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Abstract

Efficient utilization of the spectrum has become a fundamental requirement in modern wire-

less networks, due mainly to spectrum scarcity and the ever-increasing demand for higher

data rate applications and internet services. A particularly interesting proposal to meet this

requirement is the cognitive radio (CR) system which can adapt its transmission parameters

according to the environment. CRs, as will be shown in later chapters, are very efficient in

maximizing spectrum utilization due to their inherent spectrum sensing capability.

The purpose of this dissertation is to investigate and analyze two main components of

CR. First is the sensing or exploring component, which is the core of a CR device as it is the

first stage to discover spectrum holes (SHs) in a spectrum band. For this component, a new

algorithm to compute the detection probability in the case of odd degrees of freedom and

a closed-form expression for the detection probability in Nakagami-m fading channels are

presented, both for a local spectrum sensing scenario. For a cooperative scenario, the errors

of CRs decisions which are caused by erroneous feedback channels are analyzed. In addition,

the optimal number of CRs that are required to mitigate against such errors is derived. The

second component is the access or exploiting component, i.e. how a CR device can exploit

SHs efficiently. To study the second component, the interactions between the primary users

(PUs) and secondary users (SUs) are modeled as a continuous time Markov chain (CTMC).

Based on the CTMC model, the effect of two inevitable sensing errors (misdetection and false

alarm) on the blocked call probability, the dropped call probability and system utilization

is investigated for two access schemes. In the first scheme, the PUs are considered to access

the system using a standard access policy. In the second scheme, the PUs use non-standard

access policies. In both schemes, the overall (primary and secondary) system utilization is

analyzed and compared under both perfect and imperfect sensing. The simulation results
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obtained concur with the analytical ones and it is determined that spectrum utilization can

be improved by choosing a suitable non-standard access policy.
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“No matter how long it takes, definitely there is a happy

end”

Omar Altrad
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Chapter 1

Introduction

1.1 Overview

Cognitive radio (CR) is a term coined by Mitloa [1] in 1991 to represent a paradigm in

communication systems in which communication improvements can, in many aspects, be

achieved via cognition. CR is a broad and versatile term as it neither determines a specific

network architecture nor determines the level at which a system would be classified as a

full cognitive radio system. Therefore, the word ”cognition” has been viewed and inter-

preted differently by various researchers when classifying radio systems. Software-defined

radio (SDR), however, a multiband radio that has the ability to reconfigure itself through

software which runs on a digital signal processor (DSP) or a general-purpose microprocessor

(GPM), can be seen as the core of a CR.

The term ”CR” is defined as

“an intelligent wireless communication system that is aware of its surround-

ing environment (i.e., outside world), and uses the methodology of understanding-

by-building to learn from the environment and adapt its internal states to statis-

tical variations in the incoming RF stimuli by making corresponding changes in

certain operating parameters (e.g. transmit-power, carrier-frequency, and mod-

ulation strategy) in real-time.”

[2]
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CHAPTER 1. INTRODUCTION 2

Why has CR emerged? What is the main goal that CR is to achieve? The answer to

these questions can be found in the many research papers that investigate the development

of and strive to improve the main functions of cognitive radio networks (CRNs). The ques-

tion most seek to answer is how we can efficiently elevate spectrum utilization. Or how

can white spaces be found and used to reduce spectrum scarcity and enhance spectrum

utilization? The static allocation of frequency bands and their under-utilization motivates

regulatory authorities, business sectors, and researchers to look for a dynamic approach to

reduce spectrum scarcity. Hence, this dissertation is researching practical solutions to an

existing problem. In a CRN environment, different users can be categorized as primary users

(PUs) or so-called license holders (often called spectrum owners), representing users having

higher priority, and secondary users (SUs) or so-called unlicensed users (often called rental

users), representing those users who are wishing to opportunistically access the spectrum by

sensing the channels already in use for transmissions. CR thus brings invaluable benefits for

both spectrum owners and rental users. For example, spectrum owners can increase their

sources of revenue by selling the unused portion of their owned spectrum while rental users

now have the chance to access a new range of the spectrum that they have not hitherto been

allowed to use, which results in increasing their grade-of-service (GoS) to their own users.

Although some communities have different names for CR as well as for its applications,

for example spectrum pooling, dynamic spectrum access (DSA) and opportunistic spectrum

access (OSA), the idea behind it does not change. That is, different spectral ranges owned

by different owners are merged into a common pool. The classification of this technology

and other related naming issues, then, are not of concern in this dissertation but interested

readers may refer to [3–5] for further clarification.

DSA is, however, considered to be an application of a CR system. This means a sec-

ondary radio network (SN) coexists on the same band as a primary network (PN), in which

the former does not necessarily utilize only the PN’s band as it may also have its own band

of operation. In addition, to increase the quality of service (QoS) to its own users it may

also utilize other PNs’ bands.

It should be noted that in DSA, the access mechanism can be classified in a hierarchal
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way, as in Fig. 1.1. When the SUs opportunistically access the spectrum, this access mech-

anism is called spectrum overlay access or opportunistic spectrum access (OSA). The core

function of this access method to sense the PU channel so as to find opportunities for an SU

transmission. This access method does not impose severe restrictions on the transmission

power of the SUs. However, when SUs access the spectrum simultaneously with the PUs,

this is called underlay spectrum access. In this access method the SUs can transmit simul-

taneously with the PU if they allow their transmission power to be severely constrained.

Further, while using this access method, SUs do not rely on the detection and exploitation

of spectrum white spaces. To add more flexibility and improve system cognition, combined

access utilizing both methods can also be considered which may be called hybrid dynamic

spectrum access. However, although this last method adds more flexibility, it considerably

increases system complexity as more complex protocols need to be implemented to protect

the PUs.

It should also be emphasized that the taxonomy of this technology is not of concern

in this dissertation. Therefore, throughout this dissertation the spectrum overlay or OSA

system as the basic concept behind CR technology will be concentrated on. In addition, for

the purpose of this dissertation, whenever the term ’DSA’ is used, it means the spectrum

overlay access mechanism or OSA.

It is also worth mentioning that throughout this dissertation, the main concerns are

the technical issues and/or the obstacles and challenges that arise when implementing such

technology. Therefore, although allowing this concept to be implemented in real systems

will result in a multitude of judicial issues and economic consequences, they are not of con-

cern in this dissertation.

To inform readers more about the reasons behind the emergence of CR, the following

sections provide more detailed answers to the above questions.

1.1.1 Spectrum Occupancy Measurements

As more and more technological alternatives, such as smart phones and video streaming,

are becoming available and the demand for spectrum from both the public and private

sectors is increasing very rapidly, the need to ensure access to the radio spectrum is at
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Figure 1.1: Illustration of spectrum holes utilization by SUs in cognitive radio system.
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a crossroads. Fortunately, recent studies have revealed that most existing allocations are

under-utilized. For example, it has been reported by the Federal Communication Commis-

sion (FCC) that although some frequency bands (e.g. unlicensed bands at 2.4 Ghz and 5

Ghz) are overcrowded, others (e.g. the UHF band) are inefficiently used. Another spectrum

measurement performed in Lichenau, Germany, in 2001 showed that some of the frequency

bands are only sporadically occupied. Other spectrum occupancy measurements performed

by the Shared Spectrum Company in conjunction with the Wireless Interference Lab of the

Illinois Institute of Technology in Chicago also showed that various frequency bands have

different levels of occupancy and that some of them are under-utilized. Increasingly, there

is a recognition that most of the spectrum is actually under-utilized and that the real root

of the problem is that the present system of spectral regulation is grossly inefficient, (see

Fig. 1.2) [6]).

The discontinuous use of the spectrum means that a large portion of spectrum is cur-

rently wasted. The shortage of the spectrum in some frequency bands, however, could easily

be solved by efficiently utilizing the wasted resources in other bands of the spectrum. The

dramatic variation of spectrum usage over time and geographic location has motivated the

FCC to improve overall utilization by facilitating new wireless applications and has also

motivated the emergence of the CR system.

To summarize, the main objective of CR systems is the efficient utilization of the spec-

trum. Therefore, an accurate design for a CRN working under a licensed PN needs to be

considered. While the CRN may have its own frequency band of operation, it can also

utilize the spectrum holes (SHs) or so called white spaces in frequency bands of the PN to

increase its performance and to provide a higher QoS to its users. It is then considered to

be a secondary network relative to the primary network.

1.1.2 Cognitive Radio Network architecture

CRN architecture is not different from other network architectures. For example, in a

centralized architecture (with infrastructure), users, base stations, and other nodes in the

hierarchy must exist to form a CR network. Even for other types of architectures, the role

of a controller or a base station must exist. For example, in a fully distributed ad hoc

network (without infrastructure), an intelligent protocol acts as the controller while in a
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Figure 1.2: Spectrum occupancy of each band measured in Chicago [6].
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semicentralized network or so-called mesh network (a combination of the two architectures,

i.e. a centralized one and a distributed one), more than one user in a geographic area plays

the role of controller and other users play the role of relays to improve signal reception,

mitigate against any type of fading, and improve the overall performance of the network.

A visible CR architecture may consist of two networks. One is the legacy network

or primary radio network (for example TV channels or some cellular provider networks),

wherein the users are free to transmit and receive their data anywhere and/or anytime

within the defined band they are legally assigned. The other is the CRN (for example,

another cellular provider), wherein the users utilize their own band in addition to accessing

the SHs in other PNs. Therefore, fundamentally a CRN is not different in its architecture

from any other network system. There are thus three main architectures in this network

system, namely: centralized, ad hoc or decentralized and mesh network, ( see Fig. 1.3. [7]).

1.2 Cognitive Radio challenges

A number of issues must be resolved before starting the design of a CR system to achieve

the goals of spectrum utilization. One is that the CRN must have the ability to sense more

than one frequency band to guarantee a QoS threshold. Another issue is that the CRN

must ensure that it does not impose any interference on the PN. These issues mean that the

CRN must have periodic sensing and fast processing abilities to efficiently use the primary

networks’ SHs. The fast processing requirement is due to the fact that the primary network

may use its resources at any time without informing the CRN; as a result, the CRN must be

prepared to vacate the channels it is using and still guarantee an uninterrupted transmis-

sion to its users by handing them over to other SHs. This also means that a highly-reliable

sensing function must be implemented in the CRN’s terminals. In other words, the receiver

sensitivity of the CR terminal must be as high as possible to detect the presence or absence

of a PU signal.

Therefore, one of the challenges arising from DSA is spectrum sensing, which is the core

of such a system as it determines the validity of a transmission opportunity. There is a
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Figure 1.3: CRN architecture [7].
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trade-off, however, between reliability and efficiency. The more robust the sensing algo-

rithm, the more reliable the CRN and the lower the amount of interference it may cause

to the PN. However, robustness and reliability require a long sensing period whereas the

shorter the sensing time, the more efficient the utilization of a spectrum hole will be.

However, even once a reliable sensing function is in place, that will not guarantee an

efficient use of SHs. Hence, another issue arises, that is, how the SHs can be efficiently

utilized. This requires a careful design of the medium access control (MAC) protocol. In

this dissertation, these issues will be visited in order and a tractable solution to the problems

that, so far, have not been investigated, will be explored in more detail. The following section

outlines what has been accomplished works and the development of this dissertation.

1.3 Thesis Outline and Main Contributions

The following are the main issues that will be analyzed and investigated throughout the

dissertation.

Chapter 2 of the thesis deals with local spectrum sensing. In particular, a single CR

that senses the available spectrum is investigated. The following is a summary of the main

contributions that will be presented in chapter 2.

• A highly accurate recursive algorithm to compute the probability of detection for odd

degrees of freedom is presented. It should be noted that the mathematical derivations

show the steps of the algorithm when evaluating the detection probability in the case of

odd degrees of freedom, i.e. it is an algorithm rather than a mathematical derivation.

An example of the algorithm’s importance is that the Marcum function in Matlab

accepts only integer values in its third argument. Therefore, when the number of

degrees of freedom is odd, the third argument is no longer accepted and the Marcum

function can not be used to evaluate the detection probability. However, the presented

algorithm solves this problem;

• a closed-form expression over a Nakagami-m fading channel is derived. Closed-form is

used in the sense that no summation and no integration are required. The accuracy of

the closed-form is very close to the previously reported expressions in which summation
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and integration are used to get highly accurate results. Our new expressions show how

the ratio of the Nakagami parameter m and the average signal-to-noise ratio (SNR)

affect the receiver operating characteristics (ROC) curves;

• a comparison between the derived expressions and the reported expressions in [8]

and [9], in which summation and integration are used, is performed. The derived ex-

pressions are also compared to other recently reported expressions, e.g., [10] and [11],

and it is shown that the new derived expressions can be used with no limitations.

Moreover, the derived expressions are more accurate than the recently reported ones

with less or almost the same computational complexity.

In chapter 3, a cooperative scenario is investigated, i.e. a scenario where a number of CRs

are involved in the sensing process and their decisions are forwarded to a central node over a

feedback channel. In particular, the optimal number of CRs required to minimize the total

error (the sum of the misdetection and false alarm probabilities) of the sensing process when

the reporting channel is perfect/imperfect will be analyzed. The following is a summary of

the main contributions in chapter 3:

• The total error is shown to have a global minimum. However, such an error will

never approach zero, no matter how many CRs participate in the cooperative sensing

process;

• a general expression for the optimal number of CRs under a perfect or an imperfect

feedback channel is derived;

• the upper and lower boundary expressions for the probability of false alarms are de-

rived;

• it is shown that the optimal number of cognitive radios can easily overcome a high

error probability in the feedback channel and can therefore improve the detection

probability. Feedback channel errors are also shown to be able to improve the detec-

tion probability under low SNR regimes.

Chapter 4 deals with the mathematical modeling of an OSA using a continuous time Markov

chain (CTMC). Specifically, the CTMC will be used to model the combined networks of the
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PUs or so called license holders, and the secondary users, i.e., those who opportunistically

access the unused portion of the spectrum. A standard access policy will be used for the PUs

and the effect of imperfect sensing on the performance of the system will be investigated.

A number of performance metrics will be analyzed and the secondary system spectrum uti-

lization under perfect/imperfect sensing will be studied.

Is it possible to improve spectrum utilization using different access policies? In other

words, can the spectrum utilization of the combined system (primary and secondary sys-

tems) be increased without increasing the detection probability? Additional access policies

are proposed and their performances are analyzed under an unreliable sensing scenario. In-

vestigating this issue will be the main objective of chapter 5. The analysis will be in terms

of the SUs blocked probability, which is defined as the ratio of SUs blocked to the total ar-

rival rate of the secondary system, as well as the SUs dropped probability, which is defined

as the ratio of the dropped SUs to the total arrival rate of the secondary system, and the

total utilization of the secondary system. The analysis of such policies will also show the

upper boundary of spectrum utilization that can be obtained. Furthermore, the utilization

of the secondary system when both standard policy and non-standard policies are employed

is compared. The contributions in this chapter are summarized by the following:

• Two non-standard policies are modeled and analyzed using a CTMC where imperfect

sensing is accounted for. The standard policy is determined to be a special case of one

of them.

• The access probability for an SU sensing all channels is accounted for.

• It is shown that adopting different policies results in different system utilizations.

Therefore, a dynamic policy may help to improve the spectrum utilization of detected

SHs over the standard policy, and increase the accepted range of SU arrival rates that

will still satisfy GoS constraints.

• With a focus on a general system architecture where PUs and SUs access available

channels using different policies, the performance of the proposed policies is justified

in terms of GoS metrics (blocked and dropped probabilities). Another performance

metric, i.e. system utilization, which captures the effects of the other two, is intro-

duced and analyzed.
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In brief, the rest of my thesis is organized as follows. In chapter 2, local spectrum sensing

using energy detector is investigated. In chapter 3, we discuss the cooperative scenario and

the effect of the feedback channel error on the detection probability. In chapter 4, we

propose a continuous time Markov model to study the effect of sensing errors on the system

utilization. The possibility of mitigating the sensing errors by non standard policies is

discussed and analyzed in Chapter 5. In Chapter 6, some of the challenges and issues that

still need to be investigated and carefully considered before a complete implementation of

this technology can be contemplated is discussed.

1.4 Scholarly publications

The research efforts during my Ph.D. program have resulted in the following scholarly

publications. The materials in this thesis present only a portion of the works that have

been done during this period.

1.4.1 Journal

1. O. Altrad and S. Muhaidat , “A New Mathematical Analysis of the Probability of Detection

in Cognitive Radio over Fading Channels”, EURASIP Journal on Wireless Communications

and Networking, vol. 2013 (159), no. 159, June, 2013.

2. O. Altrad, S. Muhaidat and Paul D. Yoo “A Doppler Frequency Estimation-Based Handover

Algorithm for LTE Networks”, IET Networks, vol. 11, no. 1, pp. 199 - 209, Jan. 2013.

3. O. Altrad and S. Muhaidat,“Load Balancing Based on Clustering Methods for LTE Networks

”, Journal of Selected Areas in Telecommunications, vol. 2, no. 2, pp. 1 - 6, February 2013.
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Chapter 2

Local Spectrum Sensing

This chapter is organized as follows. Introduction and recent works are presented in section 2.1.

The energy detector, system model, and the derivation of the recursive algorithm are introduced in

section 2.2. A closed-form expressions for Nakagami channels are derived in section 2.3. Simulation

and numerical results are introduced in section 2.4 and a summary of the important points discussed

will be provided in section 2.5.

2.1 Introduction

Three detection techniques are commonly used for spectrum sensing in CRs; namely, energy detec-

tion, e.g. [12], matched filters, e.g. [13,14], and cyclostationary detection e.g. [15,16]. Energy detector

is the most widely and acceptable candidate for spectrum sensing. This arises from its simplicity of

implementation and incoherent requirements.

In spectrum sensing, however, there are always errors. Two errors which inevitably occur and

which are of particular interest here are misdetection and false alarm, which quantify the amount of

interference to the PU and the overlooked SHs in the system, respectively. It should be noted that

there exists a fundamental tradeoff between these errors, since they are inversely related.

Our study is limited to the energy sensing method [12]. In particular, for a local spectrum sensing

scenario, i.e. the sensing is accomplished by a single cognitive radio. This detection method can be

applied to any signal type with fewer computational requirements and a simpler implementation.

Although several research papers have investigated the detection process using energy detector over

a variety of fading channels (cf. [17–19]), the expressions derived for the probability of detection

and the probability of false alarm were mainely evaluated for even degrees of freedom (e.g. [8, Eq.

14
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10]). Therefore, we provide an algorithm to compute the detection probability in the case of odd

degrees of freedom based on the suboptimal energy detector. Moreover, as spectrum sensing must

detect a very low signal-to-noise ratio (SNR), which in turn requires a high degree of precision, the

previously derived expressions mainly depend on the number of terms in the summation to get highly

accurate results. In addition, they are numerically difficult and depend on other functions while

their implementation is also susceptible to truncation errors. Therefore, a closed-form expressions

for the detection probability are derived. Also, the derived expressions are compared to the reported

expressions in [8] and [9] in which summation and integration are used. I also compare the derived

expressions to other recently reported expressions, e.g., [10] and [11], and I show the new derived

expressions can be used with no limitations. Moreover, the derived expressions are more accurate

than the recently reported ones with less or almost the same computational complexity. Finally, I

compare our simulation results with the analytical evaluation of the derived expressions.

2.2 Energy Sensing Model

The sensing process consists of two stages and is controlled by signals from the upper layers to sense

a specific bandwidth B, as shown in Fig. 2.1. In the first stage, the received signal x(t) is filtered

to the bandwidth of interest B, to reject band noise and adjacent signals. It is then amplified using

a low noise amplifier (LNA) and is down converted to an intermediate frequency. In the second

stage, the received signal is sampled and quantized using an analogue-to-digital (A/D) converter.

Next, a square-law device and an integrator with sensing interval T measures the received signal

energy. Finally, the output of the integrator, represented by the test statistic Y , is compared to a

predetermined threshold λ to determine the existence (H1) or absence (H0) of a PU.

The existence or absence of a PU signal can be modeled as a binary hypotheses problem as

originally proposed by [12]. This model differentiates between two hypotheses defined as

x[n] =

{
w[n], H0

hs[n] + w[n], H1

, n = 1, 2, · · ·N (2.1)

where s[n] is the primary user signal component which is assumed to be an unknown deterministic

signal, and w[n] is the noise component, which is assumed to be additive, white and Gaussian

(AWGN) with zero mean and variance σ2. h is the channel coefficient which is assumed to be

constant during the period of observation, i.e., for N samples, H0 is the hypothesis test when noise

only is present and H1 is the hypothesis test when both noise and signal are present. We also assume

that the noise samples are independent and identically distributed, and they are independent of the

signal samples.

The suboptimal energy detector is defined as

Y =
∑
N

|x[n]|2 (2.2)
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Figure 2.1: Schematic of Sensing Abstraction including Energy Detector
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Then, the distribution of the decision variable Y will be central chi-square χ2
N under H0 and non-

central chi-square χ̃2
N with N degrees of freedom under H1. Notice that to reduce the overuse of

notations, we distinguish between central and noncentral chi-square by the symbol (∼). Thus, using

this notation, the distribution can be expressed as [20]

Y ∼

{
χ2
N , H0

χ̃2
N , H1

and its probability density function can be written as

fY (y) =


1

σN2
N
2 Γ(N2 )

y(N2 )−1 exp
( −y

2σ2

)
, H0

1
2σ2

(
y
ζ

)(N−2)/4

exp
[ −1

2σ2 (y + ζ)
]
× IN

2 −1

(√
ζy
σ2

)
, H1

(2.3)

where the noncentrality parameter ζ =
N∑
i=1

µ2
i , and µi is the mean of the ith Gaussian random

variable of test Y . Ir(.) is the rth-modified Bessel function of the first kind, which has a series

representation [21]

Ir (u) =

∞∑
k=0

(
1
2u
)2k+r

k!Γ (r + k + 1)
(2.4)

Evaluating test Y by the decision device, which is shown in Fig. 2.1, may result in two types of

errors. We define the notation P (Hi|Hj) to distinguish between these errors. When the decision

device decides H1 but H0 is true, denoted as P (H1|H0), this is called the probability of a false

alarm (Pfa). When the device decides P (H0|H1), this represents the probability of misdetection

(Pmd). The complementary to Pmd is the probability of detection (Pd = 1−Pmd = P (H1|H1)). The

performance of the energy detector can be characterized by the probability of detection in a low SNR

regime. An alternative performance metric is the ROC curves which are generated by plotting Pmd

versus Pfa. Following the shorthand notation mentioned previously, the probability of detection and

probability of a false alarm can be computed as:

Pd = P (H1;H1) = P (y > λ;H1)

=
∫∞
λ
fY (y)dy, H1 (2.5)

Pfa = P (H1;H0) = P (y > λ;H0)

=
∫∞
λ
fY (y)dy, H0 (2.6)
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2.2.1 Probability of detection and false alarm under AWGN channels

To derive the probability of false alarm using the right-tail probability of the central chi-squared

density function Qχ2
N

, we define γ as γ = h2ζ
σ2 . 1 Substituting t = y/σ2 and further integrating the

probability density function in (2.3) under H0 results in

Pfa =
∞∫

λ/σ2

1

2
N
2 Γ(N2 )

t(
N
2 )−1 exp

(−t
2

)
dt λ/σ2 ≥ 0.

= Qχ2
N

(
λ/σ2

)
(2.7)

where Qχ2
N

can be written as [22, eq 26.4.4, eq 26.4.5]

Qχ2
N

(λ/σ2) =



2Q
(√

λ/σ2
)

N= 1

2Q
(√

λ/σ2
)

+
exp(− λ

2σ2
)√

π

N−1
2∑

k=1

(k−1)!(2λ/σ2)
k− 1

2

(2k−1)! Nodd

exp
(
− λ

2σ2

) (N2 )−1∑
k=0

( λ
2σ2

)
k

k! Neven

(2.8)

where Q(.) is the complementary cumulative distribution function defined as

Q(x) =
∞∫
x

1√
2π

exp
(
− 1

2 t
2
)
.

The same approach can be used to derive the probability of detection using the right-tail of the

noncentral chi-squared probability density function under H1. By letting t = y/σ2, the probability

of detection is given by

Pd = Qχ̃2
N(γ)

(
λ/σ2

)
=

∞∫
λ/σ2

[
1
2

(
t
γ

)N−2
4

exp
[

1
2 (t+ γ)

]
× IN

2 −1 (
√
γt) dt

]
(2.9)

We can rewrite (2.9) using [23, eq 2.45] for an even number of degrees of freedom as

Pd = QN/2

(√
γ,
√
λ′
)

(2.10)

where λ′ = λ/σ2, and Qm(., .) is the mth generalized Marcum Q-function which is given by

Qm (α, β) =
1

αm−1

∞∫
β

xme
−
(
x2+α2

2

)
Im−1 (αx)dx (2.11)

which is the same result as in [24].

For an odd number of degrees of freedom (2.10) can not be directly evaluated. Therefore,

1In AWGN channels, there is no fading, i.e., h2 = 1.
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we introduce an algorithm to solve this problem. To do so, we use the series expansion of the modified

Bessel function defined in (2.4) and rewrite (2.9) as

Qχ̃2
N(γ)

(
λ/σ2

)
=
∞∑
k=0

exp(−γ/2)(γ/2)k

k!

∞∫
λ′

(
t
N
2

+k−1 exp(− t2 )
2
N
2

+kΓ(N2 +k)

)
dt

=
∞∑
k=0

exp(−γ/2)(γ/2)k

k! Qχ2
N+2k

(λ′)︸ ︷︷ ︸
second term

(2.12)

The second term of (2.12) represents the right-tail probability of a central chi-square with l = N+2k

degrees of freedom. As a result, for N odd, l = N + 2k is also odd. Thus, (2.12) can be rewritten

using (2.8) for the odd case which results in (2.13), where Gχ2
l−2

(λ′) is given by

Qχ̃2
N(γ)

(λ′) =
∞∑
k=0

exp(−γ/2)(γ/2)k

k!

[
2Q
(√

λ′
)

+
exp(− 1

2λ
′)√

π

N−1
2∑

k=1

(k−1)!(2λ′)
k− 1

2

(2k−1)!

]

= 2Q
(√

λ′
)

+
∞∑
k=0

exp(−γ/2)(γ/2)k

k!

×

[
exp(− 1

2λ
′)√

π

l−2−1
2∑
j=1

(j−1)!(2λ′)
j− 1

2

(2j−1)! +
exp(− 1

2λ
′)√

π

(
( l−1

2 −1)!

2( l−1
2 −1)!

(2λ′)
l−1
2 −

1
2

)]

= 2Q
(√

λ′
)

+
∞∑
k=0

exp(−γ/2)(γ/2)k

k!

[
Gχ2

l−2
(λ′) + g(λ′, l)

]
(2.13)

Gχ2
l−2

(λ′) =
exp

(
− 1

2λ
′)

√
π

l−3
2∑
j=1

(j − 1)!(2λ′)
j− 1

2

(2j − 1)!
(2.14)

and g(λ′, l) can be rewritten as

g(λ′, l) =
exp(− 1

2λ
′)√

π

(
( l−1

2 −1)!

2( l−1
2 −1)!

(2λ′)
l−1
2 −

1
2

)
= exp(λ′/2)√

π

(
((l−5)/2)!

(l−4)! (2λ′)
(l−4)/2

)
2λ′ ((l−3)/2)

(l−2)(l−3) (2.15)

(2.15) can also be reduced to

g(λ′, l) = g(λ′, l − 2)
λ′

l − 2
(2.16)

where the initialization starts with Gχ2
l−2

(λ′) = g(λ′, 3) =
√

2λ′

π exp(−λ′/2).

2.3 Probability of Detection and False Alarms Under Nak-

agami Fading Channels

To capture all different types of fading, the parameters of the Nakagami distribution can be adjusted

to fit a variety of fading processes. If we define γ̄ = E[h2]ζ/σ2 as the average signal-to-noise ratio,
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where E(.) denotes the expectation operator, then the probability distribution of γ will be given as

PNak(γ) =

(
m

γ̄

)m
γm−1

Γ (m)
exp

[
−mγ

γ̄

]
(2.17)

To compute the probability of detection, this must be averaged over the probability density function

of the instantaneous value of γ, i.e., it can be written as

PdNAK =

∞∫
0

QN/2

(√
γ,
√
λ′
)
f (γ) dγ (2.18)

Then, substituting (2.17) into (2.18) results in

PdNAK =
∞∫
0

(
m
γ̄

)m
γm−1

Γ(m) exp
(
−mγγ̄

)
QN/2

(√
γ,
√
λ′
)
dγ

= 2
Γ(m)

(
m
γ̄

)m ∞∫
0

x2m−1 exp
(
−η

2x2

2

)
QN/2

(
x,
√
λ′
)
dx

= α
∞∫
0

x2m−1 exp
(
−η

2x2

2

)
QN/2

(
x,
√
λ′
)
dx

(2.19)

where in the second step we substitute x =
√
γ and η2 = 2m

γ̄ , and in the last step we substitute

2
Γ(m)

(
m
γ̄

)m
with α. Different combinations of m and N/2 lead to different results for the integration

defined in the last step. In the following, the probability of detection is evaluated over both Rayleigh

and Nakagami fading channels.

2.3.1 Special case: Rayleigh Fading

In the case of Raleigh fading we set m = 1 and use [23, eq B.53]. Then the probability of detection

can be written as

PdRay = exp
(
−λ

′

2

)[ [
1 + η2

]u−1
{

exp
(

λ′

2+2η2

)
−
u−2∑
k=0

1
k!

(
λ′

2+2η2

)k}
+
u−2∑
k=0

1
k!

(
λ′

2

)k ]
(2.20)

where u = N/2.

2.3.2 Nakagami Fading

In the case of Nakagami fading, we further simplify the expression in (2.19) by using the series

representation of the Marcum Q-function [25], which is given by

Qu

(√
γ,
√
λ′
)

= 1−
∑
n≥0

[
(−1)

n
exp

(
γ
2

) Lu−1
n ( γ2 )

Γ(u+n+1)

(
λ′

2

)n+u ]
(2.21)

where Lkj is the generalized Laguerre polynomial of degree j and order k. The absolute convergence

of the series in (2.21) has been shown to be absolutely bounded by∑
n≥0

[
(−1)

n
exp

(
γ
2

) Lu−1
n ( γ2 )

Γ(u+n+1)

(
λ′

2

)n+u ]
≤ exp (−γ/4) 1

Γ(u)

(
λ′

2

)u−1 (
exp

(
λ′

2

)
− 1
)

(2.22)
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Then, substituting (2.22) into (2.19) results in (2.23).

PdNAK = α

∞∫
0

{
x2m−1 exp

(
−η2x2/2

) [
1− exp

(
−x2/4

) 1

Γ(u)
(λ′/2)

u−1
(exp (λ′/2)− 1)

]}
dx

=



α

∞∫
0

x2m−1 exp
(
−η2x2/2

)
dx

︸ ︷︷ ︸
first term

− α

Γ(u)
(λ′/2)

u−1
exp (λ′/2)

∞∫
0

x2m−1 exp
(
−η2x2/2

)
exp

(
−x2/4

)
dx

︸ ︷︷ ︸
second term

+
α

Γ(u)
(λ′/2)

u−1

∞∫
0

x2m−1 exp
(
−η2x2/2

)
exp

(
−x2/4

)
dx

︸ ︷︷ ︸
Third term



(2.23)

Next, by changing the variable M = 2m− 1, and further integrating, the first term of (2.23) can

be reduced to

α

∞∫
0

x2m−1 exp
(
−η2x2/2

)
dx

= α
Γ ((M + 1)/2)

2
(
η2

2

)(M+1)/2
= 1 (2.24)

The second term of (2.23) can be further reduced to

α

Γ(u)
(λ′/2)

u−1
exp (λ′/2)

∞∫
0

xM exp
(
−((η2/2) + 1/4)x2

)
dx

=
exp (λ′/2) (λ′/2)

u−1

Γ (u)

(
m
γ̄

)m
(
m
γ̄ + 1/4

)m (2.25)

while the third term can be reduced as

α

Γ(u)
(λ′/2)

u−1

∞∫
0

xM exp
(
−((η2/2) + 1/4)x2

)
dx

=
1

Γ(u)
(λ′/2)

u−1

(
m
γ̄

)m
(
m
γ̄ + 1/4

)m (2.26)

Thus, the probability of detection under a Nakagami fading channel is the result of (2.24), (2.25)
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and (2.26) which can be written as

PdNAK = 1− 1

Γ(u)
(λ′/2)

u−1

(
m
γ̄

)m
(
m
γ̄ + 1/4

)m [exp (λ′/2)− 1] (2.27)

It is clear from (2.27) how changing various parameters affects the detection process. The new

derived expression reveals the fact that the ratio of parameter m to parameter γ̄ is an important

consideration when evaluating the probability of detection over Nakagami fading channels. For

example, at low γ̄ < 2 dB and when the degree of freedom u is fixed, the Nakagami parameter m

has only a minor effect on the detection process. That means no matter how much m increases,

the probability of detection stays almost the same. However, at high γ̄ > 15 dB, increasing m will

greatly improve the probability of detection. This will be discussed further in the simulation section.

Another expression for the probability of detection over Nakagami fading channels can easily be

derived by rewriting the right-hand side of (2.21) as

Qu

(√
γ,
√
λ′
)

= 1−
∑
n≥0

exp (−γ/2)
(γ

2

)n(γ∗(u+ n, λ′/2)

n!Γ(u+ n)

)
(2.28)

where we use the notation γ∗(., .) to represent the lower incomplete gamma function. Equation

(2.28) is the well-known canonical representation of the uth order generalized Marcum Q-function.

Then, with the help of (2.18) and using
∞∑
k=0

(a/2)k
/
k! = exp(a/2), and after simple mathematical

manipulation as shown in (2.24-2.26), the probability of detection over Nakagami fading channels

can be approximated as

PdNAK
∼= 1− βm

(
γ∗(λ′/2, u)

Γ (u)

)
(2.29)

where β = [2m/ (2m+ γ̄)].

2.4 Simulation and Numerical Results

A binary phase shift keying signal2 with sampling frequency fs = 10fc, where fc is the carrier

frequency, is used to investigate the detection probability for even/odd degrees of freedom. For the

even degree of freedom with N arbitrarily chosen to be (10, 20), the simulation results are compared

to (2.10). As shown in Fig. 2.2, it can be seen that increasing N or the SNR enhances the probability

of detection. Therefore, this result is consistent with most of the reported results in the literature.

We also notice that the simulation results coincide with the theoretical ones.

Fig. 2.3 shows the detection probability using the recursive algorithm for odd/even degrees

of freedom with N = 31, 32 for comparison. As shown, the recursive algorithm perfectly matches

2Different modulation schemes could be used in the simulation since the derived expression is independent
of the modulation used.
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Figure 2.2: Probability of detection vs SNR for BPSK signal with fs = 10fc, Pfa = 0.01
and different even number of degrees of freedom; the simulation is compared to (2.10) in
AWGN channel.
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Equation [10] for N=32

Figure 2.3: Probability of detection Vs SNR for BPSK signal with fs = 10fc, Pfa = 0.01
and different odd with N = 31, even with N = 32 number of degrees of freedom. In the
odd case, the simulation is compared to the recursive formula (2.13-2.16) in AWGC, and in
the even case the simulation is compared to (2.10) in AWGC.

the simulation results. Moreover, the accuracy of the recursive algorithm goes up to 15 decimal

places, which is the maximum number of digits that Matlab can support. Although there is a small

effect on the detection probability when we compare the even/odd cases, in practice and since most

current functions deals only with even degree of freedom, this algorithm becomes more beneficial.

For example, when evaluating the detection probability using the Marcum function in Matlab with

N = 31 (odd), the third argument of the Marcum function will be 15.5, hence, the implemented

Marcum function in Matlab can’t be used to evaluate the detection probability in this case as it

accepts only integer numbers. However, our algorithm does.

To evaluate the closed-form expressions derived for Nakagami channels, an extensive simulation

has been performed using the ROC. The derived expressions are evaluated and compared with the

numerical integration of (2.18) and with the expressions reported by [8], [9], [10] and [11].3

3For comparison purposes, we have used a value of n = 1 in the expression of [11, Eq. 13], where n
represents the number of nodes cooperating in the sensing process according to [11] notations.
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Equation (18), m=1,2,3 and γ̄ = −10 dB

Derived expression, equation (27), m=1,2,3 and γ̄ = −10 dB

Derived expression, equation (29), m=1,2,3 and γ̄ = −10 dB

Figure 2.4: Comparison between the derived expressions in (2.27) and (2.29) and the nu-
merical integration of (2.18) for γ̄ = −10 dB and different values of m.

2.4.1 Comparison of the derived expressions with equation (2.18)

In Fig. 2.4 and Fig. 2.5 we compare the derived expressions in (2.27) and (2.29) with the numerical

integration of (2.18) for different values of γ̄ and m. Fig. ?? also shows the effect of varying the

Nakagami parameter m on the misdetection probability at low and high values of γ̄ which will be

discussed in the following subsections.

Low value of γ̄

At a low value of γ̄, i.e., γ̄ = −10 dB, (see Fig. 2.4), it can be seen that increasing the value of

m, (m = 1, 2, 3), does not improve the misdetection probability for both derived expressions which

concurs with the numerical integration of (2.18). We also note that (2.29) exactly matches (2.18);

on the other hand, there is a minor discrepancy between (2.27) and (2.18).
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Figure 2.5: Comparison between the derived expressions in (2.27) and (2.29) and the nu-
merical integration of (2.18) for γ̄ = 10 dB and different values of m.
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Derived expression, Equation (27) with m=1,2,3

Derived expression, Equation (29) with m=1,2,3

Equation (13) of [10] with m=1

Equation (13) of [10] with m=2
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Figure 2.6: Comparison of the new derived expressions, (2.27) and (2.29), with the work of
[8, Eq. 20], [9, Eq. 12], [10, Eq. 13] and [11, Eq. 13] with γ̄= -2 dB, u = 5, and m = 2, 3.

High value of γ̄

At a high value of γ̄, i.e., γ̄ = 10 dB, (see Fig. 2.5), increasing m will greatly improve the misdetection

probability for both derived expressions (2.27 and 2.29), which also concurs with the numerical

integration of (2.18) as can be seen in Fig. 2.5. Further, we notice that at a very low false alarm

probability, (2.29) is less accurate compared to (2.27). However, as the false alarm probability

increases, the results for both expressions match that of the numerical integration of (2.18).

2.4.2 Comparison of the derived expressions with related works

In this subsection, we compare the new derived expressions with the previously reported expressions

for high and low values of γ̄ and m = 1, 2, 3.

Low value of γ̄

In Fig. 2.6, the new derived expressions are compared with the expressions of [8, Eq. 20], [9, Eq.

12], [10, Eq. 13] and [11, Eq. 13]. It can be seen that at a very low false alarm probability, the

results of the new derived expressions in (2.27), (2.29) and all expressions in the previously mentioned
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Figure 2.7: Comparison of the new derived expressions, (2.27) and (2.29), with the work of
[8, Eq. 20], [9, Eq. 12], [10, Eq. 13] and [11, Eq. 13] with γ̄= 20 dB, u = 5, and m = 2, 3.

references are a good match. As the probability of false alarm increases, however, a discrepancy arises

between [10, Eq. 13] and [11, Eq. 13] when compared to the new expressions and/or the work of [8]

and [9]. Moreover, as shown in Fig. 2.6, at low γ̄ increasing m did not enhance the probability of

misdetection. This behavior can be seen from (2.27) and (2.29) which also concurs with the work

of [8, Eq. 20] and [9, Eq. 12]. However, the result of [10, Eq. 13] has some discrepancies when

the false alarm probability or the value of m increases. Moreover, the result of [11, Eq. 13] is not

consistent with increasing m. For example, the result at the value of m = 3 is worse than the result

at the value of m = 1, 2 as can be seen in Fig. 2.6. We note also that the probability of misdetection

approaches zero at the point of (1− Pfa) for the expressions reported by [10] and [11].

High value of γ̄

Fig. 2.7 shows the simulation results for all expressions when evaluated at a high value of γ̄. The

result of (2.27) is very close to that of [8, Eq. 20] and of [9, Eq. 12] for the values of m = 2, 3.

Moreover, although there are some discrepancies when evaluating (2.29) as compared to [8, Eq.

20], [9, Eq. 12], at a high value of a false alarm probability, the expression (2.29) is a perfect match.

To this end, we conclude that (2.29) works well at high values of γ̄ and when Pfa > 0.2. Moreover,
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(2.27) is accurate at low γ̄ for all values of false alarm probability. On the other hand, the expres-

sions [10, Eq. 13] and [11, Eq. 13] are less accurate for all evaluated points of false alarm probability

and the unpredictable behavior of these expressions still exists as discussed in the low value of γ̄

case. Moreover, results from the expression [11, Eq. 13] are also inconsistent as the value of m is

increased. 4

2.4.3 Computational Complexity

In the previous subsections we discussed the accuracy of the derived expressions and compared them

to the expressions in [8, Eq. 20], [9, Eq. 12] that require summation and integration terms to get

the needed accuracy. The derived expressions were also compared to the expressions of [10, Eq. 13]

and [11, Eq. 13] that depend on evaluating the gamma function as does the derived expression in

(2.29). To complete the picture, we need another performance metric that distinguishes between

these expressions. To do so, a simple Matlab code was written to measure the computation time

required of a central processing unit (CPU) to evaluate a point in the ROC domain. We ran the code

on a computer equipped with a CPU with a speed of 3.07 Ghz on which we cleared all background

application processes that might run on the system.5 We used 21 points of false alarm probability;

i.e., (Pfa = 0 : 0.05 : 1) with a step of 0.05. At each point, the code iterated 1000 times and averaged

afterward. The measured computation time of the CPU for all points used and for each expression

is plotted in Fig. 2.8. It can be seen that more computation time is required to get highly accurate

results. This is evident from the evaluated points of the expressions [8, Eq. 20], and [9, Eq. 12]

as they have the highest computation time.6 On the other hand, the derived expression in (2.27)

and the reported expression in [11, Eq. 13] have almost the same computation time. Moreover, the

expression of [10, Eq. 13] has the lowest computation time while the expression of [8, Eq. 20] has

the highest.

The derived expressions can also be compared in terms of the number of multiplications. For

example, the derived expression in [8, Eq. 20] is based on the summation of confluent hypergeo-

metric functions and such functions have a computational complexity of order O
[
log2 (n) M̄ (n)

]
for

n-digit precision, [26], where n means computing n digits and M̄(n) is the bit complexity of multi-

plication. However, the reported expression of [9, Eq. 12] is based on an infinite series of gamma

4 Equation (2.29) comes from another way of calculating the probability of detection over Nakagami
fading channels in order to compare with results from the state of the art, which seemed rather optimistic
for low false alarm probability, and that for high SNR cases.

5The conducted simulations show that the computed time will only be scaled by a constant factor, and
that the calculated computation time will not be affected if we do or do not clear the processor cache of any
background application processes.

6 The number of terms used to calculate the summation of [9, Eq. 12] was 20.
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functions and such functions have a computational complexity of O
[√
nM̄ (n)

]
. Using this notation,

the derived expressions of (2.27) and (2.29) have a computational complexity of O(M̄(n)). Since

O
[
log2 (n) M̄ (n)

]
> O

[√
nM̄ (n)

]
> O(M̄(n)), which is also consistent with the simulation results

of Fig. 2.8, therefore, the derived expressions have a lower complexity than [8, Eq. 20], [9, Eq. 12]

and have the same computational complexity as [10, Eq. 13] and [11, Eq.13].

2.5 Summary and conclusion

Spectrum sensing using energy detectors under different fading channels was investigated. We derived

a tight closed-form expressions for the probability of detection in Nakagami channels. The closed-

form expressions can easily be used for Rayleigh fading channels by setting m = 1. The results of the

closed-form formula as compared with other expressions based on summation and integration terms

are very close. Furthermore, the derived expression of (2.27) can be used for all γ̄; however, there is

a minor limitation of using (2.29) specifically at high values of γ̄. Moreover, the derived expressions

have a lower computational complexity compared to other expressions with only a very small loss of

accuracy. In addition, we introduced an accurate recursive algorithm to compute the probability of

detection for an odd number of degrees of freedom under AWGN channels. Our simulation shows

that the detection process for a binary phase shift keying signal using the recursive formula perfectly

coincides with the recursive algorithm.



Chapter 3

Cooperative Spectrum Sensing:

The Optimal Number of Cognitive

Radios under Imperfect Feedback

Channels

In the previous chapter, the local spectrum sensing is studied, i.e. the spectrum sensing using

energy detector is performed by one CR. However, the performance of local sensing significantly

degrades because of fading and shadowing of the PU-SU link. Therefore, cooperative spectrum

sensing (multiple SUs sense the PU signal) has been proposed to enhance the detection probability

of the PU. In this chapter, centralized cooperative sensing is considered in which a number of CRs

are involved in the sensing process and forward their decision to a central node over a feedback

channel.

This chapter is organized as follows. The main objective is stated in section 3.1. In Section 3.2,

the state of the arts on cooperative sensing is discussed. System model is presented in section 3.3.

The total error, the optimal number of CRs under perfect/imperfect feedback channels are presented

in sections 3.4, 3.5 and 3.6, respectively. A summary of this chapter is given in section 3.7.

3.1 Objective

The main objective of this chapter is to study and analyze the detection probability at the fusion

center (FC) of the centralized cooperative spectrum sensing under the effect of feedback channel

errors. The total error is a new criterion that has been adopted to study the effect of the feedback

32
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channel errors on the detection probability. The optimal number of CRs required to minimize the

total error of the sensing process when the reporting channel is perfect/imperfect will be analyzed.

As the main focus of this chapter is to investigate the sensing functionality, analyzing its performance

when employing cooperative spectrum sensing in terms of the total error concept and where imperfect

feedback reporting channels are found, we limit our research to a centralized architecture where

all CRs report their final decision to a fusion center. Doing so will not affect applying the same

methodology to other system architectures. We might also consider the centralized architecture as

the baseline for the performance of other architectures, e.g., ad hoc networks.

3.2 Introduction

The optimal sensing method for stationary Gaussian noise is a matched filter [14]. However, the

coherency requirement and the need for knowledge of the PU’s signal structure prevent the use of

this method in DSA systems. Spectrum sensing in which the primary user signal has unknown

distribution was studied in [27]. Other sensing methods include cyclostationary feature detection

[15, 16] and energy detection [12, 28, 29]. In the former, the high computational requirements and

the knowledge needed of cyclic frequencies of the primary signal, which may not be available, also

prevent this method from being usable by DSA. Compared to matched filtering and cyclostationary

techniques, the energy-sensing technique is more desirable. The preference for this technique is

due to its simplicity of implementation, lack of computational requirements, and there being no

need for knowledge of the channel and/or PU signal. One drawback of this technique is the noise

uncertainty [30]; however, several means have recently been proposed to solve this problem [31]. A

further drawback to the energy-sensing method is its degradation in shadowing/fading environments.

To overcome this degradation and to improve the sensing functionality, cooperative sensing has been

introduced.

Cooperative sensing in wireless communication is being developed to achieve diversity gain and

to reduce outage probability [32–44]. As cognitive radios emerge, and the need to enhance sensing

functionality arises, researchers have begun to investigate cooperative spectrum sensing using an

energy detector [45–50]. Cooperative sensing using beamforming techniques was studied in [51–53].

The sensing throughput tradeoff based on energy sensing was investigated in [54]. Optimal linear

cooperation for spectrum sensing based on the linear combination of local statistics from individual

CRs was analyzed in [55]. Sensing performance based on multiple antennas was studied in [56–59].

The optimization of cooperative spectrum sensing with perfect feedback channels was studied in [60].

In most cooperative sensing schemes (soft or hard combining), the feedback channels which

are used to forward the CRs decisions to a FC are assumed to be perfect. However, in practical

systems, feedback channels are not error free. In [61], a performance analysis of hard decisions versus

soft decisions in the presence of reporting channel errors was investigated. In [62, 63], cooperative
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Figure 3.1: System model of cooperative spectrum sensing.

spectrum sensing in the presence of a feedback error using hard decision combining was studied.

Recently, in [64], cooperative sensing with imperfect feedback channels and multiple antennas at the

CRs was investigated.

3.3 System Model

We consider a network of n CRs, each of which employs a likelihood ratio test based on its own

observations and a threshold. Each CR decides on the existence or absence of a PU, then sends its

decision to the FC as shown in Fig. 3.1. The existence or absence of a PU signal can be modeled as

a binary hypothesis problem. For n CRs, the two hypotheses can be defined as

xi =

{
wi, H0

his+ wi, H1

, i = 1, 2, · · ·n, (3.1)
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where s is the PU signal vector, and wi, hi are the ith CR noise vector and the ith channel gain

for i = 1, ..., n, respectively. H0 is the hypothesis test when noise only is present, and H1 is the

hypothesis test when both noise and signal are present. We also assume that the noise samples are

independent and identically distributed, and that they are independent of the signal samples. The

decision at the ith CR can be written as

CRi = f(xi) =

{
0, H0

1, H1

, i = 1, 2, · · ·n (3.2)

The observation xi at the ith CR has the joint probability density function P (xi|Hj) under hypothesis

j, for j = 1, 2. The decision at the ith CR may cause two types of errors. When the ith CR decides

H1 but H0 is true, i.e., P (CRi = 1|H0) = Pfai , this represents the probability of false alarm

(Pfai). When the ith CR decides H0 but H1 is true, i.e., P (CRi = 0|H1) = Pmi , this represents

the probability of misdetection (Pmi). The complementary to Pmi is the probability of detection

Pdi = 1 − Pmi . Because the observations of all CRs are independent, it follows that the CRs’

decisions are also statistically independent. Thus, the joint probability density function at the FC

can be written as

P (CR1, ..., CRn|Hj) =

n∏
i=1

P (CRi|Hj). (3.3)

If we assume that all CR users have the same threshold, then the likelihood ratio test at the FC can

be written as

Λ (FCD) =

n∏
i=1

P (CRi|H1)

P (CRi|H0)

H1

≷
H0

λ, (3.4)

where λ is a threshold determined by a fixed false alarm probability at the FC, and Hj for (j = 0, 1),

is the hypothesis that the FC decides a PU is absent or present, respectively.

At the FC, when all CRs operate at the same probability of false alarm and the same probability

of detection, the probability of false alarm Qf and the probability of detection Qd using the k-out-of-n

fusion rule can be written as [65]

Qf =

n∑
m=k

(
n

m

)
Pmfa(1− Pfa)n−m (3.5)

Qd =

n∑
m=k

(
n

m

)
Pmd (1− Pd)n−m (3.6)

The value of the parameter k determines the logic fusion rule, that is, for k = 1 the fusion rule

becomes the OR rule and for k = n it becomes the AND rule. Both rules have their own drawbacks.

In the OR rule, the detection probability increases when the number of CRs increases. However,

this increase is at the expense of increasing the number of false alarms, which is not desirable in

cognitive radio systems. If there is an increase in false alarms, the probability of wasting resources

arises, which results in an under-utilization of the available SHs in a PN. On the other hand, using
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the AND rule will decrease the false alarm probability as the number of CRs increases. Therefore,

greater utilization of SHs is guaranteed but at the expense of increasing the misdetection probability,

which causes more interference to the PN. To summarize, in the OR rule, although the probability

of misdetection is decreased by increasing the number of cooperative users, the probability of false

alarm increases as well. The opposite can be seen in the AND rule, where as the probability of

misdetection increases, the probability of false alarm decreases.

Based on the previous discussion, a question arises: should we ignore the implementation of

these rules (OR rule, AND rule) when designing CR systems? The best approach is to consider a

new metric that accounts for both probabilities. We define the concept of total error as the new

metric in order to analyze the performance of the system considered. The total error is defined as

J(m,n, Pd, Pfa) = Qm +Qf

= 1− (Qd −Qf )

= 1− φ, (3.7)

where Qm = 1 − Qd is the misdetection probability at the FC, and φ is defined as φ
4
= Qd − Qf .

The total error is plotted in Fig. 3.2. It can be seen that there is a number k that minimizes both

probabilities and prevents secondary system behavior from becoming overly aggressive or greedy

when using primary system resources. In the next section, we provide further analyses of and

insights from our previous discussion.

3.4 Total Error Analysis

The maximum value of J(.) will not exceed one. This can be justified as follows. As Pfa → 1, this

results in Pd → 1. Then Qf → 1, and Qd → 1. This is because the last term of the vector Qf , Qd

defined in (3.5,3.6) will always be 1 as m = n. It follows then that J(.)→ 1. Also, As Pfa → 0, this

results in Pd → 0. Then Qf → 0, and Qd → 0. It follows from both cases that the maximum value

of J(.) is one.

Lemma 3.4.1. For a finite n, given that n− k = L, where L <∞, J will not reach zero.

Proof. As J has a maximum value of 1, and as J is given in (3.7) by J = 1− φ = Qm +Qf , then it

is sufficient to prove that Qm will not approach zero in the finite case. Therefore, we rewrite (3.6)

as follows

Qd = Pnd +

L∑
m=1

(
n

m

)
Pd

n−m(1− Pd)m. (3.8)
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Figure 3.2: Total error with n=5, and k=1:5.

Let Pnd = θ0 and Rj denote the ratio of the jth term to the (j − 1) term inside the summation of

(3.8). Hence, we can rewrite (3.8) as

Qd = θ0 +R1θ0 +R2R1θ0 + ...+RLRL−1...R1θ0. (3.9)

Therefore (3.9) in terms of θ0 can be written as

Qd = e−a + e−a
L∑
j=1

aj

j!
, where a = −ln(θ0). (3.10)

As the right-hand side of (3.10) is a monotone decreasing function of a, then Qd can reach a value

of 1 only when a = 0, which requires −nln(Pd) = 0.

3.5 Optimal Number of CRs under Perfect Feedback Chan-

nels

In this section, we consider the feedback channel between the CRs and the FC to be perfect. There-

fore, based on the previous results, we are looking for the minimum number of cognitive radio users,

k, that are required to successfully detect the presence of a PU given a fixed false alarm probability.

In other words, in cooperative spectrum sensing it is not necessary for all the users to detect the

existence of a PU to minimize the error produced. There exists a number k that minimizes the error
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that occurs. To find such a number, we have to revisit (3.5,3.6). Since Qd and Qf are the cumula-

tive of a binomial distribution function, then from Lemma 1, it is known that (3.7) is a decreasing

function of φ(n,m,Pd, Pfa) = (Qd − Qf ). Obviously, J → 0 as φ → 1. It follows then, from the

cognitive radio system perspective, as a necessary and sufficient condition for φ→ 1, we must have

Qd → 1 and Qf → 0. That means we need to maximize Qd and minimize Qf , but both of them

share the same two parameters m,n that affect the behavior of the binomial function. We conclude

our finding by the following Theorem.

Theorem 3.5.1. The optimal number of cognitive radios required to minimize the error J(.) is

kop =
σQdµQf + σQfµQd

σQd + σQf
, (3.11)

where µQd = nPd, µQf = nPfa, and σQd =
√
nPd(1− Pd), σQf =

√
nPfa(1− Pfa).

Proof. Using the Demoivre-Laplace theorem [66], Qd and Qf are approximated as the cumulative

distribution of a normal random variable when n→∞, i.e., J can be written as

J = 1− (PX(X ≤ k)− PY (Y ≤ k),

where X, Y are random variables representing Qd and Qf , respectively, and where PX(X < k),

PY (Y < k) represent the cumulative probability density function of the random variables X and Y ,

respectively. Then, deriving J with respect to k results in

∂J

∂k
= −∂X

∂k
+
∂Y

∂k
= 0

PX(X = k) = PY (Y = k)

− k − nPd√
nPd(1− Pd)

=
nPfa − k√

nPfa(1− Pfa)
,

which is the same point of the domain as the two random variables that reflect the minimum value

k. Hence, J has a unique global minimum at the value of k. It follows then

kop =
σQdµQf + σQfµQd

σQd + σQf

3.6 Optimal Number of CRs under Imperfect Feedback Chan-

nels

In the previous section, we derived the optimal number of CRs which produced the minimum total

error value when the feedback channel was perfect. However, in reality, the system is affected by the
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channel between the CR user and the FC. Hence, when this channel is not perfect, the probability

of false alarm and the probability of detection at the FC will also be affected by the probability of

an error. If we define the probability that the FC receives an erroneous decision from the ith CR as

Pei , written as Pei = Pr(FCD = 0|PU = H0, CRi = H1) = Pr(FCD = 0|CRi = H1) = Pr(FCD =

1|CRi = H0) , where Pr(.) means probability, then, assuming that Pei is the same 1, the probability

of false alarm with imperfect feedback channels at the FC can easily be found as 2

Q∗f =

n∑
m=k

(
n

m

)
[Pr(FCD = 1|PU = H0)]m[Pr(FCD = 0|PU = H0)]n−m

=

n∑
m=k

(
n

m

)
[Pr(FCD = 1|PU = H0)]m[1− Pr(FCD = 1|PU = H0)]n−m. (3.12)

We denote the probability term Pr(FCD = 1|PU = H0) of (3.6) by α, which can be found as

α = Pr(FCD = 1|CR = H1)Pr(CR = H1|PU = H0)

+ Pr(FCD = 1|CR = H0)Pr(CR = H0|PU = H0)

= (1− Pe)Pfa + Pe(1− Pfa). (3.13)

Then, using (3.6) and (3.13), Q∗f can be written as

Q∗f =

n∑
m=k

(
n

m

)
[(1− Pe)Pfa + Pe(1− Pfa)]m[(1− Pe)(1− Pfa) + PePfa]n−m

=

n∑
m=k

(
n

m

)
αm(1− α)n−m. (3.14)

Likewise, the probability of detection with an imperfect feedback channel at the FC can be found as

Q∗d =

n∑
m=k

(
n

m

)
[Pr(FCD = 1|PU = H1)]m[Pr(FCD = 0|PU = H1)]n−m

=

n∑
m=k

(
n

m

)
[Pr(FCD = 1|PU = H1)]m[1− Pr(FCD = 1|PU = H1)]n−m (3.15)

1This assumption have been adopted to ease the analysis and will not harm the idea presented. In other
words, the purpose of using this assumption is mainly to provide a tractable performance expression but
again, this assumption will not harm the key idea, i.e., deriving the optimal value of cognitive radios and the
bounds of false alarm under imperfect sensing. Our key idea is still workable even if we relax this assumption,
but the expression of the analysis will be too complicated and may prevent the readers from understanding
the key idea. Also the CRs may be considered in a cluster of small size and in this case the feedback channel
between them and the FC has the same effect on their decisions.

2The probability of a final decision at the FC is independent of which hypothesis is true, a property of a
Markov chain.
To reduce the extensive use of notations, we distinguish the various parameters of an imperfect feedback
channel by “*”.
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Figure 3.3: Performance results of the OR rule with Pe = 0.01 and SNR=10 dB.

We denote the probability term Pr(FCD = 1|PU = H1) of (3.15) by β, which can be found as

β = Pr(FCD = 1|CR = H1)Pr(CR = H1|PU = H1)

+ Pr(FCD = 1|CR = H0)Pr(CR = H0|PU = H1)

= (1− Pe)Pd + Pe(1− Pd). (3.16)

Then, using (3.15) and (3.16), Q∗d can be written as

Q∗d =

n∑
m=k

(
n

m

)
[(1− Pe)Pd + Pe(1− Pd)]m[(1− Pe)(1− Pd) + PePd]

n−m

=

n∑
m=k

(
n

m

)
βm(1− β)n−m (3.17)

Special cases of Q∗f , Q∗d when employing the OR rule, i.e., k = 1, and when employing the AND

rule, i.e., k = n, can be easily obtained from (3.14) and (3.17), respectively.

To find the optimal value of k that minimizes the cost function J(.) when the feedback channel is

in error, we use (3.14) and (3.17). Note that Q∗f and Q∗d can also be approximated as the cumulative

distribution of a normal random variable as n → ∞. Hence, by applying Theorem 1, the optimal

value of k, denoted as k∗op, is given as

k∗op =
σQd∗µQf∗ + σQf∗µQd∗

σQd∗ + σQf∗
, (3.18)
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Figure 3.4: Performance results of the AND rule with Pe = 0.01 and SNR=10 dB.

where µQ∗f = nα, µQ∗d = nβ, and σQ∗f =
√
nα(1− α), σQ∗d =

√
nβ(1− β).

3.6.1 Boundary of Q∗
f and the effect of the value k∗

op

Based on (3.14), Q∗f will be bounded by the error in the feedback channel and this boundary affects

the utilization of the SHs. To verify this statement mathematically, we take the limit of (3.14) as

Pf → 0. Then

limPfa→0Q
∗
f =

n∑
m=k

(
n

m

)
[(1− Pe)Pfa + Pe(1− Pfa)]m[(1− Pe)(1− Pfa) + PePfa]n−m

=

n∑
m=k

(
n

m

)
Pme (1− Pe)n−m. (3.19)

The result indicates that the value of k will also affect this boundary, e.g., using the OR rule as

a special case, the boundary will be

Q̄∗f = 1− (1− Pe)n ≈ nPe (3.20)

Fig. 3.3 shows the performance results of cooperative spectrum sensing using the OR rule in which

we plot the probability of misdetection Q∗m = 1−Q∗d versus the probability of false alarm at the FC

with an imperfect feedback channel. It is obvious that increasing the number of CRs will increase

this boundary, which is undesirable from a cognitive radio perspective. For example, the boundary
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has a value of 0.01 for CR = 1 and 0.04 for CR = 4. This result is also consistent with (3.20).

Therefore, in that sense, using one CR is better than using more CRs.

When using the AND rule, the boundary can be easily found by substituting k = n into (3.19),

which results in Q̄∗f = Pne . The result is plotted in Fig. 3.4. Obviously, the boundary decreases as

we increase the number of CRs or when the feedback channel is in perfect condition. To have a clear

picture of this boundary, in Fig. 3.5 we plotted the performance results for the AND rule, OR rule

and k∗op. It is now clear that increasing k will decrease such a boundary, and we conclude that the

boundary has an upper limit when k = 1 and a lower limit when k = n. However, in case of k∗op the

value of this boundary lies in between these two extreme cases. Therefore, we conclude that Q̄∗f is

bounded as

Pne ≤ Q̄∗f ≤ nPe (3.21)

. However, although we are looking for an optimum point to choose as our constraint at the

FC and despite the results obtained by the previously discussed cases, this boundary is far from

being sharp as can be seen from (3.21). Therefore, the decision on how to optimize the design of CR

systems is dependent not only on this boundary, but also on verification that this boundary value will

guarantee a low misdetection probability. By looking carefully at the performance of the (OR rule,

AND rule), we see that the more this boundary decreases, the worse the probability of misdetection

is and vice versa. Therefore, these results assure us that the criterion represented by J is the optimal

criterion to use in designing a CR system as it is the one that minimizes both probabilities in this

application. The fact that the crux of cognitive radios is to protect the PU and at the same time

maximize the utilization of SHs requires us to trade off between these two probabilities at the FC.

In Fig. 3.6, we compare the optimal value of k with a perfect/imperfect feedback channel, i.e.,

kop, k
∗
op. It can be seen that for a low value of λ, kop tends to the AND rule implementation. On

the contrary, for a high value of λ, kop tends to the OR rule implementation. Also, in the imperfect

feedback channel case, i.e., k∗op, it can be seen that for a probability of error Pe = 0.01 in the feedback

channel and a fixed λ, increasing the average SNR of the PU-SU link would result in k∗op tending to

the AND rule implementation.

Fig. 3.7 shows that we can easily compensate for a very high probability of error in the feedback

channel. In other words, no matter what our threshold is and no matter how imperfect the feedback

channel is, the choice of k∗op will maximize utilization and minimize interference to the primary

network.

Another point to consider given the result presented in (3.18) is the bandwidth of the feedback

channel. This is considered to be one of the drawbacks of cooperative sensing as the CRs’ decisions

must be forwarded to a FC. This can be achieved by sending the local decisions through separate

time slots within a frame or concurrently. However, such a method greatly affects the utilization of

the SHs since the sensing time becomes longer or the system complexity increases. Another approach

is to send the local decisions through orthogonal channels. However, a considerable bandwidth is
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needed. Therefore, the result presented in (3.18) is an efficient rule for the designers of CR systems

enabling them to reduce the feedback channel bandwidth by choosing the optimal number of CRs

to satisfy a target minimum error J . For example, as shown in Fig. 3.8, to achieve a total error J

less than 0.01 with a feedback channel error of Pe = 0.01, 0.05, 0.1, the optimal numbers of CRs,

according to (3.18), are 6, 8, and 12 respectively. Therefore, using no more than the optimal number

of CRs considerably reduces the required bandwidth of the feedback channel while maintaining the

minimum error value of J . Fig. 3.9 shows the complementary of the receiver operating characteristic

(ROC) curves using the optimal number of CRs which is derived in (3.18). We also plot the OR rule

with perfect/imperfect feedback channels and the k-out-of-n rule as references. It can be seen that

the OR rule has a high rate of false alarms in the case of imperfect feedback channels. However, it

can be seen that when the PU-CRs link is Rayleigh faded with SNR=5 dB and feedback channel

error probability of Pe = 0.1, the optimal number of CRs outperforms the k-out-of-n rule for all false

alarm values.

Fig. 3.10 shows a comparison between the optimal number of CRs, the OR rule and the k-out-

of-n rule in terms of detection at the FC. As mentioned previously, the OR rule has a high false

alarm probability. At Q∗f ≤ 0.1, it can be seen that the optimal number of CRs based on (3.18)

performs better than the k-out-of-n rule for all values of pe and SNRs.

Interestingly, with a high probability of error in the feedback channel, the detection probability

at the FC is improved when the link between the PU and the CRs has a very low SNR value, i.e. at
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a very low detection probability for individual CRs. This property can be easily proven from (3.17).

As Pe → 1, (3.17) can be written as

Q∗d =

n∑
m=k

(
n

m

)
[(1− Pd)]m[Pd]

n−m.

As a special case, when k=1, i.e. the OR rule, (3.22) can be written as

Q∗d = 1− (Pd)
n. (3.22)

However, in this case (a high probability of error in the feedback channel), (3.22) also states that the

high detection probability of individual CRs decreases the detection probability at the FC. However,

the purpose of introducing cooperative sensing is to improve detection when fading and shadowing

occur. Therefore, a low detection performance by CRs is always dominant in case of fading, and

hence feedback channel errors can improve the detection probability at the FC if properly used. This

can be seen from Fig. 3.10, where the three-dimensional plot shows the detection probability at the

FC vs the feedback channel error probability Pe and the SNR of the PU-CRs link. In this case, that

of a high rate of feedback channel error, as the individual detection probability of CRs decreases,

the probability of detection at the FC increases. On the other hand, the detection probability at

the FC worsens when the PU-CRs link is improved. This also confirms the fact that it is useless to

use cooperative sensing when a single CR can do the job perfectly. The question to be asked here

is: How we can utilize such errors to improve detection at the FC?
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3.7 Conclusion

In this chapter, cooperative spectrum sensing under perfect/imperfect feedback channels is investi-

gated. In particular, the optimal number of CRs required to minimize the total error of the sensing

process when the reporting channel is perfect/imperfect is derived. Minimizing the total error re-

duces the number of orthogonal channels or the number of time slots needed to transmit the CRs’

decisions in the feedback stage; hence, bandwidth expansion is avoided. In addition, we show that

no matter how many cognitive radios cooperate in the sensing process, the total error will never

reach zero. We also derive a general formula to calculate the boundaries of a false alarm probability,

recognizing that reducing the value of this boundary alone will not result in improved system perfor-

mance. However, the boundary resulting from the false alarm probability can easily be compensated

for when the optimal value of k is chosen.

Further, we find that errors in the reporting feedback channel can easily be compensated for

when the optimal number of CRs participating in the sensing process is used; therefore, the overall

detection probability is improved. Interestingly, we find that errors in the feedback channel can

improve the detection probability at a low SNR link between the PU and the CRs. But, how we can

utilize the sensing errors in the feedback channel to improve the detection probability at the FC is

still need more studies. Finally, as an indirect result of this study, we showed that having a dynamic

threshold at the FC improves the overall performance of the two networks (PN and CRN).



Chapter 4

Opportunistic Spectrum Access

Under Imperfect Sensing

In the previous chapters, local and cooperative spectrum sensing when using energy detector are

researched. It has been shown that there are always inevitable errors (misdetection and false alarm)

that occur during the sensing stage. These errors affect the performance of upper layers. Therefore,

extensive research has been conducted in order to enhance the physical layer of DSA systems. There

also an on-going research that investigates and proposes new protocols and algorithms to exploit the

SHs that are detected by the sensing function. However, only minor research has been undertaken to

develop a cross-design mechanism able to maximize DSA performance under imperfect sensing. To

fully understand system behavior, a proper model is developed and its performance is investigated

under different scenarios. We will illustrate this in the subsequent sections. In the following, we

briefly discuss some previous works and elaborate on some of the reported results.

4.1 Objective

The main objective of CR is to utilize the SHs; then, it is a crucial to have an insightful view of

the effect of the sensing errors on the system utilization. In this chapter a CTMC is used to model

the considered system , and then evaluate it in terms of a number of GoS metrics. The analysis will

be in terms of the SUs blocked probability which is defined as the ratio of SUs blocked to the total

arrival rate of the secondary system, as well as the SUs dropped probability, which is defined as the

ratio of the dropped SUs to the total arrival rate of the secondary system, and the total utilization

of the secondary system.

49



CHAPTER 4. OPPORTUNISTIC ACCESS 50

4.2 Introduction

Recently, there has been considerable research on spectrum access in cognitive radio networks,

e.g. [67–69]. These papers have addressed spectrum access and evaluated the system in terms of

the aforementioned metrics. However, in these cases, the performance of the system was studied and

the system analyzed under idle channel sensing, i.e. perfect sensing.

Recently, Tang et al. [29] studied the OSA system under unreliable sensing. In this work, the

SUs were assumed to sense only one channel at a time to determine the access probability. How-

ever, a fundamental requirement for an SU is to sense a wide band of the spectrum [?]. This is

because of the lower priority of SUs compared to PUs, meaning an SU must sense a wide band of

the spectrum to enable it to determine which channels are spare channels which can be used for its

transmission. Such a sensing ability will enhance the SU’s reliability and enable it to continue its

transmission when a PU requests, with no warning, a channel already occupied by an SU. The prob-

lem of switching channels or spectrum handoff under unreliable sensing and prioritized traffic was

studied in [70]. In [71, 72], the modeling of opportunistic spectrum access under unreliable sensing

was studied. However, the authors again consider that an SU can only sense one channel at a time.

In addition, only cases where SU calls are blocked are considered. We will discuss this further later.

In this work, we consider that the SUs have the ability to sense all channels in the system.

The result reported by [29] suggests that spectrum efficiency can be improved even under unreliable

sensing; however, our mathematical and simulation models confirm that the SUs must be equipped

with a reliable sensing function to fully exploit spectrum opportunities. Cooperative sensing does

improve the detection of an SH; however, sensing errors still cannot be avoided as they can occur

at any time. In this work, we do not consider a cooperative sensing scenario; however, the analysis

can be easily extended to our case. Since sensing errors may occur at random, our objective in

this chapter is to analyze and evaluate OSA in terms of a number of performance metrics when

imperfect sensing by SUs is considered; specifically, we derive the probability of blocked calls and

the probability of dropped calls for the primary system and the secondary system under imperfect

sensing. Moreover, we evaluate secondary system utilization when sensing errors occur. Finally,

a closed-form expressions for all of the mentioned metrics under perfect and imperfect sensing are

derived.
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4.3 Spectrum Sensing Model

Spectrum sensing is a binary hypothesis problem [12], which distinguishes between two hypotheses

defined as

H0 : x(t) = w(t)

H1 : x(t) = s(t) + w(t) (4.1)

where H0 is the hypothesis test when noise only is present, H1 is the hypothesis test when both noise

and signal are present, w(t) is the noise component, and s(t) is the primary user signal component.

Evaluating test Y , which is defined as Y = 1
No

T∫
0

x(t)
2
dt [12], where No represents the one-sided noise

spectral density, may cause two types of errors. When an SU detects H1 while the actual state is

H0, this event is called a false alarm which occurs with a probability denoted by Pfa = P (H1|H0) =

Q
(
λ−2B√

4B

)
, 1 where Q(.) is the tail probability of the standard normal distribution, B is the time

bandwidth product, λ is the detection threshold and γ is the SNR. When an SU detects H0 while

the actual state is H1, this event is called misdetection which occurs with a probability denoted by

Pm = P (H0|H1) = 1−Q
(
λ−2B−γ√

4(B+γ)

)
[12]. The complementary to Pm is the probability of detection

Pd = 1− Pm = P (H1|H1).

4.4 Markov Chain Modeling

Consider a system of C channels, where all channels are available to the PUs. Access is controlled by

the primary controller, and the system is opportunistically available to secondary users when PUs

are absent. From a practical point of view, the PUs, also known as licensed users, are unaware of

the activity of the SUs, also known as unlicensed users; therefore, a PU may use a channel already

occupied by an SU, causing the SU transmission to drop. The drop occurs because of a lack of

communication between the two systems or an unwillingness to modify the infrastructure of the PU

system due to cost. The SUs, however, maintain an awareness of the PUs activity by employing a

sensing function and transmitting whenever a channel is available.

We assume the arrival rate of PUs and SUs follows a Poisson process with arrival rates of λp and

λs respectively. The service time is exponentially distributed with mean service times 1/µp and 1/µs

respectively. These assumptions are valid considering that the number of users is much greater than

the number of available channels [29, 73]. Consider the general state (i, j), where i represents the

number of PUs and j represents the number of SUs. Fig. 4.1 summarizes the transition states, under

1For large number of samples and using the central limit theorem, the distribution of test Y can be
approximated as Gaussian [12].
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perfect sensing, of a PU arrival/departure denoted by the solid line, and an SU arrival/departure

denoted by the dotted line.

4.4.1 Perfect Sensing

The following cases describe system behavior when a PU arrives:

• Case I: A PU arrives and finds an idle channel not occupied by any other PU. The probability

of this event is equal to C−i−j
C−i ; therefore, the transition rate from state (i, j) to (i + 1, j) is

given as (C−i−j)
(C−j) λP [74].

• Case II: A PU chooses a channel occupied by an SU, which causes a collision with the SU

transmission; in this case, the transition rate from state (i, j) to state (i + 1, j − 1) will be
j

C−iλp, and the total probability of a dropped SU call can be computed as

Pdrop,SU =
∑
i,j

i+j≤C

jλp
(C − i)λs

. (4.2)

• Case III: A PU arrives and all channels in the system are occupied by other PUs, i.e., i =

C, j = 0; in this case, the new PU request will be blocked. Hence, the probability of a PU

being blocked is given by

Pblock,PU = P (C, 0), (4.3)

where P (i, j) is the steady-state probability of state i, j.

Now we will consider an SU arrival, which can be described by the following cases:

• Case I: An SU arrives and a channel is available; therefore, the transition rate from state (i, j)

to state (i, j + 1) is λs, for i+ j < C.

• Case II: An SU arrives and no channel is available, resulting in a blocked request; therefore,

an SU request will be blocked only when i + j = C, and the probability of a blocked SU is

given by

Pblock,SU =
∑
i,j

i+j=C

P (i, j). (4.4)

All other cases, i.e. with no PU or SU arrival, are considered to be successfully completed, hence the

PU departure rate from state (i, j) to (i − 1, j) is iµp. Likewise, the SU departure rate from state

(i, j) to state (i, j − 1) is given as jµs.

If we define s = (i, j) as the instantaneous state of the CTMC model presented in Fig. 4.1, then

it has the state space:

Ω = {s : 0 ≤ i, j ≤ C, i+ j ≤ C} .
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Figure 4.1: Transition diagram under ideal sensing.
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The system of linear equations which is formed from the Markov chain model can be written in

vector-matrix form as

pQ = 0, (4.5)

where p is the steady-state probability vector, and Q is the infinitesimal generator matrix which

characterizes the transition of the states of the Markov chain [75]. To yield a unique positive solution,

(4.5) can be solved with the imposed normalization condition of the steady state probability, which

is defined as ∑
i

∑
j

P (i, j) = p1 = 1, ∀(i, j) ≤ C (4.6)

where 1 = [1, 1, 1, ..., 1]T , where T indicates the transpose operation. Hence, the steady state proba-

bility vector p can be found by changing the last column of Q by the vector 1, which yields the new

invertible matrix Q′, i.e. (4.5) becomes pQ′ = b, where b is a row vector which was formed by this

operation, i.e. b = [0, 0, ..., 1]. Then, p can be found as

p = bQ′−1 (4.7)

The dimension of the matrix Q in terms of C is given as [(C + 1)(C + 2)/2, (C + 1)(C + 2)/2]. It

follows then, and by using (4.7), Equations (4.2), (4.3) and (4.4) can easily be evaluated in the ideal

sensing case. In what follows, we will evaluate the system with imperfect sensing results.

4.4.2 Imperfect Sensing

The probability that an SU detects an idle channel is the probability that it detects H0 when H0 is

true, denoted as β = P (H0|H0) = 1 − Pfa, which is the complement of the false alarm probability.

Since the PUs are not aware of the SUs, then the transition diagram shown in Fig. 4.1 will be

modified only for cases in which an SU arrives. Before analyzing the proposed system with respect

to an SU arrival under imperfect sensing, we should note that at any time the number of available

channels in the system will be Nav = C−Noc, where Noc is the total occupied channels and is given

as Noc = i + j. Then, the probability of an arriving SU sensing l busy channels of the occupied

channels incorrectly is given as2
(
Noc
l

)
PNoc−ld P lm. Among the available channels, the probability of an

SU sensing k idle channels correctly is
(
Nav
k

)
Pfa

Nav−kβk. As we considered earlier that the system

is in the general state (i, j), the following summarizes all of the SU arrival cases it may face:

• Case I: An SU arrives and there is no collision with a PU or other SUs. We denote this event

as E1, and the probability of this event can be computed as

PE1
=

Nav∑
k=1

(
Nav
k

)
βkPNav−kfa

Noc∑
l=0

k

l + k

(
Noc
l

)
PNoc−ld P lm. (4.8)

2the symbol
(
n
m

)
= n!

m!(n−m)!
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The transition rate from state (i, j) to state (i, j + 1) is then PE1
λs.

• Case II: An SU arrives and all channels are busy. We represent this event by E2 and its

probability is given by

PE2 = PNocd (1− β)Nav . (4.9)

This event represents the probability of a blocked call in the current state; it follows then that

the total probability of an SU being blocked with imperfect sensing will be3

P ∗block,SU =
∑
i,j

P (i, j)PE2
(i, j). (4.10)

• Case III: An SU arrival interferes with a PU transmission due to a sensing error in detecting

a PU occupied channel; we denote this event by E3. The probability of this event will be

the probability of wrongly detecting a channel already occupied by a PU or an SU and the

probability of right-detecting the actual available channels Nav, i.e., mathematically we can

write the probability of this event as

PE3
=

i∑
k=1

(
i

k

)
P

(i−k)
d P km

j∑
n=0

(
j

n

)
P

(j−n)
d Pnm

Nav∑
l=0

k

l + n+ k

(
Nav
l

)
P

(Nav−l)
fa βl. (4.11)

The rationale for (4.11) is that the SU cannot distinguish between an SU transmission and

a PU transmission. In this case, the arriving SU will be dropped and the probability of a

dropped call due to this event is given as

P ∗dropE3
,SU = λsPE3

/λs = PE3
(4.12)

Note that the system will stay in its current state and no transition occurs here.

• Case IV: An SU arrives and collides with another SU transmission. We denote this event by

E4. Thus, the probability of this event can be computed as in event E3, and is given as

PE4
=

j∑
k=1

(
j

k

)
P

(j−k)
d P km

i∑
n=0

(
i

n

)
P

(i−n)
d Pnm

Nav∑
l=0

k

l + n+ k

(
Nav
l

)
P

(Nav−l)
fa βl. (4.13)

3To reduce the excessive use of notation, we distinguish the probabilities and all related parameters of
imperfect sensing by an “*”.
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The probability of a dropped call due to this event will then be

P ∗dropE4
,SU = λsPE4/λs = PE4. (4.14)

Hence the transition rate from state (i, j) to state (i, j−1) will be jµs+PE4
λs, where the first

term indicates an SU successfully completed its transmission and the second term indicates a

dropped call caused by a collision between two SUs.

To compute the total probability of a dropped call in the secondary system in the current state (i, j),

we add the probability of a dropped call for all events that cause an arriving SU to be dropped.

Therefore, the total probability of a dropped call in the current state will be

P ∗drop,SU = PE3 + 2PE4 +
jλp

(C − i)λs
, (4.15)

where the first term represents a collision with a PU, the second term represents a collision between

two SUs (the new arrival and the already connected SUs), and the third term represents a dropped

call caused by a PU arrival (PU case II). Fig. 4.2 summarizes the potential transitions with im-

perfect sensing results. Using the previous discussion and the transition diagram of Fig. 4.2, we

can reconstruct the infinitesimal generator matrix Q due to imperfect sensing. Following the same

procedure discussed earlier and after modifying the transition matrix Q, we can solve for the steady

state probability using (4.7). To account for the total probability of a dropped call in the secondary

system, we use (4.15). The total probability of a dropped call can then be computed as

P ∗drop,SU =
∑
i,j

P (i, j)[PE3
(i, j) + 2PE4

(i, j)

+
jλp

(C − i)λs
]. (4.16)

Since dropped and blocked services do not count as successful radio traffic, another performance

metric of importance to the considered secondary system is the effective spectrum utilization U ,

which is defined as

U = [1− P ∗block,SU − P ∗drop,SU ]ρ/C (4.17)

where P ∗block,SU is total blocked probability as defined in (4.10), P ∗drop,SU is the total dropped prob-

ability as defined in (4.16) and ρ is defined as ρ = λs/µs. Using this definition we account for only

the actual SU traffic served by the considered system.

4.5 Simulation Performance and Results Discussion

An event-based simulation using Matlab was used to evaluate and verify the theoretical results

derived from the considered performance metrics. Assuming C = 10, λp = 2.15 min−1, µp = 0.5
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min−1 and µs = 5 min−1, Fig. 4.3 shows a comparison between the theoretical results and the event-

based simulation results in the ideal sensing situation. We plot Pblock,PU , Pblock,SU and Pdrop,SU ,

which correspond to equations (4.2)-(4.4) respectively, versus λs. As a function of λs, Pblock,PU

remains constant and coincides with the theoretical finding as the traffic load λp/µp for the primary

system is fixed and the primary system has higher precedence than the secondary system. Having

a closer look at Pblock,SU and Pdrop,SU , the former is an increasing function of λs; the greater the

arrival rate of SUs, the more likely they will be blocked, as SUs have lower precedence. However,

the latter will slightly decrease with an increasing λs. We should also note that the probability of

a dropped call is initially higher than the probability of a blocked call for the secondary system;

however, a point is reached where dropping becomes less severe than blocking. The reason for this

is the greater the number of calls being blocked, the less probability there is of having SUs collide

with PUs or other SUs in the system, which causes them to be dropped.

To evaluate and analyze the effect of imperfect sensing on the considered system, extensive

simulations were conducted by changing various parameters. Fig. 4.4 shows a comparison between

perfect and imperfect sensing, with SNR = -5 dB, Pfa = 0.1, and the number of samples equaling

200. It can be seen that the probability of a dropped call is not affected at all by imperfect sensing,

as fewer collisions with PUs and/or SUs occur due to the higher detection probability. On the other

hand, the probability of a blocked call is higher than in the ideal sensing case, and this is due to the

effect of the probability of false alarms as can be seen from (4.10).

In order to detect the very low level of a PU signal, the SU must have a sensitivity as much as

20-30 dB higher than that of the PU [76]. Therefore, in Fig. 4.5, two cases are studied. In the first

case, we have reduced the SNR value to -10 dB and have kept the Pfa = 0.1 to see the effect of

reducing the detection performance of the system. We note that the probability of a dropped call is

considerably increased. This is expected, as more collisions with PUs and SUs occur due to events

E3, E4. The unexpected result is the reduction of the probability of blocked calls and that can be

explained as follows. Since the probability of dropped calls increases, more already connected SUs

are dropped. This results in the availability of more channels to incoming SUs. The more channels

are available, the lower the probability of event E2 occurring; as a consequence, the probability of

a call being blocked is reduced as seen in (4.10). In the second case, we have kept the SNR at -10

dB and have decreased Pfa = 0.01. It can be seen in Fig. 4.5 that the dropped probability slightly

increased as reducing false alarms increases the misdetection probability, which then causes more

collisions between PUs and SUs. However, the blocked probability is considerably decreased. The

reason for the decrease is that more dropped calls allows more channels to be available to newly

arrived SUs, and also reduces false alarms allowing the SUs to be more aggressive. This results in

fewer occurrences of event E2 and therefore the number of blocked calls is reduced.

Finally, we ran the simulation to compare the spectrum utilization of the secondary system

in ideal and non-ideal sensing situations according to (4.17). Fig. 4.6 and Fig. 4.7 show the results
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of this comparison. It can be seen that sensing degradation considerably reduces the utilization of

the whole system. For example, in Fig. 4.6 at SNR = (-10, -20) dB, the spectrum utilization of

the secondary system is much lower than in the case of perfect sensing. In this case, more SHs are

underutilized by the secondary system due to the increase in the dropped probability. However,

reducing the misdetection by increasing the SNR value to -5 dB results in only minor differences in

secondary system utilization. In Fig. 4.7, it can be seen that reducing the false alarm probability

also degrades the spectrum utilization of the secondary system as reducing false alarms increases

the misdetection probability which then causes more collisions between PUs and SUs. It should be

noted that the utilization shown in Fig. 4.6 and Fig. 4.7 is for the secondary system only.

4.6 Conclusion

In this chapter, we introduce a complete mathematical analysis for an OSA system with imperfect

sensing results. We analyze three performance metrics, the probability of blocked calls, the prob-

ability of dropped calls and the spectrum utilization of the secondary system, using a continuous

Markov chain model. A simulation study is presented to corroborate the analytical results and to

demonstrate the performance of OSA under imperfect sensing conditions. An extensive simulation

is conducted to evaluate and analyze the effect of sensing errors on the considered system. Our re-

sults demonstrate the usefulness of a reliable sensing function for the effective utilization of SHs. Our

mathematical modeling may be considered as a basic milestone for further analysis and investigation.



Chapter 5

Opportunistic Spectrum Access

Under Imperfect Sensing with

Nonstandard Policies

In chapter 4, the effect of imperfect sensing on the performance of OSA is investigated. A continuous-

time Markov chain is used to model the interaction between the PUs and SUs on the considered

system, and then evaluate it in terms of the probabilities of users being blocked or dropped. Our

results demonstrate that the performance of the underlying system degrades significantly when im-

perfect sensing is considered; thus, there is a pressing need for a reliable spectrum sensing scheme to

improve the overall quality of service in practical scenarios. However, there should be other means

to improve the spectrum utilization even with sensing errors. This will be discussed and analyzed in

the following sections.

This chapter is organized as follows. The main objective, related works and the sensing process

are discussed in Section , and . Markov chain-based analysis of all proposed policies are presented

in section . The simulation results are discussed in Section , and chapter is concluded in section .

5.1 Objective

The main objective of this chapter is to study and analyze the DSA system when non-standard

policies are adopted by the primary system. In this chapter, two non-standard access policies are

proposed for a cognitive radio network. For each policy, we develop a CTMC model to describe the

DSA system and evaluate its performance in terms of blocking probability, dropping probability and

65
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system utilization. Further, we consider the effect of sensing errors and compare the performance of

these access policies with the DSA standard policy.

5.2 Introduction

In [67], Xing et al. investigated CTMC models for DSA in open spectrum cognitive wireless networks.

The following assumptions were considered:

• 1AS1: the sensing of the radio system is perfect, i.e. the detection of spectrum holes is perfect;

• AS2: a standard-access policy, which has been analyzed in chapter 4 and will briefly be clarified

later, is adopted by the radio systems sharing the specified bandwidth;

• AS3: the radio systems are unaware of each other and when collisions occur due to erroneous

idle channel detection by the radio systems, one radio system at random will pick the channel

and the others will be dropped, i.e. under this assumption, collisions are omitted or the effects

of collisions are not considered in any of the discussed scenarios;

• AS4: all of the radio systems which are using or could in the future use the shared channels

are synchronized;

• AS5: all radio systems operate on a non-licensed band with equal priority.

All of the above were assumed to simplify the model of the system; however, some of these as-

sumptions need to be relaxed so that our model will represent the real system reasonably well. For

example, in reference to AS1, sensing is not perfect and sensing errors must be considered so that a

system model will be close to the practical one. AS3 is also a critical assumption as collisions occur

in practice. The same applies to AS4, since it requires communication between these radio systems.

However, if such communication existed, there would be no need for sensing, as the central node or

a known non-central node that is equipped with a management protocol could be used to allocate

the available spectrum. On the other hand, AS5 is a non-critical assumption; however, this means

the priority of any radio system is the same whereas it is well known that in DSA, PUs have priority

over SUs.

Recently, in [77], the tradeoff between spectrum efficiency and fairness for DSA using a CTMC

approach was investigated. Therein, AS5 was relaxed by giving higher priority to PUs; however, AS1

was considered to hold. AS3 was relaxed by adding another assumption, that is, that the access of

SUs is controlled by a secondary management node that tells them if idle-detected SHs are already

occupied by PUs or SUs. This enables collisions to be avoided. However, a further simplification to

1ASi means assumption number i
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the model is possible if we consider only the central node as the SU instead of modeling the SUs

that communicate with this node.

In other work (e.g. [78–81]), the central node assumption was relaxed by considering a common

control channel to do the work instead of using a central node; this is considered to be a distributed

system. In a recent work [70], prioritized SU traffic with perfect sensing and full awareness of the

channel status used by either PU or SU systems was analyzed. Other works (e.g. [82–85]) modeled

the DSA system at the frame level or the call level. They also utilized some of the above assumptions

while relaxing others, and different performance metrics were evaluated.

While various assumptions have been made in the works previously discussed, all of the above

related works share one major assumption: AS1. However, since sensing is not perfect, then sensing

errors should also be considered in modeling DSA system.

In [29, 71, 72], the modeling of DSA with unreliable sensing was studied. However, the authors

considered only a standard access policy for the PU system and assumed that an SU could only sense

one channel at a time. In addition, only the cases where an SU call was blocked were considered.

We will discuss this further later.

Modeling and analysis of DSA depend mainly on the primary system policy, the secondary sys-

tem policy, and the ability of the SU sensing functionality (single channel or multichannel). If we

assume that the primary system uses the standard policy (that PUs are unaware of the SUs existence

and that they have priority over the SUs), then collisions will occur between the two systems. This

type of system and the performance metrics which may be affected by this policy are discussed and

analyzed in chapter 4.

Under the standard policy, PUs are unaware of the SUs occupancy; in this case, the SUs dropped

probability will be affected even if the system was not fully loaded. To clarify this point, assuming

perfect sensing results, the dropped probability will occur in all states except states where there is no

PU. Such a policy will entail more degradation to the GoS from the point of view of the secondary

system because the dropped probability has a greater effect on system performance than the blocked

probability does. Therefore, the total spectrum utilization of the combined system will also be af-

fected even with perfect sensing results and the number of less satisfied secondary users will increase.

Although adopting different policies may sometimes require a change in the infrastructure of the

primary system, such policies can often be easily implemented without change, i.e. by a noise signal

from the secondary system that indicates that a channel is in use, or by using existing protocols,

such as a clear to send/request to send (CTS/RTS) protocol. Hence, there is no need to fully modify
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the infrastructure of the primary system and the priority of PUs over SUs is kept. The analysis

of such policies will also show the upper boundary of spectrum utilization that can be obtained.

Furthermore, we compare the utilization of the secondary system when both standard policy and

non-standard policies are employed.

5.3 Sensing Process

The sensing process, no matter how reliable and robust the employed detection function is, will cause

two unavoidable errors. When the sensing function decides that a PU exists when it is absent, this

is called the probability of false alarm denoted as (Pfa). When the sensing function decides that

a PU has not occupied a channel when it is in fact transmitting, this represents the probability of

misdetection (Pm). The complementary to Pm is the probability of detection (Pd = 1− Pm). These

two types of error can be calculated as shown in chapter ?? which were given as

Pm = 1−Q

(
λ− 2B − γ√

4(B + γ)

)
(5.1)

and Pf can be computed as

Pfa = Q

(
λ− 2B√

4B

)
(5.2)

where γ is the SNR, B is the time bandwidth product, λ is the detection threshold, and Q(.) is the

tail probability of the standard normal distribution, which is defined as Q (t) = 1√
2π

∞∫
t

exp
(
− t

2

2

)
.

5.4 System Model and Markov Chain Analysis with Imper-

fect Sensing

Consider a system of C channels, where all channels are available to the PUs. Access is controlled

by the primary controller, and the system is opportunistically available to SUs when PUs are absent.

We assume the arrival rate of PUs and SUs follows a Poisson process with arrival rates of λp and λs,

respectively. The service times are exponentially distributed with means 1/µp and 1/µs, respectively.

These assumptions are valid considering that the number of users is much greater than the available

channels [29, 73]. In practical, the PUs are unaware of the activity of the SUs; therefore, a PU may

use a channel already occupied by an SU which causes SU’s transmission to drop. The drop occurs

because of a lack of communication between the two systems, or an unwillingness to modify the

infrastructure of the primary system due to cost issues. The SUs, however, maintain an awareness of

the PUs activity by employing a sensing function, and transmitting whenever a channel is available.

The access policy of such a system is called the standard policy. However, in the following we consider

this system when two non-standard access policies have been adopted. For easy reference to these

policies later in the chapter, we denote them as Π1 and Π2.
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5.4.1 Primary User Policy Π1

Under this policy, the PUs act as follows:2 all PUs are aware of the channels used by other PUs and

other SUs. This can be achieved when the PU controller employs the CSMA-CA protocol; therefore,

no collisions occur between a PU and an SU as long as the following conditions are simultaneously

satisfied:

• there are unoccupied channels in the system;

• the sensing result is perfect.

Such a policy is important for the primary system if, for example, it is willing to tolerate changes. To

clarify the importance of this policy, consider a network operator interested in sharing its spectrum

with another network operator (a secondary operator/system in our case). This policy will be more

attractive to the secondary operator as it is more reliable for its users. The secondary system policy

is as follows: all SUs employ a sensing function and are required to sense channels periodically before

accessing the system. All SU arrivals are employing the same sensing function and are thus aware of

other SUs currently occupying a channel; therefore, no collisions occur between them in the perfect

sensing case. In the following, we will clarify all the events that may arise because of imperfect

sensing.

We assume the system is in the general state s(i, j), where i represents PUs and j represents

SUs. The following cases describe the system behavior when a PU arrives:

• Case I: A PU arrives and finds an idle channel with i + j < C; therefore, the system state

transfers from state (i, j) to (i+1, j) with rate λP . Note that in this case there are no collisions

with SUs currently occupying a channel as the PU is aware of the current PUs and SUs when

employing this strategy.

• Case II: A PU arrives and all channels are occupied by a PU or an SU, i.e. i + j = C and

j 6= 0. The SU will then be interrupted, as the primary system has priority, and the system

state transfers from i, j to i + 1, j − 1 with rate δ(s)λP , where δ(s) is an indicative function,

δ(s) = 1 if i+ j = C, and j 6= 0. Hence, the probability of a dropped SU call in this case can

be computed as

Pdrop,SU =
∑
i,j

i+j=C,j 6=0

P (i, j)
λp
λs
, (5.3)

where P (i, j) denotes the steady-state probability of state s(i, j).

2For all policies of the considered system the PUs have priority over the SUs.
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• Case III: A PU arrives and all channels in the system are occupied by other PUs, i.e. i =

C, j = 0; in this case, the new PU request will be blocked. Hence, the probability of a PU

being blocked is given by

Pblock,PU = P (C, 0). (5.4)

Note that case II is the only case that affects the secondary system. All these events can be seen in

Fig. 5.1 with solid lines representing the PU cases and dotted lines representing the SU cases.

Based on the sensing model, the probability that an SU will find a channel as idle is the comple-

ment of the false alarm probability denoted as β = 1−Pfa. It should be noted that at any time the

number of available channels in the system will be Nav = C − Noc, where Noc is the total number

of occupied channels and is given as Noc = i+ j. Then, the probability of an arriving SU sensing l

wrong-idle channels among the occupied channels is given as
(
Noc
l

)
P lmP

Noc−l
d .3 Among the available

channels, the probability of an SU arrival sensing k right-idle channels is
(
Nav
k

)
βkPfa

Nav−k. As we

considered earlier that the system is in the general state s(i, j), the following summarizes all the

arrival cases an SU may face:

• Case I: An SU arrives and there are no collisions with any current PUs or SUs. We denote

this event as E1, and the probability of this event can be computed as

PE1
=

Nav∑
k=1

(
Nav
k

)
βkPNav−kfa

Noc∑
l=0

k

l + k

(
Noc
l

)
PNoc−ld P lm. (5.5)

Then the transition rate from state (i, j) to state (i, j + 1) is PE1
λs.

• Case II: An SU arrives and all channels are busy; therefore, the arriving SU will be blocked.

We represent this event by E2 and its probability is given by PE2
= PNocd (1−β)Nav . It follows

then that the total probability of an SU being blocked with imperfect sensing will be

Pblock,SU =
∑
i,j

P (i, j)PE2(i,j). (5.6)

• Case III: An SU arrives and collides with a PU transmission due to a sensing error in detecting

a PU-occupied channel; we denote this event by E3. The probability of this event will be the

probability of wrong-detecting a channel among all channels occupied by PUs or SUs,4 and

the probability of right-detecting the actual available channels Nav. Therefore, we can write

3The symbol
(
n
m

)
= n!

m!(n−m)!
.

4The rationale for this is that the SU cannot distinguish between an SU transmission and a PU
transmission.
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the probability of this event as

PE3
=

i∑
k=1

(
i

k

)
P

(i−k)
d P km

j∑
n=0

(
j

n

)
P

(j−n)
d Pnm

Nav∑
l=0

k

l + n+ k

(
Noc
l

)
P

(Nav−l)
fa βl

In this case, the arriving SU will be dropped and the probability of a dropped call due to this

event is given as

PdropE3
,SU = λsPE3

/λs = PE3
(5.7)

Note that the system will stay in its current state and no transition occurs here.

• Case IV: An SU arrives and collides with another SU transmission. We denote this event by

E4, and the same argument could be used as in case III. Thus, the probability of this event

can be computed as in event E3, and can be written as

PE4
=

j∑
k=1

(
j

k

)
P

(j−k)
d P km

i∑
n=0

(
i

n

)
P

(i−n)
d Pnm

Nav∑
l=0

k

l + n+ k

(
Noc
l

)
P

(Nav−l)
fa βl

The probability of a dropped call due to this event will then be

PdropE4
,SU = 2λsPE4

/λs = 2PE4
. (5.8)

Hence the transition rate from state (i, j) to state (i, j − 1) will be jµs + 2PE4
λs.

To compute the total probability of a dropped call in the secondary system, we add the probabilities

of a dropped call for all events that cause an arriving SU to be dropped. Hence, the total probability

of a dropped call can be expressed as

Pdrop,SU =
∑
i,j

P (i, j)[PE3(i, j) + 2PE4(i, j)]

+
∑
i,j

i+j=C,j 6=0

P (i, j)
λp
λs
. (5.9)

The system of linear equations which is formed from the Markov chain model can be written in

vector-matrix form as

pQ = 0, (5.10)

where p is the steady-state probability vector, and Q is the infinitesimal generator matrix which

characterizes the transition of the states of the Markov chain. Since all states of the system are
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reachable from all other states, it follows that the CTMC is irreducible. To yield a unique, pos-

itive solution, (5.10) can be solved with the imposed normalization condition of the steady state

probability, which is defined as∑
i

∑
j

P (i, j) = p1 = 1, ∀(i, j) ≤ C (5.11)

where 1 = [1, 1, 1, ..., 1]T , where T indicates the transpose operation.

5.4.2 Primary User Policy Π2

To add more flexibility to the considered system, we introduce a new policy denoted by Π2. In this

policy, the SUs are limited to accessing C − q, where q, 0 ≤ q ≤ C is an optimization parameter

allowing a trade-off between blocked and dropped probabilities. Note that the primary system still

has priority over the secondary system. The CTMC model for the case when 0 ≤ i ≤ q is shown in

Fig. 5.2. In this case, as long as the number of PUs is less than q, the SUs will be dropped only when

imperfect sensing occurs, represented by the discussed events E3, E4. However, if a new PU arrives,

i.e. i ≥ q, then the newly arrived PU will be randomly assigned a remaining channel. Therefore, the

CTMC in this case will be modified as shown in Fig. 5.3.

Based on the cases of PUs and SUs in the previous discussion, we can compute the dropped

and blocked probabilities of the SUs with the help of the transition diagrams shown in Fig. 5.2 and

Fig. 5.3. The dropping probability will consist of two parts. The first part is due to sensing errors

which are the result of the two events E3, E4, and the second part is caused by the arrival of a PU

which collides with an SU (Case II of a PU arrival). Hence, the overall dropped probability of the

SU system according to this policy can be expressed as

Pdrop,SU =
∑
i,j

j<C−q

P (i, j)[PE3
(i, j) + 2PE4

(i, j)] (5.12)

+
∑
i,j

i≥q,j 6=0

P (i, j)
jλp

(C − i)λs
.

The blocked probability of the secondary system also consists of two parts. The first part is due

to a sensing error of an SU arrival that finds all channels busy (represented by event E2), and the

second part is the state where SUs are not allowed access to a channel, i.e. j ≥ C − q. Hence, we

can express the blocked probability of the SUs as

Pblock,SU =
∑
i,j

j<C−q

P (i, j)PE2(i,j) +
∑
i,j

j≥C−q

P (i, j). (5.13)

The steady state solution for this policy can easily be computed using (5.10) and the normalization

condition defined in (5.11) with j ≤ C − q.
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Note that the considered system will be reduced to the well-known model M/M/C/C, which

corresponds to a single primary system, and can be evaluated using the well-known Erlang loss for-

mula [86] if no SU exists, i.e. j = 0, λs = 0andµs = 0.

The model has been discussed and analyzed for two performance metrics, i.e., blocked and

dropped probabilities. However, another significant performance metric that quantifies the effect of

the two GoS metrics (blocked and dropped probabilities) is system utilization. This metric captures

the successfully served traffic of a communication system. Therefore, we define primary system

utilization as

Up = ρp(1− Pblock,PU ) (5.14)

where ρP = λp/Cµp. Secondary system utilization is defined as

Us = ρs(1− Pblock,PU − Pdrop,SU ) (5.15)

where ρs = λs/Cµs. Then, the total utilization, U , of the combined system is the sum of the

utilization of both systems, i.e., U = Up + Us. With no SUs, the total utilization will only be

computed for the PUs; therefore, the utilization of the system becomes U = Up.

5.5 Simulation and Discussion

Before evaluating the previously discussed policies of the considered system with imperfect sensing,

we will start with a simple design example to focus on the usefulness of the introduced policies and

their mathematical analysis. Let us assume that there are no secondary users, i.e. j = 0, λs = 0 and

µs = 0. The considered system will then consist only of the primary system. Let the system designer

restrict the number of channels to C = 10 and the blocking probability of the primary system to

under 1%. The question is: what is the maximum allowable primary traffic that this system can

support given a service time of 0.5 min−1? The answer to this question can easily be found with

the help of Fig. 5.4. We plot the primary system blocked probability, i.e., (5.4), and the primary

system utilization. Assuming λp = 1 : 10, the blocked probability of the primary system is 0.01 at

the value of λp = 2.26, which corresponds to a primary system utilization of 44.7%. This example

was introduced to enable us to compare the utilization of the whole system under perfect/imperfect

sensing when using standard and non-standard policies. This will be discussed further in the following

sections.

Based on the previous parameters, a Matlab code was written to compare our analytical

results with the simulation ones. A large number of SU service requests (100 000) were generated

for each policy. Then, for each service request the Matlab code checked and admitted requests

according to each policy. The blocked and dropped probabilities were recorded and compared to
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Figure 5.4: Performance evaluation of the primary system in terms of blocked probability
and system utilization, with C = 10 and µp = 0.5

the computed ones. In the following subsection, we compare the performance metrics for all policies

under perfect/imperfect sensing results.

5.5.1 Blocked probability: Perfect sensing

In Fig. 5.5, we compare the blocked probability for the two non-standard policies in the perfect

sensing case, i.e., Pfa = 0 and Pd = 1. The following observations can be noted from Fig. 5.5.

• There is no change in the primary system blocked probability; it has the same value as shown

in Fig. 5.4. This is also consistent with (5.4) since a PU is blocked only when the system is

in state (C, 0).

• The blocked probability of SUs is an increasing function of λs. This is expected as the more

SUs arrive, the more likely they will be blocked.

• Policy Π1 has a higher blocked probability than Π2 when q = 0. The reason is that in Π1, the

new PUs are aware of SUs occupying a channel. As a consequence, newly arrived PUs start

occupying the empty channels and hence the available channels are occupied faster. Therefore,

the arriving SUs will be blocked as more channels are occupied by PUs.
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• The blocked probability of policy Π2 when q = 0 is less than when q > 0. The reason is that

when q increases, more channels are reserved for PUs and hence the blocked probability of

SUs increases.
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Figure 5.5: Perfect sensing: Evaluation of Π1 and Π2 in terms of blocked probability of SUs
and PUs, with C = 10, λp = 2.26, µp = 0.5, µs = 5

5.5.2 Blocked probability: Imperfect sensing

In Fig. 5.6, we evaluate the blocked probability of the system under imperfect sensing. The following

can be observed:

• As the arrival rate of the PUs is fixed, the blocked probability of the PUs is the same as in

the perfect sensing case. This is also consistent with (5.4).

• The behavior of the blocked probability for both non-standard policies is the same as in perfect

sensing, i.e. the probability is an increasing function of λs, the blocked probability of Π1 is

higher than Π2 when q = 0, and as q increases the blocked probability of Π2 is increased.

• Compared to the perfect sensing case (Fig. 5.5), the blocked probability for both policies

is reduced. The reason for such behavior is that as the SNR is reduced, the PUs detection

probability is reduced. This causes more PUs to be misdetected and therefore the newly

arrived SUs are allowed access without being blocked.
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• The blocked probability of Π2 increases when q is increased. This can be justified as before,

i.e. as q increases, more channels are reserved for the PUs which results in the SUs blocked

probability increasing.
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Figure 5.6: Imperfect sensing: Evaluation of Π1 and Π2 in terms of blocked probability of
SUs and PUs, with C = 10, λp = 2.26, µp = 0.5, µs = 5, Pfa = 0.1 and SNR= -15 dB

5.5.3 Dropped probability: Perfect sensing

The dropped probability for both policies under perfect sensing can be seen in Fig. 5.7. We sum-

marize our observations as follows:

• The dropped probability of Π1 is an increasing function of λs. This can be justified as follows:

in this case (perfect sensing) we consider only the second term of (5.9) and (5.12), i.e., the

events E3 and E4 are not involved. In this term, the dropped probability is related to states

in the system where i+ j = C, j 6= 0. The result is that the more SUs access the system, the

more likely they are to be dropped.

• The dropped probability of Π2 decreases as q is increased. This is because as q increases

more SUs are blocked and therefore the SUs become less likely to be dropped. Also, if we

compare this figure (Fig. 5.7) with Fig. 5.5, there is, as always, a tradeoff between the

dropped and blocked probability which can be seen in policy Π2, i.e. increasing q will affect

both probabilities, and if one increases the other will decrease.
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• For a fixed value of q, the dropped probability of Π2 slightly decreases with λs. This can be

related to the blocked probability (see Fig. 5.5); as more SUs are denied access to the system,

i.e. blocked, this results in fewer SUs in the system, and therefore the dropped probability

decreases.
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Figure 5.7: Perfect sensing: Evaluation of Π1 and Π2 in terms of dropped probability of
SUs and PUs, with C = 10, λp = 2.26, µs = 5 and µp = 0.5

5.5.4 Dropped probability: Imperfect sensing

Fig. 5.8 shows the dropped probability of both non-standard policies in the imperfect sensing case.

The following can be observed:

• The dropped probability for both policies is an increasing function of λs. This is as previously

justified; the more SUs that are not blocked, i.e., that are able to access the system, the more

likely they are to be dropped. Note that, in this case, the two terms of (5.12) and (5.9) are

involved, which causes more dropped SUs compared to the perfect sensing case.

• For a given range of λs, the dropped probability of Π2 is higher than that of Π1 as the latter

is aware of the SUs currently in the system and tries to avoid a collision with them.

• The value of q will affect the dropped probability of Π2 in such a way that it may be higher or

lower than Π1. This is because, besides the sensing errors represented by the events E3, E4,
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in Π1 the states in which the SUs will be dropped are the states when i+ j = C, j 6= 0 as seen

in (5.9). In Π2, however, it also involves the states where i+ j < C since a newly arrived PU

will randomly select a channel when q ≤ i ≤ C, as seen in (5.12) and the transition diagram of

Fig. 5.3. Therefore, when q is decreased, more states are involved in the second term of (5.12)

which results in a higher dropped probability compared to Π1. On the other hand, when q is

increased, fewer states are involved in the second term of (5.12) and hence lower numbers of

dropped calls will occur.

• The model perfectly catches the false alarms and misdetections of the PUs which are repre-

sented by events E3, E4. This can be seen if we compare the dropped probability in perfect

sensing which is shown in Fig. 5.7 with Fig. 5.8, as the dropped probability increases due to

these events.

• For policy Π1, increasing the value of q causes a reduction in the dropped probability. This

can be related to the blocked probability, as when q increases more channels are reserved for

the PUs. Hence, fewer SUs access the system which causes fewer SUs to be dropped.
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Figure 5.8: Imperfect sensing: Performance evaluation of Π1 and Π2 in terms of dropped
probability of SUs and PUs, with C = 10, λp = 2.26, µp = 0.5, µs = 5,Pfa = 0.1 and SNR=
-15 dB
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5.5.5 System utilization: Perfect and imperfect sensing

In this section we evaluate system utilization for the considered policies under perfect/imperfect

sensing.

Perfect sensing

It can be seen from Fig. 5.9 that the system shows a considerable improvement in total system

utilization, i.e. in the absence of the SUs, the system utilization is 44.7% which is consistent with

our previous analysis (see Fig. 5.4). As λs increases, the system utilization increases in both

policies. For example, at λs = 9, the utilization is 61.2%, 60.58% and 60.25% for Π1, (Π2, q = 5)

and (Π2, q = 0). The utilization percentage can then be computed as

U − Up
Up

∣∣∣∣
λs,λp

(5.16)

Hence, system utilization increases by 36.5% on average.

It can also be seen that Π1 has a higher utilization than the standard policy (Π2, q = 0) as the

PUs are aware of the SUs. This is also consistent with our previous analysis and discussion in terms

of blocked and dropped probabilities of Π1 as it has the lowest dropped probability and a blocked

probability comparable to the standard policy (Π2, q = 0). We also note that even when we change

the q value of Π2, Π1 still has the highest utilization. This is because the dropped probability of

Π2 for all values of q is higher than the dropped probability of Π1. The blocked probability is also

higher than the blocked probability of Π2 when q > 1.

Imperfect sensing

To evaluate the considered system in the imperfect sensing scenario, we used Pfa = 0.1 and SNR=-20

dB. The rest of the simulation parameters are the same as in the perfect sensing case. We plotted

the results on the same figure, i.e. Fig. 5.9, for comparison. It can be see that the sensing errors

which are represented by the events E1, E3, E4 considerably reduce system utilization. On the other

hand, policy Π1 still has a higher utilization compared to policy Π2. This also provides concrete

evidence of the correctness of the presented model.

5.6 Conclusion

In this chapter, we have presented a complete continuous Markov chain model of the two nonstandard

access policies for a DSA system with imperfect sensing results. We have also introduced a com-

plete mathematical analysis for both policies using reasonable assumptions. In addition, we showed
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Figure 5.9: System utilization in perfect/imperfect sensing, with C = 10, λp = 2.26, µp =
0.5, µs = 5,Pfa = 0.1 and SNR=-20 dB

that the standard policy is a special case of the proposed policy Π2 when q = 0. Finally, for both

presented policies, we analyzed three performance metrics based on the continuous Markov chain

model; namely the blocked probability, the dropped probability and spectrum utilization. Spectrum

utilization captures the effect of blocked and dropped probabilities and quantifies their degradations.

An extensive simulation was conducted to evaluate and analyze the effect of sensing errors on the

considered system. On one hand, our results showed that these polices slightly improved spectrum

utilization under imperfect sensing. However, although such an improvement is beneficial and assists

in reducing sensing complexity, the results demonstrate the usefulness of a reliable sensing function

for the effective utilization of SHs. Our mathematical modeling may be considered as a basic mile-

stone for further analysis and investigation. We conclude that a secondary radio system employing a

dynamic, controllable, manageable and easy to configure access policy based on an initial agreement

with the primary system can enhance overall system utilization even with severe sensing errors. Our

results suggest that, as sensing errors are inevitable, DSA performance can be enhanced by adopting

a suitable policy. With the proposed policies, an improvement in the system utilization can still be

observed even with severe sensing errors and the GoS requirements for both PUs and SUs can still

be satisfied.



Chapter 6

Proposed Future Works

6.1 Challenges in Practical Designs of a CRN

The proposed ideas and their mathematical analysis, which are presented in the previous chapters,

cause the reader to think about the many unexplored areas that still need to be extensively studied.

For example, although cooperative sensing outperforms local sensing in terms of detection proba-

bility, the tradeoffs between the achieved detection gain when cooperative sensing is employed and

the complexity of the cognitive network need to be considered. The tradeoffs between the increased

complexity and/or power consumption and the main objective to be achieved (spectrum utilization)

should also be considered. Other questions may arise and need further studies. For example, what if

the sensing layer has a bi-protocol for detecting a PU (local and cooperative)? Does that assure full

cognition for a CR user? If so, what factors need to be considered so that either one can be invoked?

For example, should the position of PU, channel between the PU and the SU, power available on

the SUs side or the SU’s ability to cooperate be considered? All of these questions need to be fully

investigated and analyzed before a CRN can be considered to be a practical solution to reliably

increase spectrum utilization.

In chapter 3, the optimal number of CRs of the centralized cooperative sensing is derived based

on the assumption that the CRs decisions are sent to the FC using hard decision combining scheme.

Although this scheme is more popular as it is easy to implement and avoids bandwidth expansion

of the feedback channel. However, soft combining may also be used and the result can be extended

to this case. But the tradeoffs between the bandwidth expansion, the power used to forward a local

decision statistic such as, the log-likelihood ratio or any suitable sufficient statistic, and the achieved

gain need to be studied, analyzed and compared with the hard case. In addition, other factors

that influence decisions when choosing between hard or soft combining should also be studied. For
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example, is the bandwidth of the feedback channel the only limiting factor for deciding on hard or

soft combining? What about the position of the PU? If the false alarm probability of the individual

SUs is not the same, should the weighing of the local decisions to maximize the detection probability

at the FC should consider only their detection probabilities or their false alarms? Answering these

questions is not a trivial task and it may lead to the discovery of new optimization techniques to

solve other existing problems.

Moreover, the thesis is focused on two aspects of CRs, that is, observation and adaptation. The

observe portion is represented by work on sensing which has been discussed in chapter 2 and 3,

and the adapt portion, that is, when the radio performs channel access and policy selection which

has been studied in chapter 4 and 5.1. However, other aspects of CR for example reasoning and

learning should also be studied. Such aspects may help the CRs to reduce the sensing periodicity

and therefore lower the power consumption. For example, researchers may investigate prediction

methods or use hidden Markov chain to predict the behavior of the PUs and then identify the SHs.

Once answers to all of the previous questions have been found, the spectrum holes can now be

reliably detected but not efficiently accessed? This leads to another set of questions that also require

further studies to find out the system parameters that affect the access efficiency. For example, What

about the sensing periodicity which may considered as a cross layer optimization problem? What

if the time remaining after perfectly sensing a PU channel is not sufficient to transmit the smallest

data packet size of an SU, should the SU ignore that time or utilize it for other purposes?

Further, in chapter 4 and 5, the proposed access policies are analyzed to study the effect of

sensing errors on the system. But, does the model itself perfectly reflect a practical scenario? Are

the assumptions that have been made appropriate for the mathematical model? Determining the

appropriate values to assign to the parameters of the model (one value per parameter) is both a

critical and a challenging part of the model-building process. Determining parameter values for

real problems requires gathering relevant data and gathering accurate data is frequently difficult.

Therefore, the value assigned to a parameter often is, of necessity, only a rough estimate and can

cause a sensitivity analysis problem, i.e. for a mathematical model with specified values for all its

parameters, the models sensitive parameters are the parameters whose value cannot be changed

without changing the optimal solution. This is because with the uncertainty about the true value of

the parameter, it is important to analyze how the solution derived from the model would change (if

at all) if the value assigned to the parameter were changed to other plausible values.

1The CR may perform other tasks in the adaptation aspect, for example power, topology control, adaptive
modulation and coding, or some combination thereof [87]
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In addition, there are pitfalls to be avoided when mathematical models are used. Such a model is

necessarily an abstract idealization of the problem, so approximations and simplifying assumptions

are generally required if the model is to be tractable. The proper criterion for judging the validity

of a model is whether the model predicts the relative effects of the alternative courses of action

with sufficient accuracy to permit a sound decision. Consequently, it is not necessary to include

unimportant details or factors that have approximately the same effect for all the alternative courses

of action considered. It is not even necessary that the absolute magnitude of the measure of per-

formance be approximately correct for the various alternatives, provided that their relative values

(i.e., the differences between their values) are sufficiently precise. Thus, all that is required is that

there be a high correlation between the prediction by the model and what would actually happen in

the real world. To ascertain whether this requirement is satisfied, it is important to do considerable

testing and consequent modifying of the model.

There are still many challenges ahead, especially in the physical and MAC layers. These are the

most important layers that may require modification to build a reliable CRN or to be represented

by a perfect mathematical model. Designing and implementing a CRN also requires that hardware

limitations and cost implementations should be taken into account.

6.2 Practical and Experimental Studies

The utilization of the spectrum needs to be studied. However, this should not be limited only to

theoretical works, simulation models or mathematical models; more effort should be given to exper-

imental studies to see how these ideas can be efficiently combined together to build a reliable CR

system that is capable of exploiting the white spaces in the spectrum. All of the above questions

can be answered if the results of such a model are compared to a simple practical design. If the

model happens to represent the real system reasonably well, then its solution is also optimal for

the real situation. Some mathematical models may be so complex that it is impossible to solve

them by any of the available optimization algorithms. In such cases, it may be necessary to abandon

the search for the optimal solution and simply seek a good solution using heuristics or rules of thumb.

One way to have a suitable comparison is to use a more pragmatic approach, that is, to collect

data under various channel and system conditions, and then compare the theoretical works to real

time data and see well it fits the theory. In addition, various parameters can be optimized for full

spectrum utilization and the implementation of various searching and optimization algorithms under

practical scenarios can be studied.
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