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Abstract

In this thesis, we propose methods for estimation of the colour of the illuminant. First, we investigate

the effects of bright pixels on several current colour constancy algorithms. Then we use bright

pixels to extend the seminal Gamut Mapping Colour Constancy algorithm. Here we define the

White-Patch Gamut as a new extension to this method, comprising the bright pixels of the image.

This approach adds new constraints to the standard constraints and improved estimates. Motivated

by the effect of bright pixels in illumination estimation, we go on to incorporate consideration of

specular reflection per se, which tends to generate bright pixels. To this effect we present a new and

effective physics-based colour constancy representation, called the Zeta-Image, which makes use

of a novel log-relative-chromaticity planar constraint. This method is fast and requires no training

or tunable parameters; moreover, and importantly, it can be useful for removing highlights. We

then go on to present a new camera calibration method aimed at finding a straight-line locus, in a

special colour feature space, that is traversed by daylights and approximately by specular points.

The aim of the calibration is to enable recovering the colour of the illuminant. Finally, we address

colour constancy in a novel approach by utilizing unsupervised learning of a model for each training

surface in training images. We call this new method Exemplar-Based Colour Constancy. In this

method, we find nearest-neighbour models for each test surface and estimate its illumination based

on comparing the statistics of nearest-neighbour surfaces and the target surface. We also extend our

method to overcome the multiple illuminant problem.
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Chapter 1

Introduction

The human visual system perceives the colour of objects to some extent consistently under different

illumination conditions [7, 44]. Therefore humans perceive the same colour for an object despite

variations in the colour of the light [81]. This ability, which is called colour constancy, helps us

to recognize objects. It is known that brain and eye are both involved in this processing. The

human visual system receives the light stimulus in the eye and transfers that signal to the brain. The

brain recognizes familiar objects in part by their consistent colours, regardless of the illumination

condition. The detailed mechanism of colour constancy in human vision is not yet known but it has

been shown that colour constancy operates already even at only 4 to 5 months of age [199] while

on the other hand 9-week-olds respond equally to changes either of the illuminant or of surface

reflectance [43]. For an example of colour constancy, a yellow banana looks yellow to us under

white sunlight, red sunset light, and also indoor fluorescent light. It is likely that all animals with

colour vision have colour constancy [187] and this property is indeed demonstrated for some species,

such as monkeys [54] and goldfish [46].

Fig. 1 shows some images captured under different light conditions. Because of the colour

constancy ability in our visual system, we know to some extent the actual colour of objects in these

scenes despite the extreme lighting conditions in some of these images. However, it is not easy for

computer vision systems to discover the actual colour of objects in these scenes.

In computer vision, colour constancy refers to computational approaches to recovering the actual

colour of surface objects. As such, it is usually called computational colour constancy. At the early

stage of work in computational colour constancy, computational models based on human vision

perceptional theory were used to solve the colour constancy problem (mainly Retinex theory [117]).

However, recent colour constancy methods have mostly been based on the statistical or physical

1
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Figure 1.1: Some images captured under different lighting conditions.

aspects of captured images, or have tried to learn a model based on set of training images, and

therefore are completely different than human colour constancy.

Colour constancy serves an important role in human or animal colour vision system in that it

helps them identify objects notwithstanding large differences in illumination. Therefore, it could

be essential for any intelligent visual system. In computer vision, colour constancy is essential for

many applications such as image retrieval, colour reproduction and object recognition. Therefore

many colour constancy algorithms have been proposed by researchers.

On the other hand, in photography white balancing refers to the process of adjusting for the

colour of the light, and can typically be used to correct the pixel colours for extreme changes in the

colour of light. This process can be done manually or automatically in the camera or using image

enhancement software tools. Since automatic white balancing tries to estimate the colour of the

illuminant, white balance is the colour constancy method most widely used in still cameras, digital

video and image enhancing software tools. However, note that in the white balancing process there

is no need to completely discount (remove the influence of) the colour of the illuminant since the

illuminant is also part of the scene and photographers may prefer to somewhat keep its influence in
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the captured image. Current digital cameras as well as video recorders are almost always equipped

with some white balancing feature to enable photographers to capture desirable images.

The colour of surface objects are compounded of the actual colour of surfaces, the colour of

illuminant, and the camera characteristics, so a computer vision task such as recovering the actual

surface colour requires the capability to discount the colour of the illuminant. Colour constancy

processing usually includes two main steps: estimating the colour of the illuminant and discounting

the effect of the estimated illumination. Fig. 1.2 shows an image captured under an indoor illuminant

while the output is the same scene, render under white light.

Specular reflection is the mirror-like reflection of light from a surface, and can be composed of

very bright highlights or a more broad sheen on surfaces. In the theoretical case the light reflection

from a single incoming direction is reflected into a single outgoing direction. The colour of specular

reflections is the same as the colour of the reflected light, within a Neutral Interface Reflection (NIR)

[121] condition, which mostly obtains for the surfaces of optically inhomogeneous objects (such as

ceramics, plastics, paints, etc.) but not for metals. This property make specular reflection, which is

usually in bright areas of image, an appropriate tool for estimating illumination.

(a) (b) (c)

Figure 1.2: (a) Input image captured under indoor illuminant; (b) estimated colour of illuminant; (c)
the output, which is the same scene rendered under white light.

1.1 Motivation

Despite extensive research into the computational colour constancy problem, none of the proposed

methods is both computationally inexpensive and sufficiently high-performing — most methods fail

in some cases. Most simple colour constancy algorithms are based on some assumptions which are

not necessarily true in all cases, producing some failure cases [12, 13]; and also in general they do

not perform well enough overall compared to recent more complex methods [99]. Complex colour
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constancy methods, which mainly derive from learning a model based on training data sets, are

computationally expensive and so they are not suitable for real-time application in devices such as

digital cameras, video recorders and robots.

In another aspect of the problem, most colour constancy algorithms assume that the spectral

distribution of light source is spatially uniform in the image and that the colour of the illuminant is

constant across the whole image, Therefore, estimation of the colour of this constant illuminant is

the main goal of most of the colour constancy methods we discuss. Notwithstanding the fact that

this assumption works well in most cases and is widely used in commercial cameras, there exist

common cases for which this assumption is violated in real images. These include: daytime sky-

light from windows together with additional indoor light; in-shadow plus non-shadowed lights (say,

sunlight plus sky-light producing shadowed and non-shadowed pixels); or two different light sources

in an indoor room. This situation, which is called the case of multiple illuminants or multiple light

sources, including sources with different colours, is a common failure for current colour constancy

methods [55, 105]. For example, inter-reflection produces locally varying light intensity and colour.

Therefore, colour constancy in the multiple illuminant situation is still an open problem despite

much research for the uniform illuminant situation [105]

As mentioned above, the colour of specular reflections is usually or at least is taken to be the

same as the colour of the reflected light [121]. While there are some algorithms which do try to

estimate the colour of the illuminant using specular reflection [120, 122, 168, 165], we believe that

the information included in the specular reflection component has not been fully used in algorithms

to date. Algorithms explicitly using specular reflection have been usually difficult to implement,

computationally expensive (require segmentation [120, 168, 165] ) or not sufficiently accurate [104].

In this thesis we try to use specular reflection as a main source of information in the problem of

estimating illumination, with the aim of proposing simple and fast algorithms that take advantage of

the extra information in specularities.

1.2 Thesis Organization

This thesis is organized as follows: In Chapter 2, we discuss background material and previous

works related to the topic of this thesis. We describe the physical aspects of specular reflection

compared to diffuse reflection and present the simplified model used in computer vision called the

dichromatic model. We review algorithms which separate diffuse and specular reflection compo-

nents. Some of them use single images and some use multiple images. A group of these algorithms
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make use of polarization. And another group develops illuminant-dependent colour spaces.

We then describe the computational colour constancy problem and categorize illumination esti-

mation methods into four general groups: statistical, physics-based, gamut based and learning-based

methods and review several colour constancy methods in each of these categories. We go into more

detail for physics-based methods since these tend more toward considering specular reflection as

one main source of information in the problem of estimating illumination.

In the next five chapters, we propose five distinct methods to estimate the colour of illuminant; a

statistical method, two physical-based methods, a gamut based method and a learning-based method

which include different approaches to this well known problem.

In Chapter 3, we investigate the effects of bright pixels on several current colour constancy algo-

rithms such as the White-Patch, Grey-World, Grey-Edge and the Shades-of-Grey method. Moreover,

we describe a simple framework for an illumination estimation method based on bright pixels and

compare its accuracy to well-known colour constancy algorithms applied to four standard datasets,

and show the beneficial effect of our deliberations. We also investigate failure and success cases

using bright pixels, and propose desiderata on input images with regard to the proposed method.

In Chapter 4, we apply the bright-pixel understanding by extending the Gamut Mapping colour

constancy algorithm, one of the most important and accurate illumination estimation methods. We

define the White Patch Gamut as a new extension to the Gamut Mapping Colour Constancy method,

comprising the bright pixels of the image. Adding new constraints based on the possible White Patch

Gamut to the standard gamut mapping constraints, a new combined method outperforms gamut

mapping methods as well as all other well-known colour constancy methods.

In Chapter 5, we present a new and effective physics-based colour constancy algorithm using

specular reflection which makes use of a novel log-relative-chromaticity planar constraint. We call

the new feature the Zeta-image. We show that this new feature is tied to a novel application of

the Kullback-Leibler Divergence, here applied to chromaticity values instead of probabilities. The

new method requires no training data or tunable parameters. Moreover it is simple to implement

and very fast. Our experimental results across datasets of real images show the proposed method

significantly outperforms other unsupervised methods while its estimation accuracy is comparable

with more complex, supervised methods. The addition of new constraints means that every colour

constancy method we tried is improved by the new feature. Moreover, and importantly, this new

feature can be useful for the purpose of removing specular reflection and highlights.

In Chapter 6, we present a new camera calibration method aimed at finding a straight-line lo-

cus, in a special colour feature space, that is traversed by daylights and as well also approximately
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followed by specular points. The aim of the calibration is to enable recovering the colour of the

illuminant in a scene, using the calibrated camera. Experimental result shows that using such a cal-

ibrated locus and the Zeta-image feature we can find the illuminant, with performance competitive

with complex methods notwithstanding the fact that many of the images used are not captured under

daylight conditions.

In Chapter 7, we focus on surfaces in the image, addressing the colour constancy problem as

unsupervised learning of an appropriate model for each training surface in training images. We call

this method Exemplar-Based Colour Constancy. We find nearest neighbour models for each surface

in a test image and estimate its illumination based on comparing the statistics of pixels belonging

to nearest neighbour surfaces and the target surface. The final illumination estimation results from

combining these estimated illuminants over surfaces to generate a unique estimate. The proposed

method has the advantage of overcoming multi-illuminant situations, which is not possible for most

current methods. We also show a technique to overcome the multiple illuminant situation using

the proposed method and test our technique on images with two distinct sources of illumination

using a multiple-illuminant colour constancy dataset. The concept proposed here is a completely

new approach to the colour constancy problem. We show that it performs very well, for standard

datasets, compared to current colour constancy algorithms.

Finally, in the last chapter, we conclude the thesis with a comparison of our five proposed meth-

ods for estimating the colour of the illuminant and their criteria such as running time, accuracy,

complexity and parameters. Additionally, we finish the thesis with a discussion of future work.



Chapter 2

Background and Related Work

Colour Constancy refers to computational approaches to recover the actual colour of surface objects.

The colour of surface objects are compounded of the actual colour of surface and the colour of the

illuminant, so recovering the actual surface colour requires the capability to discount the colour of

the illuminant. Therefore the colour constancy usually reduces to identification of the illumination

since discounting the colour of illuminant is then a much easier task. As we discussed in the first

chapter, colour constancy plays an important role in human or animal colour vision systems and

helps them identify objects despite large differences in illumination. Therefore, it could be essential

for any intelligent visual system. In computer vision colour constancy is essential for many appli-

cations such as image retrieval, colour reproduction and object detection [174]. Therefore many

colour constancy algorithms have been proposed by researchers [110, 104].

As an example of application of colour constancy, we have shown the utilization of simple

colour constancy methods in a standard object classification problem in [174]. We apply the colour

constancy algorithms as preprocessing of the bag-of-words learning methods, and compare the per-

formance of these methods with colour invariant descriptors such as C-SIFT [179] and Opponent-

SIFT [33] in order to classify 20 different object categories, e.g. bird, bottle, car, dining table, motor-

bike and people. Although colour constancy as preprocessing does not outperform colour invariant

descriptors by itself, we determine that a combination of these local colour constancy methods and

colour invariant descriptors improves the performance of object classification substantially, by as

much as more than 10 percent, a significant improvement.

Generally colour constancy is achieved by two steps: (1) estimating the colour of the illuminant

which is the main part and then (2) discounting the effect of estimated illumination by a transforma-

tion of the image, which is called image colour correction. Figure 2.1 shows the process of colour

7
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constancy including its two steps.

Illumination 
Estimation 

Colour 
Correction 

Image under canonical light 

Original image 

Figure 2.1: The procedure of colour constancy, which includes estimating the colour of the illumi-

nant and colour correction.

In this thesis, we focus on methods that estimate the colour of illuminant using a single image

captured by a regular camera. These methods then can be applied to any arbitrary images which have

already been captured or images from the Internet, and can also be used in-camera in built-in white

balancing techniques. There are some other illumination estimation methods that use additional

information from special hardware systems; these are not applicable to previously captured images.

Such methods using additional information include be polarized images such as WhitebalPR [77,

153], a new set of camera sensors [201, 140], near-infrared information [83], stereo images [197],

extra images [119, 161], or image sequence information such as video [129, 147].

Generally the terms illumination estimation or estimating the illuminant may refer to esti-

mating the geometry or direction of light [154, 16], estimating the full spectral power distribution of

light [45] or estimating of the colour of light. As mentioned already, the main topic of this thesis is

the colour of the light and therefore we restrict reference to this specific concept when we refer to

illumination estimation or estimating the illuminant in this thesis.

There are also some other kinds of methods that may also be referred to as colour constancy but

which however do not recover the actual colour of surface objects and therefore may not include

the standard two colour constancy steps of illumination estimation and colour correction. These

methods generate a greyscale [68] or multi-channel images [86, 96] as an output which are invariant
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to the illuminant [68], specularity [60] or shadowing [64, 51]. Their outputs do not necessarily rep-

resent the colour or intensity of the original image but instead are invariant to lighting conditions.

Therefore these outputs are usually used as input to high level computer vision tasks such as recog-

nition [86, 97]. Although we discuss some of these methods in Chapter 6 within the broad goal of

illumination estimation, these methods are not reviewed as colour constancy methods in this chapter

because they are not related to the main topic of this thesis. Figure 2.2 illustrate example outputs of

these methods, which produce images invariant to illuminant, shadow or specularity.

(a) (b)

Figure 2.2: (a) The original image and its invariant to the effect of shadowing, from [51]; (b) the
original image and its invariant to specularity, from [49].

There are different taxonomies for categorizing methods that estimate the colour of the illu-

minant such as: supervised methods vs. unsupervised methods; static methods vs. learning-based

methods; and physics-based methods vs. non-physics-based methods. Here we categorize illumina-

tion estimation methods into four general groups: (1) statistical methods, which try to estimate the

illuminant for each image based on its statistical properties, (2) physics-based methods which try to

estimate the illuminant using physical models of image formation, (3) gamut based methods, which

compare a canonical gamut and image gamut to estimate the illuminant, and (4) learning-based

methods which try to estimate illuminants by a model that is learned from training images. However

sometimes these categories overlap, such as in the use of statistical and physic-based methods united

as static methods, or gamut based and learning based methods united as supervised methods.



CHAPTER 2. BACKGROUND AND RELATED WORK 10

In the rest of this chapter we first discuss image colour correction, which is somewhat simi-

lar in most colour constancy methods; and then we review statistical, physics-based, gamut based

and learning based illumination estimation methods in the following sections. Finally we describe

the techniques to evaluate performance of illumination estimation algorithms, and describe metric

measures as well as standard data sets that are used for this purpose.

2.1 Image Colour Correction

As mentioned above, after estimating the colour of the illuminant for an input image we need to

discount the effect of the estimated illumination by a transformation which generates an output

image, one that appears as if it were taken under a reference light source, called the canonical light.

That is, we need to transform all colours of the input image to new colours as they appear under the

canonical light.

Most colour constancy methods excluding physics-based methods simply follow a Lambertian

model that ignores specular reflection. Therefore the image formation model would be similar to the

dichromatic model, in eq. (2.11) but without specular reflection. We are interested in also computing

the colour of illuminant, e = (e1, e2, e3)T , in

Ik = mb(Θ)
∫
S(λ)E(λ)Qk(λ)dλ

ek =
∫
E(λ)Qk(λ)dλ k = 1 · · · 3

(2.1)

Assuming the colour of illuminant is uniform over the entire image, we can see this transforma-

tion as an example of chromatic adaptation [58]. It usually modelled by a 3×3 linear transformation.

It means that we compute the colour of each pixel under the canonical light (Rc, Gc, Bc)
T by trans-

forming the colour of that pixel in the input image, (Ri, Gi, Bi)
T , by multiplication by the 3 × 3

transformation matrix D3×3: 
Rc

Gc

Bc

 = D3×3


Ri

Gi

Bi

 (2.2)

If we assume that either the camera sensors or light are delta functions (narrowband), this linear

transformation simplifies to a diagonal transformation, also known as the von Kries Model [186].

The exact criteria in which the linear transformation can replaced by a diagonal transformation and

the strength of these conditions is detailed in [189, 62, 88].
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Let us assume theoretical narrowband camera sensors such as in Fig. 2.4(b), where Qk(λ) =

Akδ(λ−λk); then we will have Ik = Akmb(Θ)
∫
S(λk)E(λk)Qk(λk) or equally Ik = ms(Θ)skek.

Doing the same for the canonical light ec, we will have RGB values under canonical lights equal

to Ick = mb(Θ)ske
c
k since ms(Θ) and sk do not change under different light conditions. Therefore

we can infer that the ratio between pixel values under the canonical light to pixel values under input

lights is exactly equal the ratio between canonical lights to input light separately for each channel,

or equally Ick = eck/ekIk. We can encapsulate this in a diagonal transformation model as:

Ddiag =


d1 0 0

0 d2 0

0 0 d3

 dk = eck/ek k = 1 · · · 3 (2.3)

Although the canonical light could be an arbitrary light, it is usually considered to be a pure

white light defined as (1
3 ,

1
3 ,

1
3)T ; therefore dk = 1/ek.

Although colour correction via a diagonal transform is just approximate, and also it is based on

the assumption that the colour of light is uniform, it is widely used in the colour constancy field

because of its simplicity and good level of approximation [192, 61, 30]. Real camera sensor curves

are not in fact narrowband: Fig. 2.4(a) shows measured sensor sensitivity curves for a Sony DXC-

930 3-CCD camera. It has however been shown that if the camera sensors are sufficiently broad-

band that have significant overlap, then the diagonal approximation is quite poor, and the sensor

responses should be transformed by a particular 3 × 3 linear transform in order to make camera

sensors as narrow-band as possible [9]. This transformation, called spectral sharpening [63], was

shown to improve colour constancy, especially for broad-band camera sensors [10, 9]. If we have

the sharpening transform matrix T for a pixel of an input image, first we sharpen the sensor using

T (Ri, Gi, Bi)
T , then we correct the image by a diagonal image colour correction transform Ddiag,

and then finally we need to return to the actual camera sensor colour space by a transform using

T−1. 
Rc

Gc

Bc

 = T−1DdiagT


Ri

Gi

Bi

 (2.4)

The diagonal transformation colour correction model is common for most of the colour con-

stancy methods reviewed in this thesis, usually not using spectral sharpening. This includes even
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those methods that use the dichromatic model to estimate the illuminant, in this chapter as well as

in the proposed colour constancy methods in this thesis.

Notwithstanding the fact that the diagonal transformation model is widely used in colour cor-

rection, other models have also been introduced. In colour correction using a linear transformation,

in eq. (2.2), we have 9 unknown matrix entries whereas if we simply measure the colour of a white

surface under two illuminants, that provides only three equations, which is insufficient information.

Of course, for a diagonal transform this would suffice because of there being only 3 unknown matrix

entries. Funt and Jiang [87] select three 3 × 3 basis matrices using principal component analysis

over many possible non-diagonal colour correction matrix transforms and thus find their coefficients

from those three equations to form a non-diagonal colour correction matrix transform.

2.2 Statistical Colour Constancy

The Retinex theory [117] presented by Land was one of the first computational theories that at-

tempted to explain human color constancy. This theory is based on the observation that the light

incident on a white patch is unchanged after reflection. Additionally, a white reflectance must in-

duce maximal camera responses. Then, the foundational colour constancy method, the White-Patch

or Max-RGB method, estimates the illuminant colour from the maximum response of the three

colour channels based on [117].

ek = max
x

(Ik(x)) k = 1 · · · 3 (2.5)

where (e1, e2, e3)T is the estimated colour of the light and I(x) is the RGB value of a pixel at

position x. Since in illumination estimation we are dealing with the colour of the light rather than

its intensity, we may restrict our considerations to the chromaticity of an estimated light, which is

(e1, e2, e3)T /
∑

k(ek) instead of its actual value. Note that the White-Patch method usually deals

with the single brightest pixel in the image for each channel, so it could be noisy and non-robust.

Recent research, such as [91, 90, 57], has suggested that carrying out a local mean calculation

preprocessing step can significantly improve performance. Some methods [198, 125] try to identify

these white-patches or generally grey surfaces in the image. If there is a grey surface in the image

which can be correctly identified then the colour of that surface is a good estimate of the colour of

the light source since it should be unchanged after reflection.

Another well-known colour constancy method is based on the Grey-World hypothesis [32],

which assumes that the average reflectance in the scene is achromatic. Thus it estimates the colour
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of the illuminant as the average colour of all pixels in the image.

ek =

∫
Ik(x)dx∫
dx

k = 1 · · · 3 (2.6)

Another alternate method for the Grey-World method is to segment the image and then compute the

average colour of all segments of the image [94]. Using segments as surfaces in the image instead

of pixels usually improves the result since large coloured segments can dominate the estimates. A

recent extension of the Grey-World hypothesis [182, 146] assumes that the average reflectance of

semantic classes (or specific visual objects such as sky, grass etc.) in an image is equal to a constant

colour, rather than just being grey. Therefore the main problem becomes finding the semantic classes

and their constant colour. We shall discuss these methods further when we come to discuss learning

based methods later in this Chapter.

Finlayson and Trezzi [75] introduced the Shades of Grey method, using the Minkowski p-norm

instead of averaging:

ek =

(∫
Ipk(x)dx∫
dx

) 1
p

k = 1 · · · 3 (2.7)

For p = 1 the equation is equal to the grey-world assumption and for p → ∞ it is equal to colour

constancy by White-Patch; and it is Shades of Grey for 1 < p <∞.

The Grey-Edge method is a recent and important version of the Grey-World hypothesis that

states: the average of reflectance differences in a scene is achromatic [180]. Hence, the estimated

illuminant is the average over gradients of an image instead of its RGB values themselves.

All grey-based methods, include White-Patch, Grey-World, Shade of Grey and Grey Edge meth-

ods which form the main part of statistical methods category have been formalized into a single

framework:

ek =

(∫ ∥∥∥∥∂nIk(x)

∂xn

∥∥∥∥p dx) 1
p

k = 1 · · · 3 (2.8)

where n is grey-edge order. If n = 0, for p = 1 the equation is equal to the grey-world assumption,

for p → ∞ it is equal to colour constancy by White-Patch and it is Shades of Grey and of Grey for

1 < p <∞. For higher n it is Grey-Edge.

The main advantages of statistical methods are their simplicity and speed, whereas they are

usually not very accurate in and of themselves. However, the Grey-Edge method performs very

well compared to other statistical colour constancy methods and because of its simplicity it is quite

popular amongst such non-complex colour constancy methods. The Grey-Edge method has been
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extended by considering different kinds of edges (material, shadow, specular, colour shadow and

inter-reflection edges) and the use of different weights for them in the process of averaging [103].

However, although these considerations make the estimate more accurate, they also make the method

more complex.

2.3 Physics-Based Colour Constancy

Most physics-based colour constancy methods use specularity to estimate the illuminant, via the

dichromatic model. We begin this section with describing Dichromatic Reflection Model and then

we continue with presenting different physics-based colour constancy methods. For more detail

refer to appendix A where we describe the physical aspect of specular reflection compared to diffuse

reflection and reviewed algorithms which use or remove specular reflection components.

2.3.1 Dichromatic Reflection Model

Shafer [157] introduced the dichromatic reflection model in 1985 to describe the separation between

specular and diffuse reflection components. He assumed a single light source in the scene, without

ambient light or inter-reflection between objects. The Dichromatic Reflection Model [157] describes

the light, L(λ,Θ), which is reflected from a point on a dielectric, nonuniform material as a mixture

of the light Ls(λ,Θ) reflected at the material surface and the light Lb(λ,Θ) reflected from the

material body. The vector Θ = (θi, φi, θr, φr), describes the angles of the incident and emitted light

and the phase angle relative to the surface normal; λ is the wavelength parameter. Ls is called the

surface reflection component or the specular reflection component. It generally has approximately

the same spectral power distribution as the illumination and appears as a highlight or as gloss on the

object. Lb is called the body reflection component or diffuse reflection component. It provides the

characteristic object colour of the surface, and it also includes the properties of object shading:

L(λ,Θ) = Lb(λ,Θ) + Ls(λ,Θ) (2.9)

The model separates the spectral reflection properties of Ls and Lb from their geometric reflection

properties, modelling them as products of spectral power distributions, cs(λ) or cb(λ), and geometric

scale factors,ms(Θ) ormb(Θ), which describe the intensity of the reflected light. Substituting these

terms into equation (2.9), we finally obtain the Dichromatic Reflection Model equation:

L(λ,Θ) = mb(Θ)cb(λ) +ms(Θ)cs(λ) (2.10)
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The model thus describes the light that is reflected from an object point as a mixture of two distinct

spectral power distributions, cs(λ) and cb(λ), each of which is scaled according to the geometric

reflection properties of surface and body reflection. In the infinite dimensional vector space of

spectral power distributions (i.e., real-valued functions of wavelength), the reflected light can be

described as a linear combination of the two vectors cs(λ) and cb(λ).

G 

B 

R 

e 

b 

Pixel colours 

Figure 2.3: Pixel values on a surface lie on a parallelogram in colour space.

Taking into account the spectral power distribution of light source E(λ), which equals cs(λ) in

the neutral interface reflection condition, a camera sensitivity function Qk(λ) and surface spectral

reflection S(λ) which is cb(λ), an image formation equation for RGB colour Ik, with k = 1 · · · 3
referring to the three R,G,B channels, can thus be written as follows:

Ik = mb(Θ)
∫
S(λ)E(λ)Qk(λ)dλ+ms(Θ)

∫
E(λ)Qk(λ)dλ

= mb(Θ)bk +ms(Θ)ek , k = 1 · · · 3
(2.11)

where

bk =

∫
S(λ)E(λ)Qk(λ)dλ and ek =

∫
E(λ)Qk(λ)dλ (2.12)

Under this assumption, the colours of all pixels from a uniformly-coloured patch of an object

are linear combinations of the same interface and body reflection colours b = (b1, b2, b3)T and

e = (e1, e2, e3)T . Colour variation within a uniform object area thus depends only on the geometric

scale factors ms and mb while b and e are constant colour 3-vectors. Accordingly, b and e span a

dichromatic plane in the colour space, and the colours of all pixels from one object patch lie in this
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plane. Moreover, pixel values from a surface patch lie within a parallelogram in this dichromatic

plane bounded by colour vectors b and e (Fig. 2.3).

We can also express the dichromatic model as a special case of the bidirectional reflectance

distribution function (BRDF) model. The BRDF, f(λ,Θ), is a four-dimensional function that de-

fines how light is reflected at an opaque surface. The function takes an incoming light and outgoing

directions, both defined with respect to the surface normal n̂, and returns the ratio of reflected ra-

diance exiting in the outgoing direction to the irradiance incident on the surface from the incoming

direction. Each direction is parameterized by azimuth and zenith angles.

Under the NIR model, we then have

f(λ,Θ) = cb(λ)fd + fs(Θ) (2.13)

where cb(λ) is surface spectral reflection as described above and functions fd and fs are the diffuse

and specular BRDFs, respectively. For a Lambertian surface the function fd is constant. Again,

taking into account the spectral power distribution of light source E(λ) and a camera sensitivity

function Qk(λ), the RGB image formation equation for a surface element with surface normal n̂,

illuminated by a light from direction l̂, is written

Ik = (fdbk + fs(Θ)ek)n̂ · l̂ (2.14)

where b and e are as defined in eq. (2.12).

In order to simplify the image formation model, some works [68, 60] assume theoretical infinitely-

narrowband camera sensors such as Fig. 2.4(b); the Figure compares such theoretical sensors to real

camera sensors such as those for the Sony DXC-930 3-CCD camera, shown in Fig. 2.4(a). Here,

let us assume theoretical narrowband camera sensors such as those shown in Fig. 2.4(b) where the

curves are a discrete version of Dirac delta functions, i.e., sensors which are sensitive only at dis-

crete single wavelengths: Qk(λ) = Akδ(λ − λk); then we can simplify the definition of interface

and body reflection colours (eq. (2.12)) in the dichromatic equation (eq. (2.11)) as follows:

ek =
∫
E(λ)Qk(λ)dλ = E(λk)Qk(λk)

sk = S(λk)

bk =
∫
S(λ)E(λ)Qk(λ)dλ = S(λk)E(λk)Qk(λk) = skek

Ik = mb(Θ)skek +ms(Θ)ek k = 1 · · · 3

(2.15)
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Therefore, knowing the colour of light e and colour of body surface under uniform white light

sk, the body reflection colour under e is equal to bk = skek.
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Figure 2.4: (a): Measured RGB camera sensors — Sony DXC930 camera. (b): Theoretical narrow-
band RGB camera sensors.

Even though the dichromatic model was originally introduced by Shafer [157] to describe the re-

flection of dielectric materials, it has been applied successfully as an approximation of the reflection

of many different materials such as human skin [162, 133].

The specular and diffuse components of reflection are usually distinguished by their colour,

but there are some conditions where these two components are seen by the cameras as the same.

Considering the definition of specular and diffuse reflection in the dichromatic model in eq. (2.12),

these two are equal if S(λ) is uniform, which means that the surface reflects at all wavelengths

equally — it is a uniform grey (or white) surface.

For an object with uniform surface reflection function ( S(λ) ), the reflected light is proportional

to the incoming light distribution function ( E(λ) ). Therefore we can distinguish the colour of

the light (e in eq. (2.12)) using a white surface. On the other hand, using equi-energy light which

means uniform E(λ), the reflected light is proportional to the surface reflection function and we can

distinguish the actual colour of the surface (c in eq. (2.12)).

2.3.2 Physics-Based Colour Constancy Methods

Lee [120] proposed a method which uses specularity to compute illumination and this method con-

stitutes one of the first attempts. He used the fact that in the CIE chromaticity diagram [194] the

coordinates of the colours from different locations on the same surface will fall on a straight line
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connecting the illuminant point and the surface colour point. This is true because the light reflected

from a uniform surface is an additive mixture of the specular component and the diffuse component,

as discussed in the discussion of the dichromatic model eq. (2.11). Therefore, the coordinates of the

chromaticity value of each surface in the CIE chromaticity diagram [194] forms a straight line which

passes through the illuminant chromaticity. Hence if there are more surfaces of different colours in

the scene then more lines can be determined, and the intersection of these lines is the illuminant

chromaticity result, as in Fig. 2.5.

Figure 2.5: The coordinates of the colours from different locations of the same surface will fall on
the straight line connecting the illuminant point and the surface colour point.

To implement his idea, Lee used steepest descent and steepest ascent values for each edge point

to form a straight line. If steepest descent and steepest ascent values describe the same line, this

means they belong to the same surface colour. Finally, the illuminant chromaticity can be computed

by finding the intersection of these straight lines by majority voting or a variety of methods. Note

that finding these lines in chromaticity space is not in fact easy for real images. Although this

algorithm could in principle make good use of a segmented image for finding each straight line,

nevertheless for real textured surfaces the segmentation itself is also a difficult task.

Recently, a few methods have been proposed that extend Lee’s algorithm [120]. Lee’s algorithm

is not robust to noise and is limited in the handling of textured surfaces. Lehmann and Palm [122] in-

troduced a method to estimate the colour of a single illuminant for noisy and microtextured images,

based on Lee’s algorithm. Their approach, named the Colour Line Search, use dichromatic regions

of different coloured surfaces. Reliable colour lines are determined directly in the domain of the

colour diagram by three steps. First, regions of interest are automatically detected around specular
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highlights, and local colour diagrams are computed. Second, colour lines are determined accord-

ing to the dichromatic reflection model by Hough transform in the corresponding colour diagrams.

Third, a consistency check is applied by a corresponding path search in the image domain. The

success of this technique depends on an assumption that, in each highlight region, the surface colour

is uniform. As a consequence, the technique fails when dealing with complex textured surfaces,

which usually have more than one surface colour in their highlight regions.

Another approach to extend Lee’s algorithm is to define constraints on the colours of illumi-

nation, which makes estimation more robust. Finlayson and Schaefer [73] proposed imposing a

constraint on the colours of illumination in 2D chromaticity space. This constraint is based on the

statistics of natural illumination colours, and it improves stability in obtaining the intersection. They

proposed a convex illuminant constraint and alpha shape [6] constraint. Considering a set of points

S and and parameter α, the 2-dimensional alpha shape does not include points when there exists a

circle of radius α that does not contain any point in S. Therefore, when α is zero the alpha shape is

same as a convex hull and when α is infinite, it is identical to S. They show that using alpha shape

constraint, they can remove non-likely lights from the convex hull of natural lights. However be-

cause of the non-convexity of the alpha shape the problem needs to proceed by dividing the problem

into smaller convex problems.

Furthermore, Finlayson and Schaefer [74] also proposed the use of the Planckian locus as a

constraint to accomplish illumination estimation from uniformly coloured surfaces. This Planckian

constraint on the illumination chromaticity makes the estimation more robust, especially for natural

scene images.

Tominaga and Wandell [168] suggested that the SPDs of all possible observed colours of a

dielectric object with highlights are on the hyperplane spanned by the SPD of the diffuse reflection

component and the specular reflection component. They called this hyperplane the “colour signal

plane”. Each object colour forms its own colour signal plane. The SPD of the specular reflection

component, which is taken to be the same as the SPD of the illuminant, can be obtained by taking

the intersection of these colour signal planes. They use a singular value decomposition technique

to determine the intersection of colour signal planes. Fundamentally, within their finite-dimensional

model restriction, their method is equivalent to Lee’s method. Therefore, Tominaga and Wandell’s

method has the same limitations that we described for the latter.

As discussed in §A.3, Klinker et al. [113] show that the colours of all pixels from an surface

object form a colour cluster in its particular dichromatic plane. And these colour pixels clusters are

often in the shape of a skewed-T, where the two limbs of the skewed-T correspond to diffuse and
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specular reflection. They also proposed a method to determine the colour of the illumination by

finding the intersection of these dichromatic planes. If several glossy objects of different colours

are illuminated by the same light source, each object produces a dichromatic plane. Because all of

these dichromatic planes contain the same interface reflection vector, they intersect along a single

line which is the colour of the illumination. However in real images, finding dichromatic planes and

also T-shape clusters is quite difficult in the face of noise and multiple coloured surfaces.

Schaefer and et al. [156] try to robustly estimate the illuminant using intersection of dichromatic

planes. They find several blocks in an image as surfaces and form the dichromatic plane for each.

Therefore intersection of any two dichromatic planes will be an estimate of the light. Then con-

straints are applied to remove estimates which belong to planes with similar orientations as well as

estimates which fall outside the convex hull of s pre-defined set of common lights. Furthermore

they form a likelihood for each of these estimates based on their angular distance to other estimates.

The final illuminant estimate is then computed by maximum likelihood. They also show that they

can integrate these likelihoods with the likelihood from the color-by-correlation method [69], using

weighted averaging to increase the accuracy of the method.

Tan et al. [165] introduced a two-dimensional space denoted the “inverse-intensity chromaticity

space” to estimate the illumination colour based on the dichromatic model. They use specular

chromaticity Γ and diffuse chromaticity Λ as defined in eq. (A.3) to rewrite the dichromatic equation

as

Ik = md(x)Λk(x) +ms(x)Γk (2.16)

Then by replacing each channel’s image intensity to compute chromaticity ρ equation as defined in

eq. (A.2), with its definition in this equation we have following equation for each pixel (note that

this assumes uniform illuminant, so Λ is constant while Γ, md and ms vary for each pixel):

ρk =
mdΛk +msΓk
mdΣΛi +msΣΓi

(2.17)

Then we will have

Ik = md(Λk − Γk)

(
ρk

ρk − Γk

)
(2.18)

By introducing p, which is defined as p = md(Λk − Γk), we can then derive

ρk = p
1

ΣIi
+ Γk (2.19)

which forms the core of their method. This shows that by solely calculating the value of p, we

are able to determine the illumination chromaticity (Γ), since image chromaticity and total image
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intensity can be directly observed from the input image. Observation shows that diffuse and spec-

ular pixels of a unique surface form a reliable property in inverse-intensity chromaticity space (see

Fig. 2.6).

(a) (b)

Figure 2.6: (a) Synthetic image with a single surface colour. (b) Diffuse and specular points of a
synthetic image in inverse-intensity chromaticity space. The figures are taken from [165].

They use a Hough transform in order to estimate the illumination chromaticity from inverse-

intensity chromaticity space. Using the Hough transform does not seem to give any solution, because

the values of p are not constant throughout the image, and this causes the intersection point of lines

not to be located at a single location. Fortunately, even if the values of p vary, the values of Γk are

constant. Thus, in principle, all intersections will be concentrated at a single value of Γk, with a

small range of p values. Therefore, if we focus on the intersections in the Hough space, we should

find a larger number of intersections at a certain value of Γk compared with other values of Γk.

2.4 Gamut-Based Colour Constancy

Forsyth’s [79] gamut mapping algorithm was at its time and still is one of the most successful colour

constancy algorithms, and one of the first colour constancy methods which estimates the illuminant

by a model that is learned on training images. Its strength lies in the fact that it makes the uncertainty

in the illuminant explicit. It is based on the assumption that in real-world images, for a reference

illuminant, one observes only a limited number of colours. Consequently, any variations in the

colours of an image are due to variation in the colour of the light. The convex hull of limited set of

RGBs that can occur under a reference illuminant is denoted the canonical gamut, denoted C. The
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canonical gamut is found in a training phase by observing surfaces under a canonical light source

and under known light sources and mapping to canonical light sources [8].

In general, a gamut mapping algorithm accepts an image captured under an unknown light source

and generates the input gamut I using the set ofRGB values in the input image, and then determines

the set of feasible mappingsM, consisting of all possible mappings that can map the input gamut

to lie completely within the canonical gamut. Finally an estimator is needed to select one mapping

from the set of feasible mappings. The selected mapping can be applied to the canonical illuminant

to obtain an estimate of the unknown illuminant. Assuming RGB values are linear responses to

the camera sensors, these mappings mostly have been modelled by a diagonal mapping, which is

a diagonal matrix that maps image colours under an unknown light source i to their corresponding

colours under the canonical illuminant c as discussed in §2.1. The estimator to select one mapping

answer could be the diagonal matrix with the largest trace, as originally suggested [79], or the

average or weighted average of the feasible set [8].

Although gamut mapping set out a strong novel assumption and acceptable performance for

illumination estimation at the time of its proposal, its complexity makes it difficult to implement

[59]. Because of these difficulties, a 2-dimensional version of gamut mapping, which uses 2D

chromaticities (R/B G/B) instead of RGB values in order to generate the gamut, was introduced

[59]. Of course, it is much weaker than 3D gamut mapping because of of the loss of information

in projecting 3D to 2D. Finlayson and Hordley [66, 67] use the 2D version of gamut mapping to

find feasible sets of mappings and then transform feasible mappings back to 3 dimensions to select

the best mapping which improves performance while reducing the complexity by the use of the 2D

version.

The gamut mapping algorithm fails when there is no feasible mapping to map the input gamut

to the canonical gamut; in that case the algorithm has no result. To overcome this problem differ-

ent approaches have been proposed. A simple approach is to increase the size of canonical gamut

uniformly in all directions [59]. Another approach is to simulate specularities when computing the

canonical gamut for training images [11]. As mentioned above in §A.2, pixel values from a sur-

face patch lie within a parallelogram in the dichromatic plane bounded by colour vectors b and

e (Fig. 2.3). These parallelograms are usually incomplete because there are not enough specular-

ities; therefore adding specularities means completing these parallelograms [11]. Alternatively, a

diagonal-offset model has been proposed proposed [71] for mapping the input gamut to the canon-

ical gamut instead of the diagonal model, by including an extra additive offset (o1, o2, o3)T to the
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usual linear, diagonal transform:
Rc

Gc

Bc

 =


d1 0 0

0 d2 0

0 0 d3




Ri

Gi

Bi

+


o1

o2

o3

 (2.20)

where the offset term is assumed to be small relative to the diagonal terms and is used to over-

come the cases with no solution. Therefore the best mapping is the feasible mapping that maximizes

the diagonal terms and minimizes the offset term (ideally the offset should be zero); this amounts to

minimizing −d1 − d2 − d3 + o1 + o2 + o3, as in [71].

Finlayson and Xu [76] introduced an efficient implementation of gamut mapping using convex

programming and this is now the common way of implementing gamut mapping. In this implemen-

tation the canonical gamut is rewritten in terms of N inequalities which represent the 3-dimensional

convex hull of the set of RGBs in the canonical gamut:

C(ρ) :

a1R+ b1G+ c1B ≥ e1

a2R+ b2G+ c2B ≥ e2

...

aNR+ bNG+ cNB ≥ eN

(2.21)

Defining an N × 3 matrix A with ith row equal to (ai, bi, ci) and an N × 1 vector e, with ith

component equal to ei, we can rewrite this formulation as follows:

C(ρ) : Aρ ≥ e (2.22)

Now using the diagonal transform we have ρ = q diag(d) or equally ρ = diag(q) d, where d is

(d1, d2, d3)T and q is the RGB colours of the image under the unknown light source. If we have

K 3-dimensional points in the convex hull of input gamut I for each image, there will be N ×K
linear constraints for each image, which defines possible mappings:

M : ∀qi ∈ I : A diag(qi)d ≥ e (2.23)

In order to estimate the illuminant an optimality criterion must be defined, such as maximizing

the L1 norm of the diagonal.

Maximize d1 + d2 + d3

subject to A diag(q) d ≥ e , q ∈ I (2.24)
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Finlayson et al. introduced Color by Correlation [69, 72] as an improvement on the 2D gamut

mapping method. The basic idea of Color by Correlation is that of replacing the canonical gamut

with a correlation matrix which describes the extent to which proposed illuminants are compatible

with the occurrence of image chromaticities. Rows in this matrix correspond to training illuminants

and columns correspond to possible chromaticity ranges resulting from a discretization of space,

ordered in any convenient manner. The first version of Color by Correlation [72] was simply a

different implementation of a discrete version of 2D gamut mapping, wherein matrix entries were

boolean. This was subsequently improved [69] by computing the probability that the observed

chromaticities are due to each of the training illuminants, as matrix entries. The estimated illuminant

then can be selected by the maximum likelihood of these probabilities, as originally presented, or

by the Kullback-Leibler divergence [149].

Gijsenij et al. [102] generalized the gamut mapping assumption that for a reference illuminant,

one observes only a limited number of pixel values. They analytically showed that the gamut map-

ping framework is able to include any linear filter output, including derivatives instead of pixel val-

ues. Although using neither derivatives nor linear filter outputs does not outperform gamut mapping

using pixel values, nevertheless intersection of these feasible mapping sets with the feasible mapping

set generated by pixel based gamut mapping can indeed generate more accurate estimations.

2.5 Learning-Based Colour Constancy

Although the gamut mapping algorithm and its extensions estimate the illuminant by a model that

is learned on training images and could thus be considered to be learning-based colour constancy

methods, we prefer to categorize gamut mapping in a separate category of its own because of its

strength and also the number of extensions as mentioned in the previous section.

One of the first attempts to solve the illumination estimation problem using machine learning

techniques used neural networks [84, 35], in which a multilayer neural network system with two

hidden layers was designed for the purpose of estimating the (r, g) chromaticity of light. They di-

vide (r, g) chromaticity space into discrete bins as input to input-layer neurons (each bin correspond

to one neuron). Thus inputs are binary values representing the presence of a pixel in the image with

chromaticity falling in the corresponding (r, g) bin (a binarized 2D chromaticity space histograms).

The output layer includes two neurons which are real-valued and correspond to r and g, the chro-

maticity of illuminant. They are computed by a weighted sum of inner layer neurons operated on by

a sigmoid function. This neural network is trained using many synthesized images. Support vector
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regression (SVR) was used as another learning tool to solve the illumination estimation problem

[92, 196]. In this approach again the inputs to the SVR were binarized 2D chromaticity space his-

tograms, as already used for the neural networks approach [84], but with the addition of a binarized

histogram of intensity (R+G+B) as a third dimension. As an output, the support vector regression

finds the function mapping from image histograms to two dimensional illuminant chromaticities.

In a similar approach [188] edge information was used instead of pixel information as an input to

support vector regression. The structure which was used in the neural networks approach [35], bi-

narized 2D chromaticity space histograms as input and two dimensional illuminant chromaticities

as output, is also applied to different machine learning tools such as ridge regression and kernel

regression [4, 3].

Another learning-based approach to illumination estimation problem is the Bayesian approach

[150, 93], in which the variability of reflectance of illuminant is modelled as independent ran-

dom variables. These methods estimate illuminant colour from the posterior distribution condition

learned from training images. Here the illuminant prior could be uniform over a subset of illuminants

[150] or could be an empirical distribution of illuminants in training images [93].

Besides static colour constancy methods such as Max-RGB, Grey-World, Grey-Edge and Shades-

of-Grey, which as mentioned before are based on simple assumptions, recently efforts at fusing these

algorithms have generated better performance than for the individual algorithms. One of the first

attempts in this direction was carried out by Cardei and Funt [34], which applied a weighted com-

mittee mechanism over several of these methods.

Another attempt to combine the estimates from other algorithms is by Schaefer et al. [156]. They

integrate a likelihood computed using a physics-based approach (discussed in §2.3) with the likeli-

hood from the color-by-correlation method [69] using weighted averaging to increase the accuracy

of the method.

More complex methods try to learn to select the best algorithm or combination of algorithms for

each image using pixel information as well as spatial information, and hence they do not deal with

the image as simply a bag of pixels.

Gijsenij and Gevers [99, 100] clustered the images by a k-means algorithm using natural image

statistics to characterize the images on the basis of Weibull distribution parameters. They then cor-

respond each cluster with the best single algorithm for training images for that cluster. To estimate

the illuminant of a test image, they select the algorithm according to its cluster or combination of

the individual algorithms according to the distances to neighbouring clusters. They call this method

which perform very well Natural Image Statistics. In a similar approach [124], Weibull features of
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the training images have been extracted and the best single algorithm assigned with that. Therefore,

given a test image, we can find out the K nearest neighbour images based on a Weibull feature from

the training image, so the labelled algorithms of that K training images decide the best algorithm or

find the best combination in order to estimate illumination for the test image.

In a different approach to selecting best algorithms, Wu et al. [193] introduce a multi-resolution

texture descriptor based on an integrated Weibull distribution to extract texture information. They

used an image similarity measure derived from the Wiccest feature and spatial pyramid matching to

find the K most similar images for a test image from training images, and with these neighbouring

images they provide a combination for uniting the data-driven strategy and prior knowledge.

Bianco et al. [20] proposed a two-level learning method to find illumination. First, they learn

a classifier to determine if an image is in indoor, outdoor or unsure classes and then they learn a

different model for estimating illuminant for each classifier. Therefore for any test image it is first

classified into one of the classes and then its illumination is estimated using the model learned for

that class.

As mentioned in [104], many learning-based colour constancy methods that try to find the best or

combination of algorithms for each image using extracted features go through a similar procedure.

They extract texture, shape or colour features from sets of training images, and estimate the colour of

illuminant for each of these images using several statistical illumination estimation algorithms. They

then learn a model based on extracted features as well as the error of these estimates to ground truth,

which is known. This model could e.g. learn the set of weights associate with estimates of these

illumination estimation algorithms [100, 193] or directly learn the colour of illuminant [21, 124].

Figure 2.7 shows this procedure in both the training and test phases. It could be stated that the

main differences amongst this kind of algorithm are in the feature extraction blocks, where the

feature could be simple, such as a colour histogram [20, 21], or Edge direction histogram [21], or

more complex features such as Weibull features [100, 124, 193], Wiccest features [193], or Wavelet

statistics [21].

Van de Weijer et al. [182] extend the grey world hypotheses to say: the average reflectance of

semantic classes in an image is equal to a constant colour, rather than being just grey. Therefore,

for each of the semantic classes present in an image they compute the illuminant that transforms

the pixels assigned to that class into the average reflectance colour of that semantic class in the

training images. In this method, semantic classes are assigned to each 20 × 20 patch of an image

based on models learned in the training phase. This approach is a top-down approach, as opposed to

bottom-up approaches in many other colour constancy methods. They also make use of high-level
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Figure 2.7: The common procedure of learning-based colour constancy methods that try to find
the best algorithm or a combination of algorithms for each image using extracted features in both
training and test phases.

visual information to select the best illuminant out of a set of possible illuminants generated by other

methods.

In a similar approach [146], the special visual object categories (called here memory-colour

categories) which have a relatively constant colour such as sky or grass & foliage (which were

used in their experiment) are detected using the Bag-of-Features machine learning method. Then

the initial estimate provided by a statistical colour constancy method can be adjusted to map the

observed colour of the category to its actual colour which is determined in the training phase. The

main difference between this work and [182] is that the visual object categories are known and hand

labelling and tagging with the category label is required for training images.

There are also methods which assume that skin colours provide enough information for illumi-

nation estimation [106, 24]. Bianco and Schettini [24] suggest using faces found by a face detection

tool to detect skin areas since many images are captured with faces or people. They show that skin

colours tend to form a cluster in various color spaces. They then use the diversity between the gamut

of skin pixels and a skin canonical gamut learned using training images to estimate the illuminant.
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2.6 Evaluation

In order to evaluate performance of a colour constancy method we need to calculate the error of

our estimation. Such error calculations need to be carried out over set of images that are indicative

of success or failure, and we need to consider carefully the metric used to compare the overall

performance of different methods over those images.

2.6.1 Error of Estimation

Considering the actual chromaticity of illuminant e and the estimated chromaticity of illuminant

eest by any of of the aforementioned illumination estimation methods, there are different measures

used to calculate the error. Two measures commonly used to calculate this error are angular error ,

which is the angle between vector e and vector eest in three dimensional space, and Euclidean error,

i.e., Euclidean distance in r, g chromaticity space; note that these two measures are highly correlated

to each other [111].

errangle(e, eest) = acos(
e · eest
‖e‖‖eest‖

) (2.25)

erreuc(e, eest) =
√

(eR − eest,R)2 + (eG − eest,G)2 (2.26)

Gijsennij et al. [101] compare perceptually different measurement for evaluating illumination

estimation errors. They show that the angular error is a reasonably good indicator of the human

perceptual performance of color constancy methods. They conclude th at the same conclusion holds

for Euclidean distance but they show that optimizing the weights for each specific data set can

increase the correlation of this measure with perceptual error. They call it the perceptual Euclidean

distance.

It is also possible to compute the error of a final colour constancy output, which is the differ-

ence between the corrected image and the image of the same scene captured under the canonical

illuminant. In this case the error measurement can be the RMS error for all pixels in r, g, b or R,G

between the corrected image and the ground truth image. This metric is difficult to obtain since it

requires the same images be captured under different lights but with exactly the same geometry. In

this thesis, we use angular error as our measurement for computing estimation error because of its

frequent use in the literature [111, 12].
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2.6.2 Comparison of methods

It is important to compare the performance of illumination estimation algorithms. Having a set of

images with known colour of illuminant, we can calculate the error of estimation (using either of

the two generally used error metrics) for each image. Then the total metric of performance of an

algorithm for that set of images can be the mean of errors. It is shown that the mean by itself is not a

good index for evaluating performance of methods [111]. The median or trimean of errors is usually

preferred in the literature [111, 101] because the mean is sensitive to outliers. The median indicates

the performance of the methods for half of the images or equally the 50th percentile error. The

trimean of a distribution is defined as a weighted average of its median and its two quartiles. A more

complete way to compare algorithms is to show a plot to visualize the distribution or cumulative

distribution of error for a colour constancy method for a specific set of images.

There are some different approaches which try to minimize the worst-case errors or, equally,

consider the maximum of errors as the measure. If we require an algorithms which gave us accept-

able estimation for 90% or 99% of cases, we need to minimize the 90th or 99th percentile errors

[136]. In this thesis we calculate both mean and median as our measurement to compare different

illumination estimation algorithms.

2.6.3 Colour Constancy Data sets

In order to evaluate general performance of a colour constancy method we need set of images taken

under a known colour of illuminant. Early colour constancy data sets were mostly generated from

hyperspectral data. A hyperspectral database by Barnard et al. [14] which is still used to evaluate

colour constancy methods under synthetic data includes 1995 surface reflection spectra and 287

illuminant spectra. Therefore, the synthetic data can be the RGB value of each of these surface

under any of these illuminants using arbitrary camera sensor functions (
∫
S(λ)E(λ)Qk(λ)dλwhere

S(λ) is surface spectra, E(λ) illuminant spectra and Qk(λ) are camera sensor functions ). Another

example of hyperspectral databases which could be used to evaluate colour constancy algorithms

are [144, 137, 80], which include hyperspectral information for some scenes from which images

under different illuminants can be rendered.

Although hyperspectral data are a good starting point to evaluate a colour constancy method, this

is not usually sufficient to reflect the practical amount of failure that is seen for real-world images

that include disturbances such as noise, clipping, colour distribution, sensor failure, etc. Therefore

in this thesis we place emphasis on colour constancy data sets with real images. Here we introduce
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four well known data sets; SFU Laboratory [14], GreyBall [40], ColorChecker [93] and HDR [85]

data sets, which are widely used to evaluate colour constancy methods in the literature as well as in

this thesis. There are also other colour constancy data sets which are not as popular as these four,

such as the Barcelona data set [185, 145] and an extension to ColorChecker data set [36].

SFU Laboratory Data Set : The first data set is Barnard’s dataset [14], denoted the SFU Lab-

oratory dataset; this contains images of 31 scenes captured under 11 different measured illuminants

(321 images in total). The scenes are divided into two sets as follows: minimal specularities (22

scenes, 223 images – i.e., 19 missing images); and non-negligible dielectric specularities (9 scenes,

98 images – 1 illuminant is missing for 1 scene). The illuminant includes 3 different fluorescent

lights, 4 different incandescent lights and those same four incandescent lights with a blue filter.

Again this data set is a small dataset which is good for evaluating new methods but because of the

limited number of scenes and illuminant as well as the fact that it was taken under laboratory condi-

tions, it is not considered as a practical evaluation for real-world images.

GreyBall Data Set : The next dataset, which contains many low quality real-world images, is

the GreyBall dataset of Ciurea and Funt [40]; this contains 11346 images extracted from 15 video

clips recorded under a wide variety of imaging conditions (city, mall, indoor, desert, forest, road

etc.). The ground truth was acquired by attaching a grey sphere to the camera, displayed in the

bottom-right corner of each image – and this must be masked off during experiments. For each

image, the scene illuminant is measured in terms of mean of RGB values of the pixels on the sphere.

However the images have the resolution of only 360 × 240 pixels and the quality of images is not

good because of the movement of the camera while recording clips; nevertheless because of the

variation of imaging conditions in this set, it is widely used to evaluate colour constancy methods.

ColorChecker Data Set : Another dataset, which contains out-of-laboratory images, is Gehler’s

colour constancy dataset [93], denoted as the ColorChecker dataset. This dataset consists of 568 im-

ages, both indoor and outdoor. The illuminant ground truth for these images is known because each

image has a Macbeth ColorChecker placed in the scene (which must masked off in tests). This data

set has higher quality images compared to the above two data sets. Although this set includes 568

images captured from variety of different indoor and outdoor scenes, its variation is not as large

as in the GreyBall data set. As well, since images were produced with automatic camera settings,

they contain clipped pixels, are non-linear (gamma correction has been applied), are demosaiced,
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and are also affected by the camera’s white balancing. In order to overcome these problems, Shi

and Funt [160] provided a re-processed version of the ColorChecker colour constancy dataset [93]

that is based on putative recovered raw data of for the same set of images. Thus usually it is better

to apply colour constancy algorithms to the re-processed version instead because it is not already

affected by the camera’s built-in processes. The ground truth measure of the illumination’s RGB

colour were computed by dataset providers [93, 160] using six achromatic squares of Colorchecker

in each image.They used the median of the RGB channels separately while removing clipped pixels

by a threshold.

HDR Data Set : The last colour constancy dataset is the HDR dataset [85] provided by Funt,

which contain 105 images constructed in the standard way from multiple exposures of the same

scene. The colour of the scene illumination was determined by photographing an extra HDR im-

age of the scene with Macbeth ColorChecker card. Although HDR is a small dataset, it has two

advantages compared to other datasets: it has high quality images and no clipped pixels that might

have arisen from exceeding the dynamic range. The scene illuminant is determined by manually

sampling the RGB values from each of the white patches from the four Colorcheckers which mount

in each image. Figure 2.8 shows examples from these datasets.

2.7 Summary

In this chapter we discussed the well known colour constancy problem, which refers to computa-

tional approaches to recovering the actual colour of surface objects. We show that this reduces to

identification of the illumination. In this thesis we focus on illumination estimation methods using

single images captured by a regular camera. Here we categorized illumination estimation methods

into four general groups: (1) statistical methods which try to estimate the illuminant for each image

based on its statistical properties, (2) physics-based methods which try to estimate the illuminant

using physical models of image formation, (3) gamut based methods which compare a canonical

gamut with the image gamut in order to estimate the illuminant and (4) learning-based methods

which try to estimate the illuminant by a model that is learned on training images. Although we

reviewed several colour constancy methods in all of these categories we go into more detail for

physics-based methods, which usually consider specular reflection as a main source of information

in the problem of estimating illumination. We also show the simplified model used in computer vi-

sion as defined in the dichromatic model. We describe the image colour correction as a final step of
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(a) (d) (c) (b) 

Figure 2.8: Examples from colour constancy datasets: (a) SFU Laboratory (b) ColorChecker (c)
GreyBall (d) HDR.

colour constancy, which is to some degree applied similarly in most colour constancy methods. And

finally we described techniques for evaluating performance of illumination estimation algorithms,

including metric measures as well as describing data sets which useful for this purpose.



Chapter 3

The Role of Bright Pixels in Illumination
Estimation

The White-Patch method, one of the very first colour constancy methods, estimates the illuminant

colour from the maximum response of three colour channels. However, this simple method has

been superseded by advanced physical, statistical and learning based colour constancy methods.

Recently, some research works have suggested that the simple idea of using maximum pixel values

is not as limited an idea as it seems at first glance. These works show that in several situations some

manipulations can indeed make this approach perform very well. Here, we extend the White-Patch

assumption to include any of: white patch, highlights or light source; let us refer to these pixels in

an image as the “bright” pixels areas. We propose that bright pixels are surprisingly helpful in the

illumination estimation process.

In this chapter, we investigate the effects of bright pixels on several current colour constancy

algorithms such as White-Patch, Grey-Word, Grey-Edge and Shades-of-Grey methods.

Moreover, we describe a simple framework for an illumination estimation method based on

bright pixels and compare its accuracy to well-known colour constancy algorithms applied to four

standard datasets. We also investigate failure and success cases, using bright pixels, and propose

desiderata on input images with regard to the proposed method.

3.1 Introduction

Illumination estimation, which is the main step in colour constancy processing, is an important pre-

requisite for many computer vision applications. One of the first colour constancy methods, the

33
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so-called White-Patch or Max-RGB method estimates the illuminant colour from the maximum

response of three colour channels [117]. With the advent of newer and more precise colour con-

stancy methods such as Grey-World [32], Gamut Mapping [79], Grey-Edge [180] and many other

complex methods (refer to [110] for an overview), few researchers or commercial cameras use the

White-Patch method. On the other hand, recent research such as that on perceptual color contrast

enhancement by Choudhury and Medioni [39] or on the “rehabilitation” of MaxRGB by Funt and

Shi [91] propose that a local mean calculation such as local blurring as a preprocessing step can

significantly improve the performance of this simple method, consisting of simply finding the max-

imum in each colour channel. Simply put, these works propose it is advantageous to calculate the

max of a local mean image.

Recently, Drew et al. [48] found analytically that the geometric mean of bright (generally, spec-

ular) pixels is the optimal estimate for the illuminant, based on a standard dichromatic model for

image formation (which accounts for the matte and highlight appearance of objects). This work

proposes that in the presence of specular highlights the “mean of the max” is the best illuminant

estimate, in contradistinction to previous works [91, 39] which say it is the “max of the mean.”

The analytical approach [48] claims performance comparable with very complex colour constancy

methods despite its simplicity.

The bright areas of images can be white surfaces or light sources as well as highlights and

specularity, and all are helpful in the illumination estimation process. Highlights and white surfaces

both tend to have the colour of light in ideal conditions for dielectric materials such as plastic.

As we discuss in §2.3, the colour of specular reflections is the same as the colour of illumination,

within a Neutral Interface Reflection (NIR) [121] condition, which mostly obtains for the surfaces

of optically inhomogeneous objects (such as ceramics, plastics, paints, etc.) This property make

specular reflection, which is usually in bright areas of image, an appropriate tool for estimating

illumination. Many illumination estimation methods derive from the dichromatic model for specular

reflection proposed by Shafer [157]. Refer to §2.3 for an overview of these methods.

In this chapter, we investigate the effects of bright pixels on different colour constancy algo-

rithms. We describe a simple framework for an illumination estimation method based on bright

pixels and compare its accuracy to well-known colour constancy algorithms applied to four standard

datasets. We also investigate failure and success cases, using bright pixels, and draw conclusions on

input images with regard to the proposed method.
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3.2 Illumination Estimation by Specular reflection

In specular reflection, light from a single incoming direction is reflected into a small cone of outgo-

ing directions. This contrasts with diffuse reflection, where light is partially absorbed and partially

scattered within the surface material. Areas of images that are specular tend to be bright. Moreover,

the spectral power distribution (SPD) of specular reflections is the same as the illumination’s SPD,

within a Neutral Interface Reflection (NIR) [121] condition, which mostly obtains for the surfaces

of optically inhomogeneous objects (such as ceramics, plastics, paints, etc.); however it does not

always hold for the surfaces of optically homogeneous objects (such as gold, bronze, copper, etc.)

[107]. These properties make specular reflection, which is usually in bright areas of image, an ap-

propriate tool for estimating illumination. Many illumination estimation methods derive from the

dichromatic model for specular reflection proposed by Shafer [157].

Klinker et al. [114] showed that when the diffuse colour is constant over a surface, the colour

histogram of its image forms a skewed-T shaped distribution, with the diffuse and specular pixels

forming linear clusters. They used this information to estimate a single diffuse colour. Therefore

in order to use this principle, their approach needed to segment an image into several regions of

homogeneous diffuse colour.

Lee [120] proposed a method which uses specularity to compute illumination by using the fact

that in the CIE chromaticity diagram [194] the coordinates of the colours from different points from

the same surface will fall on a straight line connected to the specular point. This is the case when

the light reflected from a uniform surface is an additive mixture of the specular component and the

diffuse component. This seminal work initiated a substantial body of work on identifying specular

pixels and using these to attempt to discover the illuminant [122, 164]. Another approach extending

these algorithms is to define a constraint on the possible colours of illumination, making estimation

more robust [73, 74].

3.3 Extending the White Patch Hypothesis

The White-Patch hypothesis is essentially that there is always a white surface in the image. Let us

extend this assumption to include any of: white patch, specularities, or light source (or an effective

white, e.g. a bright yellow and red pixel which combined have the same max R, G and B as a

white patch). We also use the term gamut of bright pixels, in contradistinction to maximum channel

response of the White-Patch method, which typically deals only with the brightest pixel in the image.
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Obviously, using a single pixel or very small area is noisy and not robust.

Since are we dealing with bright pixels we need to be very careful about clipped pixels, i.e.

pixels where the light reflection exceeds the dynamic range of the camera. Here for each colour

channel we remove pixels which exceed 90% of the dynamic range.

Although we can simply define bright pixels as the top T% of luminance L given by L =

R + G + B, this is not a precise definition for our application since using this definition we may

have set of different pixels tagged as bright pixels for a scene under different illumination conditions.

Ideally we to need define bright pixels invariant to illumination, which could e.g. be the top T% of

RGB. Considering the diagonal matrix diag(d1, d2, d3) for transferring the illuminant, the sum of

channels will be d1R + d2G + d3B while their product will be d1d2d3RGB. Therefore the order

of pixels considering the product will be unchanged so it is illuminant invariant while this is not

the case for the sum. However since the possible illuminant colours are limited in such that that we

rarely see extreme red light, for example, our experiments show than the sum of channels and the

product of channels perform similarly. Hence we define bright pixels as the top T% of R+G+B.

To investigate the utility of this assumption, we carry out a simple experiment. We check whether

or not the actual illuminant colour falls inside the 2D-chromaticity gamut of bright pixels. We find

that the actual illuminant colour falls in the 2D gamut of the top 5% brightness pixels of each

image for the SFU Laboratory Dataset [14] for 88.16% of the images, in 74.47% of images for the

ColorChecker dataset [160], and in 66.02% of images for the GreyBall Dataset [40]. Fig. 3.1 shows

the 2D gamut in chromaticity space {r, g} = {R,G}/(R + G + B), with the top-5% brightness

pixels in green. The actual measured illuminant is shown as a red star. Clearly, as the failure case

Fig. 3.1(c) shows, with no supporting evidence it may happen that the illuminant does not fall within

the bright region.

When there are no strong highlights, source of light, or white surfaces in the image, the bright

pixels are not helpful; in that case there can be areas of an image belonging to the brightest surface

which tend towards that particular surface’s surface colour. Alternatively this situation may simply

arise from a set of single pixels from all over the image.

The fundamental question here is what is the probability of having an image without strong

highlights, source of light, or white surface, in the real world? Knowing the answer to this question

is vital when we investigate the effect of bright pixels in colour constancy.
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(a) (b) (c)

Figure 3.1: Examples of image evidence: top-5% brightness pixels in green, other pixels in blue,
and red star showing the correct illuminant point in r, g chromaticity space. (a) Image with white
patch; (b) Image with specularity; (c) Image without white patch or specularity.

3.4 The Effect of Bright Pixels in Colour Constancy Algorithms

The foundational colour constancy method, the White-Patch or Max-RGB method, estimates the

illuminant colour from the maximum response of the three colour channels [117]. It is based on the

assumption that the maximum response in the channels is caused by a white patch. The White-Patch

method usually deals with the brightest pixel in the image, so it is noisy and non-robust. Funt and

Shi [91, 90] suggested that carrying out a local mean calculation preprocessing step can significantly

improve its performance.

Another well-known colour constancy method is based on the Grey-World hypothesis [32],

which assumes that the average reflectance in the scene is achromatic. Shade-of-Grey [75] extend

Grey-World for higher order using the Minkowski p-norm instead of averaging:

ek =

(∫
Ipk(x)dx∫
dx

) 1
p

k = 1 · · · 3 (3.1)

For p = 1 the equation is equal to the grey-world assumption and for p → ∞ it is equal to colour

constancy by White-Patch; and it is Shades of Grey for 1 < p < ∞. At first glance we see no

distinction for bright pixels in the Grey-World assumption; However since we use an averaging to

compute the illuminant point as shown in eq. (3.1), the higher values, which are brighter pixels,

contribute a good deal more compared to dark pixels, especially for higher p.
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Grey-Edge is a recent version of the Grey-World hypothesis that states: the average of the re-

flectance differences in a scene is achromatic [180]. Using the same formulation as for grey-based

methods, Grey World, Shades of Grey, and Grey Edge can be combined in a single framework for

illuminant estimation methods:

ek =

(∫ ∥∥∥∥∂nIk(x)

∂xn

∥∥∥∥p dx) 1
p

k = 1 · · · 3 (3.2)

Where n is the grey-edge “order”. Although, the effect of bright pixels is not so essential for the

Grey-Edge method, we can use the same reasoning regarding averaging considering that the edge

value for brighter pixels are larger than edge value for darker pixels.

Another well known colour constancy method is the Gamut Mapping [79] algorithm, which is

more complex and more accurate. The bright pixels are the upper boundaries of the colour gamut for

a single image. In chapter 4, we introduce a White-Patch Gamut Colour Constancy [176] algorithm,

which includes the top-brightness pixels in a 3D gamut; we will show that adding new constraints

based on the white patch gamut to standard Gamut Mapping constraints outperforms the Gamut

Mapping method and its extensions.

As a simple experiment in order to investigate the effect of bright pixels, we run White-Patch,

Grey-World, Grey-Edge and Shades of Grey methods for the top 20% brightness pixels for each

image, and compare to using all image pixels.

We use the standard well-known colour constancy methods: White-Patch, Grey-World, Grey-

Edge, and Shades-of-Grey implemented by [180], testing on the re-processed version of the Col-

orChecker dataset [160], using the dataset’s suggested clipping threshold. For those methods which

need tunable parameters, we utilize optimal parameters for that dataset.

Table 3.1 shows the accuracy of using top 20% brightness pixels for reprocessed version of the

ColorChecker dataset [160], in terms of the mean and median of angular errors, for several colour

constancy algorithms applied to this dataset. The results indicate that although we only use one fifth

of the pixels, performance is better than or equal to using all pixels. This is especially true for Grey-

World and Shades-of-Grey (both follow eq. (3.2)), where using top-brightness pixels significantly

outperforms using all pixels.

3.5 The Bright-Pixels Framework

Here we propose a simple framework in order to investigate the effect of bright pixels for illumina-

tion estimation. First of all, since we dealing with bright pixels we need to be careful about clipped
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Table 3.1: Angular errors for several colour constancy algorithms for the linear (no gamma correc-
tion applied) ColorChecker dataset [160] using all pixels as compared with using only the top 20%
brightness pixels.

Dataset All Pixels 20% brightness
Methods Median Mean Median Mean

White Patch 6.31◦ 7.82◦ 6.31◦ 7.81◦

Grey World 6.33◦ 6.40◦ 3.46◦ 4.23◦

Grey Edge (p = 1, σ = 6) 4.73◦ 5.56◦ 4.65◦ 5.46◦

Shades of Grey (p = 4) 3.51◦ 4.45◦ 3.08◦ 4.17◦

pixels. Therefore we remove pixels exceeding 90% of the dynamic range of the camera for each

colour channel. We simply define bright pixels as T percentile of the luminance, taken to be the sum

of channels, R+G+B.

If these bright pixels represent highlights, a white surface, or a light source, they approximate

the colour of the illuminant. Any statistical estimator can be brought to bear for estimating the

illuminant, e.g. the median, mean, geometric-mean or the Minkowski p-norm.

Figure 3.2 plots angular errors in terms of mean and median for recovering the illuminant, using

T percentile (from 1% to 10%) of brightness pixels, using different statistical estimators: median,

geometric-mean, mean and the Minkowski p-norm for p = 2 and p = 4, for the linear-image

ColorChecker dataset [160]. Considering that the best median and mean angular errors in this dataset

have been reported as respectively 2.5◦ using Gamut Mapping in [104] and 3.5◦ by the complex

High Level Visual Information algorithm [182], the achievement is surprisingly good whilst being

very simple (refer to Table 3.3 for results for other color constancy methods). We see that optimal

performance in terms of the median is for the p-norm estimator, with p = 2 for the top-3% brightness

pixels; in terms of using the mean, is for the Mean algorithm for top-5% brightness pixels.

Figure 3.3 shows examples of images from the ColorChecker Dataset having angular error more

than 13◦, using the top-3% brightness pixels and p-norm estimator with p = 2. Figure 3.3 indicates

that a common failure within a bright pixel framework is when there are multiple illuminants in the

scene (we can see the same failures in the GreyBall dataset). Examples are skylight from windows

plus indoor light, in-shadow plus non-shadow lights, or two different light sources in an indoor

room. Although most color constancy methods assume a single light source, nevertheless in these

datasets there are some images with more than one illuminant. Obviously, in the case of more than

one illuminant the bright-pixel method finds the brightest illuminant while other methods such as
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Figure 3.2: The plots of angular errors in terms of (a) median error and (b) mean error for recovering
the illuminant, using T percentile of brightness pixels using different 3-vector statistical estimators:
median, geometric-mean, mean and the Minkowski p-norm for p = 2 and p = 4, for the linear-
image ColorChecker dataset [160].

Gamut Mapping find the dominant illuminant or combination of illuminants.

Another failure case happens if bright pixels are not good estimators of the illuminant; or equally

there are no highlights, white surfaces, or light sources in the image. Although at first glance this

seems to be a common situation, our experiments on current standard color constancy datasets have

shown that this happens even less than the multiple-illuminants situation (Figure 3.3 shows a few

examples). In this case bright pixels either capture the colour of the brightest surface in the image

or a distribution of bright pixels from all over the image. In the former case we can simply check

if these pixels are in the possible chromaticity gamut of illuminants; and the latter case can be

distinguished based on the distribution of these pixels in chromaticity space.

As we mentioned, a local mean calculation such as local blurring has been shown to improve the

performance of simple methods such as White-Patch [91]. Therefore, here we examined applying

three different local mean calculations as preprocessing, as follows: (1) resizing to 64 × 64 pixels

by bicubic interpolation; (2) median filtering (inspired by [91]); and (3) a Gaussian blurring filter.

Figure 3.3 shows that the p-norm (and we can consider the mean as p-norm with p = 1) is a better

estimator than median or geomean. Table 3.2 gives median angular error, with optimal parameters

(T and p), for the reprocessed ColorChecker dataset using our three local mean preprocessing, for

shades of grey and the 1st-order and 2nd-order grey-edge method for top-brightness pixels. For the

meaning of “n” the reader is referred to eq. (3.2).
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Figure 3.3: Examples of images from ColorChecker Dataset with maximum angular error, using top
3% brightness pixels and p-norm estimator with p = 2

Overall, we define illumination estimation by the bright pixel framework by following equation

using the grey-based illumination estimation formulation.

ek =

(∫
φT
Ipk(x)dx∫
dx

) 1
p

k = 1 · · · 3 (3.3)

where φT includes the top-T% brightness pixels in the image.

3.6 Further Experiments

We applied the proposed framework to four standard color constancy datasets. The first is Barnard’s

dataset [14], denoted the SFU Laboratory dataset; this contains 321 measured images under 11

different measured illuminants. The second dataset, which contains out-of-laboratory images, is

the re-processed version of the Gehler colour constancy dataset [93], denoted as the ColorChecker
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Table 3.2: The median angular errors for the linear-image ColorChecker dataset [160] using top
brightness pixels for three variations of eq. (3.2) when different local mean operations are applied
as preprocessing. The first value in parentheses for each element is the optimum value of T and the
second is the value of p in the p-norm for that experiment.

Shades of Grey n=1 grey-edge n=2 grey-edge

no local mean 2.61◦ (2%, 2) 4.61◦ (5%, 2) 4.46◦ (5%, 2)
64× 64 bicubic 2.88◦ (3%, 1) 4.86◦ (5%, 1) 4.76◦ (5%, 2)
Median filter 2.69◦ (3%, 2) 4.32◦ (5%, 1) 4.29◦ (5%, 1)
Gaussian filter 2.72◦ (3%, 2) 4.37◦ (5%, 1) 4.13◦ (5%, 1)

dataset, which was provided by Shi and Funt [160]. This dataset consists of 568 images, both in-

door and outdoor. The illuminant ground truth for these images is known because each image has

a Macbeth ColorChecker placed in the scene (which must masked off in tests). The third dataset,

which contains low quality real-world video frames, is the GreyBall dataset of Ciurea and Funt [40];

this contains 11346 images extracted from video recorded under a wide variety of imaging condi-

tions. The ground truth was acquired by attaching a grey sphere to the camera, displayed in the

bottom-right corner of the image – and this must be masked off during experiments. The last color

constancy dataset is the HDR dataset [85] provided by Funt, which contain 105 images constructed

in the standard way from multiple exposures of the same scene. The colour of the scene illumination

was determined by photographing an extra HDR image of the scene with 4 Gretag Macbeth. Al-

though HDR is a small dataset, it has two advantages compare to other datasets: it has high quality

images and no clipped pixels that might have arisen from exceeding the dynamic range.

We search using brute force for optimal parameters: i.e., the value of p in the p-norm, the

gradient order n in edge-based p-norm, which local mean method to apply, and finally the top-

brightness threshold. Table 3.3 shows the overall optimal performance of a bright-pixels framework

for our four standard datasets, compared to the standard methods. The Bright Pixels row represents

the optimal value reachable by a bright-pixel framework over all methods White-Patch, Grey-World,

and Grey-Edge. For the bright-pixels framework, if the estimated illuminant is not in the possible

illuminant gamut for that dataset, meaning that there is no white surface, specularity, or light source

in the image, we fall back on the Grey-Edge method instead – this is the row labelled Bright Pixels

+ grey-edge in Table 3.3. This situation occurs relatively seldom: for 178 out of 11136 images

for the GreyBall set, 3 out of 568 for the ColorChecker set, 89 out of 321 for the SFU Laboratory

dataset, and 9 out of 105 for the HDR dataset.
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Table 3.3: Comparison of the bright-pixels framework with well-known colour constancy methods.

Dataset SFU Laboratory Color Checker Grey Ball HDR
Methods Median Mean Median Mean Median Mean Median Mean

White Patch 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦ 4.3◦ 6.3◦

Grey World 7.0◦ 9.8◦ 6.3◦ 6.4◦ 7.0◦ 7.9◦ 7.3◦ 7.9◦

Grey Edge 3.2◦ 5.6◦ 4.5◦ 5.3◦ 4.7◦ 5.9◦ 3.9◦ 6.0◦

Gamut Mapping 2.3◦ 3.7◦ 2.5◦ 4.1◦ 5.8◦ 7.1◦ - -
1st-jet Gamut Mapping [102] 2.1◦ 3.6◦ 2.5◦ 4.1◦ 5.8◦ 6.9◦ - -
Bayesian [93] - - 3.5◦ 4.8◦ - - - -
High Level Vis. Info. [182] - - 2.5◦ 3.5◦ - - - -
Natural Image Statistics [100] - - 3.1◦ 4.2◦ 3.9◦ 5.2◦ - -
Rehabilitation of MaxRGB 3.1◦ 5.6◦ - - - - 3.9◦ 6.3◦

Bright Pixels 1.90◦ 5.84◦ 2.61◦ 3.98◦ 4.71◦ 5.72◦ 3.49◦ 5.77◦
Bright Pixels + grey-edge 1.62◦ 2.72◦ 2.61◦ 3.96◦ 4.64◦ 5.57◦ 3.49◦ 5.92◦

Using eq. (3.2) to test the bright-pixels hypothesis, the optimal parameters for the SFU laboratory

dataset are: Gaussian filter as preprocessing plus using the Shades of Grey method with p = 2 for the

top .5% brightness pixels. Here we test order n in {0, 1, 2}, p-norm parameter p in {1, 2, 4, 8, 16},
brightness threshold T in {.5%, 1%, 2%, 3%, 5%}. The optimal parameters for the ColorChecker

dataset are: no preprocessing, and using the Shades of Grey method with p = 2 for the top 2%

brightness pixels. The optimal parameters for the GreyBall dataset are: no preprocessing, and using

the Shades of Grey method with p = 2 for the top 1% brightness pixels. The optimal parameters for

HDR dataset are: a Gaussian filter as preprocessing, and then the 2nd-order grey-edge method with

p = 8 for the top 1% brightness pixels.

3.7 Conclusion

In this chapter, we investigate the effects of bright pixels in a variety of standard colour constancy

algorithms. Moreover, we describe a simple framework for illumination estimation method based

on bright pixels. We have demonstrated that this simple method does very well compared to well-

known colour constancy algorithms as well as compared to more complex supervised color con-

stancy methods, over four large standard datasets.
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The fundamental question which arises in this section is what is the probability of having an im-

age without strong highlights, source of light, or white surface in the real world? Based on current

standard datasets in the field of color constancy we saw that the simple idea of using the p-norm

of bright pixels, after a local mean preprocessing step, can perform surprisingly competitively com-

pared to complex methods. Therefore, we conclude that either the probability of having an image

without strong highlights, source of light, or white surface in the real world is not overwhelmingly

great or the current color constancy datasets are conceivably not good indicators of performance

with regard to possible real world images.



Chapter 4

White Patch Gamut Mapping Colour
Constancy

As we discussed in the previous chapter, the bright areas of images can be taken to include include

highlights and specularity, and also white surfaces or light sources; and indeed all may be helpful

in the illumination estimation process. We showed that using top brightness pixels, instead of all

pixels, significantly improves the performance of most well known illumination estimation methods.

In this chapter, go on to use bright pixels to extend the Gamut Mapping Colour Constancy

algorithm, one of the main illumination estimation methods. We define the White Patch Gamut as

a new extension to the Gamut Mapping Colour Constancy method, comprising the bright pixels of

the image. Adding new constraints based on the possible White Patch Gamut to the standard gamut

mapping constraints, a new combined method outperforms gamut mapping methods as well as other

well-known colour constancy methods.

The new constraints that are brought to bear are powerful, and indeed can be more discriminating

than those in the original gamut mapping method itself.

4.1 Introduction

Estimation of illumination, the main concern of colour constancy processing, is an important prob-

lem in image processing for digital still images or video, forming a prerequisite for many com-

puter vision applications. The foundational colour constancy method, the so-called White-Patch

45
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or Max-RGB method estimates the light source colour from the maximum response of the dif-

ferent colour channels [117]. With the advent of newer colour constancy methods such as Grey-

World [32], Gamut Mapping [79], Grey-Edge [180] and many other complex algorithms (see [110]

for an overview), few researchers in the field or commercial cameras use the White-Patch method.

On the other hand, recent works by Choudhury and Medioni [39] and Funt and Shi [91] proposed

that finding the maximum after a local mean calculation such as local blurring can significantly im-

prove the performance of this simple method. Moreover, Drew et al. [48] analytically showed that

the geometric mean of pixels in bright (generally, specular) pixel regions is the optimal estimate for

the illuminant. This insight says that in the presence of specular highlights illuminant estimation

is the mean of the max, while former works [91, 39] argued the converse. The analytical approach

[48] claims comparable performance with complex colour constancy methods despite its simple

approach.

The Gamut Mapping algorithm, a more complex and more accurate algorithm, was introduced

by Forsyth [79]. It is based on the assumption that in real-world images, for a given illuminant one

observes only a limited number of colours. Several extensions have been proposed [8, 67, 59, 102].

The bright areas of images can be highlights and specularity as well as white surfaces or light

sources, and all are helpful in the illumination estimation process. Highlights and white surfaces

both tend to have the colour of the light in ideal conditions.

In this chapter, we define the White Patch Gamut as a new extension to the Gamut Mapping

Colour Constancy method, consisting of the gamut of the bright pixels of an image. New constraints

are added as a result. Experiment shows that adding these new constraints to those from standard

gamut mapping constraints outperforms gamut mapping methods as well as other well-known colour

constancy methods.

4.2 Gamut Mapping

Forsyth’s [79] gamut mapping algorithm is one of the most successful colour constancy algorithms.

Its strength lies in the fact that it makes the uncertainty in the illuminant explicit. It is based on

the assumption that in real-world images, for a reference illuminant, one observes only a limited

number of colours. Consequently, any variations in the colours of an image is due to variation in

the colour of light . The convex hull of a limited set of RGBs that can occur under a reference

illuminant is called the canonical gamut, denoted C. The canonical gamut is found in a training

phase by observing surfaces under known light light sources.
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In general, a gamut mapping algorithm accepts an image captured under an unknown light source

and generates the input gamut I using the set ofRGB values in the input image, and then determines

the set of feasible mappingsM, consisting of all possible mappings that can map the input gamut

to lie completely within the canonical gamut. Finally an estimator is needed to select one mapping

from the set of feasible mappings. The selected mapping can be applied to the canonical illuminant

to obtain an estimate of the unknown illuminant. Assuming RGB values are linear responses to

the camera sensors, these mappings mostly have been modeled by a diagonal mapping, which is a

diagonal matrix that maps image colours under an unknown light source i to their corresponding

colours under the canonical illuminant c.

ρ =


Rc

Gc

Bc

 = D


Ri

Gi

Bi

 D =


d1 0 0

0 d2 0

0 0 d3

 (4.1)

The estimator to select one mapping could be the diagonal matrix with the largest trace, as

originally suggested [79], or the average or weighted average of the feasible set [8].

Finlayson and Xu [76] introduced an efficient implementation of gamut mapping using convex

programming. In this implementation the canonical gamut is rewritten in terms of N inequalities

which represent the 3-dimensional convex hull of the set of RGBs in the canonical gamut:

C(ρ) :

a1R+ b1G+ c1B ≥ e1

a2R+ b2G+ c2B ≥ e2

...

aNR+ bNG+ cNB ≥ eN

(4.2)

Defining an N × 3 matrix A with ith row equal to [aibici] and an N × 1 vector e, with ith

component equal to ei, we can rewrite this formulation as follows:

C(ρ) : Aρ ≥ e (4.3)

Now using the diagonal transform we have ρ = q diag(d) or equally ρ = diag(q) d, where d is

[d1, d2, d3] and q is the RGB colours of the image under the unknown light source. If we have K

3-dimensional points in the convex hull of input gamut I for each image, there will beN ×K linear

constraints for each image, which defines possible mappings:
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M : ∀qi ∈ I : A diag(qi)d ≥ e (4.4)

In order to estimate the illuminant an optimality criterion must be defined, such as maximizing

the L1 norm of the diagonal.

4.3 White Patch Gamut Mapping

The foundational color constancy method, the so-called White Patch method, usually estimates the

illuminant by finding a white patch in the scene which has maximum response in all channels.

Experiments show that illuminant information is more informative in bright regions than darker

region [167, 82]. Let us extend the idea of the white patch by assuming that there is always some

subset of any of the following: a white patch, highlights or light source in the image. We also use

the gamut of bright pixels, in contradistinction to White-Patch, which usually deals only with the

brightest pixel in the image. Obviously, using a single pixel can be noisy and is not robust.

Since we are dealing with bright pixels we need to be careful about clipped pixels, which are

pixels where the light reflection exceeds the dynamic range of the camera. We remove pixels which

exceed 90% of the dynamic range for each channel. Then we simply define bright pixels as the top

T% of the sum of channels R+G+B. Here, T could for example be 1, 2 or 5%.

To investigate the utility of this assumption, we carry a simple experiment to check whether

the actual illuminant colour falls inside the 2D gamut of bright pixels or not. We find that the

actual illuminant colour falls in the 2D gamut of the top 5% brightness pixels of each image for

SFU Laboratory Dataset [14] for 88.16% of images, and in 66.02% of images for the GreyBall

Dataset [40]. Fig. 4.1 shows 2D gamut in chromaticity space {r, g} = {R,G}/(R +G+B), with

the top 5% brightness pixels in green. The actual measured illuminant is shown as a red star. Note

that with no supporting evidence (Fig. 4.1(c)) the illuminant may not fall in the bright region.

Motivated by this experiment, we define the White Patch Gamut, consisting of the set of RGBs

in an image for a white patch, highlights, or light source. As well, we define the canonical White

Patch Gamut, denoted Cw, comprising the limited set of RGBs that can occur for a white patch,

highlights, or light source under a reference illuminant. This can be trained by observing images

under known light sources. I.e., we simply identify them in a training phase by collecting the top-

brightness pixels which fall near actual values of the illuminant colour, projected onto 2D chromatic-

ity space. Similarly, the input White Patch Gamut Iw is defined as the gamut of the top-brightness
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(a) (b) (c)

Figure 4.1: Examples of image evidence: top 5% bright pixels in green, other pixels in blue, and red
star showing the illuminant point in r, g chromaticity space. (a) Image with white patch; (b) Image
with specularity; (c) Image without white patch or specularity.

pixels for an input image.

Cw(ρ) :

aw1 R+ bw1 G+ cw1 B ≥ ew1
aw2 R+ bw2 G+ cw2 B ≥ ew2

...

awNR+ bwNG+ cwNB ≥ ewN

(4.5)

We can again define Aw and ew in the same fashion as A and e. Using the principle of gamut

mapping set out in §4.2, we can determine the set of feasible mappingsMw, meaning all possible

mappings that can transfer the input White Patch Gamut to lie completely within the canonical White

Patch Gamut.

Mw : ∀qi ∈ Iw : Aw diag(qi) d ≥ ew (4.6)

These constraints are only in operation if there is a white patch or specularity in the image.

However our experiments show that, if they can indeed be brought into play, these new constraints

are even more powerful than the original gamut mapping constraints.

4.3.1 Generating the White Patch Gamut

When there are no strong highlights, light sources, or white surfaces in the image, the bright pixels

are not helpful; in such a case they can stem from areas of images belonging to the brightest surface,
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which tends to be some particular surface colour or possibly a bag of single pixels from all over the

image. In the former case we can simply check if these pixels are in the possible chromaticity gamut

of illuminants (this gamut is computed in the training phase) and in the latter we can investigate the

distribution of these pixels in chromaticity space. The standard deviation of these pixels in RGB

space is a good measure for this purpose. In either case, there is no White Patch Gamut for such

an image. Thus, we cannot necessarily define a White Patch Gamut for all images. On the other

hand, in order to omit outliers we remove pixels with distance to the mean greater than 2 standard

deviations. Fig. 4.2 shows (red) the 2D gamut and the white patch gamut for example images,

compared to their canonical gamuts (blue) in chromaticity space.
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Figure 4.2: Examples of 2D gamut (solid red) and white patch gamut (dotted red) compared to
canonical gamut (solid blue) and canonical white patch gamut (dotted blue) in rg chromaticity
space.

Fig. 4.3 shows the 3D canonical gamut for the SFU Laboratory dataset and its 3D canonical

White Patch Gamut inRGB space. As we expected the White Patch Gamut is considerably smaller.

4.3.2 Combination Method

Until now, we have two sets of feasible mappings: M, which is based on standard gamut mapping

and Mw, which is based on white patch gamut mapping. These sets can be used in combination

instead of selecting only one mapping per algorithm. Since each feasible set represents all illuminant

estimates that are considered possible, an obvious combination is to consider only those estimates

that are all feasible sets, which is intersection of these two sets ( M ∩Mw). Another approach
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to combine these is to consider all possible estimates in both feasible sets, meaning the union of

these two sets (M∪Mw ). Experiment shows that the intersection approach outperforms the union

approach. For the intersection based combination, the optimization becomes the following convex

programming problem:

Maximize d1 + d2 + d3

subject to A diag(q) d ≥ e , q ∈ I

Aw diag(q) d ≥ ew , q ∈ Iw (4.7)
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Figure 4.3: (a) 3D canonical gamut (b) 3D canonical white patch gamut for SFU Laboratory dataset
in RGB colour.

4.4 Experimental Results

First, consider the Barnard colour constancy dataset [14], which we call the SFU Laboratory dataset;

this contains 321 measured images under 11 different measured illuminants. The scenes are divided

into two sets as follows: minimal specularities (223 images), and non-negligible dielectric specular-

ities (98 images).

For a more real-world (out of the laboratory) image experiment we also used the Ciurea and

Funt [40] GreyBall dataset, which contains 11346 images extracted from video recorded under a

wide variety of imaging conditions. The images are divided into 15 different clips taken at different
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Table 4.1: Comparison of White Patch Gamut Mapping (WP) with well known colour constancy
methods.

Dataset SFU Laboratory GreyBall
Methods Median Mean Median Mean
White Patch 6.5◦ 9.1◦ 5.3◦ 6.8◦

Grey World 7.0◦ 9.8◦ 7.0◦ 7.9◦

Grey Edge 3.2◦ 5.6◦ 4.7◦ 5.9◦

Gamut Mapping 2.3◦ 3.9◦ 5.5◦ 7.0◦

Gamut Mapping 1-jet 2.1◦ 3.9◦ 5.5◦ 6.8◦

Natural Image Stat. - - 3.9◦ 5.2◦
WP Gamut Mapping 1.9◦ 3.4◦ 4.7◦ 6.0◦

locations. The ground truth was acquired by attaching a grey sphere to the camera, displayed in the

bottom-right corner of the image. This grey sphere must be masked out during experiments.

We use Matlab code provided by [102] for general gamut mapping, which is based on con-

vex programming. For the SFU Laboratory dataset, 31 images (all images recorded under the syl-

50MR16Q-illuminant) were used for computation of the canonical gamut, and these were omitted

from the test set. For the GreyBall Dataset, the canonical gamuts were computed using 14 out of 15

categories and we tested on the remaining category. We repeated the experiment 15 times. We used

the top 5% of the sum of channels to generate the bright gamut.

Table 4.1 gives the accuracy of the proposed methods for the SFU Laboratory dataset [14] as well

as the GreyBall dataset [40], in terms of the mean and median of angular errors, for several colour

constancy algorithms applied to this dataset. For those methods which need tunable parameters, we

utilize optimal parameters for each dataset. (In these experiments, we actually accomplished slightly

better estimation for pixel based gamut mapping than other reported results for the GreyBall dataset

since we mask image margins because of their low quality.)

This experiment shows that white patch gamut mapping improves the performance of gamut

mapping by 13% to 18% in terms of angular mean and median error; these results show that the

proposed method is in fact the best extension of gamut mapping compared to other extensions such

as generalized edge-based gamut mapping [102] (1st-jet is their best) or the 2D version of gamut

mapping [59]. To our knowledge, for the SFU Laboratory dataset white patch gamut mapping does

best in terms of both mean and median angular error compared to any reported colour constancy

method, even very complex ones. For the GreyBall dataset, for which gamut mapping generally



CHAPTER 4. WHITE PATCH GAMUT MAPPING COLOUR CONSTANCY 53

does not work very well (since the images are not gamma corrected), white patch gamut mapping

outperforms gamut mapping by 15%; it does better than or equal to all the unsupervised colour

constancy methods, but does not surpass those which combine or select other colour constancy

methods, such as Natural Image Statistics [100].

4.5 Conclusion

In this chapter, we define the White Patch Gamut as a new extension to the gamut mapping colour

constancy method, consisting of the bright pixels of the image. Our experiments show that adding

new constraints based on the White Patch Gamut to standard gamut mapping constraints outper-

forms gamut mapping methods as well as other well-known colour constancy methods. These new

constraints are therefore a powerful addition to the field and in fact can be more discriminating than

the original set of constraints themselves.

White patch gamut mapping improves the performance of gamut mapping by 13% to 18% in

terms of angular mean and median error over the two well-known standard datasets that we tested,

thus comprising is the best extension of gamut mapping colour constancy to date.



Chapter 5

The Zeta Image

In this chapter we present a new and effective physics-based colour constancy algorithm which

makes use of a novel log-relative-chromaticity planar constraint. We call the new feature the Zeta-

image. We show that this new feature is tied to a novel application of the Kullback-Leibler Diver-

gence, here applied to chromaticity values instead of probabilities. The new method requires no

training data or tunable parameters. Moreover it is simple to implement and very fast. Our exper-

imental results across datasets of real images show the proposed method significantly outperforms

other unsupervised methods while its estimation accuracy is comparable with more complex, super-

vised, methods. As well, we show that the new planar constraint can be used as a post-processing

stage for any candidate colour constancy method in order to improve its accuracy. We show as well

that it can be used to identify and remove specularities. Its application in this chapter demonstrates

its utility, delivering state of the art performance.

5.1 Introduction

Identification of illumination is an important problem in image processing for digital cameras, for

both still images and video, and can form a prerequisite for many computer vision applications. In a

scene consisting of dielectric materials (e.g., plastics, and indeed most non-metals) there is typically

substantive specular content. This does not necessarily mean extremely bright mirror-like reflection,

but can consist for example of the glint of light reflected from blades of grass, or the sheen of light

reflected from a desk surface. For non-metals, this very common specular content is an important

indicator of the colour of the lighting in a scene, and hence has substantial bearing on determination

of a correct white balance for camera images.

54
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Many colour constancy algorithms have been proposed (see [110, 104] for an overview). The

foundational colour constancy method, the so-called White-Patch or Max-RGB method, estimates

the light source colour from the maximum response of the different colour channels [117]. Another

well-known colour constancy method is based on the Grey-World hypothesis [32], which assumes

that the average reflectance in the scene is achromatic. Grey-Edge is a recent version of the Grey-

World hypothesis that says: the average of the reflectance differences in a scene is achromatic [180].

Finlayson and Trezzi [75] formalize grey-based methods by subsuming them into a single formula

using the Minkowski p-norm.

The Gamut Mapping algorithm, a more complex and more accurate algorithm, was introduced

by Forsyth [79]. It is based on the assumption that in real-world images, for a given illuminant one

observes only a limited number of colours. Several extensions have been proposed [8, 67, 59, 102].

Lee [120] proposed a method which uses specularity to compute illumination by using the fact

that in the CIE chromaticity diagram [194] the coordinates of the colours from different points from

the same surface will fall on a straight line connected to the specular point. This is the case when

the light reflected from a uniform surface is an additive mixture of the specular component and the

diffuse component. This seminal work initiated a substantial body of work on identifying specular

pixels and using these to attempt to discover the illuminant [122, 165]. Although these works are

theoretically strong, none of them report performance over real world datasets of images with and

without specularities.

Gijsenij et al. [104] propose the following desiderata in their survey on colour constancy methods

in assessing computational methods: (1) the requirement for training data; (2) the accuracy of the

estimation; (3) the computational runtime of the method; (4) transparency of the approach; (5)

complexity of the implementation; (6) number of tunable parameters.

In this chapter, we set out a new discovery, consisting of a planar constraint that must be obeyed,

in a certain standard model of reflectance, by specular or near-specular pixels in an image. The

new feature involved we call the Zeta-image1, and below we show that this feature is tied to the

information-theoretic concept of applying one distribution to generate bitstring codes for another;

here we view chromaticity components, which add to 1, in the role of probabilities. We present

a novel physics-based colour constancy algorithm based on a log-relative-chromaticity planar con-

straint (LRCP-Constraint), which requires no training data or tunable parameters. It is easy to imple-

ment and very fast compared to more complex colour constancy methods such as gamut mapping.

1Patent applied for.
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Our experimental results over three large datasets of both laboratory and real world images show

that the proposed method significantly outperforms other unsupervised methods while its accuracy

of estimation is comparable with more complex methods that need training data and tunable param-

eters.

The chapter is organized as follows. In §5.2, we describe the fundamental process of the log-

relative-chromaticity planar constraint and define the Zeta-Image which we define in this chapter.

In §5.3, we explicate aspects of the new planar constraint by making use of synthetic data. §5.4

contains two proposed colour constancy algorithms based on the LRCP-Constraint. We compare

our proposed algorithms with previous colour constancy algorithms over three standard datasets in

§5.5, demonstrating the efficacy of the new insight for real images. §5.6 examines the role of the

Zeta-image in manipulating specularities, and §5.7 concludes the chapter.

5.2 Relative Chromaticity Near Specular Point

5.2.1 Image Formation Model and Relative Chromaticity

Let the RGB 3-vector for the light itself as seen by the camera be ek, and let the 3-vector for the

reflectance at a pixel as seen by the camera, under equi-energy white light, be sk. Now in a product-

of-vectors simple model [29] we approximately have the matte (“body”, i.e., non-specular) RGB

value at that pixel equal to
Rk '

σskek
qk

(5.1)

where σ is shading. In the standard Lambertian model for matte shading, σ equals lighting-direction

dotted into surface normal. Here, qk is a triple giving the overall (integrated) camera sensor strength

[47].

If we also consider an additional specular component, this equation becomes

Rk '
σskek
qk

+ βek (5.2)

where β represents the amount of specular component at that pixel. The value of β for a pixel will

depend upon the lighting direction, the surface normal, and the viewing geometry [157]. Here, the

specular component βek is simply assumed to be the same colour as the light itself, in a Neutral

Interface Model [120] for dielectrics. For purposes of discovering properties of this equation, let

us assume for the time being that β is simply a constant — in actuality it will be a scalar property

of each pixel and this issue is further discussed below in §5.2.4. Let us lump values σsk/qk into a
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single quantity and for convenience call this simply sk. Now we have

Rk = skek + βek (5.3)

The chromaticity [194] ρk is colour without magnitude, in an L1 norm: ρ = {R,G,B}/(R +

G+B), so here we have
ρk =

skek + βek∑3
j=1(sjej + βej)

(5.4)

Let the chromaticity of the light itself be denoted

ρek = ek/
∑
j

ej (5.5)

Now here we wish to examine the properties of the Relative Chromaticity, which we define to be the

chromaticity divided by the chromaticity of the light, ρek. Let us call this quotient chromaticity χk,

so that

χk =
ρk
ρek

=
skek + βek∑3

j=1(sjej) + β
∑3

j=1 ej
·
∑3

j=1 ej

ek
(5.6)

where all divisions are taken to be component-wise. Dividing by the light chromaticity is the main

innovative step in this chapter: it is an ansatz that we claim will bear fruit by generating a constraint

on the illuminant colour.

For convenience, let E ≡
∑3

j=1 ej = |e | where | · | is the L1 norm. Then we arrive at

χk =
sk + β

(
∑

j sjej)

E + β
(5.7)

So, for a pixel with no matte component sk but only a purely specular component, we would have

χk ≡ 1 for all 3-vector elements k = 1..3.

5.2.2 Log-Relative-Chromaticity and Planar Constraint

Next we show that in fact log values are preferable, in that a simple planarity constraint falls out of

the formulation once we move to the log domain.

Let us define a new quantity, ψ , which is the logarithm of the ratio χ defined above: we call

this the Log-Relative-Chromaticity:

ψk = log(χk) = log

(
ρk
ρek

)
(5.8)
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Now near a specular point, we can take the limit as (1/β)→ 0. Let α = 1/β. Then in the limit

as specularity increases, ψ goes to

ψk = limα→0 log
{

(αsk + 1) /
(
α
∑

j(sjej)/E + 1
)}

Using a Maclaurin series,

ψk = α
(
sk −

∑
j sjej
E

)
+O

(
α2
)

(5.9)

Omitting O
(
α2
)
, we note by inspection that the quantity ψk is orthogonal to the illuminant

vector: ∑
k

ψk ek ≡ 0 , so also
∑
k

ψkρ
e
k = 0 (5.10)

Therefore we have a planar constraint on image pixels that are near-specular:

Planar constraint: For near-specular pixels, Log-Relative-Chromaticity values are orthogonal to

the light chromaticity.

Note that in eq. (5.9) above we have expressed this orthogonality in a different way than the

usual, Euclidean-norm based calculation of the part of the vector s that is orthogonal to vector e ,

viz. (sk − s · ê êk) for normalized light vector ê .

Nevertheless, it is easy to verify that eq. (5.10) does indeed hold. The meaning of eq. (5.9) is that

we are forming an L1-based projection onto the plane orthogonal to the light.

Here we define the Zeta-image ζ as the dot-product of the log-relative-chromaticityψ , eq. (5.11),

with a putative light direction:

ζ = −ψ · ρ e = −
3∑

k=1

log(ρ k/ρ
e
k) · ρ e

k (5.11)

Based on the planar constraint the Zeta-image value is zero for near-specular pixels; and as well we

will show that it is a non-negative value. We also know that the zeta-image is invariant to shading

since it uses chromaticity instead of the RGB value for pixels. Note that the zeta value might be too

noisy for the case of dark pixels since we take the log. In an extreme case when we have zero for

any of channels, the zeta value will be∞. Therefore we do not rely at all on the value of zeta for

dark pixels.

In the following sections we will see the application of Zeta-image for illumination estimation

as well as specularity manipulation.
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5.2.3 Relative Chromaticity Near Specular Point for Incorrect Candidate Illuminant

Having enunciated a plane constraint governing relative chromaticity formed by dividing by the

actual light chromaticity, we also investigate the effect of dividing by an incorrect light, one that was

not in fact involved in forming the image at hand.

Suppose the correct illumination chromaticity vector is ρe but instead we have supposed that it

is ρe
′
. Then in carrying out our division by the putative illuminant chromaticity, we have instead

χ′k = ρk/ρ
e′
k = (skek + βek)

∑
j

(sjej + βej) ·
∑

j e
′
j

e′k

=
αsk + 1

αs ·eE + 1

(
ek
e′k

)(
E′

E

)
(5.12)

so that

lim
α→0

ψ′k = log

(
ek
e′k

E′

E

)
+ α

(
sk −

s · e
E

)
+ O(α2) ' ψ0

k + log

(
ρek
ρe
′
k

)
(5.13)

where ψ0
k is the set of planar values found for the correct light, in eq. (5.9).

For this new version of ψ , now for the set of image chromaticities relative to the putative light

chromaticity, with the log taken, the gamut of values is shifted by the last term on the right hand side

of the second line of eq. (5.13).

Comparing eqs.(5.10) and (5.13), we see that the idea of dividing by the illuminant chromaticity

produces a gamut for specular pixels, for the case of an incorrect choice of light chromaticity, which

is shifted with respect to the original gamut. This property is potentially of value for determining

the actual value of the light chromaticity in a scene.

5.2.4 Varying specular factor β

The fact that specular scalar factor β is not a constant makes no difference to the argument: for

near-specular pixels any value of β still leads to quantity ψk lying in the plane orthogonal to the

illuminant, and that plane being shifted as in eq. (5.13) for the incorrect choice of illuminant.

5.3 Illustrations of Plane Constraint

5.3.1 Synthetic Example of Specular Plane

Using synthetic data as a guide, we can investigate the planar constraint.
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Suppose sk is uniform-randomly distributed. Then s uniformly occupies the unit cube in RGB

colour space. Let us form ψ values that are consistent with the near-to-specular model (5.9): these

values are on a plane orthogonal to the light 3-vector ek that was utilized to form the gamut.

Fig. 5.1 shows the gamut for ψ in blue, when we divide by the correct illuminant chromaticity,

and the shifted gamut ψ ′ when we have divided by an incorrect chromaticity. The blue plane goes

through the origin — the ψ vector for the light itself is 0 — and ψ vectors that are on the blue plane

are orthogonal to the lighting direction ρ e, shown as a green arrow.

However, for the shifted plane, shown in red, the center of the plane is not at the origin, so ψ ′

vectors on that plane, such as the cyan arrow shown on the red plane, are actually 3-vectors in theψ

space (shown in black) that are not orthogonal to the green lighting vector. That is, the calculation

(5.10) proceeds using vector components which are defined relative to the fixed origin position 0 ,

not some point such as the middle of the red plane.

−
1.5

−
1

−
0.5

0
0.5

−
1

−
0.5

0
0.5

0

0.5 1

1.5 2

2.5 3

ψ
2

ψ
1

ψ
3

Figure 5.1: Gamuts for Log-Relative-Chromaticity values ψ generated using the correct illuminant
chromaticity ρek, in blue, and generated using an incorrect candidate illuminant chromaticity ρe

′
k , in

red.

5.3.2 Synthetic Example of Matte plus Specular Contributions

A complete synthetic example consists of accurately modeled matte plus specular components.

Here, let us consider a test image consisting of three shaded spheres (as in [60]), with surface colours
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(a) (b)

(c) (d)

Figure 5.2: (a): Ground-truth synthetic image of Lambertian surfaces under standard illuminant D65.
(b): Image with specular reflection added. (c): Dot products eq. (5.10) of Log-Relative-Chromaticity
ψ formed using the correct scene illuminant: specular pixels are correctly determined (low values of
dot-product). (d): Dot product where now an incorrect light is utilized in generatingψ values: specu-
lar pixels are poorly recognized. The ground truth chromaticity for this light is [.279, .316, .404]. As
a different, incorrect light, we divide by the very different illuminant chromaticity [.172, .363, .464].

equal to patches 1, 4, and 9 of the Macbeth ColourChecker [134] (dark skin, moderate olive green,

moderate red), and under standard illuminant D65 (standard daylight with correlated colour temper-

ature 6500K [194]) using the sensor curves for a Kodak DCS420 digital colour camera. If we adopt

a Lambertian model then the matte image is as in Fig. 5.2(a). We now add a specular reflectance

lobe for each surface reflectance function. We use the Phong illumination model[78], together with

underlying matte Lambertian shading. Here, we use a Phong factor of 1 for the magnitude relative

to matte. For the Phong power, we use a power of 20, where the inverse is basically roughness, 0.05.

The matte image goes over to one with highlights as in Fig. 5.2(b). These surfaces are particular

instances of dichromatic surface spectral reflectances [157].

Now suppose we have correctly guessed the lighting chromaticity; then let us go on to form

the Log-Relative-Chromaticity ψ . Forming the dot-product (5.10) we arrive at values as depicted

in Fig. 5.2(c). The ψ values for low dot product values are found to indeed lie nearly on a plane,

and the idea of asking that the dot-product (5.10) be small is indeed justified for this synthetic data.

Moreover, the perpendicular to the plane found is very close to the actual light used to form the

image.

To show the discriminative power of the planar constraint, let us now suppose we have guessed

an incorrect light chromaticity. The ground truth chromaticity for this light is [.279, .316, .404]. As a
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different, incorrect light, we divide by the very different illuminant chromaticity [.172, .363, 0.464].

If we now instead divide by the chromaticity of the wrong light, the dot-product appears as in

Fig. 5.2(d), a much less discriminative identification of specular pixels than when we in fact use the

correct light. Moreover, the perpendicular to the best-fit plane is much poorer an estimate of the

correct light chromaticity. That is, suppose we identify as candidate specular pixels those whose

absolute value of dot-product eq. (5.10) with the candidate light chromaticity falls in the lowest

10-percentile, say (i.e., nearest to zero). Forming a Singular Value Decomposition of ψ values for

those pixels determines the best-fit plane. The third eigenvector is then associated with the normal

to that plane, and within the model presented here that normal should be close to the illuminant

chromaticity in direction.

5.4 Planar Constraint Method

Here we begin construction of an algorithm by considering first a simple search method as motiva-

tion, and then stating an analytic solution.

5.4.1 Global Search

The planar constraint suggests that the dot product for near-light-colour (e.g., specular) pixels is

minimized for the correct illuminant. This points to a useful descriptor for finding the specular

point.

Suppose we were to assume that for any candidate illuminant the lowest 10-percentile, say,

of dot-product values (5.10) could be near-specular pixels. Now, to find the correct illuminant, we

need to minimize dot-product values (5.10) over candidate illuminants for those lowest 10-percentile

pixels. Thus an optimization can be stated as follows:

We already defined the Zeta-image ζ as the dot-product of the log-relative-chromaticity, ψ , with a

putative light direction in eq. (5.11).

Minimize : minρ e I =
∑
ψ ∈Ψ0

|ζ|

subject to
∑3

k=1 ρ
e
k = 1 , 0 < ρek < 1 , k = 1..3 (5.14)

where Ψ0 is the set of pixel dot-product values (5.10) with the candidate illuminant chromaticity ρ e

that are in the lowest 10-percentile.

The meaning of eq. (5.14) is that we first carry out a search, over possible illuminant chro-

maticities ρ e. This can be phrased as either an optimization-based approach or, as here, a simple
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hierarchical grid search. Then we adopt a heuristic that says that the lowest 10-percentile of values of

dot-products with the candidate illuminant could be specular or in general illuminant-coloured. For

these pixels we calculate the sum of absolute values of dot-products and take as the best candidate

light that which delivers the minimum sum.

Fig. 5.3(a) shows an input image, and Fig. 5.3(b) shows a boolean map of the lowest 10-

percentile of dot-product values (5.10) with the correct illuminant chromaticity of that image. In

contrast, if we show the lowest 10-percentile of dot products with the chromaticity of an incorrect

light, whereψ values are constructed using that incorrect light, the boolean map identifying putative

specular/illuminant-coloured pixels is as displayed in Fig. 5.3(c). We see that using the correct light

produces a much more plausible map of possible pixels that will help identify the light.

(a) (b) (c) (d)

Figure 5.3: (a): Image taken under measured illuminant. (b): Light-coloured pixels identified using
planar constraint, when correct illuminant is chosen. (c): Putative illuminant-coloured pixels when
incorrect illuminant is used. (d): Analytic Zeta-image (float, reversed in intensity).

Fig. 5.4(a) shows Fig. 5.3(a) in ψ space computed by eq. (5.8). There is no evidence of a

plane while, in contrast, Fig 5.4(b) demonstrates that ψ values of near-specular pixels based on

the optimization eq. (5.14) do indeed form a plane orthogonal to the light vector, as can be easily

verified numerically.

For visualization, in Fig. 5.5 we display as well a mesh plot of the objective function of eq. (5.14)

for Fig. 5.3(a). This function has only one local minimum, which makes it easy to compute.

The float-valued Zeta-image is displayed in Fig. 5.3(d). We show next that we can directly use

the Zeta-image to analytically find the correct illuminant chromaticity.

5.4.2 Analytic Solution

Having motivated the method, we now state an analytic solution that in fact produces excellent

results and is very simple and fast. Suppose we identify a possible set Ψ0 of specular pixels by any
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Figure 5.4: (a): Fig. 5.3(a) in ψ space computed by eq. (5.8). (b): ψ values of near-specular pixels
form a plane.
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Figure 5.5: A mesh plot of the objective function in eq. (5.14), for image Fig. 5.3(a) The red ring
shows the estimated illuminant, which is the index achieving the minimum value of the objective
function; the green ring (lying almost on top of the red ring) shows the correct illuminant chromatic-
ity location. The angular error between these two values is 1.09◦.
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convenient method — e.g., we could simply take the top 5% of brightness.

Let the number of bright pixels be N . Then our analytic solution is as follows:

Theorem: Up to an L1 normalization, the light colour is given by the geometric mean

ρek = g(ρ k) ≡

(
N∏
i=1

ρik

)1/N

, k = 1..3 (5.15)

To prove this, let us first solve an auxiliary optimization replacing (5.14). For physical lights, we

expect ζ from eq. (5.11) to be non-negative, so [with no absolute-value bars as in I in eq. (5.14)] we

first solve
min
ρ e

∑
i

ζi + λ (
3∑

k=1

ρek − 1) (5.16)

where i = 1..N ranges over the N pixels in ψ ∈ Ψ0, and λ is a Lagrange multiplier enforcing

that ρ e is a chromaticity. Taking partial derivatives with respect to ρek we have the normal equations

−
∑
i

[(
log(ρik − log ρek

)
− 1
]

+ λ = 0 (5.17)

with solution ρek = g(ρ k) · exp(−(N + λ)/N) (5.18)

Also, taking the derivative of (5.16) with respect to λ enforces
∑3

k=1 ρ
e
k = 1, so that scaling the

solution (5.18) to obey L1-norm=1 solves for λ as well if we like.

The meaning of (5.16) then is: The planarity constraint yields the geometric mean of the
chromaticities as the solution for the light, up to trivial scaling of the L1-norm.

However so far we have omitted absolute value bars, with a full optimization minimizing I =∑
i |ζi|. We now observe that the form (5.11) formally has the structure of the Kullback-Leibler Di-

vergence from information theory, in that chromaticities for image, ρik, and light, ρek all add to unity:∑3
k=1 ρk = 1. We are minimizing

∑N
i=1[
∑3

k=1−ρek log(ρik/ρ
e
k)], which has the K-L structure

except that instead of summing over probabilities for symbols we are here summing over colour-

channels. Thus each dot product (the sum over k at each pixel) is necessarily nonnegative since it

represents the extra bits required to code samples from ρek when using a code based on ρik. Hence

we can simply consider the minimization (5.16), with solution (5.15) up to scaling. As a final step,

we calculate a final value for ρek by trimming pixels to the least-10% values of the Zeta-image ζ and

recalculating the geometric mean (5.15). Thus we propose an iterative-analytic solution algorithm

by an iterative method which finds the illuminant using an initial specular candidate set and then

iteratively the zeta value is calculated using the estimated illuminant and also the illuminant using
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the geometric mean of pixels with the least-10% values of the zeta. The initial specular candidate is

set selected via top-T% brightness pixels for different T values and the final estimates is the one that

provides the minimum value of zeta after two or three iterations. The detailed algorithm is expressed

in algorithm 5.1.

Algorithm 5.1 Zeta Analytic Solution for Illumination Estimation

1: for all threshold in {5%, 3%, 2%, 1%, .5%} do
2: Find top bright pixels by that threshold on R+G+B value as specular candidate set
3: Initially estimate the specular point (e) by geomean of pixels in specular candidate set
4: Calculate ζ by e using eq. (5.11)
5: Recalculate e by geomean of pixels with 10% low ζ
6: Iterate to step 4 twice
7: end for
8: Choose the estimate by threshold that minimizes average ζ for final set of specular candidate set

Areas of images that are specular tend to be bright. According to our theory the geometric mean

of pixels in these bright (generally, specular) regions is the optimal estimate for the illuminant. Our

insight is in contradistinction to the work of Choudhury and Medioni [39] and Funt and Shi [91]

which proposed finding the max after a local mean calculation (e.g. after local blurring). In the

presence of specular highlights illuminant estimation is the mean of the max but not the converse.

Indeed, using the correct ordering is crucial (a fact borne out by our experiments reported below).

We have also try a grid based local search around the result of algorithm 5.1 to make it more precise.

Experiment shows that it improve performance slightly while make it much slower so we decide not

to use it.

5.4.3 2nd Algorithm: Planar Constraint Applied as a Post-Processing Step

Suppose we have an estimate ρ e? of the correct illuminant, from any colour constancy algorithm.

If our estimate is indeed near the correct illuminant we can then identify as near-specular pixels

those whose absolute value of dot-product eq. (5.10) with the candidate light chromaticity falls in

the lowest 10-percentile, say, (i.e., nearest to zero). Forming a Singular Value Decomposition of

ψ values for those pixels determines the best-fit plane, with the third eigenvector associated with the

normal to that plane. Within the model presented here that normal should be close to the illuminant

chromaticity in direction. Because of the additional evidence brought to bear by eq. (5.10) we expect

the estimate to improve. If instead the illuminant estimate is wrong, then we have found that the

above SVD step will almost always not change it much and no harm is done by carrying out this
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post-processing step.

We carry out

ψk = log
(
ρk
ρe
∗

k

)
, k = 1..3; Ψ = ψ Tρ e? ;

ψ (Ψ0) = SV D(ψ (Ψ0)) = U diag(d )V T ;

ρ e = V 3/|V 3| ; success = (d3 small)&(ρ e ' ρ e?)

(5.19)

where ρ e? is the estimate of the illumination provided by a colour constancy method, Ψ0 is the

lowest 10-percentile of Ψ, and ρ e is the estimate of the illumination based on the planar constraint.

The meaning of eq. (5.19) is that, for any estimate ρ e? of the light chromaticity ρ e, if the model

(5.10) is obeyed around the light point then SVD should produce an estimate of the light that agrees

with ρ e?.

We demonstrate below that this planar constraint does indeed improve the estimate of ρ e, verify-

ing the suitability of the plane constraint applied as a post-processing step, for any candidate colour

constancy algorithm. In the next section we will demonstrate the substantial improvement deliv-

ered by this simple planar constraint when added to each of several well-known colour constancy

algorithms as a post-processing step.

5.5 Experiment Results

5.5.1 Datasets

We apply our proposed method to three different real-image datasets [14, 160, 40] and compare our

results to other colour constancy algorithms.

Our first experiment uses the Barnard dataset [14], denoted the SFU Laboratory dataset, which

contains 321 measured images under 11 different measured illuminants. The scenes are divided into

two sets as follows: minimal specularities (22 scenes, 223 images – i.e., 19 missing images); and

non-negligible dielectric specularities (9 scenes, 98 images – 1 illuminant is missing for 1 scene).

For a more real-world (out of the laboratory) image experiment we used the re-processed version

of the Gehler colour constancy dataset [93], denoted the ColorChecker dataset, provided by Shi and

Funt [160]. This dataset consists of 568 images, both indoor and outdoor. The illuminant ground

truth for these images is known because each image has a Macbeth ColorChecker placed in the

scene. The ColorChecker is masked off in tests.
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Ciurea and Funt [40] introduced the GreyBall dataset, which contains 11346 images extracted

from video recorded under a wide variety of imaging conditions. The images are divided into 15

different clips taken at different locations. The ground truth was acquired by attaching a grey sphere

to the camera, displayed in the corner of the image. This grey sphere must be masked during

experiments.

5.5.2 Previous Methods

To compare, we use the standard well-known colour constancy methods: White-Patch, Grey-World,

and Grey-Edge implemented by [180]. For Grey-Edge we use optimal settings, which differ per

dataset [98] (p = 7 , σ = 4 for the SFU Laboratory dataset and p = 1, σ = 6 for the ColorChecker

dataset). We also use the result provided by Gijsenij and et al. [102] for pixel-based gamut mapping,

using the best general gamut mapping setting, which is for 1st-jet as reported in [102] (although we

could not precisely match their exact results using the code they released). For other methods we

use results as provided by Gijsenij [104, 98].

For methods which need training data, such as the gamut mapping methods, in the SFU Lab-

oratory dataset 31 images (all images recorded under the syl-50MR16Q-illuminant) were used for

computation of the canonical gamut, and subsequently these were omitted from the test set. For the

ColorChecker dataset, three-fold cross-validation was used to learn the canonical gamut (with the

folds as well as the ground truth supplied with the original dataset). Testing for supervised methods

is as described in [104], §VII-A.

5.5.3 Post-Processing

Table 5.1 shows the accuracy of the plane constraint eq. (5.19) in §5.4.3 as a post-processing step

applied to the results of each of the well-known colour constancy algorithms (White-Patch, Grey-

World and Grey-Edge), in order to improve the estimate. The errors are in terms of the median of

angular errors for 3-D illuminant chromaticity.

As expected, applying the plane constraint can significantly improve the estimate of illuminants

while being very fast and easy to implement.

Experimental results in Table 5.1 indicate that estimate errors can be reduced by some 15 to

30 percent by this simple and very fast mechanism.
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Table 5.1: Median of angular errors for well-known colour constancy algorithms for the SFU Lab-
oratory [14] dataset and ColorChecker dataset [160], plus result after post-processing with planar
constraint eq. (5.19) for each colour constancy algorithm.

Method SFU Lab. ColorChecker

White-Patch 6.5◦ 5.7◦

White-Patch + Planar Con. 5.1◦ 4.4◦

Grey-World 7.0◦ 6.3◦

Grey-World + Planar Con. 5.0◦ 4.3◦

Grey-Edge 3.2◦ 4.3◦

Grey-Edge + Planar Con. 2.7◦ 3.8◦

5.5.4 Global Search and Analytic Solution Experiment

Table 5.2 indicates the accuracy of the proposed methods for the SFU Laboratory dataset [14], the

ColorChecker dataset [160] and the GreyBall dataset [40], in terms of the mean and median of

angular errors, for several colour constancy algorithms applied to these datasets. For those methods

which need data-dependent tunable parameters, we utilize optimal parameters for their dataset. For

an overview of results of different algorithms on these dataset refer to [104, 98].

To our knowledge, for the SFU Laboratory dataset the Planar Constraint Search eq. (5.14) does

best in terms of median angular error compared to any reported colour constancy method, even those

needing training data. We do note that for this dataset the Planar Constraint Search eq. (5.14) is not

the best for the ColorChecker dataset, with Gamut Mapping methods performing better. However,

both Planar Search and the Analytic method of §5.4.2 (Geomean) do as well or better than the other

relatively fast methods for the GreyBall dataset, and are only bested by the much more complex

method [100].

Run-times average 5.2s for Planar-Constraint search and 415ms for the Analytic method, com-

pared to 617ms for the GreyEdge algorithm and 63.2s for 1st-Jet Gamut Mapping, operating on the

SFU Laboratory dataset using (unoptimized) Matlab.

Figure 5.8 shows examples of corrected images from GreyBall dataset based on proposed method

using geometric mean (called the Zeta-Image method) compared to White-Patch, Grey-World, Grey-

Edge and Gamut Mapping methods and their angular error compare to ground truth which was
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Table 5.2: Angular errors for several colour constancy algorithms for SFU Laboratory dataset [14],
ColorChecker dataset [160] and GreyBall dataset [40].

Dataset SFU Laboratory Color Checker Gray Ball
Methods Median Mean Median Mean Median Mean

White Patch 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦

Gray World 7.0◦ 9.8◦ 6.3◦ 6.4◦ 7.0◦ 7.9◦

Gray Edge 3.2◦ 5.6◦ 4.5◦ 5.3◦ 4.7◦ 5.9◦

Bayesian [93] - - 3.5◦ 4.8◦ - -
Gamut Mapping 2.3◦ 3.7◦ 2.5◦ 4.1◦ 5.8◦ 7.1◦

Gamut Mapping 1jet [102] 2.1◦ 3.6◦ 2.5◦ 4.1◦ 5.8◦ 6.9◦

Natural Image Statistics [100] - - 3.1◦ 4.2◦ 3.9◦ 5.2◦

Planar Constraint Search 1.9◦ 4.3◦ 2.8◦ 4.1◦ 4.6◦ 5.9◦

Geomean 2.1◦ 6.2◦ 2.7◦ 4.2◦ 4.7◦ 5.8◦

obtained using a grey sphere mounted onto the video camera.

5.6 Specularity Manipulation

The Zeta-image should identify specular pixels. Here we are interested in seeing whether in gen-

eral the Zeta-image provides a guide to manipulating specularities. We begin with an illuminant-

dependent colour space in order to separate the effect of specular reflection. Here we use SUV colour

space proposed by Mallick et al. [132], defined by two rotations making the first dimension, S, the

known illuminant colour 3-vector. In SUV colour space, the other axes U and V are then orthogonal

to the illuminant and free from illumination colour (although for clipped pixels this condition is not

valid).

Generally, modifying specularities is reduced to modifying the S channel, which we aim to do by

manipulating the Zeta-image. Thus we maintain the UV components unchanged. Since smaller zeta

indicates more specular contribution, or specular reflection, we can simply deprecate this amount

by multiplying the S channel by a monotonic function f(ζ) of zeta. We could use regression on

non-bright pixels to generate f , but in Fig. 5.7 we simply use following equation:

Smodified = S(ζ/α)β (5.20)

where α normalizes the ζ value and determines the pixels that are affected by ζ; and β, with range
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[−1, 1], determines the shape of the transfer-function curve. Positive β reduces specularity since it

reduces the modified S; and negative β enhances the specularity. This simple transform generates

arguably excellent specular-free images and justifies the applicability of the Zeta-image approach.

Fig. 5.6 shows the procedure for specularity manipulation using the Zeta-image.

Original 

S 

UV 

Removed 

Enhanced 

β=.3 

β=-.3 

Estimate 
Illuminant 

Figure 5.6: The procedure of specularity manipulation using Zeta-image.

Fig. 5.7 shows the result of this test compared to Tan and Ikeuchi’s method [164] as well as the

UV channels from [132]. Comparison (particularly zoomed-in) with Fig. 5.7(c) shows the higher

quality output of the new image; and moreover this advantage is gained without having to know the

illuminant. While this is only a brief test of course, it does indicate that, as claimed, the Zeta-image

carries additional information regarding specular highlights.
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(a) (b) (c) (d)

Figure 5.7: (a): Original images. (b): Specularity-free UV channels by [132]. (c): Specularity-free

images by [164]. (d): Specularity-free images by modifying SUV by the Zeta-image.

5.7 Conclusions

In this chapter we present a novel physics-based insight regarding a plane constraint that obtains

for log-relative-chromaticity values near the illuminant point (for white surfaces, or specularities in

the neutral-interface model). This insight provides a useful and very simple method for identify-

ing the illuminant chromaticity that requires no training data or tunable parameters. It is easy to

implement and very fast compared to complex colour constancy methods such as gamut mapping,

while retaining comparable performance. Experiment results over datasets consisting of laboratory

images and of real-world images demonstrate that the proposed method significantly outperforms

other unsupervised methods while its accuracy of illuminant estimation is comparable with the best

(supervised) methods but much faster.

As well, the plane constraint can also be brought to bear to improve estimates provided by
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other illuminant estimation algorithms. Since the feature vectors corresponding to specular or near-

specular pixels in an image must lie on a plane (within the simple and straightforward model em-

ployed here), the planar constraint can be used as a post-processing step; experimental results indi-

cate that estimate errors can be reduced by some 15 percent by this simple and very fast mechanism.

Here we have concentrated on a simple and fast algorithm, with a fixed threshold; but of course

the 10% threshold we have used should in fact be a free parameter subject to optimization. Although

results show that the new algorithm significantly outperforms other methods in terms of median

error, the method does occasionally fail and this brings down mean performance.

To show that the Zeta-image does indeed carry extra information regarding specularities in im-

ages, we also showed in a test using calibrated images that the Zeta-image can be used not only to

identify specularities but further to generate highlight-free images retaining natural shading, with

excellent results. Using two parameters, a simple mapping can be shown to increase specularity or

decrease it, in a controlled manner.

Future work includes identifying failure either by heuristics or by integrating with other methods

[22, 34, 100]. Nonetheless, performance achieved by this simple approach shows the scientific merit

of the new insight obtained. The most interesting contribution is the development of the Zeta-image

itself. The use of entropy measures over chromaticity values has not been utilized before, we believe,

and further investigation of its implications will be studied.
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Original White-patch Grey-World Grey-Edge Gamut Mapping Zeta

Figure 5.8: Examples of corrected images from GreyBall dataset based on proposed method using
geometric mean (called the Zeta-Image method) compared to White-Patch, Grey-World, Grey-Edge
and Gamut Mapping methods, and their angular error compared to ground truth which was obtained
by having a grey sphere mounted onto the video camera.



Chapter 6

Camera Calibration for Daylight
Specular-Point Locus

In this chapter we present a new camera calibration method aimed at finding a straight-line locus, in

a special colour feature space, that is traversed by daylights and as well also approximately followed

by specular points. The aim of the calibration is to enable recovering the colour of the illuminant

in a scene, using the calibrated camera. First we prove theoretically that any candidate specular

points, for an image that is generated by a specific camera and taken under a daylight, must lie on a

straight line in log-chromaticity space, for a chromaticity that is generated using a geometric-mean

denominator. Use is made of the assumptions that daylight illuminants can be approximated using

Planckians and that camera sensors are narrowband or can be made so by spectral sharpening. Then

we show how a particular camera can be calibrated so as to discover this locus. As applications we

use this curve for illuminant detection, and also for re-lighting of images to show they would appear

under lighting having a different colour temperature.

6.1 Introduction

The objective of this chapter is to show that natural lights must necessarily follow a straight-line

locus, in a special 2-D chromaticity feature space generated using a geometric-mean denominator

to remove the effect of magnitude from colour, and that this locus can be derived from a camera

calibration. Transformed back into non-log coordinates, the straight line in log colour space means

that in terms of ordinary L1-norm based chromaticity {R,G}/(R+G+B) lights follow a particular

75
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curve. The locus determined is camera-dependent. Derivation of the parameters of this locus via a

camera calibration means that then one can use the path to help identify the illuminant in the scene,

and also to transform from one illuminant to another.

In this chapter, the main use we make of the above observation regarding the path following by

illuminants is to apply this additional constraint to colour constancy algorithms as extra information

that can be brought to bear. We show that the specular-locus thus found does help in discovering

the lighting in a scene. Moreover, since we know the path that illuminants would take depending

on the colour temperature T , we can re-light a scene simply by changing T and thus moving along

the locus. Using measured data for changing lights for static scenes we show below that this shift in

lighting is indeed accurate.

The history of using specularities to discover the illuminant is lengthy, and here we simply

highlight some key contributions used in this chapter. Shafer [157] introduced the widely used and

quite effective dichromatic model of reflectance for dielectric materials, wherein surface reflectance

consists of (i) a diffuse (‘body’) component that depends on subsurface material properties of a

reflecting surface and (ii) a specular (‘surface’) component that depends on the air-surface interface

layer and not the body-reflectance properties. The diffuse component is responsible for generating

the colour and shading for an object and the specular component is responsible for highlights. For

a dielectric (e.g., plastics) the neutral-interface model [121] states that the colour of the specular

contribution is approximately the same as the colour of the illuminant itself. However, simply taking

specular colour as identical with light colour is insufficient: typically, specular reflection looks white

to the viewer (for dielectric materials), but in fact a careful inspection of specular pixels shows that

the body colour is still present to some degree.

Klinker et al. [114] showed that when the diffuse colour is constant over a surface, the colour

histogram of its image forms a T-shaped distribution, with the diffuse and specular pixels forming

linear clusters. They used this information to estimate a single diffuse colour. Therefore in order to

use this principle, their approach needed to segment an image into several regions of homogeneous

diffuse colour. Morever, Lee [120] proposed a method which uses specularity to compute illumina-

tion by using the fact that in the CIE chromaticity diagram [194] the coordinates of the colours from

different points from the same surface will fall on a straight line connected to the specular point.

This is the case when the light reflected from a uniform surface is a additive mixture of the specular

component and the diffuse component. This seminal work initiated a substantial body of work on

identifying specular pixels and using these to attempt to discover the illuminant [122, 164]. Another

approach extending these algorithms is to define a constraint on the possible colours of illumination,
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making estimation more robust [73, 74].

Finlayson and Drew [60] used 4-dimensional images (more colours than R,G,B) formed by a

special 4-sensor camera. They first formed colour ratios to reduce the dimensionality to 3 and to

eliminate light intensity and shading; then projecting log values into the plane orthogonal to the

direction in the 3-D space corresponding to a lighting change direction they arrived at generalized

colour 2-vectors independent of lighting. They noted that in the 2-space, specularities are approxi-

mately linear streaks pointing to a single specular point. Therefore they could remove specularities

by the simple expedient of replacing each 2-D colour by the maximum 2-vector position at its par-

ticular direction from the specular point. Note, however, that in [60] the authors were constrained

to using a four-sensor camera. Here we relax that necessity by adding a more complete camera

calibration phase.

In [128], Lu and Drew carried out an analysis again based on the formulation in [60], but in

3-D rather than 4-D and using an additional image generated by imaging a with-flash exposure in

addition to an image with no flash. The addition of an extra image means that by subtracting the

images an estimate of illuminant colour temperature can be established based on closeness to a

predetermined set of clusters for different lights in a log-chromaticity space, using the mean over

the image in that space compared to the clusters.

In this chapter we present a new camera calibration method aimed at finding a specular-point

locus in the log-chromaticity colour feature space, for daylight illuminants. We prove that, in a sim-

plifying model for image formation under non-fluorescent illumination, any candidate illuminants

for an image generated by a specific camera must lie on a line in log-log chromaticity space if we

use a geometric mean to normalize colour. This has the consequence that ordinary r, g chromatic-

ities formed by dividing by the sum R + G + B must lie on a specific curve. To support these

theoretical considerations, we demonstrate the applicability of the line in log chromaticity space for

several different datasets and, as applications, we use the resulting curve for illumination recovery

and re-lighting with a different illumination.

In essence, we are proposing a type of new colour constancy algorithm, one that uses a camera

calibration. Many colour constancy algorithms have been proposed (see [110, 104] for an overview).

The foundational colour constancy method, the so-called White-Patch or Max-RGB method, esti-

mates the light source colour from the maximum response of the different colour channels [117].

Another well-known colour constancy method is based on the Grey-World hypothesis [32], which

assumes that the average reflectance in the scene is achromatic. Grey-Edge is a recent version of the

Grey-World hypothesis that says: the average of the reflectance differences in a scene is achromatic



CHAPTER 6. CAMERA CALIBRATION FOR DAYLIGHT SPECULAR-POINT LOCUS 78

[180]. Finlayson and Trezzi [75] formalize grey-based methods by subsuming them into a single

formula using the Minkowski p-norm. The Gamut Mapping algorithm, a more complex and more

accurate algorithm, was introduced by Forsyth [79]. It is based on the assumption that in real-world

images, for a given illuminant one observes only a limited number of colours. Several extensions

have been proposed [8, 67, 59, 102].

The chapter is organized as follows: To begin, in §6.2 we discuss the underlying assumptions

that allow us to create a simplified model of colour image formation. Then in §6.3 we examine how

the simplified model plus an offline calibration of the camera can be used to analyze the specular

highlights. We propose a specular-point locus in chromaticity space in §6.4 based on the calibration

for each camera. In §6.5 and §6.6 we use the proposed illuminant locus to demonstrate its applica-

bility in two application areas: illuminant identification, and image re-lighting. In §6.7 we introduce

a method to generate a matte image using our estimated illuminant, giving a specular-free image.

Finally, we conclude the chapter in §6.8.

6.2 Image Formation

To generate a simplified image formation model we apply the following set of simplifying assump-

tions (cf. [70]): (1) illumination is Planckian or is sufficiently near the Planckian locus that a black-

body radiator forms a reasonable approximation for this use [68]; (2) surfaces are dichromatic [157];

and (3) RGB camera sensors are narrowband or can be made sufficiently narrowband by a spectral-

sharpening colour-space transform [63].

Thus we begin by considering a narrowband camera, with three sensors. Note again that in [60]

the authors were constrained to using a four-sensor camera. Here we relax that necessity by adding

a more complete camera calibration phase for a camera with only three sensors.

Real camera sensor curves are not in fact narrowband: Below, we investigate how the assumption

of Planckian lighting impacts models of image formation by making use of a 3-sensor delta-function

sensitivity camera. It is evident that real sensors are far from idealized delta functions: each is

typically sensitive to a wavelength interval over 100nm in extent. Nevertheless, as we shall see, they

behave sufficiently like narrowband sensors for our theory to work and moreover this behaviour

could be promoted by carrying out calculations in an intermediate spectrally sharpened colour space

[63].

Now let us briefly examine image formation in general for a dichromatic reflectance function

comprising Lambertian and specular parts. For the Lambertian component, suppose there are i =
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1..L lights, each with the same SPD Ei(λ) (e.g., an area source) given by Wien’s approximation of

a Planckian source [194]:

Ei(λ) = Iic1λ
−5e−c2/(λTi) , c1 = 3.74183× 1016 , c2 = 1.4388× 10−2 (6.1)

with distant lighting from lights in normalized directions a i with intensities Ii (the constant c1 de-

termines the units). If the surface projecting to retinal point x has spectral surface reflectance S(λ)

and normal n then, for a delta-function narrowband sensor camera with spike sensor sensitivities

Qk(λ)=qkδ(λ− λk), k = 1..3, the 3-vector RGB response Rk is

Rk =
∑L

i=1 a
i · n

∫
Ei(λ)S(λ)Qk(λ)dλ

=
∑L

i=1 c1a
i · n S(λk)I

i(λk)
−5e−c2/(λkTi) qk

=
[∑L

i=1(c1I
ia i)

]
· n S(λk)(λk)

−5e−c2/(λkT ) qk if all Ti = T

≡ ã · n S(λk)λ
−5e−c2/(λkT ) qk , k = 1..3

(6.2)

The above is the matte model employed. For the specular part, let us assume a specular model

dependent on the half–way vector nS between the illuminant direction and the viewer:

R Specular =

L∑
i=1

b iSΦ(n i
S · n ) , (6.3)

where b iS is the colour of the specularity for the ith light. E.g., in the Phong specular model [78],

Φ(nS
i · n ) = (nS

i · n )p , (6.4)

where a high power p makes a more focussed highlight.

Now in a neutral interface model [120], the colour of the specular term is approximated as:

b iS ≡ colour of the light. (6.5)

Hence for Lambertian plus Specular reflectance, we arrive at a simple model:

Rk =
[
ã · n S(λk) +

∑L
i=1 c1I

iΦ(n i
S
T n )

]
λ−5
k e−c2/(λkT ) qk . (6.6)
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For each pixel at a retinal position x , the second term in the brackets is a constant, β say, that

depends only on geometry and not on the light colour. Therefore we have

Rk = [ã · n S(λk) + β]λ−5
k e−c2/(λkT ) qk (6.7)

with possibly several specular highlights on any surface (β = β(x )).

If we define

α = β/(ã · n ) , (6.8)

then our expression simplifies to:

Rk = (ã · n ) [S(λk) + α]λ−5
k e−c2/(λkT ) qk (6.9)

6.3 Specular-Point Line in Log Chromaticity Space

We note that dividing by a colour channel (green, say) removes the initial factor in eq. (6.9). We

can divide instead by the geometric mean (cf. [60]) so as not to be forced to choose a particular

normalizing channel. Define the mean RM by

RM = 3

√
Π3
k=1 Rk . (6.10)

Then we can remove light intensity and shading by forming a chromaticity 3-vector r via

rk = Rk/RM , k = 1..3. (6.11)

Thus from eq. (6.9) we have

log rk = log

(
sk + α

sM + α

)
+ wk + (ek − eM )

1

T
, k = 1..3, (6.12)

where we simplify the expressions by defining some short-hand notations as follows:

sk = S(λk); vk = λ−5
k qk; vM =

{∏3
j=1 λ

−5
j qj

}1/3
, wk = log (vk/vM )

ek = −c2/λk; eM = (−c2/3)
∑3

j=1(1/λj) ,

(6.13)

and we define an effective geometric-mean-respecting value sM by setting

(sM + α) ≡


3∏
j=1

(sj + α)


1/3
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In the case of broad-band sensors we replace some of the definitions in eq. (6.12) above by

values that are equivalent for delta-function cameras but are appropriate for real sensors (extending

definitions in [60]):
σk =

∫
qk(λ)dλ ,

ek = (1/σk)
∫
−(c2/λ)qk(λ)dλ ,

eM = (1/3)
∑3

j=1 ek ,

sk = (1/σk)
∫
S(λ)qk(λ)dλ ,

vk =
∫
λ−5 qk(λ)dλ

(6.14)

The meaning of eq. (6.12) is that the log of the chromaticity is given by: (i) A term consisting

of the matte-surface term sk combined with a term α, a scalar at each pixel that is the specular con-

tribution; (ii) a constant 3-vector offset term, wk, which is a characteristic of the particular camera;

and (iii) a term equal to the product of a “lighting-change” 3-vector (ek − eM ), also characterizing

the camera, times the inverse of the correlated colour temperature T encapsulating the colour of the

light.

Thus as the light colour (i.e., T ) changes, say into a shadow or because of inter-reflection, the

log-chromaticity at a pixel x simply follows a straight line in 3-space (as temperature T changes),

along the light-change direction (ek − eM ), even including the specular term α. For a fixed T , if α

changes on a patch with reflectance vector sk, then the plot of log r will be a curved line.

In this chapter, we mean to calibrate the camera so as to recover (a projection of) both this light-

change vector as well as the constant additive term wk. The difference from previous work [60] is

as follows.

In the method [60], going over to a chromaticity space meant that 4 dimensions were reduced

to 3. Then in that 3-space, light-change vector (ek − eM ) was obtained as the first eigenvector of

mean-subtracted colour-patch values. To then go over to a 2-space, log-chromaticity values were

then projected onto the subspace orthogonal to 3-D light-change vector. This meant that all lighting

colour and strength were projected away. In that plane, the illuminant, and consequently the specular

point as well, were always located in precisely the same spot. It was argued that, at a highly specular

point in an input image, the pixel values would essentially consist of the specular point and thus one

could derive that point from training images. Then forming radii from that specular spot out to the

least-specular pixel position effectively removed specularities.

Here, in contrast, we start with 3-D colour values, rather than 4-D ones, and so chromaticity

vectors are effectively 2-D. Now calibration of the camera is used to provide both a value of the
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offset term wk in eq. (6.12) as well as of the lighting-colour-change vector (ek − eM ).

For specular pixels, there is no surface term sk above in eq. (6.12), and log(α/α) = 0, so the

value of this log-geometric-mean chromaticity at a purely specular pixel becomes the simpler form

log rk = wk + (ek − eM )
1

T
, k = 1..3, (6.15)

Thus as T changes we have a line, in a 2-D colour space, whereon any specular point must

lie. To determine just where it does lie, we form an objective function measure, which is in fact

minimized provided we choose the correct value of T : an example of such a measure is given below

in §6.5.1. Hence we recover the temperature T and therefore the light colour. Moreover, since

have an illuminant locus we can go on to re-light images by moving the illuminant along the locus

obtained during the camera calibration phase. Such re-lit images are shown below in §6.6 where

images are shown as they would appear under a different colour temperature.

Note that although we work with 3-vectors, the step of division by the geometric mean creates

log r vectors that lie on a plane: they are all orthogonal to the vector (1, 1, 1)T — in fact, each of

the three terms in eq. (6.12) lies in this plane. Thus the components are not independent.

6.4 Recovery of Specular-Point Locus

To find the vector (ek − eM ), k = 1..3 we image matte Lambertian colour patches. Here we

use the 18 non-grey patches of the Macbeth ColourChecker [134]. We form log rk values using

temperatures T from 5500◦K to 10500◦K.

According to eq. (6.12) (with no specular contribution), for each surface we should see a set of

points in 3-space that falls on a straight line along (ek − eM ). Thus for each surface, if we then

subtract the mean, in each channel k of log rk, we see a set of nearly coincident lines through the

origin.

Therefore, as pointed out in [68] (in a 2-D setting like eq.(6.12) but with k = 1..2), we can find

vector (ek−eM ) by forming the covariance matrix of mean-subtracted log rk values and calculating

eigenvectors. The first eigenvector is the desired approximation of direction (ek − eM ).

To derive the offset term wk, we utilize the recovered normalized version of vector (ek − eM )

and image two lights (below) to determine the scaling along the inverse-temperature line.

Since we know that our colour features lie on the plane perpendicular to the unit vector u =

1/
√

3(1, 1, 1)T , to simplify the geometry we first rotate all our log-chromaticity vector coordinates

into that plane by forming the projector Pu onto the u direction. 2-D coordinates χ are formed by
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multiplication of the rotation matrix U from the eigenvector decomposition of the projector P⊥u =

I − Pu onto the plane:

P⊥u = UT diag(1, 1) U, U is 2× 3. (6.16)

We denote 2-vectors in this 2-D space as χ . And, explicitly, we form 2-vectors in the plane by

χ = U log r (6.17)

Now suppose that in the 2-D coordinates χ , two lights E1 and E2 produce vectors χ E1 and

χ E2 : for each light we form chromaticity (6.11), take logs, and then project via (6.17). Consider

the recovered normalized light-change direction vector, projected into this plane: define the 3-vector

e as having components (ek − eM ), and denote its unit 2-vector projection as ξ̂ . Note that we

recover only a normalized version of e from our SVD analysis of imaged colour patches, with

the norm unknown. That is, we work in the plane by rotating with U , and further normalize that

projected 2-vector, giving a known, normalized, 2-vector ξ̂ from our calibration.

Also, denote by η the projected vector wk: this is what we aim to recover.

ξ̂ = (Ue )/ν , where ν ≡ ‖Ue ‖,
η = Uw .

Then the 2-vector coordinates for the two lights Ei, i = 1..2 are

χEi
µ = ηµ + νξ̂µ/Ti, i = 1..2, µ = 1..2 (6.18)

where ν is an unknown scale, and Ti are known colour-temperatures. Note that since we are imaging

lights, not surfaces, the surface term sk in eq. (6.12) is not present.

Forming the difference 2-vector (χ E2−χ E1), we obtain a result involving only the normalized

direction ξ̂ . So we can determine the norm ν if we know T1 and T2. For consider the difference

2-vector

χE1
µ − χE2

µ = νξ̂µ

(
1

T1
− 1

T2

)
(6.19)

Even from these two data points we can easily determine the normalized vector ξ̂ since it is simply

given by the direction of the difference in χ . Since we know T1, T2, the norm ν thus falls out of

eq. (6.19).

Finally, subtracting the term νξ̂µ/Ti, i = 1, 2, from each of the two χ vectors and taking the

mean, we recover the offset term η .
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Let us denote by ξ the product νξ̂ , so using this vector and the offset η we arrive at a line (for

this particular camera calibrated as above) parametrized by temperature T that must necessarily be

traversed by any candidate specular point:

χ = η + (1/T )ξ (6.20)

In summary, the calibration algorithm proposed is expressed in algorithm 6.1.

Algorithm 6.1 Proposed Camera Calibration

Colour target:
Record RGB responses Rk, k = 1..3 (reflected from colour target)

for several lights −→ each pixel follows a parallel straight line;
calculate geometric mean at each pixel from eq. (6.10).

Derive geometric-mean-based chromaticity 3-vector r from eq. (6.11), and take logarithms.
Find 3-vector (ek − eM ) as first eigenvector for log r values, mean-subtracted

for each colour patch.

For illuminants E(λ), characterized by their known temperatures T
(in a light-box, for example):

Derive log r as above, for light reflected from a grey patch.
Project log r onto plane orthogonal to (1, 1, 1) via eq. (6.17), forming 2-D coordinates χ .
Subtracting pairs of χ values for known values T , find 2-D projected light-change

vector ξ via eq. (6.19).
Using ξ , find mean value of camera offset vector η over χ vectors used, eq. (6.20).

As set out in algorithm 6.1, a more accurate way to recover the offset term η and the vector ξ is

to utilize several different known illuminants and capture them using the camera to be calibrated:

lights should approximately lie on a straight line in χ space. Then line parameters η and ξ , as well

as outliers, can be recovered using a robust regression method such as the Least Median of Squares

(LMS) [151].

We shall find in the following sections that the offset η and the vector ξ are all the calibration

information that we need for different applications such as illuminant identification and re-lighting.

6.4.1 Real Images

The image formation theory used is based on three idealized assumptions: (1) Planckian illumi-

nation, (2) dichromatic surfaces; and (3) narrowband camera sensors. To determine if real images
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stand up under these constraints and generate the needed straight line in 2-D colour space, we make

use of datasets of measured images [93, 14]. Fig. 6.1 displays measured illuminant points inχ space

for 86 scenes captured by a high-quality Canon DSLR camera for 86 different lighting conditions

[93]. Notwithstanding the fact that the camera sensors are not narrowband and illuminants are not

perfectly Planckian, we can see that these illuminants do indeed approximately form a straight line,

thus justifying the suitability of the theoretical formulation.
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Figure 6.1: 86 illuminants for Canon camera in χ space [93]. Note that these illuminants do ap-
proximately follow a straight line.

Since we assume that lights can be characterized as Planckian, we expect that severely non-

Planckian lights will form outliers to the straight-line path determined. Figs. 6.2(a,b) demonstrate

that this is indeed that case. Here we show illuminant points transformed to 2-D χ space for 98 im-

ages consisting of measured images of 9 objects that are specifically selected to include substantial

specular content, under different illumination conditions [14]. In this dataset, illuminants for 26 of

the images are fluorescent (Sylvania Warm White Fluorescent(WWF), Sylvania Cool White Fluo-

rescent (CWF) and Philips Ultralume Fluorescent(PUF) ). These show up in Fig. 6.2(a) as outlier

points. Fig. 6.2(b) shows that the robust LMS method correctly identifies these points as outliers

and thus does not include them in calculating line parameters.

6.5 Illuminant Identification

Our camera calibration process has generated a locus in chromaticity space that candidate natural

daylight illuminations will follow. In this section we show how for a new image we can identify a

point on this locus as an estimate of the illuminant.
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Figure 6.2: (a): 98 illuminants for images containing significant specular content [14], plotted in
2-D χ colour space. Note clusters of points that arise from fluorescent illuminants (WWF, CWF,
ULM). (b): Outliers automatically determined by LMS regression are shown using a red circle, and
the regression line is shown as black dashed.

Recently, Drew et al. [48] presented an illuminant estimation method based on a planar con-

straint. This stated that for near-specular pixels, Log-Relative-Chromaticity (LRC) values are or-

thogonal to the light chromaticity: they showed that if one divides image chromaticity by illuminant

chromaticity, then in a log space the resulting set of 3-vectors are approximately planar, for near-

specular pixels, and orthogonal to the lighting — for the correct choice of the illuminant only. Hence

they propose an objective function based on this planar constraint which is minimized for the correct

illuminant.

Here, we utilize this daylight illuminant planar constraint by further constraining the light to lie

on the daylight locus we have derived above. The locus provides an additional constraint on the

illuminant and hence improves the estimate.

To begin, we briefly recapitulate below the derivation of this planar constraint.

6.5.1 Planar Constraint

Suppose we rewrite eq. (6.9) for the 3-vector RGB responseR , here relinquishing the requirements

that lighting be Planckian and sensors be narrowband, but instead applying the different simplifying

assumption that matte pixel 3-vector RGB triples be a component-wise product of a light 3-vector

epsilonk, k = 1..3, and a surface triple ςk [29]. Here, ςk is the reflectance at a pixel under equi-

energy white light.
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Adding a Neutral Interface Model term [120] for specular content, as in eq. (6.7), we have

approximately

Rk '
κςkεk
qk

+ βεk (6.21)

where κ is shading. E.g., for Lambertian matte shading κ equals lighting-direction dotted into

surface normal. Here, qk is again a triple giving the overall camera sensor strength [47]; β represents

the amount of specular component at that pixel. The value of β for a pixel will depend upon the

lighting direction, the surface normal, and the viewing geometry [157]. Let us lump values κςk/qk
into a single quantity and for convenience call this simply ςk. Now we have

Rk = ςkεk + βεk (6.22)

Instead of the geometric-mean based chromaticity r in eq. (6.11), let us make use of the standard

L1-norm based chromaticity [194]

ρ = {R,G,B}/(R+G+B) (6.23)

Thus here we have

ρk =
ςkεk + βεk∑3
j=1(ςjεj + βεj)

(6.24)

Let us define the Log-Relative-Chromaticity (LRC) as the above chromaticity divided by the

chromaticity for the lighting itself, ρεk. The planar constraint [48] says that for near-specular pixels,

LRC values are orthogonal to the light chromaticity, provided we have chosen the correct illuminant

to divide by.

To see how this constraint arises, form the LRC, which we denote as ψk:

ψk = log

(
ρk
ρεk

)
= log

(
ςkεk + βεk∑3

j=1(ςjεj) + β
∑3

j=1 εj
·
∑3

j=1 εj

εk

)
= log

 ςk + β
(
∑

j ςjεj)

E + β


(6.25)

For convenience, now define E ≡
∑3

j=1 εj = |ε | where | · | is the L1 norm.

Near a specular point, we can take the limit as (1/β) → 0. Let α = 1/β. Then in the limit, ψ

goes to

ψk = limα→0 log
{

(αςk + 1) /
(
α
∑

j(ςjεj)/E + 1
)}
' α

(
ςk −

∑
j ςjεj
E

)
(6.26)

The above is the Maclaurin series, accurate up to O
(
α2
)
. By inspection, we have that the LRC

vector, ψk, is orthogonal to the illuminant vector:
∑3

k=1 ψkek = 0, and hence also orthogonal to

the illuminant chromaticity,
∑3

k=1 ψkρ
e
k = 0.
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The planar constraint therefore suggests finding which illuminant amongst several candidates is

the correct choice, for a particular image, by minimizing the dot-product over illuminants, for pixels

that are likely near-specular [48]. Define ζ as the dot-product between ζ and the chromaticity for a

candidate illuminant, with ζ formed by dividing by this same illuminant chromaticity:

ζ = −ψ · ρ e = − log(ρ /ρ e) · ρ e (6.27)

Then we seek to solve an optimization as express in algorithm 6.2

Algorithm 6.2 Illumination Estimation by Zeta using Optimization

Minimize minρ e
∑
ψ ∈Ψ0

|ζ|

subject to
∑3

k=1 ρ
e
k = 1 , 0 < ρek < 1 , k = 1..3 (6.28)

where Ψ0 is a set of pixel dot-product values with the candidate illuminant chromaticity ρ e that

are likely to be near specular, e.g. those in the lowest 10-percentile.

To include the Daylight Locus constraint, for a camera calibrated as above in algorithm 6.2, we

consider only natural illuminants lying on the curve (6.20).

6.5.2 Experimental Results

We apply our proposed method to two different real-image datasets [14, 40] and compare our results

to other colour constancy algorithms. The motivation here is to investigate whether the derived

daylight locus correctly helps identify illuminants that are indeed daylights. We show that this is the

case.

Laboratory Images

Our first experiment uses the Barnard dataset [14], denoted here as the SFU Laboratory dataset

(introduced above in §6.4.1). This contains 321 measured images under 11 different measured

illuminants. The scenes are divided into two sets as follows: minimal specularities (22 scenes,

223 images – i.e., 19 missing images); and non-negligible dielectric specularities (9 scenes, 98

images – 1 illuminant is missing for 1 scene). In this dataset the illuminant for 86 of the images are

fluorescents. To compare to other colour constancy methods, we consider the following algorithms:

White-Patch, Grey-World, and Grey-Edge implemented by [180]. For Grey-Edge we use optimal
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Table 6.1: Angular errors for several colour constancy algorithms, for SFU Laboratory dataset [14].

all non-fluorescent
Method Median Er Mean Er Median Er Mean Er
White-Patch 6.5◦ 9.1◦ 6.9◦ 9.9◦

Grey-World 7.0◦ 9.8◦ 6.4◦ 9.4◦

Grey-Edge (p = 1,σ = 6) 3.2◦ 5.6◦ 2.9◦ 5.3◦

Gamut Mapping pixel (σ = 4) 2.3◦ 3.7◦ 1.8◦ 3.5◦

Planar Constraint Search 1.9◦ 4.3◦ 1.9◦ 4.6◦

Daylight Locus using Planar Constraint 2.4◦ 5.1◦ 1.6◦ 4.4◦

settings, which differ per dataset [98] (p = 7 , σ = 4 for the SFU Laboratory dataset and p = 1,

σ = 1 for the GreyBall dataset below). We also show the results provided by Gijsenij et al. [102]

for pixel-based gamut mapping, using the best gamut mapping settings for each dataset.

How the daylight locus information is used is as an additional constraint to the optimization

(6.28), whereby candidate illuminants are restricted to the daylight locus determined by our calibra-

tion, for the camera used in taking images.

Table 6.1 lists the accuracy of the proposed method for the SFU Laboratory dataset [14], in terms

of the mean and median of angular errors, compared to other colour constancy algorithms applied

to this dataset. Since the daylight locus is designed for natural lights (Planckian illuminants) and

not fluorescents, we expect performance to be better for non-fluorescents, and this is indeed the case

for the 86 scenes imaged under fluorescent lighting. As well, we break out results for all methods

for non-fluorescent illuminants (235 images). The results show that in fact using the daylight locus

outperforms all other methods in terms of median error, notwithstanding the fact that it is a much less

complex method than the gamut-mapping algorithms and does not require any tuning parameters.

The main conclusion to be drawn from this experiment is that the daylight locus does aid a

planar-constraint driven illuminant identifier when illuminants are indeed natural lights. This justi-

fies the suitability of our daylight-locus formulation as a useful physics-based constraint of natural

lighting.

Real-World Images

For a more real-world (out of the laboratory) image experiment we used GreyBall dataset provided

by Ciurea and Funt [40]: this dataset contains 11346 images extracted from video recorded under a
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wide variety of imaging conditions. The images are divided into 15 different clips taken at different

locations. The ground truth was acquired by attaching a grey sphere to the camera, displayed in the

bottom-right corner of the image. This grey sphere must be masked during experiments.

Fig. 6.3(a) shows the illuminants for this image set, mapped into 2-D χ colour space eq. (6.17).

We see that these illuminants do approximately follow a straight-line path in 2-space; the LMS-

based robust regression method finds a straight-line regression line shown red-dashed. Transformed

back into standard L1-norm based chromaticity space (6.23) the path is curved, as in Fig. 6.3(b).

Table 6.2 shows results for this dataset. We find that the Daylight Locus using the Planar Con-

straint does better than all the other methods save one: it is only bested by the far more complex

Natural Image Statistics method [100]. This is a machine learning technique to select and combine

a set of colour constancy methods based on natural image statistics and scene semantics. Again, we

find that adding the Daylight Locus information improves the Planar Constraint approach since here

lights used are natural daylights.
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Figure 6.3: (a): 11346 illuminants of GreyBall data set [40] in χ 2-space: they approximately fol-
low a straight line locus. (b): The illuminants transformed back into a curve in L1-norm based
chromaticity space.

6.6 Re-Lighting Images

We have shown that by means of calibrating the camera we can recover the specular point for a

new image not in the calibration set. That is, the method recovers an estimate of the temperature T
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Table 6.2: Angular errors for several colour constancy algorithms for GreyBall dataset [40].

Method Median Er Mean Er
White-Patch 5.3◦ 6.8◦

Grey-World 7.0◦ 7.9◦

Grey-Edge (p = 1,σ = 1) 4.7◦ 5.9◦

Gamut Mapping pixel (σ = 4) 5.8◦ 7.1◦

Natural Image Statistics [100] 3.9◦ 5.2◦

Planar Constraint Search 4.6◦ 5.9◦

Daylight Locus using Planar Constraint 4.1◦ 5.6◦

for the actual natural illuminant in a test image. Moreover, we have a curve that illuminants must

traverse as the lighting colour changes. Consequently it should be possible to re-light an image

by changing the position of the specular point along the curve, thus generating new images with a

different illuminant.

If we again adopt the assumption that camera sensors are narrow-band, we can use a diagonal

colour space transform [38] to move the image into new light conditions, via the following equation:

M = diag(ρ e′) diag(ρ e)−1

R ′ = R M

(6.29)

where diag(ρ e) is a 3 × 3 diagonal matrix with values from vector ρ e, and with ρ e the current

specular point and ρ e′ the new specular point; R and R ′ are the original and transformed RGB

vectors for each image pixel.

Fig. 6.4 shows the same image for different Planckian illuminants from 1500◦K to 10000◦K,

using the proposed re-lighting method. The method arguably produces reasonable output images

corresponding to the colour of the lights involved.

In another experiment, we compare the error of using daylight locus for re-lighting, via eq. (6.29)

compared to using the actual value of illuminants. Fig. 6.5 shows the same image transferred to

other measured images, using their estimated illuminants on the daylight locus. In all, we generated

re-lit images for a fixed object under 8 different illuminants (56 re-lightings). In terms of PNSR

error for generated images compared to measured ones, we found a median PSNR value of 33.8dB,

with minimum and maximum values of 28.2 and 43.5dB. These values demonstrate acceptable

faithfulness of rendition for images under new lighting. QAs another comparison, instead of using
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Figure 6.4: (a-h): Images generated by re-lighting with Planckians of differing tempertures
T=1600◦K, 1900◦K, 2400◦K, 2750◦K, 3900◦K, 4950◦K, 6750◦K, 10600◦K.

illuminants on the locus we instead used actual measured illuminants in transforming the image via

eq. (6.29). Now the min/median/max PSNR values are 28.2, 34.0 and 43.2, almost identical with

those found using the illuminant approximation derived from the locus. This demonstrates that using

the locus is nearly as good as using the actual illuminant, for this re-lighting task, with negligible

difference in results.

6.7 Matte Image from Angle Image

We would like to generate a matte output image, which will then act as an invariant image free of

shading and specularity (which could then be used as input to a segmentation scheme, for example).

However, our specular-invariant quantity is the angle from the recovered specular point, to each

image pixel in feature space. However, this angle encapsulates hue information. The main point is

that the angle from the specular point to the feature point of a pixel is approximately independent of

the presence or absence of specular content at that pixel. Hence, if there is any structure in the image

feature space χ from specular content, then by going over to this 2-D chromaticity space radii from

the specular point will be in the same direction for pixels of the same body colour with or without

specular content.

Based on the chromaticity-space model [120], a pixel value is a linear combination of the light
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Figure 6.5: (a-d): Input image; (e-g): Images generated by re-lighting of images (a) using (b-d)
estimated illuminants on daylight locus. The PSNR for (e-g) are respectively: 42.3, 37.1 and 33.9.

colour and the matte colour, as measured by the camera, resulting in a line in chromaticity space

starting from the matte point for any particular colour and leading towards the illuminant colour.

Since we already know the light, assumed to be the colour of the specular point, we have this

line direction for each pixel, leading from from specular point to that pixel. Moreover, these lines

correspond to the angular values that we already assigned to each pixel. We can therefore consider

the pixels with the same angular value as belonging to the same matte object — although in real

images it is possible that two matte values fall on the same line toward the specular point. Here

we initially simply take any such cases as belonging to the same matte value; however, below,

considering spatial information we can in fact separate these two matte values from each other.

To make the calculation simpler we transform the chromaticity of the specular point to the origin

and use polar coordinate (r, θ). We discretize angle values by using bθc to have 360 bins. Therefore

for each chromaticity point v , we consider (rv, θv) = polar(v − S), where S is the specular point.

The final step to generate a specularity-free colour image is to find a matte value for each pixel.

We take the farthest-most pixel from the specular point (i.e., maximum radius r) for each θ as the

matte colour (after removing outliers). So the matte colour for each pixel at that angle is identified

with the farthest pixel. We call this process “angular projection to matte colour”. In other words we

are projecting chromaticity points to the border of chromaticity values for each angle, considering
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the specular point as the center of projection:

matte(v ) = maxIndexθu=θv(ru) (6.30)

Fig. 6.6 illustrates the projection for chromaticity points for a real image by angular projection to

matte colour.
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Figure 6.6: (a): A real image. (b): Chromaticity points for (a); the red star is the correct specular
point. (d): Angular projection to matte colour for image points.

The angular projection is more sensitive to noise the closer are image feature points to the

specular point. Generally, because of noise angular projection to matte colour may completely

fail for highlights. Hence we deal with the 10% of pixels that are close to each candidate specular

point differently — we iteratively inpaint these pixels using matte colour data from neighbouring

pixels that correspond to the same angular value (1-D inpainting). That is, we use voting based on

the matte colour of the pixel’s neighbours: the new matte colour for that pixel will be the majority

of its neighbours’ matte colour if it garners at least half of the votes.

For our synthetic example, the resulting chromaticity image ρ is shown in Fig. 6.7(a). Compar-

ing to the input chromaticity image in Fig. 6.7(b), we see that the algorithm performs very well for
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generating the underlying matte image — specularities in the center of each sphere are essentially

gone. In comparison, Fig. 5.2(a) shows the theoretical, correct, matte image, which is indeed very

close to the algorithm output in Fig. 6.7(a).

(a) (b)

Figure 6.7: (a): The chromaticity image resulting from angular projection to matte colour. (b): The
input chromaticity image.

Fig. 6.8 shows results, including finding the specular point and generating a matte colour image,

for 4 of input images: whereas the original images’ chromaticity clearly shows highlight effects and

some shading, output for the proposed method effectively eliminates these effects.

6.8 Conclusion

In this chapter we present a new camera calibration method aimed at recovering parameters for the

locus followed by illuminants in a special 2-D chromaticity space. The objective is to discover the

colour-temperature of the illuminant in the scene, for a new image not in the training set but captured

using the calibrated camera.

As a testing method to verify the validity of the proposed locus idea, we compare illuminant

recovery making use of the suggested locus as opposed to not using it. We determined that adding

the locus constraint does indeed help identify the scene illuminant. While the effect is not large,

nonetheless the experiments do provide a justification of the locus approach — a new insight in

physics-based vision.

As an additional capability, we can subsequently generate a new version of the input image,

shown as it would appear re-lit under new lighting conditions by considering different illuminant

values as the illuminant moves along the specular-point locus.

In future work we will investigate how to make the method more robust to illuminants that differ

more substantially from Planckians.



CHAPTER 6. CAMERA CALIBRATION FOR DAYLIGHT SPECULAR-POINT LOCUS 96

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

r

g

Figure 6.8: Left column: Input image; Second column: chromaticity and illuminant estimate; Third
column: input image chromaticity shows highlights; Fourth column: proposed method removes
shading and highlights.



Chapter 7

Exemplar-Based Colour Constancy

Exemplar-based learning or, equally, nearest neighbour methods have recently gained interest from

researchers in a variety of computer science domains because of the prevalence of large amounts

of accessible data and storage capacity. In computer vision, these types of technique have been

successful in several problems such as scene recognition, shape matching, image parsing, character

recognition and object detection. Applying the concept of exemplar-based learning to the problem

of colour constancy seems odd at first glance since, in the first place, similar nearest neighbour

images are not usually affected by precisely similar illuminants and, in the second place, gathering

a dataset consisting of all possible real-world images, including indoor and outdoor scenes and for

all possible illuminant colours and intensities, is indeed impossible. In this chapter we instead focus

on surfaces in the image and address the colour constancy problem by unsupervised learning of an

appropriate model for each training surface in training images. We find nearest neighbour models for

each surface in a test image and estimate its illumination based on comparing the statistics of pixels

belonging to nearest neighbour surfaces and the target surface. The final illumination estimation

results from combining these estimated illuminants over surfaces to generate a unique estimate.

We show that it performs very well, for standard datasets, compared to current colour constancy

algorithms, including when learning based on one image dataset is applied to tests from a different

dataset. The proposed method has the advantage of overcoming multi-illuminant situations, which

is not possible for most current methods since they assume the colour of the illuminant is constant

all over the image. We show a technique to overcome the multiple illuminant situation using the

proposed method and test our technique on images with two distinct sources of illumination using

a multiple-illuminant colour constancy dataset. The concept proposed here is a completely new

approach to the colour constancy problem and provides a simple learning-based framework.

97
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7.1 Introduction

Many computer vision applications as well as image processing problems for both still images and

video can make use of colour constancy processing as a prerequisite to ensure that the perceived

colour of the surfaces in the scene does not change under varying illumination conditions. The

observed colour of the surfaces in the scene is a combination of the actual colour of the surface, i.e.,

the surface reflection function, as well as the illumination. Estimation of illumination is the main

goal of the colour constancy task.

Recently, notwithstanding large amounts of accessible data, many problems can be simply

solved by a search through data instead of applying sophisticated algorithms. Sometimes these

methods make use of nearest neighbour methods. Such use of these techniques occurs in a variety

of computer vision problems such as shape matching [19], character recognition [18], human pose

estimation [158], image parsing [126], scene recognition [195] and object detection [130]. As an

example, Torralba et al. [171] gathered a large data set of some 80 million tiny 32×32 images, each

labelled with a word. They solve different computer vision problems such as scene recognition,

object classification, person detection, object categorization, picture orientation determination and

even colorization by nearest neighbour methods using this large dataset.

Learning based on a previously seen examples is not a new concept. This concept appears in dif-

ferent domains such as exemplar theory in psychology as a model of perception and categorization,

case-based reasoning in artificial intelligence and instance-based methods [5] in machine learning.

Many colour constancy algorithms have been proposed (see [110, 104] for an overview). The

White-Patch, or Max-RGB, method estimates the light source colour from the maximum response of

three different colour channels [117]. Another well-known colour constancy method is based on the

Grey-World hypothesis [32], which assumes that the average reflectance in the scene is achromatic.

Grey-Edge is a recent version which assumes that the average of the reflectance differences in a scene

is achromatic [180]. Shades of Grey [75] is another grey-based method which uses the Minkowski

p-norm instead of regular averaging. The Gamut Mapping algorithm [79], a more complex and more

accurate algorithm, is based on the assumption that in real-world images, for a given illuminant one

observes only a limited number of colours. As mentioned in [36], these methods deal with an image

as a bag of pixels and the spatial relation between pixels is not considered.

Applying the concept of exemplar-based or instance-based learning to the colour constancy

problem seems to be an odd idea at first glance since similar or nearest neighbour images are not

usually affected by precisely similar illuminants and moreover gathering a dataset consisting of all
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possible real world images including indoor and outdoor scenes for all possible illuminant colours

and intensities is indeed impossible. In contrast, what can we say about surfaces themselves? Every

moderate sized dataset of real images includes thousands of surfaces under different viewing and

lighting conditions. We can make these surfaces weakly invariant to illumination changes by simple

colour constancy algorithms. Therefore, using the exemplar theory concept we can reduce our illu-

mination estimation task down to the following steps: (1) finding surfaces in an image; (2) finding

a similar surface or surfaces in the training dataset for each of our image surfaces; (3) estimating

the illumination for each surface based on comparing the statistics of pixels belonging to similar

surfaces with the target surface; (4) combining these estimated illuminants into a unique estimate.

In this chapter we present a wholly new line of approach to the colour constancy problem, which

we call Exemplar-Based Colour Constancy. We use both texture features and weakly colour-constant

three-channel RGB colour values in order to find the nearest neighbour surfaces from training data

for each surface. Then we estimate the possible illuminant for each surface based on histogram

matching of each surface to its nearest neighbour surfaces from training data. The final step is inte-

grating these estimates into a unique illuminant estimation for the whole image. Since we have no

labelled or clustered data for our training process as would be the case for a semantic segmentation

task or texture detection task, we lack information for providing confidence for our mapping (such as

k-nearest neighbour). Nevertheless, although we find some amount of mismatching for surfaces, the

illumination estimation process simply considers these cases as outliers compared to the other esti-

mates. Operating on three standard colour constancy datasets, we show that exemplar-based colour

constancy produces excellent results that are better than for previous colour constancy algorithms.

Most colour constancy algorithms assume that the spectral distribution of light source is uni-

form across the image and therefore that the colour of illuminant is constant all over the image,

Hence, estimation of this uniform illuminant is the main goal of such colour constancy method as

discussed below. Although this assumption works well in most cases and is widely used in com-

mercial cameras, nevertheless there exist common cases in which this assumption is violated in real

images, including: skylight from windows plus indoor light; in-shadow plus non-shadow lights; or

two different light sources in an indoor room. This situation, multiple illuminants or multiple light

sources with different colours, is a common source of failure for current colour constancy methods.

Exemplar-based colour constancy has the advantage of succeeding even in the multiple illuminant

situation, which is not possible for most current methods. Hence as another contribution we show

a technique to overcome the multiple illuminant situation using our proposed method, and test our

technique on standard images having two distinct sources of illumination.
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The implications for a useful discounting or regularizing for light in images are substantial in

various tasks in computer vision.

The outline of the chapter is as follows: we discuss related work in §7.2 and then in §7.3 we

introduce the proposed method by explaining our surface model, the process of learning surface

models for training images, and the proposed illumination estimation procedure. In §7.4 we apply

our proposed method to three standard colour constancy datasets, comparing performance to current

colour constancy methods. In §7.5, we review previous multiple illuminant colour constancy meth-

ods, discuss our proposed method in the multiple illuminant situation, and carry out experiments.

Finally, we conclude the chapter and discuss future work in §7.6.

7.2 Related Works

Illumination estimation methods can categorized into two groups: (1) static methods which try to

estimate the illuminant for each image based on its statistical or physical properties and (2) learning-

based methods which try to estimate the illuminant using a model that is learned on training images.

Grey-based methods, which form a main part of static methods, have been formalized into a single

framework [75, 181]: (∫ ∥∥∥∥∂nIk(x)

∂xn

∥∥∥∥p dx) 1
p

= ek (7.1)

where e is estimated illuminant colour, k denotes R, G or B, p denote the Minkowski norm and n is

grey-edge order. If n = 0, for p = 1 the equation is equal to the grey-world assumption, for p =∞
it is equal to colour constancy by White-Patch and it is Shades of Grey and for 1 < p < ∞. For

higher n it is Grey-Edge.

Static colour constancy methods also include some physics-based methods such as methods that

use specularity to estimate illuminant chromaticity [165, 48]. Drew et al. [48] present an effective

physics-based colour constancy method, called the Zeta Image, which makes use of a log-relative-

chromaticity planar constraint involving specular reflection. This method is fast and requires no

training or tunable parameters.

One of the first colour constancy methods which estimates the illuminant by a model that is

learned on training images is the Gamut Mapping algorithm [79]. It is based on the assumption

that in real-world images, for a given illuminant one observes only a limited number of colours;

therefore, colours forming a “canonical” gamut which contains possible colours can be observed

under a canonical illumination in a training phase, and an estimate of a test-image illuminant can
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be derived by mapping current pixel colours to that canonical gamut. Several extensions have been

proposed for gamut mapping algorithms. Colour-By-Correlation [69] is a discrete implementation

of gamut mapping, where the canonical gamut is replaced by a correlation matrix.

Another learning-based approach to the illumination estimation problem is the Bayesian ap-

proach [150, 93], in which the variability of reflectance and illuminant is modeled as independent

random variables. These methods estimate illuminant colour from the posterior distribution con-

dition learned from training images. Here the illuminant prior could be uniform over a subset of

illuminants [150] or could be an empirical distribution of illuminants in training images [93]. Other

machine learning techniques includes using neural networks [35], in which binarized chromaticity

histograms are used to estimate 2D illuminant chromaticity via a neural network system, or support

vector regression (SVR) [196].

Besides static colour constancy methods such as Max-RGB, Grey-World, Grey-Edge and Shades-

of-Grey, which as mentioned above are based on simple assumptions, recently efforts at fusing these

algorithms have generated better performance than for the individual algorithms. One of the first

attempts in this direction was carried out by Cardei and Funt [34], who applied a weighted commit-

tee mechanism over several of these methods. More complex methods try to learn to select the best

algorithm or combination of algorithms for each image using pixel information as well as spatial

information, and hence they do not deal with the image as simply a bag of pixels.

As mentioned in [104], these learning-based colour constancy methods that try to find the best or

a combination of algorithms for each image using extracted features go through a similar procedure.

They extract texture, shape or colour features from sets of training images, and estimate the colour

of the illuminant for each image using several statistical illumination estimation algorithms. They

then learn a model based on extracted features as well as the error of these estimates compared to

known ground truth. This type of model could e.g. learn the set of weights associate with estimates

of these illumination estimation algorithms [100, 193] or directly learn the colour of the illuminant

[21, 124]. Figure 7.1 shows this procedure in both the training and test phases. It can be stated that

the main differences amongst this kind of algorithm are in the feature extraction blocks, where the

feature could be simple, such as a colour histogram [20, 21], or edge direction histogram [21], or

more complex features such as Weibull features [100, 124, 193], Wiccest features [193], or Wavelet

statistics [21].

As an example, Gijsenij and Gevers [100] clustered the images by a k-means algorithm using

natural image statistics to characterize the images on the basis of Weibull distribution parameters.

They then correspond each cluster with the best single algorithm for training images for that cluster.



CHAPTER 7. EXEMPLAR-BASED COLOUR CONSTANCY 102

Feature Extraction 

Estimates by CCs  

Learn 
Model 

Feature Extraction Estimates by CCs  

Illumination 
Estimation 

Test Image 

Training Images 

Known illuminants 

Unknown  
illuminant 

Training Phase 

Test Phase 

Figure 7.1: The common procedure of learning-based colour constancy methods that try to find
the best algorithm or a combination of algorithms for each image using extracted features in both
training and test phases.

To estimate the illuminant of a test image, they select the algorithm according to its cluster or

combination of the individual algorithms according to the distances to neighbouring clusters.

In a different approach to selecting best algorithms, Wu et al. [193] introduce a multi-resolution

texture descriptor based on an integrated Weibull distribution to extract texture information. They

used an image similarity measure derived from the Wiccest feature and spatial pyramid matching to

find theK most similar images for a test image from amongst training images, and with these neigh-

bouring images they provide a combination for uniting the data-driven strategy and prior knowledge.

Van de Weijer et al. [182] extend the grey world hypotheses to say: the average reflectance of

semantic classes in an image is equal to a constant colour, rather than being just grey. Therefore,

for each of the semantic classes present in an image they compute that illuminant that transforms

the pixels assigned to that class into the average reflectance colour of that semantic class in the

training images. They call this a top-down approach as opposed to bottom-up approaches in many

other colour constancy methods. They also make use of high-level visual information to select

the best illuminant out of a set of possible illuminants generated by other methods. In a similar

approach [146], the special visual object categories (called here memory-colour categories) which

have a relatively constant colour such as sky or grass and foliage (which were used in their exper-

iment) are detected using the Bag-of-Features machine learning method. Then the initial estimate
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provided by a statistical colour constancy method can be adjusted to map the observed colour of the

category to its actual colour which is determined in the training phase. The main difference between

this work and [182] is that the visual object categories are known and hand labeling and tagging

with the category label is required for training images.

In [175], we introduced the exemplar-based colour constancy approach, and in this chapter we

go on to investigate the method much more substantially. Firstly, the method’s details are set out

considerably more comprehensively, and with illustrations. The method is first delineated in the

context of previous learning-based approaches. Then entirely new tests are carried out, as well as

challenging the method by applying colour constancy via exemplars obtained from one dataset to

test images for a different image dataset – an inter-dataset test which is very demanding. Moreover

here we go on to investigate how to structure the new algorithm in the face of the very difficult

multiple-illuminant situation, and an entirely fresh set of tests on multiple-illuminant images with

ground truth is carried out.

7.3 Proposed Method

The proposed method falls into the learning based colour constancy category, in which a model

needs to be learned from training images. The main distinctions between this work and other learn-

ing based colour constancy methods that use spatial information by local feature descriptors, such as

[100, 193, 182], is that they use this information to determined the best or combination of best pos-

sible illumination estimation algorithms (the procedure is shown in Fig. 2.7), while we use selected

instances for illumination estimation. Compared to the top-down approach [182, 146] in which they

assign a semantic classes (or memory-colour categories) to each patch of an image based on models

learned in the training phase, in our proposed model we assign to segmented regions we call “sur-

faces”, from training images to each surface of the test image. As well, [182] used the extended

version of the grey world assumption to estimate the illuminant whilst we use the ground truth of

corresponding surfaces for illumination estimation.

On the other hand, scenes with a single or a just few number of surfaces (such as images captured

of grass or sky) are a common failure for grey-based methods which form the core of most recent

learning based methods, since the grey assumption is not satisfied for these images. The Gamut

Mapping method also fails for these images since only a limited number of colours are seen in the

image and that is not enough to map the input gamut to the canonical gamut. We will see that our

exemplar-based method can overcome this problem since the exemplar-based method estimates the
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illuminant based on similar surfaces and there is no assumption that more than one surface is needed

(although more surfaces do make the estimate more robust).

The exemplar-based methods classify or estimate test examples based on examples already seen;

this is related to a similar concept in learning in humans. Hence, we can consider exemplar-based

methods as belonging to learning-based, notwithstanding the fact that they do not appear to have a

similar structure to other learning methods.

7.3.1 Surface Model

We find surfaces for both training and test images by mean-shift segmentation, implemented via

[41]. Since the pixels in the margin of segmented areas affect texture information, we remove margin

pixels of segments by dilating segment edges as well as small segments. In order to define a model

for each surface we use both texture features and colour features. For the purpose of texture features,

the MR8 filter bank [183] on three channels is selected for use because of its good performance in

texture classification applications [184] and also its fast implementation.

The MR8 filter bank consists of 38 filters (6 orientations at 3 scales for 2 oriented filters, plus

2 isotropic) but only 8 filter responses. The filter bank contains filters at multiple orientations but it

records only the maximum filter response across all orientations. We use the normalized histogram

of frequency of appearance in that particular surface for each colour channel as our colour features.

Since we deal with illumination variation, we divide each channel by its maximum value before

computing each histogram. This makes our surface model weakly colour constant [53]. This means

that we are not interested in specific colours for our surface matching, but instead on its relative

distribution.

In the learning stage, training images are convolved with a filter bank to generate dense filter

responses. Exemplar filter responses are chosen as textons via K-Means clustering (with K =

1000) and are collected into a dictionary. The histogram of frequency of textons belonging to this

dictionary is a common description for texture detection [123] although other local descriptors such

as scale-invariant feature transform (SIFT) [127] may used instead of the MR8 filter bank.

Given a surface in a training image, its corresponding model is generated by first convolving

it with the filter bank and then labelling each filter response with the Euclidean nearest neighbour

texton in the texton dictionary. The histogram of textons, i.e. the frequency with which each texton

occurs in that surface, forms the first histogram in the corresponding model for that training surface.

We then add a coarse three-channel histogram to that surface’s model (we use only 10 bins for each
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channel to be robust again noise). In order to make our model weakly invariant to variation in illu-

minant colour, we stretch the histogram for each channel to have maximum equal to 1 or, equally,

divide the values of each colour channel by its maximum value among pixels within that surface

(thus making it colour constant for Max-RGB via using a diagonal transformation). Therefore, each

surface model includes four normalized histograms that are then stored in a single vector. We also

need to store some meta-data for each model, consisting of ground truth illumination colour for that

image as well as the maximum response for each channel used for stretching histograms. Fig. 7.2

shows a surface and its normalized histogram of textons and three weakly colour constant nor-

malized histograms of colour channels. In summary, the training phase for exemplar-based colour

constancy is expressed in algorithm 7.1. Here MaxRGB function make the input pixels colour

constant by the illuminant estimated by Max-RGB method as output.
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Figure 7.2: A surface and its normalized histogram of textons and three weakly colour constant
normalized histograms of colour channels.

In the test stage, the same procedure is followed to build the model (one histogram of textons and

three histograms of colour channels) corresponding to each surface in the test image. This model

is then compared with the models corresponding to training surfaces by nearest neighbour classifier

with the chi-squared statistic employed to measure distances. We select M nearest neighbours

from training surfaces (with M = 10). Fig. 7.3 shows some test image surface examples and their

eight nearest surface models from training data. We carry out our experiment on the re-processed

version of the dataset [93, 160] (denoted “ColorChecker”) (refer to §7.4 for details). Since we

have no labelled or clustered data for our training process as would be the case for a semantic

segmentation task or texture detection task, we lack information for providing confidence for our
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Figure 7.3: Surfaces from test images (on the left) and their 8 nearest surface models from training
images.

mapping. Nevertheless, although we find some amount of mismatching for surfaces as shown in

Fig. 7.3, the illumination estimation process simply considers these cases as outliers compared to

the other estimates.

7.3.2 Illumination Estimation

Given a test surface model and its nearest neighbour surface model from training models, we can

transfer the test surface’s colours to its corresponding training surface’s colours linearly by a 3 × 3

matrix. We can approximate this matrix by a diagonal matrix as discussed in [61] and solve the

transformation for each channel separately based on their channel histograms. Therefore, we can

write this matrix which transforms test surface to training surface as follows:

D =M−1
testDHMtrain (7.2)

where M is the weakly colour constant diagonal transformation of surface colour from the Max-

RGB method and DH is the transformation of the test surface’s histograms to training surfaces’

histograms. Since we use this histogram to find similar models these histograms are usually ap-

proximately identical or not far from each other; this means that DH is approximately the identity

matrix. Finally, since the illumination colour of training surface etrain is known, the estimation for

test surface illumination colour is:

etest = Detrain =M−1
testDHMtrainetrain (7.3)



CHAPTER 7. EXEMPLAR-BASED COLOUR CONSTANCY 107

Algorithm 7.1 Training Exemplar Based Model

Generate Texton Dictionary
1: features← convolve all training images with MR8 filter
2: textons← K-Means clustering of features (k = 1000)

Finding Surfaces
1: surfaces← mean-shift seg. of all training images

Generate Surface Models
1: for all S in surfaces do
2: features← convolve S with MR8 filter
3: label← NN(features,textons)
4: texture hist← normalized histogram of labels
5: Scc←MaxRGB(S)
6: colour hist← normalized histogram of each colour channel in Scc (10 bins)
7: trainmodelS ← ( texture hist, colour hist )
8: end for

Now we can consider a specific surface under two different illumination conditions (either by

capturing images under different lights or by transforming to an image to different illumination con-

ditions by a colour correction technique). We expect to have a similar vector model for correspond-

ing surface models since the texture features are the same and the colour histograms are approxi-

mately the same, using our Max-RGB method. On the other hand, if both of these surface models are

in out training sets (with similar surface vector), and if they are chosen as nearest neighbour surfaces,

the estimation will also be approximately the same since the termMtrainetrain in equation (7.3) will

be approximately equal, since the change etrain discounts according to the changes in our Max-RGB

estimationMtrain. As an example if if we synthesize a new surface by applying a 3×3 matrix trans-

fer M to our original surface, we end up by having Metrain as the new illuminant ground truth and

our Max-RGB illumination estimation multiplied by M , or, equally, our colour-constancy diagonal

matrix will beMtrainM
−1; hence this ends up inMtrainM

−1Metrain = Mtrainetrain, which is

equal to our estimation using the original surface.

Given a test image, we will have n large enough surfaces and M nearest neighbour surfaces

from training data, or equally M illumination estimates by eq. (7.3) corresponding to each. The

final estimate can be the median or the mean after removing outliers of all of these estimates in rg

chromaticity space ({r, g} = {R,G}/(R+G+B)). We can also use weighted averaging by defining

weights for each estimated illuminant according to the confidence of estimation for each surface,

which we compute based on the standard deviation of estimates for that single surface and also
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Figure 7.4: The procedure of estimating illuminant for a test image using exemplar-based color
constancy. A test image and its nearest neighbour surface models from training images on left and
estimated illuminants according to each model in rg chromaticity space on right.

similarity which we compute based on chi squared distance between their normalized histograms.

Experiments show that none of these techniques outperforms the others, and therefore for simplicity

we estimate the final illuminant by finding the median over all estimates for the three channels

separately.

Figure 7.4 shows the procedure for illuminant estimation for a test image using exemplar-based

color constancy. Figure 7.5 shows a test image and the angular error of estimated illuminant for its

surfaces; as mentioned, we do not form any estimate for small segments. We see that more textured

surfaces such as grass or textured road have more precise estimates compared to smooth road. In

summary, the proposed illumination estimation for a test image is express in algorithm 7.2.
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Figure 7.5: A test image and angular errors of estimated illuminant for its surfaces (computation is
not carried out for small segments, and the ColorChecker is masked off).

7.3.3 Colour Correction

Once the colour of the light has been estimated, the input image, which was captured under an illu-

minant as estimated, should be transferred back to an image as it would appear under the canonical

illuminant. This procedure is usually done using the diagonal model. Although exemplar based

colour constancy estimates a unique illumination for an image, and this can be used for colour cor-

rection by a diagonal model, the method actually estimates a distinct illuminant for each surface,

and this can be used for colour correction for each surface separately. The diagonal model for pixels

that belong to surface edges or to small surfaces can be constructed as a weighted linear combination

of those for its neighbour pixels.

We call the matrix in which every pixel is assigned to its own illuminant estimate “back-

projection”, where this usage derives from [105]. Obviously, in the case when the uniform illu-

mination assumption is made, in our experiment in §7.4, the back-projection is a constant. The

colour correction process using estimated back-projections, D, which have equal dimension to the

input image I , is as follows:

I∗ijk = Iijk ∗ e∗k/Dijk , k = {R,G,B} (7.4)

where I∗ is colour-transferred images under canonical illuminant e∗ and ij is pixel address. Fig-

ure 7.6 shows an input image, its estimated back-projection using uniform and surface illumination,

and uniform illumination and colour transferred output images using these two back-projections.
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Algorithm 7.2 Illumination Estimation of image I

1: surfaces← mean-shift segment of I
2: for all S in surfaces do
3: features← convolve S with MR8 filter
4: label← NN(features, textons)
5: texture hist← normalized histogram of labels
6: Scc←MaxRGB(S)
7: colour hist← normalized histogram of each colour channel in Scc (10 bins)
8: modelS ← ( texture hist , colour hist )
9: for all i in KNN(modelS ,trainmodels) do

10: estimatesSi← eq. (7.3)
11: end for
12: end for
13: return median(estimates)

The estimated back-projection for each surface is computed based on similar known surfaces (sim-

ilarity for both colour and texture); therefore even if they are not accurate they seem reasonable, as

seen in the colour of the grass in Fig. 7.6(d). Even though this colour is not necessarily accurate

compared to the known illumination, nonetheless it seems reasonable to us since it is similar to some

other grass surfaces in the training images.

(a) (b) (c)

(d) (e)

Figure 7.6: (a) An input image, (b) constant back-projection (c) back-projection by surface illumi-
nant estimates (d) colour corrected image via b and (e) colour corrected image via c.
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Table 7.1: Angular errors for original ColorChecker dataset [93] in terms of mean and median for
several colour constancy algorithms.

Method Median Err Mean Err
Do nothing 6.8◦ 9.5◦

White-Patch 6.0◦ 8.1◦

Grey-World 7.3◦ 9.8◦

Grey-Edge (p = 4,σ = 1) 5.2◦ 7.0◦

Bayesian [93] 4.7◦ 6.7◦

Gamut Mapping pixel (σ = 5) 4.9◦ 6.9◦

Gamut Mapping 1jet [102] (σ = 5) 4.9◦ 6.9◦

Bottom-up+Top-down [182] 4.5◦ 6.4◦

Natural Image Statistics [100] 4.5◦ 6.1◦

Zeta [48] 5.2◦ 7.2◦

Exemplar-Based 3.7◦ 5.2◦

7.4 Experiments

We applied our proposed method to three standard colour constancy datasets of real images of in-

door and outdoor scenes. The first dataset is the Gehler colour constancy dataset [93], denoted the

ColorChecker dataset, This dataset consists of 568 images, both indoor and outdoor. The illuminant

ground truth for these images is known because each image has a Macbeth ColorChecker placed in

the scene — which must masked off in tests. The images are captured by auto white balance setting

of the camera. For this dataset, we used three-fold cross-validation to learn our models using this

original dataset, as used by other learning based methods we compared to. The second dataset is

the re-processed version of the above ColorChecker dataset, provided by Shi and Funt [160]. This

dataset which includes the same number of images, but contains raw image data of ColorChecker

dataset in an attempt to recover linear sensor values, which is in principle critical for our 3×3 matrix

transformation.

Tables 7.1 and 7.2 indicate the accuracy of the proposed methods for the ColorChecker dataset

and its re-processed version, in terms of the mean and median of angular errors, for several colour

constancy algorithms applied to this dataset. For those methods which need tunable parameters,

we utilize optimal parameters for this dataset. We see that our exemplar-based method makes a

substantial improvement over previous algorithms.

Another dataset, which contains lower quality real images (image resolution 360 × 240), is
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Table 7.2: Angular errors for re-processed version of ColorChecker dataset [160] in terms of mean
and median for several colour constancy algorithms.

Method Median Err Mean Err
Do nothing 13.5◦ 13.4◦

White-Patch 5.7◦ 7.4◦

Grey-World 6.3◦ 6.4◦

Grey-Edge (p = 1,σ = 6) 4.5◦ 5.3◦

Bayesian [93] 3.5◦ 4.8◦

Gamut Mapping pixel (σ = 4) 2.5◦ 4.1◦

Gamut Mapping 1jet [102] (σ = 9) 2.5◦ 4.1◦

Bottom-up+Top-down [182] 2.5◦ 3.5◦

Natural Image Statistics [100] 3.1◦ 4.2◦

Zeta [48] 2.8◦ 4.1◦

Exemplar-Based 2.3◦ 3.1◦

the GreyBall dataset of Ciurea and Funt [40]; this contains 11346 images extracted from video

recorded under a wide variety of imaging conditions. The ground truth was acquired by attaching

a grey sphere to the camera, displayed in the bottom-right corner of the image (again masked for

experiments). In order to learn our models for this dataset, we use 15 folds each of which represents a

recorded video as provided by the dataset itself, as for the other learning based methods we compared

to. Table 7.3 shows the performance of our proposed method for the GreyBall dataset in terms of

the mean and median of angular errors, for several colour constancy algorithms applied to this

dataset. Again we utilize optimal parameters for this dataset for those methods which need tunable

parameters. Here again, we see a substantive improvement over previous approaches, even those

using complex methods.

In these experiments, we compare our proposed method to statistical illumination estimation

methods (White-Patch, Grey-Word and Grey-Edge) as well as the Bayesian method [93], Gamut

mapping and its edge-based extension [102] and the Zeta method which was proposed in chapter 5.

Moreover we compare our method to the best learning-based colour constancy methods according

to the recent colour constancy survey [104], which are Natural Image Statistics [100] and Bottom-

up+Top-down [182]. To our knowledge, for these three standard datasets, widely used for evaluating

colour constancy methods, Exemplar-Based Colour Constancy does best in terms of both mean

and median angular error compared to any reported colour constancy methods, even those using a

combination of algorithms such as Natural Image Statistics [100].
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Table 7.3: Angular errors for GreyBall dataset [40] in term of mean and median for several colour
constancy algorithms.

Method Median Err Mean Err
Do nothing 6.7◦ 8.3◦

White-Patch 5.3◦ 6.8◦

Grey-World 7.0◦ 7.9◦

Grey-Edge (p = 1,σ = 1) 4.7◦ 5.9◦

Gamut Mapping pixel (σ = 4) 5.8◦ 7.1◦

Gamut Mapping 1jet [102] (σ = 9) 5.8◦ 6.9◦

Natural Image Statistics [100] 3.9◦ 5.2◦

Zeta [48] 4.6◦ 5.9◦

Exemplar-Based 3.3◦ 4.4◦

In Figure 7.7 we show colour-corrected images from GreyBall dataset based on Exemplar-based

method compare to Grey-World, Grey-Edge, gamut mapping and Zeta-Image methods, along with

their angular error compared to ground truth as obtained from the grey sphere mounted onto the

video camera. The proposed exemplar-based method works well overall, and moreover also works

significantly better compared to other methods for images of a single surface or a few surfaces, such

as a grass scene as in Fig. 7.7: this constitutes a failure case for grey-based methods since the grey

assumption is not satisfied, as well as for gamut mapping since only a limited number of colours are

seen in the image.

7.4.1 Inter Dataset Cross Validation

Although we have shown excellent performance for exemplar-based colour constancy, outperform-

ing existing methods for the standard colour constancy data sets studied, we would also like to

investigate whether our proposed methods also work well for any arbitrary images using a fixed

learned model, inter-datasets. A three-fold cross validation for the ColorChecker datasets and 15-

fold cross validation for the GreyBall dataset were already designed for this purpose, intra-dataset,

and we applied them in the tests for all learning based colour constancy methods. However images

from the same dataset may be to some degree correlated to each other because of the limitation of

gathering image data, and therefore doing cross validation between different datasets is a more chal-

lenging task and has not been considered in most papers on learning-based illumination estimation

methods.
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Original Exemplar-based Grey-World Grey-Edge Gamut Mapping Zeta

Figure 7.7: Examples of colour-corrected images from GreyBall dataset based on the Exemplar-

based method, compared to Grey-World, Grey-Edge, Gamut Mapping and Zeta methods, along

with their angular error compared to the ground truth as obtained from the grey sphere mounted

onto the video camera. Here the first column, labelled “Original”, is the error for the video frame as

compared to that under the canonical illuminant, and is the same as the “Do Nothing” entries in the

Tables.

For this purpose, we run our proposed method, exemplar-based colour constancy, for the Grey-

Ball dataset, but using surface models learned by images from ColorChecker dataset. The median

and mean of angular errors of our illumination estimation for these 11346 images are respectively

5.3◦ and 6.6◦, which is acceptable.

As well, we also ran our proposed method on the ColorChecker dataset, but using surface mod-

els learned by images from the Greyball dataset. The median and mean of angular errors of our

illumination estimation for these 568 images are respectively 5.1◦ and 6.5◦, again quite acceptable.
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Although the results for inter dataset cross validation are not as good as intra dataset cross vali-

dation, shown above, they are good enough to convince us that a general surface model is sufficient

for estimating the colour of light for any arbitrary image using an arbitrary camera, considering the

fact that in comparison either static methods such as Grey-Edge or learning-based methods such

as gamut mapping or Bayesian have parameters which must be tuned for each dataset separately.

Especially for the two datasets examined, the images differ significantly: the images in the GreyBall

dataset were captured from a video recorder and contain approximately 0.1 megapixels (360×240),

while the images in the ColorChecker dataset were captured by two high quality DSLR cameras

(Canon 5D and 1D) and contain approximately 5 megapixels ( 813×541 or 874×583). This exper-

iment is a worst-case cross validation scenario; obviously we can set up a different cross validation

scenario in which the training and test sets are a mixture of these two datasets (ColorChecker and

GreyBall sets) where we expect to see performance between that of intra dataset cross validation

and inter dataset cross validation.

7.5 Multiple Illuminants

Most colour constancy algorithms assume that the spectral distribution of light is uniform in the

image and therefore the colour of the illuminant is constant across the image, Estimation of this

single illuminant is the main goal of most colour constancy methods. Although this assumption

works well in most cases and is widely used in commercial cameras, there exist common cases in

which this assumption is violated in real images. These include: skylight from windows plus indoor

light; in-shadow pixels plus out-of-shadow pixels; ambient light and flash-light in photography; and

two different light sources in an indoor room. This situation, which we call multiple illuminants or

multiple light sources with different colours is a common failure case for current colour constancy

methods.

Figure 7.8 shows a scene with two distinct illuminants: outdoor sky-light and indoor luminaire

light. Assuming uniform illumination in the scene, the image on the left is colour-corrected using

the outdoor sky-light and the image on the left is colour-corrected using indoor light. It is obvious

that the colour constancy task, with a uniform-illumination assumption, fails for this scene even

when we use the ground truth as our colour-correction illuminant.

Exemplar-based colour constancy has the advantage of working in the multiple illuminant sit-

uation, which is not possible for most current methods. White patch find the brighter illuminant,

grey-based method as well as grey-edge methods may find combination of illuminant colours, and
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Figure 7.8: A scene with two distinct illuminants. The image on the left is colour-corrected using
outdoor sky-light and the image on the left is colour-corrected using indoor light.

gamut mapping approximately find the dominant illuminant.

7.5.1 Colour Constancy Methods for Multiple Illuminants

Most colour constancy methods assume a single source of light and uniform illumination, and

very few methods explicitly focus on local illuminant estimation. In early research, it is shown

in [65, 173] that a difference in illumination, once it has been identified correctly, provides addi-

tional constraints which can be applied to obtain better colour constancy; however these works do

not provide algorithms to detect multiple illuminants automatically. Ebner [55] assumes a grey-

world assumption works locally, and not just globally, and attempts a diffusion based methodology

for pixel intensities. However a local grey-world can be noisy and inaccurate, especially for near

uniform-colour scenes. In another approach, Bleier et al. [27] propose a method to overcome the

multiple illumination problem in which the image is segmented into a set of superpixels based on

colour; then a collection of colour constancy algorithms (Bayesian, plus different versions of grey-

world, grey-edge and gamut mapping) is applied to each superpixel independently. The illumination

estimate for each superpixel is computed using different fusion techniques such as the average,

or a machine learning method such as Gradient tree boosting or Random forest regression. Riess

et al. [148] apply a physic-based approach (inverse-intensity chromaticity space [165]. refer to 2.3

for more detail ) to each superpixel to have a local illumination estimation, Then they group local es-

timates into regions with consistent and similar illuminant colour and finally obtain a new estimate

per region. A local colour constancy algorithm is also presented by [116], which adjusts colours

pixel-by-pixel based on its local area to solve the multi-illuminants for High-Dynamic-Range im-

ages. This estimates the illumination for each pixel from the colour information of its neighboring



CHAPTER 7. EXEMPLAR-BASED COLOUR CONSTANCY 117

pixels, weighted by the spatial distance, luminance intensity difference, and chromaticity.

A specific case of the multiple-illuminant scenario is encompassed in research on in-shadow and

out-of-shadow regions. That is, the shadow removal problem [64, 70] can be considered as a colour

constancy problem involving two light sources.

Recently, Gijsenij et al. [105] proposed a colour constancy method for multiple light sources.

They obtain image patches by grid-based, keypoint-based, or segmentation-based sampling, and

then estimate the illuminant for each image patch by some of the grey-based methods in eq. (7.1),

assuming a uniform illuminant. Focusing on scenes with two distinct light sources and their combi-

nation, their final estimation of two distinct illuminant colours is either by clustering the illuminant

estimates for patches or taking into account the spatial relations between these estimates by applying

segmentation.

7.5.2 Exemplar-Based Colour Constancy for Multiple Illumination

As discussed above, given a test image with n surfaces we will have M nearest neighbour surfaces

from the training set for each of them, and then finally we have nM different estimates for the

colour of illuminant that will end up as our final estimation assuming uniform illumination for the

test image. If we have more than one illuminant in the scene, however, we then need to carry out

an estimation procedure for such illuminants using our nM estimates. As we already seen, since

we are dealing with estimates for each of the test image surfaces, we can have separate estimates

for each of these surfaces via the median of the estimates from M nearest neighbour surfaces from

the training data. This is in the general case in which we have no knowledge about the number of

distinct illuminants in the scene. However, knowing the number of illuminants can make our final

estimate more robust and incorporate more resistance to incorrect surface matching, which in itself

is inevitable as we showed above for the assumption of a single illuminant in the scene.

As in [105], this task can be done either by clustering the illuminant estimates or by taking into

account the spatial relations between these estimates. Knowing the number of illuminants, K, we

cluster our estimates intoK clusters and make the procedure more accurate by finding the median of

each cluster as our final illumination estimation. If two of the illuminants are close to each other it

is likely that they become clustered into the same cluster, with extra clusters containing some other

estimates. In this case we simply remove the extra clusters by removing small sized clusters; so

therefore we may end up having fewer than K final illuminant estimates. In summary, the proposed

illumination estimation for a test image with K illuminants is expressed in algorithm 7.3. The final



CHAPTER 7. EXEMPLAR-BASED COLOUR CONSTANCY 118

step is colour correction, in which the RGB value for back-projection of each surface will be the

nearest one to the separate estimates for that surface. Figure 7.9 displays an image with two distinct

illuminants, all illuminant estimates by exemplar-based method in rg chromaticity space, and two

final estimates using clustering.

Algorithm 7.3 Estimation of K Illuminants by Exemplar-Based Method

1: estimates← Algorithm 2
2: clusters← k-means( estimates, K )
3: remove the clusters with size less than a threshold:

clusters← k-means( estimates, updated K )
4: illums← median of each clusters
5: return illums

Figure 7.9: An input image with multiple illuminants. All illuminant estimates, using our exemplar-
based method, are shown as blue dots in rg chromaticity space. Two red stars are the ground truth
for two distinct illuminants in the scene. The red square shows the illuminant as estimated by the
proposed method for the single illuminant assumption. And two green squares indicate the two
illuminants estimated by the proposed method assuming two illuminants.

7.5.3 Experimental Results

We evaluate our proposed method with the multi-illuminant dataset provided in [105], which in-

cludes 9 outdoor low-quality images with two distinct illuminants for each scene. The ground truth

for the light sources is provided by several grey balls placed in the scene and is manually annotated

for each image. The images differ in size and are of quite low resolution, containing approximately
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40 kilopixels. Since we are dealing with scenes with varying illuminations, we need to find the error

across the scene. Therefore the angular error compared to ground truth for each pixel is computed

and the average angular error throughout the image is considered as our measure.

First we run our proposed method as enunciated in section 7.3 to estimate a single illuminant for

each image. Then we again run exemplar-based colour constancy but estimating the illuminant for

each surface estimate separately via the median of estimates from their nearest neighbour surface

models; thus each surface can have a distinct illuminant and there is no limitation on the number

of illuminants in the scene. Finally, we assume there are exactly two illuminants in the scene and

run exemplar-based colour constancy for multiple illumination as described in the last subsection,

clustering the illuminants into two clusters with the estimates for each surface assigned to one of

these two estimates. For all of these three experiments we used the texton dictionary and surface

models learned from the GreyBall dataset, for an inter-dataset test.

Table 7.4 shows the median of per-pixel angular error for this dataset assuming a single illu-

minant and using the White-Patch, Grey-World and Grey-Edge methods; as well as assuming two

illuminants with these algorithms with the method proposed in [105], compared to our three ex-

periments as outlined above. For these images with multiple illuminants, almost all methods show

significant improvement when including the knowledge that there are two distinct light sources in

the image. Although the quality of the images is quite and indeed this may affect our texture features

in our exemplar-based surface model, our proposed method work wells assuming a single illumi-

nant is the goal. Moreover using the surface estimates (called Multi in Table 7.4) and our proposed

method for multiple illuminants, with a 2-illuminant assumption, the performance of illumination

estimation improves respectively by 14% and 25%. As already mentioned, knowing the number of

illuminants makes our final estimate more robust and resistant to incorrect surface matching; there-

fore the exemplar-based method performs better for this dataset when we use the knowledge that the

are exactly two illuminants in the scene. Figure 7.10 displays images from this dataset as well as

calculated back-projectionimage using three mentioned experiment as well as ground truth.

7.6 Conclusion

In this chapter we present a completely new line of approach to the colour constancy problem which

we call Exemplar-Based colour constancy. We use both texture features and weakly colour constant

three channel colour values in order to find the nearest neighbour surfaces from training data for each

surface, and then we estimate the illuminant for each surface based on histogram matching of each
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Table 7.4: Median angular errors for a 9 outdoor image dataset [105] in terms of mean and median
angular error, for colour constancy algorithms using a one- or two-illuminant assumption.

No. of Illuminants Method Median Err.

One

White-Patch 7.8◦

Grey-World 8.9◦

Grey-Edge (n=1) 6.4◦

Grey-Edge (n=2) 5.0◦

Two (from [105])

White-Patch 6.7◦

Grey-World 6.4◦

Grey-Edge (n=1) 5.6◦

Grey-Edge (n=2) 5.1◦

One
Exemplar-Based

5.1◦
Two 3.8◦
Multi 4.3◦

surface to its candidate nearest neighbour surfaces from training data. The final step is integrating

these estimates into a unique illuminant estimation for the whole image. The proposed method has

the advantage of overcoming the difficulty of multi-illuminant situations, which is not possible for

most current methods. We show that the proposed method performs very well for three standard

datasets commonly used in colour constancy tests compared to current colour constancy algorithms.

We also extend our proposed method to overcome the problem of multiple illuminants in the

scene by clustering all estimates correspond to nearest neighbour surfaces. The proposed method is

shown to work well for a image set of outdoor images with two distinct light sources.

In future, we can apply more complex methods of integrating estimated surface illuminants into

a unique illumination estimate. Also, we should construct a dataset for multi-illuminant colour

constancy in order to evaluate Exemplar-Based Colour Constancy for images with more than one

light source colour, in that this is a uniquely challenging scenario which could produce real benefits

in image understanding.

Already, the method provides a real, substantive improvement over current methods, and further

tests using inter-dataset calculations are called for to see whether we could generate a standardized

much faster pipeline for colour constancy.
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Figure 7.10: Five example images from an outdoor image dataset with two distinct illuminants [105].
For each example, from left to right: original image, the ground-truth back projection (chromatic-
ity of pixelwise illumination) for that image and its estimated value using exemplar based colour
constancy assuming single illuminant, two illuminants and illumination estimation for each surface
separately.



Chapter 8

Conclusion and Future Work

Many illumination estimation methods have been proposed by researchers, and we categorize them

into four general groups: statistical, physics-based, gamut based and learning-based methods. In this

thesis, we propose five distinct methods to estimate the colour of illuminant; a statistical method,

two physical-based methods, a gamut based method and a learning-based method which includes

different approaches to this well known problem.

First, we investigate the effects of bright pixels on several current colour constancy algorithms

such as White-Patch, Grey-Word, Grey-Edge and Shades-of-Gray methods. We describe a simple

framework for an illumination estimation method based on bright pixels and compare its accuracy to

well-known colour constancy algorithms. We also investigate failure and success cases, using bright

pixels, and propose desiderata on input images with regard to the proposed method.

Then we use bright pixels in an extension of the gamut mapping colour constancy algorithm,

one of the main illumination estimation methods. Specifically, we define the White Patch Gamut as

a new extension to Gamut Mapping Colour Constancy, comprising the bright pixels of the image.

Adding new constraints based on the possible White Patch Gamut to the standard gamut mapping

constraints, a new combined method outperforms gamut mapping methods as well as any of its

extensions.

Motivated by the effect of bright pixels in illumination estimation then we turn to using specular

reflection, which does tend to be bright. In this direction, we present a new and effective physics-

based colour constancy algorithm which makes use of a novel log-relative-chromaticity planar con-

straint. We call the new feature the Zeta-image. We show that this new feature is tied to a novel

application of the Kullback-Leibler Divergence, here applied to chromaticity values instead of prob-

abilities. The new method requires no training data or tunable parameters. Moreover it is simple to

122
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implement and very fast. Our experimental results across datasets of real images show the proposed

method significantly outperforms other unsupervised methods while its estimation accuracy is com-

parable with more complex, supervised methods and it is surprisingly fast. We also show that this

new feature can be useful for the purpose of manipulating specular reflection and highlights.

Then we present a new camera calibration method aimed at finding a straight-line locus, in a

special colour feature space, that is traversed by daylights and as well also approximately followed

by specular points. The aim of the calibration is to enable recovering the colour of the illuminant in

a scene, using the calibrated camera. We calculate the Zeta-image feature for points on a proposed

straight-line locus to estimate the illuminant. Experimental result shows that using a calibrated

locus and the Zeta-image feature we can find the illuminant with accuracy competitive with complex

methods even though many test dataset images were not in fact captured under daylight conditions.

And finally, we focus on surfaces in the image and address the colour constancy problem by

unsupervised learning of an appropriate model for each training surface in training images, which we

call Exemplar-Based colour constancy. We find nearest neighbour models for each surface in a test

image and estimate its illumination based on comparing the statistics of pixels belonging to nearest

neighbour surfaces and the target surface. The final illumination estimation results from combining

these estimated illuminants over surfaces to generate a unique estimate. The proposed method has

the advantage of overcoming multi-illuminant situations, which is not possible for most current

methods. We hence also show a technique to overcome the multiple illuminant situation using

the proposed method and test our technique on images with two distinct sources of illumination

using a multiple-illuminant colour constancy dataset. The concept proposed here is a completely

new approach to the colour constancy problem. We show that it performs very well, for standard

datasets, compared to current colour constancy algorithms.

8.1 Comparison of our Proposed Methods

Gijsenij et al. [104] propose the following desiderata in their survey on colour constancy methods

in assessing computational methods: (1) the requirement for training data; (2) the accuracy of the

estimation; (3) the computational runtime of the method; (4) transparency of the approach; (5)

complexity of the implementation; (6) number of tunable parameters.

We have already seen the accuracy of the estimation by our proposed methods and other well

known colour constancy methods separately in each chapter, Table 8.1 shows angular errors for

well known colour constancy algorithms for the SFU Laboratory dataset [14], the ColorChecker
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Table 8.1: Angular errors for well known colour constancy algorithms for SFU Laboratory dataset
[14], ColorChecker dataset [160] and GreyBall dataset [40] compared to proposed methods in this
thesis.

Dataset SFU Laboratory Color Checker Gray Ball
Methods Median Mean Median Mean Median Mean

Do nothing 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦

White Patch 6.5◦ 9.1◦ 5.7◦ 7.4◦ 5.3◦ 6.8◦

Gray World 7.0◦ 9.8◦ 6.3◦ 6.4◦ 7.0◦ 7.9◦

Gray Edge 3.2◦ 5.6◦ 4.5◦ 5.3◦ 4.7◦ 5.9◦

Bayesian [93] - - 3.5◦ 4.8◦ - -
Gamut Mapping 2.3◦ 3.7◦ 2.5◦ 4.1◦ 5.8◦ 7.1◦

Natural Image Statistics [100] - - 3.1◦ 4.2◦ 3.9◦ 5.2◦

Bright Pixel Framework (Ch3) 1.9◦ 5.8◦ 2.6◦ 4.0◦ 4.7◦ 5.7◦

White Patch Gamut Mapping (Ch4) 1.9◦ 3.4◦ − − 4.7◦ 6.0◦

Zeta (Ch5) 2.1◦ 6.2◦ 2.7◦ 4.2◦ 4.7◦ 5.8◦

Camera Calibration (Ch6) 2.4◦ 5.1◦ − − 4.1◦ 5.6◦

Examplar Based (Ch7) − − 2.3◦ 3.1◦ 3.3◦ 4.4◦

dataset [160] and the GreyBall dataset [40] compared to proposed methods in this thesis. In Fig-

ure 8.1 and Figure 8.2 we show colour-corrected images from the GreyBall dataset based on pro-

posed methods in this thesis: the bright pixel framework, white patch gamut mapping, Zeta, camera

calibration and exemplar-based methods, compared to white patch and Grey-World methods, along

with their angular error compared to ground truth as obtained from the grey sphere mounted onto

the video camera.

Table 8.2 compares the proposed methods in this thesis with other colour constancy algorithms in

term of criteria mentioned in [104]. Run time values in this table which are the average run time for

a single image are based on experiments set out for the GreyBall dataset, which include low quality

images (240 × 360), for unoptimized Matlab running on a single PC. As we can see bright pixels

framework, Zeta method and camera calibration methods are pretty fast while white patch gamut

mapping and exemplar-based are computationally expensive. It is notable that in white patch gamut

mapping extra constrain make it faster than standard gamut mapping. The main time-consuming

task for Exemplar-based method is mean-shift segmentation and feature extraction which make it

really slow. The advantages and disadvantages of these method is also mentioned in Table 8.2.
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8.2 Contributions of the Thesis

The contribution of this thesis is that we propose five distinct methods to estimate the colour of the

illuminant: a statistical method, two physical-based methods, a gamut based method and a learning-

based method which includes different approaches to this well known problem. The most important

contributions of this thesis are (1) introduction of the Zeta-image as a novel physics-based feature

which is tied to the specular reflection for each pixel in the image, and (2) a novel Exemplar-Based

colour constancy method which shows the best performance compared to reported results for current

algorithms for estimating the colour of illuminant, over three standard colour constancy data sets.

The individual contributions of this thesis, including the extent of my personal role in their devising,

are discussed separately in the following subsections.

8.2.1 Bight Pixel Framework

First, we investigate the effects of bright pixels on several current colour constancy algorithms such

as White-Patch, Grey-Word, Grey-Edge and Shades-of-Gray methods and show that using bright

pixels only instead of all pixels makes the estimation for all of these algorithms better or at least

equal and not worse in a few cases . Motivated by this, we describe a simple framework by adding

a new parameter as threshold of bright pixels for a general grey-based colour constancy method for

an illumination estimation method based on bright pixels [178]. We show this simple idea performs

surprisingly well if we tune the parameters appropriately for current colour constancy datasets.

This is joint work of myself, Dr. Drew, Dr. Finlayson and his student Perla Troncoso Rey. The

idea of investigating the role of bright pixels was developed by all the authors of that paper including

myself, and the effect of bright pixels on well-known colour constancy methods and introduction of

bright pixels framework was done my myself.

8.2.2 White Patch Gamut Mapping

We use bright pixels in an extension of the gamut mapping colour constancy algorithm, one of the

main illumination estimation methods. Specifically, we define the White Patch Gamut [176] as a

new extension to Gamut Mapping Colour Constancy, comprising the bright pixels of the image.

Adding new constraints based on the possible White Patch Gamut to the standard gamut mapping

constraints using convex programming implementation, a new combined method outperforms gamut

mapping method as well as any of its extensions. We also show that when there is no white surfaces

or specularities in the scene which is a failure for methods using bright pixels combined method has



CHAPTER 8. CONCLUSION AND FUTURE WORK 126

no feasible solution so we detect failure and use standard gamut mapping for these cases. All this

work was created and implemented by myself entirely.

8.2.3 Zeta-Image

We introduce a new and effective physics-based feature called the Zeta-image [48, 50] which is

shown to be tied to a novel application of the Kullback-Leibler Divergence, here applied to chro-

maticity values instead of probabilities. We first prove a planar constraint which holds for near-

specular pixels: we show that Log-Relative-Chromaticity values are orthogonal to the light chro-

maticity. Then we define the Zeta-image ζ (a greyscale image) as the dot-product of the log-relative-

chromaticity for each pixel with a putative light direction. Based on the planar constraint the Zeta-

image value is small (near zero) for near-specular pixels. The value of the Zeta-image for each pixel

has an inverse relation with the amount of specular reflection component for each pixel. Using the

Zeta-image we present a novel colour constancy algorithm. The new method requires no training

data or tunable parameters. Moreover it is simple to implement and very fast. Our experimental

results across datasets of real images show the proposed method significantly outperforms other

unsupervised methods while its estimation accuracy is comparable with more complex, supervised

methods and yet is surprisingly fast. We also show that this new feature can be useful for the purpose

of manipulating specular reflection and highlights.

The general idea of this novel feature was first discussed by Dr. Drew and subsequently by

Dr. Finlayson, but was a theoretical construct and not a working algorithm in practice. My idea of

using an initial bright pixel set, followed by a filetering scheme for deciding on the solution illu-

minant estimate and its implementation brings the idea into a working algorithm. In sum, my main

contribution was the post-processing method, the hierarchical grid search, and also the analytical

algorithm. 1

8.2.4 Camera Calibration for Daylight Specular-Point Locus

We present a new camera calibration method aimed at finding a straight-line locus, in a special colour

feature space, that is traversed by daylights and as well also approximately followed by specular

points [49]. The aim of the calibration is to enable recovering the colour of the illuminant in a scene,

using the calibrated camera. We calculate the Zeta-image feature for points on a proposed straight-

line locus to estimate the illuminant. Experimental results show that using a calibrated locus and

1Patent applied for this method.
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the Zeta-image feature, we can find the illuminant with accuracy competitive with complex methods

even though many test dataset images were not in fact captured under daylight conditions.

The general idea of a daylight specular-point locus is originated from the paper “4-Sensor Cam-

era Calibration for Image Representation Invariant to Shading, Shadows, Lighting, and Speculari-

ties” [60] by Dr. Drew and Dr. Finlayson; my contribution was bringing the Zeta-image concept

into the preceding illumination estimation method, with an aim as well of generating a re-lighting

technique using a calibrated locus. 2

8.2.5 Exemplar-Based Colour Constancy

Finally, we focus on surfaces in the image and address the colour constancy problem by unsuper-

vised learning of an appropriate model for each training surface in training images, which we call

Exemplar-Based colour constancy [175, 177]. We find nearest neighbour models for each surface

in a test image and estimate its illumination based on comparing the statistics of pixels belonging

to nearest neighbour surfaces and the target surface. The final illumination estimation results from

combining these estimated illuminants over surfaces to generate a unique estimate. The proposed

method has the advantage of overcoming multi-illuminant situations, which is not possible for most

current methods.

We hence also show a technique to overcome the multiple illuminant situation using the pro-

posed method and test our technique on images with two distinct sources of illumination using

a multiple-illuminant colour constancy dataset. The concept proposed here is a completely new

approach to the colour constancy problem and different from previous learning-based colour con-

stancy methods. We show that it performs the best, for three standard datasets, compared to results

reported for current colour constancy algorithms. All this work was created and implemented by

myself entirely.

8.3 Future Work

The main contributions of this thesis are introduction of the Zeta-image and of the Exemplar-Based

colour constancy method. Both concepts have been shown to bring new results already as proposed,

and moreover are likely fruitful for appropriate extension and further research in future.

2This method has reached the internal Invention Disclosure stage in a major company and patent will be applied for
presently.
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• In this thesis, we show the positive effect of using bright pixels on the process of estimat-

ing the colour of the illuminant for well-known statistical colour constancy methods such as

Grey-World, Grey-Edge and Shades-of-Grey. We also extend the gamut mapping colour con-

stancy method by defining the white patch gamut, which also improves the performance of

this method. As future work, we will try using bright pixels for the more complex, semantic-

information-based colour constancy methods.

• We have proposed the Zeta-image as a novel physics-based feature, which can be utilized

for a very simple, fast and effective method for identifying the colour of the illuminant that

requires no training data or tunable parameters and delivers a straightforward, basic, and novel

specularity modification technique. Although this method performs very well, it may fail for

scenes without any of white surface, light source or specularity. Future work for illumination

estimation by the Zeta-image includes identifying failure cases, either by heuristics or by

integrating with other methods. Further applications for this feature as well as its specularity

modification technique likely form a rich seam to explore.

• Finally, we proposed a novel Exemplar-Based colour constancy method which shows excel-

lent performance, which estimates the colour of the illuminant for each surface, using nearest

neighbour surfaces from training images. We integrate estimated surface illuminants into a

unique illumination estimate by a simple estimator such as the median. However, in future we

can apply more complex methods of integration and further investigate this new approach to

colour constancy.
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Appendix A

Specular Reflection

Specular reflection is the mirror-like reflection of light from a surface. In perfect specular reflection,

light from a single incoming direction is reflected into a single outgoing direction. In that theoretical

case, the law of reflection states that the direction of incoming light and the direction of reflected

outgoing light make the same angle with respect to the surface normal.

(a)

Figure A.1: Example of specular reflection in an image. The figure is taken from [164].

When light illuminants a surface, some light is reflected from the interface between the surface

and the air without entering the material. Some penetrates into the surface, is partially absorbed, and

partially scattered within the surface material, and then is reflected back to the surface-air interface

and into the air again. The first component is usually called the specular or surface component of

132
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the reflected light, and the second component is called the diffuse or body component. The term

diffuse is due to the fact that the radiance measured from that part of the reflected light is nearly

independent of direction. Figure A.2 shows this reflection process.

For many surfaces of inhomogeneous materials (dielectrics such as plastic), the specular compo-

nent has a spectral-energy distribution close to that of the incident light, so the colour of the specular

component is close to the illuminant colour (in many works they are simply assumed to be the same).

This is not true for surfaces made of homogeneous materials such as polished metal.

Light Specular Component 

Diffuse Component 

Pigments 

Figure A.2: Difference between specular reflection and diffuse reflection. Here, a dielectric material,
such as plastic, is pictured.

Specular reflection is distinct from diffuse reflection, where incoming light is reflected in a broad

range of directions. Fig. A.2 demonstrates the distinction between specular reflection and diffuse

reflection. An example of the distinction between specular and diffuse reflection can be seen in

glossy and matte surfaces. Matte surfaces such as dull painted surfaces, porous surfaces etc. have

almost exclusively diffuse reflection, while glossy surfaces such as glass, ceramic, polished metal,

and plastic, have both specular and diffuse reflection. However, metals have very different reflection

properties from dielectric materials such as plastics.

A.1 Physical Theory

The Fresnel equations describe the transmission of light at an interface between two media of differ-

ing refractive properties. When unpolarized light impinges on a point of a smooth and flat surface,
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the reflection coefficient is R = 0.5(R⊥ + R‖), where R⊥ and R‖ are the reflection of the electric

field when it is perpendicular and parallel to the surface, respectively. This coefficient is dependent

on the angle between the incoming light and the surface normal and on the refractive properties of

the two media. The direction of specular reflection will follow the law of reflection, if the surface

is perfectly smooth and flat and behaves as a perfect mirror. This implies that we can only see the

specular reflected light if we are at the exact direction as the outcoming reflected light θr. However,

in most objects we can still observe a certain degree of specularity even when we are somewhat

away from the direction of θr. Therefore specular reflections do not only form a sharp line (spike)

distribution of reflection, but instead form a lobe distribution. As a result, there are at least two

components of specular reflections: (1) specular spike and (2) specular lobe. Fig. A.3 illustrated

these two specular reflections.

Reflecting Surface 

Source 

Sensor 

Normal 

Specular  
Direction 

Specular  
Lobe 

Diffuse 
Lobe 

Specular  
Spike 

Microscopic roughness 

Figure A.3: The polar plot of the reflection components as a function of viewing angle for a fixed
source direction.

The Torrance-Sparrow reflection model [172] provides an approximation of the specular lobe

component in the form of the following formula:

ρ =
FG

cosθr
exp(− α2

2σ2
) (A.1)

where F is the Fresnel reflection coefficient , G is the geometrical attenuation factor, α is the angle

between the surface normal and the bisector of the viewing direction and the light source direction,

and σ represents the surface roughness.
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The Torrance-Sparrow reflection model describes the mechanism of specular reflection by geo-

metric optics, which is only valid when the wavelength of light is much smaller than the roughness

of the surface. According to [139], the model uses a slope distribution model to represent the profile

of a surface. The surface is assumed to be a collection of planar micro-facets, where their dimension

is much larger than the wavelength of incident light. Each micro facet is assumed to be perfectly

smooth. The orientation of each facet deviates from the mean orientation of the surface by an angle

α. The model considers the masking and shadowing of micro-facets by adjacent facets. Adjacent

facets may obstruct flux incident upon a given facet or a flux reflected by it. To include this effect,

the geometrical attenuation factor, G, is introduced. The surface roughness, σ, represents the spatial

distribution of the lobe. The larger the value of σ, the larger the lobe distribution (implying less-

shiny surfaces), and vice versa. In this reflection model, the distribution of the specular reflections

follow a Gaussian distribution, with mean α and standard deviation σ. Later, Cook and Torrance

[42] replaced the Gaussian distribution with the Beckmann distribution function [17].

The Neutral Interface Reflection (NIR) model [121] formalizes the notion that the spectral power

distribution (SPD) of specular reflections is the same as the illumination’s SPD; this condition mostly

obtains for the surfaces of optically inhomogeneous objects (such as ceramics, plastics, paints, etc.).

However it does not usually hold for the surfaces of optically homogeneous objects (such as gold,

bronze, copper, etc.) [107].

A.2 Specular Reflection Applications in Computer Vision

Computer vision algorithms such as detection, segmentation, classification and matching have treated

specular reflection differently. They may ignore it completely, try to remove its effect, or alterna-

tively use it as a source of information. They mainly use dichromatic reflection model which we

discussed in . We classify computer vision algorithms into three categories based on their approach

to specular reflection.

1. These methods disregard specularities or treat them as outliers; for Simplification such algo-

rithms are completely based on a diffuse component analysis.

2. Since the presence of specular reflection is ubiquitous in the real world, this second group of

methods, while also based only on a diffuse component analysis, do try to remove or reduce

the effect of specular reflection. Most of these methods incorporate knowledge about specular

reflection to make the above algorithms more robust.
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3. Since specular reflection captures important scene information, such as photometric and geo-

metric information, these methods try to analyze the scene considering the effect of specular

reflection along with the diffuse component, thus making the model more complex. Generally,

photometric information is important for material recognition, and geometric information is

crucial for shape recognition.

In this section we review different computer vision algorithms related to specular reflection, in-

cluding algorithms which separate diffuse and specular reflection components. We will also discuss

colour constancy methods which consider specular reflection in the next section under physics-based

colour constancy methods.

However, as mentioned above there is a third group of methods that use specular highlights

as a source of information for recognition; this group is not included in this chapter because such

methods are far from the core topic of this thesis. As an example, Osadchy et al. [142] proposed

an algorithm for recognition of objects that have diffuse and specular components that uses specular

highlights to determine the shape of object. Chen et al. [37] propose a progressive acquisition system

that captures a dense specularity field as the only information for mesostructure reconstruction.

Additionally, an image of a perfect mirror-like specular surface is a distortion of the surrounding

environment. These images often convey useful shape information, such as the dent in a car, the

imperfections in a building’s window, or a word that is pressed into a specular sheet [1]. Some

methods use this information in order to recover the surface shape. Since it is difficult or even

impossible to distinguish between real images and virtual distortions on a specular surface, one

needs more than one image to recover the shape. Some methods use stereo images and others use

a sequence of images from motion [141, 1, 2]. The latter methods are usually referred to as shape

from specular flow (SFSF). In this chapter we do not further discuss this kind of shape recovery.

In the remainder of this section we review algorithms separating diffuse and specular reflection

components, including algorithms that use polarization and illuminant-dependent colour spaces as

well as other algorithms.

A.3 Separation of Diffuse and Specular Reflection

Separation of diffuse and specular reflection components is an essential topic in computer vision.

Many algorithms in this field assume perfect diffuse surfaces and ignore specular reflections. How-

ever, in the real world, the presence of specular reflection is ubiquitous since there are many di-

electric inhomogeneous objects which have both diffuse and specular reflections. It is therefore
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necessary to separate the two components robustly and accurately in order to properly acquire the

diffuse-only reflection. Moreover, once this separation has been accomplished, the specular re-

flection component can be used to advantage since it includes useful information about surface

properties.

Klinker et al. [113] showed that the colours of all pixels from an object patch form a colour

cluster in its dichromatic plane. These colour clusters consist of:

1. Matte pixels, which are scene points that consist only of body reflection. The colours of the

matte pixels form a matte line in the colour space, in the direction of the body reflection vector.

2. Highlight pixels, which are scene points that consist of both body reflection and also interface

reflection, The RGB colour 3-vectors for these pixels thus form a straight highlight line in the

colour space which is parallel to the interface reflection vector. The line starts from the matte

cluster at the position representing the body reflection component of the highlight pixels.

3. Clipped colour pixels, which are highlight pixels at which the light reflection exceeds the

dynamic range of the camera. In this case the highlight cluster bends near the wall of the

colour cube that describes the limit of sensitivity of that colour band.

These colour pixels often cluster in the shape of a skewed-T, where the two limbs of the skewed-

T correspond to diffuse and specular reflection (Fig. A.4). Gershon et al. [95] also reported the same

observation by considering segmented neighbour colour pixels.

Klinker et al. [113] implemented an algorithm that uses the shape of the colour clusters to detect

and remove highlights from colour images. Their method projects the pixels of selected image areas

into the colour space and fits a dichromatic plane to the colour data from each image area. Then

it searches within each dichromatic plane for the matte line, the highlight line, and lines of clipped

colours based on their properties. Each colour pixel of the image is then broken up into its reflection

components. In order to remove interface reflection, the algorithm then projects the colour of every

pixel along the highlight vector onto the matte line. The result is an intrinsic matte image of the

scene without highlight. They also use these clusters to estimate the scene illuminant, as we shall

describe in §2.3.

Klinker et al. [115] applied the concept of these colour clusters to segment colour images with

highlights. They compute an initial, rough description of colour variation in local image areas by

investigation the shape of colour clusters for each local area. Principal component analysis (PCA)

of pixel values of these local areas in colour space shows if they fall in a point, line, plane or general
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Figure A.4: The skewed-T pixels of a distinct colour surface with both diffuse and specular reflection
in RGB colour space. The figure is taken from [155].

space. These authors merge clusters with their neighbours if possible. Moreover, segmentation is

carried out over matte colour values after separating reflection components based on their work in

[113].

While this basic methods works well for homogeneous, dichromatic surfaces in ideal cases, there

are three main limitations that make it difficult to use in real world images. First, many surfaces are

“textured”, i.e., are not uniform in colour. Even when an image does contain homogeneous surfaces,

a non-trivial segmentation process is required to identify them. Second, in order for the specular and

diffuse limbs of the skewed-T to be distinct, the specular lobe must be sufficiently narrow, which is

often not the case. Finally, when the diffuse and specular colours are the same, there is no way to

distinguish between the two components, and no colour separation is possible.

Finlayson and Drew [60] used 4-channel images formed by a special 4-sensor camera to cal-

ibrate the camera to develop an image representation invariant to shading, shadows, lighting, and

specularities. They first formed logs of colour ratios to reduce the dimensionality to 3 while elim-

inating light intensity and shading; then projecting into the plane orthogonal to the direction in the

3-D space corresponding to a lighting change direction, they arrived at generalized colour 2-vectors

independent of lighting. They noted that in the 2-D space, specularities are approximately linear

streaks pointing to a single specular point. Therefore they could remove specularities by the simple

expedient of replacing each 2-D colour by the maximum 2-vector position at its particular direction
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from the specular point.

Tan and Ikeuchi [164] propose a method which separates specular and diffuse reflection com-

ponents using a single image. Unlike most other methods their method operates locally. This local

operation is useful for handling texture, which is one of the limitations of older methods.

They use the standard diffuse (Id) + specular (Is) reflection model. They then define diffuse

chromaticity Λ and illumination chromaticity Γ besides standard chromaticity ρ.

ρk =
Ik∑

c∈{1,2,3} Ic
where k = 1 · · · 3 (A.2)

Λk =
Idk∑

c∈{1,2,3} I
d
c

Γk =
Isk∑

c∈{1,2,3} I
s
c

(A.3)

Based on these definitions, the reflection equation can be rewritten as :

Ik = Λk
∑

c∈{1,2,3}

Idc + Γk
∑

c∈{1,2,3}

Isc (A.4)

They assumed that the illuminant chromaticity can measured or estimated by an unspecified colour

constancy algorithm, so that the input image can normalized such that Γ1 = Γ2 = Γ3 = 1
3 which

means Isr = Isg = Isb . They also defined a maximum chromaticity ρmax and maximum diffuse

chromaticity Λmax which is the maximum value over the three channels. It is apparent that ρmax
and Λmax are limited to the range from 1

3 to 1.

They show that in a 2-D space of normalized pixel brightness and maximum chromaticity (both

known values), all diffuse pixels approximately have equal maximum chromaticity while specular

pixels form a curve which is the function of maximum diffuse chromaticity. In Fig. A.5, we can

observe that specular points form a curved line in the space. A certain point in the curved line

intersects with a vertical line representing the maximum chromaticity of the diffuse point. This

curved line follows the following equation:

Idk = Ik −
max∑

c∈{r,g,b}
Ic − Λmax

∑
c∈{1,2,3} Ic

1− 3Λmax
(A.5)

To generate a specular-free image, they simply set the diffuse maximum chromaticity equal to an

arbitrary scale value for all pixels, regardless of their colour. In this case, a specular-free image may

indeed be free of specularity but diffuse chromaticity may differ from the chromaticity of the real
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Figure A.5: Specular-to-diffuse mechanism. The intersection point is equal to the diffuse component
of the specular pixel. By knowing diffuse chromaticity from diffuse pixels, the intersection point
can be obtained. The figure is taken from [164].

image. The method uses the specular-free image to verify whether the original image has diffuse-

only pixels, in which case the process terminates. Otherwise the the intensity of specular pixels is

decreased from those pixels and they iteratively verify again if it is now diffuse-only pixels.

According to eq. (A.5), finding the diffuse component of reflection or the specularity removal

problem can be reduced to searching for the maximum diffuse chromaticity Λmax for each pixel.

Moreover the maximum diffuse chromaticity Λmax is the same as maximum chromaticity ρmax
except for specular pixels.

Yang et al. [200] assumed that the variance of Λmax is very small in local patches that belong to

the same surface colour. So local patches with consistent maximum chromaticity can be considered

as non-specular pixels. They apply a low-pass filter to the maximum chromaticity ρmax, to smooth

out the variances due to specular highlights. Since the filter should preserve edges, they employ

joint bilateral filtering [166] iteratively for smoothing and in order to diminish the effect of specular

pixels in diffuse components during smoothing, they use λ as smoothing guidance:

λk =
ρk − ρmin
1− 3ρmin

(A.6)

For more detail about the relationship between λ and Λmax please refer to [200]. They show

that their method [200] normally converges in 2 to 3 bilateral filter iterations, which is 200 times

faster than [164] while their results are competitive.



APPENDIX A. SPECULAR REFLECTION 141

Besides algorithms which try to separate reflection components there are some methods which

try to remove the effect of specular reflection or highlights using image inpainting. Inpainting is

a technique for filling in an image region by propagating information into areas with missing data

from the region boundaries. Unlike occluded image regions filled by inpainting, highlight pixels

contain some useful information for guiding the inpainting process. As an example, Tan et al. [163]

employed a total variation (TV) form of inpainting [152] that incorporates the illumination-based

constraint of the dichromatic model. Then their inpainting solution is found by minimizing an

energy function over the highlight region.

A.4 Polarization

Polarization is defined as the process or state in which rays of light exhibit different properties in

different directions, especially the state in which the direction of electromagnetic oscillation takes

place in one plane. Refer to [28] for detailed information.

If the source light is polarized by a linear polarizer filter, the diffuse component of reflection

tends to be unpolarized [190]. In contrast, the specular component tends to be partially polarized;

rotation of the polarization filter varies the specular component according to a cosine function [190].

Capturing more than one image of a scene with different polarizer orientations provides useful in-

formation about diffuse and specular components that may be use in different methods to separate

these two components. Although polarization is a strong tool for separating reflection components,

it has some restrictions such as the necessity of polarizer filters and multiple images.

Wolff and Boult [191] express the specular component as the sum of a specular constant Isc and

a specular varying term that is a cosine function with amplitude Isv:

I = Id + Isc + Isvcos2 (θ − α) (A.7)

where θ represents the angle of the polarization filter and α is the phase angle determined by the

projection of the normal of the surface element onto the plane of the polarization filter. The exact

values of Isc and Isv depend on the material properties and the angle of incidence. This dependence

is determined by the Fresnel reflection coefficients F⊥ and F‖ which represent the polarization

of the reflected light waves in the directions perpendicular and parallel to the plane of incidence,

respectively.

They show that three discrete filter positions, θi and Ii, are enough to solve the linear system of

equations from eq. (A.7) to obtain the parameters Id + Isc, Isv, and α. For more than three discrete
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Figure A.6: Image brightness as a function of polarization filter position. The figure is taken from
[138].

filter positions, we have an over-determined linear system that can be solved to obtain more robust

estimation. They then use the degree of polarization [28], ρ, to classify points that are only diffuse

(ρ << 1) and those that include a specular component.

Imin = Id + Isc − Isv Imax = Id + Isc + Isv

ρ =
Imax − Imin
Imax + Imin

(A.8)

Wolff and Boult’s polarization-based method [191] assumes that the diffuse component is con-

stant over the entire highlight region. They also assume that the material type and surface normal do

not vary within the highlight region; these assumptions are often not practical in the context of real

scenes.

Nayar et al. [138] presented an algorithm for the separation of specular and diffuse reflection

components from images which uses colour and polarization simultaneously, to obtain new con-

straints on the reflection components. They first compute a degree of polarization, ρ by eq. (A.8)

for each of the three colour bands. If the largest of three ρ estimates is less than a threshold value,

the point is not sufficiently polarized and is assumed to be purely diffuse. For pixels which are not

purely diffuse, the specular component varies along a straight line since the cosine functions in the
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three colour bands are in phase while the diffuse component is unaffected (eq. (A.7)). This line ob-

viously passes through Imax and Imin; therefore we have this line for each pixel which has specular

component. The diffuse component of this pixel corresponds to a point on that straight line (Id in

eq. (A.7)).

Though they were unable to compute the diffuse component locally, the specular line gives

useful constraints on the diffuse component. They use neighbouring image points where the diffuse

component is already computed as an estimation of a pixel’s diffuse part. Then, the line passing

through neighbouring diffuse values from the origin and the specular line intersect to give a more

accurate estimate of the diffuse component.

A.5 Illuminant-Dependent Colour Spaces

Recently, there has been some work involving defining colour space transformations that exploit

knowledge of the illuminant colour to provide more direct access to the diffuse information in an

image. When the illuminant colour is known, and the reflectance of surfaces can be represented by

the dichromatic model, we can linearly transform the space of RGB vectors in a way that isolates

specular reflection effects. Following the transformation, one, or two, channels are free of these

effects, and such a resulting image thus constitutes a specular invariant. Moreover, if this operation

is linear, the diffuse shading information is preserved by the transformation and the invariant can be

exploited photometrically. Having a colour space with one illuminant-direction axis is ideal for de-

tecting or removing specularities since we assume that specularity and highlights have illumination

colour. However, knowledge of the illuminant colour for these colour space is a severe restriction.

Although many illumination estimation methods have been proposed, error in such estimation is

inevitable.

As discussed above, Tan and Ikeuchi [164] obtain a one-channel diffuse image through the

transformation

Id =
3 maxk(Ik/ek)− ΣkIk/ek

3λ−1
(A.9)

where k ∈ {1, 2, 3}, and the bounded quantity 1/3 < λ < 1 is chosen arbitrarily. This transforma-

tion yields a positive monochromatic diffuse image, Id, which is specular-free and depends directly

on diffuse shading information. To show that Id is independent of illuminant e let us assume Ik/ek
is maximized for the R channel, or equally maxk(Ik/ek) = I1/e1; then we can simplify Id using

the dichromatic equation, with the theoretical narrowband assumption in eq. (2.15):
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Id = 3I1/e1−ΣkIk/ek
3λ−1 = 2I1/e1−I2/e2−I2/e2

3λ−1

= 2mb(θ)s1+2m2(θ)−mb(θ)s2−ms(θ)−mb(θ)s3−ms(θ)
3λ−1

= 2mb(θ)s1−mb(θ)s2−mb(θ)s3
3λ−1

(A.10)

which is independent of illuminant e and its geometric factor ms(θ) and is specular-free.

An alternative transformation is proposed by Park [143], who isolates two predominantly diffuse

channels while retaining a colour space similar to HSI. The transformation is composed of a linear

transformation Lp and rotation Rp which is demonstrated in Fig. A.7:

• Transform the RGB cube into the Cartesian coordinate frame denoted “XYZ” — the trans-

formed RGB cube within XYZ space will simply have its grey axis vertically aligned with the

Z-axis.

• Rotate the RGB cube in XYZ space until the illumination axis vertically coincides with the Z

-axis. Then

Ip = RpLpI with RpLpe = [0 0 1] (A.11)

The matrices Rp and Lp are chosen such that the third colour axis is aligned with the illumina-

tion colour as mentioned before. Park called the new colour coordinates, XαYβZγ . As a result, the

Zγ channel contains the majority of the specular component, leaving the other two channels pre-

dominantly diffuse. Another major significance of the XαYβZγ space is that all dichromatic planes

are orthogonal to the XαYβ plane.

Park simply projects the pixel values in the new colour coordinates to theXαYβ plane in order to

segment colour images having highlights. As mentioned earlier, in perfect dichromatic reflectance

all dichromatic planes are orthogonal to the XαYβ plane, so each coloured object projected to the

XαYβ plane forms a straight line passing through the center of the plane. Unfortunately, however,

real images do not always comply with the dichromatic reflection model.

Another transformation, proposed by Mallick et al. [132], defines a colour space referred to as

SUV colour space. The transformation is written

ISUV = RI with Re = [1 0 0] (A.12)

Here, they choose R = RG(−θS)RB(φS) where Rk(θ) is a right-handed rotation about the

k-axis by angle θ, and (θS , φS) are the elevation and azimuth angles of the source vector S in the
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Figure A.7: Colour space transformation to XαYβZγ . The figure is taken from [143].

RGB coordinate system. Fig A.8 shows this transformation. Letting rTi denote the ith row of R,

considering the dichromatic model eq. (2.14) the diffuse UV channels are

IU = rT2 sfdn̂.l̂ IV = rT3 sfdn̂.l̂ (A.13)

Similar to Park’s transformation [143], one of the transformed axes in SUV space is aligned with

the illuminant colour. Unlike Park’s transformation, however, this channel includes the complete

specular component, leaving the remaining two channels to be purely diffuse. Unfortunately, to

develop SUV colour space we must already know the illuminant colour, by some unspecified means.

G 

B 

R 

illuminant 

S 

V 

U 

Figure A.8: Transformations of RGB colour space to SUV colour space. Three observations of the
same material yield colour vectors I1, I2 and I3 in the dichromatic plane spanned by the source and
diffuse colours S and D.
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Zickler et al. [203] attempt to generalize SUV colour space [132] for more complex light con-

ditions. Unlike most other specular invariants which assume that illuminant colour is the same in

all directions, they consider mixed-illumination environments. They show that, given anM -channel

(possibly hyper-spectral) image and N incident illuminations, there exists a subspace of dimension

(M − N) that is independent of all these illuminant colours, and therefore invariant to specular

reflections. For example, with N = 2, such as an office environment where the illumination is a

mixture of daylight and fluorescent lights, there is a line invariant to specular reflections in RGB

colour space for captured images.

Mallick et al. [131] presented a unified framework for separating specular and diffuse reflec-

tion components in images and videos of textured scenes by evolving a partial differential equation

(PDE) that iteratively erodes the specular component at each pixel. They re-parameterized SUV

colour space [132] in equation (A.13) using a combination of cylindrical and spherical coordinates:

ρ =
√
I2
U + I2

U θ = tan−1

(
IU
IV

)
φ = tan−1

(
IS
ρ

)
(A.14)

Therefore ρ and θ are independent of specular reflection components, ρ represents diffuse shad-

ing and φ is the linear combination of specular and diffuse component φ = φs + φd. Hence, the

problem of computing a specular/diffuse separation is reduced to estimating φd(x, y), the diffuse

contribution to φ at each image pixel. Once the scalar function φd(x, y) is known, the RGB diffuse

component follows directly from inverting the transformations in eqs. (A.13) and (A.14). This will

be accomplished by evolving a PDE that iteratively erodes the specular contribution to φ and con-

verges to an estimate φd at each pixel. The erosion process is guided locally by the diffuse colour

information provided by ρ and θ, and is formulated in the continuous domain using one of a family

of non-linear PDEs that define multi-scale erosion [31].

They show that the PDE governing the evolution of φ for the three different cases of texture-less

images, textured images, and video, can all be written as

εt = −g(ρ,∇ρ)(∇εTM∇ε)1/2 (A.15)

where M is a different matrix for each case and g(ρ,∇ρ) is called the stopping function. There are

two cases when erosion should stop, which are distinguished by stopping function:

• white surface or surface with colour equal that of the light: ρ is zero for this case, so there is

no diffuse colour information.

• boundaries between regions of distinct colour: ‖∇ρ‖ is usually large in this case.
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A possible stopping function that is zero for both of these cases is

g(ρ,∇ρ) =

(
1− e−ρ

1 + e−ρ

)
e−(‖∇ρ‖−τ)

1 + e−(‖∇ρ‖−τ)
(A.16)

A.6 Summary

In this appensix we describe the physical aspect of specular reflection compared to diffuse reflection.

We reviewed algorithms which separate diffuse and specular reflection components; some of these

use single images and some use multiple images. We introduced a group of algorithms that separate

diffuse and specular reflection components by making use of polarization, and another group which

develops illuminant-dependent colour spaces. Nonetheless, the problem of separating diffuse and

specular reflection components accurately and robustly is still an open problem, although a great

deal of research effort is presently focussed on this problem.
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