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Abstract

Background: In population association studies, standard methods of statistical inference assume that study subjects
are independent samples. In genetic association studies, it is therefore of interest to diagnose undocumented close
relationships in nominally unrelated study samples.

Results: We describe the R package CrypticIBDcheck to identify pairs of closely-related subjects based on genetic
marker data from single-nucleotide polymorphisms (SNPs). The package is able to accommodate SNPs in linkage
disequibrium (LD), without the need to thin the markers so that they are approximately independent in the
population. Sample pairs are identified by superposing their estimated identity-by-descent (IBD) coefficients on plots
of IBD coefficients for pairs of simulated subjects from one of several common close relationships.

Conclusions: The methods implemented in CrypticIBDcheck are particularly relevant to candidate-gene
association studies, in which dependent SNPs cluster in a relatively small number of genes spread throughout the
genome. The accommodation of LD allows the use of all available genetic data, a desirable property when working
with a modest number of dependent SNPs within candidate genes. CrypticIBDcheck is available from the
Comprehensive R Archive Network (CRAN).
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Background
It is well known that the results of genetic association
studies may be confounded by the presence of undoc-
umented relationships – a phenomenon referred to as
cryptic relatedness (e.g., [1,2]). For example, [3] found that
tests of association between genetic markers and quan-
titative phenotypes such as serum LDL tended to have
inflated significance when relationships between individ-
uals from a large Hutterite kindred were not accounted
for. Before making any inference with the data, it is there-
fore important to understand cryptic relatedness in the
study sample. To facilitate this understanding, we intro-
duce CrypticIBDcheck, an R [4] package for exploring
the presence of close relationships in a homogeneous
sample of nominally unrelated individuals. Although sev-
eral methods for exploring cryptic relatedness have been
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implemented (reviewed below), none are geared for data
from candidate-gene association studies. CrypticIBD-
check fills this need. For ease of interpretation, the pack-
age implements exploratory displays based on popular
measures of gene-identity by descent. However, a unique
feature of these displays is that they accommodate popu-
lation linkage disequilibrium (LD) amongst genetic mark-
ers. The accommodation of LD allows the use of data on
all available markers rather than on a subset whose alle-
les are approximately independent in the population. This
feature is attractive in candidate-gene association studies,
where markers within genes are in LD but the number
of genes is too small to select an independent subset of
markers that is informative for relationship. Using the
simulated data set analyzed in the Examples section we
have found it possible to distinguish parent-offspring or
full sibling pairs from unrelated individuals using as few
as 60 candidate genes (average of five SNPs per gene). We
return to the issue of how many SNPs are appropriate
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for analysis with CrypticIBDcheck in the Conclusions
section.

The relatedness between two individuals may be defined
in terms of the proportion of loci at which they share zero,
one or two alleles that are identical-by-descent (IBD).
We refer to these proportions as the actual IBD-sharing
coefficients, or IBD coefficients. The alleles from two indi-
viduals are IBD if they are descended from a common
ancestor in a given reference population (e.g., [5]). Though
alleles from each of two individuals may match or be
identical-by-state (IBS), they are not necessarly IBD.

CrypticIBDcheck uses estimated IBD coefficients to
summarize possible relationships among pairs of study
subjects. The approach is exploratory and graphically-
based, similar to the GRR approach of [6] and the
approach of [7] implemented in the ibdPlot() function
of the GWASTools Bioconductor package.

GRR calculates and displays the mean and variance of
IBS allele sharing over polymorphic loci for each pair
of individuals. Pairs of known relationships form refer-
ence clusters on the plot, allowing the user to identify
errors in reported relationships. In association studies of
nominally unrelated individuals, however, there are no
reference clusters available. In principle, reference clusters
could be obtained theoretically from the joint distribu-
tion of the IBS mean and variance estimators, but it is
unclear how to derive this distribution in the presence
of LD.

The ibdPlot() function in GWASTools may be
applied to view estimated IBD coefficients along with ref-
erence clusters for the unobserved, true IBD coefficients
based on theoretical moments of their distribution [8].
However, in candidate-gene studies with a modest num-
ber of single-nucleotide polymorphisms (SNPs), errors
introduced by estimation of IBD coefficients cannot be
ignored. Hence, reference distributions for the true IBD
coefficients do not adequately represent those for esti-
mated IBD coefficents.

The idea behind CrypticIBDcheck is to identify
closely-related study pairs by displaying their estimated
IBD coefficients together with those from simulated pairs
of known relationships. The simulated reference pairs
provide an empirical joint distribution of the IBD estima-
tors under selected relationships which, in turn, suggest
possible relationships amongst study pairs. Working with
simulated pairs from known relationships avoids having
to derive the joint distribution of the IBD estimators
when the genetic markers are in LD. Simulated pairs are
obtained by gene drop on a relationship-specific pedi-
gree, with pedigree-founder haplotypes drawn from a
fitted haplotype model that accounts for LD [9]. We have
implemented simulation of the following common rela-
tionships: monozygotic twins/sample duplicates, parent-
offspring, full siblings, second degree (i.e., half siblings,

avuncular or grandparent-grandchild) and first cousins.
However, users may also specify their own custom rela-
tionships (see the Examples section).

The paper is structured as follows. In the Methods
section we describe the IBD estimators and methods for
gene drop simulation in the presence of LD to obtain
reference clusters. The Results and Discussion section
describes implementation details provides two examples
of how to use the package. The paper ends with a
Conclusions section that includes ideas for future work.

Methods
IBD estimation
There are two common approaches to estimating IBD
coefficients: maximum likelihood [10-12] and the method
of moments [13-15]. Typically, maximum-likelihood esti-
mators (MLEs) are more biased than method-of-moments
estimators (MMEs), especially when the number of loci
is small; they are also more computationally expensive
[14]. However, MMEs are less precise than MLEs and
can fall outside the biologically meaningful parameter
space [11].

In this section, we review a popular method of moments
approach to estimating IBD coefficients introduced by
[15] and implemented in PLINK. This approach assumes
that the individuals are from the same homogeneous,
random-mating and non-inbred population. Alleles from
two individuals are considered to be IBD if they are
descended from a common ancestor in some base popu-
lation that we take to be relatively recent. All alleles in this
base population are defined to be non-IBD. Given a SNP
with alleles A and a, a pair of individuals that are, say, AA
and aa, respectively, will be denoted (AA, aa).

Identity-by-state (IBS) for a pair of subjects is denoted
by the random variable I and identity-by-descent by the
random variable Z, with possible states being 0, 1, and 2
for both random variables. The IBD coefficients to be esti-
mated are the proportions of genome shared IBD, denoted
by P(Z = 0), P(Z = 1), and P(Z = 2). For a given SNP m,
the procedure begins by expressing the prior probability
of IBS sharing as

Pm(I = i) =
i∑

z=0
Pm(I = i|Z = z)P(Z = z). (1)

P(Z = z) and Pm(I = i) are specific to the pair of sub-
jects being considered, while the conditional SNP-specific
IBS probabilities Pm(I = i|Z = z) apply to all pairs.
For a given pair of individuals at a given SNP, the above
equation specifies three identities for the IBS states 0, 1,
and 2. These three identities are summed over SNPs and
then rearranged to express P(Z = 0), P(Z = 1), and
P(Z = 2) for the pair in terms of marginal and conditional
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IBS probabilities. For example, in the case of i = z = 0, we
obtain

P(Z = 0) =
∑

m
Pm(I = 0)/

∑
m

Pm(I = 0|Z = 0).

The method-of-moments estimators of IBD coefficients
for a given pair are obtained by substituting estimators
of the conditional SNP-specific IBS probabilities, Pm(I =
i|Z = z), pertaining to any pair and the pair’s marginal
SNP-specific IBS probabilities, Pm(I = i), into the identi-
ties and then solving for P(Z = i).

The marginal SNP-specific IBS probabilities, Pm(I = i)
for a pair of subjects may be estimated by the indica-
tor function for whether the pair has I = i at the SNP.
An unbiased estimator of

∑
m P̂m(I = i) is therefore the

count of SNPs at which the pair shares i alleles IBS. Esti-
mates of the SNP-specific conditional IBS probabilities,
Pm(I = i|Z = z), are based on data from all subjects in
the sample. Derivation of unbiased estimators of Pm(I =
i|Z = z) is more involved. To simplify notation, we tem-
porarily drop the SNP subscript m. If p and q = 1 − p
denote the frequencies of A and a in the base population,
then P(I = i|Z = z) is a function of p and q. For example,
two individuals share 0 alleles IBS if they are either (AA,
aa) or (AA, aa). Given that Z = 0, the probabilities of
these genotypes are p2q2 and q2p2, respectively, leading to
P(I = 0|Z = 0) = 2p2q2. The plug-in estimators of condi-
tional IBS probabilities, such as P(I = 0|Z = 0), obtained
by inserting estimators p̂ and q̂ are biased [Additional file
1]. Unbiased estimators, expressed as the plug-in estima-
tor multiplied by a correction factor, may be derived as
described next.

Let X and Y be the counts of the alleles A and a, respec-
tively, so that the allele frequency estimators are p̂ = X/T
and q̂ = Y/T , where T is twice the number of observed
genotypes in the population random sample. The estima-
tors of the conditional IBS probabilities P(I = i|Z = z)
may be motivated by the following model. The genotype of
each individual in the present population is obtained from
two independent draws from an infinite base population
of alleles. Consequently, the T alleles of a population ran-
dom sample of study subjects can be viewed as a random
sample from the base population. Moreover, conditional
on IBD status, any pair of individuals in the present popu-
lation can be viewed as independent allelic draws from the
base population, with the number of draws determined by
their IBD status.

For example, in the case of Z = 0, a random pair of
individuals results from randomly drawing two pairs of
alleles from the base population. An indicator variable of
whether this sampling process results in I = 0 is an unbi-
ased estimator of P(I = 0|Z = 0). An unbiased estimator
is therefore the average of these indicator variables over all
possible draws from the T alleles on which we have data;

i.e., the proportion of pairs of allelic pairs with I = 0. The
proportion can be computed as follows. The number of
ways of selecting four distinct alleles from a total of T is
T(T − 1)(T − 2)(T − 3). Without loss of generality, sup-
pose the first two alleles are assigned to the first individual
in a pair and the last two alleles to the second individual.
Then the number of pairs that are (AA, aa) and (AA, aa)
are X(X −1)Y (Y −1) and Y (Y −1)X(X −1), respectively.
Hence,

P̂(I = 0|Z = 0) = 2X(X − 1)Y (Y − 1)

T(T − 1)(T − 2)(T − 3)
, (2)

is an unbiased estimator of P(I = 0|Z = 0) (see Additional
file 1 for verification by direct computation). After algebra,
the unbiased estimator may be expressed in terms of the
allele frequency estimators and a correction factor as:

P̂(I = 0|Z = 0) = 2p̂2q̂2
(

X − 1
X

× Y − 1
Y

× T
T − 1

× T
T − 2

× T
T − 3

)
.

For Z = 1, we consider a pair of individuals to be the
result of drawing three alleles from the base population,
one of which is shared by the pair of individuals. The pro-
portion of such pairs of individuals with IBS state I = 1 in
our data is an unbiased estimator of P(I = 1|Z = 1). The
number of ways to select three distinct alleles from a total
of T is T(T − 1)(T − 2). Among these, the genotype pairs
that are I = 1 are the X(X − 1)Y , YX(X − 1), Y (Y − 1)X,
and XY (Y − 1) that are (AA, aa), (AA, aa), (AA, aa), and
(AA, aa), respectively. Thus,

P̂(I = 1|Z = 1) = 2X(X − 1)Y + 2XY (Y − 1)

T(T − 1)(T − 2)

= 2XYX
TT2

(
X − 1

X
× T

T − 1
× T

T − 2

)

+ 2XY 2

TT2

(
X − 1

X
× T

T − 1
× T

T − 2

)

= 2p̂2q̂
(

X − 1
X

× T
T − 1

× T
T − 2

)

+ 2p̂q̂2
(

X − 1
X

× T
T − 1

× T
T − 2

)
.

The other conditional IBS probabilities are estimated in
an analogous manner and their expressions are provided
in Table one of [15].
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With estimates P̂m(I = i) and P̂m(I = i|Z = z) for each
SNP, we sum over SNPs to obtain estimates of the IBD
coefficients for a given pair in the sample. Let

N̂(I = i|Z = z) =
L∑

m=1
P̂m(I = i|Z = z) and

N̂(I = i) =
L∑

m=1
P̂m(I = i), (3)

where L is the total number of SNPs with genotype data
on both individuals. For any pair of subjects, summing
equation (1) over all the SNPs and using equation (3) gives
the following method-of-moment estimators of the IBD
coefficients:

P̂(Z=0)= N̂(I = 0)

N̂(I = 0|Z = 0)

P̂(Z=1)= N̂(I = 1) − P̂(Z = 0) × N̂(I = 1|Z = 0)

N̂(I = 1|Z = 1)

P̂(Z=2)= N̂(I =2)−P̂(Z=0)×N̂(I =2|Z=0)−P̂(Z = 1)×N̂(I =2|Z=1)

N̂(I =2|Z=2)
.

Adjustments to bound these estimators to values con-
sistent with their interpretation as IBD proportions were
proposed in [15]. We have not made these adjustments in
our graphical displays.

Gene drop simulation with LD
The package provides a graphical display that can be used
to identify related sample pairs by plotting the estimated
IBD coefficients P̂(Z = 1) versus P̂(Z = 0). To assess
the variability of these estimators the points of the IBD
plot are superposed on reference clusters obtained from
one of the following relationships: unrelated, monozy-
gotic twins/duplicates, parent-offspring, full siblings, half
siblings and first cousins. These reference clusters are
obtained by gene drop simulation that accounts for LD
[16]. A strength of this approach is that we do not need
to assume independence of marker loci. In candidate-gene
association studies, this feature is important because of
the dependence among a relatively small number of SNPs.
Ignoring the dependence among SNPs within genes pro-
duces reference clusters that are too tight relative to the
true variability, and can lead to false-positive results. We
return to this point in the examples.

A graphical model is an approach to modeling the joint
distribution of a set of dependent random variables when
many independences or conditional independences exist
between subsets of the variables. In the case of LD, it is
expected that the joint distribution of alleles allong hap-
lotypes shows such a structure. A flexible graphical model
of haplotype frequencies that captures LD between loci

is described in [17]. The model is fit to data from sub-
jects that can be regarded as a population random sample;
e.g., the controls in a case-control study of a rare disease.
Model parameters are estimated by use of a stochastic
optimization algorithm [16].

Once the LD model is fit, it is used to sample haplotypes
for the founders of a pedigree. Data on the remaining
members of the pedigree are simulated by gene drop.
Gene drop is a method for randomly generating the
genotypes of related individuals in a pedigree. Alleles
are “dropped” from the founders through the pedigree
according to Mendel’s laws. Multi-locus gene drop incor-
porates the process of recombination. To illustrate the
simulation procedure, consider a parent-offspring rela-
tionship. A pedigree that encompasses this relationship
is one comprised of two parents and the offspring. The
founders are the parents. Parental haplotypes are simu-
lated from the fitted LD model and are then dropped to
the offspring. To mimic real data with missing genotypes,
selected genotypes for a simulated individual are set to
missing according to the missing genotype pattern of a
randomly-sampled study subject.

Programs for fitting LD models and performing gene
drop simulations are available in the Java Programs
for Statistical Genetics and Computational Statistics
(JPSGSC) library developed by Alun Thomas (http://
balance.med.utah.edu/wiki/index.php/JPSGCS). We use
the R package rJPSGCS [18] to access these programs
from R.

Results and Discussion
Implementation
The main function in CrypticIBDcheck is IBDcheck(),
which estimates IBD coefficients for pairs of study sub-
jects and optionally for simulated pairs of subjects and
returns an object of class IBD. The plot method for
the IBD class displays the IBD coefficients for pairs of
study subjects, along with prediction ellipses for known
relationship pairs.

The arguments of IBDcheck() are constructed by
the functions new.IBD(), filter.control() and
sim.control(). The function new.IBD produces an
object of class IBD suitable for input to IBDcheck().
At a minimum, such an object includes the genetic data
as a snp.matrix object from the chopsticks package
[19], a data frame of SNP information that includes chro-
mosome and physical map positions of each SNP, and
a data frame of subject information that includes a log-
ical vector indicating whether (TRUE) or not (FALSE)
each subject is to be used to estimate the conditional IBS
probabilities and fit the LD model. Optionally, the SNP
information may include genetic map positions, in centi-
Morgans. If genetic map positions are missing, they are
inferred assuming the physical positions are from build

http://balance.med.utah.edu/wiki/index.php/JPSGCS
http://balance.med.utah.edu/wiki/index.php/JPSGCS
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36 of the human genome. Users with SNP data on diploid
non-human organisms, such as mouse or drosophila,
must supply their own genetic map positions. The docu-
mentation for new.IBD() and the examples below pro-
vide further details. The function filter.control()
sets options for quality control filtering of data by SNPs
and by subjects, while the function sim.control()
sets options that control simulation of subjects by gene
drop. The respective help files and the examples below
provide further details. As the fitting of LD models
in IBDcheck() can be computationally demanding,
users have the option of splitting computations across
a snow cluster [20], as described in Additional file 2.
The output of IBDcheck() is an object of class IBD,
which includes the estimated IBD coefficients for pairs
of study subjects and for simulated pairs with known
relationship.
IBD objects are graphically displayed by the plot

method of the class; the documentation for this method
is available through help(‘‘plot.IBD’’). Plots are
of P̂(Z = 1) versus P̂(Z = 0) for pairs of study sub-
jects, with prediction ellipses for known relationships
superposed, if requested by the user. The prediction
ellipses are produced from estimated IBD coefficients for
a user-specified number (default 200) of simulated pairs
of known relationships, assuming the distribution of esti-
mated IBD coefficients is approximately bivariate Normal.
The default setting for IBDcheck() is to omit simu-
lated pairs from the object. When simulated pairs are
omitted, plotting produces a single interactive display of
estimated IBD coefficients for pairs of study subjects, on
which points may be identified by clicking with the mouse.
On the other hand, when the IBD object includes simu-
lated pairs, the function returns a series of plots, which the
user is prompted to view and interact with successively.
The first plot to appear is non-clickable and shows the
estimated IBD coefficients for all pairs of study subjects,
along with the prediction ellipse for unrelated, simulated
pairs. Subsequent plots are clickable and correspond to
each relationship requested in the call to IBDcheck().
These relationship-specific plots are for identifying pairs
of study subjects which could have the relationship. The
plotting regions are restricted to the neighborhood of
the prediction ellipse for the simulated pairs of that rela-
tionship, which is also drawn. If, however, the plotting
region overlaps with the prediction ellipse for simulated
unrelated pairs, the ellipse for simulated unrelated pairs
is drawn as well. Points falling within the prediction
ellipse for the relationship and outside the prediction
ellipse for unrelated pairs are automatically flagged. In
addition, users may click on points of study pairs that
appear to be related but are not automatically flagged.
The plot method produces a data frame of information on
pairs that have been flagged on the different plots, either

automatically or interactively by the user through clicking
the mouse.

Examples
We illustrate the features of the CrypticIBDcheck
package using the genetic data Nhlsim that comes with
the package. These data were simulated to mimic the
characteristics of SNP genotypes in subjects of European
ancestry from a candidate-gene, case-control study of
non-Hodgkin Lymphoma [21]. The data set is a list com-
prised of (i) a snp.matrix object called snp.datawith
genotypes for 108 controls and 100 cases; (ii) a vector
chromosome of chromosome numbers for each SNP; (iii)
a vector physmap of physical map positions of each SNP,
from build 36 of the human genome; and (iv) a binary vec-
tor csct with value one for cases and zero for population
controls. The binary vector csct is used to select controls
for fitting LD models and estimating conditional IBS prob-
abilities. All of the information in Nhlsim is required to
run IBDcheck().

We present two examples. In the first (Default anal-
ysis with LD model fitting and gene drops), we illus-
trate basic use of IBDcheck() to fit LD models and
do gene drop simulations. Once the user requests sim-
ulations, there are a number of parameters, such as the
types of relationships to simulate, that control the sim-
ulations. Each simulation parameter has a default value,
as described in the help file for sim.control(). In
the first example we use these default settings. In the
second example (Additional gene drops using previous-
ly-fit LD models), we illustrate re-use of fitted LD models
to perform additional gene drop simulations, this time
for a user-specified relationship. For examples of how to
use IBDcheck() to explore genome-wide data, we refer
readers to the package vignette IBDcheck-hapmap that
illustrates an analysis of genome-wide data from HapMap,
using thinning of markers to reduce the computational
burden.

Default analysis with LD model fitting and gene drops
We first load the package and the Nhlsim data set.

R> library(‘‘CrypticIBDcheck’’)

Loading required package: rJPSGCS

Loading required package: rJava

Loading required package: chopsticks

Loading required package: survival

Loading required package: splines

Loading required package: car

Loading required package: MASS

Loading required package: nnet

Loading required package: ellipse
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Attaching package: ‘ellipse’

The following object(s) are masked from

‘package:car’:

ellipse

R> data("Nhlsim")

Next we create an object of class IBD that can be used
as input to the IBDcheck() function. The Nhlsim data
does not include genetic map positions for the SNPs, so
these will be inferred from the physical positions, assum-
ing the physical positions are from build 36 of the human
genome. We use subjects with case-control status 0 (con-
trols) for estimating conditional IBS probabilities and
fitting LD models.

R> popsam <- Nhlsimc$sct==0

R> dat <- new.IBD(Nhlsim$snp.data,

Nhlsim$chromosome,Nhlsim$physmap,popsam)

Note: Input does not include genetic map

locations (Gen_loc).

Inferring genetic map from physical

position (Position), assuming build 36 of

the human genome.

Note: Using population sample subjects

(popsam==TRUE) to fill in pvalues from

tests of HWE.

Note: Input does not include subject ids

(subids). Using rownames of snp.data.

In this illustration, we leave all QC filtering options
(set by filter.control()) at their default values.
We use sim.control() to modify the default value of
simulate=FALSE to simulate=TRUE, so that refer-
ence clusters are simulated.

R> ss <- sim.control(simulate=TRUE)

R> cibd <- IBDcheck(dat,simparams=ss)

This call to IBDcheck() will generate 22 plain-text
files in the user’s working directory that contain details of
the fitted LD models for each of the 22 autosomal chromo-
somes. The names of these files are stored in the output
IBD object:

R> cibd$simparams$LDfiles

[1] "GD1.ld.par" "GD2.ld.par" "GD3.ld.par"

"GD4.ld.par" "GD5.ld.par"

[6] "GD6.ld.par" "GD7.ld.par" "GD8.ld.par"

"GD9.ld.par" "GD10.ld.par"

[11] "GD11.ld.par" "GD12.ld.par"

"GD13.ld.par" "GD14.ld.par"

"GD15.ld.par"

[16] "GD16.ld.par" "GD17.ld.par"

"GD18.ld.par" "GD19.ld.par"

"GD20.ld.par"

[21] "GD21.ld.par" "GD22.ld.par"}

The section Additional gene drops using previous-
ly-fit LD models gives an example of how to re-use
these fitted LD models for performing additional gene
drops. The output includes estimated IBD coefficients
for pairs of subjects in the input data and for simu-
lated pairs of subjects from the following relationships:
unrelated, duplicates/MZ twins, parent-offspring, full sib-
lings and half-siblings. Simulation of first-cousin or user-
specified relationship pairs is also possible, but is not
done by default. First cousins are typically not distinguish-
able from unrelated pairs with data from a candidate-
gene association study. The estimated IBD coefficients
can be plotted with the plot method for the IBD
class.

In this example, the plotting function produces five
plots, shown in Figures 1, 2, and 3, and an output data
frame ibdpairs that contains information on study
pairs flagged with the last four plots in Figures 2 and 3.

Figure 1 shows the non-clickable plot of the estimated
IBD coefficients, P(Z = 1) versus P(Z = 0), for all pairs
of study subjects, with the prediction ellipse for unrelated
pairs superposed. The level of the prediction ellipse is left
at its default value of ellipse.coverage=0.95 and,
for unrelated pairs, is adjusted to account for the majority
of study pairs being unrelated. Specifically, a Bonferroni-
type adjustment, 1 − (1 − ellipse.coverage)/np,
is applied, where np is the number of pairs of study
subjects. One purpose of the prediction ellipse is to avoid
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Figure 1 IBD coefficients for all pairs. Estimated IBD coefficients for
all pairs of study subjects, with the prediction ellipse for unrelated
pairs superposed.

confusing the display by adding points for simulated pairs.
Another purpose is to avoid having to manually click
points for study pairs that appear within a cloud of points
from simulated pairs. We adopted a bivariate normal
approximation to the prediction ellipse because it cor-
rectly identified the majority of points in experiments with
simulated data (e.g., Figure 1). However, in Figure 1, sev-
eral unrelated pairs appear outside the prediction ellipse,

indicating that the distribution of estimated IBD coeffi-
cients is slightly heavier-tailed than the bivariate normal
approximation.

For the four other plots, shown in Figures 2 and 3,
points that lie within a 95% prediction ellipse (the default
level for ellipse.coverage) for the given relationship
and outside the prediction ellipse for unrelated pairs are
automatically flagged. In addition, these plots are click-
able, and points flagged manually are added to the output
dataframe. For example, on the plot for half-siblings, the
point corresponding to the pair sub35 and sub95 has
been manually flagged (Figure 3, right panel); this pair
appears in both the prediction ellipse for unrelated pairs
and the upper portion of the prediction ellipse for half sib-
lings. Manually clicking on the point for this pair adds the
following row to the output dataframe ibdpairs:

7 sub35 sub95 0.4568146 0.6351182 half sibs

In this data set, there are no duplicate/MZ twins pairs
and no pairs flagged as such (Figure 2, left panel). The
two parent-offspring pairs in the Nhlsim data fall in
the prediction ellipse for parent-offspring pairs (Figure 2,
right panel). Similarly, all three full-sibling pairs in the
Nhlsim data fall in the prediction ellipse for full siblings
(Figure 3, left panel). The substantial overlap of the predic-
tion ellipses for half siblings and unrelated pairs (Figure 3,
right panel) indicates insufficient data to distinguish these
two relationships. Though there are no half-sibling pairs
in Nhlsim, one pair of unrelated subjects, sub31 and
sub44, has atypical estimated IBD coefficients that fall
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Figure 2 Possible MZ twins/duplicates and parent-offspring pairs. Observed pairs with prediction ellipses for MZ twins/duplicates (left panel)
and parent-offspring pairs (right panel) superposed.
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Figure 3 Possible full and half sibling pairs. Observed pairs with prediction ellipses for full-siblings pairs (left panel) and half-sibling pairs (right
panel) superposed. The magenta ellipse for unrelated subjects appears on each panel.

within the prediction ellipse for half siblings but outside
the prediction ellipse for unrelated pairs.

The unrelated pair flagged as a potential half-sibling pair
is a false-positive result. We observed (results not shown)
that the number of false-positive related pairs is greatly
increased if we fail to take the LD between SNPs into
account. Specifically, if we repeat the simulation of unre-
lated and half-sibling pairs of subjects assuming indepen-
dent SNPs (fitLD=FALSE), we obtain 16 false-positive
half sibling pairs. These observations highlight that
naı̈vely ignoring the dependence among SNPs produces
reference clusters that are too tight relative to the true
variability.

Additional gene drops using previously-fit LD models
By far the most computationally-demanding step of
IBDcheck() is the fitting of LD models. The fitted LD
models are stored in plain-text files in the working direc-
tory and can be re-used for future gene drops using the
argument LDfiles of sim.control(), as we now
illustrate. We also demonstrate how users can create their
own relationships to use as reference clusters on the IBD
plot.

Setting of simulation parameters, such as the names
of fitted LD model files and specification of the rela-
tionships to simulate, is done with the sim.control()
function. Recall that the names of the LD files are stored
in the IBD object created by a call to IBDcheck();
for example:

R> cibd$simparams$LDfiles

[1] "GD1.ld.par" "GD2.ld.par"

"GD3.ld.par" "GD4.ld.par"

"GD5.ld.par"

[6] "GD6.ld.par" "GD7.ld.par"

"GD8.ld.par" "GD9.ld.par"

"GD10.ld.par"

[11] "GD11.ld.par" "GD12.ld.par"

"GD13.ld.par" "GD14.ld.par"

"GD15.ld.par"

[16] "GD16.ld.par" "GD17.ld.par"

"GD18.ld.par" "GD19.ld.par"

"GD20.ld.par"

[21] "GD21.ld.par" "GD22.ld.par"

These fitted models are re-used by specifying their
names as the argument LDfiles to sim.contol:

R> ss <- sim.control(simulate=TRUE,

LDfiles=cibd$simparams$LDfiles)

The sim.control() function can also be used to
specify the relationships to simulate; e.g., one can obtain
simulated cousin pairs with

R> ss <- sim.control(simulate=TRUE, rship=

"cousin", LDfiles=cibd$simparams$LDfiles)

It is also possible to obtain pairs simulated according
to a user-specified relationship. In the following, the rela-
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tionship of interest is parent-offspring with first cousins
parents. The relationship is depicted in Figure 4, which
was drawn using Pedfiddler [22]. To simulate according to
this relationship, it is necessary to specify a minimal pedi-
gree that captures the relationship between the mother
and daughter and to have the mother and daughter be the
first two members of the pedigree. The pedigree drawn in
Figure 4 has parents (nodes 2 and 3) that are first cousins.
Pedigree information is specified in a data frame whose
rows describe subjects. The columns of the data frame are
member IDs, the IDs of each member’s father and mother,
and gender, coded as 1 for male and 2 for female. For pedi-
gree founders, the father and mother IDs are set to zero.
Specification of the pedigree in Figure 4 is as follows:

userdat <- data.frame(ids=1:9,

dadids=c(3,5,7,0,9,9,0,0,0),

momids=c(2,4,6,0,8,8,0,0,0),

gender=c(2,2,1,2,1,2,1,2,1))

The call to IBDcheck() would then be:

ss <- sim.control(simulate=TRUE,

rships="user", userdat=userdat,

LDfiles=cibd$simparams$LDfiles)

4

8 9

5 76

32

1

Figure 4 Pedigree for an offspring of a first-cousing mariage.
Circles represent females, squares represent males. Lines of descent
are indicated by connections between nodes. The mother and
daughter of interest are labelled as 2 and 1, respectively.

ff <- filter.control(filter=FALSE)

cibd.user <- IBDcheck(cibd,simparams=ss,

filterparams=ff)

where the argument filter=FALSE to filter.
control() reflects the fact that there is no need to re-
filter the data. On the plot of cibd.user (not shown)
the prediction ellipse for simulated mother-daughter pairs
where the daughter is inbred is very similar to that from
simulated pairs where the daughter is not inbred (Figure 2,
right panel). However, relative to the non-inbred case,
the prediction ellipse in the inbred case is shifted slightly
downward on the plot, reflecting the fact that the proba-
bility of 2 genes IBD is now non-zero and the probability
of 1 gene IBD is therefore smaller.

Conclusions
CrypticIBDcheck is an R package for exploring cryp-
tic relatedness in a homogeneous sample of nominally
unrelated individuals. The main function of the package,
IBDcheck(), computes estimates of IBD coefficients for
pairs of study subjects and, optionally, for pairs of sub-
jects simulated to have one of several known relationships.
Simulated data for a given relationship are obtained by
gene drop simulation on a pedigree that captures the rela-
tionship, with founder haplotypes simulated according to
an LD model fit to the data. Objects of class IBD returned
by IBDcheck() are displayed by the plot method of
the class. Pairs of study subjects whose estimated IBD
coefficients are consistent with one of the relationships
requested in the call to IBDcheck() are flagged, either
automatically or interactively by user mouse-clicks, and
returned in a data frame.

The methods implemented in CrypticIBDcheck are
geared specifically towards exploring cryptic relatedness
with data from candidate-gene association studies. These
studies involve a relatively modest number of SNPs which
are correlated because they are clustered within candi-
date genes. With a modest number of SNPs, the variability
in the estimator of IBD coefficients cannot be ignored.
Hence, reference distributions for true IBD coefficients do
not adequately represent those for estimated IBD coef-
ficients. In addition, thinning to an approximately inde-
pendent and yet informative set of SNPs is not an option.
Nor is ignoring LD and assuming SNPs are approximately
independent. As illustrated in the Examples, ignoring LD
leads to reference clusters that are too tight.

To provide guidance on the numbers of SNPs for which
CrypticIBDcheck will be useful, we offer the following
observations. A lower bound on the number of SNPs
required is difficult to provide because some marker sets
are more relationship-informative than others of the same
size, depending on characteristics such as marker allele
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frequencies and the patterns of marker linkage disequilib-
rium (LD). In our experiments with the example data set
Nhlsim, containing 1249 SNPs from 209 genes, between
325-350 SNPs from about 60 of the candidate genes
appears to be adequate for identifying the parent-offspring
and full sibling pairs that are present. There is no upper
limit on the number of SNPs that may be used. How-
ever, the computational time for fitting LD models scales
approximately linearly with the number of SNPs [16]. For
the Nhlsim data, it took 40 minutes to fit the LD model.
For the close relationships that we consider, genome-wide
data can be reduced to a set of approximately indepen-
dent SNPs with no loss of resolution. An analysis of
genotypes from 16,245 approximately independent SNPs
in the HapMap Luhya sample took about 2 minutes to
complete. This analysis is described the package vignette
IBDcheck-HapMap.

We offer the user complete flexibility with respect to the
type of relationships and number of pairs of each relation-
ship to be simulated. Users can choose from a number
of close relationships built-in to IBDcheck(), or spec-
ify their own relationships, as illustrated in the section
Additional gene drops using previously-fit LD models.

A reviewer has pointed out that it would be useful
to allow the reference distributions of IBD coefficients,
represented as ellipses on the graphical displays, to be
conditional on the patterns of missing genotypes in a
particular pair of subjects. The intent is to allow for a
two-stage analysis. In the first stage, potentially related
subjects are identified using the current implementation
of reference distributions, which are mixtures over the
patterns of missing genotypes in all pairs of subjects. In
the second stage, the reference distributions can be cus-
tomized to be conditional on the missing data patterns
of a pair of subjects identified in the first stage. For an
assessment of whether the pair of interest has a particular
relationship, distributions conditional on that pair’s miss-
ing data patterns are the most appropriate. We plan to
implement an option to use a specific missing data pattern
to generate the reference distributions in a future release
of the package.

Additional files

Additional file 1: Bias of conditional IBS estimators. This is a PDF file
that includes a calculation of the bias of the plug-in and unbiased
estimators of P(I = 0|Z = 0). Bias calculations for estimators of other
conditional IBS probabilities are similar.

Additional file 2: Splitting computations over a snow cluster. This is a
PDF file that provides details of how to split CrypticIBDcheck
computations across a compute cluster.
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