to construction quality.  If we further conjecture that construction quality is spatially correlated 

(construction quality of a house is similar to that of its neighbors), then the implicit price for an 

additional square feet exhibits spatial heterogeneity.   

Localized supply and demand imbalances within a large metropolitan real estate market 

also lead to spatial heterogeneity (Michaels et al. 1990).  With respect to supply, it is often the 

case that housing characteristics exhibit a high degree of spatial correlation; homes near the 

central business district are typically older, smaller, and lack new features like multiple garages 

and air conditioning.  On the other hand, suburban homes are generally newer, larger, and include 

newer features.   

If there is a shift in household preference to a certain housing attribute (eg. air 

conditioning), then competition for those attributes in an area where houses lack that attribute 

should result in higher implicit prices, compared to an area where houses with that attribute are 

plentiful.   

2.3 Spatial Econometric Models 

Analogous to the approach in Farber and Yeates (2006), this paper classifies spatial 

econometric models into two types:  ‘Global’ regression models and ‘Local’ regression models.  

The global regression models considered in this paper are the standard hedonic house price model 

(OLS) and linear spatial dependence models.  The local regression model used in this paper is 

geographically weighted regression (GWR).   

2.3.1 Linear Spatial Dependence Models 

Section 2.2 of Elhorst (2014) details the taxonomy of linear spatial dependence models 

commonly applied in empirical studies.  The three types of interaction effects considered in these 



 

 13 

models are (i) endogenous interaction effects, where the dependent variable of unit i  interacts 

with the dependent variable of another unit j , (ii) exogenous interaction effects, where the 

dependent variable of unit i depends on independent explanatory variables of another unit j , and 

(iii) interactions among the error terms, where the error term of unit i interacts with the error term 

of another unit j . 

A full model with all three types of interaction effects is expressed as: 

 









Wuu

uWXX
N

WYY 1
   (2.1) 

where 

 Y is an (Nx1) vector of the dependent variable 

  is the spatial autoregressive coefficient 

 W is an (NxN) spatial weight matrix 

 WY is the endogenous interaction effects among the dependent variable 

   is the constant term parameter, N1  is an (Nx1) vector of one’s 

 X is an (NxK) matrix of explanatory variables 

  is a (Kx1) vector of fixed but unknown coefficients 

 WX is the exogenous interaction effects  

  is a (Kx1) vector of fixed but unknown coefficients 

  is the spatial autocorrelation coefficient 

 Wu is the interaction effects among the disturbance terms 

  is an (Nx1) vector of uncorrelated errors with zero mean and constant variance 

 

By placing restrictions on ,  and , a family of spatial models is obtained.  For example, 

the classical OLS model is achieved by setting the above parameters to zero.  Figure 2.1 shows 

the family of spatial dependence models obtained with parameter restrictions.   

Care must be exercised in choosing among the available spatial models.  LeSage (2014) 

states that practitioners of spatial regression models should first determine whether the 

phenomena being modelled are likely to produce local or global spatial spillovers.  After this 

determination, only two models need to be considered; the spatial Durbin error model (for local 

spillovers) or the spatial Durbin model (for global spillovers).   
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Figure 2.1 The relationship between different spatial dependence models for cross-section data.  

Source:  Vega and Elhorst (2012) 

 

A spatial spillover is present when a causal relationship exists between an independent 

variable of a unit i  and the dependent variable of another unit j .  A mathematical definition is

0




r
iX

jy
, implying a spillover from the 

thr  characteristic of unit i  on to the dependent 

variable of unit j .  If the non-zero cross-partial derivative implies an impact on neighboring units 

that do not instigate endogenous feedback effects, then the spillover is referred to as a local 

spillover.   

Global spillover, on the other hand, refers to spillover effects where the non-zero cross-

partial derivative implies an impact on neighboring units, plus neighbors to the neighboring units, 

and so on.  This chain of impacts results in endogenous interaction and feedback effects.  

Endogenous interaction is when changes in one unit triggers a sequence of changes in potentially 

all other units, leading to a new long-run steady state equilibrium.   

In a study of the economic impact of sports facilities on residential property values in 

Columbus, Ohio, Feng and Humphreys (2008) suggest that shared neighborhood amenities lead 

to neighboring spillover effects among properties.  Therefore, the price of each property affects 

all other properties in the neighborhood, implying a global range of spillovers.  The study 

modelled the housing data with the spatial lag model, which is a special case of the spatial Durbin 

model with   restricted to zero. 
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2.3.2 Geographically Weighed Regression (GWR) 

GWR is implemented through a series of local linear regression for each unit in the sample 

(Fotheringham et al., 1998).  Mathematically, GWR is expressed as: 

iiiXiy      (2.2) 

where the subscript i  indicates that parameter estimates are specific to unit i .  In the context of 

hedonic house price modelling, this means the marginal prices of housing attributes varies across 

space in a continuous fashion.  The weighted least squares method is used to estimate i : 

yiW
T

XXiW
T

Xi
1

)(


   (2.3) 

where iW  is an NxN diagonal matrix with diagonal entries reflecting the weighting of each unit 

with respect to unit i  .   

 The most commonly used kernel to compute the weights is the Gaussian distance decay 

function, which specifies )exp(),(
2

2

h

d

jjiW
ij

 , where ijd  is the distance between unit i  and unit 

j , and 0h  is the bandwidth parameter.  The bandwidth parameter controls the rate at which 

the weighting function declines with distance.  The bi-square function and the tri-cube kernel 

function are also weighting functions that are commonly used.   

 The weighting functions mentioned above have a fixed bandwidth.  A potential problem 

arises for units that are located in a sparsely populated area.  For these units, i   is estimated 

based on data from very few neighbours ( ),( jjWi would be very small for most units j ), 

resulting in large estimation variance.  To remedy this, a specific bandwidth parameter h  for each 

observation is used to create adaptive weighting functions.  A small bandwidth is used for units 

located in densely populated area, while a larger bandwidth is used for units located in a sparsely 

populated area.  

2.4 Spatial Hedonic Models Applied to Canadian Housing Markets 

This section briefly introduces five studies that have applied spatial methods to the 

Canadian housing market.  The studies are Leblond (2004), Boxall et al. (2005), Farber and 

Yeates (2006), Kestens et al. (2006), and Huang et al. (2010).   
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In the Leblond (2004) study, four hedonic models are used for automated mass valuation 

for the housing market of Montreal.  The four models are (i) a simple hedonic model with no 

spatial effects, (ii) a model with spatially lagged independent variable, (iii) a model with spatially 

lagged dependent variable, and (iv) a model with spatially lagged errors.  Multiple listing service 

(MLS) transaction data for about 5,000 sales from single family homes during the period January 

1999 to September 2003 are used in the estimation.  Sales from the fourth quarter of 2003 are 

withheld for the purpose of out-of-sample prediction.  With respect to root mean squared 

prediction error, the model with spatially lagged independent variable performed best.   

Boxall et al. (2005) investigated the impact of oil and gas facilities on rural residential 

property values in 36 townships (6-mile by 6-mile block) near Calgary.  MLS data on 532 sales 

from residential properties during the period January 2004 to March 2001 were analyzed.  The 

sample was restricted to properties that ranged in size from 1 to 40 acres and priced from 

$150,000 to $450,0004.  The spatial lag model and the spatial error model were considered.  

When variables related to oil and gas facilities were included, LM tests and robust LM tests 

supported the spatial error model over the spatial lag model.  The results of the study concluded 

that the presence of oil and gas facilities have significant negative impacts on the values of nearby 

rural residential properties. 

The Farber and Yeates (2006) study examined the performance of four hedonic price 

models for the city of Toronto.  The study classifies the four models into two ‘global’ models and 

two ‘local’ models.  The two global models are (i) standard hedonic model and (ii) hedonic model 

with spatially lagged sales price.  The two local models are (i) geographically weighted 

regression (GWR) and (ii) moving window regression.  The data set used consists of 19,007 

freehold housing sales between July 2000 and June 2001 in the City of Toronto.  The study found 

that GWR achieved the highest coefficient of determination 
2R at 91.9%5.  In addition, the model 

residuals from GWR had the lowest level of spatial autocorrelation. 

Kestens et al. (2006) assessed the hypothesis that variability of implicit prices of certain 

housing attributes is linked to individual preferences.  The study used two spatial hedonic pricing 

models: the Casetti expansion method and GWR.  The dataset is based on a survey of 761 

households that acquired property in Quebec City between 1993 and 2001.  The study concluded 

                                                      
4   The restriction in size ensures the property was rural but with no commercial agriculture value.  The 

restriction in price mitigates the impact of abnormally low or high priced properties.   

5   For the two local models, 
2R is approximated by the pseudo-

2R , defined as the squared correlation    

coefficient between the observed and predicted values. 
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that some characteristics of the buyer’s household (household income, previous tenure status, and 

age) have a direct impact on transaction prices. 

Huang et al. (2010) applied local regression models to residential housing sales from 2002 

to 2004 in Calgary.  The study developed the geographically and temporally weighted regression 

(GTWR) model, an extension of the GWR model to include time effects.  When compared to a 

global OLS model, the study found that GWR reduced absolute prediction error by 31.5%, and 

GTWR reduced absolute prediction error by 46.4%.  Also, model 
2R  increased from 76.31% in 

global OLS model to 88.97% in GWR and 92.82% in GTWR.   
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3: Data 

In this paper, the dataset consists of transactions data pertaining to single family homes in 

Vancouver West that occurred in 2011, 2012, or 2013.  In addition to transaction price and 

housing characteristics variables used in traditional hedonic price modelling, the dataset includes 

the latitude and longitude of each property.  The latitude and longitude information allows the 

calculation of distances between properties, which is an essential step for the two spatial models 

considered in this study.  In summary, the following is a list of variables used in this paper: 

 Most recent sale date and sale price 

 Living area of property 

 Lot size 

 Age of property at sale date 

 Number of bedrooms and bathrooms6 

 Longitude and latitude of the property 

 Neighborhood code of the property  

 

Initially, the dataset contained 6,045 properties.  Records with missing data in any of the 

fields are removed.  To ensure the analysis is restricted to arms-length sales and eliminate 

possible data entry errors, records with sale price less than 50% of the city assessment (2013) are 

removed.  Finally, several sales in the downtown west end are deleted to facilitate spatial 

analysis.  In summary, 767 records are removed7 and 5,278 properties remain in the data set.    

Figure 3.1 displays the spatial distribution of the sale transactions used in this study.  It 

can be seen that there is a widespread distribution.  However, it is also apparent that some areas, 

in particular the north east region of the map, have very few or no transactions.  This is attributed 

to those areas having predominately condo, townhouse, or commercial developments.  Another 

point to note is that highway 99 depicted on the map is actually a major street (Granville Street) 

but not a highway.     

 

 

 

                                                      
6   Half bathrooms are included as well as 0.5 bathrooms. 
7   Of the 767 deletion, 341 are attributed to the sale price less than 50% of city assessment.  
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Figure 3.1      Property Sale Locations8 

 

3.1 Treatment of Time Effects 

Of the 5,278 properties in the dataset, 1,993 (37.8%) transacted in 2011, 1,491 (28.2%) 

transacted in 2012, and 1,794 (34.0%) transacted in 2013.  Hedonic pricing models in the real 

estate literature account for time effects in a number of ways.  For example, Farber and Yeates 

(2006) included a variable to capture the sale date in the 12-month study period to account for 

time trends.  Another approach is to add time dummy variables to capture the year and month at 

which the property was sold.   

 Figure 3.2 charts the Home Price Index9 (HPI) published monthly by the Multiple Listing 

Service (MLS) for Vancouver West detached homes, over the years 2011, 2012, and 2013.  Based 

on this index, prices for detached homes in Vancouver West exhibited considerable volatility over 

this period.  

                                                      
8   The Matlab function used to draw the Google Map is courtesy of Zohar Bar-Yehuda.  

http://www.mathworks.com/matlabcentral/fileexchange/27627-plot-google-map 
9   http://www.rebgv.org/home-price-index 

http://www.mathworks.com/matlabcentral/fileexchange/27627-plot-google-map
http://www.rebgv.org/home-price-index
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Figure 3.2 MLS Home Price Index – Vancouver West Detached (2005/01 = 100) 

 

 

This paper handles time effects by adjusting the sale price of each transaction with the HPI.  

Specifically, sale price are indexed to December 2013.  The adjusted sale price are subsequently 

used in the models, and henceforth abbreviated as the “sale price”.  As an example, a property 

that sold for $1,000,000 in June 2012 would have an adjusted price of  

$1,000,000 * 
)2012/(

)2013/(

JuneHPI

DecHPI
= $1,000,000 * (216.1/226.4) = $954,505.  

3.2 Descriptive Statistics 

This section reports summary statistics for the variables used in this study:  sale price, 

living area, lot size, age, number of rooms, number of bathrooms, and number of half bathrooms.  

For sale price, living area, and lot size, Moran’s I10 is computed to assess the degree of spatial 

autocorrelation.  Similar to the correlation coefficient, the Moran Coefficient varies between -1 to 

+1, with positive values indicating positive autocorrelation.  

Table 3.1 displays summary statistics of the study variables in the data set.  The mean and 

median sale price are close to the Dec/2013 HPI benchmark price of $2.1 million for a typical 

Vancouver West detached home.  The mean and median lot sizes are both considerably larger 

than the standard Vancouver lot size (33ft x 122ft = 4026 sqft.).   

                                                      
10   The calculation of Moran’s I requires an (NxN) spatial weight matrix W.  For this section,

km

ij
d

jiW
4.0

1),(   if kmijd 4.0 and 0),( jiW  otherwise. ijd is the distance between properties i  

and j .  W is subsequently row-normalized so each row sums to 1. 
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There is significant variation in the age of the properties in the dataset.  Further analysis 

shows evidence of several clusters; 17.6% of the properties are aged between 0 to 5 years, 18% 

between 15 to 26 years, 15.1% between 63 to 76 years, and 18.7% between 81 to 91 years.    

Moran’s I for sale price, living area, and lot size are all positive, suggesting positive 

spatial autocorrelation in these variables.  Figure 3.3 maps the spatial distribution of sale prices in 

the dataset.   

Table 3.1       Summary statistics for sale price, living area, and lot size 

Variable Mean Median Standard 

Deviation 

20th 

percentile 

80th 

percentile 

Moran’s I 

Sale Price $2,335,000 $2,018,000 $1,356,000 $1,470,000 $2,905,000 0.471 

Living Area 
(sqft.) 

3032 2742 1320 2052 3978 0.324 

Lot Size (sqft.) 6806 6041 4650 4026 8040 0.622 

Age 46.65 51 33.85 9 83 

Number of 
Rooms 

4.43 4 1.32 3 5 

Number of 
Bathrooms 

3.51 3.5 1.63 2 5 
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Figure 3.3 Spatial distribution of sale prices (adjusted to Dec/2013 HPI).  The green, blue, and red 

points correspond to, respectively, properties with sale price in the bottom 20th percentile, 

20th to 80th percentile, and top 20th percentile.   
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4: Hedonic Pricing Models 

This section describes the three hedonic models considered in this paper:  Ordinary Least 

Squares (OLS), Spatial Durbin Model (SDM), and Geographically Weighted Regression (GWR). 

4.1 Ordinary Least Squares 

In addition to variable selection, selecting an appropriate functional form is essential for 

an OLS hedonic pricing model.  There are predominately three functional forms in the hedonic 

house price literature:  linear, semi-log, and log-log.  Malpezzi (2002) found that the semi-log and 

log-log specifications are common in empirical studies.  Both the semi-log and log-log form 

express the marginal implicit price of attributes in terms of percentage change in sale price.  In 

contrast, the linear form assumes a constant additive effect of each attribute.  So in the linear 

form, the addition of a bedroom to a ten bedroom home would have the same effect as the 

addition of a bedroom to a two bedroom home.   

Following the methodology used in other Canadian studies (Leblond, 2004; Farber and 

Yeates, 2006), this paper uses the semi-log specification for the OLS model: 

ii
AgeiAgeithroomsNumberOfBa

idroomsNumberOfBeilotSizeilivingAreaiicesale









2
5 4                            

 3)log(2)log(11)Prlog(

6

(4.1) 

 In this model, 1 (and similarly for 2 ) is interpreted as the elasticity of sale price with 

respect to living area.  If 4.01  , then a 1% increase in living area (holding everything 

constant) would lead to an increase of 0.4*1% = 0.4% in the sales price.  3  and 4  are 

interpreted as the percent change in sales price for an extra bedroom and bathroom, respectively.  

If 02.03  , then an extra bedroom (holding everything else constant) would yield an increase 

of 0.02% in the sales price.  The interpretation of 5  and 6  is less straightforward because of 

the 
2

iAge  variable.  Taking the partial derivative of iicesalePr with respect to iAge  in equation 

(4.1) gives: 

i

i

i

i

i

i Age
Age

icesale
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   (4.2) 
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So an extra year in age of a property would imply a percentage change in sale price by 

%100*]2[ 65 iAge  . 

 The OLS model in equation (4.1) lacks locational attributes.  To facilitate comparison 

with SDM and GWR, a variable with the neighborhood code of each property is incorporated.  A 

total of eleven neighborhoods are identified11 in the dataset.  This variable is added to the OLS 

model through a set of dummy variables.  This model is estimated separately and referred to as 

“OLS model with neighborhood codes”.     

4.2 Spatial Durbin Model  

Figure 2.1 depicts the family of spatial econometric models that are used in spatial 

econometric analysis.  As LeSage (2014) points out, only two should be considered for applied 

work:  (i) the Spatial Durbin Error model (SDEM) or (ii) the Spatial Durbin model (SDM).  

SDEM is appropriate if the relationship being investigated generates local spillover effects, 

whereas SDM is applicable in the case of global spillover effects.   

Feng and Humphreys (2008) suggests that the housing market generates a global range of 

spillovers.  Shared neighborhood amenities lead to neighboring spillover effects among 

properties.  As a result, the price of each house affects all other houses in the neighborhood, with 

the effect diminishing with distance.  

 In another study, Montero et al. (2011) selected the SDM to model the impact of noise 

on housing prices in Madrid, Spain.  The authors cites that SDM is quite general and robust, and 

that the commonly used spatial autoregressive model and spatial error model are special cases of 

the SDM.  And for the majority of spatially correlated data generating processes, SDM is able to 

provide consistent estimates.   

With the above considerations, this paper uses the SDM.  The SDM is expressed by a 

matrix equation: 

  WXXWy
N

y 1   (4.3) 

where  

 y  is an (Nx1) vector of the logarithms of the sale prices 

                                                      
11  The neighborhoods identified in the dataset are Arbutus/Mackenzie Heights, Cambie/Fairview/Mount 

Pleasant, Dunbar, Kerrisdale, Kitsilano, Marpole, Oakridge, Point Grey, Shaughnessy, South Granville, 

and Southlands/Marine Drive. 
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   is the constant term parameter, N1  is an (Nx1) vector of one’s 

  is the spatial autoregressive coefficient 

 W is an (NxN) spatial weight matrix 

 X is an (Nx6) matrix of housing attributes; )log(livingArea , )log(lotSize , 

idroomsNumberOfBe , throomsNumberOfBa , Age , 
2

Age  

   is an (6x1) vector of parameters associated with X  

   is an (6x1) vector of parameters associated with WX  

   is an (Nx1) vector of uncorrelated errors with zero mean and constant variance 

4.2.1 Direct and Indirect Effects in SDM 

Unlike OLS, the interpretation of parameters is more involved in SDM.  This is attributed 

to spatial spillover effects.  Following the analysis from Montero et al. (2011), equation (4.3) can 

be re-written as (LeSage and Pace, 2009): 


1

)(]1[
1

)(





 W
N

IWXX
N

W
N

Iy   (4.4) 

Since 
1)(  WIN   is in general a non-sparse matrix, a change in the housing characteristic of 

property j  has a non-zero impact on the sale price of property i .   

Now let )()( 1

rrNNr WIWIS   
 be the (NxN) matrix associated with a change 

in characteristic r .  The direct and indirect effects, respectively, of a change in characteristic r  on 

the sale price of property i  are given by: 

),( iirS

irx
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jrx
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   (4.5) 

The Average Direct Impact (ADI), Average Total Impact (ATI), and Average Indirect 

Impact (AII) of characteristic r  are defined as: 

ADIATIAII
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4.2.2 Specification of Spatial Weight Matrix 

An important consideration in applying spatial econometric method is the specification of 

a spatial weight matrix W .  A spatial matrix is an (NXN) non-negative matrix that specifies a set 

of neighbors for each observation in the data set.  It captures all the spatial interaction in the data 

and is specified a priori by the researcher.  If property i  and property j  are neighbors, then 

0ijW , and 0ijW  otherwise.  Conventionally, a property is not a neighbor to itself, so that 

0iiW .  W is usually row-normalized for interpretation and estimation purposes.   

The spatial statistics literature have proposed many techniques to specify W .  Three 

common approaches are based on border contiguity, distance contiguity, and k-nearest neighbors.  

This study constructs the spatial weight matrix based on distance contiguity from Pace and Gilley 

(1997): 

)0),max/(1max( dijdijW     (4.7) 

where ijd  is the straight-line Euclidian distance between property i  and property j , and maxd  is 

a predetermined cutoff.  In this formulation, properties with distance within maxd  apart are 

considered neighbors, with the weight declining linearly with distance.   

There are three appealing properties with the spatial matrix built from equation (4.7).  

The first is that W  is symmetric, so that if property j  is a neighbor of property i , then 

necessarily property i  is a neighbor of property j .  Spatial matrices based on border contiguity 

and k-nearest neighbors in general would not have this property.  The second ideal property is 

that the sparseness of W  can be controlled by adjusting maxd .  LeSage (2014) suggests that the 

weight matrix should be sparse.  Thirdly, the weights are linearly declining with distance, so that 

neighbors that are closer together have larger weights than neighbors that are further apart.   

In this paper, following the approach from Feng and Humphreys (2008), maxd is chosen 

such that every property has at least one neighbor.  For the 5,278 properties in the data set, it turns 

out that kmd 4.0max  .  For this cut-off distance, the average number of neighbors is 79.66 with 

a standard deviation of 29.29.  The minimum number of neighbors is one (by construction), and 

the maximum number of neighbors is 153.  There are a total of 420,444 links (non-zero elements) 

in the spatial weight matrix, or 1.51% of the maximum possible number of links (5278*5278 – 

5278).  The distribution of the number of neighbors is shown in Figure 4.1.   
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Figure 4.1      Distribution of the number of neighbors with spatial weight matrix based on equation (4.6) 

       

 

  

 

 

 

 

 

 

 

 

 

 

 

 

4.3 Geographically Weighed Regression  

GWR extends the classical OLS model by estimating the parameters locally.  For this 

study, GWR is an extension of the OLS model in equation (4.1).  In vector notation, GWR is 

expressed as:   

iiiXiiY      (4.8) 

where  

 iY  is the logarithm of sale price of property i  

 i is the model intercept for property i    

 iX  is a (1x6) vector of housing attributes for property i  analogous to equation (4.2) 

 i is a (6x1) vector of parameters for property i  

 i  is the error term for property i  
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Now define an (NxN) diagonal weight matrix iW  with diagonal entries reflecting the 

weighting of properties with respect to property i 12.  The estimation of i  then follows from 

weighted least squares: 

YiW
T

XXiW
T

Xi
1

)(


    (4.9) 

In this paper, the weights are calculated using a k -nearest-neighbor weighting scheme 

from Pavlov (2000).  First, the k  nearest neighbors of property i  are identified.  Let this set be 

denoted by )(iNk .  Then weights are assigned to the k  nearest neighbors using a parabolic shape 

function: 

ik
d

i
k

Nk

ijd

ju

i
k

Nj

i
k

NjjujjiW

)(
max

)(for 0              

)(for 
2

1),(









  (4.10) 

An important property of this weighting scheme is that a constant number of neighbors is 

admitted to estimate i  from equation (4.8).  Therefore, the relevant neighborhood of each 

property varies with the density of observations.  The parameter k  is a smoothing parameter.  A 

small k  will restrict estimation to only nearby properties, whereas a large k  will allow distant 

observations to enter in the estimation.  In terms of model complexity, the larger the k , the more 

complex the model.   

In this paper, k  is determined by cross-validation.  In this procedure, k  is varied over a 

range of values.  For each k , the series of model parameters are estimated from equation (4.8), 

then the predicted logarithm of the sale price is calculated for each property.  The squared 

prediction error is subsequently calculated.  The k  that minimizes the total sum of squared 

prediction error is selected.  To avoid unstable parameter estimates and singularity issues in local 

regressions, k  is varied over the range ]300,50[ .   

Figure 4.2 shows that the sum of squared prediction error decreases rapidly as k  is 

increased from the lowest value of 50.  It reaches a minimum at 153k  and gradually increases 

                                                      
12   The weight matrix used for GWR is distinct from the spatial weight matrix used for SDM.   
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afterwards.  This behaviour is typical for smoothing parameters in non-parametric methods, a 

phenomenon known as the “bias-variance tradeoff”.  For comparison, Farber and Yeates (2006) 

found 274k  using cross-validation for 19,007 housing sales in the city of Toronto.    

Figure 4.2 GWR Sum of Squared Prediction Error vs k       
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5: Estimation Results 

5.1 Ordinary Least Squares  

The estimation results of the two OLS models are presented in Table 5.1.  The first OLS 

model does not incorporate any locational attributes.  The second OLS model includes the 

neighborhood code of each property through dummy variables.  The parameter estimates for the 

dummy variables are presented in Table 5.2.  The 
2Age  variable is divided by 1,000 to help show 

this variable’s parameter estimate. 

The inclusion of neighborhood codes significant improved the OLS model.  
2R  increased 

from 55.4% to 63.0%, and Moran’s I of the residuals is reduced from 0.252 to 0.10913.  The 

reduction in Moran’s I suggests that neighborhood codes are effective at removing spatial 

autocorrelation from the data.   

For both models, all estimated parameters take the expected sign and are strongly 

statistically significant.  Living area and lot size both have a large positive effect on sale price.  

Using the OLS estimates, a 1% increase in living area leads to a 0.36% increase in sale price, and 

a 1% increase in lot size yields a 0.47% increase in sale price.   

An extra bedroom reduces sale price in both models.  An explanation is that, for a fixed 

living area, more bedrooms reduces space available for desirable features such as a larger kitchen, 

larger living room, home theatre room, and bathrooms.  A property with many bedrooms is also 

more likely to be a practical home rather than a luxurious home.   

Both models predict an extra bathroom have a positive influence on sale price.  The OLS 

estimate implies an additional bathroom increases sale price by 2.5%.  In this study, the number 

of bathrooms also includes the number of half bathrooms.  Since half bathrooms are a popular 

feature in newer luxury homes, an additional bathroom may also be an indication that the 

property is a luxury home.   

 

                                                      
13   The calculation of Moran’s I requires an (NxN) spatial weight matrix W.  For Moran’s I calculations, 

km

ij
d

jiW
4.0

1),(   if kmijd 4.0 and 0),( jiW  otherwise. ijd is the distance between properties i  

and j .  W is subsequently row-normalized so each row sums to one. 
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Table 5.1 Estimation Results for Ordinary Least Squares Models (N=5,278).  Dependent variable is 

the logarithm of sale price.  Parameter t-values in brackets. 

 OLS  OLS – With 

Neighborhood Codes 

2
R  0.5535 0.6298 

residuals - I  sMoran'   0.2520 0.1091 

Constant  7.7636 
(63.92) 

N/A 

Area) Log(Living  0.3591 
(16.85) 

0.2920 
(14.85) 

Size)Log(Lot  0.4742 
(34.74) 

0.5054 
(35.76) 

Bedrooms of #  - 0.0363 
(- 9.60) 

- 0.0242 
(- 6.94) 

Bathrooms of #  0.0251 
(5.04) 

 0.0221 
(4.85) 

Age  - 0.0078 
(-12.48) 

- 0.0062 
(-10.71) 

1000/
2

Age  0.0733 
(12.61) 

0.0500 
(9.13) 

 

As expected, age is estimated to have a negative impact on sale price.  However, the square 

of age is estimated to have a positive impact on sale price, suggesting a positive vintage effect for 

older properties.  Taken together, the model predicts a U-shaped effect of age on sale price.   

Another finding is that the magnitude of the parameter estimates are smaller (except lot 

size) in the OLS model with neighborhood codes.  In other words, after adjusting for location 

effects with neighborhood codes, the effect of each attribute (except lot size) on sale price is 

mitigated.  

From Table 5.2, OLS model predicts that the Point Grey neighborhood is the most 

expensive, and the Marpole neighborhood is least expensive.  The relative price of a home in 

Point Grey compared to a home in Marpole is approximately %8.1537322.71627.8 e .  That is, a 
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property with fixed characteristics located in the Marpole neighborhood will sell for 53.8% more 

if it re-located to the Point Grey neighborhood. 

Table 5.2 Dummy variable estimates for the Ordinary Least Squares Model with neighbourhood codes 

(N = 5,278) 

Neighborhood Dummy Variable Estimate 

Arbutus 8.0851 

Cambie/Fairview/Mount Pleasant 7.8658 

Dunbar 8.0091 

Kerrisdale 8.0116 

Kitsilano 7.9981 

Marpole 7.7322 

Oakridge 7.8201 

Point Grey 8.1627 

Shahghnessy 8.1116 

South Granville 7.9894 

Southlands 7.7702 

 

5.2 Spatial Durbin Model  

Recall from Section 4.2 that the SDM is expressed in matrix notation as: 

  WXXWy
N

y 1  (5.1) 

James LeSage’s Econometric Toolbox14 is used to estimate the SDM.  In particular, the sdm 

function is used with [ N1  X] as the independent variables.  Table 5.3 presents the estimation 

                                                      
14  http://www.spatial-econometrics.com/ 

http://www.spatial-econometrics.com/
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results of the SDM, using the row-normalized spatial weight matrix based on equation (4.7)15.  

The first column shows the parameter estimates for the six explanatory variables (  ).  The 

second column displays the parameter estimates for the six explanatory variables with a spatial 

lag ( ).  The third, fourth, and fifth columns calculates, respectively, the average direct impact, 

average indirect impact, and average total impact of each housing characteristic (see Section 

4.2.1).  The estimate for the constant parameter   is shown in the first column.   

 The estimated value for  , the spatial autoregressive parameter, is 0.78, indicating a high 

level of spatial dependency.  Model 
2R  is 60.3%, which is higher than the OLS model but lower 

than the OLS model with neighborhood codes.  However, the use of 
2R  for spatial econometric 

models is not appropriate and should be interpreted with caution (Anselin, 1988).  Moran’s I is 

0.18, suggesting spatial autocorrelation is not entirely removed by SDM.   

 For SDM, the effect of explanatory variables is best measured by the average direct effect 

(see Section 4.2.1).  Referring to the third column of Table 5.3, the average direct effects of the 

housing attributes are similar to those from the OLS model with neighborhood codes.  

Living area and lot size are estimated to have a large positive direct effect on sale price, 

with price elasticities of 0.25 and 0.48, respectively.  An extra bedroom has a negative direct 

effect of -2.1% on sale price.  An extra bathroom adds 2.4% to sale price.  Similar to the two OLS 

models, SDM estimates a negative direct effect with age but a positive direct effect with age 

squared, suggesting a U-shaped relationship.   

Except for lot size, the average indirect effect takes the same sign as the average direct 

effect.  In addition, the average indirect effect is generally much larger than the average direct 

effect.  For example, a 1% increase in living area of a property leads to a 2.5% increase in its sale 

price, but it also increases sale price of neighboring properties by an average of 1.1%.  An extra 

bathroom adds 2.5% to a property’s sale price, and on average 10.5% to neighboring property’s 

sale price.    

The average indirect effect and average total effect estimates are sensitive to the 

connectedness of the spatial weight matrix W .  It was discovered that if the cutoff distance in the 

weight function is increased (so that each property has more neighbors), the average indirect 

                                                      
15  )0),4.0/(1max( kmijdijW   
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effect and average total effect increases rapidly.  However, the average direct effect remain 

relatively constant.   

Table 5.3 Estimation results for Spatial Durbin Model (N=5,278).  Dependent variable is the 

logarithm of sale price.  t-values in brackets.  Note:  t-values may be inaccurate because 

of negative variances from numerical hessian.   

  

 Another observation is that the average direct effect estimates are similar to the parameter 

estimates (  ) of the explanatory variables.  This finding is consistent with LeSage and Pace 

(2009).     

 Coeff X 

(  ) 

Coeff W*X 

( ) 

Average 

Direct Effect 

Average 

Indirect Effect 

Average Total 

Effect 

Constant  
1.0564 
(3.16) 

N/A N/A N/A N/A 

Area) Log(Living  
0.2400 
(12.72) 

0.0461 
(0.76) 

0.2509 
(12.75) 
 

1.056  
(3.29) 

1.3071 
(4.01) 

Size)Log(Lot  0.4869 
(28.41) 

- 0.4758 
(- 13.85) 

0.4825 
(27.88) 

- 0.4308 
(- 2.96) 

0.0517 
(0.35) 

Bedrooms of #  - 0.01789 
(- 5.45) 

- 0.0521 
(- 3.51) 

- 0.0210 
(- 6.03) 

- 0.3017 
(- 4.42) 

- 0.3227 
(- 4.67) 

Bathrooms of #  0.02367 
(5.54) 

0.0035 
(0.16) 

0.0247 
(5.41) 

0.1054 
(1.04) 

0.1302 
(1.26) 

Age  - 0.0060 
(- 10.82) 

0.0010 
(0.42) 

- 0.0061 
(- 10.89) 

- 0.0166 
(- 1.55) 

- 0.0227 
(- 2.09) 

1000/
2

Age  0.0452 
(8.49) 

0.0087 
(0.45) 

0.0472 
(8.80) 

0.2008 
(2.28) 

0.2480 
(2.79) 

  0.7829 
(130.53) 

    

2
R  0.6034     

residuals - I  sMoran'   0.1849     
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5.3 Geographically Weighted Regression 

In this study, the weight matrix for GWR is constructed from a k -nearest-neighbor 

weighting scheme using a parabolic shape function.  A cross-validation procedure selected

153k  neighbors.  For more details, see Section 4.3.  

The estimation results for GWR is presented in Table 5.4.  The mean, median, standard 

deviation, 25th percentile, 75th percentile, and Moran’s I of the parameter estimates for each 

explanatory variable is presented.  The same statistics for the local 
2R values are included as 

well.  Following Farber and Yeates (2008), the global 
2R for GWR is calculated as the squared 

correlation coefficient between the observed and predicted values.   

Although the mean and median local 
2R  values are lower than those of the two OLS 

models and SDM, GWR achieved the highest global 
2R  value of 65.9%.  GWR also achieved 

the lowest Moran’s I value of 0.0265, indicating GWR is most effective at removing spatial 

autocorrelation.    

The mean and median of each parameter has the same sign as those from the two OLS 

models.  The parameter magnitudes for most variables are similar to those from the OLS model 

with neighborhood codes.  This is not a surprising finding because GWR estimates parameters 

locally, and the OLS model with neighborhood codes accounts for the neighborhood of each 

property. 

 Moran’s I exceeds 0.8 for each attribute’s coefficient.  This suggests spatial heterogeneity 

in the effect of attributes on sale price.  Figure 5.1 plots the spatial distribution of the parameter 

estimates for )log( LivingArea , )log( LotSize , number of bedrooms, and number of bathrooms.  

The four plots groups the properties by the 25th and 75th percentile of the respective parameter 

estimates.   

 Note that for each of the four parameter estimates, properties for each percentile group 

appear in patches.  That is, if a property’s parameter estimate for an attribute is in the top 25th 

percentile, then nearby property’s parameter estimate for that attribute will likely be in the top 

25th percentile as well.  This is a consequence of the GWR model and the weight function adopted 

in this study; nearby properties admit similar neighbors with similar weightings towards the 

estimation of the parameters in equation (4.9), resulting in similar parameter estimates.   

 An interesting finding from Figure 5.1 is that the effects of living area and lot size appear 

negatively correlated.  Further analysis shows that only 59 properties, or 1.1% of the dataset, have 
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parameter estimates of both )log( LivingArea  and )log( LotSize  in the top 25th percentile.  

Similarly, only 45 properties, or 0.85% of the dataset, have parameter estimates of both 

)log( LivingArea  and )log( LotSize  in the bottom 25th percentile.  If the effects of these two 

attributes are independent, we would expect to observe 25%*25% = 6.25% in both cases.   

Table 5.4 Estimation result for GWR (N=5,278). 

 Mean Median Standard 

Deviation 

25th 

Percentile 

75th 

Percentile 

Moran’s I 

2
R Local  0.4970 0.4948 0.1178 0.4228 0.5727 0.8371 

Constant  7.9878 7.9697 1.5901 7.0007 9.0567 0.7613 

Area) Log(Living  
0.2519 0.2283 0.2074 0.0957 0.3824 0.8810 

Size)Log(Lot  
0.5425 0.5368 0.1853 0.4053 0.6789 0.8079 

Bedrooms of #  - 0.0167 - 0.0145 0.0336 - 0.0368 0.0064 0.8833 

Bathrooms of #  
0.0185 0.0147 0.0380 - 0.0033 0.0357 0.8403 

Age  
- 0.0074 - 0.0079 0.0063 - 0.0116 - 0.0027 0.8969 

1000/
2

Age  0.0577 0.0583 0.0624 0.0148 0.0914 0.8778 

2
R  0.6606      

residuals - I  sMoran'   
0.0277 
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Figure 5.1 Spatial distribution of GWR parameters:  log(livingArea) (top left), log(lotSize) (top right), 

number of bedrooms (bottom left), and number of bathrooms (bottom right).  The green, 

blue, and red points correspond to, respectively, properties with parameter estimates in the 

bottom 25th percentile, 25th to 75th percentile, and top 25th percentile.   

 

 

 
 

5.4 Prediction Error 

This section calculates the out-of-sample prediction error for the four models in this 

study.  For the two OLS models and SDM, the calculation of out-of-sample prediction error 

involves the following procedure:  (i) Randomly divide the observations into training set (50%) 

and a testing set (50%).  (ii) Estimate the model parameters using the training set.  For SDM, a 

spatial weight matrix based only on the training set is required.  (iii) Use the estimated parameters 

to predict the logarithm of sale price in the testing set.  For SDM, equation (4.4) is used with   

set to zero, and W is the spatial weight matrix based only on the testing set.  (iv)  Compute the 
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prediction error for each observation in the testing set.  Out-of-sample prediction error for each 

model is then equal to the squared prediction error averaged over the observations in the testing 

set.  To reduce sampling variability, this procedure is repeated for 100 trials.   

For GWR, no training set or testing set are required because a local regression model is 

built for each property using data from its neighbors.  The predicted logarithm of sale price can 

readily be calculated with each observation’s estimated local regression model.  GWR out-of-

sample prediction error is equal to the squared prediction error averaged over the observations in 

the dataset.   

Table 5.4 shows the prediction error of the four models.  Model 
2R  and Moran’s I of 

model residuals are included for comparison.  GWR achieved the lowest prediction error, 

followed by the OLS with neighborhood codes, SDM, and OLS.  For reference, the mean 

logarithm of sale price in the dataset is 14.55, and the median is 14.52.   

GWR also had the highest model 
2R , while OLS had the lowest.  With respect to 

addressing spatial autocorrelation, GWR is most effective, having by far the lowest Moran’s I of 

model residuals.   

The results corroborate that of Farber and Yeates (2006).  In that study, 19,007 records of 

housing sales over a 12-month period in Toronto were analyzed.  The authors found that spatial 

autoregressive model (a special case of SDM) outperformed OLS, but that GWR outperformed 

both spatial autoregressive model and OLS.   

Finally, Table 5.6 summarizes the effects of each attribute for the four models.  For 

SDM, the average direct effects are reported.  For GWR, the mean effects are reported. 

Table 5.5 Prediction error for log(salePrice),
2

R , and Moran’s I of model residuals for the four 

hedonic pricing models in this study.  Prediction error is calculated out-of-sample and based 

on 100 independent trials.     

Model Prediction Error 2R  Moran’s I - Residuals 

OLS 0.0898 0.5535 0.2520 

OLS – With 
Neighborhood Codes 

0.0746 0.6298 0.1091 

SDM 0.0823 0.6034 0.1849 

GWR 0.0682 0.6606 0.0277 
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Table 5.6 Parameter estimates of attributes for the four hedonic models in this study. 

 OLS OLS – with 
Neighborhood Codes 

SDM - Average 
Direct Effect 

GWR  - Mean 
estimate 

Area) Log(Living  0.3591 0.2920 0.2509 0.2519 

Size)Log(Lot  0.4742 0.5054 0.4825 0.5425 

Bedrooms of #  - 0.0363 - 0.0242 - 0.0210 - 0.0167 

Bathrooms of #  0.0251 0.0221 0.0247 0.0185 

Age  - 0.0078 - 0.0062 - 0.0061 - 0.0074 

1000/
2

Age  
0.0733 0.0500 0.0472 0.0577 

 

5.5 Monthly Price Index Estimate 

This section estimates a monthly price index to track price changes in the study period.  

Because no transactions occurred in December 2013, the index is estimated from January 2011 to 

December 2013.  For this section, the GWR model from Section 4.3 is used but with iY  set to the 

logarithm of the unadjusted sale price and i  replaced by time dummy variables.  The dummy 

variables are added to capture the year and month at which each property was transacted.   

Table 5.7 shows the estimates of the time dummy variables for the 35 months from 

January 2011 to November 2013.  From these estimates, the relative price of properties (adjusted 

for characteristics) between months may be calculated.  For example, the relative price between 

January 2011 to July 2011 is %89.1027552.778370.7 e .  Computing the relative prices for every 

month relative to January 2011 yields an estimate of the monthly price index. 

Figure 5.2 charts the estimated index, with the base period January 2011 set to 188.6 to 

coincide with the HPI index.  Compared to the HPI index, the estimated index is much more 

volatile, showing significantly more month to month changes.  The estimated index showed a 

decline of about 10% from January 2011 to February 2011, whereas the HPI showed a moderate 

increase.  The HPI increased at a moderate for 2013, but the estimated index showed a large 

increase for September (6.35%) and decreases for October (- 2.15%) and November (- 1.01%).   

A possible explanation for the volatility of the estimated index is that in the GWR model, 

153k  are neighbors are used in the estimation.  As a result, some properties might have very 

few (or zero) neighbors that was sold each month.  This would lead to unreliable estimates for the 

time dummy variables. 
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Table 5.7 Dummy variable estimates using GWR model (N = 5,278) 

Year/Month Dummy Variable 
Estimate 

 Year/Month Dummy Variable 
Estimate 

2011 - Jan 7.7552  2012 - Jul 7.9350 

2011 - Feb 7.6549  2012 - Aug 7.9234 

2011 - Mar 7.7853  2012 - Sep 7.8645 

2011 - Apr 7.8028  2012 - Oct 7.8591 

2011 - May 7.8271  2012 - Nov 7.8829 

2011 - Jun 7.8323  2012 - Dec 7.8266 

2011 - Jul 7.8370  2013 - Jan 7.8852 

2011 - Aug 7.8589  2013 - Feb 7.8522 

2011 - Sep 7.8072  2013 - Mar 7.8298 

2011 - Oct 7.8248  2013 - Apr 7.8547 

2011 - Nov 7.9409  2013 - May 7.8539 

2011 - Dec 7.8227  2013 - Jun 7.8804 

2012 - Jan 7.8935  2013 - Jul 7.8663 

2012 - Feb 7.9105  2013 - Aug 7.8882 

2012 - Mar 7.8179  2013 - Sep 7.9497 

2012 - Apr 7.9647  2013 - Oct 7.9280 

2012 - May 7.8500  2013 - Nov 7.9178 

2012 - Jun 7.9266    

Figure 5.2 Estimated price index using time dummy variable estimates from GWR.  HPI index shown for 

comparison 
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6: Conclusion 

It is well documented in the real estate literature that hedonic price models based on OLS 

are inadequate to handle spatial effects inherent in housing data.  This study compares the 

performance of four hedonic housing price models for single family homes in Vancouver West, 

Canada.  The models range from classical ordinary least squares to more sophisticated spatial 

econometric models that account for spatial autocorrelation and spatial heterogeneity.  In total, 

four models are considered: (i) Ordinary Least Squares (OLS), (ii) OLS with neighborhood code 

dummies, (iii) Spatial Durbin Model (SDM), and (iv) Geographically Weighted Regression 

(GWR).   

The dataset consists of 5,278 sale records for single-family homes in Vancouver West 

from 2011 to 2013.  A parsimonious set of six property attributes along with geographic 

coordinates of the properties are used in this study. 

The models are compared based on model 
2R , out-of-sample predictive power, and 

effectiveness at addressing spatial autocorrelation.  For all three criteria, GWR performs the best, 

followed by OLS with neighborhood codes, SDM, and OLS.  Referring to the Moran’s I of model 

residuals in Table 5.4, GWR appears to be the only model capable of removing spatial 

autocorrelation from the data.   

 Encouragingly, all four models predict a similar impact of property attributes on sale 

price.  Both living area (square feet) and lot size have a large positive effect on sale price.  The 

number of bedrooms have a negative effect.  Positive effects are estimated for the number of 

bathrooms and number of half bathrooms.  A U-shaped relationship is estimated between the age 

of the property and sale price.  That is, newer homes are more expensive than middle-aged 

homes, but middle-aged homes are cheaper than very old homes.   

In conclusion, this study demonstrates that accounting for spatial effects is essential to 

building a reliable hedonic pricing model.  The classical OLS model without location information 

over-estimates the impact of property attributes on sale price.  In addition, model residuals from 

OLS exhibit a high degree of spatial autocorrelation.  However, a classical OLS model with 

neighborhood codes outperforms the Spatial Durbin Model.   

Future studies could investigate many issues.  A few examples are:  (i) adding 

explanatory variables related to structure (garage, pool, etc.), neighborhood (average income, 

percentage of immigrants, etc.), location (distance to central business district, schools, hospitals, 
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etc.), and economy (stock market returns, mortgage rates, etc.); (ii) specification of spatial weight 

in SDM, as well as interpretation of indirect effects; (iii)  specification of weight matrix and 

weight function for GWR, possibly including time effects (Huang et al., 2010); (iv)  applying the 

methodology to other municipalities in the Greater Vancouver area; (v)  applying the 

methodology to the apartment and townhouse market. 
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