
Multiple-Decrement Compositional Forecasting

with the Lee-Carter Model

by

Tianyu Guan

B.Sc., Jilin University, 2011

A Project Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Science

in the

Department of Statistics and Actuarial Science

Faculty of Science

c© Tianyu Guan 2014

SIMON FRASER UNIVERSITY

Summer 2014

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.



APPROVAL

Name: Tianyu Guan

Degree: Master of Science

Title of A Project: Multiple-Decrement Compositional Forecasting with the Lee-Carter

Model

Examining Committee: Dr. Tim Swartz, Professor

Chair

Dr. Gary Parker,

Associate Professor, Senior Supervisor

Dr. Cary Chi-Liang Tsai,

Associate Professor, Supervisor

Dr. Michelle Zhou,

Assistant Professor, Internal Examiner

Date Defended: July 10th, 2014

ii



Partial Copyright Licence 
 

  

 
 

iii



Abstract

Changes in cause of death patterns have a great impact on health and social care costs paid by

government and insurance companies. Unfortunately an overwhelming majority of methods for

mortality projections is based on overall mortality with only very few studies focusing on forecasting

cause-specific mortality. In this project, our aim is to forecast cause-specific death density with a co-

herent model. Since cause-specific death density obeys a unit sum constraint, it can be considered

as compositional data. The most popular overall mortality forecasting model, Lee-Carter model, is

applied on compositional cause-specific death density. The predicted cause-specific death density

is used to calculate life insurance and accidental death rider.

Keywords : Lee-Carter model; compositional data analysis; death density; cause of death;

accidental death rider
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Chapter 1

Introduction

1.1 Motivation

Government, public and private providers of pension funds and annuities, are exposed to longevity

risk. According to Human Mortality Database at http://www.mortality.org, from 1950 to 2010, life

expectancy rose from 68 to 79 years in USA, 68 to 81 in Canada and 59 to 83 in Japan. If the

longevity risk is underestimated, governments and pension providers will be affected financially in

the future. Individuals will also be exposed to financial risks, and living longer may cause them to

run out of retirement income and consequently die in poverty or burden their relatives. Among many

ways of forecasting mortality, a well known one is the Lee-Carter model (1992). In some cases, the

financial risks vary by many factors such as age, sex and causes of death. For instance, the health

care costs in the last year of life by cause of death vary a lot for female in Netherlands (Polder et

al., 2006). Therefore, disaggregation of death enables us to have a more thorough understanding

of the financial risks.

The termination from a given status is called a decrement in actuarial science. The Lee-Carter

model is a single decrement model where the status of interest corresponds to an individual being

alive and the decrement is the death of that individual. In this context, the single decrement model

treats all causes of death as one decrement. When the cause of decrement is also of interest,

for example, in a study of health care costs in the last year of life, a multiple decrement model is

needed. In biostatistics, multiple decrement models are often referred to as competing risks models.

The aim of this project is to study and forecast financial risks that vary with the cause of death.

There are many cause-specific projection models proposed in the literature. Wilmoth (1995) claimed

that for “proportional rates of change models” all-cause projection is always more pessimistic than

the total mortality projection. The reason is that all-cause mortality tends to be dominated by those

causes of death that are decreasing the slowest. Oeppen (2008) stated that “it is clear that the

1



CHAPTER 1. INTRODUCTION 2

dependencies or relative balances, between the decrements have not been adequately modeled”.

In order to solve the problem, in this project we model the cause-specific death density instead of

disaggregated mortality. The sum of death densities over causes must add up to 1. We expect

that this feature can help obtain coherent forecasts of cause-specific death density that are not as

pessimistic as mortality projections disaggregated by cause.

The constraint on cause-specific death density brings the difficulty that standard statistical tech-

niques lose classical interpretation. Compositional Data Analysis (CoDa) introduced by Aitchison

(1986) solves the problem by transforming the constrained cause-specific death density to real

space where the standard statistical techniques function well. The CoDa equivalent Lee-Carter

Model (CoDa LC Model) is a method of producing coherent forecasts of cause-specific death den-

sity.

1.2 Lee-Carter Model and its Extensions

Lee and Carter (1992) introduced a famous mortality projection model. Since it was introduced, the

model had a variety of applications. The model expresses the log mortality rate matrix as a linear

function of a period factor with parameters depending on age. The fit is obtained by Singular Value

Decomposition (SVD). The period index is modeled by an ARIMA time series. The forecasts of age-

specific rates are based on the forecasts of the period index. The model has several advantages:

it combines a parsimonious demographic model with statistical time series methods; forecasting is

based on persistent long-term historical trends and patterns; and probabilistic confidence regions

are provided for the forecasts (Lee and Carter, 1992).

The Lee-Carter model has many variants and extensions. The variants and extensions improve

the Lee-Carter model by using better models for the period index, providing robust estimation, etc.

For example, Lee and Miller (2001) proposed a method that is different from the Lee-Carter method

mainly in three ways: first, Lee and Miller (2001) only involved data from after 1950 instead of 1900

in the Lee-Carter model; second, the period index is reestimated to match the observed average

life expectancy at birth instead of the observed number of deaths; third, the jump-off rates are

considered to be the actual rates in the jump-off year. The Booth-Maindonald-Smith variant (BMS

model) proposed by Booth et al. (2002), adjusts the period index by fitting the age distribution of

death (the Poisson distribution is used to model the death process). The BMS model also introduces

a method to choose the most appropriate fitting period (the ending year of fitting period is the latest

available data, and the problem reduces to finding the most appropriate starting year) under the

assumption of linear period index. Another extension is the Hyndman-Ullah functional data method

(Hyndman and Ullah, 2007) with ideas from functional data analysis, nonparametric smoothing

and robust statistics (robust estimation allows for temporary shocks such as wars and diseases)

combined. The Hyndman-Ullah model assumes that mortality is a smooth function of age and
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uses nonparametric smoothing methods for estimation. De Jong and Tickle (2006) proposed the

De Jong-Tickle Lee-Carter model, which improves the Lee-Carter model by adding Kalman filtering

and multiple principal components. Actually, the Lee-Carter model is a special case of the De Jong-

Tickle Lee-Carter model. Booth et al. (2006) compared the short-to-medium-term accuracy of the

Lee-Carter model, the Lee-Miller model, the Booth-Maindonald-Smith variant, the Hyndman-Ullah

functional data method and the De Jong-Tickle Lee-Carter model.

Booth and Tickle (2008) summarized that mortality projection models mainly contain three fac-

tors: age, period and cohort. Obviously, the Lee-Carter model as well as the above variants and

extensions are all two-factor models with age and period factors. Some extensions, however, im-

prove the Lee-Carter model by adding a cohort effect. For instance, Renshaw and Haberman

(2003) proposed a three-factor model that adds a cohort effect to the Lee-Carter model. In their pa-

per, they provided two iterative procedures to estimate the parameters. Currie (2006) introduced the

Age-Period-Cohort model, which is a special case of the Renshaw and Haberman model. Cairns,

Blake and Dowd (2006) introduced the CBD model, which fits the logit of mortality rates.

Booth and Tickle (2008) also included a section discussing decomposition by cause of death.

Wilmoth (1995) believed that, for “proportional rates of change models” including Lee-Carter, the

mortality forecasts will always be higher for the sum of cause-specific forecasts than the overall

mortality forecasts. The reason is that “causes of death which are slow to decline come to dominate

in the long run” (Booth and Tickle, 2008). They summarized that “although forecasting mortality

by separate causes of death has been advocated from a theoretical perspective as a means of

gaining accuracy in overall mortality forecasting (e.g. Crimmins, 1981), but subsequent experience

has often proved otherwise”. In order to solve the above problem, Oeppen (2008) proposed to

model the density of death in the life table, which are intrinsically relative since they obey a unit

sum constraint for both single-decrement and multiple-decrement life tables. The density of death

therefore can be treated as compositional data and analyzed according to The Statistical Analysis

of Compositional Data written by Aitchison (1986).

1.3 Compositional Data Analysis

Compositional data is defined as random vectors with strictly positive components whose sum is

constant. Compositional data is common in a variety of fields, such as geology (compositions of

rocks), economy (income/expenditure distribution), chemistry (chemical compositon) and so on.

Compositional data analysis is currently a popular topic of research in many fields. The sum con-

straint on the data makes it hard to perform statistical analysis that is well developed on real space.

The problem was once mentioned by Karl Pearson in 1897 and Felix Chayes in 1960’s. Aitchi-

son (1986) first proposed theoretically solution in 1980’s. In his book “The Statistical Analysis of

Compositional Data”, he explained in details the simplex sample space for compositional data, the
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perturbations (operations of compositional data) and theories based on log-ratios. Aitchison (1986)

proposed a way to transform the simplex sample space of compositional data to real space so that

the standard statistical methods can be applied. This project uses Aitchison’s idea to transform

the cause-specific death density into real space and then applies the Lee-Carter structure on the

resulting data.

1.4 Outline

The project is organized as follows. Chapter 2 provides a brief introduction to Compositional Data

Analysis. We will first introduce the Simplex Sample Space and then briefly describe perturbations,

which are operations on compositions. Based on the perturbations, we finally introduce centring

and centred log-ratio transformations.

Chapter 3 reviews the Lee-Carter model and presents France (female) mortality projections.

Then details about the CoDa LC model are given in Chapter 4 for the single-decrement case and

Chapter 5 for the multiple-decrement case. In Chapter 4, France (female) death density is projected.

In Chapter 5, the model is applied on Japan (female) cause-specific death density. Chapter 6

discusses whether the CoDa LC model still works when the data is only available for about 10 years.

Finally, in Chapter 7, the multiple-decrement CoDa LC model is used to calculate the expectation

and variance of a 20-year life insurance with a 20-year accidental death rider using USA data.

Chapter 8 is a brief conclusion of this project.



Chapter 2

Compositional Data Analysis (CoDa)

Sometimes for a positive vector x, our interest lies on the relative magnitudes xi/xj of its parts

(proportions) but not on the absolute values. In order to study such proportions, let’s consider

compositional data, compositional operators and some consequential results. First let’s talk about

what is compositional data. Any vector x with positive elements x1, ..., xD representing proportions

of some whole is subject to the obvious constraint:

x1 + ...+ xD = 1. (2.1)

Compositional data consisting of such vectors play an important role in many disciplines and

often display appreciable variability from vector to vector (Aitchison, 1986). Typical examples of

compositional data include, mineral compositions of rocks (Geology), chemical composition (Chem-

istry), portfolio composition (Economics) and so on. For example (Aitchison, 1986), the geochemical

compositions of rock (Table 2.1) can be expressed in terms of percentages by weight of ten or more

major oxides.

Percentage compositions of major oxides by weight
Type SiO2 TiO2 Al2O3 TotFe MnO MgO CaO Na2O K2O P2O5

Permian 60.54 1.32 15.22 6.95 0.21 2.33 3.18 4.81 4.84 0.60
54.30 1.24 16.67 8.70 0.07 4.24 8.34 3.41 2.52 0.49
52.17 0.82 20.05 8.38 0.10 2.28 9.29 3.22 2.99 0.69

Post- 55.95 1.26 18.54 7.24 0.28 1.20 3.30 6.14 5.67 0.45
Permian 45.40 1.34 20.14 8.00 0.06 9.29 9.59 3.89 1.38 0.90

46.59 1.06 15.99 11.20 0.30 10.50 10.45 2.03 1.45 0.43

Table 2.1: Some typical major-oxide compositions of Permian and post-Permian rocks.

5



CHAPTER 2. COMPOSITIONAL DATA ANALYSIS (CODA) 6

If vector x is compositional, the vectors x and kx, with k > 0, provide us the same information.

It is sometimes difficult to work with the unit-sum constraint, since “it is either ignored or improperly

incorporated into the statistical modelling and there results an inadequate or irrelevant analysis with

a doubtful or distorted inference.” (Aitchison, 1986). Since N-variate data that subjects to a unit sum

form an N-1 dimensional sample space or simplex, some well developed statistical methods no

longer work on the simplex. As a solution to this problem, Aitchison (1986) suggested to transform

the data to the real space by the log-ratio transformation.

2.1 The Simplex Sample Space

Let’s define composition first. A composition x of D parts is a D×1 vector with positive components

x1, ..., xD whose sum is 1. Let d = D − 1. Since xD = 1 − x1 − ... − xD−1, a D-part composition

is actually a d-dimensional vector and therefore we are able to introduce some d-dimensional set to

represent D-part compositions. This means that a d-part subvector (x1, ..., xd) provides complete

information of a composition x. Another way to determine a composition is to define d ratios:

ri =
xi
xD

, (i = 1, ..., d) . (2.2)

Then the compositions can be expressed as:

xi =
ri

r1 + ...+ rd + 1
, (i = 1, ..., d) ,

xD =
1

r1 + ...+ rd + 1
.

(2.3)

The sample space forD-part compositional vectors, whose components are proportions of some

unit, is the d-dimensional unit simplex:

Sd = {(x1, ..., xD) : xi > 0 (i = 1, ..., D), x1 + ...+ xD = 1}. (2.4)

Back to Table 2.1, we know that the compositions belong to a simplex sample space with d = 9.

We use Rd and Sd to represent d-dimensional real space and d-dimensional simplex. Then a d-

dimensional positive space Rd+ is defined as:

Rd+ = {(x1, ..., xd) : xi > 0}. (2.5)

The relationship among Sd, Rd+, Rd is

Sd ⊂ Rd+ ⊂ RD. (2.6)
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2.2 Perturbations

For compositional purposes it is convenient to impose on this an algebraic-geometric structure

converting SD into a metric vector space. The fundamental operations of change in the simplex

are those of perturbation (compositional addition), inverse perturbation (compositional subtraction),

power transformation (compositional multiplication) and inverse power transformation (composi-

tional division). Let x be a D-part composition (x ∈ SD) and y a D-vector with positive elements

(y ∈ RD+ ). Then the operation which is termed a perturbation is defined as:

x⊕ y = C[x1y1, ..., xDyD], (2.7)

where C is the closure or normalizing operation such that the elements of a positive vector are

divided by their sum. The above operation is a one-to-one transformation from SD to SD. And since

Cy ∈ Sd, we can restrict perturbing vectors to the simplex SD. For example, x=(0.3, 0.5, 0.2) and

y=(0.6, 0.1, 0.3), then x⊕ y= 1
0.29 (0.18, 0.05, 0.06)=(0.62, 0.17, 0.21). Ternary diagram (see Figure

2.1) shows the effect of a perturbation (compositional addition). Compositions x and y can be found

as two points, (0.3, 0.5, 0.2) and (0.6, 0.1, 0.3) respectively, and the result of the perturbation x⊕ y
is marked as (0.62, 0.17, 0.21).

We define the inverse perturbation of x and y as:

x	 y = C[x1/y1, ..., xD/yD]. (2.8)

For example, x 	 y= 1
6.17 (0.50, 5.00, 0.67)=(0.08, 0.81, 0.11). Ternary diagram (see Figure 2.2)

shows the effect of an inverse perturbation (compositional subtraction). The result of the inverse

perturbation x	 y is marked as (0.08, 0.81, 0.11).

Given a D-part composition x ∈ SD and a real number a ∈ R1, the power transformed composi-

tion (compositional multiplication) is

a⊗ x = C[xa1 , ..., x
a
D]. (2.9)

For example, x=(0.3, 0.5, 0.2) and a is -6, -5,..., 5, 6 respectively. The effect of scalar a is shown in

Figure 2.3. A distance measure in the simplex space, ∆S : SD × SD → R≥0, is defined as:

∆S (x,y) =

[
D∑
i=1

{
log

xi
g (x)

− log yi
g (y)

}2
]1/2

, (2.10)

where g (x) denotes the geometric mean (x1x2 · · ·xD)
1/D. Let x ∈ Sd be a random vector. We

define the “centre” ξ ∈ SD, which minimizes the expectation of ∆S (x, ξ), i.e. E {∆S (x, ξ)}, as:

ξ = cen (x) = C (exp (E (logx))) . (2.11)
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Figure 2.1: Compositional addition.
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A compositional data set X = {xij} has D columns and N rows where each row is a composition.

The estimate ξ̂ of ξ is given by:

ξ̂ = C[g1, ..., gD], (2.12)

where gi=(x1i · · ·xNi)1/N is the geometric mean of the ith column. Then “centring” is defined by

calculating the ξ̂ composition and using the inverse perturbation operator to subtract it from each

row of matrix X. In order to open the sum-constrained data of the simplex to the full range of linear

models in the real space, Aitchison (1986) defined the centred log-ratio transformation CLR and its

inverse CLR−1. The log-ratio transformation, CLR: SD → UD, is as follows:

z = CLR(x) = ln

[
x1
g(x)

, ...,
xD
g(x)

]
, (2.13)

where UD is a hyperplane of RD:

UD = {(u1, ..., uD) : u1 + ...+ uD = 0}. (2.14)

The inverse transformation CLR−1 : UD → SD is

x = CLR−1(z) = C [exp(z1), ..., exp(zD)] . (2.15)

2.3 Rank-r Approximation

There is, for a compositional data X, a central result analogous to the singular value decompo-

sition for data sets associated with the sample space RD, on which much of multivariate statis-

tical methodology is based. Any compositional data matrix X can be decomposed in a power-

perturbation form as follows:

xn = ξ̂ ⊕ (un1s1 ⊗ β1)⊕ ...⊕ (unRsR ⊗ βR), (2.16)

where the u’s are power components specific to each composition, si’s are the “singular values”,

and the βj ’s are orthogonal compositions and R is a readily defined rank of the compositional data

set. In practice R is commonly of dimension D-1, the full dimension of the simplex (Aitchison et al.,

2003). In a way similar to that for data sets in RD we may consider an approximation of order r < R

to the compositional data set given by:

xn = ξ̂ ⊕ (un1s1 ⊗ β1)⊕ ...⊕ (unrsr ⊗ βr). (2.17)

In this project, we will use the above approximation with r = 1 or r = 2.



Chapter 3

Lee-Carter Model

The Lee-Carter model has been widely used in forecasting mortality since its publication (Lee and

Carter, 1992). The authors proposed a model based on a variety of previous work (such as Bozik

and Bell (1989) and Lederman (1969)). The Lee-Carter model is a two-factor (age and time) model.

More specifically, the Lee-Carter model uses a singular value decomposition (SVD) method to ex-

tract the age-specific parameters and a time-varying index. The extracted time-varying index is ad-

justed by refitting the total observed number of deaths. The Lee-Carter model has some strengths,

which are its simplicity, parsimony and robustness in the context of linear trends in an age-specific

death rates. While other methods have subsequently been developed (e.g., Brouhns et al., 2002;

Renshaw and Haberman, 2003), the Lee-Carter method is often taken as the point of reference

(Booth et al., 2006).

3.1 The Model

Let mx,t be the central death rate for age x in year t. The model we will use to fit the matrix of death

rates is

ln(mx,t) = ax + bxkt + εx,t, (3.1)

or

mx,t = eax+bxkt+εx,t , (3.2)

where ax’s are age-specific constants indicating the average over time of the log mortality, bx’s are

age-specific constants indicating which rates decline slowly in response to changes in time-varying

index, kt’s are time-varying indices of level of mortality, and εx,t’s are error terms with mean 0 and

variance σ2
x,t describing the age-specific historical influences not captured by the model.

Suppose the age-specific constant vectors a (with elements ax’s) and b (with elements bx’s) and

the time-varying index k (with elements kt’s) are one solution of (3.1). Then for any constant c,

11
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vectors a − bc, b and k + c are also one solution. Actually we can find that ax, bx and kt are only

determined up to a linear transformation. The model is obviously underdetermined. Therefore we

need to normalize bx and kt by adding two restrictions:
∑
x bx = 1 and

∑
t kt = 0.

The above two restrictions imply that ax’s are simply the averages over time of the log mortality.

Assume we have T years of data, then ax can be expressed as:

ax =
1

T

∑
t

ln(mx,t). (3.3)

3.2 Model Fitting

Now we need to find least squares estimates of the two age-specific constants ax and bx as well as

the time-varying index kt. The estimation of parameters of the model cannot be obtained by ordinary

regression methods because there are no given regressors. The singular value decomposition

(SVD) method can be used to find a least squares solution. SVD is applied to the matrix of the

logarithms of the rates after the averages over time of the age-specific rates have been subtracted.

Now we are able to build the matrix for SVD, denoted as m̃:

m̃x,t = ln(mx,t)− ax. (3.4)

In the matrix form, let m be the matrix of central death rate with elements mx,t and let vector a
be the row average of ln (m); then we can construct a matrix a, which has the same dimension as

ln (m) and with every column being vector a. The matrix m̃ is therefore expressed as:

m̃ = ln (m)− a. (3.5)

For m̃ of size N × T , the SVD is a factorization of the form:

m̃ = UN×NSN×TV
′
T×T , (3.6)

where U and V are orthogonal matrices and S is a diagonal matrix. The columns of U and V are

called the left and right singular vectors of m̃ respectively. The diagonal entries of S are the singular

values of m̃. The first right and left singular vectors and leading singular value of the SVD, after the

normalization described above, provide a unique solution. To be specific,

bx = U(x, 1)/
∑
x

U(x, 1) (3.7)

and

kt = S(1, 1)× V (t, 1)×
∑
x

U(x, 1). (3.8)

Here kt is estimated to minimize errors in the logs of death rates rather than the death rates them-

selves. As a result, we need to take a second step to reestimate kt, taking the ax and bx values
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from the first step as given above in (3.3) and (3.7). The reestimation is to adjust the value of kt, so

that given the exposure numbers ex,t’s, the implied number of deaths in each year equals the actual

number of deaths, that is, ∑
x

Dx,t =
∑
x

ex,te
ax+bxkt , (3.9)

where Dx,t denotes the actual number of deaths between ages x and x+ 1 in year t. The updated

estimates for kt’s are different from the direct SVD estimates. The main reason is that, when fitting

the log-transformed rates, the low death rates of the younger ages receive the same weight as the

high death rates of the older ages, yet they contribute far less to the total deaths.

3.3 The Fitted Model

3.3.1 The Data

The matrix D contains the element Dx,t, and the matrix E contains the element ex,t. For both

matrices, age is arranged in rows and time in columns. Then we can construct the matrix of central

death rates m, with elements mx,t:

m = D/E. (3.10)

In many cases, we will need to calculate qx,t, the probability of dying in a single year for someone

aged x in year t. If we assume the force of mortality, denoted by µx,t, is constant over each age

interval and calendar year, then:

qx,t = 1− e−µx,t . (3.11)

We will present results for the France 1900 to 2012 mortality experiences for female, with age

groups 0, 1-4, 5-9, 10-14,..., 95-99, 100+. The France death and exposure tables can be down-

loaded from the Human Mortality Database at http://www.mortality.org.

3.3.2 The Estimated Parameters

Fitting a Lee-Carter model to the France mortality data for female, we can obtain the age-specific

constants ax and bx. The values of ax and bx are pictured in Figure 3.1.

3.4 Modeling and Forecasting the Mortality Index, k

The time-varying index kt values obtained by SVD are shown in the left panel of Figure 3.2. The

adjusted kt’s result in the expected number of deaths matching the observed number in each year.

The adjusted kt values are shown in the right panel of the same figure.
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Figure 3.1: France, female, 1900-2012: age-specific constants ax (left) and bx (right).
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Figure 3.2: France, female, 1900-2012: time-varying index kt. The kt values obtained by SVD are
on the left, and the adjusted kt values are on the right.
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We have fitted the Lee-Carter model and obtained age-specific constants ax and bx. Now we can

move on to forecast the mortality index based on our reestimated kt. We fit kt to a time series, so

the first step is to find an appropriate ARIMA time series model. We choose to use an ARIMA(0,1,0)

model for kt, which is a random walk with drift. From Figure 3.2, we can observe extreme values

of kt in year 1918 and around year 1944. We can have some clues about what caused these

extreme values from the documentation provided by HMD. In the documentation, ‘Specific Episodes

in French Demographic History’ have been listed, which includes two world wars, as well as the

Spanish flu epidemic during 1918-1919. Therefore, we can explain the extreme value for 1918 by

the Spanish flu epidemic and the extreme values around 1944 by World War II during 1939-1945.

The next question is how to treat the Spanish influenza epidemic of 1918-1919 and World War II

of 1939-1945. Actually the influenza epidemic and World War II are very rare events, so including

them in the series might be inappropriate and influence our result. So we deal with the influence

of the Spanish influenza epidemic and the World War II by introducing two dummy variables. The

model, estimated over 1900-2012, with standard errors in parentheses, is as follows:

kt = kt−1−1.02 + 9.87flu+ 9.42war + εt,

(0.27) (2.04) (2.04)

εt ∼ N(0, 8.36),

(3.12)

where flu is a dummy variable, which takes a value of 1 in 1918 and 0 elsewhere, and war is a

dummy variable, which takes a value of 1 in 1944 and 0 elsewhere. The coefficients of flu and

war indicate that the mortality index kt was 9.87 higher than expected in 1918 and 9.42 higher than

expected in 1944. We can see that kt is drifting downward at an average rate of -1.02 per year. If

we do not consider the error terms, the forecasted kt should be on a downward line with a slope of

-1.02. The fitted and the predicted values of kt appear in Figure 3.3.

Now we obtain the age-specific constants ax and bx and the fitted and predicted mortality in-

dex kt. We can use the obtained values to construct the fitted and predicted mortality surface by

applying the Lee-Carter model:

ln(mx,t) = ax + bxkt. (3.13)

As a comparison, Figure 3.4 shows the raw mortality surface (in the logarithm scale), where

the height of the surface is ln(m), that is ln(D/E). Figure 3.5 shows the fitted log mortality by the

Lee-Carter model. The mortality surface of the raw data and the predicted mortality surface by the

Lee-Carter model is in Figure 3.6.
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Figure 3.3: France, female: fitted (1900-2012) and forecasted (2013-2100) time-varying index kt
values.



CHAPTER 3. LEE-CARTER MODEL 17

Figure 3.4: France, female, 1900-2012: raw log mortality surface.
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Figure 3.5: France, female, 1900-2012: Lee-Carter fitted log mortality surface.
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Figure 3.6: France, female: raw mortality surface (1900-2012) and the Lee-Carter predicted mor-
tality surface (2013-2100).



Chapter 4

Single-Decrement CoDa Equivalent
Lee-Carter Model

The Lee-Carter model fits and predicts the central death rates. Following the idea of Jim Oeppen’s

report (Oeppen, 2008), our interest, however, is to model the probability density function of the

lifetime random variable, which is also called the density of death. In his report, Oeppen (2008)

proposed the idea of modeling the density of death instead of the conventional approach of using log

mortality. He mentioned that since the density of death obeys a unit sum constraint (which means

the density of death is compositional), the method of compositional data analysis can be used to

transform the density of death into the real space where the full range of multivariate statistics can be

applied (Oeppen, 2008). He also expressed the structure of Lee-Carter model in the compositional

form.

In this chapter, our main purpose is to define the CoDa equivalent Lee-Carter model. We will

refer to the CoDa equivalent Lee-Carter model as “CoDa LC model”. We will first introduce some

basic formulae of the density of death. Next, based on compositional data analysis, we will focus

on how to transform the compositional density of death into real space. Then, we will apply the

Lee-Carter model on the transformed density of death. Finally, in order to explore the potential of

the CoDa LC model, we will present results for the France density of death for female.

4.1 Density of Death

4.1.1 Basic Formula

In demography, ndx usually denotes the number of deaths between age x and age x + n (Preston

et al., 2001). However, in our project, we use ndx to denote the probability that a newborn dies

20
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between age x and age x+n. And we use nDx to denote the number of deaths between age x and

age x + n. Let px, represents the probability that a life aged x, denoted by (x), survives to at least

age x+1 and nqx represents the probability that (x) dies before age x+n. Then we can obtain that,

ndx = xp0 · nqx = p0p1 · · · px−1 · nqx. (4.1)

If we add another subscript, year t, to each element of equation (4.1), we get

ndx,t = xp0,t · nqx,t, (4.2)

where

xp0,t = p0,t · p1,t · · · px−1,t, (4.3)

nqx,t = qx,t + px,t · qx+1,t + · · ·+ px,t · · · px+n−1,t · qx+n−1,t. (4.4)

Here px,t denotes the probability that a life aged x in year t survives to at least age x+1 and qx,t
denotes the probability that a life aged x in year t dies before age x+ 1. Notice that the probabilities

on the right hand side of equations (4.3) and (4.4) are all for year t. Generally, one might want

to use “cohort” probabilities instead of calendar year ones. Since cohort probabilities require data

over a period much longer than what is available here, calendar year data is used as a proxy when

applying the CoDa Lee-Carter model in this project.

If ages are grouped into intervals [x0, x1), [x1, x2), ..., [xn−1, xn), where x0 is 0 and xn = ω is

the limiting age, then we have

xj+1−xj
dxj ,t = xj

px0,t · xj+1−xj
qxj ,t, (4.5)

where

xj
px0,t = x1

px0,t · x2−x1
px1,t · · · xj−xj−1

px1,t. (4.6)

Following the above definition, we have

n−1∑
j=0

xj+1−xj
dxj ,t = 1. (4.7)

The future lifetime of a life aged 0 in year t can be modeled by a continuous random variable,

which is denoted by T0,t. The xj+1−xjdxj ,t’s represent a discretization of the probability density

function of T0,t. The probabilities of xj+1−xj
dxj ,t’s will be called the “density of death”. According to

(4.7), the density of death can be treated as a composition and therefore we can use the method of

compositional data analysis to transform it into the real space.

Suppose we have the values of xj+1−xjqxj ,t for all age intervals and years of interest, since

xj+1−xj
pxj ,t = 1 − xj+1−xj

qxj ,t, we are able to obtain the values of xj+1−xj
pxj ,t for all age intervals

and years of interest. Then according to formulae (4.5) and (4.6), we can obtain the values of

xj+1−xj
dxj ,t.
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4.1.2 Centred Log Ratio of the Density of Death

In Section 4.1.1, we already derived formulae (4.5) and (4.6) to calculate the density of death. If the

age intervals are [x0, x1), [x1, x2), ..., [xn−1, xn) and the years of interest are t1,..., tN , then similar

to the construction of matrix of ln (m), we can construct an n × N matrix of xj+1−xj
dxj ,t with ages

in rows and years in columns. In compositional data analysis, it is customary to make every row

a composition, so we transpose the density of death matrix. As a result, ages are in columns and

years are in rows and according to formula (4.7), each row adds up to one, which is a composition.

We use d to represent the transposed matrix of density of death and specifically:

d =


d11 d12 · · · d1n

d21 d22 · · · d2n
...

...
. . .

...

dN1 dN2 · · · dNn

 , (4.8)

where the value of di,j equals xj−xj−1dxj−1,ti . In the Lee-Carter model, we apply SVD to the matrix

m̃, which is obtained by subtracting each row’s arithmetic average of ln (m) from that row (see

formula (3.5)). When using the CoDa LC Model, we will perform a similar operation to matrix d,

which is called centring in Section 2.2. We will use inverse perturbation (compositional subtraction)

defined in (2.8) to subtract the “centre” of d from each row of d. To be specific, first we find the

“centre”, which is denoted as g, a 1×N vector, and equal to:

g = C (g1, g2, ..., gn) , (4.9)

where

gj = (d1jd2j · · · dNj)1/N , for j = 1, 2, ..., n. (4.10)

Then “centring” means to subtract g from each row of d. The row vector, denoted as ceni, is

ceni = di 	 g = C

(
di1
g1
, ...,

din
gn

)
, (4.11)

where di = (di1, di2, ..., din) denotes the ith row of d.

Let cen (d) be the centred death density matrix, which can be expressed as:

cen (d) =


cen1

cen2
...

cenN

 =


d1 	 g
d2 	 g

...

dN 	 g

 . (4.12)

We know that each row of the matrix cen (d) is a composition. In order to transform the compo-

sitions into the real space, we use the CLR operator described in Section 2.2 on each row of matrix
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cen (d). So we have the following formula,

CLR (cen (d)) =


CLR (cen1)

CLR (cen2)
...

CLR (cenN )

 =


ln
(

cen1

g(cen1)

)
ln
(

cen2

g(cen2)

)
...

ln
(

cenN

g(cen1)

)

 , (4.13)

where g (ceni) is the geometric mean of row vector ceni. Now we can apply SVD to the matrix

CLR (cen (d)).

4.2 The Model

The SVD of the matrix CLR (cen (d)) is

CLR (cen (d)) = UN×NSN×nV
′
n×n. (4.14)

Let u1,..., ur be the first r left singular vectors, s1,..., sr be the first r singular values, and

v1,..., vr be the first r right singular vectors; then we have the rank-r approximation of the matrix

CLR (cen (d)):

ˆCLR
r

(cen (d)) = [u1, ..., ur]


s1 . . . 0
...

. . .
...

0 . . . sr



v
′

1

...

v
′

r

 . (4.15)

Rank-r approximation means that we choose the first r left singular vectors, the first r singular

values and the first r right singular vectors to construct the matrix of approximation. We call the left

singular vectors period factors and the right singular vectors age factors. We choose the value of r

according to the specific datasets. For some datasets, rank-1 approximation is adequate, while for

other datasets, rank-2 or even higher ranks might be necessary.

It is worth mentioning that in the Lee-Carter model, a second step (see equation (3.9)) is taken

to reestimate the time-varying index. Since we are modeling the distribution of lifetimes (density

of death), there seems to be no obvious reason to adjust the values of the period factors to match

the average life expectancy or deaths. We do not need to scale the period factors since they

automatically sum to zero.

4.3 France Projection

Human Mortality Database at http://www.mortality.org/ provides life tables by country and sex. We

use 1×1 life table for France females to explore the CoDa LC model. The France female 1×1 life
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table provides data for ages ranging from 0 to 110+, and for years ranging from 1816 to 2012.

From the life table, the estimated values for qx,t’s are provided; therefore according to Section 4.1.1,

based on (4.5) and (4.6), we are able to construct the matrix d. Then based on Section 4.1.2, we

can obtain the matrix CLR (cen (d)) to apply SVD. In order to fit the CoDa LC model, we will restrict

the data (values of qx,t) to ages from 0 to 105+ and years from 1955 to 2005. Rank-2 approximation

is chosen and the resulting first age factor is shown in Figure 4.1.
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Figure 4.1: France, female, 1955-2005: the first age factor.

We use an ARIMA model to fit the period factor over the period 1955 to 2005 and then predict

the period factor for 2006 to 2100. Considering various orders of the ARIMA models, we choose

to use an ARIMA(0,1,0) model, which is chosen by AICc (Shumway and Stoffer, 2000). AIC is

defined as AIC = lnσ̂2
k + 2k

n with n representing the number of data, k the number of parameters

in the fitted model and where σ̂2
k = RSSk

n . AICc is the corrected form of AIC, which is defined as

AICc = lnσ̂2
k + n+k

n−k−2 . We use AICc to choose the best ARIMA model, that is the fitted model with
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the minimum AICc is selected as the best model. Figure 4.2 shows the fitted and predicted values

of the first period factor.

From Figure 4.2, we can see that for fitting years 1955 to 2005, the first period factor has an
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Figure 4.2: France, female: the fitted (1955-2005) and predicted (2006-2100) first period factor.

obvious positive linear trend. By fitting the first age factor from 1955 to 2005 to an ARIMA model,

we arrive at the following:

u1,t = u1,t−1 + 0.0094 + εt,

εt ∼ N(0, 0.0006),
(4.16)

where u1,t is the element of first left singular vector (first age factor) that corresponds to year t.

In Figure 4.3, we select three years, 1955, 1979 and 2005, to show the centred log ratio data

and rank-2 estimates. We can see the estimates are very close to the data.

To end this section, we briefly summarize the CoDa LC model into the following steps:
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Figure 4.3: France, female: centred log ratio of the centred density of death. Points are data and
lines are rank-2 estimates.
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1. Construct matrix d with time in rows and age in columns. Each row is a composition.

2. Obtain matrix cen (d) by centring matrix d: calculate the vector of age-specific geometric

means (geometric means of columns of d) and substract it from each row of the matrix using

inverse perturbation operator.

3. Obtain matrix CLR (cen (d)) by performing CLR operator on each row of cen (d) to tranform it

into the real space.

4. Apply SVD to CLR (cen (d)) to obtain age and period factors.

5. Construct the selected low rank approximation to CLR (cen (d)).

Chapter 5 will extend this single-decrement CoDa LC model to multiple decrements. We will

introduce how to obtain the values of density of death from the values of centred log-ratio density of

death. We will also introduce how to obtain the values of qx,t from the values of dx,t.



Chapter 5

Multiple-Decrement CoDa Equivalent
Lee-Carter Model

The CoDa LC model is very easy to extend to the multiple-decrement case. We will follow Jim Oep-

pen’s work (Oeppen, 2008) and explain the model using Japan female multiple-decrement (different

causes of death) data.

5.1 Multiple-Decrement Density of Death

Assume there are I causes of death. In Section 4.1.1, we already defined px and px,t. Let ndix
represent the probability that (0) dies between ages x and x + n from cause i, and nq

i
x denote the

probability that (x) dies within the next n years due to death cause i. Similar to formula (4.1), we

have, for i = 1, 2, ..., I,

nd
i
x = xp0 · nqix = p0p1 · · · px−1 · nqix. (5.1)

Similar to formula (4.2), if we add another subscript, year t, then we have

nd
i
x,t = xp0,t · nqix,t. (5.2)

From Section 4.1.1, we know that nDx,t denote the number of deaths between ages x and x+n

in year t. Now let nDi
x,t denote the number of deaths between ages x and x+ n in year t for death

cause i. Then intuitively, we can express nq
i
x,t as follows:

nq
i
x,t = nqx,t · n

Di
x,t

nDx,t
. (5.3)

Therefore the cause-specific density of death can be expressed as:

nd
i
x,t = xp0,t · nqx,t · n

Di
x,t

nDx,t
(5.4)

28
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Then if ages are grouped into intervals [x0, x1), [x1, x2), ... and [xn−1, xn), where x0 is 0 and

xn = ω is the limiting age, then the cause-specific density of death has the following property:

I∑
i=1

n−1∑
j=0

xj+1−xj
dixj ,t = 1. (5.5)

We can use formula (5.4) to construct dcausei, the matrix of density of death for cause i, with

years in rows and ages in columns. Then we can combine the matrices of density of death for each

cause so that we get an N × nI matrix dmul which is:

dmul = (dcause1,dcause2, ...,dcauseI) . (5.6)

The combination ensures that each row of dmul adds up to 1 and therefore can be treated as a

composition.

5.2 Centred Log Ratio of the Density of Death-Multiple Decre-

ments

In Section 4.1.2, we already described how to obtain the centred log ratio of the matrix of single-

decrement density of death. Now for dmul in (5.6), we can repeat exactly what we did to d in Section

4.1.2 and obtain CLR (cen (dmul)) for the multiple-decrement case.

5.3 The Model

The SVD of the matrix CLR (cen (dmul)) is

CLR (cen (dmul)) = UN×NSN×nIV
′
nI×nI (5.7)

where N is the number of years, n is the number of age intervals and I is the number of death

causes.

Let umul1,..., umulr be the first r left singular vectors, smul1,..., smulr be the first r singular values,

and vmul1,..., vmulr be the first r right singular vectors; then we have the rank-r approximation of

the matrix CLR (cen (dmul)) as:

ˆCLR
r

(cen (dmul)) = [umul1, ..., umulr]


smul1 . . . 0

...
. . .

...

0 . . . smulr



v
′

mul1

...

v
′

mulr

 . (5.8)

It is worth mentioning that each right singular vectors includes nI elements, the first n elements

are the age factor for death cause 1, the n + 1, ..., 2n elements are the age factor for death cause
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2,..., and the last n elements, that is the (I − 1)n + 1, ..., nI elements are the age factor for death

cause I. Therefore, for each cause of death, we are able to obtain r age factors of dimension 1×n.

Now we already derived the rank-r approximation for CLR (cen (dmul)), based on which we are

able to derive the rank-r approximation for dmul. Referring to (2.13), we can express the rank-r

approximation of dmuli as:

d̂
r

muli = gmul ⊕ (umuli1smul1 ⊗ βmul1)⊕ ...⊕ (umulirsmulr ⊗ βmulr), (5.9)

where

βmuli = C (exp (vi1) , exp (vi2) , ..., exp (vi,nI)) , (5.10)

and gmul is a 1 ×N vector with the ith element being the compositional scaled geometric mean of

the ith column of matrix dmul, uij represents the element at the ith row and jth column of matrix U

in (5.7), and vij represents the element at the ith row and jth column of matrix V in (5.7).

In order to indicate whether the fit is good or not, let us first introduce lixj
, which represents the

probability that (xj) will eventually die from cause i:

lixj
=

n−1∑
k=j

xk+1−xk
dixk

. (5.11)

Adding another subscript, year t, to each element of equation (5.11), we get:

lixj ,t =

n−1∑
k=j

xk+1−xk
dixk,t

. (5.12)

Therefore, let j be 0, we will have:

li0,t =

n−1∑
k=0

xk+1−xk
dixk,t

. (5.13)

Then for cause i, we are able to plot li0,t against year t. Based on the constructed matrix of

density of death, we are able to calculate li0,t. Based on the fitted value of density of death, we are

able to calculate the estimated l̂i0,t. We can plot the li0,t and l̂i0,t against year t in one figure. If the

fitted model is good, we expect the two curves (or dots) to be fairly close.

5.4 Cause-specific Death Rates qix,t

For someone aged x in year t, the probability of dying in year t is qx,t. qx,t is used to calculate the

expectations and variances of life insurances and annuities. For multiple decrement life table, we

are able to solve for the values of qx,t and qix,t from the density of death. We know that xj+1−xj
dxj ,t

is equal to

xj+1−xj
dxj ,t =

I∑
i=1

xj+1−xj
dixj ,t. (5.14)
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Let j equal to 0, 1,..., n; then we have the following n − 1 equations based on (4.5) (recall that

x0 is 0):

x1
d0,t = 0p0,t · x1

q0,t,

x2−x1
dx1,t = x1

p0,t · x2−x1
qx1,t,

x3−x2
dx2,t = x2

p0,t · x3−x2
qx2,t,

...

xn−xn−1
dxn−1,t = xn−1

p0,t · xn−xn−1
qxn−1,t.

(5.15)

Since 0p0,t is 1, from the first equation of (5.15), we can obtain the value of x1
q0,t, which is equal

to x1d0,t. Then x1p0,t can be calculated by 1−x1q0,t. From the second equation of (5.15), we know

that x2−x1qx1,t = x2−x1
dx1,t

x1
p0,t

and x2−x1
px1,t is therefore 1−x2−x1

qx1,t. Since the value of x2
p0,t can be

obtained by x2
p0,t = x1

p0,t · x2−x1
px1,t, then according to the third equation of (5.15) x3−x2

qx2,t can

be calculated. Therefore the 1st to jth equations of (5.15) will give us the values of x1−x0
qx0,t,...,

xj−xj−1qxj−1,t. We are then able to calculate the cause-specific death rates xj+1−xjq
i
xj ,t using

xj+1−xj
dixj ,t = xj

p0,t · xj+1−xj
qixj ,t. (5.16)

We can apply cause-specific death rates to price some products like accidental death rider,

critical illness rider, etc.

5.5 Japan Projection

When constructing a single-decrement matrix d we only need the values of qx, but for the construc-

tion of multiple-decrement matrix dmul (refer to (5.3) and (5.6)) we also need to know the values of

Di
x,t. The values of Dx,t is easily obtained by:

Dx,t =

I∑
i=1

Di
x,t. (5.17)

In Jim Oeppen’s report (Oeppen, 2008), he uses Japan female data to illustrate the multiple-

decrement CoDa LC model. The construction of dmul requires values of qx and Di
x,t. Human

Mortality Database provides the life tables for Japan female, and we will use the 5 × 1 life table.

The Japan female 5 × 1 life table provides data for age groups 0, 1-4, 5-9,..., 105-109 and 110+,

and for years from 1947 to 2012. The Berkeley Mortality Database (BMD) provides a table called

“Deaths-Causes of death, 1951-1990, (5× 1) ”. The deaths are grouped into 40 causes and the ta-

ble provides data for ages 0, 1-4, 5-9,..., 95-99 and 100+, and for years 1951 to 1990. The BMD also

provides a documentation named “Data Notes”. The 40 causes of death are listed in “Data Notes”.
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In his report (Oeppen, 2008), Jim Oeppen categorized the 40 causes into 6 groups. Causes 2 to 5,

8 and 9 are categorized as cause “Infectious Disease”; Causes 11 to 21 are categorized as cause

“Malignant Neoplasm”; Causes 23 to 25 are categorized as cause “Heart Disease”; Causes 27 to

29 are categorized as cause “Cerebrovascular Disease”; Causes 6, 7, 30 and 31 are categorized

as cause “Respiratory Disease”; Causes 1, 10, 22, 26, 32 to 40 are categorized as cause “Miscel-

laneous Death Cause”. We choose to use age intervals 0, 1-4, 5-9,..., 90-94, 95+. The period we

choose to fit the model is 40 years, from 1951 to 1990. We fit the data to multiple-decrement CoDa

LC model, the first age factors for 6 different causes are shown in Figure 5.1.
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Figure 5.1: Japan, female, 1951-1990: the first cause-specific age factors.

For the period factor, again, we use an ARIMA model to fit it for the period 1951 to 1990 and

then predict it for 50 years from 1991 to 2040. Jim Oeppen mentioned in his report (Oeppen, 2008)

that he used the AICc criterion (Shumway and Stoffer, 2000) to choose the most appropriate ARIMA

model. For both the first and second period factors, ARIMA(0,2,2) is the choice. He also indicated
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that a random walk with drift is inadequate. We first fit the first and second period factors to random

walks, that is ARIMA(0,1,0), and predict them for years 1991 to 2040. The fitted and predicted first

and second period factors are shown in Figure 5.2.

1960 1980 2000 2020 2040

−
0.

2
0.

0
0.

2
0.

4
0.

6
0.

8

Year

fir
st

 p
er

io
d 

fa
ct

or

1960 1980 2000 2020 2040
−

0.
3

−
0.

2
−

0.
1

0.
0

0.
1

0.
2

Year

se
co

nd
 p

er
io

d 
fa

ct
or

Figure 5.2: Japan, female: the fitted (1951-1990) and predicted (1991-2040) first (left panel) and
second (right panel) period factors. ARIMA(0,1,0) is used to fit and predict both the first and second
period factors.

Then we fit the first and second period factors to ARIMA(0,2,2) and then predict them for years

1991 to 2040. The fitted and predicted first and second period factors are shown in Figure 5.3.

We also plot the third period factor in Figure 5.4 which shows that the third period factor is

basically a random noise. If we fit the 3rd period factor to an ARIMA model, selected by AICc, we

will obtain the optimal time series model ARIMA(0,0,0). This means that a rank-3 approximation is

unnecessary and consequently a rank-2 approximation is enough. We will also illustrate in the later

part why we do not use a rank-1 approximation.

Now according to (5.13), for death cause i, first, we calculate li0,t and plot the values of li0,t
against year as dots. Second, we calculate l̂i0,t and plot the values of l̂i0,t against year as curves.

We use an ARIMA(0,2,2) model to fit and predict the first and second period factors. Then the plots

for rank-1 and rank-2 approximations are shown in Figures 5.5 and 5.6 respectively.

Figure 5.5 shows that rank-1 approximation is inadequate and cannot capture the curvature for

each death cause, especially for cause “Cerebrovascular Disease”. So for Japan female data we

choose r to be 2. Next, we will illustrate why using random walks for fitting and predicting period

factors is also not reasonable. We use an ARIMA(0,1,0) model to fit and predict the first and second
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Figure 5.3: Japan, female: the fitted (1951-1990) and predicted (1991-2040) first (left panel) and
second (right panel) period factors. ARIMA(0,2,2) is used to fit and predict both the first and second
period factors.

period factors. Then the rank-2 approximations based on ARIMA(0,1,0) are shown in Figure 5.7.

From Figure 5.7, we can see that the plots based on an ARIMA(0,1,0) have more sudden angles

at the junction parts of the data and the predictions, which means that the ARIMA(0,1,0)-based

predictions are more arbitrary and cannot provide us with reliable predictions of the data. To sum

up, the rank-2 approximation with first and second period factors fitted to ARIMA(0,2,2) models

provides us with fairly reasonable predictions of the data.
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Figure 5.4: Japan, female, 1951-1990: the third period factor.



CHAPTER 5. MULTIPLE-DECREMENT CODA EQUIVALENT LEE-CARTER MODEL 36

1960 1980 2000 2020 2040

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Year

pr
ob

ab
ili

ty

Infectious Disease
Malignant Neoplasm
Heart Disease
Cerebrovascular Disease
Respiratory Disease
Miscellaneous Death Cause

Figure 5.5: Japan, female: probability that a newborn will eventually die from a specific cause.
Points represent data and lines represent estimates. Rank-1 approximation is used. ARIMA(0,2,2)
is used to fit and predict the first period factor.
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Figure 5.6: Japan, female: probability that a newborn will eventually die from a specific cause.
Points represent data and lines represent estimates. Rank-2 approximation is used. ARIMA(0,2,2)
is used to fit and predict the first and second period factors.
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Figure 5.7: Japan, female: probability that a newborn will eventually die from a specific cause.
Points represent data and lines represent estimates. Rank-2 approximation is used. ARIMA(0,1,0)
is used to fit and predict the first and second period factors.



Chapter 6

Density of Death Prediction based
on Short Observation Period

In Chapter 5, the projection of density of death for Japan female is based on 40 years’ observations

from year 1951 to 1990. The HMD can usually provide us with life tables for the last 50 years or

more. However, the numbers of deaths from different causes might not be available for a very long

time period; the reasons might be that there were no mature system of classifications of diseases,

like the ICD-10 we use today, during the early and middle of 20th century. Actually ICD-6, published

in 1949, was the first to be shaped to become suitable for morbidity reporting. Therefore the system-

atic records of numbers of deaths from different causes appeared within only the recent decades. In

this chapter, we are interested in studying whether a relatively short observation period, say around

10 years, can produce projections based on CoDa LC model that are still reasonable. We will use

Japan female and Canada female data to discuss the problem.

6.1 Japan Projection

We will consider three cases for Japan female data. First, Case 1: we use years 1981 to 1990

to fit the model and project the density of death for 50 years from year 1991 to 2040. We use

ARIMA(0,2,2) model to fit the first and second period factors. The li0,t and l̂i0,t are plotted in Figure

6.1.

We can see that the fit from 1981 to 1990 is pretty nice and the predictions for the next 20 years

from year 1991 to 2010, seem to be reasonable. We can also see that for years 2010 to 2040, the

curve for “Malignant Neoplasm” goes up dramatically, which means that by year 2040 almost half of

the deaths will be caused by “Malignant Neoplasm”. We can compare Figure 6.1 to Figure 5.6. In

Figure 5.6, the probability for “Malignant Neoplasm” also increases as years pass by; however, the

39
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Figure 6.1: Japan, female, Case 1: probability that a newborn will eventually die from a spe-
cific cause. Points represent data and lines represent estimates. Rank-2 approximation is used.
ARIMA(0,2,2) is used to fit and predict the first and second period factors.
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curve does not behave that dramatically. Since we have no data for year 1991 and after, it is hard

for us to comment on the predictions.

Now let’s consider Case 2 where we use years 1971 to 1980 to fit the model and project the

density of death for 10 years from year 1981 to 1990. Since we have data for years 1981 to 1990,

we can comment on the 10-year predictions. The li0,t and l̂i0,t are plotted in Figure 6.2.
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Figure 6.2: Japan, female, Case 2: probability that a newborn will eventually die from a spe-
cific cause. Points represent data and lines represent estimates. Rank-2 approximation is used.
ARIMA(0,2,2) is used to fit and predict the first and second period factors.

From Figure 6.2, we can see that for each cause of death, the data for the fitted periods are

roughly in a flat line. Based on this dataset, the predictions seem to be 6 flat lines. For cause

“Cerebrovascular Disease” the predictions do not capture the downward trend from 1981 to 1990

well. Similarly, for cause “Respiratory Disease” the predictions do not capture the upward trend

from 1981 to 1990 at all.

Now as a comparison, in Case 3 we use 30 years from year 1951 to 1980 to fit the model and
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project the density of death for the next 10 years from year 1981 to 1990. The plot is in Figure 6.3.
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Figure 6.3: Japan, female, Case 3: probability that a newborn will eventually die from a spe-
cific cause. Points represent data and lines represent estimates. Rank-2 approximation is used.
ARIMA(0,2,2) is used to fit and predict the first and second period factors.

From Figure 6.3, we can see that the predictions are not very good especially for causes “Cere-

brovascular Disease” and “Respiratory Disease”. Comparing Figure 6.2 and Figure 6.3, we can

see that although the fitted period for Case 2 (10 years) is less than that for Case 3 (30 years), the

10-year predictions, in general, are closer to the data points for Case 2 than Case 3. Therefore,

whether the predictions based on the short period’s data are good or not depends on the chosen

time periods. Taking cause “Cerebrovascular Disease” as an example, we can see if we use data

before 1980 to fit the model and predict into the future, it is really hard to capture the trends, as

a result, more information from hospitals, clinics, research labs, etc. needs to be collected and

various investigations need to be done to make better predictions.
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6.2 Canada Projection

In this section, we will use Canada female data to examine projections based on short observation

periods. Human Mortality Database provides the life tables for Canada female, and we will use the

5×1 life table. The Canada female 5×1 life table provides data for age groups 0, 1-4, 5-9,..., 105-109

and 110+, and for years from 1921 to 2009. Statistics Canada provides CANSIM Tables. CANSIM

is Statistics Canada’s key socioeconomic database. Updated daily, CANSIM provides fast and easy

access to a large range of the latest statistics available in Canada. The CANSIM database is very

user-friendly. For example, we use Table 102-0561: Leading causes of death, total population, by

age group and sex, Canada. Under the title of the table, we can find a button “Add/Remove data”.

After we click on the “Add/Remove data” button, a page with 7 steps appears. By selecting the

specific items from each step, we can create our customized CANSIM table. We choose to use

number of deaths for Canada, female, all causes of death from year 2001 to 2010 with age intervals

1-14, 15-19,..., 85-89 and 90+. Therefore the data from HMD is adjusted to the same age intervals

(1-14, 15-19,..., 85-89 and 90+) and period (2001-2010). The causes of death are categorized

into 6 groups, which are “Infectious Disease”, “Malignant Neoplasm”, “Nervous system Disease”,

“Respiratory Disease”, “Accident” and “Miscellaneous Death Cause”.

After we fit our data to multiple-decrement CoDa LC model, we find that the first and second

period factors hardly have a clear trend. As a result, the best choice of ARIMA models for the first

and second period factors by AICc is ARIMA(0,0,0). Therefore the rank-1 or rank-2 predictions are

basically equal to the values of the most recent data. The li0,t and l̂i0,t are plotted in Figure 6.4.

We can see that for Canada female data, the multiple-decrement CoDa LC model predictions are

questionable. From Figure 6.4, we can see that except for the cause “Nervous system Disease”,

the points for the fitted periods for each cause of death are basically on a flat line. Due to the

unit sum constraint of cause-specific density of death, we can conclude that the downward trend

of cause “Nervous system Disease” is counterbalanced by several minor upward trends of other

causes. As long as the overall density of death has a relatively clear trend, the single-decrement

CoDa LC model is probably able to describe it. It seems that the multiple-decrement CoDa LC

model, however, does not work when there is no obvious trends for the density of death for most of

the causes of death (even if the overall density of death has a clear downward trend).

In Chapter 7, we will use our model to fit a short period’s USA data (12 years), and then predict

the density of death for the next 50 years. After that, we will apply the predicted values to calculate

the expectation and variance of a term life insurance with a term accidental death rider.
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Figure 6.4: Canada, female: probability that a newborn will eventually die from a specific cause.
Points represent data and lines represent estimates and predictions based on rank-2 approximation.
ARIMA models for the first and second period factors are chosen by AICc.



Chapter 7

Pricing Life Insurance with a Rider

The Lee-Carter model is able to project the mortality rates and one can apply these projections to

price life insurances and life annuities. By using a multiple-decrement CoDa LC model, we are able

to project the cause-specific death rates and apply them to price more complicated products, such

as an accidental death rider. In this chapter, we will price, for different ages and years, a 20-year

life insurance with an accidental death rider and calculate the associated variances.

7.1 Life Insurance and Accidental Death Rider

Consider an n-year term insurance that pays a death benefit of $1 at the end of the year of death if

within n years. Let Kx be the curtate future lifetime random variable for someone aged x; then the

present value random variable for the benefit for someone aged x is

Z =

{
vKx+1 if Kx ≤ n− 1

0 if Kx ≥ n
. (7.1)

The probability function of Kx is

P (Kx = k) = kpx · qx+k, (7.2)

where kpx represents the probability that someone aged x lives at age x + k and qx+k represents

the probability that someone aged x+ k dies between ages x+ k and x+ k+ 1. We will use k|qx to

represent P (Kx = k). The EPV of the benefit, E (Z), is therefore

E (Z) =

n−1∑
k=0

vk+1 ·k |qx. (7.3)

45
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We are not only interested in the first moment, that is the expectation of Z, we are also interested

in the second moment of Z, which is helpful to calculate the variance,

E
(
Z2
)

=

n−1∑
k=0

v2(k+1) ·k |qx. (7.4)

Now let’s consider an n-year term accidental death rider, which pays a benefit of $1 at the end

of the year of death if within n years due to an accidental cause. The present value random variable

for the accidental death benefit for someone aged x is

Y =

{
vKx+1 if Kx ≤ n− 1 and accidental death

0 if Kx ≥ n or non− accidental death
. (7.5)

Let k|q(ac)x be the probability that someone aged x will die between ages x+ k and x+ k+ 1 due

to an accidental cause. The EPV of the benefit, E (Y ), is therefore

E (Y ) =

n−1∑
k=0

vk+1 ·k |q(ac)x . (7.6)

Note that

k|q(ac)x = kpx · q(ac)x+k, (7.7)

where q
(ac)
x+k represents the probability that someone aged x + k will die in the next year due to

accident. Then the second moment of Y is

E
(
Y 2
)

=

n−1∑
k=0

v2(k+1) ·k |q(ac)x . (7.8)

We are interested in an n-year life insurance with an accidental death rider. The present value

random variable is therefore Z+Y, denoted as W:

W =


2vKx+1 if Kx ≤ n− 1 and accidental death

vKx+1 if Kx ≤ n− 1 and non− accidental death
0 if Kx ≥ n

. (7.9)

Let k|q(nac)x be the probability that someone aged x will die between ages x + k and x + k + 1

due to a non-accidental cause, then k|q(nac)x =k px · q(nac)x+k . Therefore the first and second moments

of W are

E (W ) = 2

n−1∑
k=0

vk+1 ·k |q(ac)x +

n−1∑
k=0

vk+1 ·k |q(nac)x (7.10)

and

E
(
W 2
)

= 4

n−1∑
k=0

v2(k+1) ·k |q(ac)x +

n−1∑
k=0

v2(k+1) ·k |q(nac)x . (7.11)
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The variance of W is

V (W ) = E
(
W 2
)
− (E (W ))

2
. (7.12)

Now say that we want to calculate the expectation and variance of a life insurance with an

accidental death rider for someone aged x in year t. Let Wx,t represent the present value random

variable; then the expectation of Wx,t can be expressed as:

E (Wx,t) = 2

n−1∑
k=0

vk+1 · px,t · px+1,t+1 · · · px+k−1,t+k−1 · q(ac)x+k,t+k

+

n−1∑
k=0

vk+1 · px,t · px+1,t+1 · · · px+k−1,t+k−1 · q(nac)x+k,t+k.

(7.13)

The second moment of Wx.t can be expressed as:

E
(
W 2
x,t

)
= 4

n−1∑
k=0

v2(k+1) · px,t · px+1,t+1 · · · px+k−1,t+k−1 · q(ac)x+k,t+k

+

n−1∑
k=0

v2(k+1) · px,t · px+1,t+1 · · · px+k−1,t+k−1 · q(nac)x+k,t+k.

(7.14)

The variance of Wx,t is therefore

V (Wx,t) = E
(
W 2
x,t

)
− (E (Wx,t))

2
. (7.15)

7.2 Numerical Illustrations-USA Data

7.2.1 Cause-Specific Density of Death

In this section, we will calculate for various ages (every age from 25 to 60) and years (calendar year

2000, 2010, 2020, 2030 and 2040), the expectations and variances of a 20-year life insurance with

an accidental death rider. We will apply the model described in Chapter 5 to project the USA cause-

specific density of death and then to calculate the expectations and variances. We collect our data

from the Human Mortality Database and Centers for Disease Control and Prevention (CDC). Human

Mortality Database provides the life tables for USA, for both sexes. The USA life tables provide data

for years as early as 1933 up to 2010. The Centers for Disease Control and Prevention is the

national public health institute of the United States with a main goal of protecting public health and

safety through the control and prevention of disease, injury and disability. CDC provides a variety

of useful reports, such as National Vital Statistics Reports, National Health Statistics Reports and

so on. The National Vital Statistics Reports include one report called Deaths: Leading Causes for

XXXX (a calendar year), from which we can obtain the cause-specific numbers of deaths for USA

in year XXXX. We use 12 reports: Deaths: Leading Causes for 1999, 2000,... and 2010. The
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reports can be downloaded from http://www.cdc.gov/nchs/products/nvsr.htm. In each report, Table

10 provides us with the numbers of deaths from 113 selected causes by age for United States for

that particular year. In Table 10, the ages are grouped as “Under 1 year”, “1-4 years”, “5-14 years”,

“15-24 years”,...,“75-84 years” and “85 years and over”, and we are able to calculate the death rates

(qx,t) in such age groups based on HMD 1×1 or 5×1 life tables. We categorize the 113 causes into

9 major groups (with reference to International Statistical Classification of Diseases and Related

Health Problems 10th Revision (ICD-10) Version for 2010). The 9 groups are listed in Table 7.1 and

how we categorize the selected 113 causes into the 9 causes is shown in Table 7.2.

Key Categorization
Cause 1 Infectious Disease
Cause 2 Malignant Neoplasm
Cause 3 Diabetes
Cause 4 Cardiovascular Disease
Cause 5 Respiratory Disease
Cause 6 Genitourinary Disease
Cause 7 Accident
Cause 8 Digestive Disease
Cause 9 Miscellaneous Death Cause

Table 7.1: 9 categorizations of death causes

We are now able to construct the matrix of dmul, the cause-specific density of death matrix for

USA, use the multiple-decrement CoDa LC model to fit the density of death for years 1999 to 2010

and then make projection for years 2011 to 2060. The age groups are 0-15, 15-24, 25-34, ..., 75-84

and 85+. The first age factors for 9 different causes are shown in different colors in Figure 7.1.

The first and second period factors are fitted for years 1999 to 2010 and predicted for years 2011

to 2060, by an ARIMA model. We use the AICc criterion (Shumway and Stoffer, 2000) to choose the

most appropriate ARIMA model for the first period factor. It turns out that a random walk, that is an

ARIMA(0,1,0), is the best choice. For the second period factor, the optimal time series chosen by

AICc is an ARIMA(1,0,0). But since the coefficient is around 0.6 and the most recent second period

factor in year 2010 is 0.22, the period factors for years 2011 and after are smaller and smaller, which

means that when we make projections about future densities of deaths, the second period factor will

have insignificant effects. Finally, we choose a rank-1 approximation and use a random walk model

for the first period factor. The first period factor and ARIMA(0,1,0) predictions are shown in Figure

7.2 (left panel) and the second period factor and ARIMA(1,0,0) predictions are shown in Figure 7.2

(right panel).

According to (5.13), we can calculate li0,t and its estimate l̂i0,t, and then plot them against years.

The plots are shown in Figure 7.3.
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Cause of death Key
Salmonella infections (A01-A02) Cause 1
Shigellosis and amebiasis (A03,A06) Cause 1
Certain other intestinal infections (A04,A07-A09) Cause 1
Respiratory tuberculosis (A16) Cause 1
Other tuberculosis (A17-A19) Cause 1
Whooping cough (A37) Cause 1
Scarlet fever and erysipelas (A38,A46) Cause 1
Meningococcal infection (A39) Cause 1
Septicemia (A40-A41) Cause 1
Syphilis (A50-A53) Cause 1
Acute poliomyelitis (A80) Cause 1
Arthropod-borne viral encephalitis (A83-A84,A85.2) Cause 1
Measles (B05) Cause 1
Viral hepatitis (B15-B19) Cause 1
Human immunodeficiency virus (HIV) disease (B20-B24) Cause 1
Malaria (B50-B54) Cause 1
Other and unspecified infectious and parasitic Cause 1
diseases and their sequelae (A00,A05,A20-A36,
A42-A44,A48-A49,A54-A79,A81-A82,A85.0-A85.1,
A85.8,A86-B04,B06-B09,B25-B49,B55-B99)
Malignant neoplasms of lip, oral cavity and pharynx (C00-C14) Cause 2
Malignant neoplasm of esophagus (C15) Cause 2
Malignant neoplasm of stomach (C16) Cause 2
Malignant neoplasms of colon, rectum and anus (C18-C21) Cause 2
Malignant neoplasms of liver and intrahepatic bile ducts (C22) Cause 2
Malignant neoplasm of pancreas (C25) Cause 2
Malignant neoplasm of larynx (C32) Cause 2
Malignant neoplasms of trachea, bronchus and lung (C33-C34) Cause 2
Malignant melanoma of skin (C43) Cause 2
Malignant neoplasm of breast (C50) Cause 2
Malignant neoplasm of cervix uteri (C53) Cause 2
Malignant neoplasms of corpus uteri and uterus, part unspecified (C54-C55) Cause 2
Malignant neoplasm of ovary (C56) Cause 2
Malignant neoplasm of prostate (C61) Cause 2
Malignant neoplasms of kidney and renal pelvis (C64-C65) Cause 2
Malignant neoplasm of bladder (C67) Cause 2
Malignant neoplasms of meninges, brain and other Cause 2
parts of central nervous system (C70-C72)
Hodgkin’s disease (C81) Cause 2
Non-Hodgkin’s lymphoma (C82-C85) Cause 2
Leukemia (C91-C95) Cause 2
Multiple myeloma and immunoproliferative neoplasms (C88,C90) Cause 2
Other and unspecified malignant neoplasms of Cause 2
lymphoid, hematopoietic and related tissue (C96)

Table 7.2: Categorization for the selected 113 death causes
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Cause of death Key
All other and unspecified malignant neoplasms Cause 2
(C17,C23-C24,C26-C31,C37-C41,C44-C49,C51-
C52,C57-C60,C62-C63,C66,C68-C69,C73-C80,C97)
In situ neoplasms, benign neoplasms and neoplasms of
uncertain or unknown behavior (D00-D48) Cause 9
Anemias (D50-D64) Cause 9
Diabetes mellitus (E10-E14) Cause 3
Malnutrition (E40-E46) Cause 9
Other nutritional deficiencies (E50-E64) Cause 9
Meningitis (G00,G03) Cause 9
Parkinsons disease (G20-G21) Cause 9
Alzheimers disease (G30) Cause 9
Acute rheumatic fever and chronic rheumatic heart diseases (I00-I09) Cause 4
Hypertensive heart disease (I11) Cause 4
Hypertensive heart and renal disease (I13) Cause 4
Acute myocardial infarction (I21-I22) Cause 4
Other acute ischemic heart diseases (I24) Cause 4
Atherosclerotic cardiovascular disease, so described (I25.0) Cause 4
All other forms of chronic ischemic heart disease (I20,I25.1I25.9) Cause 4
Acute and subacute endocarditis (I33) Cause 4
Diseases of pericardium and acute myocarditis (I30-I31,I40) Cause 4
Heart failure (I50) Cause 4
All other forms of heart disease (I26-I28,I34-I38,I42-I49,I51) Cause 4
Essential hypertension and hypertensive renal disease (I10,I12,I15) Cause 4
Cerebrovascular diseases (I60-I69) Cause 4
Atherosclerosis (I70) Cause 4
Aortic aneurysm and dissection (I71) Cause 4
Other diseases of arteries, arterioles and capillaries (I72-I78) Cause 4
Other disorders of circulatory system (I80-I99) Cause 9
Influenza (J10-J11) Cause 5
Pneumonia (J12-J18) Cause 5
Acute bronchitis and bronchiolitis (J20-J21) Cause 5
Unspecified acute lower respiratory infections (J22) Cause 5
Bronchitis, chronic and unspecified (J40-J42) Cause 5
Emphysema (J43) Cause 5
Asthma (J45-J46) Cause 5
Other chronic lower respiratory diseases (J44,J47) Cause 5
Pneumoconioses and chemical effects (J60-J66,J68) Cause 5
Pneumonitis due to solids and liquids (J69) Cause 5
Other diseases of respiratory system (J00-J06,J30-J39,J67,J70-J98) Cause 5
Peptic ulcer (K25-K28) Cause 8
Diseases of appendix (K35-K38) Cause 8
Hernia (K40-K46) Cause 8
Alcoholic liver disease (K70) Cause 8
Other chronic liver disease and cirrhosis (K73-K74) Cause 8
Cholelithiasis and other disorders of gallbladder (K80-K82) Cause 8

Table 7.2: Categorization for the selected 113 death causes-Con.
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Cause of death Key
Acute and rapidly progressive nephritic and nephrotic syndrome (N00-N01,N04) Cause 6
Chronic glomerulonephritis, nephritis and nephropathy not specified
as acute or chronic, and renal sclerosis unspecified (N02-N03,N05-N07,N26) Cause 6
Renal failure (N17-N19) Cause 6
Other disorders of kidney (N25,N27) Cause 6
Infections of kidney (N10-N12,N13.6,N15.1) Cause 6
Hyperplasia of prostate (N40) Cause 6
Inflammatory diseases of female pelvic organs (N70-N76) Cause 6
Pregnancy with abortive outcome (O00-O07) Cause 9
Other complications of pregnancy, childbirth and the puerperium (O10-O99) Cause 9
Certain conditions originating in the perinatal period (P00-P96) Cause 9
Congenital malformations, deformations and chromosomal abnormalities (Q00-Q99) Cause 9
Symptoms, signs and abnormal clinical and laboratory Cause 9
findings, not elsewhere classified (R00-R99)
All other diseases (residual) Cause 9
Motor-vehicle accidents (V02-V04,V09.0,V09.2,V12-V14, Cause 7
V19.0-V19.2,V19.4-V19.6,V20-V79,V80.3-V80.5,V81.0-V81.1,
V82.0-V82.1,V83-V86,V87.0-V87.8,V88.0-V88.8,V89.0,V89.2)
Other land transport accidents (V01,V05-V06,V09.1,V09.3-V09.9, Cause 7
V10-V11,V15-V18,V19.3,V19.8-V19.9,V80.0-V80.2,V80.6-V80.9,
V81.2-V81.9,V82.2-V82.9,V87.9,V88.9,V89.1,V89.3, V89.9)
Water, air and space, and other and unspecified transport Cause 7
accidents and their sequelae (V90-V99,Y85)
Falls (W00-W19) Cause 7
Accidental discharge of firearms (W32-W34) Cause 7
Accidental drowning and submersion (W65-W74) Cause 7
Accidental exposure to smoke, fire and flames (X00-X09) Cause 7
Accidental poisoning and exposure to noxious substances (X40-X49) Cause 7
Other and unspecified nontransport accidents and their
sequelae (W20-W31,W35-W64, W75-W99,X10-X39, X50-X59,Y86) Cause 7
Intentional self-harm (suicide) by discharge of firearms (X72-X74) Cause 9
Intentional self-harm (suicide) by other and unspecified Cause 9
means and their sequelae (*U03,X60-X71,X75-X84,Y87.0) Cause 9
Assault (homicide) by discharge of firearms (*U01.4,X93-X95) Cause 9
Assault (homicide) by other and unspecified means and their sequelae Cause 9
(*U01.0-*U01.3,*U01.5-*U01.9,*U02,X85-X92,X96-Y09,Y87.1)
Legal intervention (Y35,Y89.0) Cause 9
Discharge of firearms, undetermined intent (Y22-Y24) Cause 9
Other and unspecified events of undetermined intent and Cause 9
their sequelae (Y10-Y21,Y25-Y34,Y87.2,Y89.9)
Operations of war and their sequelae (Y36,Y89.1) Cause 9
Complications of medical and surgical care (Y40-Y84,Y88) Cause 9

Table 7.2: Categorization for the selected 113 death causes-Con.



CHAPTER 7. PRICING LIFE INSURANCE WITH A RIDER 52

0 20 40 60 80

−
0.

4
−

0.
2

0.
0

0.
2

Age

fis
rt

 a
ge

 fa
ct

or

Infectious Disease
Malignant Neoplasm
Diabetes
Cardiovascular Disease
Respiratory Disease
Genitourinary Disease
Accident
Digestive Disease
Miscellaneous Death Cause

Figure 7.1: USA, both sexes, 1999-2010: the first cause-specific age factors.
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Figure 7.2: USA, both sexes: the fitted (1999-2010) and predicted (2011-2060) first (left panel) and
second (right panel) period factors. ARIMA(0,1,0) is used to fit and predict the first period factor.
ARIMA(1,0,0) is used to fit and predict the second period factor.

From Figure 7.3, we can see that the rank-1 approximation fits the data (shown as dots in the

figure) very well and the predictions are reasonable. According to our result, the probability of death

by major cardiovascular diseases decreases from 0.42 in 1999 to 0.04 in 2060. This means that

in the next 50 years, there should be some very effective treatments developed for cardiovascular

diseases. I believe, however, that the probability of death caused by major cardiovascular diseases

will decrease to some level, and then at some point will be more stable and stop decreasing. Any-

way, according to our model, it seems that for all the causes of death the li0,t decreases or is stable,

except for the category “Miscellaneous Death Cause” where li0,t increases a lot and contributes over

75% of all the deaths in 2060.

Based on Section 5.4, we are able to obtain the values of xj+1−xj
qixj ,t, which are important for

calculating the expectations and variances of insurance contracts and riders.

7.2.2 Expectations and Variances

The death rates we obtained are 15q
i
0,t, 10q

i
15,t, 10q

i
25,t, ..., ωqi85,t. To calculate the expectation and

variance of a 20-year life insurance with a 20-year accidental death rider, we need to know the

values of q70,t, q71,t,..., etc. (note that the accidental death is Cause 7). Within each age intervals (15-

, 15-24, 25-34,..., 75-84 and 85+), we use a uniform distribution of death (UDD) assumption. The
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Figure 7.3: USA, both sexes: probability that a newborn will eventually die from a specific cause.
Points represent data and lines represent estimates. Rank-1 approximation is used. ARIMA(0,1,0)
is used to fit and predict the first period factor.
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details about UDD assumption can be found from Bowers et al. (1997). We plot of the surface of qx,t,

q
(ac)
x,t and q(nac)x,t for ages 25 to 80 and years 1999 to 2060 in Figures 7.4, 7.5 and 7.6 respectively.

Figure 7.4: USA, both sexes: qx,t for ages 25 to 79 and for years 1999 to 2060.

From Figure 7.4 we can see that for a given year t, the death rates qx,t increases as age in-

creases. For a given age x, the death rates qx,t decreases as a function of t, especially for older

ages. According to our model, q79,t decreases by 83% from 0.06 in year 1999 to 0.01 in year 2006.

The surface of q(nac)x,t is very similar to that of qx,t, since the accidental death rates are relatively

small compared to the overall death rates. Now let’s take a look at the surface of q(ac)x,t in Figure 7.5;

the shape is a little bumpy. For different ages the peaks appear in different calendar years. And

for years 2030 and after, it seems that the peaks appear around ages 45 and 55 (in order to see

this, we also include Figure 7.7, which is only angle-different from Figure 7.5). As a result when we

are calculating the expectations, for years 2030 and beyond, the weights of those accidental deaths

at ages around 45 and 55 are heavier than those at elder ages around 80, which means that after
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Figure 7.5: USA, both sexes: q(ac)x,t for ages 25 to 79 and for years 1999 to 2060.
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Figure 7.6: USA, both sexes: q(nac)x,t for ages 25 to 79 and for years 1999 to 2060.
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year 2030 the expectations at older ages will not increase as much as they will until 2030.

Figure 7.7: USA, both sexes, q(ac)x,t for ages 25 to 79 and for years 1999 to 2060.

We calculate the moments for ages 25 to 60 and for years 2000, 2010, 2020, 2030 and 2040

with an interest rate of 5%. The expectations and variances can be found in Figures 7.8 and 7.9

respectively.

From Figure 7.8, we can observe a more gentle slope for the expectations between ages 45 and

55 for years 2030 and 2040. In Figure 7.9, we can see the same special age periods from 45 to 55.
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Figure 7.8: USA, both sexes: expected present value for 20-year life insurance with 20-year acci-
dental death rider with interest rate of 5%.
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Figure 7.9: USA, both sexes: variance of present value for 20-year life insurance with 20-year
accidental death rider with interest rate of 5%.



Chapter 8

Conclusion

In this project, we use Compositional Data Analysis to solve the problem of coherent forecasting

of multiple-decrement life tables. Instead of modeling the mortality rates, we are interested in the

cause-specific density of death, which can be treated as compositional data. We extend the Lee-

Carter model so that the Lee-Carter structure can be applied on compositional data. Following the

work of Jim Oeppen (Oeppen, 2008), we apply the model on several multiple-decrement datasets,

including Japan (female), Canada (female) and USA (both sexes). Like the Lee-Carter model, the

CoDa LC model is easy to understand and simple to implement.

One of the Lee-Carter model’s advantages is its simplicity. The CoDa LC model inherits this

advantage. At the same time, the CoDa LC model extends the Lee-Carter model from single decre-

ment to multiple decrements. The Lee-Carter model only uses the first left and right singular vectors

and the leading value of the SVD to obtain the unique solution of b and k. And then the LC model

takes a second step to reestimate k. The CoDa LC model, on the other hand, has more flexibil-

ity that enables us to choose the rank of the approximation. Another advantage of the CoDa LC

model is that there is no necessity of reestimating the period factors and therefore saves the step

of reestimation.

After fitting the model, we are able to do predictions. Very similar to the Lee-Carter model, we

use an ARIMA model to fit the period factors and make predictions. But we use AICc to choose the

optimal ARIMA model. If we use rank-r approximation, then we need to use AICc to choose the

optimal ARIMA model r times, each time for each of the 1st, 2nd,..., and rth period factors. After we

project the future density of death, we are able to do some applications such as insurance pricing.

When density of death is only available for around 10 years, whether our model works really

depends on what periods we choose to fit. If the period we choose is only 10 years, it is very

likely that the model does not work since 10 years’ cause-specific death rates might not reflect

the downward curvatures as single decrement death rates for every cause of death, and therefore

our predictions might not be enough regarding the future trends. While for the USA (both sexes)

61
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data, the fits and predictions seem to be reasonable. For the Lee-Carter model, since there is no

disaggregation of death, the downward trends of mortality rates are usually very obvious.

The disaggregation of death is very beneficial. The CoDa LC model enables us to predict the

cause-specific density of death. The causes of death includes “Accidents” and therefore we are

able to price an n-year term insurance with an n-year accidental death rider. The death rates reach

a peak around ages 45 to 55 for years 2030 and after. This characteristic affects the shape of

the curves of the expectations and variances for the combination of insurance and rider issued at

various ages and different calendar years.

There is still much room for future work. One possible direction would be to consider the problem

how many categories one should disaggregate the causes of death into. If we disaggregate the

causes of death into too many categories, the multiple-decrement CoDa LC model might not work.

Another possible direction would be to obtain the confidence intervals, which will be important for

pricing. Applying the LC model variants or extensions might also be another interesting topic.
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Appendix A

HMD: Life Table

The values of qx,t’s used in our numerical illustrations were obtained from the life tables provided

by Human Mortality Database at http://www.mortality.org. An excerpt of the 5× 1 life table for USA,

both sexes, is shown below.

Year Age mx qx ax lx dx Lx Tx ex
1933 0 0.06167 0.05883 0.22 100,000 5,883 95,405 6,087,969 60.88
1933 1-4 0.00484 0.01911 1.41 94,117 1,799 371,812 5,992,564 63.67
1933 5-9 0.00164 0.00815 2.31 92,318 752 459,563 5,620,752 60.88
1933 10-14 0.00135 0.00674 2.61 91,565 617 456,355 5,161,189 56.37
1933 15-19 0.00229 0.01137 2.70 90,948 1,034 452,360 4,704,834 51.73

...
...

...
...

...
...

...
...

...
...

1933 100-104 0.42799 0.89546 1.75 169 152 354 388 2.29
1933 105-109 0.52376 0.93829 1.58 18 17 32 34 1.89
1933 110+ 0.60163 1.00000 1.66 1 1 2 2 1.66

...
...

...
...

...
...

...
...

...
...

2010 0 0.00619 0.00615 0.07 100,000 615 99,425 7,883,243 78.83
2010 1-4 0.00027 0.00107 1.58 99,385 106 397,281 7,783,818 78.32
2010 5-9 0.00011 0.00057 2.44 99,278 57 496,246 7,386,537 74.40
2010 10-14 0.00014 0.00071 2.81 99,221 71 495,952 6,890,291 69.44
2010 15-19 0.00049 0.00246 2.99 99,151 244 495,263 6,394,339 64.49

...
...

...
...

...
...

...
...

...
...

2010 100-104 0.41857 0.89552 1.81 2,167 1,941 4,636 5,031 2.32
2010 105-109 0.56925 0.95520 1.52 226 216 380 395 1.74
2010 110+ 0.69050 1.00000 1.45 10 10 15 15 1.45

Table A.1: The United States of America, life table (period 5× 1), last modified: 24-Jun-2013.
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Appendix B

BMD: Cause-Specific Number of
Death

The cause-specific numbers of deaths for Japan females used in Chapter 5 were obtained from

a table available in the Berkeley Mortality Database, called “Deaths-Causes of death, 1951-1990,

(5× 1)”. (See http://www.demog.berkeley.edu/ bmd). An excerpt of the table is shown below. Each

cause of death is represented by a unique integer. The correspondence between the integers and

the names of the causes can be found in a document called “Data Notes”.
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APPENDIX B. BMD: CAUSE-SPECIFIC NUMBER OF DEATH 68

Year Cause Age Female Male Total
1951 Total Total 406,458 432,540 838,998
1951 Total 0 56,005 66,864 122,869
1951 Total 1-4 38,694 40,936 79,630

...
...

...
...

...
...

1951 Total 100+ 33 10 43
1951 Total Unknown 9 23 32
1951 1 Total 7,355 5,852 13,207
1951 1 0 86 109 195
1951 1 1-4 241 248 489

...
...

...
...

...
...

1951 1 100+ 1 0 1
1951 1 Unknown 1 0 1

...
...

...
...

...
...

1951 40 Total 78,803 85,919 164,722
1951 40 0 27,483 33,936 61,419
1951 40 1-4 5,434 6,188 11,622

...
...

...
...

...
...

1951 40 100+ 2 0 2
1951 40 Unknown 3 4 7

...
...

...
...

...
...

Table B.1: Japan, female, cause-specific numbers of death, 1951-1990 (5× 1).



Appendix C

CANSIM Table 102-0561

The cause-specific numbers of deaths for Canadian females used in Chapter 6 were provided by

CANSIM Table 102-0561. The CANSIM website is http://www5.statcan.gc.ca/cansim. An excerpt

of the table is shown below.

Death age Causes of death (ICD-10) 2001 2002 ... 2010
...

...
...

...
...

...
1-14 All causes 385 383 ... 285
1-14 Salmonella infections [A01-A02] 0 0 ... 0
1-14 Shigellosis and amoebiasis [A03, A06] 0 0 ... 0
1-14 Tuberculosis [A16-A19] 0 0 ... 0
1-14 Whooping cough [A37] 0 0 ... 0
...

...
...

...
...

...
15-19 All causes 305 305 ... 274
15-19 Salmonella infections [A01-A02] 0 0 ... 0
15-19 Shigellosis and amoebiasis [A03, A06] 0 0 ... 0
15-19 Tuberculosis [A16-A19] 0 0 ... 0
15-19 Whooping cough [A37] 0 0 ... 0
...

...
...

...
...

...
90+ All causes 20,615 21,518 ... 28,415
90+ Salmonella infections [A01-A02] 0 2 ... 1
90+ Shigellosis and amoebiasis [A03, A06] 1 0 ... 0
90+ Tuberculosis [A16-A19] 6 7 ... 1
90+ Whooping cough [A37] 0 0 ... 0

Table C.1: Cause-specific numbers of death by age: Canada, female, 2001-2010.
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Appendix D

National Vital Statistics Report

The cause-specific numbers of deaths for USA both sexes used in Chapter 7 were provided by Table

10 of the National Vital Statistics Reports. The National Vital Statistics Reports can be searched

at Centers for Disease Control and Prevention at http://www.cdc.gov. An excerpt of the table for

calendar year 2007 is shown below.

Cause of death (ICD-10) All ages < 1 1-4 5-14 ... 85+
All causes 2,423,712 29,138 4,703 6,147 ... 201
Salmonella infections 30 2 2 - ... 9
(A01-A02)
Shigellosis and amebiasis 4 - - 2 ... -
(A03,A06)
Certain other intestinal infections 6,758 11 14 5 ... 2,864
(A04,A07-A09)
Tuberculosis 554 1 - 1 ... 90
(A16-A19)
Respiratory tuberculosis 424 2 - 1 ... 74
(A16)
Other tuberculosis 130 - - - ... 16
(A17-A19)
...

...
...

...
...

...
...

Table D.1: Number of deaths from 113 selected causes by age: United States, 2007.

70


	Approval
	Partial Copyright License
	Abstract
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Motivation
	Lee-Carter Model and its Extensions
	Compositional Data Analysis
	Outline

	Compositional Data Analysis (CoDa)
	The Simplex Sample Space
	Perturbations
	Rank-r Approximation

	Lee-Carter Model
	The Model
	Model Fitting
	The Fitted Model
	The Data
	The Estimated Parameters

	Modeling and Forecasting the Mortality Index, k

	Single-Decrement CoDa Equivalent Lee-Carter Model
	Density of Death
	Basic Formula
	Centred Log Ratio of the Density of Death

	The Model
	France Projection

	Multiple-Decrement CoDa Equivalent Lee-Carter Model
	Multiple-Decrement Density of Death
	Centred Log Ratio of the Density of Death-Multiple Decrements
	The Model
	Cause-specific Death Rates qx,ti
	Japan Projection

	Density of Death Prediction based on Short Observation Period
	Japan Projection
	Canada Projection

	Pricing Life Insurance with a Rider
	Life Insurance and Accidental Death Rider
	Numerical Illustrations-USA Data
	Cause-Specific Density of Death
	Expectations and Variances


	Conclusion
	Bibliography
	Appendix HMD: Life Table
	Appendix BMD: Cause-Specific Number of Death 
	Appendix CANSIM Table 102-0561
	Appendix National Vital Statistics Report

