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Abstract

Aedes aegypti is the principal vector of Dengue viruses worldwide. We identified field collected insects with differential
susceptibility to Dengue-2 virus (DENv-2) and used isofemale selection to establish susceptible and refractory strains based
on midgut infection barriers. Previous experiments had identified higher expression of apoptosis-related genes in the
refractory strain. To identify potential molecular mechanisms associated with DENv susceptibility, we evaluated the
differential expression of Caspase-16, Aedronc, Aedredd, Inhibitor of apoptosis (AeIAP1) and one member of the RNAi
pathway, Argonaute-2 in the midguts and fat body tissues of the selected strains at specific times post blood feeding or
infection with DENv-2. In the refractory strain there was significantly increased expression of caspases in midgut and
fatbody tissues in the presence of DENv-2, compared to exposure to blood alone, and significantly higher caspase
expression in the refractory strain compared with the susceptible strain at timepoints when DENv was establishing in these
tissues. We used RNAi to knockdown gene expression; knockdown of AeIAP1 was lethal to the insects. In the refractory
strain, knockdown of the pro-apoptotic gene Aedronc increased the susceptibility of refractory insects to DENv-2 from 53%
to 78% suggesting a contributing role of this gene in the innate immune response of the refractory strain.
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Introduction

Dengue viruses (DENv), transmitted to humans by infected

mosquitoes, cause an estimated 50–100 million cases of Dengue

fever (DF), ,500,000 cases of Dengue Hemorrhagic Fever, and

.20,000 deaths per year [1,2]. DENv transmission has expanded

to multiple tropical and subtropical countries and may reach

temperate zones due to climate change [3]. There is no available

vaccine or effective treatment for DENv. Given the limited success

achieved through classical vector control [4], many new strategies

to reduce transmission have been proposed including the use of

genetically modified vectors [5,6,7] or the use of natural symbionts

such as Wolbachia [8,9,10]. The development of such strategies

requires extensive knowledge of the molecular interactions

between virus and vector and how these determine vector

competence (VC), the intrinsic ability of an arthropod to transmit

a pathogen.

A major question is how DENv avoids the innate immune

response of the insect vector. Insects recognize unique pathogen-

associated molecular patterns (PAMPs) [11], using pattern

recognition receptors (PRRs) [12], and activate response pathways

such as the IMD and Toll pathways [13] which lead to elimination

of parasites through phagocytosis, proteolytic cascades, and

synthesis of potent antimicrobial peptides (AMPs) [14,15]. Most

studies have looked at classical responses to parasites that move

through the hemocoel to the mouthparts for transmission [16,17].

More recent studies have addressed the development of intracel-

lular parasites such as DENv, and other arboviruses, in mosquito

vectors, and potential roles of specific molecules and pathways that

regulate or determine these interactions [17,18,19,20,21,22]

There is growing evidence that these pathways are not distinct.

Components of different immune pathways may function syner-

gistically and may interact with components of apoptosis and other

metabolic pathways to determine VC [18,23,24,25]. The VC of

Ae. aegypti has been studied extensively through the selection of

strains with different susceptibilities [18,26,27,28,29,30] but no

specific genes have been identified as determinants of DENv

susceptibility and it is unknown if all geographic strains of Ae.
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aegypti use similar mechanisms and genes against invasion by

DENv [18,30]. The VC of Ae. aegypti to a specific virus may be

determined by the presence of virus in the salivary glands

(Susceptible). Refractory mosquitoes may have infection barriers

in the salivary glands or in the midgut where the virus may not be

able to enter midgut cells (midgut infection barrier: MIB) or to

escape from infected midgut cells (midgut escape barrier: MEB)

[28]. Interactions between DENv and Ae. aegypti also may be

affected by specific genotype-by-genotype interactions [31] and by

genetic and environmental interactions that combine to determine

VC [32].

Previously we observed a high variation in the VC of

mosquitoes caught in various regions of Cali, Colombia [33].

We selected field strains and their progeny for differential

susceptibility to DENv-2 using isofemale selection [34]. We used

suppressive subtractive hybridization to compare differential gene

expression in the midguts of susceptible and refractory strains 48 h

after ingesting a bloodmeal containing DENv-2 and compared

these data with the responses of a DENv-susceptible laboratory

colony [17]. We identified differential expression of genes

normally associated with apoptosis [17].

Apoptosis, among other things, is a directed response to

eliminate intracellular pathogens, providing for the death and

removal of both the infected cell and pathogen in both vertebrate

and invertebrate hosts. Apoptosis comprises a two phase process: a

commitment to cell death induced by initiator caspases, followed

by an execution phase mediated by effector caspases [35,36] and is

tightly controlled through apoptotic regulators and inhibitors of

apoptosis (IAPs) that regulate and promote cell survival or death

[36,37,38]. Several papers have described the role of apoptosis as a

defence against viruses and other pathogens [39,40], apoptosis-like

activity in infected mosquitoes [41,42,43] or the identification of

apoptosis-related genes in microarray studies [18,30]. We charac-

terized some of the molecules involved in the Ae. aegypti apoptotic

pathway [23,44,45] but the role of apoptosis as an anti-Dengue

immune response remains unclear. Some of the molecules studied

in this manuscript and their putative pathways and interactions are

indicated in Fig. 1.

We report here the differential expression of selected genes in

field-derived strains of Ae. aegypti from Colombia that are

susceptible (Cali-S) or refractory through a midgut infection

barrier (Cali-MIB) to infection with DENv-2. Upon ingesting

DENv-2, Cali-MIB expresses significantly higher levels of pro-

apoptotic genes (Aedronc, Aedredd, Caspase-16) than Cali-S

whereas both strains express similar levels of apoptosis inhibitors

(AeIAP1).

Materials and Methods

Ethics Statement
All insects were exposed to Dengue viruses through an artificial

membrane feeder. Insect colonies were fed on guinea pigs at SFU

under Animal Care protocol 1000B-02 approved by the SFU

Animal Care Committee following the guidelines of the Canadian

Council of Animal Care, or rabbits at CIDEIM under protocols

approved by the CIDEIM institutional review committee for

research in animals (CICUAL) under Federal Wide Assurance

number A5643-01, of the US Department of Health and Human

Services.

Mosquitoes and strain selection
The field collection of larvae, exposure to DENv-2, phenotype

determination and strain selection, to establish Cali-S and Cali-

MIB were described previously [17,34]. Briefly, laboratory

colonies were established from field collected larvae and pupae

from larval habitats in 5 locations at least 10 km apart in the city of

Cali, Colombia. The mosquitoes were maintained under standard

laboratory conditions: 2662uC, 70% relative humidity, and a

12:12 hour light:dark cycle. Larvae were maintained in plastic

containers at a density of 300 larvae/2L of water and were fed

daily with 2 mL of a stock solution of beef liver (DIFCOTM Liver -

8 g/400 mL). Adults were fed with a 10% sugar solution.

Bloodfeeding was done through an artificial feeder using a pig

intestine membrane and defibrinated rabbit’s blood. The blood

was tested for the presence of dengue virus after every feeding

process. Eggs from females showing the S or MIB phenotype were

combined. Selection by exposure to DENv-2 was done every

second generation [34].

Virus Strain
Dengue-2 virus New Guinea C strain, freshly grown in Aedes

albopictus C6/36 HT cells, was used in oral challenges. Infected

cells were incubated for 14 days at 32uC in L15 medium

supplemented with 2% heat-inactivated fetal bovine serum, 1%

penicillin/streptomycin, and 1% L-glutamine [46]. Virus and cells

were harvested and collected in a 15 mL conical centrifuge tube.

Aliquots of the infected cell suspension and the mixture of blood

and virus before and after the infection process were titred as

described [27]. Titers in the cell suspensions ranged from 108 to

108.5 TCID50/mL in all oral challenges. The viral suspension used

to feed mosquitoes also was microinjected intrathoracically into

mosquitoes to serve as positive controls for indirect immunoflu-

orescence (IFI) studies.

Mosquito infection and virus titration
Five to seven day old female Cali-S and Cali-MIB Ae. aegypti,

that had been starved for 12 h, were exposed for 30 minutes to an

infectious bloodmeal consisting of a 1:1 mixture [47] of

defibrinated rabbit blood and the dengue virus suspension via a

water-jacketed membrane feeder using a pig intestine. Fully

engorged females were separated and housed in groups of 20 in

cartons covered in mesh and with access to a 10% sugar solution

ad libitum. Infections were done in BSL-2+ facilities. The presence

and concentration of virus to which the females were exposed was

determined in uninfected rabbit blood, virus suspension, and the

mixture of blood and virus at the beginning and end of the

exposure period as described [27]. IFI was used to determine the

percentage of infections in the head and midgut of each female as

described [48]. The barriers to virus dissemination were deter-

mined 13 d post infection as described [27,28].

Tissue dissection and RNA isolation
At 0, 8, 24, 36, 48, 72 and 120 h post ingestion of blood or

blood+DENv-2, midguts and carcasses (fatbody) from individual

mosquitoes from the Cali-S (F16) and Cali-MIB (F13) strains were

dissected on a chilled table and carefully rinsed in cold DEPC-PBS

to remove traces of the blood meal. Each midgut was stored

separately in a 1.5 ml tube with 100 mL of RLT Lysis Buffer

(Qiagen, Valencia, CA) and its corresponding carcass was stored

individually in RNAlater (Ambion, Austin, TX) at 220uC. Total

RNA extraction from individual midguts and carcases was

performed using RNeasy Mini Kit (Qiagen, Valencia, CA). Total

RNA was quantified using a NanoDrop Spectrophotometer ND-

1000 (NanoDrop, Wilmington, DE).

Expression of Apoptosis Genes in Aedes aegypti
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cDNA synthesis and detection of infection with Dengue-
2 virus in tissues

RNA (90 ng) was reverse transcribed in a 20 mL reaction

mixture containing 16 first strand buffer (50 mM Tris-HCl

(pH 8.3), 75 mM KCl, 3 mM MgCl2), 0.005 M DTT, 0.5 mM of

dNTPs mix, 0.5 pmol/mL of primer D2 (59- TTGCACCAA-

CAGTCAATGTCTTCAGGTTC-39) and 0.625 units of Super-

script II Reverse Transcriptase (Life Technologies, Grand Island,

NY). Reverse transcription was conducted at 42uC for 60 min and

95uC for 5 min. A nested PCR protocol, modified after Lanciotti

et al [49], was used to detect the virus in individual midguts [17] in

50 ml PCR reactions containing 16 PCR buffer (50 mM KCl,

10 mM Tris-HCl (pH 9.0), 1.5 mM MgCl2, 250 mM of each

dNTP, 0.5 pmol/mL of primers D1 (59- TCAATATGCT-

GAAACGCGCGAGAAACCG-39) and D2, and 0.05 U/mL of

Taq DNA polymerase (Life Technologies, Grand Island, NY).

PCR was performed with the following parameters: 95uC for

1 min; 30 cycles of 94uC for 45 s, 58uC for 45 s, and 72uC for

1 min; and a final extension at 72uC for 7 min. A second-round

PCR was run with a 1:100 dilution from the first PCR reaction.

PCR was performed under the same conditions used for the

primary PCR with the following modifications: primer D2 was

replaced with the Dengue-2 virus-specific primer TS2 (59-

CGCCACAAGGGCCATGAACAG-39) and 35 amplification

cycles were used. PCR products were resolved by 2% agarose

gel electrophoresis, stained with ethidium bromide and visualized

under UV light.

Pool generation
The detection of DENv in the section above allowed us to

determine the phenotype of individual females. Due to the

presence of DENv in the blood bolus within the midgut we could

only determine the refractory or susceptible phenotype for time

points $36 h. RNA from females with the same phenotype was

pooled by timepoint. Biological samples of 10 midguts or 5

carcases from each strain and time point were generated.

Real time quantitative PCR assays
Based on our preliminary and published [17] data, and other

recent studies that described the potential role of key immune- and

apoptosis-related molecules in Ae. aegypti-DENv interactions

[20,50] we selected five candidate genes for evaluation in the

midguts and carcasses of Cali-S and Cali-MIB strains of Ae. aegypti.

These included Argonaute-2, an important component of the

RNAi process proposed to reduce or modulate arbovirus

replication [51,52,53]; Aedronc, an initiator caspase [45];

Aedredd, an initiator caspase [44]; Caspase-16, an effector caspase

[20]; and AeIAP1, an inhibitor of apoptosis [17]. Accession

numbers for these genes are listed at the end of the manuscript.

For cDNA synthesis, 100 ng of total RNA/time point were

reverse transcribed in a 20 mL reaction mixture containing 56first

Figure 1. Schematic of cell death and immune signaling pathways in Aedes aegypti. Panel A. In insects, the primary apoptotic caspase is
AeDronc, a caspase-9 homologue with an N-terminal CARD domain for interactions with the caspase adaptor molecule AeARK. AeDronc activation is
primarily regulated by the IAP antagonist proteins, Michelob_X and IMP. Together, the IAP antagonists promote cell death by binding to the Inhibitor
of Apoptosis Protein, AeIAP1. Once activated, AeDronc will cleave and activate the effector caspase caspase-16. Panel B. AeDredd is a death domain
containing caspase that contains two death-inducing domains that interact with the caspase adaptor protein, AeFADD (Aedes Fas Associated Death
Domain containing protein). Both Drosophila Dredd and AeDredd were isolated initially as potential inducers of apoptosis. Although apoptotic roles
for Dredd have not been ruled out, data suggests that the primary role of Dredd is immune-related.
doi:10.1371/journal.pone.0061187.g001
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strand buffer (50 mM Tris-HCl (pH 8.3), 0.1 M DTT, 10 mM of

each dNTP 50 ng of Oligo(dT) primer (59-CGGGCAGT-

GAGCGCAACGTTTTTTTTTTTTTT-39) and 200 units of

Superscript II Reverse Transcriptase (Life Technologies, Grand

Island, NY). Reverse transcription was conducted at 42uC for

50 min and 70uC for 15 min. The resulting cDNA was used in the

subsequent qPCR reactions. The primers used in all qPCR

reactions are shown in Table S1. qPCR conditions used were:

95uC: 2 min, 40 cycles of 95uC: 10 s, 60uC: 15 s, 72uC: 20 s in

25 mL reactions using PerfeCTa SYBR Green Super-Mix (Quanta

BioSciences, Gaithesburg, MD) in a Rotor-Gene 3000 (Corbett

Research, Sydney, Australia). Gene expression profiles of both

refractory and susceptible strains were performed for each gene of

interest and normalized to a housekeeping gene, ß-actin.

qPCR Analysis
Real-time quantitative PCR results were analyzed using

described methodologies [54,55]. We normalized expression levels

using an internal control (ß-actin) to generate DCt values. We used

the 22DDCt method using the untreated sample (Time 0) as the

second calibrator to measure fold changes. We compared gene

expression within each strain exposed to blood+DENv-2 or blood

alone using 22DCt
D2virus/22DCt

Blood (Figure 2); and between strains

(Cali-MIB vs Cali-S) after exposure to blood or blood+DENv-2

using 22DCt
Cali-MIB/22DCt

Cali-S (Figure 3). The results are

presented as the means and standard deviations of two-three

independently generated cDNAs assayed at least twice and where

each sample was run in triplicate.

Statistical analysis was performed using multiple linear regres-

sion with the response variable being DCt (Ct (sample) - Ct

calibrator (ß-actin)) with the independent factors being time,

treatment (Blood vs Blood+DENv-2), and strain (Cali-S vs Cali-

MIB). Coefficients comparing DCt values estimate the corre-

sponding DDCt values. The model was fit with robust standard

errors, allowing for clustering within samples. Analysis was

performed using Stata 9.0. A two-sided significance level of 0.05

was used.

Gene knockdown studies using RNAi
We generated DNA templates of 400–500 bp containing a T7

promoter site on each strand for each target gene. One mg of this

template was used for in vitro transcription at 37uC for 2–6 h to

generate dsRNA following manufacturer’s instructions (MEGA-

script RNAi, Ambion, Austin, TX). The remaining DNA template

and ssRNA were degraded by DNAse I and RNAse treatment at

37uC for 1 h. The dsRNA was purified by centrifugation through

a solid-phase adsorption system and eluted in 100 uL of 10 mM

Tris-HCl pH 7, 1 mM EDTA. We quantified the dsRNA by

spectrophotometry and verified its integrity and the reaction

efficiency on a 1% agarose gel. Finally, we precipitated dsRNA

with ethanol and ammonium acetate and resuspended in 10 mM

Tris-HCl pH 7, 1 mM EDTA to a final concentration of 2 mg/

mL.

Different amounts of dsRNA (50–200 ng) were injected

intrathoracically [23], and tissues collected at various times to

measure the kinetics, duration, and knockdown efficiency using

qPCR. Subsequently Cali-MIB mosquitoes were injected with

100 ng of the target dsRNA; Caspase-16, Aedronc, or the Nautilus

control gene (Flybase: FBgn0002922) a myogenic regulatory gene

from Drosophila as a control for the process of injecting dsRNA.

These mosquitoes, along with non-injected controls, were exposed

to DENv-2 24 h later in groups of 20. A subsample of mosquitoes

was evaluated 48 h post-ingestion of virus for gene expression

levels. The remaining mosquitoes were maintained in the insectary

for the 13-day extrinsic incubation period for DENv-2, when the

heads and midguts were scored for phenotype using IFI [33,56] to

determine if we had affected virus establishment and dissemina-

tion. We used a Chi2 analysis to compare the effects of gene

knockdown on the prevalence of infection in knockdown vs non-

injected controls.

Results

We evaluated gene expression in female Ae. aegypti in the Cali-S

strain (F16) in which 96.4% of the female showed the susceptible

phenotype (salivary glands positive for virus) and the Cali-MIB

strain (F13) in which 53% of the female were susceptible and 47%

had the refractory phenotype MIB. The titer of the DENv-2

preparation used was monitored throughout all selections and

ranged from 108 to 108.5 TCID50/mL at the beginning of virus

exposure and from 107.2 to 107.4 TCID50/mL at the end of the

exposure period. All rabbit blood was free of DENv infection.

Gene Expression
The expression patterns of the selected genes in both strains

were compared within a strain in response to bloodmeals

containing blood or blood+DENv-2, and then between strains at

the same timepoints after receiving the same challenge.

Within strain comparisons are shown in Fig. 2. In the Cali-S

strain, there were no major differences in the expression levels of

any of the selected genes in response to meals containing blood, or

blood+DENv-2. Within the Cali-MIB strain, there were small but

not statistically significant differences in expression levels of

Argonaute-2 and AeIAP1 (Figure 2, Table 1). Caspase-16

increased expression 4.2-fold at 24 h, 14.5-fold at 36 h and 7.9-

fold at 48 h, Aedronc increased 65-fold at 36 h and 3.8-fold at

48 h and Aedredd expression increased 13-fold at 36 h after

challenge with DENv-2 (Figure 2). Using the 22DDCt method we

observed overall differences in gene expression over time of each

gene when each strain was challenged with blood or blood+-
DENv-2 (data not shown). The greatest differences in gene

expression were observed between 24 and 48 h especially when

the strain Cali-MIB was challenged with DENv-2 (Figure 2).

Multiple regression analysis demonstrates significant temporal

differences in gene expression compared with time 0 in all genes

with the exception of Aedredd (Table 1), due to a high variation in

Aedredd expression at time 0. Multiple regression analysis did not

demonstrate overall significant differences within strains chal-

lenged with blood or blood+DENv-2, except in the case of

Caspase 16 (Table 1). When the time points are analyzed

independently, however, there were significant differences in the

expression of caspase genes between 24 and 48 h when the Cali-

MIB was exposed to blood+DENv-2 (Fig. 2).

Between strains comparisons of gene expression (Cali-S vs Cali-

MIB) after exposure to blood or blood+DENv-2 in midguts are

shown in Figure 3. In the absence of DENv-2 in the midguts,

expression levels of Argonaute-2, and AeIAP1 were not signifi-

cantly different between the 2 strains (Fig. 3). In contrast, Caspase-

16 activity was 3.8-fold higher in the Cali-MIB strain at 24 h.

Aedronc expression was 4-fold higher at 0 h, and 11-fold higher at

24 h, and Aedredd expression levels were 5-fold and 14-fold

higher in the Cali-MIB strain at 0 and 24 h respectively.

In the presence of DENv-2 in the midguts, there were minor

increases, 2.1 fold and a 2.3 fold, in expression of Argonaute-2 in

the Cali-MIB strain at 24 and 36 h. AIAP1 expression was

increased 3.8 and 2.2 fold in the Cali-MIB strain at 24 and 36 h

respectively. With the caspases, there were significant increases in

expression of caspase-16 at 24 h (18-fold), 36 h (11-fold), and 48 h
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Figure 2. Within Strain Comparisons: Relative expression of Argonaute-2, AeIAP1, caspase-16, Aedronc and Aedredd in the
midguts of Aedes aegypti in strains that are Refractory (Cali-MIB: Left Panel) or Susceptible (Cali-S: Right Panel) to Dengue virus in
the presence (black bars) or absence (white bars) of Dengue virus-2 in the bloodmeal. The expression levels in the bloodfed samples were
arbitrarily set at 1 and the expression levels in the presence of the virus represent fold-differences from the susceptible controls. The bars were
geometrically adjusted (22DCT)+SD.-22DCT.
doi:10.1371/journal.pone.0061187.g002
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Figure 3. Between Strain Comparisons: Differential expression of Argonaute-2, AeIAP1, Caspase-16, Aedronc, and Aedredd in the
midguts of Resistant Cali-MIB (black bars) and Susceptible Cali-S mosquitoes (white bars) at the same timepoints after exposure to
a bloodmeal containing DENv-2 (top panel) or blood alone (bottom panel). In each pairwise comparison the expression level in the Cali-S
strain was arbitrarily set at 1 and the expression levels in Cali-MIB strain represents fold-differences in expression within that pair. The bars are
geometric adjusted (22DCT)+SD.
doi:10.1371/journal.pone.0061187.g003

Table 1. Gene expression ratios comparing midgut gene expression of Argonaute-2, AeIAP1, Caspase-16, Aedronc, and Aedredd
over time, compared with time zero (DCt), in Cali-S and Cali-MIB strains exposed to blood or blood+DENv-2, as well as between-
strain ratios.

Gene Expression Ratio

(95% confidence interval)

Argonaute-2 AeIAP1 Caspase 16 Aedronc Aedredd

Hours post
ingestion

0a 1 1 1 1 1

8 2.9 0.5 0.03 10.7 1.3

(2.03–4.2) P,0.01 (0.4–0.7) P,0.01 (0.01–0.08) P,0.01 (3.8–30.5) P,0.01 (0.3–4.4) P = 0.67

24 19.4 1.6 0.04 14.2 1.7

(13.7–27.5) P,0.01 (1.0–2.6) P = 0.04 (0.01–0.08) P,0.01 (4.5–44.5) P,0.01 (0.4–6.6) P = 0.38

36 6.75 0.68 0.19 5.5 1.1

(5.2–8.72) P,0.01 (0.4–0.9) P = 0.04 (0.09–0.43) P,0.01 (1.5–19.8) P,0.01 (0.2–4.3) P = 0.88

48 88.2 7.71 0.33 77 2.6

(46.8–165.9) P,0.01 (4.1–14.4) P,0.01 (0.17–0.64) P,0.01 (23.3–260.2) P,0.01 (0.6–10.3) P = 0.16

Within strains (B vs
B+v)b

1.03 (0.5–1.8) P = 0.907 1.7 (0.9–3.1) P = 0.063 2.8 (1.2–2.8) P = 0.012 1.25 (0.4–3.8) P = 0.689 1.17 (0.3–3.9) P = 0.792

Between strains
(Cali-S vs Cali-MIB)

0.82 (0.5–1.2) P = 0.339 1.2 (0.8–1.8) P = 0.253 4.43 (2.2–8.76) P = 0.01 2.54 (1.2–5.3) P = 0.014 4.8 (1.9–12.0) P = 0.01

Within strains, the treatments blood and blood+DENv-2 are also compared. DCt values were estimated from the multiple regression analysis and the expression ratios
were estimated by exponentiating (22DCT).
aExpression ratio 1 as this is the reference category.
bBlood vs Blood+DENv-2.
doi:10.1371/journal.pone.0061187.t001

Expression of Apoptosis Genes in Aedes aegypti

PLOS ONE | www.plosone.org 6 April 2013 | Volume 8 | Issue 4 | e61187



(3.4-fold). Elevated levels of Aedronc expression were observed at

24 h (5-fold), and 36 h (24-fold) and Aedredd expression was

higher at 24 h (18-fold) and 36 h (15-fold) post-exposure to virus

(Figure 3). Multiple regression analysis demonstrated significant

differences between treatments with Caspase 16, Aedronc and

Aedredd expression in Cali-MIB mosquitoes after challenge with

DENv-2 (Table 1). In the carcasses, in the absence of DENv-2, we

found no significant differences in gene expression between the

strains (data not shown). In the presence of DENv-2 there was a

small, but statistically insignificant, increase in Argonaute-2 and

AeIAP1 expression at 120 h. Multiple regression analysis in

carcasses demonstrate significantly higher levels of Caspase-16

(ratio = 7.5, 95% confidence intervals (CI) 1.8–31.2, p = 0.007) and

Aedronc (2.2, CI 1.0–5.0, p = 0.045) expression in the Cali-MIB

strain after exposure to DENv-2 especially at 120 h (data not

shown).

Gene knockdown studies
We knocked down the expression of specific genes to determine

their contribution to the S or MIB phenotype. We knocked down

AeIAP1 in the susceptible Ae. aegypti Liverpool strain and in Cali-S

to interfere with caspase inhibition, thereby converting the

phenotype from S to R. While we were successful in knocking

down AeIAP1 by .70%, the phenotype was lethal: all mosquitoes

died within 72 h (data not shown).

In the Dengue-refractory Cali-MIB (F21) strain the microinjec-

tion of 100 ng of Caspase-16 or Aedronc dsRNA reduced

transcript levels by ,80% 48 h later. Higher concentrations of

dsRNA gave similar results but caused mortality. Cali-MIB

mosquitoes that had been injected with 100 ng dsRNA to

knockdown Caspase-16, Aedronc, or Nautilus, a Drosophila

melanogaster MyoD-related gene to control for the injection of

dsRNA, and naı̈ve (not microinjected) controls were exposed to a

bloodmeal containing DENv-2 24 h after microinjection. These

mosquitoes were scored for phenotype after the 13-day extrinsic

incubation period for DENv-2 using IFI [30,31]. In mosquitoes

injected with dsRNA to knockdown Caspase-16 or Aedronc, the

proportion of mosquitoes that were susceptible to DENv-2

increased from the expected 53% (Naı̈ve) to 62% and 82%

respectively (Fig. 4). Chi2 analysis on Caspase-16 indicated no

significant effect on DENv development (chi2 = = 0.39; p = 0.53)

whereas the knockdown of Aedronc significantly altered the

susceptibility of the Cali-MIB strain (chi2 = 3.9; p = 0.03) indicat-

ing that reducing the expression of at least one caspase gene

increased pathogen success.

Discussion

The antibacterial and antifungal responses of insects have been

much better analyzed than the antiviral responses; we understand

how microbes are recognized as nonself and which pathways are

activated [57,58]. Intracellular viruses may be inaccessible to the

same responses used to eliminate larger parasites. More recent

studies on immune signalling in response to virus infections in

insects have studied which signalling pathways are activated, and

identified genes that are differentially expressed in response to

virus infections [17,18,21,22,30,59,60,61]. The response by insects

to all viruses, however, may not be equal; the same virus may elicit

different responses in different insects and different viruses

(alphaviruses vs flaviviruses) may elicit different responses in a

single insect species [22,60]. Arbovirus infections may activate

classic antimicrobial immune pathways, including Toll, JAK/

STAT, Wnt, and Imd/Jnk [18,22,30,62,63], but the components

or molecules responsible for the activation are still unknown.

There is growing evidence that immune pathways function as

networks of pathways and interact with each other [18,30]. Some

molecules may function in multiple pathways; the initiator caspase

Dredd and its adaptor, Fadd, function in apoptotic and also in the

IMD pathway [50,64,65]. Increases in Dredd may induce

expression of the transcription factor rel which also contributes

to the expression of pro-apoptotic pathways. Previously we showed

that a targeted knockdown of Aefadd in Ae. aegypti reduced the

expression of defensin and cecropin transcripts to negligible levels,

making them susceptible to microbial infection [23]. Understand-

ing these indirect effects becomes more important in light of recent

data indicating that the AMP cecropin can regulate viral

replication and ultimately viral load in the salivary glands of

DENv infected insects [66]. How molecules that function in

multiple pathways are regulated so as not to activate all pathways

is unknown, as are the initial mechanisms by which arboviruses, or

infected cells, are recognized. It has been suggested that arbovirus

infection of mosquito cells triggers apoptosis only when viral loads

exceed a specific threshold [67] but our data suggest the apoptotic

response may be mosquito or strain specific, and may help

determine strain-specific susceptibility to DENv.

We did not determine the mode of inheritance of the susceptible

or refractory phenotypes. In the Cali-S strain the proportion of

individuals with this phenotype increased progressively with

generations. In contrast, there was greater variation in the

selection results for Cali-MIB that only reached 44% refractoriness

in generation 16 [34]. Our data, and other studies, suggest that

VC is a product of multiple genes acting additively or in a

dominant manner [26,29,68]. These results suggest that Ae. aegypti

is an excellent model for the study of selection processes that will

Figure 4. Effects of RNAi knockdown of Aedronc, Caspase-16
or Nautilus on the development of DENv in the refractory Cali-
MIB strain of Ae. aegypti. The expected proportions in the Cali-MIB
colony (53% Susceptible: 47% Resistant) were maintained in naı̈ve and
Nautilus injected insects. Knockdown of Caspase-16 and Aedronc using
RNAi increased the proportion of susceptible mosquitoes to 62% in
Caspase 16 Kd insects (Chi2 = = 0.39; p = 0.53) and 78.6% in the Aedronc
Kd insects (Chi2 = 3.9; p = 0.03). The numbers in brackets above each
pair of bars indicates the # of mosquitoes in 3–5 replicates on which
these summaries are based. The * indicates significant difference
between Aedronc knockdown and naı̈ve and Nautilus injected controls.
doi:10.1371/journal.pone.0061187.g004
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allow an evaluation of the genetic complexities of specific aspects

of VC.

The differences observed in AeIAP1 and Argonaute-2 expres-

sion between the Cali-MIB and Cali-S strains were not statistically

different, suggesting that these genes do not play a major role in

determining the phenotype of our strains. In the presence of

DENv-2, however, we did see significant increases in the

expression levels of caspases (Caspase-16, Aedronc and Aedredd)

in the Cali-MIB strain compared with the Cali-S strain. It should

be noted that in the susceptible Cali-S strain the expression of the

pro-apoptotic genes did not differ significantly when this strain was

fed on blood, or blood+DENv-2 (fold difference ,2 in all cases).

The data suggest that increased expression of pro-apoptotic genes

might contribute to the Ae. aegypti innate immune response to

DENv-2 infection in Cali-MIB. Whether the increases we

measured in AeIAP1 are insufficient to regulate the significant

increases in Caspase-16 and Aedronc is unknown. The increase in

caspase gene expression occurs at the time when DENv-2 has

become established and is replicating in the mosquito midgut cells

(24–48 h) or the fatbody (72–120 h) in these strains.

The role of apoptosis as an antiviral response has been proposed

in several insect-virus relationships [69,70,71] and apoptosis-

related genes have been identified in transcriptome studies

[18,21,30]. We observed a differential expression at timepoints

that correspond with the virus replicating within midgut cells 24–

48 h post ingestion in our strains. Apoptotic activity has been

reported in the midguts of Culex pipiens pipiens that confers

refractoriness to West Nile Virus (WNv) [43] and in early

infections of Ae. aegypti larvae exposed to Culex nigripalpus

nucleopolyhedrovirus [69]. Differential expression of apoptosis-

related, and many other genes, was demonstrated using micro-

arrays with laboratory strains (Moyo-S and Moyo-R) of Ae. aegypti

originally selected for resistance to Plasmodium sp. [18]. Differen-

tially expressed genes at 3 and 18 h post ingestion of DENv

included genes associated with cell division and apoptosis as well as

genes related to several signal transduction pathways [18].

Similarly, specific classes of genes were found to be over or under

expressed in Ae. aegypti (Rockefeller strain) infected with West Nile,

dengue, and yellow fever viruses [30]. Differences in the levels of

expression data obtained and even the gene clusters identified may

be related to the timepoints at which samples were collected (3 and

18 h post infection in [18], 24, 48 and 168 h in [30], and 12–72 h

in this study). Results also may reflect differential development

rates (extrinsic incubation period) of different DENv strains in

different vector strains [72]. Nevertheless, in all studies, many of

the same molecules and pathways have been identified as a result

of infection with DENv. How apoptosis is initiated, what

molecules are used, how information and responses are shared

and regulated within the overall networks of differentially

regulated and expressed immune responses in mosquitoes, and

how viruses inhibit these processes are not well understood [18].

Studies have expressed pro-apoptotic inducers (Michelob_x,

reaper) [69] or the antiapoptotic baculovirus protein p35 [73].

Initial virus production was not significantly altered by these

molecules leading to the conclusion that apoptosis was not effective

at reducing early virus production. Overexpression of IAP

antagonists Michelob-x and IMP can induce apoptosis in mosquito

cells while silencing them can attenuate apoptosis [74]. We did not

find any differences in the transcription of Michelob_x in Cali-S

and Cali-MIB in response to DENv-2 infection at any timepoint

evaluated (Ursic, Ocampo and Lowenberger, unpublished data),

but we, and others [18] do find immune activation very soon after

ingestion of DENv. Determining whether early apoptosis is

capable of eliminating DENv establishment and replication will

require a measurement of virus titers throughout the infection and

TUNEL and in situ nick translation studies on DENv-infected

midguts of our strains.

RNAi has been reported as a major innate mechanism to

modulate or regulate viruses in insects [51,53,75,76] and

Argonaute-2 has been implicated in this process. However, we

did not find significant differences between Cali-S and Cali-MIB

in the expression of Argonaute-2, although both strains showed

small increases in Argonaute-2 expression (2–3 fold) when they

were exposed to DENv-2. We do not know if this level of

expression is sufficient to modulate virus replication as reported

elsewhere [53,77]. Our data suggest that RNAi, as measured by

the expression of Argonaute-2, does not differ significantly

between our strains, and it does not appear that this mechanism

is solely responsible for virus refractoriness in the Cali-MIB strain.

We used RNAi to knockdown expression of pro-apoptotic genes

in the Cali-MIB strain to evaluate their functional role in limiting

DENv-2 establishment, and proposed that gene knockdown

should increase susceptibility to DENv-2 infection. dsRNA-

microinjected mosquitoes were exposed 24 h later to blood+
DENv-2, a time in which the knockdown was approximately 80%.

Because refractoriness in the Cali-MIB colony is not 100% fixed, it

was expected that approximately 53% of the colony was

susceptible and would allow DENv-2 to develop. Naı̈ve mosqui-

toes or ds-Nautilus-injected mosquitoes maintained this proportion

of susceptibility after exposure to DENv-2 (Fig. 4). In mosquitoes

in which caspase-16 or Aedronc were knocked down, the

proportion of mosquitoes that were susceptible to DENv-2

increased from the expected 53% to 64% and 80% respectively

(Fig. 4) indicating that reducing the expression of pro-apoptotic

genes increased pathogen success. Our attempts to silence

AeIAP1, and convert the phenotype from susceptible to refractory

resulted in spontaneous apoptosis and death, indicating that

AeIAP1 is necessary to maintain cell viability in adult mosquitoes.

These data support the growing body of literature that suggests

that caspase activity in insects is regulated primarily after

activation. Studies in both Drosophila and mosquito cell lines

indicate that the primary apoptotic caspase in insects is Aedronc;

that many cells experience chronic activation of Aedronc; and that

insect cells, in vitro and in vivo, survive because they express IAP1

[78,79,80].

The development of resistance should depend on the patholog-

ical effects of DENv on mosquitoes and its effect on vector survival

and fecundity [81,82]. The effects of arboviruses on mosquitoes

may be negative [83,84,85] or neutral [86,87] and meta-analyses

suggest that the effect of viruses on the vectors depends on the

taxonomic groups studied and the mode of transmission [81].

Many studies have assessed immune responses of inbred mosquito

colonies that have been laboratory acclimated for decades. The

use of field-derived material such as Cali-MIB and Cali-S strains

selected from the same feral populations with different responses to

DENv-2 infection, provides us with the opportunity to identify

natural mechanisms involved in refractoriness and will serve as a

natural model to identify the functional role of defence related

genes and immune pathways in the VC of these selected strains.

Gene Accession numbers. The genes used in this study

were Argonaute-2 (VectorBase: AAEL017251-RA), Aedronc

(VectorBase AAEL011562-RA), Aedredd (VectorBase:

AAEL014148-RA), Caspase-16, (VectorBase AAEL005956-RA),

AeIAP1 (VectorBase: AAEL009074-RA), nautilus (Flybase:

FBgn0002922) and Ae. aegypti ß-actin (AAEL001928-RA).
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