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Abstract

Myeloablative preconditioning using irradiation is the most commonly used technique to generate rodents having chimeric
bone marrow, employed for the study of bone marrow-derived cell accumulation in the healthy and diseased central
nervous system. However, irradiation has been shown to alter the blood-brain barrier, potentially creating confounding
artefacts. To better study the potential of bone marrow-derived cells to function as treatment vehicles for
neurodegenerative diseases alternative preconditioning regimens must be developed. We treated transgenic mice that
over-express human mutant superoxide dismutase 1, a model of amyotrophic lateral sclerosis, with busulfan to determine
whether this commonly used chemotherapeutic leads to stable chimerism and promotes the entry of bone marrow-derived
cells into spinal cord. Intraperitoneal treatment with busulfan at 60 mg/kg or 80 mg/kg followed by intravenous injection of
green fluorescent protein-expressing bone marrow resulted in sustained levels of chimerism (,80%). Bone marrow-derived
cells accumulated in the lumbar spinal cord of diseased mice at advanced stages of pathology at both doses, with limited
numbers of bone marrow derived cells observed in the spinal cords of similarly treated, age-matched controls; the majority
of bone marrow-derived cells in spinal cord immunolabelled for macrophage antigens. Comparatively, significantly greater
numbers of bone marrow-derived cells were observed in lumbar spinal cord following irradiative myeloablation. These
results demonstrate bone marrow-derived cell accumulation in diseased spinal cord is possible without irradiative
preconditioning.
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Introduction

Clinical and experimental observations indicate that under

certain conditions, bone marrow (BM)-derived cells (BMDCs) can

transmigrate across the BBB and take up residence within the

CNS. Studies employing BM chimeric rodents created using a

myeloablative irradiation/BM transplantation paradigm have

demonstrated that BMDCs migrate to and populate the CNS,

and BMDC accumulation is significantly increased in affected

areas of the CNS in murine models of neurodegenerative diseases

including amyotrophic lateral sclerosis (ALS) [1,2,3,4] and

Alzheimer’s disease [5,6], suggesting that BMDCs home to and/

or expand at sites of neurodegeneration. In both the healthy and

diseased murine CNS, the majority of BMDCs exhibit an

immunophenotype consistent with CNS-associated macrophages,

such as perivascular cells and other cell types, with a small

proportion acquiring residence within the CNS parenchyma [4,7].

A limitation in using BM chimeras to study cell migration into

the CNS is that recipient mice are subjected to lethal levels of

irradiation, which has been shown to induce changes in BBB

permeability and incite an inflammatory response [8]. Further-

more, the intravenous injection of whole BM into the host

circulation includes progenitor BMDC populations that under

normal conditions would not be present in the bloodstream.

Indeed, studies employing parabiosis, a technique that surgically

joins the circulations of two genetically distinct mice resulting in

peripheral blood cell (PBC) chimerism, have demonstrated that in

the absence of irradiation and/or the nonphysiological presence of

circulating BM progenitors, very few BMDCs are observed within

the healthy or diseased CNS [9,10].

Given the adverse side effects associated with lethal irradiation

alternative conditioning regimens that enable BMDC accumula-

tion in the CNS should be determined to improve the clinical

potential of BMDCs as treatment modalities for neurological

diseases. Busulfan (BU) is a clinically employed, well-established

chemotherapeutic agent used to myelosuppress patients prior to

receiving BM transplants. Myelosuppression using BU is an

attractive alternative to irradiation particularly when transplanting

autologous BM cells which would likely be the circumstances
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Figure 1. Short-term analysis of PBC reconstitution by donor cells using doses of 60, 80 or 100 mg/kg BU and GFP+ accumulation in
control spinal cord. (A) Left: FACS plot of negative control (blue peak) and GFP+ control (red peak) blood. Centre: An example of a FACS plot of
blood collected at 3 weeks post-BM transplant following treatment with 100 mg/kg BU. Roughly 48% of PBCs were GFP+. Right: Immunolabeling of
blood for myeloid markers (CD11b-APC, Gr1-APC) indicate high level of donor chimerism in this blood cell population by 3 weeks post-transplant. (B)
Levels of PBC and lymphoid chimerism increased over the 4-week observation period. Levels of chimerism in circulating myeloid cells increased at a
rate higher than that of lymphoid cells. (C) By 4 weeks post-transplant, GFP+ cells were observed in the lumbar spinal cords of BM chimeric mice.
Significantly greater numbers of GFP+ cells were observed in the spinal cords of mice treated with 80 or 100 mg/kg BU compared to mice treated
with 60 mg/kg. Scale bar = 50 mm. (D) The majority of GFP+ cells in lumbar spinal cord exhibited a rod-shaped morphology and were associated with
blood vessels immunolabelled with antibody to CD31. Scale bar = 50 mm.
doi:10.1371/journal.pone.0060661.g001
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under which BMDCs would be used as treatment vehicles for

neurological disease, as BU has only a minor effect on immune

function, while irradiation leaves patients severely immunocom-

promised [11]. In mice, the myeloablative dose of BU has been

reported to be between 135 to 150 mg/kg [12,13] and some

studies in which mice were treated with BU doses below this

amount obtained variable levels of BM chimerism [11,14]. Long-

term BM chimerism using BU alone has been reported at

100 mg/kg [27].

Whether BU treatment enables BMDC accumulation in the

CNS is currently a contentious issue, with two recent studies

presenting conflicting results. Lampron and colleagues (2012)

created BM chimeric mice using a combination of BU (80 mg/kg)

and the immunosuppressant cyclophosphamide (CY; 200 mg/kg),

followed by the intravenous injection with 2610‘7 whole BM cells

[28]. Although this treatment regimen resulted in high levels of

peripheral blood cell (PBC) chimerism, no BMDC accumulation

was observed in the naı̈ve brain at 3 months post-BM transplant or

in the hypoglossal nucleus following hypoglossal nerve transection

[28]. Conversely, Capotondo and colleagues (2012) observed

BMDC accumulation in the brains of BM chimeric naı̈ve mice

and a mouse model of lysosomal storage disease as early as 5 days

following myelosuppression using 100 mg/kg BU and the

transplantation of hematopoietic stem/progenitor (KLS) cells

[27]. Given the disparity between these recent studies, further

investigation into the efficacy of BU as a preconditioning agent

that enables BMDC accumulation in the CNS should be

undertaken.

To determine whether BU-induced preconditioning is capable

of supporting sustained BM chimerism and permitting BMDC

accumulation in the CNS, we created chimeric mice using donor

BM harvested from mice that ubiquitously express green

fluorescent protein (GFP). We performed BM transplants on

control mice and a murine model of ALS that overexpresses

mutant superoxide dismutase-1 (mSOD) to investigate whether the

accumulation of donor-derived cells in the spinal cord was

enhanced under neurodegenerative conditions. Significantly

greater numbers of donor-derived cells were observed in lumbar

spinal cord sections from mSOD mice at advanced stages of

disease than in age-matched controls. Numbers of BMDCs in the

spinal cord were significantly greater after myeloablation using

irradiation than with BM chimerism following BU treatment at 60

or 80 mg/kg in mSOD and age-matched control mice when

evaluated at advanced stages of disease (11–14 weeks post-

transplant). Our study validates a myeloablative regimen using BU

as an alternative to irradiation that permits stable BM chimerism

and enables the accumulation of BMDCs in the diseased CNS. As

BU-based myeloablation closely models some current clinical

protocols, it should aid in the optimization of strategies for use of

BMDC in CNS disease.

Results

Short-term Analysis of BM Reconstitution and BMDC
Accumulation in the Healthy Spinal Cord Using BU

To investigate the short-term level of PBC chimerism and

BMDC engraftment within the healthy spinal cord following BU-

induced myeloablation and BM transplantation, 8 week-old Bl.6

mice were treated with 60, 80 (n = 4 per group) or 100 mg/kg

(n = 3) BU administered as fractionated doses of 20 mg/kg per day

via intraperitoneal injection. Twenty-four hours after administer-

ing the final BU dose, mice were intravenously injected with

1.560‘7 GFP+ whole BM cells. Mice tolerated all three doses of

BU well, exhibiting only minor reductions in weight during and

following the treatment; all mice recovered well following BM

transplantation. Beginning at 1 week post-transplant, weekly blood

samples were collected and analysed via flow cytometry to

determine levels of chimerism in circulating myeloid, lymphoid

and total PBCs (figure 1A, B).

By 3 weeks post-transplant, total PBC chimerism was

46.562.5% (60 mg/kg BU), 58.7612.2% (80 mg/kg BU), and

66.7611.5% (100 mg/kg BU). Comparative levels of chimerism

in circulating myeloid cells were 79.762.8%, 91.863.3%, and

89.667.2% for mice treated with 60, 80, and 100 mg/kg BU,

respectively (figure 1B). This disparity between the total PBC and

circulating myeloid cell chimerism can be attributed to the lack of

immunosuppression elicited by BU, as the majority of circulating

leukocytes are lymphoid cells, which are spared the cytotoxic

effects of BU and have a relatively long half-life in the circulation

[15]. Given the comparatively short half-life of circulating

myelomonocytic cells, levels of chimerism in this population are

more indicative of donor reconstitution of the BM compartment.

One month following BM transplantation, mice were sacrificed

and spinal cords collected and analysed to assess levels of GFP+
BMDC accumulation. At all BU doses, limited numbers of GFP+
cells were observed in lumbar spinal cord sections which averaged

1.760.6 (mean6standard deviation; SD; n = 5 spinal cord sections

per mouse), 10.062.4, and 7.361.7 for mice treated with 60, 80

and 100 mg/kg BU, respectively (figure 1C). In lumbar spinal

cord sections from mice treated with 60 mg/kg or 80 mg/kg BU,

all GFP+ cells were of a rod-shaped morphology and were found

associated with CD31 positive spinal cord blood vessels when

examined using confocal microscopy (figure 1D). These rod-

shaped cells were similar in distribution and morphology to those

observed by Audoy-Remus (2007), which were identified as a

heterogenous population of myeloid cells that function to patrol

blood vessels. The morphology of BMDCs in spinal cord sections

from mice treated with 100 mg/kg BU was more heterogeneous,

with a subset of cells exhibiting amoeboid and elongated

morphologies possibly indicative of activation induced by toxic

effects of BU.

Notably, GFP+ cells were infrequently observed in spinal cord

sections from mice treated with 60 (n = 4), 80 (n = 4) or 100 mg/kg

BU (n = 3) at 2 weeks post-transplant (data not shown). The results

of this analysis indicate that limited numbers of BDMCs begin

migrating to the vasculature in the naı̈ve spinal cord between 2

and 4 weeks following BM transplantation. The extent of BMDC

accumulation in spinal cord is positively correlated to the dose of

BU administered, as the number of GFP+ cells in the lumbar

spinal cord of mice treated with 80 or 100 mg/kg BU was

significantly greater than in mice treated with 60 mg/kg BU

(p,0.01).

Stable, Long-term BM Reconstitution and BMDC
Accumulation in the mSOD Spinal Cord Following
Treatment with BU

As no increase in donor cell engraftment was observed between

mice treated with 80 and 100 mg/kg BU, we focussed on assessing

PBC chimerism and BMDC accumulation in the in spinal cord

over time using doses of 60 or 80 mg/kg BU. These doses were

chosen based on our previous observations that very few BMDCs

accumulated in the spinal cords of mice treated with 60 mg/kg

BU, while significantly greater numbers accumulated in mice

treated with 80 mg/kg BU at 1 month post-transplant. Age-

matched control and mSOD mice were treated with either

60 mg/kg (n = 4 mSOD, 4 control) or 80 mg/kg BU

(n = 4 mSOD, 4 control) and transplanted with 1.5610‘7 GFP+
BM cells. Beginning at 1 week post-transplant and until mSOD

Bone Marrow Cells in CNS following Chemotherapy
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mice reached advanced stages of disease blood was analyzed for

the level of chimerism in circulating myeloid, lymphoid and total

PBCs (figure 2A). Donor chimerism of myelomonocytic cells rose

to asymptote at 3 weeks post-transplant, averaging 84.262.3%

(mean 6 SD) for mice treated with 60 mg/kg BU and 89.763.2%

for mice treated with 80 mg/kg BU (figure 2A).

Lymphoid and total PBC chimerism continued to increase over

the course of the 11-week observation period following BM

transplantation, while levels of myeloid PBC chimerism remained

constant (figure 2A). At 11 weeks post-transplant, total PBC

chimerism averaged 81.163.4% for the 60 mg/kg BU treatment

group and 83.362.6% for the 80 mg/kg BU treatment group,

values that were not statistically different. Analysis of BM also

revealed equivalent levels of donor chimerism for mice treated

with 60 mg/kg BU (75.164.9%) and 80 mg/kg BU (74.564.9%).

These levels of chimerism are similar to those previously reported

in irradiated BM chimeric mice [2,4] and demonstrate that

sustained, high levels of BM chimerism can be achieved with BU

in the absence of irradiation and other agents.

Increased Numbers of BMDCs Accumulate in Diseased
Spinal Cord

After BM transplantation, mSOD mice and age-matched

controls were allowed to progress to advanced stages of disease

at which point spinal cords were harvested. For both 60 mg/kg

and 80 mg/kg BU treatment groups GFP+ cells were seen in both

control and mSOD lumbar spinal cord sections. GFP+ cells were

located throughout the grey and white matter, with large numbers

Figure 2. PBC reconstitution by donor cells and distribution of GFP+ cells in lumbar spinal cord. (A) Donor PBC reconstitution in mice
treated with 60 mg/kg BU and 80 mg/kg BU was assessed weekly for 11 weeks post-transplant using flow cytometry. Levels of PBC chimerism
achieved were similar between 60 mg/kg BU and 80 mg/kg BU treatment groups. Reconstitution of myelomonocytic cells was rapid in comparison to
lymphoid populations, owing to the shorter half-life of circulating myelomonocytic cells and the minimal immunosuppressive effects of BU. Error bars
represent standard deviation. (B) Distribution of GFP+ cells in control and mSOD lumbar spinal cord sections 11–14 weeks after transplantation
following BU treatment or myeloablative irradiation. GFP+ cells accumulated in the grey and white matter of lumbar spinal cord sections, especially in
the surrounding leptomeninges 11–14 weeks after transplantation following BU treatment or irradiation. Significantly greater numbers of BMDCs
accumulated in mSOD lumbar spinal cords compared to age-matched controls using BU (60 or 80 mg/kg) or irradiative myelosuppression (p,0.05).
Scale bar = 500 mm.
doi:10.1371/journal.pone.0060661.g002
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of GFP+ cells observed in the leptomeninges surrounding the

spinal cord (figure 2B). These observations are similar to those

obtained using irradiated BM chimeric mice in which BMDC

contribution to leptomeningeal macrophages is greater than to

parenchymal macrophages/microglia within the spinal cord

(figure 2B) [16,17].

The number of GFP+ cells that accumulated in control mice

averaged 7.763.8 (range 3.861.7 to 11.962.8) cells per lumbar

spinal cord section in 60 mg/kg BU treated control mice, and

12.864.5 (range 8.861.0 to 19.061.7) in mice treated with

80 mg/kg BU. In mSOD mice treated with 60 mg/kg BU, the

mean number of GFP+ cells per lumbar spinal cord section was

46.2618.6 (range 31.761.8 and 73.363.0). In the 80 mg/kg BU

mSOD mouse treatment group, the mean number of GFP+ cells

was 74.3644.5 (range 25.261.6 to 130.9610.6) per lumbar spinal

cord section. Thus, significantly greater numbers of GFP+
BMDCs accumulated in the spinal cords of mSOD mice

compared to age-matched controls at both the 60 mg/kg and

80 mg/kg BU dose (p,0.05). However, while there was a clear

trend for mSOD and control mice treated with 80 mg/kg BU to

have increased numbers of GFP+ cells per lumbar spinal cord

section compared to those treated with 60 mg/kg BU, significant

variability within the groups prevented this difference from

reaching statistical significance.

To compare the accumulation of BMDCs in the spinal cord of

BM chimeric mice created using BU and irradiative myeloabla-

tion, control (n = 3) and age-matched mSOD (n = 3) mice were

subjected to 10 Gy of radiation and transplanted with 5610‘6

GFP+ BM cells. Irradiated BM chimeric mice exhibited ,80%

PBC chimerism at 3 weeks-post transplant, a level of PBC

chimerism comparable to that of mice myelosuppressed using BU.

However, 80% PBC chimerism was obtained in irradiated

chimeras more rapidly (i.e. 3 weeks post-transplant) than in BU

myelosuppressed mice, given the cytotoxic effects of irradiation on

lymphocytes. Spinal cords were collected and analysed for GFP+
cell accumulation in lumbar spinal cord sections once mSOD mice

reached advanced stages of disease. Consistent with previous

results, significantly greater numbers of GFP+ cells were observed

in the mSOD lumbar spinal cord sections (422.66159.1 GFP+
cells per section) than in control spinal cord sections (63.3617.2

GFP+ cells per section; p,0.05) [2,4]. Comparatively, significantly

greater numbers of BDMCs were observed in both the irradiated

control and mSOD lumbar spinal cord compared to the BU

treated groups at both doses studied (p,0.01).

Our results demonstrate that while only minimal numbers of

BMDCs are present in spinal cords of control mice treated with

BU, BMDC accumulation is significantly enhanced in the diseased

spinal cord, indicating there is increased migration and/or BMDC

expansion at sites of neurodegeneration. However, significantly

greater numbers of BDMCs accumulate in the mSOD and control

spinal cord under the conditions of irradiation/BM transplanta-

tion compared to BU-induced myelosuppression/BM transplan-

tation at the BU doses used in this study. As it was observed that

there was a trend towards increasing numbers of BMDCs

engrafted in spinal cord following treatment with 80 mg/kg

compared to 60 mg/kg BU, it is possible that increasing the BU

dose would increase the levels of BMDCs observed in the spinal

cord. However, it may also increase the cytotoxicity of the

preconditioning treatment.

Analysis of BMDC Morphology and Immunophenotype
In an attempt to characterize BMDCs within the spinal cord of

BU treated mice, BMDC morphology was classified as being

round, rod, amoeboid, stellate or elongated in shape, as described

in previous work (table 1) [7,4]. Differences in the frequency with

which defined cell morphologies of BMDCs are observed likely

reflect the differing state of the spinal cord microenvironment

induced by disease. Elongated BMDCs were often found in a

perivascular location and exhibited low levels of Iba1 expression,

indicating these BMDCs acquired the phenotype of perivascular

macrophages (figure 3A) [7]. In mSOD mice, advanced disease

stages are associated with widespread microgliosis within the spinal

cord and increased expression of inflammatory mediators that

likely influence the differentiation of BMDCs that accumulate

within the spinal cord [18]. Indeed, we observed a greater

proportion of BMDCs in mSOD mice acquiring a stellate

morphology compared to control mice, although the absolute

numbers of these cells are low. Similarly, differences in the

cytokine milieu within the spinal cord evoked by irradiation and

BU treatment could also affect the differentiation of BMDCs that

accumulate in the spinal cord. Specifically, cells with an amoeboid

morphology constituted the greatest proportion of BMDCs

observed in both control and mSOD irradiated BM chimeric

mice. This observation is in agreement with previous reports

indicating irradiation-induced changes in the cytokine milieu

within brain parenchyma culminates in alterations in the

morphology of microglia [29].

Immunolabelling of lumbar spinal cords sections with antibody

to the mature microglia/macrophage marker Iba1 revealed

widespread microgliosis in the lumbar spinal cord of mSOD

mice, as indicated by increased numbers of Iba1+ cells and Iba1

labelling intensity compared to control mice (figure 3B). Microglia

in mSOD spinal cords exhibited an activated morphology

characterized by hypertrophied cell bodies and retracted, thick-

ened processes, while in control spinal cords their morphology was

consistent with that described for resting microglia, as indicated by

small cell bodies and thin, highly ramified processes (figure 3B)

[19]. The proportion of GFP+ donor cells that expressed Iba1 was

quantified as a function of cell morphology in control and mSOD

mice; these values were then averaged over mSOD and control

groups within the 60 mg/kg and 80 mg/kg BU treatment groups.

Averaged across all morphological classes, the proportion of

BMDCs that expressed Iba1 was 58.4623.5% and 75.7623.8%

(mean 6 s.d.) in control mice treated with 60 and 80 mg/kg BU,

respectively. These numbers likely under represent Iba1+ BMDCs

as immunohistochemical analyses are often limited by a lack of

sensitivity in labelling the low-level antigen expression that would

be expected in healthy spinal cord. Indeed, in mSOD mice the

vast majority of GFP+ cells were clearly positive for Iba1 treated

with BU (80.564.8% and 90.364.9%, in mice treated with

60 mg/kg and 80 mg/kg BU, respectively). These results indicate

that the large majority of BMDCs acquire a macrophage/

microglial phenotype within the spinal cord.

Iba1 expression varied with GFP+ cell morphology, with 100%

of elongated, stellate and amoeboid cells in mSOD spinal cord

from both BU treatment groups exhibiting Iba1-positive immu-

nolabelling. The stellate-morphology and Iba1+ immunolabelling

of GFP+ cells together identify these cells as BM-derived spinal

cord parenchymal macrophages (figure 3C). Rod-shaped cells

were found in association with blood vessels and exhibited variable

immunolabelling with antibodies to Iba1, CD11b and Gr-1. Some

of these Iba1-negative GFP+ cells were similar immunophenotyp-

ically and morphologically to cells described by Audoy-Remus and

colleagues [20], which were identified as monocytes or granulo-

cytes that reside within the lumen of blood vessels and function to

patrol the CNS vasculature. Many round-shaped GFP+ cells in

control and mSOD mice morphologically resembled T-cells, with

a thin layer of cytoplasm surrounding a large nucleus; this was

Bone Marrow Cells in CNS following Chemotherapy
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Table 1. Morphological proportions of BMDCs in control and mSOD lumbar spinal cord1.

Average
cells/section round rod amoeboid stellate elongated

GFP cells GFP cells GFP cells GFP cells GFP cells

60 mg/kg BU control
(n = 4)

7.763.9 10.166.3% 65.568.3% 1.860.4% 2.063.2% 20.6614.2%

60 mg/kg BU mSOD
(n = 4)

46.2618.6 10.968.0% 29.462.8% 2.560.8% 18.069.0% 39.365.5%

80 mg/kg BU control
(n = 4)

12.864.5 4.963.4% 53.164.4% 1.760.5% 3.665.0% 36.8610.8%

80 mg/kg BU mSOD
(n = 4)

74.3644.5 4.862.3% 29.864.3% 2.061.6% 22.0610.3% 41.566.3%

Irradiation control
(n = 3)

63.3617.2 23.461.7 17.361.1% 42.867.0% 0.260.0% 16.361.2%

Irradiation mSOD
(n = 3)

422.66159.1 16.864.5 15.264.2% 44.2632.3% 3.460.2% 20.368.0%

1GFP+ BMDCs in lumbar spinal cord sections collected from mSOD and age-matched control mice at advanced stages of disease quantified and classified by
morphology; values are reported as mean 6 standard deviation.
doi:10.1371/journal.pone.0060661.t001

Figure 3. BMDCs in the spinal cord acquire the anatomical location and immunophenotype of various CNS-associated
macrophages. (A) Upper Panel: GFP+ cells with an elongated morphology were located near blood vessels within mSOD and control lumbar
spinal cord sections. Lower Panel: 3D-rendered confocal image rotated backwards at 70 degrees indicating the elongated GFP+ cell is located on the
abluminal side of the blood vessel. Scale bar = 50 mm. (B) Control and mSOD lumbar spinal cord sections immunolabelled with antibody to Iba1.
Increased numbers of microglia were observed in the mSOD spinal cord and exhibited an active morphology characterized by hypertrophied cell
bodies and retracted, thickened cellular processes. Scale bar = 10 mm (C) GFP+ cell possessing stellate morphology immunolabelled with antibody to
Iba1 identifying these cells as BM-derived parenchymal macrophages. Scale bar = 10 mm.
doi:10.1371/journal.pone.0060661.g003
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confirmed by immunolabelling for the pan-T-cell antigen CD3

which positively labelled the vast majority of round GFP+ cells.

As BU is known to have neurotoxic effects in patients and

animals at high-doses [30] and the presence of CD8+ T-cells

within the CNS is associated with neuronal injury or neurological

disease [22], we sought to determine whether the doses of BU used

in this study altered T-cell number in naı̈ve and mSOD spinal

cord. Control mice treated with 60 mg/kg BU and 80 mg/kg BU

exhibited averages of 4.963.8 and 3.761.9 T-cells per lumbar

section, respectively. Both values were not significantly different

from the average number of T-cells in similarly aged, untreated

control mice (n = 3), which averaged 4.761.2 cells per lumbar

spinal cord section. The average number of T-cells per mSOD

lumbar spinal cord section was 15.865.9 cells/section for mice

treated with 60 mg/kg BU and 17.167.8 cells/section for mice

treated with 80 mg/kg BU. These values were not significantly

different from those observed in untreated advanced mSOD mice

(n = 3), which were found to have an average 24.466.1 T-cells per

lumbar spinal cord section.

T-cells within lumbar spinal cord sections were further classified

by double-immunolabelling with antibodies to CD3 and CD8, a

marker for cytotoxic T-cells. In mSOD treated with 60 mg/kg or

80 mg/kg BU, ,30% and 40% of T-cells were CD8+, identifying

these cells as cytotoxic T-cells. These values are in line with

previous reports, which demonstrated that at advanced stages of

disease, cytotoxic T-cells accumulate in the spinal cord of mSOD

mice [21,3]. The majority (.80%) of T-cells within lumbar spinal

cord sections of control mice treated with 60 or 80 mg/kg BU

were CD8 negative. This observation is in agreement with

previous reports indicating that CD8+ T-cells are rarely observed

in the healthy CNS [22]. BU readily crosses the BBB and in

humans, side effects include seizures and altered mental develop-

ment in children [23]. The absence of CD8+ T-cells within the

spinal cord of control mice treated with BU suggests that treatment

with BU at the doses employed in this study does not induce

significant toxicity or neuroinflammatory responses.

These results demonstrate that BMDCs accumulating in the

spinal cord of control and mSOD mice following Bu-induced

myeloablation and BM transplantation primarily differentiate into

CNS-associated (i.e. perivascular, meningeal) macrophages, with a

small proportion taking up residence within the parenchyma

proper. Furthermore, at doses of 60 and 80 mg/kg, BU does not

evoke a substantial neuroinflammatory response in naı̈ve animals,

as indicated by the resting morphology of microglia and a T-cell

repertoire comparable to that of untreated mice.

Discussion

Previous studies employing BM chimeric mice created by lethal

irradiation and BM transplantation have demonstrated that under

these conditions, BMDCs accumulate in the CNS [16,7]. In BM

chimeric models of neurodegenerative disease including the

mSOD mouse model of ALS, significantly greater numbers of

BMDCs accumulate in the diseased CNS compared to that of

healthy controls, suggesting BMDCs migrate to or expand at sites

of neurodegeneration and have the potential to function as

treatment vehicles for neurodegenerative disorders [2,4]. We have

demonstrated that levels of BM chimerism similar to those

obtained with irradiation can be achieved using the clinically

established chemotherapeutic agent BU. Furthermore, while

BMDCs accumulate in the spinal cord of mSOD mice treated

with BU, only very limited numbers were observed in the spinal

cords of similarly treated control mice, demonstrating that this

treatment permits only minimal BMDC accumulation in the

spinal cord under steady-state conditions.

Overall, our results are in agreement with those recently

reported by Capatondo and colleagues (2012) who also found that

myeloablation using BU alone prior to BM transplantation led to

entry and/or expansion of donor-derived BMDCs in the CNS of

the recipient and support the notion that BU effectively conditions

the CNS for BMDC engraftment [27]. Our work confirms the

potential utility of BU as a myeloablative agent. While the

accumulation of BMDCs in the CNS was greater following

irradiative versus BU-induced myeloablation, the fact that the BU

treatment was better tolerated than irradiation may have clinical

application.

Creation of BM Chimeras
Although the myeloablative dose of BU has been reported to be

135–150 mg/kg [12,13], we found that BU at doses of 60 or

80 mg/kg produced levels of PBC chimerism similar to those

previously obtained using irradiative myeloablation (,80%) [2,4].

However, the time required for achieving high levels of PBC

chimerism in BU-treated mice was longer than that observed in

irradiated mice. The reason for this delay may be that compared

to irradiation, BU is only mildly immunosuppressive and T-

lymphocyte populations in the treated recipient are largely spared

[11]. Given that lymphoid cells constitute a large proportion of the

total number of circulating leukocytes (.80%) [15] and have a

long half-life in the circulation, overall PBC chimerism in BU

treated mice at 3 weeks post-transplant was less than that

previously observed in irradiated chimeras. However, in agree-

ment with previous studies, levels of chimerism in circulating

myelomonocytic cells, which due to their relatively short half-life

more immediately reflect hematopoietic stem cell activity in BM,

demonstrated rapid reconstitution with donor cells within the first

3 weeks of BM transplantation [13]. Eventually, total donor-

derived cells in BU treated recipients increased to levels similar to

those seen in irradiated BM chimeras (,80% of PBCs) and

persisted over the 11 weeks following BM transplant until mSOD

mice reached advanced stages of disease.

BMDCs Accumulate in the Spinal Cords of Control and
mSOD BM Chimeric Mice

All animals which developed peripheral blood chimerism in our

experiments also exhibited BMDCs within the spinal cord. We did

not specifically assess BMDC entry into the brainstem or brain,

but qualitatively our data are similar to the recently reported

results of Capotondo et al. (2012) showing BMDC entry into brain

following BU myeloablation and BM transplantation [27]. A

direct comparison between the numbers of BMDCs found in the

spinal cords of BU treated animals here, and those observed by

Capotondo et al. cannot be made, as levels BMDCs that

accumulated in the brain in their study were assessed using flow

cytometry, which does not allow to exclude with certainty cells

present in the meninges, and control and diseased brains were

pooled [27]. A recent study by Lampron and colleagues employing

myeloablation induced by BU with CY prior to BM transplan-

tation reported that BMDCs did not accumulate in the brainstem,

either with or without hypoglossal nerve axotomy [28]. The reason

BMDC cells were not observed in the CNS in that study is unclear

[28].

While only limited numbers of BMDCs were observed in the

spinal cords of healthy mice treated with 60 mg/kg or 80 mg/kg

BU, significantly greater numbers of BDMCs accumulated in the

spinal cord of mSOD mice in both treatment groups. At disease

end-stage, GFP+ cell numbers were found to be 5 to-10 fold higher
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than in age-matched controls, consistent with previous results [2].

Similar results were obtained in irradiated/transplanted BM

chimeric mSOD mice, although the absolute numbers of BDMCs

that accumulated in the spinal cords of mice treated with BU was

lower than that observed in irradiated mSOD mice. This

observation, together with the observation that long term

peripheral blood chimersm was equivalent with both protocols,

suggests that while the myeloablation provided by BU in bone

marrow is comparable with that elicited by irradiation, its effects

on the CNS are milder but still sufficient to allow BMDC

accumulation in the diseased spinal cord.

BMDC Morphology and Immunophenotype
Categorization of GFP+ cells by their morphology provides

insight into the identity and function of these cells. The stellate

morphology is characteristic of parenchymal macrophages/

microglia, while elongated morphology is associated with perivas-

cular macrophages that reside between the basal lamina of blood

vessels and the glia limitans [7,25]. An amoeboid morphology is

seen with activated, phagocytic microglia [19], as well as with

perivascular macrophages [7]. Rod-shaped cells have been

described as resident monocytes or granulocytes that reside within

the lumen of blood vessels where they function to patrol the

vasculature [20]. The majority of round GFP+ cells were identified

as T-cells by immunolabelling with antibody to CD3.

The number of T-cells observed in the lumbar spinal cords of

control and mSOD mice in both the 60 and 80 mg/kg BU

treatment groups were not significantly different from those

observed in untreated mice. In agreement with previous reports,

immunolabeling with CD3 and CD8 antibodies indicated that

cytotoxic T-cells accumulate in the spinal cords of mSOD mice at

advanced stages of disease [21,3]. Only rare CD8+ T-cells were

observed control lumbar spinal cord sections; this was expected as

these cells are infrequently observed in the healthy CNS [22].

A greater proportion of GFP+ cells in mSOD spinal cord

expressed Iba1 compared to control spinal cord in both the

60 mg/kg BU and 80 mg/kg BU treatment groups. This disparity

between groups may be due to differentiation of BMDCs into

macrophages or the expansion of donor-derived myelomonocytic

cells in response to disease-induced environmental stimuli in the

mSOD spinal cord. Notably, in control and mSOD spinal cords,

all GFP+ cells having a stellate morphology also expressed Iba1

indicating that these cells differentiated into parenchymal microg-

lia/macrophages.

These results indicate that treatment with BU enables the

contribution of BMDCs to the parenchymal macrophage popu-

lations within the spinal cord under neurodegenerative conditions.

Conclusion
The results of this study show that preconditioning with BU

permits the engraftment of BMDCs in both the naı̈ve and diseased

spinal cord. Given that BDMC accumulation is significantly

increased in the spinal cords of mSOD mice compared to controls,

BU-mediated myeloablation could be useful to probe the clinical

potential of BMDCs as treatment vehicles in neurological disease.

Methods

Ethics Statement
Mice used in this study were provided food and water ad libitum

and all efforts were made to minimize suffering. All protocols

related to the use of animals in this study were reviewed and

approved by the University Animal Care Committee of Simon

Fraser University (UACC; permit numbers 1036K-12 and 923K-

09) and were in compliance with the Canadian Council on Animal

Care, the NIH Guide for the Care and Use of Laboratory

Animals, and the EEC Council Directive.

Animals
Transgenic C57/B6 mice that over-express the human SOD1

(G93A) missense mutation (mSOD) were bred from progenitor

stock obtained from Jackson Laboratories (Bar Harbour, ME).

Mice were maintained as heterozygotes by breeding mSOD males

with non-transgenic females and progeny were genotyped for

mSOD transgene using a protocol established by Gurney and

colleagues [26]. The mSOD mice develop progressive motoneu-

ron degeneration, culminating in muscle atrophy and eventually

hind limb paralysis [26]. Age and sex-matched, non-transgenic

mice were used as controls and sacrificed at the same time point as

mSOD animals.

Mice that ubiquitously express green fluorescent protein (GFP)

under the control of the B-actin promoter (C57BL/6; GFP/

CD45.2) were obtained from Dr. I. Weissmann and were bred and

maintained as heterozygotes at the Animal Research Facility

(ARC) at Simon Fraser University (SFU). GFP-expressing mice

aged 8 weeks to 6 months served as BM donors and BM was

harvested by flushing femurs and tibiae with sterile PBS using a

syringe; BM cells were quantified using a haemocytometer. Male

BM recipients received only male BM while female recipients

received only female BM to avoid any graft-versus-host effects.

Irradiative Myeloablation
Six week-old mSOD (n = 3) and control (n = 3) mice were

subjected to 10 Gy of ionizing radiation and transplanted with

5610‘6 BM cells harvested from GFP-expressing mice. Blood was

analysed at 3 weeks post-transplant to determine levels of

peripheral blood cell chimerism.

Nonirradiative Myeloablation
Control and presymptomatic mSOD mice aged 7–9 weeks were

used for the following experiments. The chemotherapeutic drug

BU for injection (Busulfex, Otsuka Pharmaceuticals, Japan) was

diluted from the pharmaceutical stock solution to a concentration

of 3 mg/ml using sterile PBS. For the short-term PBC chimerism

and spinal cord BMDC accumulation experiments, control mice

were given BU at doses of 60 (n = 4), 80 (n = 4), or 100 mg/kg

(n = 3) BU. Twenty-four hours following the final dose of BU, mice

received intravenous injections of 156106 GFP+ whole BM cells.

Weekly blood samples were collected beginning at 1 week-post

transplant. Mice were sacrificed and spinal cords harvested 4

weeks post-BM transplant for analysis of BMDC accumulation.

For the long-term analysis of PBC chimerism and BMDC

accumulation in the spinal cord, mice were given BU at either 60

(n = 4 mSOD, 4 control) or 80 mg/kg (n = 4 mSOD, 4 control) IP

in fractionated doses of 20 mg/kg per day. Twenty-four hours

after the final BU treatment, mice received intravenous (IV)

injections of 156106 GFP+ whole BM cells. mSOD and age-

matched control mice were sacrificed when mSOD mice reached

advanced disease stages, as defined by mice exhibiting a severe

rolling gait, dragging hind limbs, or being unable to right

themselves’ from a laterally recumbent position within 10 seconds.

Weekly blood samples were collected beginning at 1 week post-

transplant until 11 weeks post-transplant, a time point at which

mSOD mice were reaching advantaged stages of disease and were

sacrificed. Blood was immunolabeled with lymphoid (CD3 for T-

cells, B220 for B-cells; conjugated to PeCy7 fluorophore) and

myeloid (Gr1 for granulocytes, CD11b for monocytes; conjugated

to APC fluorophore) lineage markers to analyze PBC chimerism.
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Analyses were performed using a BD Aria FACS machine

(Becton-Dickenson, NJ, USA) to determine the proportion of

donor-derived PBCs, as described previously [2].

An untreated-control group of mSOD mice (n = 3) and age-

matched controls (n = 3) were sacrificed when mSOD mice

reached advanced stages of disease. The number and types of

T-cells within lumbar spinal cord sections were assessed and

compared to mSOD and control mice that had been treated with

60 mg/kg BU or 80 mg/kg BU to determine if treatment with BU

elicited/modified the number of T-cells seen in the CNS in

control/mSOD mice.

Tissue Processing
Mice were euthanized using CO2 and immediately transcar-

dially perfused with 30 mL of 16PBS followed by 30 mL of 4%

paraformaldehyde (w/v; PFA). For BM chimeric mice a femur was

collected following perfusion with PBS in order to assess levels of

BM reconstitution by donor cells using flow cytometry. The spinal

cord was dissected out, post-fixed in 4% PFA overnight at 4uC,

and then immersed in 20% sucrose (w/v) in PBS at 4uC overnight

for cryoprotection. After cryoprotection, tissue was embedded in

TissueTek O.C.T. (Sakura Finetek, USA) and stored at 280uC
until being cryosectioned at 30 mm as previously described [2].

Immunohistochemistry
Free-floating spinal cord sections underwent immunohisto-

chemical analysis as previously described [4]. To identify

macrophages, antibody to the ionized Ca2+ -binding adapter

(Iba1; Wako, VA, USA) was used; vascular endothelium was

labelled using antibody to CD31 (PECAM1; BD Pharmingen, San

Diengo, CA). Monocytes were identified using antibody to CD11b

(Serotec, Raleigh, NC), granulocytes using antibody to Gr-1,

activated phagocytes using antibody to CD68, and antibodies to

CD3 and CD8 (BD Pharmingen, San Diego, CA) were used to

identify and classify T-lymphocytes. Secondary antibodies used

were either anti-rabbit Cy3-conjugated IgG (Iba1 visualization;

Jackson Immunoresearch, West Grove, PA) or anti-rat Alexa568-

conjugated IgG (CD3, CD8, CD31, Gr-1, CD68 visualization;

Life Technologies, Burlington, ON). Immunolabeled sections were

slide mounted and cover-slipped using Vectashield mounting

medium (Vector Labs, Burlingame, CA).

Analysis
Spinal cord sections were analyzed using a Leica epifluores-

cence microscope and a Nikon laser scanning confocol micro-

scope. GFP+ cells from each mSOD and control mouse were

quantified over 15 lumbar spinal cord sections separated by at

least 150 mm and were classified according to morphology as

previously described [4]. Briefly, GFP+ cells that were round in

shape and ,9 mm in diameter were classified as ‘‘round’’ while

round cells with diameter .9 mm were classified as ‘‘amoeboid’’.

Cells were classified as ‘‘rod-shaped’’ if they were oblong, had

rounded ends and a length of ,20 mm. GFP+ cells were classified

as elongated if their length exceeded 20 mm and did not have

smooth/rounded ends. Stellate cells were identified by their small

cell body and the presence of multiple ramified processes. The

phenotypes of GFP+ BMDCs were analyzed using immunohisto-

chemistry, and the numbers of Iba1+ and CD3+ BMDCs were

quantified over 5 lumbar spinal cord sections from each

experimental animal; all results are reported as mean 6 standard

deviation. For irradiative myeloablation, 5 lumbar spinal cord

sections from each mSOD and control mouse were analysed and

the number of GFP+ cells quantified by morphology.

The association of GFP+ cells with CD31 labelled blood vessels

in spinal cord was assessed using a Nikon confocal microscope.

Briefly, z-stack images of areas of interest in spinal cord sections

were acquired to create a 3D rendering of the image. The volume

rendering was then rotated about the x,y.z axes to visualize the

assocaition of elongated GFP+ cells with blood vessels.

Quantitative assessment of GFP+ cells within the spinal cords of

mSOD and control mice was statistically evaluated using SPSS

software using an ANOVA; significance was taken at p,0.05.
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