
DDI – more than just an XML-metadata-standard

Marcel Hebing (DIW Berlin)

Vancouver, April 2014

Two separate thoughts

1. DDI is more than the XML implementation.

2. DDI is more than an standard for metadata.

Unique selling proposition: the community.

Agenda

Introduction

Part 1: Alternatives to the XML Implementation

Part 2: More than metadata

Conclusion

The German Socio-Economic Panel (SOEP) is a wide-ranging
representative longitudinal study of private households, located at the
German Institute for Economic Research, DIW Berlin. Every year, there
were nearly 11,000 households, and more than 20,000 persons sampled
by the fieldwork organization TNS Infratest Sozialforschung.

The data provide information on all household members, consisting of
Germans living in the Old and New German States, Foreigners, and
recent Immigrants to Germany. The Panel was started in 1984.

Some of the many topics include household composition, occupational
biographies, employment, earnings, health and satisfaction indicators.

http://www.diw.de/soep

Vision. The data portal DDI on Rails accompanies researchers
throughout the entire course of their research projects from conception to
publication/citation.

The system offers researchers the possibility to explore the SOEP data, to
compile personalized datasets, and to publish results on the publication
database.

http://www.ddionrails.org

DDI on Rails – characteristics

I study-independent and open-source
I longitudinal data and multiple studies
I metadata search and comparison
I basket and script generator

Check it out!
https://data.soep.de

Lessons learned #1: When it comes to using a metadata standard. . .

humans are the most expensive and very limited resource.

Problems when using the DDI-XML-standard

I Reseachers work with tables (Stata, SPSS, R, Excel).
I DDI-L is too complicated.
I Researchers don’t care about metadata, unless there are benefits.
I Many editors (in particular students), short training periods.

Part 1: Alternatives to the XML Implementation

Common data types in most programming languages

I boolean
I integer / numeric / float
I character / string

I collection / array
I key:value / hash / list / object

Problem with XML

I It mixes arrays and lists.
I “keys” are no longer unique:

1. Attributes and elements might have the same name.
2. Multiple elements with the same name are valid.

I Most programming languages have arrays and lists as native data
structures, but they don’t have a structure like XML.

This is perfectly valid XML

<individual name="Peter">
<name>Max</name>
<name>David</name>

</individual>

→ XML requires a lot of mapping.

Small example (XML)

<dataset name="dta">
<variable>var1</variable>
<variable>var2</variable>
<variable>var3</variable>

</dataset>

Small example (YAML)

dataset:
name: dta
variables:

- var1
- var2
- var3

Small example (JSON)

"dataset":{"name:"dta","variables":["var1", "var2", "var3"]}

Parse XML

Load package
require ’nokogiri’

Read XML
xml_file = ’<dataset name="dta"><variable>var1</variable>’ +

’<variable>var2</variable><variable>var3</variable></dataset>’

Parse XML
xml = Nokogiri::XML.parse(xml_file)
obj_2 = {}
obj_2["name"] = xml.css("dataset").first.attr("name")
obj_2["variables"] = []
xml.css("variable").each do |variable|

obj_2["variables"] << variable.text.strip
end

Parse JSON

Load package
require ’json’

Read JSON
json = ’{"name":"dta","variables":["var1", "var2", "var3"]}’

Parse JSON
obj_1 = JSON.parse(json)

Parsing XML and JSON

I XML: 2 + 7 lines of code (Ruby)
I JSON: 2 + 1 line of code (Ruby)

Small example (CSV)

dataset,variable
dta,var1
dta,var2
dta,var3

Parse

dta <- read.csv("variables.csv")

Parsing XML, JSON, and CSV

I XML: 2 + 7 lines of code (Ruby)
I JSON: 2 + 1 line of code (Ruby)
I CSV: 1 line of code (R)

In the case that size matters
I JSON: 60 % of XML
I CSV: 40 % of XML

CSV

I Very efficient: editing metadata is up to 40 times faster than using
other technologies.

I Good tools (Excel, LibreOffice, R, Stata, SPSS, . . .).
I Easy to use (researchers and students know these tools).
I Very good data quality (editors understand the structure).
I Easy to validate (using unit tests or statistical packages).
I Adding new fields if necessary.
I The structure can correspond to a relational database.
I It becomes easy to analyse metadata.

Alternatives

I YAML and JSON,
I CSV and relational databases,
I and many others.

Part 2: More than metadata

Lessons learned #2:

Metadata are worthless without the research data they describe.

Metadata and proprietary data formats

I Stata and SPSS include some metadata (like labels).
I Proprietary formats might change at any time,

not caring about interoperability.
I It’s a weird combination of data and metadata.

Do we like to depend on proprietary formats?

»A Simple Data Format package contains:

I Data files in CSV

I (Minimal) dataset information in JSON (including a schema for the
CSV)«

http://dataprotocols.org/simple-data-format/
(Open Knowledge Foundation)

What I like about this
1. Open standards, easy to implement.
2. Plain text, good for archiving.
3. Clear: separating and complementing.
4. Can be used for non-relational data (e.g. pictures).

data.csv

var1,var2,var3
A,1,2
B,3,4

datapackage.json

{ "name": "my-dataset",
"resources": [

{ "path": "data.csv",
"schema": {

"fields": [
{ "name": "var1",

"type": "string" },
{ "name": "var2",

"type": "integer" },
{ "name": "var3",

"type": "number" }
]}}]}

Idea: DDI Data Format

I Keep the CSV file.
I Use DDI-C in JSON format.
I Live happily ever after.

Finally. . .

My DDI Top 10

1. DDI-Community
2. Developers Group
3. “Concepts”
4. GLBPM
5. Workshops and conferences
6. The idea of the data lifecycle and the reuse of metadata
7. Metadata-driven data processing
8. DDI 1.2 (Nesstar Publisher subset)
9. Data management

10. DDI-C and DDI-L

Thank you.

	Introduction
	Part 1: Alternatives to the XML Implementation
	Part 2: More than metadata
	Conclusion

