
SCALABLE MAPPING AND COMPRESSION

OF

HIGH THROUGHPUT GENOME SEQUENCING DATA

by

Faraz Hach

B.Sc., Sharif University of Technology, 2004

M.Sc., Simon Fraser University, 2007

a Thesis submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

in the

School of Computing Science

Faculty of Applied Sciences

c© Faraz Hach 2013

SIMON FRASER UNIVERSITY

Summer 2013

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be in accordance

with the law, particularly if cited appropriately.

lib m-scan5
Typewritten Text

APPROVAL

Name: Faraz Hach

Degree: Doctor of Philosophy

Title of Thesis: SCALABLE MAPPING AND COMPRESSION OF HIGH

THROUGHPUT GENOME SEQUENCING DATA

Examining Committee: Gregory Baker, Senior Lecturer

Chair

Dr. S. Cenk Sahinalp, Professor

Senior Supervisor

Dr. Colin Collins, Professor

Dept. of Urologic Sciences,

University of British Columbia

Supervisor

Dr. Peter Unrau, Associate Professor

Dept. of Molecular Biology and Biochemistry, SFU

Internal Examiner

Dr. Bonnie Berger, Professor

Computer Science and Artificial Intelligence Lab,

Massachusetts Institute of Technology

External Examiner

Date Approved:

ii

lib m-scan5
Typewritten Text
July 29, 2013

Partial Copyright Licence

iii

Abstract

The high throughput sequencing (HTS) platforms generate unprecedented amounts of data

that introduce challenges for processing, downstream analysis and computational infrastruc-

ture. HTS has become an invaluable technology for many applications, e.g. the detection

of single-nucleotide polymorphisms, structural variations. In most of these applications,

mapping sequenced “reads” to their potential genomic origin is the first fundamental step

for subsequent analyses. Many tools have been developed to address this problem. Because

of the large amount of HTS data availability, much emphasis has been placed on speed and

memory. In fact, as HTS data grow in size, data management and storage are becoming

major logistical obstacles for adopting HTS-platforms. The requirements for ever increas-

ing monetary investment almost signalled the end of the Sequence Read Archive hosted at

the National Center for Biotechnology Information, which holds most of the sequence data

generated world wide. One way to solve storage requirements for HTS data is compres-

sion. Currently, most HTS data is compressed through general purpose algorithms such

as gzip. These algorithms are not specifically designed for compressing data generated by

the HTS-platforms. Recently, a number of fast and efficient compression algorithms have

been designed specifically for HTS data to address some of the issues in data management,

storage and communication.

In this thesis, we study both of these computational problems, i.e., Sequence Mapping

and Sequence Compression extensively. We introduce two novel methods namely mrsFAST

and drFAST to map HTS short-reads to the reference genome. These methods are cache

oblivious and guarantee perfect sensitivity. Both are specifically designed to address the

bottleneck of multi-mapping for the purpose of structural variation detection. In addition we

present Dissect for mapping whole trascriptome to the genome while considering structural

alterations in the transcriptome. Dissect is designed specifically to map HTS long-reads

iv

as well as assembled contigs. Finally, we address the storage and communication problems

in HTS data by introducing SCALCE, a “boosting” scheme based on Locally Consistent

Parsing technique. SCALCE re-orders the data in order to increase the locality of reference

and subsequently improve the performance of well-known compression methods in terms of

speed and space.

v

To My Angels

Sevil and Raheleh

vi

“We know through painful experience that freedom is never voluntarily given by the

oppressor; it must be demanded by the oppressed.”

— Martin Luther King, Jr. Letter From Birmingham Jail, 1963

vii

Acknowledgments

First and foremost, I extend my utmost and sincerest gratitude to my senior supervisor, Dr.

Cenk Sahinalp, who has supported me throughout my graduate studies with his encourage-

ment, guidance and resourcefulness. In addition to technical skills in computer science, I

have learned from him the requirements for being a good researcher.

I offer my regards to my supervisor, Dr. Colin Collins. I would like to sincerely thank

Dr. Peter Unrau and Dr. Bonnie Berger, who graciously accepted to be my examiners and

helped me with valuable discussions and comments. I give special thanks to Gregory Baker,

who kindly accepted to be the chair of my examining committee.

I would also like to thank my collaborators Dr. Evan Eichler, Dr. Inanc Birol, Dr. Can

Alkan, Dr. Fereydoun Hormozdiari, Dr. Iman Hajirasouliha, Dr. Phuong Dao, Ibrahim

Numanagic, Deniz Yorukoglu, Iman Sarrafi, Yen-Yi Lin, Andrew McPherson, Lucas Swan-

son, Farhad Hormozdiari and Ermin Hodzic. I benefited greatly from these collaborations,

and hope to continue working with them.

I would also like to thank all my dear friends: Mayssam Mohammadi, Sara Adineh, Kam-

yar Khodamordai, Amir Hedayaty, Mohammad Tayebi, Naser Ghazali, Michael Hartman

and Pang Hartman.

Last, but not least, I heartily thank my family for the strong motivation that they gave

me to follow my studies. Their support was invaluable to me.

viii

Contents

Approval ii

Partial Copyright License iii

Abstract iv

Dedication vi

Quotation vii

Acknowledgments viii

Contents ix

List of Tables xii

List of Figures xv

1 Introduction 1

1.1 Contribution . 5

1.2 Organization of the thesis . 6

2 Background and Related Work 8

2.1 Sequence Mapping . 8

2.1.1 Definitions . 8

2.1.2 Burrows Wheeler Transform, Suffix Arrays, FM-index and Exact Match-

ing . 9

2.1.3 Existing Methods . 10

ix

2.2 Sequence Compression . 18

2.2.1 HTS data format . 18

2.2.2 Popular Encodings: Huffman, Golomb, Gamma, Delta and Arith-

metic Coding . 19

2.2.3 Golomb Coding . 19

2.2.4 Existing Methods . 20

2.3 Conclusion . 24

3 A Cache-Oblivious Algorithm for Mapping 25

3.1 Methods . 27

3.1.1 Indexing the Reference Genome . 28

3.1.2 Indexing the Donor Genome . 28

3.1.3 Search . 29

3.2 Additional Features . 31

3.3 Results . 32

3.4 Conclusion . 37

4 SNP-aware Mapping 38

4.1 Methods . 39

4.1.1 Compact Indexing of the Reference Genome 39

4.1.2 Search. 40

4.1.3 SNP awareness . 41

4.2 Additional Features . 42

4.3 Results . 42

5 Sensitive and Fast Mapping of di-base Reads 47

5.1 Methods . 48

5.1.1 Genome transformation . 48

5.1.2 Indexing the Reference Genome . 48

5.1.3 Indexing the Donor Reads . 49

5.1.4 Searching . 49

5.1.5 Extending . 50

5.2 Additional Features . 53

5.3 Results . 54

x

5.4 Conclusion . 62

6 Transcript to Genome Alignment 63

6.1 Methods . 66

6.1.1 Nucleotide-level transcriptome to genome alignment under structural

alterations. 67

6.1.2 Fragment chaining for transcriptome to genome alignment under struc-

tural alterations. 70

6.1.3 Whole genome analysis and discovery of novel transcriptional struc-

tural alterations with Dissect. 75

6.2 Results . 80

6.3 Conclusion . 84

7 Boosting Sequence Compression Algorithms 86

7.1 Methods . 89

7.1.1 A theoretical exposition to the LCP technique 89

7.1.2 Example . 89

7.1.3 A practical implementation of LCP for reordering reads 90

7.1.4 A data structure for identifying core substrings of reads 92

7.1.5 Compressing the quality scores . 94

7.2 Results . 95

7.3 Conclusion . 100

8 Conclusion 102

8.1 Future Directions . 103

Bibliography 105

xi

List of Tables

3.1 Mapping one million reads of indicated read lengths and within the given

number of errors, to the human reference genome HG18 build 36 by indicated

algorithms. 35

3.2 L2 MPI and IPC . 36

3.3 5 fosmid validated deletions in NA18507 which can only be found using mul-

tiple mappings . 37

4.1 Mapping 2M reads from NA18507 to hg 19 with e ≤6. BWA and GEM are

set to report all mapping locations. Bowtie2 is impractical to run if it is set

to report all mappings. Other mappers do not provide such option. 44

4.2 Running time for reporting n mapping locations per read. 44

4.3 Mapping of 2M reads in the best mapping mode, with an error threshold of

2, 4 and 6. No indels/gaps allowed in any method. We report on both the

running time and the percentage of reads mapped. 45

4.4 Comparing mrsFAST-Ultra and GSNAP in SNP-tolerant best mapping mode. 45

4.5 Memory footprint of the tools on 2M reads. 46

5.1 Applying color transformation ’3’ (a) is the same as applying 180o rotation (b). 54

5.2 Addition Table Code for Strings of Colors . 54

5.3 Performance results of all tested color-space read aligners on simulated data

with error threshold of 2 mismatches. 57

5.4 Performance comparison on simulated data sets between drFAST-DP, drFAST-

CT and Bowtie where error threshold is set to three mismatches. 59

5.5 Number of mapping locations reported by mrsFAST for the same set of sim-

ulated reads in letter-space. 60

xii

5.6 Performance comparison on real data sets between drFAST-DP, drFAST-CT,

Bowtie, SOCS, and PerM on 1 million randomly selected reads from three

different sequencing experiments. We set the error threshold to 2 bp for all

aligners. 60

5.7 Performance comparison on real data sets between drFAST-DP, drFAST-

CT and Bowtie on 1 million randomly selected reads from three different

sequencing experiments. We set the error threshold to 3 bp. 61

5.8 Memory required by each software to map 1 million 35-base reads to human

reference genome. The memory requirement increases with the number of

reads and/or the read length, this increase is typically linear with the increase

in the number of base pairs in the data set. 61

6.1 Alignment results of Dissect for the simulated wild-type transcriptome dataset

with novel insertions. Rows represent the length interval of the novel inser-

tion distributions (e.g. insertions reported in the first row are uniformly dis-

tributed between 6 and 20 nucleotides). Columns indicate the output labels

of Dissect: All events column represents the total number of transcripts Dis-

sect has identified as a structural alteration A. D/I column represents the

alignments that contain a short ambiguous interval that cannot be verified

with certainty as an insertion or a duplication, and N.A. column indicates

the number of transcript sequences for which Dissect did not return a valid

high similarity alignment. 82

6.2 The number of structural alterations detected by Dissect for the simulation

datasets. 83

7.1 Input data statistics and compression rates achieved by gzip only and SCALCE

+ gzip on reads from the P. aeruginosa RNA-Seq library (dataset 1). 95

7.2 Input data statistics and compression rates achieved by gzip only and SCALCE

+ gzip + AC on complete FASTQ files. 96

7.3 Run time for running gzip alone and SCALCE+gzip+AC on complete FASTQ

files. 97

7.4 Comparison of single-threaded SCALCE with DSRC. 98

7.5 Comparison of single-threaded SCALCE with BEETL. 98

xiii

7.6 Number of SNPs found in the NA18507 genome using original qualities and

transformed qualities with 30% noise reduction. Also reported are the number

and percentage of novel SNPs in regions of segmental duplication or common

repeats (SD+CR). 99

xiv

List of Figures

3.1 Excerpts from a conceptual reference genome index GI. 28

3.2 Sample read partitioning for e = 2: each read is partitioned into 3 equal

length blocks . 28

3.3 Excerpts from a conceptual donor genome (i.e. read) index RI - for the reads

given in Figure 3.1. 29

4.1 Average Number of locations verified per k-mer extracted from each read, as

a function of k-mer length. 46

5.1 Translating the read from color-space to letter-space may result in a new

sequence different from the original read if there exists a color-space error. . . 49

5.2 The dynamic programming table generated to align ATTGAATCA and 30121321

(0=blue, 1=green, 2=yellow, 3=red). The arrows represent the best align-

ment between the two sequences. 52

6.1 Structural alteration events considered in this chapter. T represents the tran-

script, G and S represents two genomic regions. G′ is the complementary

strand for G. Boundaries between red and green blocks indicate event break-

points; arrows represent corresponding genomic transitions in the alignment.

Apart from the event types shown in the figure, duplication events can appear

as non-tandem and fusions can be between two different strands. 64

6.2 Fragment chaining in the presence of a rearrangement and an inversion. The

fragments involved include two segments from T associated with segments

from G and another segment from T associated with a segment from G′. The

figure depicts how the fragments reveal themselves in the alignment tables

and how they can be chained to get the overall alignment. 72

xv

7.1 Aho-Corasick trie preprocessing. Red edges indicate original failure edges,

while green edges indicate preprocessed failure edges. Note that we need to

perform only one jump by using green edges to reach the destination, contrary

to the two jumps needed by red edges. 93

7.2 Original (left) and transformed (right) quality scores for two random reads

that are chosen from NA18507 individual. The original scores show much

variance, where the transformed quality scores are smoothened except for

the peaks at local maxima, that help to improve the compression ratio. . . . 94

xvi

Chapter 1

Introduction

The development of High Throughput Sequencing (HTS) technologies has changed the way

genomics research is conducted since their inauguration in 2005 [82]. The first commercially

available HTS technology was from Roche/454 Life Sciences [82] and was used to sequence

the genome of James Watson [117]. It was followed by “second generation” sequencing

platforms that generate orders of magnitude more data for a fraction of the cost, such as

Illumina Genome Analyzer [10] and AB SOLiD [83]. HTS technologies continue to evolve

as years progress, with the introduction of single molecule sequencing (i.e. HeliScope [98]

and PacBio RS [21]) and more recently the nanopore sequencing.

Improvements in HTS technologies have empowered researchers in cataloging normal

human genome variation [1, 2, 89], building de novo genome assemblies [36], finding disease

causing mutations [97, 78] and detecting genes associated with diseases such as the Kabuki

syndrome [94] and mental retardation [113].

Genomic variation between individuals or across species range from single nucleotide

polymorphisms (SNPs) [71, 10], small insertions/deletions (indels) [66], larger size struc-

tural variation in the form of insertions, deletions and inversions [60, 65, 46, 16], segmental

duplications as well as copy-number polymorphism [5] to larger chromosomal rearrange-

ments [4].

Genomic structural alterations involving transcribed regions of the genome will appear

in the associated transcript sequences. Although the whole transcriptome is much smaller

than the whole genome, in the context of structural alterations, RNA-Seq data can be more

difficult to analyze, partially due to splicing, which can produce several transcripts from the

same gene. In comparison to the wild-type transcripts, post-transcriptional processes can

1

CHAPTER 1. INTRODUCTION 2

also introduce structural alterations into these sequences.

With the advent of High Throughput Transcriptome Sequencing (RNA-Seq), the prob-

lem of identifying structural alterations in the transcriptome is attracting significant at-

tention. Several methods for detecting structural alterations using RNA-Seq have been

developed [93, 67, 53, 35, 8, 74, 104, 84, 85, 86], mostly focusing on gene fusions, partially

due to their abundance in cancer, but also due to the relative ease of identifying them

computationally.

Although HTS has become an invaluable technology in these studies, the computational

analysis of the data they generate is far from perfect. Continuous development and valida-

tion of novel algorithms for discovering genetic variation will be essential for the analysis

of the growing volume of data generated by the HTS platforms. In the context of the 1000

Genomes Project for example, such algorithms are and will be used to catalog normal hu-

man genomic variation. Likewise, in ongoing cancer genomes projects, these algorithms are

and will be employed to identify variations associated with disease states.

Analysis of genomic (or trascriptomic) variations using sequencing starts with mapping

the randomly sheared and ideally uniformly sampled DNA (or RNA) fragments from the

donor to the reference genome. Different properties and error models of sequence reads

generated by these technologies require the development of specialized read mapping al-

gorithms for each platform for accurate read alignment and characterization of genomic

variants. This becomes more complicated for short reads: due to repeats and duplications

in genomes, they can map to multiple locations with equal sequence identity. [5] reported

that in a human resequencing study reads of length 36-bp can be mapped to about 1,800

locations on the average within two mismatches and/or indels.

Typically, the advantages and disadvantages of a read mapper is defined by the project

needs, and the “best” tool should be selected depending on the biological question at

hand [31]. Leveraging the high sequence coverage and randomly selecting one “best” loca-

tion when a read cannot be unambiguously placed has proven to be effective in discovering

SNPs and small indels in relatively non-complex areas of the genome [71]. However, struc-

tural variation detection sensitivity is shown to benefit from tracking “all” map locations

of the reads including suboptimal alignments [46, 66, 89], and characterization of segmental

duplications is extremely resistant against mapping the reads uniquely [5, 110]. Even with

the increased read length, recent studies [46, 66, 5] suggest that ambiguity in read mapping

is a bigger problem than was anticipated.

CHAPTER 1. INTRODUCTION 3

The first generation of mappers for short reads were simply based on a brute force ap-

proach; the main objective of these mappers was to map very short reads (≈ 25bp) unam-

biguously. With the introduction of second generation of HTS platforms and longer reads,

new algorithms have been designed to address the mapping problem. These read mappers

can be broadly classified into two categories according to the method used to index the ref-

erence genome using either hash tables or suffix arrays (compressed through the Ferragina-

Manzini index [29] with the use of the Burrows-Wheeler Transform [15]). Hash-based align-

ers such as MAQ [71], ZOOM [75], Mosaik [43], SHRiMP [100], mrFAST [5], BFAST [44],

SOAP [72], RazerS [115], RazerS3 [116], YAHA [26], GSNAP [120], SRmapper [38], Gapped

BLAST [6], BLAT [55], Exonerate [107], EST GENOME [91], and GMAP [121] have poorer

performance in comparison to suffix array-based aligners such as BWA [68], BWA-SW [69],

Bowtie [63], Bowtie2 [62], TopHat [112], TopHat2 [58], SOAP2 [73] and GEM [80] when

dealing with short reads. However, their relative performance increases considerably and

surpasses the suffix array-based aligners when the read length, and thus, the number of

errors (mismatches or indels) that need to be tolerated increase.

The accuracy of the structural variation discovery is directly correlated to the sensitivity

and specificity of these mappings tools. The computational bottle-neck for a typical genome

variation study is the mapping step [46]; a faster and more accurate mapping method than

what is available today is going to be a valuable tool towards realizing the goals of personal

genomics and medicine [81]. Since most structural variation occurs within repeat regions

(both low copy repeats and common repeat elements), it is critical to consider all possible

mapping locations for each read.

Although BWT-FM based methods accelerate read mapping significantly over hash

based methods when the goal is to find the best matching location, these methods seriously

limit the scope for structural variation studies as argued above. Furthermore, FM index is,

by nature, for finding exact matches, and extending it to find mappings with mismatches

is only achieved by some adhoc heuristics, which results in reduction of accuracy and effi-

ciency. Unfortunately, for the above algorithms, the mapping time increases exponentially

with the number of mismatches and indels allowed.

As HTS data grows exponentially in size, data management and storage have become

major logistical obstacles for adopting HTS platforms. The requirements for ever increasing

monetary investment almost signalled the end of the Sequence Read Archive hosted at the

National Center for Biotechnology Information (NCBI), which holds most of the sequence

CHAPTER 1. INTRODUCTION 4

data generated world-wide. One way to solve storage requirements for HTS data is compres-

sion. Currently, most HTS data is compressed through general purpose algorithms such as

gzip. These algorithms are not specifically designed for compressing data generated by the

HTS platforms; for example, they do not take advantage of the specific nature of genomic se-

quence data which includes limited alphabet size and high similarity among reads. The need

for improved performance has recently lead to the development of a number of techniques

specifically for HTS data. Available compression techniques for HTS data either exploit (1)

the similarity between the reads and a reference genome or (2) the similarity between the

reads themselves. Once such similarities are established, each read is encoded by the use

of techniques derived from classical lossless compression algorithms such as Lempel-Ziv-77

[124] (which is the basis of gzip) or Lempel-Ziv-78 [125] .

Compression methods that exploit the similarity between individual reads and the ref-

erence genome use the reference genome as a “dictionary” and represent individual reads

with a pointer to one mapping position in the reference genome, together with additional

information about whether the read has some differences with the mapping loci. As a result,

these methods [50, 61] require (i) the availability of a reference genome and (ii) mapping of

the reads to the reference genome. Unfortunately, genome mapping is a costly step time-

wise, especially when compared to the actual execution of compression (i.e. encoding the

reads) itself. Furthermore, these methods necessitate the availability of a reference genome

both for compression and decompression. Finally, many large-scale sequencing projects such

as the Genome 10K Project [42] focus on species without reference genomes.

Compression methods that exploit the similarity between the reads themselves either (i)

reorder the reads to increase similarity and then apply bzip [18], or encode the differences

of a read to another similar read [122]; or (ii) simply concatenate the reads to obtain a

single sequence and then apply Huffman Coding [111, 19] or apply context modelling with

arithmetic coding [54, 12].

Most of genomes sequenced from same species (i.e. human) are very similar to the ones

already collected. This means that the amount of new sequenced information is growing

slowly. [77] shows that this redundant information can be compressed in such a manner

that the analysis can be done directly on the compressed data.

CHAPTER 1. INTRODUCTION 5

1.1 Contribution

In this thesis, we focus on two computational problems involving HTS data namely “HTS

Sequence Mapping” and “HTS Sequence Compression”. Our goal is to design efficient al-

gorithms for sequence mapping in order to address the computational bottleneck for struc-

tural variation as well as providing an HTS specific compression tool to handle the large

throughput of the these sequencing technologies. More specifically we present the following

contributions:

• We introduce mrsFAST [39], a read mapping tool that utilizes specialized data struc-

tures which mathematically guarantee to (1) achieve optimal cache performance through

the use of cache obliviousness paradigm, and (2) find all mapping locations for each

read within a user specified error threshold. We show that mrsFAST has superior

performance, both in terms of speed and accuracy in comparison to all popular read

mapping algorithms, especially for longer read lengths. We also show that the map-

pings provided by mrsFAST coupled with state of the art structure variation detection

algorithms [46] capture deletions that can not be detected by single mapping based

approaches.

• We introduce a new SNP-aware read mapper developed for the Illumina platform,

mrsFAST-Ultra, that improves mappability, mapping accuracy, and sensitivity by tol-

erating sequence variants that were previously reported as real variants and distin-

guishing them from likely sequencing errors. mrsFAST-Ultra provides full sensitivity,

and it supports multi-mapping. We show that mrsFAST-Ultra is up to 4.5 times faster

than its predecessor mrsFAST. In comparison to newly enhanced popular tools such

as BWA (newest release) and Bowtie 2, it is more sensitive (it can report 60 times

or more mappings per read) and much faster (5 times or more) in the multi-mapping

mode.

• We present drFAST [48], a read mapper designed for di-base encoded “color-space”

sequences generated with the ABI SOLiD platform. drFAST is specially designed for

better delineation of structural variants including segmental duplications and is able

to return all possible map locations and underlying sequence variation of short reads

within a user-specified distance threshold. We show that drFAST is more sensitive

in comparison to all commonly used aligners (for color-space reads) such as Bowtie,

CHAPTER 1. INTRODUCTION 6

BFAST, and SHRiMP. drFAST is also faster than both BFAST and SHRiMP and

achieves a mapping speed comparable to Bowtie.

• We introduce two novel algorithmic formulations for identifying transcriptomic struc-

tural variants through aligning transcripts to the reference genome under the consider-

ation of such variation. The first formulation is based on a nucleotide-level alignment

model; a second, potentially faster formulation is based on chaining fragments shared

between each transcript and the reference genome. Based on these formulations,

we introduce a novel transcriptome-to-genome alignment tool, Dissect [123], which

can identify and characterize transcriptomic events such as duplications, inversions,

rearrangements and fusions. Dissect is suitable for whole transcriptome structural

variation discovery problems involving sufficiently long reads or accurately assembled

contigs.

• Lastly, we present SCALCE [40], a “boosting” scheme based on Locally Consistent

Parsing technique which reorganizes the reads in a way that results in a higher com-

pression speed and compression rate, independent of the compression algorithm in use

and without using a reference genome. We show that SCALCE obtains significant

improvements in both compression rate and running time over alternative methods.

In addition to our primary contributions to the sequence mapping and compression

problems mentioned above, our other contributions to the field of Computational Biology

can be found in [119, 64, 47, 76, 85, 49].

1.2 Organization of the thesis

The rest of the thesis is organized as follows: In Chapter 2, we describe sequence mapping

and sequence compression problems. Then we present an overview of the existing related

computational approaches and summarize the general issues related to previous work. In

Chapter 3, we introduce mrsFAST, our cache oblivious mapper and present experimental

results. In Chapter 4, we present an extension to mrsFAST, mrsFAST ultra that focuses

on optimizing the search methodologies of mrsFAST. Chapter 5 describes two variants of

drFAST, our color space mapping tool and its experimental results. In Chapter 6, we

focus on Dissect, our trascriptome to genome mapping tool that considers the structural

alterations during the mapping. Chapter 7 introduces SCALCE, our HTS compression tool

CHAPTER 1. INTRODUCTION 7

that uses Locally Consistence Parsing to increase the locality of HTS data in order to achieve

higher compression ratio. Finally, in Chapter 8, we offer a summary and conclusion of our

contributions to HTS technologies, as well as a discussion of possible directions for future

work.

Chapter 2

Background and Related Work

In this chapter, we formally define the sequence mapping and sequence compression prob-

lems. For each problem, we provide the preliminaries followed by an overview of existing

tools. Finally, we offer a general summary of the issues over the existing methods.

2.1 Sequence Mapping

2.1.1 Definitions

Sequence Mapping Problem: For a given reference sequence S, a set of read sequences R,

a scoring function δ and error threshold e, find the set of locations (mappings) in S where

the read sequence has a distance ≤ e under function δ. The common distance measures are

Hamming Distance (mismatches) and Edit Distance (mismatches, insertions and deletions).

For example in Hamming Distance case, δ function can be defined as: mismatch:+1, indel:

−∞ and match:0.

Best Mapping: For any given read r ∈ R, best mapping location is “one” location in the

reference sequence that is the most probable location that r is originated from. The measures

that can be used to define this likelihood is the “minimum” number of edit operations or

the“minimum” sum of Phred quality [24] score of error locations in r. Phred quality scores Q

is defined as a property which is logarithmically related to the base-calling error probabilities

P (Q = −10 log10 P). For example, if Phred assigns a quality score of 30 to a base, the

probability that this base is called incorrectly is 0.001.

8

CHAPTER 2. BACKGROUND AND RELATED WORK 9

All Mapping: For any given read r ∈ R, all the possible locations in the reference

sequence S with a distance ≤ e.

2.1.2 Burrows Wheeler Transform, Suffix Arrays, FM-index and Exact

Matching

Let Σ be an alphabet, $ a symbol not in Σ which is lexicographically smaller than all the

symbols in Σ. Given a string X = a0a1an−1 of length n where an = $, let X[i] = ai be the

i-th symbol of X, X[i, j] = ai . . . aj a substring of X and Xi = X[i, n − 1] a suffix of X.

Suffix array [79] SA of X is a permutation of the integers 0 . . . n− 1 such that SA(i) is the

start position of the i-th smallest suffix.

For a substring W of X, the position of each occurrence of W in X will occur in an

interval in the suffix array. Let Rl and Rh be the beginning and the end of this interval in

suffix array. Rl and Rh can be defined as:

Rl = min{k : W is the prefix of XS(k)} (2.1)

Rh = max{k : W is the prefix of XS(k)} (2.2)

The naive way to find this interval requires O(|W | log |X|) time. [79] provided a faster

solution to find this interval with time complexity of O(|W | + log |X|) by pre-calculating

longest common prefix between W and the suffix array entries.

The BWT of X is defined as B[i] = $ when SA(i) = 0 and B[i] = X[SA(i) − 1]

otherwise. The naive way to construct BWT of a given string is to add $ to the end of

string, then sort all the circular shifts of the string and use the last column as BWT. This

approach is quadratic in time and space. It is efficient to construct the suffix array first and

then generate BWT. Most algorithms for constructing suffix array require at least ndlog2 ne
bits of working space. [45] gave an algorithm that uses n bits of working space and time

complexity of O(n log n).

Let C(a) be the number of symbols in X[0, n−2] that are lexicographically smaller than

a ∈ Σ and Occ(a, i) the number of occurrences of a in B[0, i]. Ferragina and Manzini [29]

showed that if W is a substring of X:

Rl(aW) = C(a) +Occ(a,Rl(W)− 1) + 1 (2.3)

Rh(aW) = C(a) +Occ(a,Rh(W)) (2.4)

CHAPTER 2. BACKGROUND AND RELATED WORK 10

and that Rl(aW) ≤ Rh(aW) if and only if aW is a substring of X. This means that O(|W |)
time is required to check if W is a substring of X and also count the number of occurrences

of W in X. This is called “backward search”.

The algorithm described above needs to load the occurrence array Occ and the suffix

array SA in the memory. Given a genome of size n, the occurrence array Occ(., .) requires

4ndlog2 ne bits as each integer takes dlog2 ne bits and there are 4n of them in the array

(|Σ| = 4). In practice, one can store in memory Occ(., k) for k that is a factor of 128 and

calculate the rest of elements using B on the fly. When two bits are used to represent a

nucleotide, B requires 2n bits. The memory for backward search is thus 2n+ ndlog2 ne/32

bits. Enumerating the position of each occurrence requires the suffix array SA. If the entire

SA is put in memory, it would use ndlog2 ne bits. SA(k) is stored in memory only for those

k that are divisible by 32. For ks that are not a factor of 32, one can repeatedly apply “find

previous character” (C(B[i]) +Occ(B[i], i)) for some iterations until SA is available (factor

of 32). The memory requirement reduces to 2n + ndlog2 ne/16. This is about 1.2Gb for

human genome.

2.1.3 Existing Methods

MAQ

MAQ [71] is a hash based best-mapper. Its criteria for best mapping is to minimize the

sum of the quality values for all the mismatched bases. If there are multiple equally best

positions, then one of them is chosen at random. MAQ guarantees to find mappings with

up to two mismatches in the first 28 bp of the read, namely the seed section.

MAQ builds multiple hash tables to index the reads and scans the reference sequence

against the hash tables to find the potential mapping locations. By default, six hash tables

are used, ensuring that a sequence with two mismatches or fewer will be hit. The six hash

tables correspond to six non-contiguous seed templates. Suppose that the seed size is 8 bp,

the six templates are 11110000, 00001111, 11000011, 00111100, 11001100, and 00110011,

where nucleotides at 1 will be indexed while those at 0 will not.

By default, MAQ indexes the first 28 bp of the reads, which are typically the most

accurate part of the read. In the mapping phase, MAQ loads all reads into memory and

then applies the first template as follows. For each read, MAQ takes the nucleotides at

the 1 positions of the template and hashes the read. It, then, groups the reads with the

CHAPTER 2. BACKGROUND AND RELATED WORK 11

same hash value. When indexing is complete, MAQ scans the reference base by base on

both forward and reverse strands. Each 28 bp subsequence of the reference will be hashed

through the same template used in indexing and will be looked up in the six hash tables. If

a hit is found for a read, MAQ will calculate the sum of the qualities of mismatched bases

over the whole length of the read, extending out from the 28-bp seed without gaps MAQ

will re-iterate this for all the templates.

SOAP

SOAP [72] is a hash based best-mapper. It allows either a certain number of mismatches

(at most 2) or one continuous gap (1-3 bp) for mapping a read onto the reference sequence

(no mismatches are allowed in the flanking regions). Its criteria for best mapping is either

the minimum number of mismatches or a smaller gap.

To allow two mismatches, a read is partitioned into four fragments, the two mismatches

can exist in at most two of the fragments at the same time, this will generate six combinations

of the two fragments as seeds. SOAP loads reference sequences into memory and builds the

seed index tables for the reference sequence. Then for each read, it creates seeds and searches

the corresponding index table for candidate hits. Finally, it performs alignment and report

the results.

SOAP uses a look-up table to accelerate the alignment. To reduce the space, both the

reads and the reference sequences are converted into 2-bits-per-base encoding. A read will

do exclusive-OR comparison with the reference sequence to find the number of different

bases.

Since mismatches are not allowed in gapped hits, SOAP uses the enumeration algorithm

which tries to insert a continuous gap or delete a fragment at each possible position in a

read.

SRmapper

SRmapper [38] is a hash based best-mapper. SRmapper starts by building an index on

the reference genome. The index takes the form of a hash table. To construct the hash

table, SRmapper takes k consecutive bases from reference and encodes each base with 2

bits. The resulting number is the hash value for the k-mer. This hash value points to a

bucket containing the locations on the genome that share the same k-mer. SRmapper builds

CHAPTER 2. BACKGROUND AND RELATED WORK 12

a collision free hash table with O(1) look up. This means that two different k-mer cannot

have the same hash value. This results in 4k entries. This requires huge amount of memory

for a mammalian genome like human (approx. 16GB). To reduce the memory requirement,

SRmapper divides a genome into non-overlapping sequences containing k bases and stores

the locations of these sequences in the corresponding buckets. For a reference sequence of

length R, k is chosen according to k = blog4Rc. In case of human genome, k is 15. R/k

locations are stored in the hash table. SRmapper loads 1/4 of the index at a time and then

iterates over the four parts. This is done to reduce the memory usage.

SRmapper uses seed and extend strategy to find the best mapping location for the read.

In the first step, it calculates the hash value for the first k bases (1 through k), and then

retrieves the possible candidate locations from the index. In the second step, the remaining

bases are compared with their corresponding bases in the reference. A mapping is considered

to be proper if, on comparing all bases against the reference, the number of mismatches is

less than or equal to the allowed number of mismatches. If a mapping is found, the error

threshold e is then decreased to the number of mismatches in that mapping, and the location

of the alignment and the number of mismatches is stored. SRmapper iterates these two steps

until (e + 2)k bases are covered. To justify this approach, suppose there is no error in the

read, then SRmapper needs to use at least k consecutive bases as starting point for k-mer

since the genome is being indexed with non-overlapping k-mers. This means that it requires

to cover 2k bases. If there is one error in the read, it will happen at most in k of the k-mers.

Then we need to continue at least 2k more bases to be able to find any possible mappings.

To speed up the mapping process SRmapper introduces two heuristics: (i) SRmapper

reduces the error threshold by 1 if two mappings with an equal number of mismatches are

found for a read. This modification has no effect on the number of confident alignments

achieved; (ii) SRmapper limits the number of locations that should be verified from each

bucket. This obviously will reduce sensitivity in trade for speed.

GSNAP

GSNAP [120] is a hash based best-mapper. Searching involves the steps of generating,

filtering and verifying candidate genomic regions. Similar to SRMapper, GSNAP reduces

the memory size by indexing 12-mers every 3 nt in the genome.

Depending on the read length L and the error threshold e, a multiway merging process

can be used in two different ways to generate and filter genomic regions for verification. For

CHAPTER 2. BACKGROUND AND RELATED WORK 13

smaller values of e, GSNAP uses a multiway merging based on “Spanning Set” of k-mers

which filters genomic regions based on the number of k-mers. For larger values of e, GSNAP

employs a merging process based on “Complete Set” of k-mers, which filters genomic regions

based on the pattern of k-mers that support the region. Both methods provide lower bounds

on the number of mismatches present in a read that can be used for filtering.

Spanning Set. A spanning set is a minimal set of 12-mers that covers the read. This

structure exploits the pigeonhole principle that the number of non-supporting 12-mers (el-

ements), those that fail to contain a given position in their corresponding position list,

provides a lower bound on the number of mismatches in the read. Because of the indexing

scheme that indexes the genome every 3 nt, GSNAP constructs six spanning sets, one for

each shift of 0, 1 and 2 nt in both the forward and reverse complement directions. These

sets of 12-mers are non-overlapping, so the pigeonhole principle now holds where k non-

supporting elements implies a lower bound of k mismatches, and the region may be filtered

out if k > e . Although it is possible to use all spanning set elements to generate candidates

and then proceed to the verification step, GSNAP assigns some of the elements for gener-

ating candidates and reserves the others for a secondary filtering step. In short, GSNAP

performs a multiway merge on the position lists of generating elements. For each position,

it counts the support. If the support is high enough to allow at most e non-supporting

elements, then it will go through another step to check the supporting elements. If the can-

didate has more than e non-supporting elements, then it will be eliminated, otherwise, it will

be verified as a potential mapping position. Allocation of N elements between generating

and filtering depends on allowed number of mismatches (e). At least (e + 1) elements must

be generating to guarantee that at least one generating element has support for a candidate

region while the e other generating elements do not. N − e − 1 elements can be used as

filtering elements. Usually it is better to choose the longer list for filtering. To illustrate

this, consider a read of length 120 bp. The number of elements (non-overlapping 12-mers)

is 10. If the mapping locations with less than 4 mismatches are desired, GSNAP can assign

6 elements as generating elements and 4 as filtering elements. If a region has a support of

at least 2 then it will go for filtering step. If one of the filtering elements does not contain

this region, it will be filtered.

Complete Set. GSNAP employs a method based on the complete set of overlapping

12-mers to allow more mistmaches. This approach works for any e as long as there is a

CHAPTER 2. BACKGROUND AND RELATED WORK 14

consecutive 14 bp region shared between the read and the genome. Candidates are generated

by performing a multiway merge of position lists for all read locations in a single forward

and single reverse complement. During this merge, locations of the 12-mers that support

each candidate region is stored (i.e. location t is supported by number of 12-mers that start

at locations 1, 3, 9, . . .). The pattern of the supporting 12-mers provides a lower bound

on mismatches in the read. If the supporting 12-mers have read locations separated by ∆p,

then the minimum number of mismatches between them is b(∆p+ 6)/12c. Over the entire

read, GSNAP can sum these lower bounds to evaluate if the reads should be verified.

YAHA

YAHA [26] is a hash based best-mapper. Similar to GSNAP, YAHA builds a genome index.

(It can handle different k-mer size and different distance between two consecutive k-mers).

YAHA uses a hash table index to locate the set of locations (seeds) where each k-mer in

the query sequence appears as a subsequence of the reference. YAHA next joins these seeds

together to form extended seeds (“fragments” of contiguous matching bases between the

query and the reference). To find extended seeds, many aligners collect all N seeds for a

query into an array and sort them to collocate seeds to be placed in a fragment. However,

since the seeds for each k-mer are pre-sorted in the genome index, YAHA does L-way

merging (L is read length).

After obtaining the extended fragments, YAHA tries to find the best potential mapping

in each region of the reference by combining the fragments that contribute to the highest

estimated alignment score in that region. YAHA calculates the estimated score for each

collection of fragments with affined gap penalties; fragments are scored as matches, while

differences between fragment diagonals are scored as a single indel. YAHA builds a graph

where each node in the graph represents a fragment and each edge represents the cost of

one fragment succeeding another one. Fragments earlier in the query can only be succeeded

by fragments later in the query, thus the graph is directed and acyclic. Finding maximum

scoring path requires visiting each edge only once in the proper (topological sort) order. By

placing the nodes in an array and sorting them by starting position in the read, YAHA can

perform the graph algorithm without ever forming the edges explicitly. Each node is visited

sequentially while checking against all nodes above it in the sorted array. If an edge is

allowed between two nodes, YAHA scores the edge, updating the best score and best path.

It, then, takes each potential alignment, and calculates the full alignment. Finally, it uses a

CHAPTER 2. BACKGROUND AND RELATED WORK 15

modified version of Smith-Waterman to find the portions of the alignment that fall between

fragments, and to find the best forward and backward extensions for the alignment.

RazerS and RazerS3

RazerS [115] and RazerS3 [116] are both seed-and-extend all-mappers. RazerS family is

based on q-gram. The q-gram lemma states that two sequences of length n with hamming

distance e share at least t = n+ 1− (e+ 1)q common substrings of length q (q-gram). The

lemma can be applied to edit distance if n is the length of longer sequence.

In order to find the potential match regions of a read in the genome, RazerS uses SWIFT

algorithm which is based on the following two observation. Suppose that two sequences share

t q-grams. The dot plot of the sequences consists of at least t contiguous diagonals of length

q. If the two sequences have edit distance e then there are at most e+1 consecutive diagonals

covering these t q-grams. In the case of hamming distance, there is a single diagonal that

covers the t q-grams.

For any read of length r, each dot plot parallelogram of dimension r ∗ (e + 1) with at

least t q-grams contains a potential match. To speed up, instead of counting q-grams for

each possible parallelogram separately, it is enough to count them in overlapping |r| ∗ w
parallelograms (w > e+ 1) that have an overlap of e. This guarantees that every r ∗ (e+ 1)

is contained in a r ∗ w parallelogram. In a linear scan over the reference sequence, the

number of common exact q-grams between read and the reference subsequence is counted

for each parallelogram. Parallelograms that contain a sufficient number of common exact

q-grams are considered as candidate regions for verification.

RazerS3, in addition to SWIFT filtering, is equipped with another method of filtering

based on pigeonhole principle. For error e and arbitrary length reads, the minimal q-gram

size is selected and then reads are indexed. Then the index is scanned in linear fashion over

the genome and potential match locations are verified. This method is used when e is small

and SWIFT algorithm is used when e is large.

Bowtie, Bowtie2

Bowtie [63] is a BWT-FM based best-mapper1. FM Index is devised for exact-matching. To

handle sequencing errors/genetic variations, Bowtie modifies this algorithm by introducing

1Bowtie’s best mapping mode is 2 to 3 times slower than its default mode.

CHAPTER 2. BACKGROUND AND RELATED WORK 16

two extensions: (i) a quality-aware backtracking algorithm that allows mismatches; (ii) and

“double indexing”, to avoid excessive backtracking. Its criteria for mapping allows a limited

number of mismatches and prefers mappings where the sum of the quality values at all

mismatched positions is low. Bowtie has a MAQ-like policy where it allows up to 2 errors

in seed (first 28 bases) as well as the maximum acceptable quality distance of the overall

mapping.

Bowtie conducts a backtracking search to find mappings that satisfy the mapping policy

above. The search proceeds similarly to the exact backward search, calculating Rl and Rh

ranges for successively longer query suffixes. If the range becomes empty then Bowtie may

select an already matched query position and substitute a different base there, introducing a

mismatch into the mapping. Then it resumes backward search from just after the substituted

position. Bowtie selects only those substitutions that are consistent with the mapping

policy and which yield a modified suffix that occurs at least once in the text. If there are

multiple candidate substitution positions, then the algorithm greedily selects a position with

a minimal quality value.

The algorithm described so far may encounter sequences that cause excessive backtrack-

ing. Bowtie reduces excessive backtracking with introduction of “double indexing”. Two

indices of the genome are created: one containing the BWT of the genome (“forward index”),

and the other containing the BWT of the genome with its character sequence reversed (not

reverse complemented) called the “mirror index”. To illustrate the benefits of such indexing,

consider a matching policy that allows one mismatch in the alignment. A valid mapping

with one mismatch falls into one of two cases according to which half of the read contains

the mismatch. Bowtie proceeds in two phases: In Phase 1, it loads the forward index into

memory and invokes the algorithm with the constraint that it may not have a substation in

the query’s right half. Phase 2 uses the mirror index and invokes the aligner on the reversed

query, with the constraint that the aligner may not substitute at positions in the reversed

query’s right half (the original query’s left half). The constraints on backtracking into the

right half prevent excessive backtracking, whereas the use of two phases and two indices

maintains full sensitivity.

Bowtie uses the first 28 bases on the high-quality end of the read as ’seed’. The seed

consists of two halves: the 14 bp on the high-quality end (usually the 5’ end) and the 14

bp on the low-quality end, called the ’hi-half’ and the ’lo-half’, respectively. Assuming the

default policy (two mismatches permitted in the seed), a reportable mapping will fall into

CHAPTER 2. BACKGROUND AND RELATED WORK 17

one of the following four cases: no mismatches in seed (case 1); no mismatches in hi-half,

one or two mismatches in lo-half (case 2); no mismatches in lo-half, one or two mismatches

in hi-half (case 3); and one mismatch in hi-half, one mismatch in lo-half (case 4). Bowtie

alternates between forward and mirror indices to cover all the cases in three phases.

Note that if one or more exact matches exist for a read, then Bowtie is guaranteed to

report one, but if the best match is an inexact one then Bowtie is not guaranteed to find

the highest quality alignment.

Unlike Bowtie, Bowtie2 [62] supports gapped alignment. In doing so, Bowtie2 extracts

seeds from the read and its reverse complement. It, then, employs FM-index to extract

all the ranges related to these seeds and then prioritize them. Finally, it uses an extended

version [25] of Smith-Waterman [109] algorithm to to align these ranges to the read.

BWA, BWA-SW

BWA [68] and BWA-SW [69] are BWT-FM based best-mappers. For a given read R, BWA

calculates D(i) where D(i) is the lower bound on the number of differences between prefix

R[0, i] and the reference sequence. This means that R[0, i] cannot be mapped to the reference

with less than D(i) errors. To calculate D, BWA uses BWT of the reverse reference sequence

(not complemented) to test if a substring of R is also substring of the reference. It finds

the maximal match for the prefix of R. If there are remaining bases then it tries to find a

maximal match for the remaining bases and so on and so forth. Every time BWA resets

the maximal search, it introduces an error in D. To illustrate this, suppose the reference

is GOOGOL and the query is LOL. Obviously L is the maximal prefix substring of query

that can be found in reference because LO does not exists in reference, thus D(0) = 0

and D(1) = 1, now BWA resets and looks for maximal prefix match of OL, OL exists in

reference and thus D(2) = 1.

BWA uses a recursive algorithm to search for the suffix array intervals of substrings of

the reference that match the query string R with no more than e differences (mismatches

or gaps). It uses D to reduce the search space.

GEM

GEM [80] is a BWT-FM based all-mapper. GEM employs a filtration-based approach to

approximate string matching: all relevant candidate matches are extracted from a FM index

CHAPTER 2. BACKGROUND AND RELATED WORK 18

by suitable pigeonhole-like rules and refined by dynamic programming [92] in bit-compressed

representation.

Partitioning the reads into equally-sized segments may not provide the results efficiently.

Some of the segments may yield to many candidate matches that need to be verified, thus

leading to inefficient alignment.

GEM picks a threshold t, which describes the maximum number of candidates that

should be considered for each filtering segment. For a given read, GEM scans the read

backward (from right to left) with FM-index adding one character more to the current

region each time and calculating the number of candidates in the reference that correspond

exactly to the string being formed. Any time the number of rows (candidates) falls below

the threshold, it starts a new region.

Note that by definition such a procedure guarantees that the number of candidates to

be considered per filtering segment will always be less than the threshold. However, the

method does not give any guarantee about the number of regions that will be identified.

This eliminates any mathematical guarantees for exhaustive mapping scheme by enforcing

pigeonhole-like rules. In practice, for vast majority of the reads this method works well.

SOAP2

SOAP2 is a BWT-FM based best-mapper. SOAP constructs a hash table to accelerate

search for the location of a read in BWT reference index. Because of the hash, very few

search interactions are sufficient to identify the exact location inside the block. For inexact

(both mismatch and indel) alignments, it partitions the read into segments. To allow one

mismatch, a read is partitioned into two fragments. Similarly, it partitions a read into three

fragments to search for hits that allow two mismatches.

2.2 Sequence Compression

2.2.1 HTS data format

Typically, high throughput sequencing data sequencing data consists of three parts: Read

name, read sequence and quality scores. Read name is a unique string that specifies an

HTS read. There are a few naming conventions for this part of the data but there is not

any universal standard. Read sequence is the nucleotide bases. Quality scores are the

CHAPTER 2. BACKGROUND AND RELATED WORK 19

base-calling error probabilities. There is one quality value per sequence base.

2.2.2 Popular Encodings: Huffman, Golomb, Gamma, Delta and Arith-

metic Coding

Huffman Coding

Huffman coding [52] is a lossless data compression method. Huffman coding is used when

the frequencies of the symbols are known. Huffman coding generates “prefix free code”

meaning that the code word for a symbol cannot be prefix of any other symbol. To generate

the huffman code, a binary tree is built as follows. Create a leaf node for each symbol

and add it to the priority queue. Remove the two nodes with highest priority (smallest

frequencies) from the queue and create an internal node with these two nodes as children

with frequency equal to sum of the frequencies of these two nodes. Add this new node to the

priority queue. Continue these steps until there is one node left in the queue. Assigning the

code words are simple as marking the left edges with 0 and right edges with 1. A code word

for a symbol is the concatenation of the edge symbols from the root to the corresponding

leaf.

2.2.3 Golomb Coding

Golomb coding [37] is a lossless data compression method. It is suitable when occurrence of

small values in the input are more probable than larger values. Golomb has a tunable pa-

rameter M which divides the input value N into two parts: q = N/M and r = N modulo M .

Golomb encodes N as follows: it encodes the q as unary coding (outputs q 1s followed by

one 0) and encodes r as truncated binary coding (Let b = dlog2Me, if r < 2b −M , output

r in binary representation using b − 1 bits, otherwise output 2b −M + r in binary using b

bits).

Gamma Coding

Gamma coding [22] is a lossless data compression method. It is used when the largest value

is not known ahead of time and the small values are much more frequent. Gamma code is

pretty simple. To encode N in gamma coding, output dlog2Ne− 1 0s at the beginning and

append the binary representation of N to it.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

Delta Coding

Delta coding is for storing data in the form of differences between sequential data rather

than absolute values. For example, instead of storing 14043, 14045, 14050, we can store

14043, +2, +5.

Arithmetic Coding

Arithmetic encoding [99, 118, 103] is a lossless entropy encoding scheme. The main idea is

to represent the whole input sequence as a fractional number n, where 0 ≤ n ≤ 1. For each

input symbol in the input, arithmetic encoder needs to know a probability assigned to that

symbol in order to successfully create the output. In order for data to be decoded, both

encoder and decoder have to use same probability distributions for the input symbols. The

technique of assigning probabilities to the symbols is usually referred as data modelling.

Performance of arithmetic encoder directly depends on the underlying data model. In

fact, it is well known result that arithmetic encoder can achieve optimal compression perfor-

mance (i.e. the compressed size is close to the entropy of the input data) with appropriate

model. Unfortunately, modelling problem is not uniform, since different data sources usually

have different optimal models. The most commonly used models are simple order-n models,

where for calculating the probability of the input symbol pi, we also take into account the

last n symbols which occurred before pi, namely pi−1, . . . , pi−n. These symbols are also

known as a context of the symbol pi. These models can be either stationary or adaptive.

For stationary models, probabilities of input symbols are calculated and known in advance

of the encoding process, while in the case of adaptive models, probabilities are constantly

being updated as the new symbols arrive to the coder.

2.2.4 Existing Methods

CRAM

CRAM [50] is a reference based lossless/lossy compression method. It requires to have the

mapping locations for the reads. The mappings should be sorted by their genomic location.

For every read, CRAM stores the starting position of the read with respect to the reference

genome, the strand and a flag that shows if the read is mapped perfectly. Positions of

the reads are encoded with Delta coding and the resulting value is stored as Golomb code.

CHAPTER 2. BACKGROUND AND RELATED WORK 21

Strand and match flags require one bit each. In the case of a non-perfect match, CRAM

stores a list of variations. Every variation is stored as its position on the read, the variation

type (substitution, insertion, deletion), and additional information (the base change in the

case of a substitution, the inserted bases, or the length of the deletion). The positions of the

variations are Delta and Golomb codes. Type of variation requires 1 or 2 bits. Positions of

the variations are Delta and Golomb encoded. The variation type (substitution, insertion,

or deletion) is encoded in 1 or 2 bits. Given the reference base, any substitution to A, C, G,

T, or N (other than the reference base) can be encoded in 2 bits. Inserted bases are encoded

in 2 or 3 bits. Length of deletions are encoded with Gamma coding. If the read length is

variable in the input, they are encoded with Huffman coding. For unmapped reads, CRAM

assembles them to contigs and then maps the unmapped reads back to this new references

and repeats the same procedure explained above. For quality scores, CRAM only keeps the

quality scores for the bases that show variations. These quality scores are then compressed

with Huffman coding.

SlimGene

SlimGene [61] is a reference based lossy/lossless compression method. Similar to CRAM,

SlimGene requires the mapping location for the reads. SlimeGene compresses the read

sequence and quality scores but not the identifiers (names) of the reads. These mappings

should be sorted with respect to their genomic loci. To compress the starting position of

the reads, SlimGene uses a binary array POS. This means that for each position on the

genome, SlimGene uses 1 bit. POS[i] is 1 if at least one read maps to the position i. For all

the reads that maps to the position i, SlimGene keeps a refinement vector. For each read,

the refinement vector consists of three bits (More copies, Strand and Flawless) and an Offset

array in case of any errors. If there are multiple reads map to the same position, “More

copies” bit is set to 1 except for the last read on the same genomic location. “Strand” bit

is set to 1 if it maps to forward strand and 0 otherwise. “Flawless” bit is set to 1 if it is

a perfect match. In the case that “Flawless” is set to 0, Offset array is also added to the

refinement vector which shows both the differential error location (offset) in the read and

type of the error (Opcode) . Usually the error location is calculated from the right hand

side of the read.

CHAPTER 2. BACKGROUND AND RELATED WORK 22

ReCoil

ReCoil [122] is a lossless read sequence compression method. It does not compress qual-

ity scores and read names from HTS data. ReCoil reorders the read sequences in order

to increase the similarity. ReCoil constructs a similarity graph between reads that is an

undirected weighted graph. In the similarity graph, for each read there is a node and there

is an edge between two nodes if the two reads share at least one k-mer. The weight of the

edges is equal to the number of k-mers shared between two reads.

Building such a graph for HTS reads requires huge amount of memory which is not

practical. ReCoil constructs this graph in external memory. To do so, it gets all the k-mers

from a read and stores the pair (k-mer, read id) on the disk. It (externally) sorts them

based on the k-mer value. After this step, all the reads that share the same k-mer fall in

the same range. For each k-mer, ReCoil gets all the read ids and adds the anchors (a, b) to

another file (a and b are read ids of the two reads). In the next step, it (externally) sorts

them based on the anchors. At the end of this step, similarity graph is built.

Then, ReCoil (externally) calculates the Maximum Spanning Tree (MST) of the simi-

larity graph. This tree catches the highest similarity between the reads and is unrooted.

Finally, ReCoil selects an arbitrary node in the MST as a root and outputs the the cor-

responding read. Then, it traverses the MST using BFS and encodes each node’s read using

maximal exact matches (MEMs) between that node’s read and its parent’s read. MEMs are

calculated by using a modified version of Smith-Waterman algorithm to calculate the edit

transcript. ReCoil can use a general purpose method to further improve the compression.

BEETL

BEETL [18] is a lossless read sequence compression method. BEETL constructs a modified

Burrows Wheeler string on a collection of reads. BEETL passes this modified version

to a general purpose Burrows Wheeler based compression method (i.e. bzip2, 7zip) for

compression. Note that the general purpose Burrows Wheeler based compression methods

always work with a fixed size window. Thus, doing a BWT on the full collection will increase

the locality.

To construct the BWT on a collection of read sequences: (i) append $1, $2, . . . $n to the

end of the reads (one symbol per read); (ii) generate all the circular shifts of all the reads.

(iii) sort them lexicographically. BWT of the collection will be the last column from this

CHAPTER 2. BACKGROUND AND RELATED WORK 23

sorted list. Note that $1, $2, . . . , $n do not exists in the alphabet and are lexicographically

smaller than any symbol in the alphabet. BEETL constructs this BWT on the collection

externally since for HTS reads, it requires more than 100G.

To understand the BEETL, it would be nice to mention that BWT of a string can create

easily compressible data. Consider transforming a long English text frequently containing

the word ”the”. Sorting the rotations of this text will often group rotations starting with

”he ” together, and the last character of that rotation (which is also the character before

the ”he ”) will usually be ”t”, so the result of this transform would contain a number of ”t”

characters along with the perhaps less-common exceptions (such as if it contains ”Brahe ”)

mixed in. Consider the range ”he” in the suffix array, on the BWT of a single string you

cannot swap the rows to make the ”t”s follow each other because the suffixes will never be

the same. In BWT of a collection when the order of the string does not matter, you can

change the order of the these suffixes if they are the same.

BEETL constructs another array named SAP (Same As Previous). SAP [i] is 1 for the

suffix i if it is equal to the previous suffix without considering the ending character. BEETL,

then, sorts the BWT of a range that has the same suffix. This procedure is equivalent to

the reverse lexicographical sorting of the reads.

G-SQZ

G-SQZ [111] is a Huffman coding-based compression method. It compresses data without

altering the relative order. G-SQZ scans the data and calculates the frequencies per pair

of (base, quality). It generates the unique Huffman code per pair. It, then, encodes the

pairs and writes them to a file. For meta information (read names), it compresses them

with Delta encoding meaning that meta-characters (‘@’, ‘+’, ‘>’, ‘ ’, ‘:’, etc.) are stored

only once and the differences between successive read names are stored. The compressed

file consists of a fixed-length header followed by a sequence of blocks, one block per read.

DSRC

DSRC [19] is a lossless compression method. It divides the reads into blocks and divides

each block into three streams and compresses them independently. DSRC uses heuristics to

compress the read names. It uses different delimiters to find the segments in the read names

and then analyzes these segments. If it is fixed (i.e. instrument name), then it stores them

CHAPTER 2. BACKGROUND AND RELATED WORK 24

once. If it is numeric, depending on the distance of the consecutive numbers, it either keeps

them packed or compresses them with Delta coding. DSRC uses two different methods to

compress the read sequences: (i) DSRC packs every four bases into one byte and then uses

Huffman coding to compress them. This method is fast but has a lower compression ratio.

(ii) DSRC uses an LZ like compression method on the packed reads. It compresses the

uncompressed portion with a backward pointer. DSRC compresses the quality scores using

Huffman Coding.

Quip, Fastqz and Fqzcomp

Fastqz, Fqzcomp [12] and Quip [54] are lossless compression methods based on context

modelling and arithmetic coding. Context modelling is just providing the probabilities for

arithmetic coder. Similar to DSRC and G-SQZ, read names are compressed through Delta

coding and AC. For read sequence compression, Quip uses order-12 AC, fqzcomp can use

a configurable k-order AC (order-7 seems to work best to find sequence biases and motifs)

and fastqz uses 6 models (order-0 to order-5). For quality score compression, Quip uses AC

order-3, fqzcomp uses order-2 AC and fastqz uses a mixture of three different models.

2.3 Conclusion

In this chapter we presented an overview of the existing tools for sequence mapping and

sequence compression. Sequence mapping tools can be classified into two categories based on

indexing method they use: (i) hash based and (ii) BWT-FM based tools. BWT-FM based

methods provide a fast way to map a collection of HTS reads to the reference genome,

but they acquire this speed by sacrificing sensitivity using ad-hoc heuristics. On the other

hand, hash-based methods can reach full sensitivity if designed properly, but they suffer

from speed and memory usage. Most of the available hash-based methods use some kind of

heuristics to reduce the search space, and by doing so, they lose sensitivity.

Sequence compression methods can be classified into two categories. The first category

exploits the similarity between the reads and a reference genome while the second category

exploits the similarity between the reads themselves. The first category provides an efficient

way to compress the HTS reads, but they suffer from availibity of the reference genome and

time required for mapping HTS reads to the reference genome. The issue with the second

category is that finding a competitive model can be very complicated.

Chapter 3

A Cache-Oblivious Algorithm for

Mapping

As mentioned in Chapter 1, High Throughput Sequencing (HTS) technologies produce un-

precedented amounts of data that demands very fast, efficient, and accurate read mapping

algorithms. Although improvements in CPU speeds have been helping to improve the per-

formance of such algorithms, the time they spend for accessing the memory is increasingly

dominating their running time and providing a significant bottleneck. New and popular

read mapping tools index sequence data in main memory to obtain good performance, but

the (1) data structures they use are typically not optimized for cache performance; as a

result they suffer from frequent cache misses and the costly access to main memory. Fur-

thermore (2) these ”memory efficient” data structures are capable of handling only short

read lengths and at most 2 to 3 mismatches or indels. In addition, (3) for purposes of

structural variation discovery, it is of utmost importance that such mapping algorithms find

all mapping locations of a given read on the genome - these data structures can not provide

such guarantees. As a result, mapping longer reads with higher error rates to all locations

will provide a significant computational bottleneck, whose resolution will be essential to

the full realization of personalized genomics. To address this need, many mapping algo-

rithms [71, 75, 43, 100, 5, 44, 72, 115, 116, 26, 120, 38, 68, 69, 63, 62, 73, 80] have options to

report read multiplicities, however most of this tools do not return the underlying sequence

variation.

“Cache obliviousness” is a new paradigm for massive database search, whose potential

25

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 26

contributions to the efficiency of the short read mapping algorithms have not yet been

explored. A cache oblivious algorithm utilizes the available cache hierarchy in a systematic

manner so as to reduce the number of cache misses, and thus improves the performance

without any specific knowledge of the existing cache sizes or structure. A standard example

of a cache oblivious algorithm, is one that compares each element of a given list L1 with

every element of an other L2. A näıve algorithm for this task may use two nested loops

to compare each element of L1 with all of the elements of L2, requiring a total of O(|L1| ·
|L2|) comparisons. A cache oblivious algorithm for the same task, partitions the two lists

recursively until the subproblems can fit in the cache hierarchy, and compare the sublists

with each other. Although the number of comparisons stay the same, the order in which

they are performed will mathematically guarantee that the number of cache misses will be

minimized. Because all available short read mapping tools spend a significant amount of

execution time handling cache misses, the cache obliviousness paradigm has a potential to

improve their performance drastically.

In this Chapter, we introduce mrsFAST, a cache oblivious short read mapping algorithm.

mrsFAST rapidly finds all mapping locations of a collection of short reads in the reference

genome through indexing both the reference genome and the short read collection and

performing a simple all-to-all list comparison via the cache oblivious algorithm sketched

above.

mrsFAST is guaranteed to report all possible read mappings and the underlying sequence

variation within a specified number of mismatches and indels, for the purposes of discov-

ering segmental duplications and estimating absolute copy numbers of duplicated genomic

segments [5] by read depth and structural variation by end-sequence placements [46]. Al-

though the false discovery rate may be higher for this approach, application of mrsFAST has

the ability to sample structural variation more comprehensively and identify many variants

missed by other approaches.

mrsFAST is a seed-and-extend algorithm. It works by first placing a k-mer (seed) from

a read by interrogating the index (in the form of a hash table for all k-mers and their

respective loci) of the reference genome, and then extending them by allowing at most a

user specific number of mismatches or indels. During the execution of the algorithm, the

operating system copies the information related to the seed locations from the main memory

to the much faster levels of cache memory, and the extension step is performed using the

information stored in the cache. In a näıve execution of such a seed-and-extend algorithm,

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 27

the seed mapping locations to be compared to the read would be streamed through the

cache. Since the capacity of the cache is very limited, before such read locations can be

used for another read, they will be overwritten. mrsFAST reorders the comparisons to be

made in order to ensure that the cache memory is split evenly between reads that share a

k-mer and seed mapping locations. This facilitates multiple comparison of a seed mapping

location while it is resident in the cache.

We have compared mrsFAST with popular mapping tools available for the purpose of

finding all the mapping locations of reads on the reference genome within a user defined

number of mismatches. Our tests indicate that our method is not only significantly faster but

also more sensitive than these methods. Furthermore, the mappings provided by mrsFAST,

when used in combination with state of the art structural variation detection algorithms

like VariationHunter [46] can capture deletions which can not be detected by methods that

rely on best mapping locations provided by MAQ, BWA or Bowtie.

The source code for mrsFAST is available at http://mrsfast.sourceforge.net/

3.1 Methods

Given a read from a high throughput sequenced donor genome, a mapping algorithm aims to

find locations on the reference genome such that the read can be aligned exactly, or within

a small number of mismatches (or indels). Here, we introduce mrsFAST (Micro Read-

Substitutions only- Fast Alignment and Search Tool) which finds all mapping locations of

each read of a given length r on the reference genome within a user specified, e mismatches.

mrFAST-CO extends mrsFAST in a way that it finds all mapping locations of a given read

on the reference genome within e mismatches and indels. mrsFAST is a seed-and-extend

type algorithm: it creates a collision free hash table for each length-br/(e+ 1)c substring of

the reference genome and then map the reads to the genome using this hash table. A key

contribution of mrsFAST is that it introduces the cache obliviousness paradigm to genome

mapping - and, in fact, to computational genomics, through which it achieves superior

running time in comparison to popular mapping algorithms.

The description below focuses on the data structure used by mrsFAST . mrFAST-CO

data structure is very similar to that of mrsFAST so rather than describing it separately we

only note its differences when necessary.

http://mrsfast.sourceforge.net/

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 28

3.1.1 Indexing the Reference Genome

2312AAAAAAA

AAACCCC

CCCAAAA

CGCCAAA

GGGGAAA

GTCGGAA

TTTTTTTT

1222

3222

1

100

12

345 6000

2000 4500

1226

Figure 3.1: Excerpts from a conceptual reference genome index GI.

mrsFAST creates an index array (see Figure 3.1) for the reference genome, denoted GI

(Genome Index), in a way that for any unique subsequence of size k = br/(e + 1)c of the

reference genome there exists an entry in GI. The jth item of GI, namely GI[j], is a 2-tuple

(s, L), where s is a subsequence of size k from the genome and L is a list of all positions

of the genome starting with this subsequence, and are respectively denoted as GI[j].s and

GI[j].L. The items GI[j] are maintained in GI in lexicographically sorted order with respect

to their subsequences GI[j].s. If the length of the reference genome sequence is n, an upper

bound for the size of GI would be O(n ·k); however, because of the highly repetitive nature

of genome sequences, the typical size of GI is much smaller in practice.

3.1.2 Indexing the Donor Genome

AAACCAA TTAACAT TTAACAARead 1:

Partition 1 Partition 2 Partition 3

GGGGAAA AAACCAA TTTTTTTRead 4:

...

Figure 3.2: Sample read partitioning for e = 2: each read is partitioned into 3 equal length
blocks

Given a collection R, of length r reads from the donor genome (the number of reads

in R denoted by |R|) we partition every read to e + 1 non-overlapping blocks of length

k = br/(e + 1)c each. The pigeon hole principle guarantees that if a read is mapped to a

specific location in the reference genome with at most e mismatches (i.e. within hamming

distance e), then at least one of these blocks should map to the reference genome location

with no mismatches. We create an index array, RI, as shown in Figure 3.3 for these

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 29

AAACCAA 11

1002CAACATA

GGGGAAA 41

TTAACAA 13

TTTTTTTT

TTAACAT

4

12

3

sr p x

2 4

Figure 3.3: Excerpts from a conceptual donor genome (i.e. read) index RI - for the reads
given in Figure 3.1.

(e+1)|R| blocks, such that for any specific block from a read, there is a corresponding entry

in RI. Each entry of RI, denoted RI[i] is a 2-tuple (sr, PR) again, where sr is the sequence

corresponding the block, and PR is a list of read ids that include sr as a block and the

specific block location of sr in that read, respectively denoted RI[i].sr and RI[i].PR. RI

again maintains entries RI[i] in lexicographical order with respect to RI[i].sr.

3.1.3 Search

mrsFAST compares GI and RI to find the locations of the reference genome where a read

from the donor genome can be mapped with at most e mismatches. For each block of

the read, mrsFAST first finds the locations of the reference genome that have a matching

(i.e. identical) subsequence. Among all such locations, it then reports the ones whose

Hamming Distance to (i.e. the number of mismatches with) the read is at most e. The

order of comparison is as follows: Each GI[i] gets to be compared to only RI[j] for which

GI[i].s = RI[j].sr through a simple loop that scans the lexicographically sorted arrays GI

and RI from left to right. Given an item RI[i], there is indeed an item GI[j] such that

GI[i].s = RI[j].sr then all entries in the list GI[i].L is a candidate mapping location for

each read entry in RI[j].PR; thus the entire list GI[i].L needs to be compared to RI[j].PR.

The novelty of mrsFAST is that this ”all-to-all” list comparison is performed through

the recursive divide-and-conquer strategy, which guarantees cache obliviousness; i.e. the

number of cache misses in any level of the cache hierarchy during this very costly all-to-all

comparison step is mathematically guaranteed to be minimum [33]. As a result, mrsFAST

not only guarantees to find all locations of the reference genome that can be mapped to by

a particular read within e mismatches , but it guarantees to find them in minimum possible

time by any seed-and-extend algorithm.

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 30

Lemma 1 The number of cache misses by mrsFAST, at any level of the cache hierarchy,

is optimal among all family of seed-and-extend algorithms for mapping, within a factor of 2

in the worst case.

Proof: Consider a cache level that can accommodate a total of γ items from the lists L1

and L2 which need to be compared - this is the essence of a seed-and-extend type algorithm.

Note that a seed-and-extend type algorithm will need to either partition the reads from the

donor reads to non-overlapping blocks of length m and extract all substrings of length m

from the reference genome, or vice versa - in theory it is possible to do a combination of

the two. Independent of the option chosen, the number of comparisons that will need to be

performed will be the product of the lengths of the two genome sequences divided by m.

Now consider a ”hypothetical” cache optimal (as opposed to cache oblivious) seed-and-

extend algorithm. Without loss of generality, consider the case in which the lists are of

equal length, `; if they are not one can partition the longer one into smaller sublists, each of

length `, which can be compared to the shorter list independently. Starting with an empty

cache, this hypothetical cache optimal algorithm will bringing in some α items from list L1

and β items from list L2 to the cache before any comparison is performed. In fact for any

cache optimal algorithm that does not fill up all cache positions at each step of the all-to-

all comparison procedure, there is an alternative cache optimal algorithm which works in

alternative stages of (i) bringing in some items from L1 and others from L2 so as to fill up

some cache positions and (ii) do an all-to-all comparison for the items from the two lists.

In order to minimize the number of cache misses, such an algorithm necessarily maximizes

the number of pairwise comparisons in each execution of step (ii). This necessarily implies

that, (1) the cache is always kept full, i.e. α+ β = γ, (2) in order to maximize the number

of comparisons, α · β, under the constraint α+ β = γ, we have to set α = β = γ/2, and (3)

in the execution of step (i), either all the items from L1 or all the items from L2 or both

need to be fully replaced by new items from the same list(s). Note that the total number of

comparisons this cache optimal algorithm will perform is `2. Due to observation (2) above,

at most γ/2 · γ/2 comparisons can be performed in each iteration; thus the total number of

iterations will be (2 · `/γ)2. Due to observation (3) above, at the end of each iteration, at

least γ/2 items will be replaced in the cache; thus the total number of cache misses in all

iterations will be at least 2`2/γ.

The cache oblivious all-to-all list comparison algorithm on the other hand, will always

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 31

maintain that the number of items from L1 kept in the cache is equal to that from L2. In

level h = dlog2 ` − log2 γe + 1 of the recursive call for divide-and-conquer method will aim

to compare two sublists A and A′ from L1 of length d`/2he each, to two sublists B and B′

from L2 of the same length. Note that γ/4 < `/2h ≤ β/2, thus the sublists to be compared

can easily fit in the cache. After the comparison of each pair of sublists, at most d`/2he
items will be replaced in the cache through a correct ordering of the recursive calls. As a

result, the total number of cache misses per recursive call in level h will be 4 · `/2h. Because

the total number of recursive calls at this level is 22(h−1), the total number of cache misses

will be 2 · ` · 2h−1 in level h.

The above calculation simply implies that the ratio between the number of cache misses

by the cache oblivious algorithm and the hypothetical ”optimal” algorithm is at most 2`2h−1

2`2/γ

(at level h), which is upper bounded by the constant 2 as 2h−1 ≤ `/γ by definition. Thus,

even in the worst case, the cache oblivious algorithm is optimal with respect to the cache

misses within a factor of 2.

Note that in order to guarantee that we report each mapping location for a read only

once (there are e + 1 blocks of a read - each block can ”re-discover” a location detected

earlier by another block) we make sure that blocks to the left of the current blocks each

have at least one mismatch with the potential mapping location in the reference genome. If

this constraint is not satisfied, the potential mapping location is no longer considered.

3.2 Additional Features

mrsFAST is designed to handle not only single read mapping but also paired end mapping.

For this purpose mrsFAST initially maps each of the ends of every paired end reads inde-

pendently to each chromosome. Then, it produces the mapping locations of each paired

end read by combining the independent mapping locations so as to satisfy all user defined

constraints such as the minimum and maximum distance between the ends. Because inde-

pendent mapping locations with respect to all reads are obtained in location sorted order,

these constraints are easily satisfied without the need for using additional data structures.

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 32

3.3 Results

We explore the performance and accuracy of mrsFAST in comparison to several popular

alternative mapping tools in depth below.

Software Benchmarked: We compared mrsFAST with:

• Bowtie (version 0.10.0) from [63],

• BWA (version 0.5.0) from [68],

• MAQ (version 0.7.1) from [71],

• RazerS (version1.0 20090710) from [115],

• mrFAST-CO (an extended version of mrsFAST that can handle indels - equivalently

a doubly indexed, cache oblivious version of mrFAST).

We used the following parameter settings for the above programs:

• Bowtie - error threshold, v = 2/3 (for different runs); number of mappings: a (indi-

cating “all”).

• BWA - for alignment: error threshold, n = 2/3/4/6 (for different runs); number of

mappings: N (indicating “all”)

for reporting: the maximum number of locations to be reported for each read, n =

300,000,000. In addition, we also benchmarked BWA with the default setting that

report a unique map location.

• MAQ - for alignment: error threshold, n = 2/3 (for different runs), number of map-

pings, C = 1000 (which reports all mappings).

• RazerS - error threshold, i=94; sensitivity (set to 100%), rr=100; number of mappings

for any read m=100 (it was not possible to set m to a value higher than 100 because

of its significant memory requirements)

• mrsFAST and mrFAST-CO: number of mappings for any read, n = ∞ (i.e. all map-

pings to be returned); error threshold, e = 2/3/4/6 (for different runs).

We carried out two independent experiments to benchmark the above software tools.

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 33

• We performed a general comparison of the speed and accuracy of the above mentioned

mapping tools against mrsFAST.

• We calculated the average cache miss per instruction and instructions per cycle (IPC)

in mrsFAST and all of the above mapping tools.

Data, Reference Genome and Computing Power. We carried out our experiments

on (i) randomly picked 1 million 36 − bp reads from an earlier whole genome resequencing

study on the NA18507 (Yoruban) genome[10]) as well as (ii) 1 million 100-bp reads from

the same genome provided to us by Illumina, which we also rendered into shorter reads

of length 50-bp and 75-bp. We used the human genome build 36 (non-repeat masked) as

the reference genome in our experiments. All our experiments are performed on a 64 bit

Intel(R) Xeon(R) 2G with 4GB of RAM.

Time and Accuracy. We provide the comparison results for all these methods consid-

ering the time and accuracy of mapping (to ensure fairness we compared all these methods

when their relative parameters were set to find and output all the locations a read can map

to). We compare the accuracy of each method by computing number of reads each method

was able to map to reference genome with number of mismatches less or equal to 2 for the

read size 36bp, 3 for the read size 50bp, 4 for the read size 75bp and 6 for the read size

100bp (BWA also detects some mappings with indels). Note that neither Bowtie nor MAQ

is currently capable of handling 4 mismatches.

The speed and sensitivity results are shown in Table 3.1. As can be seen, the number

of false negatives for MAQ increases significantly when the read size increases to 50bp. In

fact, for that read size MAQ misses almost half of the map locations mrsFAST discovers.

We remind that mrsFAST is guaranteed to find all map locations within a specified

number of mismatches. As a result, the number of mappings reported for mrsFAST is the

correct number of mappings one should obtain through any algorithm reporting mapping

locations with mismatches only.

For read length 36bp, observe that MAQ returns more map locations than mrsFAST:

this is due to the fact that MAQ returns a non-trivial number of false positives - i.e. maps

reads to loci with more differences than the user defined error threshold. Also observe

that BWA generally reports more map locations than mrsFAST. This is due to the list of

map locations returned by BWA including (1) many repetitions (the same locus reported

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 34

multiple times - sometimes due to several alignment scripts with the same number of errors),

(2) sequences involving the symbol N (i.e. aNy nucleic acid) -BWA assumes that N correctly

maps to any symbol from the four letter DNA alphabet - these, which constitute about %10

of the mapping locations returned by BWA, are avoided by mrsFAST. In addition, when

the read length is 100bp, mrsFAST is up to 3 times faster than BWA even when BWA is

used with the default options to report a unique map location, where mrsFAST is used to

return all map locations. Finally, note that, because for read length 50bp, MAQ discovers

much fewer mapping locations than BWA, it spends less time.

Cache Utilization. For a second set of experiments, we used the OProfile tool (which

can be found at http://oprofile.sourceforge.net) to profile the system performance.

OProfile is a system-wide profiler for Linux/Unix systems, capable of profiling all running

code at low overhead. We used OProfile to calculate L2 MPI (level 2 cache misses per

instruction) which is the ratio of L2 cache misses to overall retired instructions (i.e. in-

structions which are successfully completed). L2 MPI demonstrates the amount of cache

misses of a program (lower values indicate better cache performance of the program); we

have calculated the amount of L2 MPI for mrsFAST and MAQ: see Table 3.2. In addition,

we calculated IPC (instruction per cycle) which is the ratio of overall retired instructions

(completed) to CPU clock unhalted (i.e. number of CPU clocks outside of halt state). IPC

demonstrates the average instructions completed per cycle, thus higher this value indicates

better performance. The IPC values for mrsFAST, and MAQ are shown in Table 3.2. Please

note that for these experiments we mapped the same set of reads as before (1 million reads)

to a portion of human reference genome (profiling of these programs on full human genome

would have been very costly and time consuming).

Fewer cache misses and reduced idle cycles obtained by mrsFAST (in comparison to oth-

ers) results in higher IPC: see Table 3.2. Bowtie and BWA all have similar cache utilization

figures, however MAQ has a significantly higher percentage of idle cycles and lower cache

utilization.

The Need for mrsFAST and mrFAST-CO for Comprehensive Structural Vari-

ation Detection and Copy Number Variation. Our final set of results demonstrate

the need for mrsFAST and mrFAST-CO and in general, the necessity of finding all map-

ping locations of each paired end read, in structural variation detection and CNV discovery.

It is now well established that a significant portion of structural variations are observed

http://oprofile.sourceforge.net

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 35

Table 3.1: Mapping one million reads of indicated read lengths and within the given number
of errors, to the human reference genome HG18 build 36 by indicated algorithms.

Dataset Software Time % of reads Mappings

Read Length Error (hh:mm) Mapped Reported (mil)

36 2

Bowtie 5:14 91.65 1,404
BWAc 3:10 92:05 1,581
MAQc 6:45 90.91 1,609
RazerSa 10:17 91.79 <100
mrFAST-CO 6:12 92.18 1,486
mrsFAST 2:00 91.79 1,411

BWAb 0:10 92.05 <1

50bp 3

Bowtie 3:13 92.73 610
BWAc 10:23 93.38 729
MAQc 10:05 89.25 458
RazerSa 12:17 92.91 <100
mrFAST-CO 9:21 93.39 663
mrsFAST 1:55 92.91 613

BWAb 0:15 93.38 <1

75bp 4

Bowtie NA NA NA
BWAc 59:35 90.16 212
MAQ NA NA NA
RazerSa 12:00 89.35 < 100
mrFAST-CO 11:32 90.22 193
mrsFAST 2:00 89.35 177

BWAb 0:25 90.16 <1

100bp 6

Bowtie NA NA NA
BWA 67:38 87.91 42
MAQ NA NA NA
RazerSa 25:10 87:27 <100
mrFAST-CO 17:54 88.55 155
mrsFAST 2:49 87.27 138

BWAb 7:04 87.91 <1

a Because of RazerS’s high memory requirement, we could not run it for read
multiplicities >100; b BWA’s default settings; c Total number of mapping locations
is higher for MAQ or BWA than for mrsFAST or mrFAST-CO because MAQ often
returns mapping locations with an error rate higher than the user-specified rate
and BWA returns certain mapping locations multiple times.

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 36

Table 3.2: L2 MPI and IPC

Software L2 MPI IPC

Bowtie 0.0016 0.94
BWA 0.0016 0.93
MAQ 0.0060 0.56
mrsFAST 0.0008 1.24

in repeat regions of the human genome [87]. As a result, structural variation detection

methods focusing on unique (non-repeat) regions (e.g. [10]) fail to detect almost half of

the deletions (43 out of 92) and the majority of the inversions validated by fosmid studies

[56] on NA18507 [10]. Algorithms that focus on the repeat regions such as VariationHunter

have been shown to detect some of these deletions (an additional 9 strongly supported and

6 reasonably well supported deletions, on top of the ones predicted by unique mappers in

NA18507 reported in [10]) as well as inversions [46]. The remaining question is whether it

is possible to capture these deletions (in the case of NA18507, 9 + 6 = 15 deletions) as well

as other structural variations occurring in repeat regions by considering the best mapping

location (or the best few locations) provided by available methods such as BWA or Bowtie

- we omit MAQ from this comparison as its results are consistently inferior to BWA results.

Equivalently, we would like to check whether it is necessary to find all (or at least the ma-

jority) of the mapping locations of each read (which are provided by mrsFAST faster and

more accurately than any competing software) for reliable structural variation prediction.

Among the 15 additional fosmid validated deletions found using VariationHunter algo-

rithm (and not by [10]) through the mappings provided by mrFAST [46, 5] in NA18507,

we found 5 deletions, which can only be detected when all the mappings of the paired-end

reads are considered. The ”best” (or first) mapping option for paired-end reads with BWA

or Bowtie do not map the majority of the reads supporting these deletions to the correct

loci - failing to provide the necessary support to make a call for these deletions. As a result,

none of these 5 (out of 15) deletions, given in table 3.3, can be discovered through unique

mappings.

CHAPTER 3. A CACHE-OBLIVIOUS ALGORITHM FOR MAPPING 37

Table 3.3: 5 fosmid validated deletions in NA18507 which can only be found using multiple
mappings

Deletion Loci

chr10:26723208-26737813
chr7:6846864-6901718
chr2:89876618-89935540
chr14:105395536-106097514
chr2:89238825-89279544

3.4 Conclusion

Applications employing high throughput sequencing technologies, typically need to find the

mapping locations of all short reads on the reference genome. A fast method with high

sensitivity (which is capable of finding all the locations a read can map to with a small

number of mismatches) is highly desirable. In this chapter we introduced a novel mapping

tool, mrsFAST, that guarantees 100% sensitivity, while ensuring optimal performance among

the seed-and-extend type algorithms through the use of the cache obliviousness paradigm.

Our experiments show that minimizing the number of cache misses through better memory

management can have significant results in the efficiency of mapping methods; see Tables 3.1

and 3.2. As a result, mrsFAST is faster than all competitive methods, especially for longer

read lengths, as shown in table 3.1. As read length and throughput increase, algorithmic

advances such as mrsFAST will be critical in allowing 1000s of genomes to be analyzed

within individual labs.

Chapter 4

SNP-aware Mapping

Available mapping tools require a (typically user defined) upper bound on the number of

“errors” it can tolerate per read mapping, and treat real variants and sequencing errors

identically - this reduces the mappability of a significant number of reads substantially.

A mapper capable of distinguishing real variants from sequencing errors, will be able to

map more reads to the reference, effectively providing an increased accuracy and sensitivity.

Unfortunately, as each read is mapped independently from the others, and the genomic

variants are detected only after the mapping process is complete, real variants cannot be

known a priori. However, many of the 3 to 4.5 million SNPs in a human genome (in

comparison to a reference genome) are shared among individual genomes [2], and have been

collected and indexed in the dbSNP database. Therefore, a read mapper which utilizes

the common SNP information in dbSNP (or any other genomic variation databases) can

improve the signal-to-noise ratio in alignments.

In this chapter, we introduce a new SNP-aware read mapper developed for the Illumina

platform, that we call mrsFAST-Ultra, which improves the (i) mappability, (ii) mapping

accuracy, and (iii) sensitivity by tolerating common, previously reported sequence variants

and distinguishing them from likely sequencing errors. Given a user defined error threshold,

mrsFAST-Ultra reduces the number of reads that could NOT be mapped by any available

mapper by 19%.

mrsFAST-Ultra achieves this while providing full sensitivity, i.e. it guarantees to find all

mapping loci of each read within a user defined error threshold. As mentioned earlier, this

feature is essential for accurate structural variant detection techniques (e.g. VariationHunter

[46, 49]). As a result, mrsFAST-Ultra has a significantly higher sensitivity compared to

38

CHAPTER 4. SNP-AWARE MAPPING 39

Bowtie2 and BWA (the latest version) in the ”all mapping mode” where mrsFAST-Ultra

reports at least 30 times more mappings per read.

mrsFAST-Ultra introduces several additional improvements over mrsFAST (See Chap-

ter 3), such as (i) requiring a substantially smaller reference genome index file (which also

improves its cache performance), (ii) introducing new filters to improve search space, and

(iii) supporting multi-threading. More specifically, mrsFAST-Ultra improves on the storage

requirement of the mrsFAST, the first cache-oblivious HTS read mapper, by a factor of

10. The index size was one of the limiting factors of the original mrsFAST in large scale

sequencing projects. As mentioned above, the compactness of mrsFAST-Ultra’s index struc-

ture also reduces the overall number of CPU operations and the I/O needs, resulting in a

factor of 4.5 improvement in the running time in comparison to the original mrsFAST.

Finally, mrsFAST-Ultra introduces new features such as (1) the ability to retrieve the

single best mapping loci, (2) the ability to retrieve all reads which map to at most (a user

defined) k unique loci (within a user defined number of mismatches), and (3) automatic

parallelization if multiple cores are available in the computing environment.

4.1 Methods

Similar to mrsFAST, mrsFAST-Ultra is a seed and extend aligner in the sense that it works

in two main stages: (i) it builds an index from the reference genome for exact ”anchor”

matching and (ii) it computes all anchor matchings for each of the reads in the reference

genome through the index, extends each match to both left and right and checks if the

overall alignment is within the user defined error threshold.

4.1.1 Compact Indexing of the Reference Genome

In the indexing step, mrsFAST-Ultra slides a window of size k = l/(e+ 1) (where l is read

length and e is the user defined error threshold e) through the reference genome and identifies

all occurrences of each k-mer present in the genome. For small values of k, mrsFAST-Ultra’s

genome index is an array of all possible k-mers in lexicographic order. For each k-mer, the

index keeps an array of all locations the k-mer is observed in the reference genome. In case

the value of k is prohibitively large, only a prefix of user defined size ` (for each k-mer)

is used for indexing. For each such `-mer, its locations on the reference genome are then

sorted with respect to the k − `-mers following it. (In fact, for most applications, even

CHAPTER 4. SNP-AWARE MAPPING 40

keeping track of all k − `-mers following a particular `-mer is not necessary: we just hash

these k − `-mers via a simple checksum scheme.)

For further compacting the index, the reference genome itself is first converted to a

3 bit per base encoding. The genome sequence is stored in 8 byte long machine words

implying that each machine word contains 21 bases. In addition, the index of the reference

genome actually does not keep every occurrence of each k-mer, but rather keeps how many

occurrences of each k-mer is present in the genome. Everytime we perform a search in the

reference genome, the locations are computed on the fly. This reduces the I/O requirements

of mrsFAST-Ultra significantly. One may think that such a set up would increase the overall

running time of the search step but the savings from I/O reduction significantly offsets the

cost of recalculating the k-mer locations on the fly. Overall, the storage requirement of

the index we construct for the reference genome is 2GB, including the reference genome

sequence itself. This represents a 10 fold improvement in the index storage requirement of

the original mrsFAST.

4.1.2 Search.

In this step, mrsFAST-Ultra processes the reads from an input HTS data set and com-

putes “all” locations on the reference genome that can be aligned to each read within the

user-defined error threshold e. mrsFAST-Ultra is a fully sensitive aligner meaning that it

guarantees to find and report all mapping locations of a given read within e mismatches.

mrsFAST-Ultra achieves this by partitioning the read into e+ 1 non-overlapping fragments

of length k for a given error threshold e. Due to the pigeon hole principle, at least one

of these fragments should have an exactly matching k-mer of the reference genome in each

location the read can be mapped to. The search step then validates whether each location of

the reference genome with an exact k-mer match of the read is indeed a mapping location.

In order to perform the search step as fast as possible, mrsFAST-Ultra loads the genome

index (see above) to the main memory and computes the locations of each k-mer on-the

fly - for significant savings in I/O. For each k-mer, the number of locations in the reference

genome is already stored in the index, thus we can preallocate the required memory for

each array that keeps the locations of a given k-mer. Once this extended reference genome

index is set up in the main memory, the remaining memory is allocated for the reads. At

each subsequent stage, mrsFAST-Ultra retrieves sufficiently many (unprocessed) reads that

can fit in the main memory and searches them in the reference genome simultaneously.

CHAPTER 4. SNP-AWARE MAPPING 41

(Alternatively, the user can specify an upper bound on the memory usage.) These reads

are also indexed with respect to the e + 1 non-overlapping fragments of size k it extracts

from each read. Basically, for each possible fragment of length k, the read index keeps the

read ID, the fragment number and the direction the fragment is observed in the read. Once

the read index is set, it is compared to the reference genome index, in a divide and conquer

fashion as per mrsFAST, in order to achieve cache obliviousness.

Because mrsFAST-Ultra aims to be fully sensitive, it needs to verify whether each refer-

ence genome location and each corresponding read that have the same k-mer have indeed an

alignment within the user defined error tolerance. Note that, the value of k, set to l/(e+ 1)

can be too big for creating an index that has an entry for every possible k-mer from the 4

letter DNA alphabet. Thus the primary indexing is performed on a prefix of length ` = 12

for each k-mer and all locations/reads that share this prefix are further sorted according to

the k−`-mer succeeding this prefix. This is achieved by hashing the k−`-mer through a sim-

ple checksum scheme. As a result, the divide-and-conquer comparison of reference genome

locations and reads is performed on those entries that have the same `-mer and the same

checksum value for the succeeding k−`-mer. The comparison for each genomic location and

a read involves the calculation of the Hamming distance between the read and the k-mer

location in the genome, extended by the appropriate length towards left and right. Before

calculating the Hamming distance, mrsFAST-Ultra applies another filter that compares the

number of As, Cs, Gs and T s in the read and the genomic locus; if the total number of

symbol differences is more than 2e, then we do not need to compute the Hamming distance

explicitly as it will be at least e+1 - above the error threshold. In comparison to the original

mrsFAST, this search strategy reduces the number of Hamming distance calculations, the

main bottleneck for the search step, by a factor of 5. When combined with reduced I/O

(due to compact index representation), a two stage index (for both the reference genome

and the reads), and the introduction of new filters, this implies a 4.5 factor reduction in the

overall running time of search.

4.1.3 SNP awareness

The user has the option of setting mrsFAST-Ultra to tolerate known SNP locations in the

mappings: i.e. in this mode, SNPs in an alignment location simply do not contribute to the

error count in the Hamming distance computation. For that, mrsFAST-Ultra parses dbSNP

and generates a compact structure that it uses for mapping. Although conceptually simple,

CHAPTER 4. SNP-AWARE MAPPING 42

this feature is highly desired by users as it significantly reduces the number of reads that can

not be mapped to anywhere in the reference genome. In this mode mrsFAST-Ultra reports

the number of SNPs in addition to the number of mismatches per each mapping location.

4.2 Additional Features

Limited mapping. mrsFAST-Ultra provides the user the option of returning a single best

mapping locus per read - which it performs much faster than computing all mapping loci.

As per BWA, Bowtie2, SRmapper and others, a best mapping location (on the reference

genome) is considered to be one which has the smallest number of differences with the read.

In addition, mrsFAST-Ultra has the option to return only mapping loci of reads which map

to at most n locations within the user defined error threshold. These features help the users

to control the mapping multiplicity - which can grow prohibitively for further downstream

analysis.

Parallelization. mrsFAST-Ultra is designed to utilize the parallelism offered by contem-

porary multicore architectures. The mapping task is simply partitioned into independent

threads each of which is executed by a single core. For efficiency purposes, the only locks

used by the threads are for allocating memory and I/O.

4.3 Results

We report on experiments we performed on a single PC, equipped with an Intel(R) Xeon(R)

CPU with 4 cores and 12GB of RAM. We benchmarked a number of read mapping software

with parameters set as below - unless otherwise stated.

• mrsFAST v2.5.0.4 (-e 6, for error threshold)

• mrsFAST-Ultra v3.0.0 (-e 6, for error threshold, –threads 1 for using a single CPU)

• BWA v0.6.2 from [69] (-n 6 for error threshold; -N for disabling iterative search and

reporting all mapping locations where required)

• Bowtie2 v2.0.2 from [62] (-k 100 for reporting up to 100 mappings for each read, -a

for reporting all mapping locations where required 1)

1It was impractical to run Bowtie2 for all mapping location

CHAPTER 4. SNP-AWARE MAPPING 43

• GEM v1.367.beta from [80] (-m 6 for error threshold 6; -d for reporting all mapping

locations where required)

• RazerS3 v3.1.1 from [116](-i 94, provides %94 similarity for allowing 6 errors in reads

of length 100, -rr 100 for full sensitivity)

• GSNAP 2013-01-23 [120] release (-m 6 for error threshold 6)

• SRmapper v0.1.5 [38] (-m 6 for error threshold 6)

Our results below are based on mapping 2 million Illumina reads of length 100bp from

NA18507 (Sequence Read Archive ID: SRR034939) individual genome to the “hg19” ver-

sion of the human reference genome. We carried out a few experiments to evaluate the

performance of the above software. In the first experiment, we mapped the reads with an

error threshold of 6% (i.e. 6bp). Table 4.1 depicts the results of this experiment. As can

be seen, mrsFAST-Ultra reports about 308M mapping locations for these reads, which is at

least 30-times more than the number of mapping locations reported by any of the competing

methods. In the SNP-aware mode where we provided mrsFAST-Ultra with dbSNP32, the

percentage of reads which could not be mapped drops by 19% (roughly 3% of all reads).

In the second experiment, we set the appropriate parameters in each method to report

100, 1000 and all mappings locations per read. Table 4.2 shows the running time of all the

methods. Although the running time for GEM is better than the other methods, it misses

many mapping locations as per BWA and Bowtie2.

In the third experiment, we ran all the tools in the ”best mapping” mode with various

error thresholds. Although mrsFAST-Ultra is not as fast as some of the other tools, it has

higher sensitivity than the others as shown in Table 4.3.

In the final experiment, we compare mrsFAST-ultra and GSNAP in their SNP-tolerant

best mapping mode. The results are given in Table 4.4.

Table 4.5 demonstrates the memory footprint of all tools we benchmarked on 2M reads.

Finally, we show the effectiveness of mrsFAST-Ultra filters. In Figure 4.1, we calculated

the expected number of the locations that should be verified given varying k-mer values. As

expected, when the length of k-mer increases the expected number of locations that should

be verified decreases. We also plot the average number of locations verified by mrsFAST-

Ultra for various k-mer + checksum length values. As shown in the figure, using checksum

CHAPTER 4. SNP-AWARE MAPPING 44

Table 4.1: Mapping 2M reads from NA18507 to hg 19 with e ≤6. BWA and GEM are
set to report all mapping locations. Bowtie2 is impractical to run if it is set to report all
mappings. Other mappers do not provide such option.

Software Time # mappings % of reads
(millions) mapped

mrsFAST 6h 2m 308.302 90.55
mrsFAST-Ultra 1h 18m 308.302 90.55
mrsFAST-Ultra (SNP-aware)a 1h 52m 354.691 93.17
BWA 7h 16m 4.133 91.57
Bowtie2b 2h 52m 5.130 91.52
GEM 16m 9.078 90.78
RazerS3c 10h 17m 10.631 92.00
GSNAP 3h 11m 5.388 86.37

SRmapperd 7m 0.32 10.46

a Note that the SNP-aware mrsFAST-Ultra employs dbSNP32 for this task; b For Bowtie2,
we report the time when it is set to return at most 100 mappings per read - without this
bound it does not complete the task in 24 hours; cPlease note that RazerS3 cannot finish
the task within 12hrs and we reduced its sensitivity to 99% (i.e. setting parameter -rr to
99); d SRmapper crashes on the full human genome. Results are shown only for mapping
the reads to chr1.

Table 4.2: Running time for reporting n mapping locations per read.

Software n=100 n=1000 n=∞

mrsFAST-Ultra 53m 57m 78m
BWA 438m 436m 436m
Bowtie2a 172m NA NA
GEM 14m 13m 16m
RazerS3 538m 604m 617m
GSNAP 196m 191m 191m

SRmapperb 7m 7m 7m

a Bowtie2 can not complete the task in 24 hours for n≥1000. b SRmapper crashes on full
human genome. Results are shown only for mapping the reads to chr1.

CHAPTER 4. SNP-AWARE MAPPING 45

Table 4.3: Mapping of 2M reads in the best mapping mode, with an error threshold of 2,
4 and 6. No indels/gaps allowed in any method. We report on both the running time and
the percentage of reads mapped.

Software e ≤ 2 e ≤ 4 e ≤ 6

Time % of reads Time % of reads Time % reads
mapped mapped mapped

mrsFAST-Ultra 12m 80.97 21m 87.63 61m 90.55
BWA 4m 80.97 11m 87.52 18m 90.22
Bowtie2 10m 80.97 10m 87.52 10m 89.77
GEM 4m 80.97 6m 87.18 13m 89.33
RazerS3 13m 80.97 59m 87.63 325m 90.55
GSNAP 156m 77.78 180m 83.70 184m 86.16

SRmappera 3m 7.29 5m 8.89 7m 10.46

a SRmapper only running on chr1

Table 4.4: Comparing mrsFAST-Ultra and GSNAP in SNP-tolerant best mapping mode.

Software Time % of reads mapped

mrsFAST-Ultra 82m 93.17
GSNAP 207m 85.30

filtration mimics the use of longer k-mer. In the figure we demonstrate the average number

of the locations verified after we incorporated the 1-gram filtration method.

CHAPTER 4. SNP-AWARE MAPPING 46

Table 4.5: Memory footprint of the tools on 2M reads.

Software Memory Footprint (GB)

mrsFAST-Ultra 2.5
BWA 3.2
Bowtie2 3.2
GEM 4.1
RazerS3 1.4
GSNAP 4.6
SRmappera 0.2

a SRmapper footprint only on chr1

10 12 14 16 18

50
00

10
00

0
15

00
0

20
00

0

Length of K−mer

N
um

be
r

of
 L

oc
at

io
ns

●

●

●

●

●

●
●

●
● ●

10 11 12 13 14 15 16 17 18 19

● Expected Number of Locations
mrsFAST−Ultra (Checksum Filter Applied)
mrsFAST−Ultra (Both Filters Applied)
mrsFAST

Figure 4.1: Average Number of locations verified per k-mer extracted from each read, as a
function of k-mer length.

Chapter 5

Sensitive and Fast Mapping of

di-base Reads

As stated in Chapter 1 discovering variation among high throughput sequenced genomes

relies on efficient and effective mapping of sequence reads. The speed, sensitivity and ac-

curacy of read mapping are crucial to determining the full spectrum of single nucleotide

variants (SNVs) as well as structural variants (SVs) in the donor genomes analyzed.

In this chapter, we describe a hash-based read mapping algorithm named “di-base read

fast alignment search tool” (drFAST) designed for the di-base encoded color-space reads

generated with the SOLiD platform. The main advantage of di-base encoding is increased

base call accuracy due to each base being represented by two “colors”. This helps in dif-

ferentiating base calling errors (color-space errors) from real sequence variance, thereby

increasing the reliability of detected genomic variants. We show that mapping speed of

drFAST is higher than other SOLiD-enabled hash-based read mappers BFAST [44] and

SHRiMP [100], and comparable and comparable to suffix array-based aligner Bowtie [63].

In addition, drFAST was able to map more reads than all the tools we benchmarked. Fur-

thermore, drFAST achieves 100% sensitivity if the maximum allowed distance is less than

L/k, where L is the sequence length, and k is the length of the k-mers stored in the hash

table (k is set to 12 by default). Coupled with its ability to find all map locations within a

user-specified distance threshold and it paired-end (PE) mapping capabilities, drFAST can

be used to characterize segmental duplications [5, 110], and increase sensitivity of structural

variation discovery using VariationHunter [46, 49].

47

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 48

The source code for drFAST is available at http://drfast.sourceforge.net/

5.1 Methods

For each read sequenced from a donor genome, a mapping algorithm aims to find locations

in a “reference genome” where the read can be aligned exactly or within a small number of

errors in the form of substitutions or insertions/deletions (indels). drFAST is a read mapper

designed for color-space reads generated with the SOLiD platform, and finds “all” possible

map locations for each read of length r in the reference genome within a user-specified e

mismatches.

drFAST is a seed-and-extend type algorithm and it builds an index of the reference

genome by creating a collision-free hash table for all subsequences of length k (k-mers) of

the reference genome. To map the reads, it first partitions each read to (e+ 1) k-mers and

searches for each of these k-mers in the hash table. For each hit in the hash table, it then

tests if the remainder of the read can be “extended” by aligning to the reference genome

starting at the determined hit location.

How exactly this is done is described below: In the following subsections, we provide the

detailed description of the algorithm.

5.1.1 Genome transformation

The sequence data produced with the SOLiD platform are in color-space format (S =

{0, 1, 2, 3}∗), where the reference genome sequence is in letter-space (i.e. R = {A,C,G, T}∗).
Each color encodes two adjacent base pairs in the read, and each base pair is represented by

two colors. Transformation of reads from color-space to letter-space before mapping may

result in generating incorrect reads where base call errors exist, as depicted in Figure 5.1.

To avoid such incorrect decoding of reads, we translate the reference genome to color-space

and use this transformed genome to create the index.

5.1.2 Indexing the Reference Genome

drFAST creates a collision-free hash table for all k-mers in the reference genome. Each entry

of this index is a 2-tuple τ = (s, L), where s is a k-mer from the genome (k = 12 by default)

and L is a list of all positions of the genome starting with this subsequence. The index

http://drfast.sourceforge.net/

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 49

Figure 5.1: Translating the read from color-space to letter-space may result in a new se-
quence different from the original read if there exists a color-space error.

is maintained in lexicographically sorted order with respect to their subsequences. For a

reference genome of length n, the upper bound for the size of its index is O(n.k); but due

to the repetitive nature of genome sequences, the index size is smaller in practice.

5.1.3 Indexing the Donor Reads

drFAST partitions each read of length r into e+ 1 non-overlapping blocks of length k where

e is the user-specified maximum Hamming distance allowed for mapping. In the case where

k ≤ br/(e+ 1)c the pigeon hole principle guarantees that at least one of these blocks maps

to the reference genome with no errors. Similar to the indexing described in Section 5.1.2,

drFAST creates an index of blocks computed from all reads in 2-tuples τr = (s, Lr), where

Lr denotes the list of reads that include the k-mer s.

5.1.4 Searching

drFAST compares the reference genome index keys with read index keys to find the locations

in the reference genome where a read can be mapped with at most e errors. For each partition

of the read, drFAST first finds the locations of the reference genome with the identical

subsequence (same keys). It then tries to extend the location through sequence alignment

of the reads to the genome, and reports those locations where the Hamming distance of

the alignment is at most e. A simple loop scans both indices (both are lexicographically

sorted); if the keys of the indices are the same (same subsequence) for entries τ = (s, L)

in the reference and τr = (s, Lr) in the read index. Then all entries in L are candidate

map locations for each read entry in Lr, thus the entire list L should be compared to Lr

(extending step).

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 50

Similar to mrsFAST (See Chapter 3), drFAST performs “all-to-all” list comparison using

a recursive divide-and-conquer strategy that guarantees cache obliviousness; i.e. asymptot-

ically minimizing the number of costly cache misses [33].

5.1.5 Extending

The final step is to verify if each read can be aligned to candidate map locations within

the user-specified error threshold e. drFAST aims to align the color-space read (Sc) to the

letter-space sequence (Sl). The aligning process can be considered as finding a letter-space

read S′l that aligns to Sl, and highly similar to Sc if transformed to color-space:

argmaxS′l

(
Sim(Sl, S

′
l) + Sim(Sc, CCG(S′l))

)
(5.1)

where CCG is the function that transforms the letter-space to color-space as defined by

the SOLiD technology, and Sim is the similarity function.

Maximizing the similarity between two sequences is equivalent to minimizing their dis-

tance. We use Hamming distance (i.e. the number of mismatches) as the distance measure

between two sequences.

argminS′l

(
Diff(Sl, S

′
l) +Diff(Sc, CCG(S′l))

)
(5.2)

To address the problem, drFAST introduces two efficient methods.

Method I: Dynamic Programming.

Let
∑

= {A,C,G, T}, and σ, σ′ ∈
∑

, and let Score(i, σ) indicate the optimal alignment of

two subsequences Sl[1..i] and Sc[1..i] (from the first to the ith character) while σ is the last

character of S′l. We then define

Score(i, σ) = d(Sl[i], σ) +minσ′{Score(i− 1, σ′) + d(Sc[i], CCG(σ′σ))} (5.3)

where d(a, b) = 1 if a 6= b, and d(a, b) = 0 otherwise.

The detailed version of equation 5.3 is as follows:

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 51

Score(i, ′A′) = d(Sl[i],
′A′) +min


Score(i−1,′A′)+d(Sc[i],′0′)

Score(i−1,′C′)+d(Sc[i],′1′)

Score(i−1,′G′)+d(Sc[i],′2′)

Score(i−1,′T′)+d(Sc[i],′3′)

Score(i, ′C′) = d(Sl[i],
′C′) +min


Score(i−1,′A′)+d(Sc[i],′1′)

Score(i−1,′C′)+d(Sc[i],′0′)

Score(i−1,′G′)+d(Sc[i],′3′)

Score(i−1,′T′)+d(Sc[i],′2′)

Score(i, ′G′) = d(Sl[i],
′G′) +min


Score(i−1,′A′)+d(Sc[i],′2′)

Score(i−1,′C′)+d(Sc[i],′3′)

Score(i−1,′G′)+d(Sc[i],′0′)

Score(i−1,′T′)+d(Sc[i],′1′)

Score(i, ′T′) = d(Sl[i],
′T′) +min


Score(i−1,′A′)+d(Sc[i],′3′)

Score(i−1,′C′)+d(Sc[i],′2′)

Score(i−1,′G′)+d(Sc[i],′1′)

Score(i−1,′T′)+d(Sc[i],′0′)

The minimum value of Score(|Sl|,′A′), Score(|Sl|,′C ′), Score(|Sl|,′G′), and Score(|Sl|,′ T ′)
is the score of the best translation of Sc to S′l.

Figure 5.2 shows an example of aligning a letter-space and a color-space sequence using

the dynamic programming described in equation 5.3. The minimum value in the last column

represents the score of the best alignment. Using the backtracking pointer, we can then

recover the best alignment sequence.

Remark 1 The dynamic programming formulation in Equation (5.3) will find the opti-

mal solution to the objective function in Equation (5.2) if the costs of mismatches and read

errors are equal to one.

Remark 2 Dynamic programming described in (5.3) can be modified to handle any cost

function for mismatches and read errors.

Note that the equation (5.3) uses Hamming distance but it can be easily generalized for

edit distance to allow indels.

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 52

Figure 5.2: The dynamic programming table generated to align ATTGAATCA and
30121321 (0=blue, 1=green, 2=yellow, 3=red). The arrows represent the best alignment
between the two sequences.

Score(i, j, σ) = min


Score(i−1,j−1,σ′)+d(Sc[j],CGG(σσ′))+d(Sl[i],σ)

Score(i−1,j,σ′)+d(Sl[i],σ)

Score(i,j−1,σ′)+d(Sc[j],CGG(σσ′))

Method II: Transformation Based Detection.

The second method is based on the theoretical design aspect of color-space reads [83]. A

string of colors c1c2c3 . . . ck can also be treated as transformations. For example, C102 can

be written as f2(f0(f1(C))) where the transformation of the colors is applied one after the

other. This specific transformation converts C to G, acting as color 3 (C102 = C3 = G).

For any other base pair, color string 102 will behave exactly as color 3.

The set of color operations is isomorphic to the “Klein Four Group” [7, 83]. The Klein

Four Group is the symmetry group of a rectangle, which has four elements: the identity,

the vertical reflection, the horizontal reflection, and a 180 degree rotation. In other words,

given the four bases in the corners of a rectangle, each color operation has a one-to-one

correspondence with one of the Klein Group elements (see Table 5.1). The Klein Four

Group is closed under its elements meaning that if a and b are two elements of this group

a⊕ b and b⊕a (a⊕ b means a followed by b) is also an element of the this group. It also has

associative, identity, reverse and commutative properties. This means that any sequence of

color operations can be considered as one color operation.

We use this property of the color-space reads to detect mismatches. Let two sets of

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 53

color operations of the same length exist (c1 . . . ck and r1 . . . rk) with different starting color

(c1 6= r2). For both sets, if any two consecutive colors are replaced with their equivalent

(closure property) starting from left hand side, you will end up with one at the end. If the

last color matches with no intermediate matching colors then these two operations show a

mismatch of length k − 1. To illustrate this, consider two color operations 313 and 100.

For simplicity, we also consider a leading base C. After applying the color operations,

strings GTA and AAA will be generated respectively. It can be seen that the last base pair

generated using both operations is A and intermediary base pairs are not matching. These

two sets of operations have the same transformation, thus although they generate different

sets of base pairs in middle, the final “product” is the same character.

Theorem 2 Let c = c1c2c3ck be a k-color substring of a read aligned with the corre-

sponding color-space reference r = r1r2r3rk. Then c encodes an isolated (k− 1)-base change

if and only if the base position preceding c is not a variant, and the following two equations

hold under the Color Addition Table 5.2:

k∑
j=1

cj =

k∑
j=1

rj

For all i from 1 to k − 1:
i∑

j=1

cj 6=
i∑

j=1

rj

We use Theorem 2 as the basis of our validation function (i.e. extending step). If there

is a color mismatch between the read and the reference genome, we consider the next e+ 1

colors to test if there exists any same color transformation of size at most e+ 1 between the

read and the genome. Considering a window of limited length, this sometimes may cause

incorrect classification of a long stretch of mismatches as two independent read error calls.

We refine such calls at the final step.

5.2 Additional Features

Parallelization. An embarrassingly-parallel wrapper for drFAST can be easily written to

split the reads into smaller chunks (∼1-5 million reads per file) and align on cluster nodes.

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 54

Table 5.1: Applying color transformation ’3’ (a) is the same as applying 180o rotation (b).

(a)

A C

G T

(b)

T G

C A

Table 5.2: Addition Table Code for Strings of Colors

⊕ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

This approach the best practice because:

1) drFAST requires < 700MB to load the genome and its index and only ∼ 1.2GB of memory

to map 1M reads to the genome.

2) Mapping of each read is independent from mapping the others (except in the case of

paired-end sequences where both ends need to be processed in the same chunk).

Paired-end Mapping. SOLiD, like most other HTS technologies can generate paired-end

(PE) sequences. A pair of PE sequence are generated from the prefix and suffix of the same

sheared DNA fragment, thus they can be used to increase mapping accuracy, and discover

structural variation [4, 89]. Current implementation of drFAST supports tracking the paired-

end information, enabling direct use of VariationHunter for structural variation [46] and

transposon insertion [49] discovery, as well as NovelSeq [41] for characterization of novel

sequence insertions.

5.3 Results

To measure the performance of drFAST, we compared its two variants to popular color-space

read mappers currently available.

Benchmarked Software:

• drFAST-DP (Dynamic programming variant) (version 0.0.0.2);

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 55

• drFAST-CT (Color transformation variant) (version 0.0.0.0);

• BFAST [44] (version 0.6.4);

• Bowtie [63] (version 0.12.0);

• SHRiMP [100] (version 2.0.1);

• SOCS [96] (version 2.0.3);

• Mapreads [83] (version 2.4.1); and

• PerM [16] (version 0.3.3);

Parameters: We used the following parameter settings for these mappers:

• drFAST: e=2,3 (error threshold for different runs).

• BFAST: Parameters recommended in the BFAST manual.

• Bowtie: n,v=2,3 (error threshold for different runs); -a (for reporting all); -S (output

in SAM format); -C (color-space mapping).

• SHRiMP: -m 1 (score 1 for match); -i -1 (score -1 for mismatch) -x -1 (score -1 for

color-space error); -U (ungapped alignment) -o 10000 (maximum number of alignments

for a read); -N 1 (number of threads); -h 96% (≥96% alignment identity).

• SOCS: -x 0 (number of bases to trim); -s 2 (mismatch sensitivity); -t 4 (mismatch

tolerance); -m 0 (maximum number of alignments for a read, 0 indicates to report

all); -T 1 (number of threads); -N 1 (number of nodes); -l yes (consider the lower case

bases in genome).

• Mapreads: S=0 (color-space mapping); M=2 (number of mismatches allowed); A=2

(count adjacent mismatches as one mismatch); Z=10000 (maximum number of align-

ment for a read).

• PerM: seed F2 (full sensitivity for 1 SNPs); -v 2 (number of mismatches); -k 1 000

000 (maximum number of alignment for a read); -A (report all possible mapping for

a reads).

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 56

We used the same parameters (for reporting “all” mapping locations) when available to

ensure a fair comparison.

Note that BWA and MAQ are not considered here since they ignore the first two char-

acters of SOLiD reads.

Data, Reference Genome and Computing Power: We used both simulated and real

data sets for comparisons. We simulated three sets, each with 4 million reads of length 50

bp sampled randomly from chromosome 1 of human reference genome (NCBI build 35) as

follows:

• Set 1: We transformed the reads to color-space with no color errors and no mis-

matches.

• Set 2: Reads are transformed with two color errors. To achieve this, we transformed

the reads to color-space and then changed the color of two arbitrarily selected non-

consecutive positions. Note that if two color errors are consecutive, this might make

it impossible to distinguish a read error from a SNP.

• Set 3: Generated with no color errors but one SNP.

In addition, we randomly selected 1 million (50bp long) reads from publicly avail-

able color-space reads generated from the genomes of NA18507 [83] (Accession Number:

SRX004555), NA10847 (Accession Number: SRX008164), and NA12156 (Accession Num-

ber: SRX001969). We used the human reference genome (NCBI build 35, unmasked) as the

reference genome in all our experiments. The benchmarking results we report are performed

on a server with 64-bit Intel Xeon processor and 8 GB of RAM.

Time, Accuracy and Sensitivity Results: We give the comparison results for all the

mappers above with respect to the proportion of the reads that have at least one map

location on the reference genome (sensitivity), total number of map locations found (com-

prehensiveness), and time needed to map the reads.

Table 5.3 shows the results on simulated data sets with error threshold of 2 (color errors

and mismatches). drFAST maps all of the reads from simulated data sets back to the

reference genome very efficiently. The closest competitor to drFAST appears to be Bowtie,

which is, in general, slower than drFAST-CT and is not 100% sensitive. Although Bowtie

with a parameter setting of v=2 seems to map each read to more locations than drFAST,

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 57

Table 5.3: Performance results of all tested color-space read aligners on simulated data with
error threshold of 2 mismatches.

Dataset Mapper Time Map Reads
(min) Locations Mapped (%)

Set 1

drFAST-DP 65 138,715,908 100
drFAST-CT 40 137,483,484 100
BFAST 88 8,803,840 96.1
Bowtie v=2 17 25,581,176 99.4
Bowtie n=2 67 168,307,651 99.4
SHRiMP 414 13,961,155 99.8
SOCS 45 13,357,519 100
Mapreads 50 55,569,848 100
PerM 17 46,854,056 100

Set 2

drFAST-DP 42 37,652,313 100
drFAST-CT 26 36,458,468 100
BFAST 101 8,098,581 98.0
Bowtie v=2 13 9,738,234 60.8
Bowtie n=2 31 57,550,920 61.9
SHRiMP 519 11,977,512 99.8
SOCS 90 12,909,860 100
Mapreads 31 21,749,155 100
PerM 15 17,290,574 100

Set 3

drFAST-DP 47 76,588,622 100
drFAST-CT 32 75,970,911 100
BFAST 105 8,982,132 97.4
Bowtie v=2 16 11,030,554 49.4
Bowtie n=2 43 70,508,835 51.66
SHRiMP 472 11,859,215 99.8
SOCS 96 9,780,960 100
Mapreads 37 29,799,473 100
PerM 15 24,525,864 100

Reads are simulated from human reference genome build 35 (chromosome 1). Set 1: no
errors, Set 2: color errors, Set 3: substitutions.

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 58

when no substitutions are present (Set 1), or a single color error is added (Set 2), this is

simply due to Bowtie not being stringent on the number of errors it permits disregarding

the parameter setting; we noticed that there are mapping locations with more than five

color errors.

When the reads involve a nucleotide substitution (Set 3), the number of mapping loca-

tions are lower than that of drFAST. What is more interesting is the number of reads that

can be mapped to the reference genome. It seems like Bowtie can map at most 61.9% of the

reads even when they include a single color error (Set 2), in contrast, drFAST (both vari-

ants) map 100% of the reads. When the errors are in the form of nucleotide substitutions,

the proportion of reads mapped by Bowtie drops to 51.66%.

Since Bowtie was the closest competitor to drFAST, we performed another experiment

on the same data sets by increasing the error threshold to 3 (Table 5.4). Interestingly for

this setting, the proportion of reads mapped by Bowtie is 99.4%, almost matching the 100%

mapping sensitivity of drFAST. However, both in terms of time and the number of map

locations drFAST (both variants) perform better than Bowtie, especially when errors (Set

2 for color errors and Set 3 for nucleotide errors) are present.

As all three sets are generated from chromosome 1 with at most two errors added, a

sensitive mapper should be able to map all reads to chromosome 1 when the error threshold

is set to 2. In order to experimentally check the accuracy of all locations found by drFAST,

we simulated the corresponding Illumina reads (letter-space) and aligned to chromosome 1

using mrsFAST. As seen in Table 5.5 for Sets 1 and 3, drFAST finds slightly more mapping

locations than mrsFAST, where the sensitivities of both aligners are 100%. The reason

drFAST can find more mapping locations for SOLiD reads compared to the corresponding

Illumina reads is because drFAST could map a read like T0000 to two different positions

with base pair contents TTTT, and also CCCC when one color error is “corrected”. This is not

the case with letter-space reads generated by a platform like Illumina Genome Analyzer.

Although it would not be correct to arbitrarily select one “version” above the other, or

returning both alignments as possibilities, we propose to correct such artifacts by incorpo-

rating the base pair quality values. This problem will arise only in polyN regions, thus, we

propose to disable error correction of polyN reads where the base quality value of the first

base is sufficiently high (i.e. q > 30).

BFAST and SHRiMP results are not presented for the three real data sets (Table 5.6)

due to: (i) in our experiments, BFAST terminated with error in indexing step, (ii) SHRiMP

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 59

Table 5.4: Performance comparison on simulated data sets between drFAST-DP, drFAST-
CT and Bowtie where error threshold is set to three mismatches.

Dataset Mapper Time Map Reads
(min) Locations Mapped (%)

Set 1

drFAST-DP 88 364,601,231 100
drFAST-CT 75 363,472,241 100
Bowtie v=3 60 56,407,732 99.4
Bowtie n=3 101 252,735,117 99.4

Set 2

drFAST-DP 42 118,053,818 100
drFAST-CT 45 113,349,741 100
Bowtie v=3 45 23,365,015 99.4
Bowtie n=3 50 111,931,387 99.4

Set 3

drFAST-DP 47 215,274,860 100
drFAST-CT 50 215,261,940 100
Bowtie v=3 48 28,321,746 99.4
Bowtie n=3 75 137,015,425 99.4

Values in bold show alignments with 100% sensitivity, higher value implies more sensitivity
in the reported alignment.

requires 16 GB of main memory for alignment. Furthermore, both programs are much

slower than drFAST or Bowtie. As a result, we compared drFAST with Bowtie, SOCS,

Mapreads, and PerM with an error threshold of 2 (see Table 5.6) and an error threshold of

3 (See Table 5.7). In five out of the six cases, drFAST maps significantly more reads, and

to substantially more locations, in comparable time. The performance of the two programs

are comparable only for NA18507 for n=2, in terms of mapped reads; however, drFAST-CT

is slightly faster on this data set.

We also compared the amount of memory used by each program when mapping 1 million

reads to the human reference genome assembly (Table 5.8).

One important issue to note is that the drFAST aligner is aimed at SV/CNV inference

and it does not return mapping quality values, which are still essential for accurate SNP

detection. However, drFAST also returns “best” map locations for paired-end and matepair

reads in addition to all possible discordant configurations where “best” is defined as the

mapping with the lowest Hamming distance and with span size closest to the library average.

Future releases of drFAST will have the capability of returning mapping quality for these

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 60

Table 5.5: Number of mapping locations reported by mrsFAST for the same set of simulated
reads in letter-space.

Dataset Mapper Time Map Reads
(min) Locations Mapped (%)

Set 1 mrsFAST 20 135,450,193 100
Set 3 mrsFAST 20 75,115,629 100

Table 5.6: Performance comparison on real data sets between drFAST-DP, drFAST-CT,
Bowtie, SOCS, and PerM on 1 million randomly selected reads from three different se-
quencing experiments. We set the error threshold to 2 bp for all aligners.

Dataset Mapper Time Map Reads
Locations Mapped (%)

NA18507

drFAST-DP 114 189,276,027 36.8
drFAST-CT 54 149,362,540 35.6
Bowtie v=2 21 64,092,233 27.8
Bowtie n=2 63 202,948,323 35.2
SOCS 320 21,081,941 35.3
Mapreads 80 17,032,680 37.3
PerM 76 51,012,126 35.2

NA10847

drFAST-DP 200 667,928,813 47.1
drFAST-CT 100 512,599,230 45.9
Bowtie v=2 84 280,928,112 38.0
Bowtie n=2 91 270,996,634 36.0
SOCS 420 53,668,622 44.8
Mapreads 140 39,589,079 48.5
PerM 100 132,417,348 44.6

NA12156

drFAST-DP 136 491,158,791 33.5
drFAST-CT 91 440,317,111 32.5
Bowtie v=2 99 329,916,108 25.0
Bowtie n=2 99 318,621,596 23.7
SOCS 400 38,246,530 31.2
Mapreads 110 22,182,469 35.1
PerM 140 64,821,620 31.1

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 61

Table 5.7: Performance comparison on real data sets between drFAST-DP, drFAST-CT and
Bowtie on 1 million randomly selected reads from three different sequencing experiments.
We set the error threshold to 3 bp.

Dataset Mapper Time Map Reads
(min.) Locations Mapped (%)

NA18507

drFAST-DP 154 309,994,599 41.5
drFAST-CT 61 302,237,779 40.5
Bowtie v=3 63 145,473,423 37.1
Bowtie n=3 78 290,357,005 36.35

NA10847

drFAST-DP 300 1,121,281,408 52.1
drFAST-CT 141 1,092,259,727 51.6
Bowtie v=3 182 565,114,739 47.8
Bowtie n=3 76 270,885,799 35.8

NA12156

drFAST-DP 310 655,648,865 42.4
drFAST-CT 120 639,667,174 39.5
Bowtie v=3 187 585,191,747 34.6
Bowtie n=3 98 318,527,434 23.6

Table 5.8: Memory required by each software to map 1 million 35-base reads to human
reference genome. The memory requirement increases with the number of reads and/or the
read length, this increase is typically linear with the increase in the number of base pairs in
the data set.

Mapper Memory Usage

drFAST-DP 1.3 GB
drFAST-CT 1.3 GB

BFAST ≥ 10 GB
Bowtie 4.5 GB

SHRiMP 16 GB
SOCS ≥ 5 GBa

PerM 2 GB
Mapread ≥ 8 GBb

aSOCS memory usage is a parameter set by user, we used 5 Gigabytes of memory in our
experiments; bMapreads memory usage is a parameter set by user, we used 8 Gigabytes of
memory in our experiments.

CHAPTER 5. SENSITIVE AND FAST MAPPING OF DI-BASE READS 62

best map locations, which will effectively increase the appeal of drFAST, and users will be

able to use it for both structural variation discovery through multi-mapping paired-end and

matepair reads, and SNP discovery. Until this feature is available in drFAST, one may need

to run other aligners in parallel to discover SNPs.

5.4 Conclusion

This is an exciting time for genomics research. The amount of available [1] and soon-to-be-

generated [42] sequence data now arms us to expand our understanding human variation,

disease susceptibility and genome evolution. Although the inherent accuracy and bias prob-

lems associated with different sequencing platforms [108], we can also leverage the different

“strengths” of these technologies to increase confidence and comprehensiveness of SNP [95]

and structural

For species where a reference genome is available such as human, mapping sequence

reads to this reference assembly is the first step in genome analysis. Sensitivity, accuracy,

as well as the speed of read alignment are crucial for precise characterization of genomic

variants. To this end, many mapping algorithms were developed [71, 72, 68, 5, 44, 100]

focusing mainly on the Illumina Genome Analyzer data, and very little effort was devoted

to analyze color-space reads generated with the SOLiD platform [83, 100, 44]. The main

limitation of the SOLiD-aware read aligners is that they were not optimized for structural

variation detection (except for SHRiMP [100] which is more powerful in mapping to more

complex areas of the genome), and they are unusable for segmental duplication analysis due

to their unique mapping approach [5]. On the other hand, by tracking all possible map

locations and underlying sequence variation, drFAST provides an opportunity to better

access and increase “mappability” in repeat and duplication rich areas of the genome that

are known to harbour much structural variation [56]. Although the sensitivity of drFAST is

higher than the other aligners, we also demonstrate speed enhancements of both dynamic

programming and color transformation versions. Through its readiness to be integrated to

VariationHunter [46] for more sensitive SV discovery, and to NovelSeq [41] to characterize

novel sequence insertions, and usability for segmental variation detection [5] drFAST is an

important step forward for recovering additional genetic variation from di-base encoded

color-space sequencing.

Chapter 6

Transcript to Genome Alignment

Computational identification of genomic structural variants via High Throughput Sequenc-

ing is an important problem for which a number of highly sophisticated solutions have been

recently developed. The transcriptome refers to the complete collection of RNA sequences

transcribed from portions of the genome; these include not only mRNAs but also non-coding

RNAs.

In order to analyze structural variation within transcriptomic high-throughput sequenc-

ing (HTS) data (RNA-Seq) one typically needs to find the most likely transcript-to-genome

alignment under the possibility of structural alteration events (Figure 6.1) such as: (1) inter-

nal duplications, which result in two separate segments in the transcript sequence aligning

to the same segment of the genomic sequence; (2) inversions, which result in a segment of

the transcript sequence aligning to the opposite strand of the genome than the rest of the

transcript in an inverted fashion; (3) rearrangements, which result in a change of ordering

of the aligned segments; and (4) fusions, which result in the transcript sequence aligning

to two genes that are on two different chromosomes or far apart on the same chromosome.

Note that an inversion can be of the type (1) suffix-inversion (or prefix-inversion), which

involve a single breakpoint, where a suffix of the transcript sequence aligns to the strand

opposite of that of the corresponding prefix, and (2) internal-inversion, which involves a pair

of breakpoints, where the portion of the inverted transcript sequence aligns to the strand

opposite to that of the flanking portions.

As HTS technologies progress, the length of the read-sequences they produce grows

dramatically, and is expected to continue growing to over 1000bp per read. A longer read

has a greater possibility of containing segments from more than two exons, complicating the

63

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 64

Figure 6.1: Structural alteration events considered in this chapter. T represents the tran-
script, G and S represents two genomic regions. G′ is the complementary strand for G.
Boundaries between red and green blocks indicate event breakpoints; arrows represent cor-
responding genomic transitions in the alignment. Apart from the event types shown in
the figure, duplication events can appear as non-tandem and fusions can be between two
different strands.

process of mapping such a read. Existing structural alteration detection tools are limited

by their reliance on read-mapping tools designed for the short read sequences produced

by the original HTS technologies; they cannot take advantage of increasing read length.

Furthermore, the increase in read length improves the accuracy of de novo transcriptome

assembly tools, leading to opportunities for the analysis of full transcript sequences.

Methods that have been proposed for spliced transcriptome-to-genome sequence align-

ment [6, 55, 107, 91, 121] implicitly assume the transcript sequences are devoid of structural

alterations and use a seed-and-extend alignment strategy combined with a fragment chain-

ing method. In the context of genomic sequences, alignment under structural alterations

has been considered since the early 2000s. From a theoretical perspective, Cormode et al.

introduced block edit distance [17] as the minimum number segment deletions, duplications

and translocations in addition to single nucleotide insertions, deletions to transform (and

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 65

align) one sequence to another. Block edit distance in its most general setting is NP-hard

to compute; [23] investigated many variants of the block edit distance under several re-

strictions that make the alignment problem computationally tractable. One such variant

involving 1-monotonous alignments was implemented in the context of genome-to-genome

alignments [13]. Unfortunately no such method exists for transcript-to-genome alignments.

In this chapter, we introduce novel algorithmic formulations of the transcript-to-genome

alignment under structural alterations problem and describe solutions for several gap penalty

models. Our first formulation is a nucleotide-level alignment model that assumes the tran-

script sequence is a chain of unidirectional copies of segments taken from the genome - as

investigated in [23]. We show how to sparsify the alignment table using a convex gap penalty

model; we also show how to incorporate splice signal scores to the model. Our second for-

mulation aims to reduce the running time and memory cost of the initial nucleotide-level

alignment problem by sacrificing the sensitivity upon structures shorter than a user defined

threshold value. In this formulation, we assume each alignment unit is a short segment

shared between the transcript and the genome, possibly containing some mismatches. We

then aim to find the fragment chain that gives the best overall alignment score based on the

penalties described in the first formulation.

We introduces a novel computational tool, Dissect (Discovery of Structural alteration

Event Containing Transcripts), suitable for high throughput transcriptome studies. To the

best of our knowledge, Dissect is the first comprehensive stand-alone software for detecting

and characterizing novel structural alterations in RNA-Seq data, and capable of direct

global alignment of long transcript sequences to a genome. We report experimental results

obtained by Dissect on a simulated mouse transcriptome database containing nucleotide-

level and structural noise, as well as assembled RNA-Seq reads from the human prostate

cancer cell line C4-2.

We tested Dissect on simulated transcripts altered via structural events, as well as as-

sembled RNA-Seq contigs from human prostate cancer cell line C4-2. Our results indicate

that Dissect has high sensitivity and specificity in identifying structural alteration events in

simulated transcripts as well as uncovering novel structural alterations in cancer transcrip-

tomes.

Dissect is available at http://dissect-trans.sourceforge.net

http://dissect-trans.sourceforge.net

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 66

6.1 Methods

In this chapter we introduce a generalization of the transcriptome to genome spliced align-

ment problem, which allows the detection of transcriptional aberrations such as duplications,

rearrangements and inversions. The model we use for our formulation corresponds to the

restricted asymmetric variant of the block edit distance [23], in which the transcript se-

quence is represented by substrings extracted from the genome sequence, which are stitched

together in various formations. Even though such an alignment model ignores the inter-

mediate evolutionary steps of genomic modifications, it can still act as a realistic model

of the transcription process with structural alterations, allowing the alignment of chimeric

transcripts containing introns/deletions, novel insertions, duplications, rearrangements and

inversions. One major caveat of aligning two genomic sequences using this approach is the

omission of duplications in one of the aligned sequences [13], whereas the same approach

does not necessarily pose a limitation for transcriptome to genome alignment since tran-

scriptional structural alterations involve duplications on the transcript side, yet genomic

duplications that appear in the transcript are not crucial for our analysis.

We further generalize our formulation for handling the special case of fusions that cor-

respond to the alignment of a single transcript to two independent genomic sequences such

that there can only be a single transition from the first sequence to the second and no

transition from the second to the first. Finally, we incorporate additional score models for

canonical splice signals into our formulation in order to represent a realistic model of the

transcriptional machinery biased on canonical splice sites.

Below we describe a nucleotide-level transcriptome to genome alignment formulation for

detection of structural alterations within the transcript. Based upon this approach, we also

describe a number of algorithmic formulations for “chaining” fragments shared between the

transcript and the genome sequences (within some small number of mismatches), considering

alternative structural formations of the resulting fragment chain. Our formulation considers

a number of genomic gap penalty models, in the form of general, convex and log-scale cost

functions and transcriptional insertion penalties with a constant gap penalty model.

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 67

6.1.1 Nucleotide-level transcriptome to genome alignment under struc-

tural alterations.

Given T = t1t2 . . . tN , a transcript sequence and G = g1g2 . . . gM , a genomic sequence

(including a gene), let the complementary genomic sequence to G be G′ = g′1g
′
2 . . . g

′
M ,

where g′i represents the complement of gi. Also let S = s1s2 . . . sL be a secondary genomic

sequence (e.g. another gene) independent fromG, and let S′ = s′1s
′
2 . . . s

′
L be its complement.

S represents the potential fusion partner for G in the context of T .

We define an alignment of T to {G,G′, S, S′} under specific set of structural alterations

As (which will be clarified later in the text) to be a mapping f from the nucleotides of T to

those of G,G′, S, S′, as well as φ, representing a single nucleotide gap on the genome side

of the alignment (note that f is not an invertible function). In order to prevent multiple

fusions within the alignment, we restrict As such that if a nucleotide in T is aligned to S or

S′, none of the subsequent nucleotides in T can be aligned to G or G′ - ensuring that T can

be obtained by fusing at most two genes and there can be at most one “transition” from

G/G′ to S/S′.

We now define the score of an alignment with structural alterations As as

Score(As) =

N∑
i=1

Sm(ti, f(ti)) −
∑

1 ≤ i < j ≤ N
f(ti), f(tj) 6= φ

∀k, i < k < j, f(tk) = φ

(Ps(ti, tj)− Js(ti, tj))

Here Sm denotes the alignment score of each ti to f(ti) - which is higher if ti = f(ti). The

second contribution to the alignment score is due to the penalties for all genomic transitions

in the alignment, i.e. segments in T which are all mapped to φ, indicating a gap. Now we

assign Ps as:

Ps(ti, tj) =


Hn(Gdist(ti, tj)− 1) forward transition

Hb(Gdist(ti, tj) + 1) backward transition

Hi(Gdist(ti, tj)) inversion transition

Cf fusion transition

Here Gdist(a, b) denotes the genomic distance, namely, |f(a) − f(b)|. Note that forward

transitions are genomic transitions between a pair of aligned positions that lie on the same

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 68

sequence (i.e. G,G′, S, or S′) such that the order of alignment is preserved with respect to

the alignment direction (e.g. when aligned to complementary strand order will be reverse

as well). The penalty function for forward transitions is a user defined function Hn (see

the note below). In the presence of duplication and rearrangement events, aligned positions

will be in reverse order with respect to their alignment direction and these types of back-

wards transitions are penalized by the user defined function Hb. Another type of transition

considered is the inverted transitions penalized by the user defined function Hi; here, one

alignment lies on the original sequence and the other on the complementary sequence. Fi-

nally, a constant gap penalty Cf is applied to fusion transitions in which ti aligns to G/G′

and tj aligns to S/S′. Note again that although Hn, Hb and Hi are user defined functions,

Hb and Hi (which correspond to structural alterations in the transcript) should be costlier

than Hn (which corresponds to the regular genomic gap, presumably spanning an intron).

The second component of the transition penalty, Js, is an additional score deducted from

the penalty depending on the existence of canonical splice signals at the junction sites:

Js(ti, tj) =

{
0 Gdist(ti, tj) < min intron

Cs
2 ∗ (Jb(ti) + Je(tj)) otherwise

Here min intron corresponds to the minimum considered length of an intron (anything

shorter is treated as a deletion) and Jb, Je are binary functions that indicate whether the

beginning and ending splice sites of the transition correspond to canonical splice signals.

Note that the above formulation assumes a single canonical splice signal pair (e.g. GT-AG)

and the penalty is additive with respect to the beginning and ending sites.

Based on the definitions above, observe that in the special case of an insertion in T ,

such that ti+1 . . . tj−1 are all aligned to φ and f(ti) and f(tj) are consecutive nucleotides in

G,G′, S, S′, the penalty is zero.

An Efficient Algorithm for the Nucleotide-Level Transcriptome to Genome Align-

ment with Structural Alterations Problem.

Given a limited variant of the alignment and the score function above, where only for-

ward transitions are considered without splice signal scores on a single genomic sequence

G, there is a simple algorithm (for arbitrary Hn) with running time O(NM2). This al-

gorithm constructs an alignment table, XG, of size N ×M and initializes its first row as

max(Sm(t1, gj), Sm(t1, φ)) for all j ∈ [1,M]. For each of the remaining rows, the transitions

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 69

from the previous row are evaluated representing genomic gaps between valid transcript

position pairs. The gaps in the transcript are calculated as vertical transitions between two

adjacent rows in the alignment table. This allows the construction of each row in O(M2)

time, yielding the above running time.

[34] and [88] independently showed that when a restricted distance penalty scheme is

assumed, the running time needed to construct a row can be reduced to O(Mlog(M)) using

sparse dynamic programming. This restriction assumes a convex gap penalty function,

h : Z+ ∪{0} → R such that h(x)−h(x− 1) ≥ h(x+ 1)−h(x) ≥ 0. [34] further reduced the

running time to O(M) for simple convex gap penalty functions, with the condition that for

every x1, x2 ∈ Z, x1 < x2 and r ∈ R, the smallest integer value y that satisfies y > x2 and

h(y−x1)−h(y−x2)− r ≤ 0 can be calculated in constant time. Log-scale distance penalty

functions (in the form a+b∗ log(distance)), which model gap penalties quite realistically (as

the intron lengths are geometrically distributed [14]), satisfy the simple convexity property.

This allows the exact transcript to genome alignment without structural alterations to be

performed in O(NM) time.

We now show how to extend the above algorithms to handle splice signal scores and

transcriptional structural alterations in the form of duplications, rearrangements, inversions

and fusions.

Even if genomic distance penalties can be chosen as convex functions, the contribution

from Js may violate the convexity. To resolve this issue, we construct each row of the

alignment table by the use of two independent processes; the first process calculates the

genomic transitions from the previous row for the positions that constitute a canonical

splice starting site, and the second process does the same for the positions that do not

constitute a canonical splice starting site. For each of these processes, since Jb remains

constant for a fixed position in the previous row, the set of forward transitions between two

rows satisfy the convexity property. In order to obtain the optimal entries in a given row,

we take the higher of the two values.

Even though the above formulation is for forward transitions only, we can perform all

sparse dynamic programming operations in reverse order (with switched indices); as a result

we can split each of the two processes described above into further two processes, one for

forward and another one for backward transitions. This way we can capture duplication

and rearrangement events that require a backwards transition in the alignment.

For handling inverted transitions we use a second alignment table, XG′ for aligning T

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 70

with G′, which is initialized in a similar fashion to XG (naturally Sm values are obtained

for the complementary nucleotide). Since the original sparse dynamic programming solu-

tion is designed for any arbitrary score values taken from the previous row, obtaining the

row from table XG′ will still be valid. Therefore we can further split the four processes

described above for handling inverted and non-inverted transitions; each entry will then be

assigned to the maximum valued result out of the eight computed. Computing a row in table

XG′ can be carried out similarly: non-inverted transitions involving forward/backward and

canonical/non-canonical processes will be computed using the previous row in table XG′ ,

where the remaining inverted transitions will be computed using the table XG.

For fusion cases, we use two new alignment tables XS and XS′ to our formulation (for

aligning T with both S and S′). Even though the processes for constructing the rows of

XS/XS′ are identical to XG/XG′ , the initialization step requires handling potential fusion

transitions. Before starting the row construction process we first identify the optimal fusion

transition to each row in XS/XS′ . For kth row, the highest scoring entry within the first k−1

rows in XG or XG′ constitutes the highest scoring fusion transition score, combined with

the constant fusion transition penalty Cf . Since fusion transition penalties are independent

from genomic position, the highest scoring table entry gives the optimal fusion transition

for any of the cells in the row with the same transition score.

The above algorithmic formulation provides solutions for arbitrary, convex and sim-

ple convex penalty formulations for handling structural alterations and splice signal scores

within respective running times of O(NM2), O(NMlog(M)), and O(NM).

6.1.2 Fragment chaining for transcriptome to genome alignment under

structural alterations.

The problem of transcriptome to the genome alignment with structural alterations can be

optimally solved in polynomial time under the assumption that the transcript sequence is

composed of substrings copied from the genome sequence. For high-throughput transcrip-

tome to genome alignment studies, however, running time and memory requirements of

nucleotide level alignment will be costly even for log-scale gap penalty functions.

In this section we describe the algorithmic formulation for a “lower resolution” solution

to the transcript to genome alignment with structural alterations. Given a set of “fragments”

between the transcript and the genome sequences, this approach aims to find the optimal

chain of fragments within certain constraints that will give the maximum alignment score

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 71

with respect to the fragment “qualities” and transition penalties. If the fragment length is

one, this formulation reduces to the nucleotide-level formulation given.

Given a transcript sequence T and a pair of genomic sequences G and S (and their

complementary sequences G′ and S′), a fragment F is a segment of G,S,G′ or S′ which

is also present in T within a small number of mismatches. Associated with F , we have

(i) the starting position in T , (ii) the starting position in one of the genome sequences

G,G′, S, S′, (iii) the length of the fragment, and (iv) the similarity score for the fragment,

respectively denoted by F.ts, F.gs, F.len, and F.score. Similarly F.ge and F.te will denote

the ending position of the respective sequences; e.g. for forward alignments, F.ge = F.gs+

F.len − 1 and F.te = F.ts + F.len − 1. Fragments from G or S are aligned to T in the

forward direction; the fragments from G′ or S′ are aligned to T in the reverse direction with

complementary nucleotides. The score of the fragment is a function of its length and the

number of mismatches between itself and its occurrence in T .

In the algorithmic formulation below, we are given a set (Fset) of K fragments shared

between T and genomic sequences, G, G′, S, and S′, which are at least of a user specified

length and have an alignment score higher than a user specified threshold (we describe how

we obtain Fset later in the text). A pair of fragments can overlap in the transcript or in

the genome sequence. However, for the description below, we do not consider a fragment in

Fset, which is a sub-fragment of (fully included in, and in the same direction with) another

fragment in the genome sequence and the transcript.

We define a valid disjoint fragment chain C as an ordered subset of Fset involving k ≤ K
fragments, (F1, F2, . . . , Fk), such that (1) for each pair of subsequent fragments Fi, Fi+1

(subsequent fragments are said to be chained) we have Fi.te < Fi+1.ts, and (2) if Fi is

aligned to S/S′, no Fj for j > i is aligned to G/G′.

Our goal here is to find the valid disjoint fragment chain Cd (of length B ≤ K) over Fset

with the highest possible “score” with respect to the scoring function fscore and transition

penalty function fpenalty given as

fscore(Cd) =
B∑
i=1

Fi.score −
B−1∑
i=1

fpenalty(i, i+ 1)

− Pt(F1.ts− 1)− Pt(N − FB.te)

fpenalty(x, y) = Pt(Fy.ts− Fx.te− 1) + Ps(Fx.ge, Fy.gs)

− Js(Fx.ge, Fy.gs)

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 72

Here, the “transcript gap penalty function” (according to the constant gap penalty scheme

described in our nucleotide-level alignment formulation) is set to be Pt(dist) = Cgap ∗ dist.
The original genomic transition penalty function Ps and canonical splice signal scoring

function Js are as per the nucleotide-level alignment formulation.

It is possible to solve the problem described above by going through the fragments in

Fset according to their starting position in T , computing the best scoring chain ending with

each fragment via dynamic programming (see the description of the Dissect method). For

any pair of user defined functions Ps and Js this algorithm can find the optimal disjoint

fragment chain in Fset in O(K2) time. Although it may be possible to improve the running

time for restricted genomic gap penalty models involving, e.g., convex and simple convex

cost functions, this algorithm is easy to implement and has proven to be sufficiently fast on

the data sets we experimented with.

Figure 6.2: Fragment chaining in the presence of a rearrangement and an inversion. The
fragments involved include two segments from T associated with segments from G and
another segment from T associated with a segment from G′. The figure depicts how the
fragments reveal themselves in the alignment tables and how they can be chained to get the
overall alignment.

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 73

Fragment chains with overlapping fragments.

In a real-life experimental setting, a chain of fragments should be allowed to overlap to

handle situations involving highly similar flanking sequences of a pair of chained fragments.

Here we develop a generalized version of the formulation given above which allows the

chaining of a prefix of a fragment Fi to a suffix of another fragment Fj so that the chosen

prefix and suffix do not overlap in the transcript. First we redefine the concept of a valid

fragment chain and then investigate different overlap resolution schemes.

Let a valid fragment chain with overlaps, C, be a sequence of k ≤ K fragments,

(F1, F2, . . . , Fk), such that (1) the starting and ending positions of the fragments in the

transcript increase throughout the chain and (2) if Fi the chain is aligned to S/S′, Fj can

not be aligned to G/G′ for any j > i.

Our goal is to find the optimal overlapping fragment chain Co (of length B ≤ K) with

a modified score function that differs from the original score function in only the transition

penalty function, fpenalty, described below:

fpenalty(x, y) =


Pt(Fy.ts− Fx.te− 1)

+ Ps(Fx.ge, Fy.gs)
disjoint pairs

Po(Fx, Fy) overlapping pairs

Here Po(x, y) represents the special transition penalty for overlapping fragment pairs. Notice

that the splice signal score function, Js, is omitted from the penalty function. This is

due to the complications that can be caused by the integration of splice signal scores and

overlapping fragments.

Given a valid overlapping fragment chain, (F1, . . . , Fk), an overlap split position between

chained fragments Fi and Fi+1, is a position r ∈ [Fi+1.ts− 1, Fi.te] indicating the modified

ending position of Fi, and r + 1 indicating the modified starting position of Fi+1 in the

transcript. Below we show how to obtain the overlap split positions, and effectively resolve

overlaps between a pair of chained fragments.

In a simple overlap resolution model, the penalty Po can be set to the sum of the length

of the overlapping interval and the penalty of the genomic gap: for an overlapping fragment

pair Fi and Fi+1, we define Po = Ps(F
′
i .ge, F

′
i+1.gs) + (Fi.te − Fi+1.ts + 1), where F ′i and

F ′i+1 represent the updated (shortened) fragments. Since the overlap length is known, we

simply have to find the overlap split position r that minimizes Ps.

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 74

Notice that for fragment pairs that are aligned in the same direction, the genomic dis-

tance between a pair of fragments increases with the length of the overlap - independent

of the overlap split position; thus any overlap split position will do. For fragments that

are aligned in different directions however, the overlap split position has an effect on the

genomic distance between the two fragments. There are three different scenarios to consider

in this case: (1) first fragment is located “earlier” in the genome, (2) first fragment is located

“later” in the genome, (3) the overlapping regions of both fragments overlap in the genome

as well. For each of the above scenarios, respectively selecting the “latest” overlap split po-

sition, the “earliest” overlap split position, and the overlap split position that makes the two

updated fragments closest in the genome minimizes the genomic transition penalty - under

the assumption that inversion transition penalty increases with the genomic distance. Since

all these three cases can be handled in constant time, computing the optimal overlap split

position for any pair of fragments can be performed in constant time. As a result, we can

employ an algorithm quite similar to the one described for disjoint fragment chaining. The

only difference is, when selecting the valid chains ending at each fragment Fi, the algorithm

will need to also consider the fragments that overlap with Fi, but do not start earlier than

Fi.ts in T or end earlier than Fi.te. As per the algorithm for disjoint fragment chaining, this

variant of the fragment chaining with overlapping fragments method needs O(K2) time.

For further improving the accuracy, one needs to consider the (eliminated) mismatches

within the overlapping region. The penalty function, Po, can now be defined as: Po(Fi, Fi+1) =

Ps(F
′
i .ge, F

′
i+1.gs)+(Fi.score−F ′i .score)+(Fi+1.score−F ′i+1.score). The optimal split po-

sition of an overlapping fragment pair is that which minimizes the sum of the contributions

from the updated genomic distance and the number of mismatches retained in the updated

fragments. A naive method to handle this variant of the problem checks each position within

the overlap to compute the minimum value for Po. However, if there are no mismatches

in either fragment, the problem reduces to that described above, and thus will have an

efficient solution. Furthermore, if each fragment in Fset can only have a constant number

of mismatches (one can enforce this in the definition of a fragment), a simple brute force

search will compute the optimal split position for each pair in constant time, preserving the

running time of O(K2).

The algorithmic formulation described above provides the theoretical underpinnings of

the computational method we devised for identifying structural alterations leading to a

transcript. However, as will be described in the next section, we need to take further steps

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 75

to make the fragment chaining solution efficient and its results close to those implied by

nucleotide-level formulation towards a practical solution.

6.1.3 Whole genome analysis and discovery of novel transcriptional struc-

tural alterations with Dissect.

In this section, we describe some of the details of our computational tool Dissect (DIScovery

of Structural alteration Event Containing Transcripts). Dissect has three main stages:

Genomic region inference

This stage begins by sampling anchors from the transcript sequence and mapping to ref-

erence genome within a user defined mismatch threshold. Although there are a number of

“spliced” alignment methods in the literature, they either perform a local [55] or an anchor

specific [121] analysis of anchor mappings. Because we aim to detect structural alterations,

the order or direction of anchors are not necessarily preserved within the alignment. Thus,

a global region inference approach oblivious to order or direction is more suitable.

For our purposes, an anchor is a substring of constant length LA, of the transcript

sequence T of length N . We generate the set of anchors from the transcript by sampling

a user defined number of equally distanced anchors of length LA, the first and last anchors

corresponding to the beginning and the ending of the transcript respectively. Then we find

all possible mappings of an anchor in the genome through the cache-oblivious short read

mapper, mrsFAST (See Chapter 3), eliminating the anchors that have more mappings than

a user specified threshold.

Within a set of anchor mappings Smap = {m1,m2, . . . ,mK} of size K, each mapping

mi (to a genomic region) is represented as mi = (mi.t, mi.g, mi.score), which respectively

correspond to the starting position of the anchor in the transcript, the starting position

of the mapping in the genome, and mapping (similarity) score. Given the complete set

of anchor mappings, we determine a “genomic region of interest” by finding all intervals

within the genome (or two disjoint intervals for the fusion cases) to which a high number of

distinct anchors are mapped - with high alignment scores. Since the region is preferred to be

compact, our aligner only searches among the intervals that start at the starting position of

an anchor mapping and end at the ending position of a mapping. This condition removes all

intervals that have unnecessary extensions at each end and reduces the number of possible

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 76

genomic regions to O(K2).

For our purposes, a genomic region R is an interval that locally maximizes the following

score:

Score(R) = cN ×M(Smap, R)cα/(region length + cL).

Here cN ≥ 1, cα ≥ 1 and cL > 0 are user defined normalization parameters for adjusting

relative significance of the number of anchors contained within the region to the length of

the inferred region. M , on the other hand, is the function defined to be the sum of best

mapping scores of all anchors mapped to the region.

Our genomic region inference method initially sorts all anchor mappings according to

their genomic position. It then goes over each mapping position and calculates the above

score for all possible genomic intervals starting at that position and commits to the one

with the highest score- in linear time via dynamic programming.

A second type of genomic region inference needs to find fusion regions that appear as

intervals separated by long inter-genic regions on the same genomic sequence (e.g. intra-

chromosomal fusions) or possible different genomic sequences (e.g. inter-chromosomal fu-

sions). Since Dissect does not utilize gene annotation for region inference, we do not dif-

ferentiate between single gene alignments and inter-genic fusions between closely located

genes. This step essentially corresponds to the inference of two separate regions and a tran-

script cut position that yield the highest double region inference score, which is the sum of

scores of the two regions such that the first region score is only calculated over the anchor

samples taken from upstream of the transcript cut position and the second region score is

only calculated upon the samples taken from downstream.

Instead of looking for combinations of regions that give the optimal double region score,

Dissect scans over all possible anchor split positions and search for single regions for both

ends of the transcript independently. Optimal double region score for this anchor split is the

sum of optimal single regions that cover anchors on each side. Given cA anchors sampled

from the transcript, we find the optimal double region pair in O(cA ∗K2) time.

Even though the region inference methods described above search for the highest scoring

genomic region/region pair, Dissect processes all regions whose scores are within a constant

factor of the highest score (and within a user defined maximum number of disjoint regions

threshold). Each of these reported genomic regions/region pairs are analyzed separately

within the downstream alignment pipeline.

An important issue to address is the relation between inferred single regions and double

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 77

regions. Even though we can efficiently find the highest scoring single/double regions from

a given anchor set and its mappings, it is not possible to objectively compare scores of

inferred single/double regions. For instance, if there is a long intron in the alignment of

the transcript, the double region that spans the exons on each side of the intron might

score higher than a single region that encompasses the entire transcript alignment if cα is

1. Furthermore, a distance threshold would require prior knowledge of fusions within the

genome that is analyzed. Dissect uses a double layer inference step as a workaround to this

single/double region score comparison issue. In the first inference layer, we find a set of

highest scoring single regions. If any of these regions cover a user determined percentage

of the sampled anchors in the transcript, a double region is not searched for. If there is no

such single region however, our method searches for high scoring double regions. If there is

no high quality single or double region, our method does not report a region and considers

the given transcript sequence as not represented within the genome with high similarity.

As the final step of this stage, regions that are overlapping or close to each other are

combined into single regions (these include fusion regions that are relatively close to each

other). In addition, the region boundaries are extended allowing flanking sequence from the

beginning/ending anchors that are not represented in the set of mappings. The resulting

genomic intervals are passed on to the second stage of Dissect which finds the optimal

fragment chain with structural alterations between the transcript and inferred regions.

Fragment set construction and chaining

In the fragment set construction stage, we construct a set of fragments shared between

the transcript and the genomic region(s) inferred in the previous stage. For that purpose

we modified mrsFAST alignment method, to identify “seeds” (of a user specified length -

which can be overlapping) in the transcript and maps them to both strands of the genomic

sequence. After obtaining all possible seed mappings, the modified mrsFAST extends each

fragment on both ends under certain extension constraints. These constraints are defined

in the form of thresholds that limit total number of errors, number of consecutive errors

that can appear in the fragment and minimum sequence similarity required for each k-mer

of the fragment. After the fragment set is constructed, we employ the overlapping fragment

chaining algorithm once using forward and a second time using reverse splicing signals (GT-

AG and CT-AC). In the case of a single region inferred in the previous stage, the chaining

solution will only consist of G/G′ sequences. If a pair of regions are inferred, the chaining

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 78

solution will consider all G/G′ and S/S′ sequences allowing fusion transitions.

A key difference between our original formulation and the chaining method used in

Dissect is the use of splice signal scores. Even though splice signal scores were omitted in

our original overlapping chaining formulation, in practice it would be useful to have a two

layered chaining/post-processing approach that constructs the chain that does not attempt

to determine the exact overlap split positions, but performs a more accurate overlap analysis

together with splice signals as a post-processing step after the optimal chain is obtained. The

optimality condition here is also modified in the sense that splice signal score is incorporated

when two disjoint fragments are chained together, yet omitted for overlapping fragments.

At the end of fragment chaining step, a tentative chain is obtained that represents the

general structure of the alignment, yet overlap split positions are not exactly specified in the

resulting chain. Dissect detects the exact split position through a post-refinement method

described below.

Post-refinement of the fragment chain

In the post-refinement stage, we adjust the boundaries of fragment pairs that potentially

contain minor misalignments due to the limitations introduced in the fragment construction

step. In order to resolve these, we implemented several post-refinement steps that (1)

combine fragments which are separated by a single nucleotide indel or a mismatch in their

alignment, (2) classify and modify short overlaps in the genome, (3) fill in short gaps in the

transcript between adjacent fragments in the chain, and (4) find optimal split position for

overlapping fragment pairs.

In the case of two adjacent fragments being separated by an indel or a mismatching

transcript-genome nucleotide, the two fragments are simply combined into a single fragment

that contain an error in between. Clearly, if the fragments are separated by an indel, the

combined fragment will also contain indels. Even though this is against the original fragment

construction constraints; as a post-processing method, it only affects the resulting chain and

not the chaining formulation.

When there is an adjacent fragment pair with a short overlapping region in the genome,

Dissect does not directly report the overlap region as a duplication as this can also be an

inserted region that displays sequence similarity to one of the flanking sequences. Since it

is difficult to differentiate between the two, we allow the user to define lower and upper

thresholds on length. Overlaps that are shorter than the lower threshold are treated as

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 79

insertions, whereas overlaps that are longer than the upper threshold are reported as regular

duplicated regions in the transcript. The overlap regions that fall in between are reported

as an ambiguous insertion/duplication region should be further analyzed by the use of gene

annotations.

We have two additional refinement methods that require efficient implementations: (1)

If two adjacent fragments have a gap in between them in the transcript, the formation

might indicate a novel insertion of the size of the gap. (2) Alternatively, the region of the

gap might belong to one of the exons represented by adjacent fragments (or both), yet

may have relatively low similarity to the corresponding genomic region. In order to test

the latter case, we perform a double-sided semi-global alignment on the flanking sequences

of the fragment pair in the genome and the gap sequence. This alignment scheme aims

to optimize the sum of the semi-global (overlap-detection) alignment scores on each side

of a fixed split position in the transcript gap region. The method we apply is analogous

to the Sandwich DP method proposed for GMAP spliced alignment algorithm [121]. The

key difference in our application is the consideration of alignment with various structural

alterations and their effect of fragment directionality. Within the alignment table, we also

mark the GT-AG/CT-AC splice signals and take them into account for the computation of

the new transition penalty between the updated fragments. This allows a fair alignment

score comparison between the chains that go through this post-processing step and the

chains that do not. Note that this gap refinement scheme has a running time of O(l2) per

refinement (l is the length of the transcript gap).

As mentioned in the description of the fragment chaining stage; the exact overlap split

position for overlapping fragments is not determined during the execution of the dynamic

programming method but is left for a more detailed analysis in the post-refinement stage.

In this stage, Dissect searches for the optimal overlap resolution according to an extended

version of the overlap resolution scheme described in the previous section. In this version

of the overlap resolution scheme, we combine splice signal scores with the original accurate

overlap resolution that considers mismatch retention and updated genomic distance for the

overlap penalty. Even though this extension was not feasible during fragment chaining, if

the overlaps are resolved in an iterative fashion from the fragment pairs at the beginning of

the chain towards the end, the number of splice sites that need to be checked in the genome

stays within O(N). Incorporating splice site scores in this manner also allows us to have a

fair comparison basis when comparing the relative scores of the fragment chains for various

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 80

regions inferred in the first stage.

When two adjacent overlapping fragments have near perfect sequence similarity and

no splice signals to identify the exact splicing position, there can be multiple overlap split

positions with equal updated fragment scores. In such cases, our aligner reports the earliest

split in the transcript but also provides an output field indicating equivalent split positions.

This additional output can be used to reconstruct all optimal overlap splitting selections.

6.2 Results

We first report the performance of Dissect on simulation datasets derived from NCBI RefSeq

transcript sequences and Known Gene gene structure database [51], which are subjected to

nucleotide level substitution/indel noise with varying frequencies, novel oligonucleotide se-

quence insertions, and structural alterations at different length distributions, including exon

duplications, inversions, rearrangements and transcript-transcript fusions. To demonstrate

the performance of Dissect on real human transcriptome data, we report on an RNA-Seq

dataset comprising 50bp reads from the prostate cancer cell line C4-2, assembled through

Trans-AbySS transcriptome assembler [11].

Wild-type transcripts with novel insertions and nucleotide-level alterations We

first evaluate Dissect’s false discovery rate through the use of a data set comprised of wild-

type transcripts. For that, we used NCBI RefSeq mRNA annotation dataset including the

whole mouse transcriptome (build of July 18, 2011). This annotation dataset is (presum-

ably) composed of wild-type transcripts that do not contain structural alterations. We

evaluated Dissect’s false event discovery rate by aligning all transcripts from this data set

to the mouse reference genome (build mm9). Since most of these sequences have very close

matches to genes in the mouse genome, we also used this dataset to evaluate the accuracy

of Dissect alignments (obtained through fragment chaining) at nucleotide-level resolution.

After the removal of poly-A tails, the entire data set containing 28060 RefSeq sequences

of average length of 2848 nucleotides, were aligned to the mouse reference genome using the

default parameters of Dissect. We report on the highest scoring alignment for each transcript

sequence. Among them, 27922 (99.51%) did not contain structural alterations, 49 (0.17%)

were reported to contain a structural event, and 38 (0.14%) were identified to contain a

short ambiguous insertion or duplication event. The remaining 51 sequences had no high

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 81

similarity alignments. On a standard single core processor, aligning the entire dataset of

28060 sequences with Dissect took less than 80 minutes.

Next, we aimed to observe how Dissect’s false event discovery rate varies as a function

of sequence divergence (between the transcript and the genome) - and thus sequencing

error rate. For that, we modified the original RefSeq sequences by adding nucleotide-level

substitution/indel errors. These errors were added independently at random in each position

of a transcript sequence: based on a recent study on error rates in Illumina sequencing [90],

single nucleotide indel to substitution error ratio was set to 1/150 and insertion to deletion

ratio was set to 1/10. When the sequencing error rate was set to 1%, 27917(99.4%) sequences

out of 28060 were aligned as wild-type transcripts without no alterations. For 52 sequences,

a high similarity alignment was not reported. Structural alterations were reported for only

57 transcripts and short ambiguous duplication/insertions were detected for 34 transcripts.

When the sequencing error rate was set to 4%, the number of transcripts with a wild-type

transcript alignment was reduced to 27756(98.9%). Among the remaining 304 sequences,

188 did not produce a high similarity alignment.

Finally, we used the latest RefSeq mRNA annotation dataset for whole human transcrip-

tome (build of July 18, 2011) for the purpose of evaluating Dissect’s false event discovery

rate in the presence of short-to-medium size novel insertions.

In order to simulate a realistic sample of novel human genome insertions, we sampled

substrings of varying length from the set of insertion sequences reported in a novel insertion

characterization study [57], and inserted them to the transcript sequences at random exon

breakpoints. Our data set included 33460 sequences that were devoid of structural alter-

ations and had nucleotide-level accurate alignments (after the removal of poly-A tails). We

equally partitioned this dataset into four subsets, each subject to a specific insertion size.

To obtain realistic novel insertion sequences, we used 2363 known novel insertion sequences

[57], from which we randomly picked a position in each sequence and extracted the sequence

of the required length.

Table 6.1 depicts the false event detection rate for novel insertions shorter than 35

nucleotides. The higher rate of false positives for longer insertion sizes is caused by Dissect’s

high sensitivity to sequence similarity. Since the insertion sequences are obtained from a

real novel insertion study for the human genome, there might be sequences highly similar

to the insertion nearby the aligned gene loci, which increase the risk of identifying false

rearrangements.

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 82

Table 6.1: Alignment results of Dissect for the simulated wild-type transcriptome dataset
with novel insertions. Rows represent the length interval of the novel insertion distributions
(e.g. insertions reported in the first row are uniformly distributed between 6 and 20 nu-
cleotides). Columns indicate the output labels of Dissect: All events column represents the
total number of transcripts Dissect has identified as a structural alteration A. D/I column
represents the alignments that contain a short ambiguous interval that cannot be verified
with certainty as an insertion or a duplication, and N.A. column indicates the number of
transcript sequences for which Dissect did not return a valid high similarity alignment.

Insertion Length Total WT All events A. D/I N.A.

6-20 bases 8365 8335 12 16 2
21-35 bases 8365 8284 52 23 6
36-50 bases 8365 8223 106 24 13
51-65 bases 8365 8117 204 20 24

Simulated transcriptional events. In order to estimate the sensitivity of Dissect, we

initially prepared wild-type transcriptome datasets without any structural alterations using

the Known Genes mouse gene structure annotation database [51] and modified extracted

wild-type transcript sequences according to various structural alteration scenarios. In this

step, any transcript sequence shorter than 50bp is removed, since structural modifications

in such short transcript sequences often prevent reliable mapping of the anchor sequences

used by Dissect.

The thirteen simulations described below aim to emulate the aberrant formations that

can occur in transcripts due to structural alterations. These simulations involve: (1) tandem

duplications of the full transcript, (2) tandem duplication of the longest exon, (3) tandem

duplication of the shortest exon, (4) internal-inversion of the longest exon, (5) internal-

inversion of the shortest exon, (6) suffix-inversion with a breakpoint close to middle (prefix

to suffix ratio: 36%-65%), (7) suffix-inversion with a breakpoint close to the beginning/end,

(prefix to suffix ratio: 16%-35% or 66%-85%), (8) rearrangement of the full transcript se-

quence from a particular split position, (9) rearrangement of adjacent exons, (10) rearrange-

ment of non-adjacent exons, (11) well-balanced fusions (shorter fused sequence is ≥ %60 of

the longer one), (12) moderately-balanced fusions (30% ≤ short to long ratio < 60%), (13)

imbalanced fusion (short to long ratio: < %30). The distribution of transcript alignments

according to these event type labels for various event simulations are given in Table 6.2.

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 83

Table 6.2: The number of structural alterations detected by Dissect for the simulation
datasets.

Tot. Tot-E. Fusion Inv. F. Dup. F. Rea.

Exp. 1 5234 5099 1 5 5092 1
Exp. 2 5234 5172 0 1 5171 0
Exp. 3 5234 5093 0 0 5093 0
Exp. 4 4788 4762 0 4762 0 0
Exp. 5 4788 4331 0 4331 0 0
Exp. 6 3188 3125 0 3125 0 0
Exp. 7 4654 4501 0 4501 0 0
Exp. 8 4788 4512 2 8 3 4499
Exp. 9 4788 4623 0 8 2 4613
Exp. 10 4316 4255 0 14 4 4237
Exp. 11 1312 1237 1232 5 0 0
Exp. 12 1558 1433 1433 0 0 0
Exp. 13 2363 562 562 0 0 0

Tot. = Total number of transcript sequences, Tot-E. = Total number of discovered struc-
tural event containing transcripts, Fusion = Total number of fusions, Inv. = Inversion events
including inverted duplications, inverted rearrangements, in-place inversions, and suffix in-
versions, F. Dup. = Forward duplications, F. Rea. = Forward rearrangement events.

Transcriptomic Structural Alterations in Prostate Cancer Cell Line C4-2. We

applied Dissect to high coverage 50bp RNA-Seq read data from human prostate cancer cell

line C4-2. The reads were assembled using short-read transcriptome assembler Trans-Abyss

[11] version 1.2.0, using k-mer sizes of 26 and 49 - the minimum overlap length between two

reads to be combined in a contig. For two contigs to be merged we required 10 pair-end

mappings between the contigs.

Among a total of 576, 381 contigs assembled, Dissect did not return a high quality align-

ment for 167, 187 of them. Among the remaining contigs, 391, 293 of them were aligned

with no structural alterations. In 4, 309 contigs, Dissect detected an ambiguous short in-

sertion/duplication region. In 13, 583 contigs, Dissect discovered a structural alteration:

1, 044 fusions, 1, 331 duplications, 555 rearrangements, and 10, 653 inversion events. 10, 992

of 12, 539 non-fusion event contigs displayed ≥ 90% overlap with a single gene annotated

in HG18 Known Genes dataset. Among 10, 653 inversions, 69 are multiple breakpoint in-

versions and another 79 contain combined duplication/rearrangement events. Within the

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 84

remaining 10, 505 single-breakpoint suffix-inversion events, 2, 600 contain overlapping re-

gions within the two strands and 7, 905 have non-overlapping suffix/prefix formation.

We compared Dissect alignment results on contigs from C4-2 with long range PCR vali-

dated fusions reported by the fusion discovery tool Comrad [85] on the same data set. Among

8 validated gene fusion pairs, RERE-PIK3CD, HPR-MRPS10, CCDC43-YBX2, TFDP1-

GRK1, BMPR2-FAM117B, GPS2-MPP2, MIPOL1-DGKB, ITPKC-PPFIA3, Dissect cor-

rectly identified 6 of them: RERE-PIK3CD, HPR-MRPS10, CCDC43-YBX2, BMPR2-

FAM117B, MIPOL1-DGKB, ITPKC-PPFIA3. Note that because the two genes involved in

the fusion BMPR2-FAM117B are in close genomic proximity, Dissect returned a rearrange-

ment, rather than a fusion as per it is set to do. Among the two fusions Dissect could not

identify, there was no contig returned by the assembler that spanned the TFDP1-GRK1

fusion breakpoint and the assembled contig spanning the GPS2-MPP2 fusion breakpoint

was highly imbalanced (10% : 90%). Note that for three out of these four genes, GPS2,

MPP2 and TFDP1, Dissect also reported wild-type alignments, without any evidence for a

fusion event.

In order to better understand and differentiate the limitations of Dissect from that of

the assembly process, we extracted breakpoint sequences of length 200bp for each of the

eight gene fusion events given above. Dissect produced alignments that correctly capture

the fusion breakpoint for each of the eight fusions. Six of these breakpoint sequences were

reported as straightforward fusions. Among the remaining two breakpoints transitions,

BMPR2-FAM117B was identified as a rearrangement event and TFDP1-GRK was identified

as a wild-type alignment due to close proximity of the fused genes: a comparison with gene

annotation uncovered the inter-genic structure of the breakpoints discovered.

6.3 Conclusion

We introduce novel algorithmic formulations for the problem of aligning transcripts to a

genome under structural alterations such as duplications, inversions, rearrangements and

fusions.

Our first formulation involves nucleotide-level alignment that can detect structural al-

terations by a single unified dynamic programming approach. The fastest algorithms we

developed for this formulation require O(NMlog(M)) time for convex genomic gap penal-

ties and O(MN) time for simple convex (including logarithmic) gap penalties (M and N

CHAPTER 6. TRANSCRIPT TO GENOME ALIGNMENT 85

correspond to the lengths of transcript and genome sequences respectively).

Our second formulation allows a faster but lower-sensitivity solution for a whole genome

alignment setting. Given a set of shared fragments between the transcript and the genome,

we show how to obtain an optimal chain of fragments in O(K2) time for disjoint or over-

lapping fragments (K being the total number of fragments).

We also present a novel computational tool, Dissect, which implements the fragment

chaining formulation described above. Dissect achieves high sensitivity and specificity in

identifying structural alterations in simulated data sets, as well as in uncovering gene fusions

in a prostate cancer cell line.

Chapter 7

Boosting Sequence Compression

Algorithms

As mentioned in Chapter 1, the high throughput sequencing (HTS) platforms generate un-

precedented amounts of data that introduce challenges for the computational infrastructure.

Data management, storage, and analysis have become major logistical obstacles for those

adopting the new platforms. Fast and efficient compression algorithms designed specifically

for HTS data should be able to address some of the issues in data management, storage,

and communication. Such algorithms would also help with analysis provided they offer ad-

ditional capabilities such as random access to any read and indexing for efficient sequence

similarity search.

Available compression techniques for HTS data either exploit (i) the similarity between

the reads and a reference genome [50, 61] or (ii) the similarity between the reads them-

selves [124, 125, 111, 19, 122, 18, 54, 12]. In particular, the Lempel-Ziv methods [124, 125]

(e.g gzip and derivatives) iteratively go over the concatenated sequence and encode a prefix

of the uncompressed portion by a “pointer” to an identical substring in the compressed

portion. This general methodology has three major benefits: (i) Lempel-Ziv based methods

(e.g. gzip and derivatives) have been optimized through many years and are typically very

fast; in fact, the more “compressible” the input sequence is, the faster they work, both in

compression and decompression; (ii) these methods do not need a reference genome; and

(iii) because these techniques are almost universally available, there is no need to distribute

a newly developed compression algorithm.

86

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 87

Interestingly, the availability of a reference genome can improve the compression rate

achieved by standard Lempel-Ziv techniques. If the reads are first mapped to a reference

genome and then reordered with respect to the genomic coordinates they map to before they

are concatenated, they are not only compressed more due to increased locality, but also in

less time. This, mapping first compressing later approach, combines some of the advantages

of the two distinct sets of methods above: (i) it does not necessitate the availability of a

reference genome during decompression (compression is typically applied once to a data

set, but decompression can be applied many times), and (ii) it only uses the re-ordering

idea as a front end booster (Burrows Wheeler transform –BWT– is a classical example for a

compression booster. It rearranges input symbols to improve the compression achieved by

Run Length Encoding and Arithmetic Coding [99, 118, 103] . Further boosting for BWT is

also possible: see [30, 28, 27]). Any well-known, well-distributed compression software can

be applied to the re-ordered reads. Unfortunately, this strategy still suffers from the need

for a reference genome during compression.

In this chapter, we introduce a novel HTS genome (or transcriptome, exome, etc.) se-

quence compression approach that will combine the advantages of the two types of algo-

rithms above. It is based on reorganization of the reads so as to ”boost” the locality of

reference. The reorganization is achieved by observing sufficiently long “core” substrings

that are shared between the reads, and clustering such reads to be compressed together.

This reorganization acts as a fast substitute for mapping based reordering (see above); in

fact the first step of all standard seed and extend type mapping methods identify blocks of

identity between the reads and the references genome.

The core substrings of our boosting method are derived from the Locally Consistent

Parsing (LCP) method devised by Sahinalp and colleagues [102, 17, 9]. For any user-specified

integer c and with any alphabet (in our case, the DNA alphabet), the LCP identifies “core”

substrings of length between c and 2c such that (i) any string from the alphabet of length

3c or more include at least one such core string, (ii) there are no more than three such

core strings in any string of length 4c or less, and (iii) if two long substrings of a string are

identical, then their core substrings must be identical.

LCP is a combinatorial pattern matching technique that aims to identify “building

blocks” of strings. It has been devised for pattern matching, and provides faster solutions

in comparison to the quadratic running time offered by the classical dynamic programming

schemes. As a novel application, we introduce LCP to genome compression, where it aims to

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 88

act as a front end (i.e. booster) to commonly available data compression programs. For each

read, LCP simply identifies the longest core substring (there could be one or more cores in

each read). The reads are “bucketed” based on such representative core strings and within

the bucket, ordered lexicographically with respect to the position of the representative core.

We compress reads in each bucket using Lempel-Ziv variants or any other related method

without the need for a reference genome.

As can be seen, LCP mimics the mapping step of the mapping-based strategy described

above in an intelligent manner: on any pair of reads with significant (suffix-prefix) overlaps,

LCP identifies the same core substring and subsequently buckets the two reads together.

For a given read, the recognition of the core strings and bucketing can be done in time linear

with the read length. Note that the “dictionary” of core substrings is devised once for a

given read length as a pre-processing step. Thus, the LCP-based booster we are proposing

is very efficient. LCP provides mathematical guarantees that enable highly efficient and

reliable bucketing that captures substring similarities.

Our tests indicate that SCALCE can improve the compression rate achieved through

gzip by a factor of 4.19 - when the goal is to compress the reads alone. In fact on SCALCE

reordered reads, gzip running time can improve by a factor of 15.06 on a standard PC with

a single core and 6GB memory. Interestingly even the running time of SCALCE + gzip

improves that of gzip alone by a factor of 2.09. When compared to the recently published

BEETL - which aims to sort the (inverted) reads in lexicographic order for improving bzip2,

SCALCE+gzip provides up to 2.01 times better compression while improving the running

time by a factor of 5.17. SCALCE also provides the option to compress the quality scores as

well as the read names, in addition to the reads themselves. This is achieved by compressing

the quality scores through order-3 Arithmetic Coding and the read names through gzip

through the reordering SCALCE provides on the reads. This way, in comparison to gzip

compression of the unordered FASTQ files (including reads, read names and quality scores),

SCALCE (together with gzip and arithmetic encoding) can provide up to 3.34 improvement

in the compression rate and 1.26 improvement in running time.

SCALCE (Sequence Compression Algorithm using Locally Consistent Encoding) is im-

plemented with both gzip and bzip2 compression options. It also supports multi-threading

when gzip option is selected, and the pigz binary is available. The source code for SCALCE

is available at http://scalce.sourceforge.net/

http://scalce.sourceforge.net/

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 89

7.1 Methods

7.1.1 A theoretical exposition to the LCP technique

The simplest form of the LCP technique works only on reads that involve no tandemly

repeated blocks (i.e. the reads can not include a substring of the form XX where X is a

string of any length ≥ 1; note that a more general version of LCP that does not require

this restriction is described in [101, 102, 9] so that LCP works on any string of any length).

Under this restriction, given the alphabet {0, 1, 2, . . . , k−1}, LCP partitions a given string S

into non-overlapping blocks of size at least 2 and at most k such that two identical substrings

R1 and R2 of S are partitioned identically – except for a constant number of symbols on the

margins. LCP achieves this by simply marking all local maxima (i.e. symbols whose value

is greater than its both neighbours) and all local minima which do not have a neighbour

already marked as a local maxima - note that beginning of S and the ending of S are

considered to be special symbols lexicographically smaller than any other symbol. LCP

puts a block divider after each marked symbol and the implied blocks will be of desirable

length and will satisfy the identical partitioning property mentioned above. Then, LCP

extends each block residing between two neighbouring block dividers by one symbol to the

right and one symbol to the left to obtain core blocks of S. Note that two neighbouring core

blocks overlap by two symbols.

7.1.2 Example

Let S = 21312032102021312032102; in other words S = X0X, where X = 21312032102.

The string S satisfies the above condition; i.e. it contains no identically and tandemly

repeated substrings. When the above simple version of LCP is applied to S, it will be

partitioned as |213|12|03|2102|02|13|12|03|2102|. Clearly, with the exception of the leftmost

blocks, the two occurrences of X are partitioned identically. Now LCP identifies the core

blocks as 2131, 3120, 2032, 321020, 2021, 2131, 3120, 2032, 32102.

Observe that the (i) two occurrences of string X are partitioned by LCP the same way

except in the margins. Further observe that (ii) if a string is identified as a core block in

a particular location, it must be identified as a core block elsewhere due to the fact that

all symbols that lead LCP to identify that block as a core block are included in the core

block. As a result (iii) all core blocks that entirely reside in one occurrence of X should

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 90

be identical to those that reside in another occurrence of X. Finally observe that (iv) the

number of cores that reside in any substring X is at most 1/2 of its length and at least 1/k

of its length.

The above version of LCP can return core blocks with length as small as 4; a length

4 substring is clearly not specific enough for clustering an HTS read; we have to ensure

that the minimum core block length c is a substantial fraction of the read length. LCP as

described in [101, 102, 9] enables to partition S into non-overlapping blocks of size at least

c and at most 2c − 1 for any user defined c. These blocks can be extended by a constant

number of symbols to the right and to the left to obtain the ”core” blocks of S. In the

context of compressing HTS reads, if c is picked to be a significantly long fraction of the

read size, LCP, applied on the HTS reads will guarantee that each read will include at least

one and at most three of these core blocks.

Unfortunately this general version of LCP is too complex to be of practical interest. As a

result we have developed a practical variant of LCP described below to obtain core blocks of

each HTS read with minimum length 8 and maximum length 20. Interestingly we observed

that in practice more than 99% of all HTS reads of length 50 or more include at least one

core of length 14 or less. As a result, we are interested in identifying only those core blocks

of lengths in the range [8, 14]. Still there could be multiple such core blocks in each HTS

read; SCALCE will pick the longest one as the representative core block of the read (if there

are more than one such block, SCALCE may break the tie in any consistent way). SCALCE

will then cluster this read with other reads that have the same representative core block.

7.1.3 A practical implementation of LCP for reordering reads

The purpose of reordering reads is to group highly related reads, in fact those reads that

ideally come from the same region and have large overlaps together so as to boost gzip and

other Lempel-Ziv-77 based compression methods. If one concatenates reads from a donor

genome in an arbitrary order, highly similar reads will be scattered over the resulting string.

Because Lempel-Ziv-77 based techniques compress the input string iteratively, from left to

right, replacing the longest possible prefix of the uncompressed portion of the input string

with a pointer to its earlier (already compressed) occurrence, as the distance between the

two occurrences of this substring to be compressed increases, the binary representation of

the pointer also increases. As a result gzip and other variants only search for occurrences of

strings within a relatively small window. Thus reordering reads so as to bring together those

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 91

with large (suffix-prefix) overlaps is highly beneficial to gzip and other similar compression

methods. For this purpose, it is possible to reorder the reads by sorting them based on their

mapping loci on the reference genome. Alternatively it may be possible to find similarities

between the reads through pairwise comparisons [122]. However each one of these approaches

are time-wise costly.

In contrast our goal here is to obtain a few core blocks for each read so that two highly

overlapping reads will have common core blocks. The reads will be reordered based on their

common core blocks, which satisfy the following properties: (i) Each HTS read includes at

least one core block. (ii) Each HTS read includes at most a small number of core blocks.

This would be achieved if any sufficiently ”long” prefix of a core block can not be a suffix

of another core block (this assures that two subsequent core blocks can not be too close to

each other).

We first extend the simple variant of LCP described above so as to handle strings from

the alphabet Σ = {0, 1, 2, 3} (0=A, 1=C, 2=G, 3=T) that can include tandemly repeated

blocks. In this variant we define a core block as any 4-mer that satisfies one of the following

rules:

• (Local Maxima) xyzw where x < y and z < y;

• (Low Periodicity) xyyz where x 6= y and z 6= y;

• (Lack of Maxima) xyzw where x 6= y and y < z < w;

• (Periodic Substrings) yyyx where x 6= y.

We computed all possible 4-mers (there are 256 of them) from the 4 letter alphabet Σ

and obtained 116 core blocks that satisfy the rules above. The reader can observe that

the minimum distance between any two neighbouring cores will be 2 and the maximum

possible distance will be 6 (note that this implementation of LCP is not aimed to satisfy

any theoretical guarantee; rather, it is developed to work well in practice). This ensures

that any read of length at least 9 includes one such core block.

To capture longer regions of similarity between reads, we need to increase the lengths

of core blocks. For that purpose we first identify the so called marker symbols in the read

processed as follows. Let x, y, z, w, x, v ∈ Σ, then:

• y is a “marker” for xyz, when x < y and z < y;

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 92

• y is a “marker” for xyyz, when x < y and z < y;

• y is a “marker” for xyyyz, when x 6= y and z 6= y;

• yy is a “marker” for xyyyyz, when x 6= y and z 6= y;

• y is a “marker” for xwyzv, when y < w ≤ x and y < z ≤ v.

Now on a given read, we first identify all marker symbols. We apply LCP to the sequence

obtained by concatenating these marker symbols to obtain the core blocks of the marker

symbols. We then map these core blocks of the marker symbols to the original symbols

to obtain the core blocks of the original read. Given read R = 0230000300, we identify

its marker symbols as follows: 3 is the marker for 230, 00 is the marker for 300003, and 3

is the marker for 030 as per the marker identification rules above. The sequence obtained

by concatenating these markers is 3003, which is itself (4-mer) core block according to the

LCP description above. The projection of this core block on R is 23000030, which is thus

identified as a core block (actually the only core block) of the read.

For the 4 letter alphabet Σ, we computed all (≈ 5 million) possible core blocks of length

{8, . . . , 14} according to the above rules (this is about 1% of all blocks in this length range).

These rules assure that the minimum distance between two subsequent core blocks is 4 and

thus the maximum number of core blocks per read is at most 11 per each HTS read of

length 50. Furthermore we observed that more than 99.5% of all reads have at least one

core block (the other reads have all cores of length 15 to 20). Although this guarantee is

weaker than the theoretical guarantee provided by the most general version of LCP, it serves

our purposes.

7.1.4 A data structure for identifying core substrings of reads

We build a trie [32] data structure representing each possible core substring by a path to

efficiently place reads into ”buckets”. We find “all” core substrings of each read and place

the read in the bucket associated with the core substring that is the longest (if there are two

or more such buckets, we pick the one that contains the maximum number of reads). If one

simply uses the trie data structure, finding all core substrings within a read would require

O(cr) time where r is the read length, and c is the length of all core substrings in that

read. To improve the running time we build an automaton implementing the Aho-Corasick

dictionary matching algorithm [3]. This improves the running time to O(r + k), where k

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 93

is the number of core substring occurrences in each read. Because the size of the alphabet

Σ is very small (4 symbols), and the number of the core substrings is fixed, we can further

improve the running time by pre-processing the automaton such that, for a given state of

the automaton we calculate the associated bucket in O(1) time, reducing the total search

time to O(r).

This is done by analysing the original Aho-Corasick trie and redirecting the backward

(also called failure) edges to the ultimate source edges (and thus reducing the number of

steps for failure look-up), as shown in Figure 7.1.

C

A T

G C

A G T

T

T

T

G

Figure 7.1: Aho-Corasick trie preprocessing. Red edges indicate original failure edges, while
green edges indicate preprocessed failure edges. Note that we need to perform only one
jump by using green edges to reach the destination, contrary to the two jumps needed by
red edges.

In order to improve the compression of the reads even more, we apply cyclic shifting

based on the core position in each read, and then sort each bucket alphabetically, in order

to boost the similarity between the neighbouring sequences even more.

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 94

7.1.5 Compressing the quality scores

Note that the HTS platforms generate additional information for each read that is not

confined to the 4 letter alphabet Σ. Each read is associated with a secondary string that

contains the base calling Phred [24] quality score. Quality score of a base defines the proba-

bility that the base call is incorrect, and it is formulated as Q = −10× log10(P (error)) [24].

The size of the alphabet for the quality scores is typically |Σ| = 40 for the Illumina platform,

thus the compression rate for quality scores is lower than the actual reads. As mentioned in

previous studies [114], lossy compression can improve the quality scores compression rate.

We provide an optional controlled lossy transformation approach based on the following

observation. In most cases, for any base pair b, the quality scores of its “neighbouring”

base pairs would be either the same or within some small range of b’s score (see Figure 7.2).

Based on this observation, we provide a lossy transformation scheme to reduce the alphabet

size. We calculate the frequency table for the alphabet of quality scores from a reasonable

subset of the qualities (1 million quality scores). We first use a simple greedy algorithm to

find the local maxima within this table. We then reduce the variability among the quality

scores in the vicinity of local maxima up to some error threshold e.

 0.0001

 0.001

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

p
ro

b
a
b
ili

ty

basepair

R1 Original

 0.0001

 0.001

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

p
ro

b
a
b
ili

ty

basepair

R1 Lossy 30%

 0.0001

 0.001

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

p
ro

b
a
b
ili

ty

basepair

R2 Original

 0.0001

 0.001

 0 10 20 30 40 50 60 70 80 90 100

E
rr

o
r

p
ro

b
a
b
ili

ty

basepair

R2 Lossy 30%

Figure 7.2: Original (left) and transformed (right) quality scores for two random reads that
are chosen from NA18507 individual. The original scores show much variance, where the
transformed quality scores are smoothened except for the peaks at local maxima, that help
to improve the compression ratio.

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 95

Table 7.1: Input data statistics and compression rates achieved by gzip only and SCALCE
+ gzip on reads from the P. aeruginosa RNA-Seq library (dataset 1).

Dataset Info
Size 4,327
Number of Reads 89 million

gzip
Size 1,071
Compression Rate 4.04
Time 13m 18s

SCALCE+gzip

Size 256
Compression Rate 16.92
SCALCE+gzip time 6m 21s

Boosting Factor 4.19x
gzip time after reordering 53s

File sizes are reported in megabytes.

7.2 Results

We evaluated the performance of the SCALCE algorithm for boosting gzip on a single core

2.4GHz Intel Xeon X5690 PC (with network storage and 6GB of memory).

We used four different data sets in our tests:

(i) P. aeruginosa RNA-Seq library (51 bp, single lane), (ii) P. aeruginosa genomic sequence

library (51 bp, single lane). (iii) whole genome shotgun sequencing (WGS) library gener-

ated from the genome of the HapMap individual NA18507 (100 bp reads at 40X genome

coverage), and (iv) a single lane from the same human WGS data set corresponding to ap-

proximately 1.22X genome coverage (Sequence Read Archive ID: SRR034940). We removed

any comments from name section (any string that appears after the first space). Also the

third row should contain a single character (+/-) separator character.

The reads from each data set were reordered through SCALCE and three separate

files were obtained for (i) the reads themselves, (ii) the quality scores and (iii) the read

names (each maintaining the same order). Note that LCP reordering is useful primarily for

compressing the reads themselves through gzip. The quality scores were compressed via the

scheme described above. Finally the read names were compressed through gzip as well.

The compression rate and run time achieved by gzip software alone, only on the reads

from the P. aeruginosa RNA-Seq library (dataset 1) is compared against those achieved by

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 96

Table 7.2: Input data statistics and compression rates achieved by gzip only and SCALCE
+ gzip + AC on complete FASTQ files.

P. aeruginosa P. aeruginosa NA18507 NA18507
RNAseq Genomic WGS Single Lane

Original size 10,076 9,163 300,337 7,708
Number of reads 89 million 81 million 1.4 billion 36 million

gzip Performance

Size 3,183 3,211 113,132 3,058
Rate 3.17 2.85 2.65 2.52

SCALCE Performance with Lossless Qualities

Size 1,496 1,655 76,890 2,146
Rate 6.74 5.54 3.91 3.59
Boosting factor 2.13x 1.94x 1.47x 1.42x

SCALCE Performance with 30% Lossy Setting Applied

Size 953 1,126 58,031 1,639
Rate 10.58 8.14 5.18 4.70
Boosting factor 3.34x 2.85x 1.95x 1.86x

File sizes are reported in megabytes.

SCALCE followed by gzip in Table 7.1. The compression rates achieved by the gzip software

alone in comparison with gzip following SCALCE on the combination of reads, quality scores

and read names are presented in Table 7.2. The run times for the two schemes (again on

reads, quality scores and read names all together) are presented in Table 7.3.

When SCALCE is used with arithmetical coding of order 3 with lossless qualities, it

boosts the compression rate of gzip between 1.42−2.13-fold (when applied to reads, quality

scores and read names), significantly reducing the storage requirements for HTS data. When

arithmetical coding of order 3 is used with 30% loss – without reducing the mapping accuracy

– improvements in compression rate are between 1.86−3.34. In fact, the boosting factor can

go up to 4.19 when compressing the reads only. Moreover, the speed of the gzip compression

step can be improved by a factor of 15.06. Interestingly the total run time for SCALCE +

gzip is less than the run time of gzip by a factor of 2.09. Furthermore, users can tune the

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 97

Table 7.3: Run time for running gzip alone and SCALCE+gzip+AC on complete FASTQ
files.

P. aeruginosa P. aeruginosa NA18507 NA18507
RNAseq Genomic WGS Single Lane

gzip Timing

Total 20m 20m 10h 52m 18m

SCALCE Timing with single thread

SCALCE reordering 7m 6m 3h 5m
gzip+AC 6m 5m 3h 1m 5m
Total 13m 11m 6h 1m 10m

SCALCE Timing with 3 threads

Total 9m 9m 4h 28m 7m 32s

memory available to SCALCE through a parameter to improve the run time when a large

main memory is available. In our tests, we limited the memory usage to 6GB.

Note that our goal here is to devise a very fast boosting method, SCALCE, which, in

combination with gzip gives compression rates much better than gzip alone. It is possible

to get better compression rates through mapping based strategies but these methods are

several orders of magnitude slower than SCALCE+gzip. We tested the effects of the lossy

compression schemes for the quality scores, used by SCALCE as well as CRAM tools, to

single nucleotide polymorphism (SNP) discovery. For that, we first mapped the NA18507

WGS data set with the original quality values to the human reference genome (GRCh37)

using the BWA aligner [68], and called SNPs using the GATK software [20]. We repeated the

same exercise with the reads after 30% lossy transformation of the base pair qualities with

SCALCE. Note that the parameters for BWA and GATK we used in these experiments were

exactly the same. We observed almost perfect correspondence between two experiments. In

fact, > 99.95% of the discovered SNPs were the same (Table 7.6); not surprisingly most of

the difference was due to SNPs in mapping to common repeats or segmental duplications.

We then compared the differences of both SNP call sets with dbSNP Release 132 [106] in

Table 7.6.

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 98

Table 7.4: Comparison of single-threaded SCALCE with DSRC.

Name DSRC SCALCE

Time Size Time Size

P. aeruginosa RNAseq 12m 1,767 13m 1,496
P. aeruginosa Genomic 6m 1,846 11m 1,655
NA18507 WGSa 3h 16m 94,707 6h 1m 76,890
NA18507 Single Lane 4m 2,341 10m 2,146

DSRC was tested using the -l option. This option provides better compression ratio but it
is slower. a DSRC crashed while using -l option. Instead we used a faster but less powerful
setting for this data set.

Table 7.5: Comparison of single-threaded SCALCE with BEETL.

Name BEETL SCALCE

Time Size Time Size

P. aeruginosa RNAseq 29m 197 8m 95
P. aeruginosa Genomic 31m 257 6m 137
NA18507 Single Lane 51m 448 10m 412

Here, the data sets contained only reads from the FASTQ file, as BEETL supports only
FASTA file format.

In addition, we carried out the same experiment with compressing/decompressing of the

alignments with CRAM tools. As shown in Table 7.6, quality transformation of the CRAM

tools introduced about 2.5% errors in SNP calling (97.5% accuracy) with respect to the calls

made for the original data (set as the gold standard).

One interesting observation is that 70.7% of the new calls after SCALCE processing

matched to entries in dbSNP where this ratio was only 62.75% for the new calls after CRAM

tools quality transformation. Moreover, 57.95% of the SNPs that SCALCE “lost” are found

in dbSNP, and CRAM tools processing caused removal of 18.4 times more potentially real

SNPs than SCALCE.

As a final benchmark, we compared the performance of SCALCE with mapping based

reordering before gzip compression. We first mapped one lane of sequence data from the

genome of NA18507 (same as above) to human reference genome (GRCh37) using BWA [68],

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 99

Table 7.6: Number of SNPs found in the NA18507 genome using original qualities and trans-
formed qualities with 30% noise reduction. Also reported are the number and percentage
of novel SNPs in regions of segmental duplication or common repeats (SD+CR).

SNP dbSNP v132 (%) Novel

Qualities Count Total in SD+CR (%)

Original Total 4,296,152 4,092,923 (95.26) 203,229 192,114 (94.53)

SCALCE
Total 4,303,140 4,098,875 (95.25) 204,265 192,976 (94.47)
Lost 7,931 4,596 (57.95) 3,335 2,963 (88.84)
New 14,919 10,548 (70.70) 4,371 3,825 (87.51)

CRAM
Total 4,202,298 4,013,401 (95.50) 188,897 179,875 (95.22)
Lost 101,957 84,607 (82.98) 17,350 15,036 (86.66)
New 8,103 5,085 (62.75) 3,018 2,797 (92.67)

and sorted the mapped reads using samtools [70], and reconverted the map-sorted BAM file

back to FASTQ using Picard (http://picard.sourceforge.net). We then used the gzip

tool to compress the map-sorted file to 3, 091.5 MB, achieving 2.49-fold compression rate.

The preprocessing step for mapping and sorting required 18.2 CPU hours, and FASTQ con-

version required 30 minutes, whereas compression was completed in 28 minutes. Moreover,

the mapping based sorting did not improve the compression run time even if we do not factor

in the preprocessing. In contrast, SCALCE+gzip+AC generated a much smaller file in less

amount of time, with no mapping based preprocessing. We then repeated this experiment

on the entire WGS data set (NA18507). The mapping based preprocessing took 700 CPU

hours for BWA+samtools, and 10 CPU hours for Picard, whereas gzip step was completed

in 11 CPU hours, resulting in a compression rate of 3.1x. On the other hand, gzip needed

only 3 CPU hours to compress the same data set (3.67x faster) after the preprocessing by

SCALCE, which took 3 CPU hours, and achieved a better compression rate (Tables 7.2 and

7.3). The run time of mapping based preprocessing step can be improved slightly through

the use of BAM-file-based compressors such as CRAM tools [50], but this would reduce the

time only by 10 CPU hours for the Picard step. Thus, in total, SCALCE+gzip is about

120 times faster than any potential mapping based scheme (including CRAM tools) on this

data set.

Our tests showed that SCALCE (when considering only reads) outperforms BEETL [18]

http://picard.sourceforge.net

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 100

combined with bzip2 by a factor between 1.09− 2.07, where running time is improved by a

factor between 3.60− 5.17 (see Table 7.5). SCALCE (on full FASTQ files) also outperforms

DSRC [19] compression ratio on complete FASTQ files by a factor between 1.09− 1.18 (see

Table 7.4).

7.3 Conclusion

The rate of increase in the amount of data produced by the HTS technologies is now faster

than the Moore’s Law [4]. This causes problems related to both data storage and transfer

of data over a network. Traditional compression tools such as gzip and bzip2 are not

optimized for efficiently reducing the files to manageable sizes in short amount of time.

To address this issue several compression techniques have been developed with different

strengths and limitations. For example pairwise comparison of sequences can be used to

increase similarity within “chunks” of data, thus increasing compression ratio [122], but

this approach is also very time consuming. Alternatively, reference-based methods can be

used such as SlimGene [61] and CRAM tools [50]. Although these algorithms achieve very

high compression rates, they have three major shortcomings. First, they require pre-mapped

(and sorted) reads along with a reference genome, and this mapping stage can take very long

time depending on the size of the reference genome. Second, speed and compression ratio

are highly dependent on the mapping ratio since the unmapped reads are handled in a more

costly manner (or completely discarded), which reduces the efficiency for genomes with high

novel sequence insertions and organisms with incomplete reference genomes. Finally, the

requirement of a reference sequence makes them unusable for de novo sequencing projects

of the genomes of organisms where no such reference is available, for example, the Genome

10K Project [42].

The SCALCE algorithm provides a new and efficient way of reordering reads generated

by the HTS platform to improve not only compression rate but also compression run time.

We note that the names associated with each read do not have any specific information

and they can be discarded during compression. The only consideration here is that dur-

ing decompression, new read names will need to be generated. These names need to be

unique identifiers within a sequencing experiment, and the paired-end information must be

easy to track. In fact, the Sequence Read Archive (SRA) developed by the International

Nucleotide Sequence Database Collaboration adopts this approach to minimize the stored

CHAPTER 7. BOOSTING SEQUENCE COMPRESSION ALGORITHMS 101

metadata, together with a lossy transformation of the base pair quality values similar to our

approach [59]. However, in this chapter we demonstrated that lossy compression of quality

affects the analysis result, and although the difference is very small for SCALCE, this is an

optional parameter in our implementation, and we leave the decision to the user. Additional

improvements in compression efficiency and speed may help ameliorate the data storage and

management problems associated with high throughput sequencing [105].

Chapter 8

Conclusion

High Throughput Sequencing Technologies have revolutionized the way genomic research is

being conducted. These platforms generate unprecedented amounts of data that introduce

many challenges for processing, downstream analysis and infrastructure. In addition to

single nucleotide variations and small insertions-deletions (indels), larger size structural

variations (for example, insertions, deletions, inversions, segmental duplications and copy-

number polymorphism) contribute significantly to human genetic diversity. In almost all

recent structural variation discovery studies, short reads from a donor genome have been

mapped to a reference genome as a first step. The accuracy of such an structural variation

discovery study is directly correlated to the accuracy of this mapping step, which also

provides the main computational bottleneck of the structural variation detection study.

This thesis presents fast and efficient algorithms to map reads that are generated by HTS

platforms with the consideration that the mappings will be used in structural variation

discovery studies. We also propose an approach on how to compress and deal with the

unprecedented amount of data that is being generated by these platforms.

We first presented an overview of available methods for short read mapping and com-

pression of HTS data. Then, we introduced mrsFAST, our cache oblivious read mapping

tool that is specifically designed to deal with Illumina generated data. mrsFAST is math-

ematically guaranteed to find and report “all” mapping locations for a given collection of

HTS reads. We showed that the number of cache misses by mrsFAST, at any level of the

cache hierarchy, is optimal among all families of seed-and-extend algorithms for mapping,

within a factor of 2 in the worst case. We also showed that mrsFAST is highly sensitive and

fast in comparison to many popular tools.

102

CHAPTER 8. CONCLUSION 103

Later in mrsFAST-ultra, we further investigated the search step of the mapping algo-

rithm and introduced two filters in order to decrease the false positive candidates during

the mapping process. We showed that the introduction of these two filters and also use of

compact data structures can improve the performance of mrsFAST by five-fold.

We also introduced drFAST, a mapping algorithm for di-base encoded reads produced

by AB SOLiD platforms. We showed that simple conversion of the color space reads to

base space reads cannot provide a correct way to do the mapping. We provided two algo-

rithms to do the mapping of color space reads to the reference genome namely “dynamic

programming” and “color transformation” methods.

We also consider the case that the length of HTS reads will increase significantly cover-

ing the whole transcriptome. We introduce two algorithms to do transcriptome to genome

mapping while considering the structural alterations such as duplications, inversions rear-

rangements and fusions. The first algorithm is based on nucleotide level alignment which

is slow and more sensitive. It can detect structural alterations by using a single unified dy-

namic programming. The second algorithm was faster and less sensitive based on chaining

fragments shared between transcriptome and genome.

Finally, we proposed a booster algorithm, SCALCE, for HTS data compression. General

purpose tools (i.e. gzip) are not optimized for HTS data. We introduce an algorithm to

pre-process and re-order the HTS reads based on Locally Consistent Parsing scheme in

order to increase the locality of the data. This re-ordering boosted HTS data compression

significantly both in time and space. This scheme coupled with arithmetic coding for quality

scores provided a significant improvement over all the existing tools.

8.1 Future Directions

Continuous development and validation of novel algorithms for discovering genetic variation

will be essential for the analysis of the growing volume of data generated by the High

Throughput Sequencing platforms. As HTS reads get longer, the sequencing error related

to these data increases as well. This requires fast and efficient algorithms that can tolerate

higher errors as well as more complex events in addition to indels and substitutions.

As HTS platforms advances, the throughput of these platforms increase rapidly. It is

essential to replace the current general purpose tools with specialized HTS compression tools.

These tools should be faster than the general purpose tools, and they should provide better

CHAPTER 8. CONCLUSION 104

compression factors. One of the important piece of information that should be compressed

is quality scores. Finding methods that can compress this data effectively will reduce the

storage requirements for HTS platforms significantly.

Bibliography

[1] 1000 Genomes Project Consortium. A map of human genome variation from
population-scale sequencing. Nature 467, 7319 (Oct 2010), 1061–1073.

[2] 1000 Genomes Project Consortium. An integrated map of genetic variation from
1,092 human genomes. Nature 491, 7422 (Nov 2012), 56–65.

[3] Aho, A. V., and Corasick, M. J. Efficient String Matching: an Aid to Biblio-
graphic Search. Commun. ACM 18, 6 (1975), 333–340.

[4] Alkan, C., Coe, B. P., and Eichler, E. E. Genome structural variation discovery
and genotyping. Nature Reviews. Genetics 12, 5 (May 2011), 363–376.

[5] Alkan, C., Kidd, J. M., Marques-Bonet, T., Aksay, G., Antonacci, F.,
Hormozdiari, F., Kitzman, J. O., Baker, C., Malig, M., Mutlu, O., Sahi-
nalp, S. C., Gibbs, R. A., and Eichler, E. E. Personalized copy number and
segmental duplication maps using next-generation sequencing. Nature Genetics 41,
10 (2009), 1061–1067.

[6] Altschul, S. F., Madden, T. L., Schffer, A. A., Zhang, J., Zhang, Z.,
Miller, W., and Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation
of protein database search programs. Nucleic Acids Research 25, 17 (Sep 1997), 3389–
3402.

[7] Armstrong, M. Groups and Symmetry. In Springer Verlag (1988), p. 53.

[8] Asmann, Y. W., Hossain, A., Necela, B. M., Middha, S., Kalari, K. R., Sun,
Z., Chai, H.-S., Williamson, D. W., Radisky, D., Schroth, G. P., Kocher,
J.-P. A., Perez, E. A., and Thompson, E. A. A novel bioinformatics pipeline for
identification and characterization of fusion transcripts in breast cancer and normal
cell lines. Nucleic Acids Research 39, 15 (Aug 2011), e100.

[9] Batu, T., Ergün, F., and Sahinalp, S. C. Oblivious string embeddings and edit
distance approximations. In SODA 2006 (2006), pp. 792–801.

[10] Bentley, D. R., Balasubramanian, S., Swerdlow, H. P., Smith, G. P.,
Milton, J., Brown, C. G., Hall, K. P., Evers, D. J., Barnes, C. L., Bignell,

105

BIBLIOGRAPHY 106

H. R., Boutell, J. M., Bryant, J., Carter, R. J., Cheetham, R. K., Cox,
A. J., Ellis, D. J., Flatbush, M. R., Gormley, N. A., Humphray, S. J.,
Irving, L. J., Karbelashvili, M. S., Kirk, S. M., Li, H., Liu, X., Maisinger,
K. S., Murray, L. J., Obradovic, B., Ost, T., Parkinson, M. L., Pratt,
M. R., Rasolonjatovo, I. M. J., Reed, M. T., Rigatti, R., Rodighiero, C.,
Ross, M. T., Sabot, A., Sankar, S. V., Scally, A., Schroth, G. P., Smith,
M. E., Smith, V. P., Spiridou, A., Torrance, P. E., Tzonev, S. S., Vermaas,
E. H., Walter, K., Wu, X., Zhang, L., Alam, M. D., Anastasi, C., Aniebo,
I. C., Bailey, D. M. D., Bancarz, I. R., Banerjee, S., Barbour, S. G.,
Baybayan, P. A., Benoit, V. A., Benson, K. F., Bevis, C., Black, P. J.,
Boodhun, A., Brennan, J. S., Bridgham, J. A., Brown, R. C., Brown, A. A.,
Buermann, D. H., Bundu, A. A., Burrows, J. C., Carter, N. P., Castillo,
N., Catenazzi, M. C. E., Chang, S., Cooley, R. N., Crake, N. R., Dada,
O. O., Diakoumakos, K. D., Dominguez-Fernandez, B., Earnshaw, D. J.,
Egbujor, U. C., Elmore, D. W., Etchin, S. S., Ewan, M. R., Fedurco, M.,
Fraser, L. J., Fajardo, K. V. F., Furey, W. S., George, D., Gietzen, K. J.,
Goddard, C. P., Golda, G. S., Granieri, P. A., Green, D. E., Gustafson,
D. L., Hansen, N. F., Harnish, K., Haudenschild, C. D., Heyer, N. I., Hims,
M. M., Ho, J. T., Horgan, A. M., Hoschler, K., Hurwitz, S., Ivanov, D. V.,
Johnson, M. Q., James, T., Jones, T. A. H., Kang, G.-D., Kerelska, T. H.,
Kersey, A. D., Khrebtukova, I., Kindwall, A. P., Kingsbury, Z., Kokko-
Gonzales, P. I., Kumar, A., Laurent, M. A., Lawley, C. T., Lee, S. E., Lee,
X., Liao, A. K., Loch, J. A., Lok, M., Luo, S., Mammen, R. M., Martin,
J. W., McCauley, P. G., McNitt, P., Mehta, P., Moon, K. W., Mullens,
J. W., Newington, T., Ning, Z., Ng, B. L., Novo, S. M., O’Neill, M. J.,
Osborne, M. A., Osnowski, A., Ostadan, O., Paraschos, L. L., Pickering,
L., Pike, A. C., Pike, A. C., Pinkard, D. C., Pliskin, D. P., Podhasky, J.,
Quijano, V. J., Raczy, C., Rae, V. H., Rawlings, S. R., Rodriguez, A. C.,
Roe, P. M., Rogers, J., Bacigalupo, M. C. R., Romanov, N., Romieu, A.,
Roth, R. K., Rourke, N. J., Ruediger, S. T., Rusman, E., Sanches-Kuiper,
R. M., Schenker, M. R., Seoane, J. M., Shaw, R. J., Shiver, M. K., Short,
S. W., Sizto, N. L., Sluis, J. P., Smith, M. A., Sohna, J. E. S., Spence,
E. J., Stevens, K., Sutton, N., Szajkowski, L., Tregidgo, C. L., Turcatti,
G., Vandevondele, S., Verhovsky, Y., Virk, S. M., Wakelin, S., Walcott,
G. C., Wang, J., Worsley, G. J., Yan, J., Yau, L., Zuerlein, M., Rogers, J.,
Mullikin, J. C., Hurles, M. E., McCooke, N. J., West, J. S., Oaks, F. L.,
Lundberg, P. L., Klenerman, D., Durbin, R., and Smith, A. J. Accurate
whole human genome sequencing using reversible terminator chemistry. Nature 456,
7218 (Nov 2008), 53–59.

[11] Birol, I., Jackman, S. D., Nielsen, C. B., Qian, J. Q., Varhol, R., Stazyk,
G., Morin, R. D., Zhao, Y., Hirst, M., Schein, J. E., Horsman, D. E.,
Connors, J. M., Gascoyne, R. D., Marra, M. A., and Jones, S. J. M. De

BIBLIOGRAPHY 107

novo transcriptome assembly with ABySS. Bioinformatics 25, 21 (Nov 2009), 2872–
2877.

[12] Bonfield, J. K., and Mahoney, M. V. Compression of FASTQ and SAM Format
Sequencing Data. PLoS ONE 8, 3 (2013), e59190.

[13] Brudno, M., Malde, S., Poliakov, A., Do, C. B., Couronne, O., Dubchak,
I., and Batzoglou, S. Glocal alignment: finding rearrangements during alignment.
Bioinformatics 19 Suppl 1 (2003), i54–i62.

[14] Burge, C., and Karlin, S. Prediction of complete gene structures in human ge-
nomic DNA. Journal of Molecular Biology 268, 1 (Apr 1997), 78–94.

[15] Burrows, M., and Wheeler, D. A block sorting lossless data compression algo-
rithm. Tech. rep., Hewlett Packard, 1994.

[16] Chen, K., Wallis, J. W., McLellan, M. D., Larson, D. E., Kalicki, J. M.,
Pohl, C. S., McGrath, S. D., Wendl, M. C., Zhang, Q., Locke, D. P.,
Shi, X., Fulton, R. S., Ley, T. J., Wilson, R. K., Ding, L., and Mardis,
E. R. BreakDancer: an algorithm for high-resolution mapping of genomic structural
variation. Nature Methods 6, 9 (Aug 2009), 677–681.

[17] Cormode, G., Paterson, M., Sahinalp, S. C., and Vishkin, U. Communication
complexity of document exchange. In SODA 2000 (2000), pp. 197–206.

[18] Cox, A. J., Bauer, M. J., Jakobi, T., and Rosone, G. Large-scale compression
of genomic sequence databases with the Burrows-Wheeler transform. Bioinformatics
28, 11 (Jun 2012), 1415–1419.

[19] Deorowicz, S., and Grabowski, S. Compression of DNA sequence reads in
FASTQ format. Bioinformatics 27, 6 (Mar 2011), 860–862.

[20] DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R.,
Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M.,
McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibul-
skis, K., Gabriel, S. B., Altshuler, D., and Daly, M. J. A framework for vari-
ation discovery and genotyping using next-generation DNA sequencing data. Nature
Genetics 43 (May 2011), 491–498.

[21] Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank,
D., Baybayan, P., Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B.,
Christians, F., Cicero, R., Clark, S., Dalal, R., Dewinter, A., Dixon, J.,
Foquet, M., Gaertner, A., Hardenbol, P., Heiner, C., Hester, K., Holden,
D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S., Lundquist, P.,
Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T., Phillips,
M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K.,

BIBLIOGRAPHY 108

Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D.,
Zhao, P., Zhong, F., Korlach, J., and Turner, S. Real-time DNA sequencing
from single polymerase molecules. Science 323, 5910 (Jan 2009), 133–138.

[22] Elias, P. Universal codeword sets and representations of the integers. Information
Theory, IEEE Transactions on 21, 2 (1975), 194–203.

[23] Ergün, F., Muthukrishnan, S., and Sahinalp, S. C. Comparing Sequences with
Segment Rearrangements. In FSTTCS (2003), pp. 183–194.

[24] Ewing, B., and Green, P. Base-calling of automated sequencer traces using phred.
II. Error probabilities. Genome Research 8 (Mar 1998), 186–194.

[25] Farrar, M. Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics 23, 2 (Jan 2007), 156–161.

[26] Faust, G. G., and Hall, I. M. YAHA: fast and flexible long-read alignment with
optimal breakpoint detection. Bioinformatics 28, 19 (Oct 2012), 2417–2424.

[27] Ferragina, P., Giancarlo, R., and Manzini, G. The Engineering of a Com-
pression Boosting Library: Theory vs Practice in BWT Compression. In ESA 2006
(2006), pp. 756–767.

[28] Ferragina, P., Giancarlo, R., Manzini, G., and Sciortino, M. Boosting
textual compression in optimal linear time. J. ACM 52, 4 (2005), 688–713.

[29] Ferragina, P., and Manzini, G. Opportunistic Data Structures with Applications.
In FOCS (2000), pp. 390–398.

[30] Ferragina, P., and Manzini, G. Compression boosting in optimal linear time
using the Burrows-Wheeler Transform. In SODA 2004 (2004), pp. 655–663.

[31] Fonseca, N. A., Rung, J., Brazma, A., and Marioni, J. C. Tools for mapping
high-throughput sequencing data. Bioinformatics 28, 24 (Dec 2012), 3169–3177.

[32] Fredkin, E. Trie memory. Commun. ACM 3, 9 (Sept. 1960), 490–499.

[33] Frigo, M., Leiserson, C. E., Prokop, H., and Ramachandran, S. Cache-
Oblivious Algorithms. In 40th Annual Symposium on Foundations of Computer Sci-
ence (New York, New York, Oct. 17–19 1999), pp. 285–297.

[34] Galil, Z., and Giancarlo, R. Speeding up dynamic programming with applica-
tions to molecular biology. Theor. Comput. Sci. 64 (April 1989), 107–118.

[35] Ge, H., Liu, K., Juan, T., Fang, F., Newman, M., and Hoeck, W. FusionMap:
detecting fusion genes from next-generation sequencing data at base-pair resolution.
Bioinformatics 27, 14 (Jul 2011), 1922–1928.

BIBLIOGRAPHY 109

[36] Gnerre, S., Maccallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N.,
Walker, B. J., Sharpe, T., Hall, G., Shea, T. P., Sykes, S., Berlin, A. M.,
Aird, D., Costello, M., Daza, R., Williams, L., Nicol, R., Gnirke, A.,
Nusbaum, C., Lander, E. S., and Jaffe, D. B. High-quality draft assemblies of
mammalian genomes from massively parallel sequence data. Proc. Natl. Acad. Sci.
U.S.A. 108, 4 (Jan 2011), 1513–1518.

[37] Golomb, S. W. Run-Length Encodings. IEEE Transactions on Information Theory
12 (September 1966), 399–401.

[38] Gontarz, P. M., Berger, J., and Wong, C. F. SRmapper: a fast and sensitive
genome-hashing alignment tool. Bioinformatics 29, 3 (Feb 2013), 316–321.

[39] Hach, F., Hormozdiari, F., Alkan, C., Hormozdiari, F., Birol, I., Eichler,
E. E., and Sahinalp, S. C. mrsFAST: a cache-oblivious algorithm for short-read
mapping. Nature Methods 7, 8 (2010), 576–577.

[40] Hach, F., Numanagic, I., Alkan, C., and Sahinalp, S. C. SCALCE: boosting
sequence compression algorithms using locally consistent encoding. Bioinformatics
28, 23 (2012), 3051–3057.

[41] Hajirasouliha, I., Hormozdiari, F., Alkan, C., Kidd, J. M., Birol, I., Eich-
ler, E. E., and Sahinalp, S. C. Detection and characterization of novel sequence
insertions using paired-end next-generation sequencing. Bioinformatics 26, 10 (2010),
1277–1283.

[42] Haussler, D., O’Brien, S. J., Ryder, O. A., Barker, F. K., Clamp, M.,
Crawford, A. J., Hanner, R., Hanotte, O., Johnson, W. E., McGuire,
J. A., Miller, W., Murphy, R. W., Murphy, W. J., Sheldon, F. H., Sin-
ervo, B., Venkatesh, B., Wiley, E. O., Allendorf, F. W., Amato, G.,
Baker, C. S., Bauer, A., Beja-Pereira, A., Bermingham, E., Bernardi, G.,
Bonvicino, C. R., Brenner, S., Burke, T., Cracraft, J., Diekhans, M., Ed-
wards, S., Ericson, P. G., Estes, J., Fjelsda, J., Flesness, N., Gamble, T.,
Gaubert, P., Graphodatsky, A. S., Marshall Graves, J. A., Green, E. D.,
Green, R. E., Hackett, S., Hebert, P., Helgen, K. M., Joseph, L., Kess-
ing, B., Kingsley, D. M., Lewin, H. A., Luikart, G., Martelli, P., Moreira,
M. A., Nguyen, N., Orti, G., Pike, B. L., Rawson, D. M., Schuster, S. C.,
Seuanez, H. N., Shaffer, H. B., Springer, M. S., Stuart, J. M., Sumner, J.,
Teeling, E., Vrijenhoek, R. C., Ward, R. D., Warren, W. C., Wayne, R.,
Williams, T. M., Wolfe, N. D., and Zhang, Y. P. Genome 10K: a proposal to
obtain whole-genome sequence for 10,000 vertebrate species. Journal of Heredity 100
(2009), 659–674.

[43] Hillier, L. W., Marth, G. T., Quinlan, A. R., Dooling, D., Fewell, G.,
Barnett, D., Fox, P., Glasscock, J. I., Hickenbotham, M., Huang, W.,

BIBLIOGRAPHY 110

Magrini, V. J., Richt, R. J., Sander, S. N., Stewart, D. A., Stromberg,
M., Tsung, E. F., Wylie, T., Schedl, T., Wilson, R. K., and Mardis, E. R.
Whole-genome sequencing and variant discovery in C. elegans. Nature Methods 5, 2
(Feb 2008), 183–188.

[44] Homer, N., Merriman, B., and Nelson, S. F. BFAST: An Alignment Tool for
Large Scale Genome Resequencing. PLoS ONE 4, 11 (2009), 12.

[45] Hon, K., Lam, T., Sadakane, K., Sung, W., and Yiu, S. A Space and Time
Efficient Algorithm for Constructing Compressed Suffix Arrays. Algorithmica 48, 1
(2007), 23–36.

[46] Hormozdiari, F., Alkan, C., Eichler, E., and Sahinalp, S. Combinatorial Al-
gorithms for Structural Variation Detection in High Throughput Sequenced Genomes.
Genome Research 19, 7 (2009), 1270–1278.

[47] Hormozdiari, F., Alkan, C., Ventura, M., Hajirasouliha, I., Malig, M.,
Hach, F., Yorukoglu, D., Dao, P., Bakhshi, M., Sahinalp, S. C., and Eich-
ler, E. E. Alu repeat discovery and characterization within human genomes. Genome
Res. 21, 6 (Jun 2011), 840–849.

[48] Hormozdiari, F., Hach, F., Sahinalp, S. C., and Alkan, C. Sensitive and fast
mapping of di-base encoded reads. Bioinformatics 27, 14 (2011), 1915–1921.

[49] Hormozdiari, F., Hajirasouliha, I., Dao, P., Hach, F., Yörükoglu, D.,
Alkan, C., Eichler, E. E., and Sahinalp, S. C. Next-generation Variation-
Hunter: combinatorial algorithms for transposon insertion discovery. Bioinformatics
[ISMB] 26, 12 (2010), 350–357.

[50] Hsi-Yang Fritz, M., Leinonen, R., Cochrane, G., and Birney, E. Efficient
storage of high throughput DNA sequencing data using reference-based compression.
Genome Research 21, 5 (May 2011), 734–740.

[51] Hsu, F., Kent, W. J., Clawson, H., Kuhn, R. M., Diekhans, M., and Haus-
sler, D. The UCSC Known Genes. Bioinformatics 22, 9 (May 2006), 1036–1046.

[52] Huffman, D. A Method for the Construction of Minimum-Redundancy Codes. Pro-
ceedings of the IRE 40, 9 (Sept. 1952), 1098–1101.

[53] Inaki, K., Hillmer, A. M., Ukil, L., Yao, F., Woo, X. Y., Vardy, L. A.,
Zawack, K. F. B., Lee, C. W. H., Ariyaratne, P. N., Chan, Y. S., Desai,
K. V., Bergh, J., Hall, P., Putti, T. C., Ong, W. L., Shahab, A., Cacheux-
Rataboul, V., Karuturi, R. K. M., Sung, W.-K., Ruan, X., Bourque, G.,
Ruan, Y., and Liu, E. T. Transcriptional consequences of genomic structural aber-
rations in breast cancer. Genome Research 21, 5 (May 2011), 676–687.

BIBLIOGRAPHY 111

[54] Jones, D. C., Ruzzo, W. L., Peng, X., and Katze, M. G. Compression of
next-generation sequencing reads aided by highly efficient de novo assembly. Nucleic
Acids Research 40, 22 (Dec 2012), e171.

[55] Kent, W. J. BLAT–the BLAST-like alignment tool. Genome Research 12, 4 (Apr
2002), 656–664.

[56] Kidd, J. M., Cooper, G. M., Donahue, W. F., Hayden, H. S., Sampas, N.,
Graves, T., Hansen, N., Teague, B., Alkan, C., Antonacci, F., Haugen,
E., Zerr, T., Yamada, N. A., Tsang, P., Newman, T. L., Tzn, E., Cheng,
Z., Ebling, H. M., Tusneem, N., David, R., Gillett, W., Phelps, K. A.,
Weaver, M., Saranga, D., Brand, A., Tao, W., Gustafson, E., McKernan,
K., Chen, L., Malig, M., Smith, J. D., Korn, J. M., McCarroll, S. A.,
Altshuler, D. A., Peiffer, D. A., Dorschner, M., Stamatoyannopoulos,
J., Schwartz, D., Nickerson, D. A., Mullikin, J. C., Wilson, R. K., Bruhn,
L., Olson, M. V., Kaul, R., Smith, D. R., and Eichler, E. E. Mapping and
sequencing of structural variation from eight human genomes. Nature 453, 7191 (May
2008), 56–64.

[57] Kidd, J. M., Sampas, N., Antonacci, F., Graves, T., Fulton, R., Hayden,
H. S., Alkan, C., Malig, M., Ventura, M., Giannuzzi, G., Kallicki, J.,
Anderson, P., Tsalenko, A., Yamada, N. A., Tsang, P., Kaul, R., Wilson,
R. K., Bruhn, L., and Eichler, E. E. Characterization of missing human genome
sequences and copy-number polymorphic insertions. Nature Methods 7, 5 (May 2010),
365–371.

[58] Kim, D., Pertea, G., Trapnell, C., Pimentel, H., Kelley, R., and
Salzberg, S. L. TopHat2: accurate alignment of transcriptomes in the presence
of insertions, deletions and gene fusions. Genome Biology 14, 4 (Apr 2013), R36.

[59] Kodama, Y., Shumway, M., and Leinonen, R. The sequence read archive: ex-
plosive growth of sequencing data. Nucleic Acids Research 40 (Oct 2011), 56–57.

[60] Korbel, J. O., Urban, A. E., Affourtit, J. P., Godwin, B., Grubert, F.,
Simons, J. F., Kim, P. M., Palejev, D., Carriero, N. J., Du, L., Taillon,
B. E., Chen, Z., Tanzer, A., Saunders, A. C., Chi, J., Yang, F., Carter,
N. P., Hurles, M. E., Weissman, S. M., Harkins, T. T., Gerstein, M. B.,
Egholm, M., and Snyder, M. Paired-End Mapping Reveals Extensive Structural
Variation in the Human Genome. Science 318, 5849 (2007), 420–426.

[61] Kozanitis, C., Saunders, C., Kruglyak, S., Bafna, V., and Varghese, G.
Compressing Genomic Sequence Fragments Using SlimGene. Journal of Computa-
tional Biology 18, 3 (2011), 401–413.

[62] Langmead, B., and Salzberg, S. L. Fast gapped-read alignment with Bowtie 2.
Nature Methods 9, 4 (Apr 2012), 357–359.

BIBLIOGRAPHY 112

[63] Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. Ultrafast and
memory-efficient alignment of short DNA sequences to the human genome. Genome
Biology 10, 3 (2009), R25.

[64] Lapuk, A. V., Wu, C., Wyatt, A. W., McPherson, A., McConeghy, B. J.,
Brahmbhatt, S., Mo, F., Zoubeidi, A., Anderson, S., Bell, R. H., Haegert,
A., Shukin, R., Wang, Y., Fazli, L., Hurtado-Coll, A., Jones, E. C., Hach,
F., Hormozdiari, F., Hajirasouliha, I., Boutros, P. C., Bristow, R. G.,
Zhao, Y., Marra, M. A., Fanjul, A., Maher, C. A., Chinnaiyan, A. M.,
Rubin, M. A., Beltran, H., Sahinalp, S. C., Gleave, M. E., Volik, S. V.,
and Collins, C. C. From sequence to molecular pathology, and a mechanism driving
the neuroendocrine phenotype in prostate cancer. J. Pathol. 227, 3 (Jul 2012), 286–
297.

[65] Lee, S., Cheran, E., and Brudno, M. A Robust Framework for Detecting Struc-
tural Variations in a Genome. Bioinformatics 24, 13 (2008), 59–67.

[66] Lee, S., Hormozdiari, F., Alkan, C., and Brudno, M. MoDIL: Detecting
INDEL Variation with Clone-end Sequencing. Nature Methods 6, 7 (2009), 473–474.

[67] Levin, J. Z., Berger, M. F., Adiconis, X., Rogov, P., Melnikov, A., Fen-
nell, T., Nusbaum, C., Garraway, L. A., and Gnirke, A. Targeted next-
generation sequencing of a cancer transcriptome enhances detection of sequence vari-
ants and novel fusion transcripts. Genome Biology 10, 10 (2009), R115.

[68] Li, H., and Durbin, R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25, 14 (Jul 2009), 1754–1760.

[69] Li, H., and Durbin, R. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 26, 5 (Mar 2010), 589–595.

[70] Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N.,
Marth, G. T., Abecasis, G. R., and Durbin, R. The Sequence Alignment/Map
format and SAMtools. Bioinformatics 25, 16 (2009), 2078–2079.

[71] Li, H., Ruan, J., and Durbin, R. Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Research 18, 11 (2008), 1851–1858.

[72] Li, R., Li, Y., Kristiansen, K., and Wang, J. SOAP: short oligonucleotide
alignment program. Bioinformatics 24, 5 (Mar 2008), 713–714.

[73] Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., and Wang,
J. SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25,
15 (Aug 2009), 1966–1967.

BIBLIOGRAPHY 113

[74] Li, Y., Chien, J., Smith, D. I., and Ma, J. FusionHunter: identifying fusion
transcripts in cancer using paired-end RNA-seq. Bioinformatics 27, 12 (Jun 2011),
1708–1710.

[75] Lin, H., Zhang., Z., Zhang., M., Ma., B., and Li, M. ZOOM! Zillions of oligos
mapped. Bioinformatics 24, 21 (2008), 2431–2437.

[76] Lin, Y.-Y., Dao, P., Hach, F., Bakhshi, M., Mo, F., Lapuk, A., Collins, C.,
and Sahinalp, S. C. CLIIQ: Accurate Comparative Detection and Quantification
of Expressed Isoforms in a Population. In WABI (2012), pp. 178–189.

[77] Loh, P. R., Baym, M., and Berger, B. Compressive genomics. Nat. Biotechnol.
30, 7 (Jul 2012), 627–630.

[78] Lupski, J. R., Reid, J. G., Gonzaga-Jauregui, C., Rio Deiros, D., Chen,
D. C., Nazareth, L., Bainbridge, M., Dinh, H., Jing, C., Wheeler, D. A.,
McGuire, A. L., Zhang, F., Stankiewicz, P., Halperin, J. J., Yang, C.,
Gehman, C., Guo, D., Irikat, R. K., Tom, W., Fantin, N. J., Muzny, D. M.,
and Gibbs, R. A. Whole-genome sequencing in a patient with Charcot-Marie-Tooth
neuropathy. New England Journal of Medicine 362, 13 (Apr 2010), 1181–1191.

[79] Manber, U., and Myers, G. Suffix Arrays: A New Method for On-Line String
Searches. In SODA (1990), pp. 319–327.

[80] Marco-Sola, S., Sammeth, M., Guigo, R., and Ribeca, P. The GEM mapper:
fast, accurate and versatile alignment by filtration. Nature Methods 9, 12 (Dec 2012),
1185–1188.

[81] Mardis, E. The impact of next-generation technology on genetics. Trends Genetics
24, 3 (2008), 133–141.

[82] Margulies, M., Egholm, M., Altman, W. E., Attiya, S., Bader, J. S., Be-
mben, L. A., Berka, J., Braverman, M. S., Chen, Y.-J., Chen, Z., Dewell,
S. B., Du, L., Fierro, J. M., Gomes, X. V., Godwin, B. C., He, W., Helge-
sen, S., Ho, C. H., Ho, C. H., Irzyk, G. P., Jando, S. C., Alenquer, M. L. I.,
Jarvie, T. P., Jirage, K. B., Kim, J.-B., Knight, J. R., Lanza, J. R., Leamon,
J. H., Lefkowitz, S. M., Lei, M., Li, J., Lohman, K. L., Lu, H., Makhijani,
V. B., McDade, K. E., McKenna, M. P., Myers, E. W., Nickerson, E., No-
bile, J. R., Plant, R., Puc, B. P., Ronan, M. T., Roth, G. T., Sarkis, G. J.,
Simons, J. F., Simpson, J. W., Srinivasan, M., Tartaro, K. R., Tomasz, A.,
Vogt, K. A., Volkmer, G. A., Wang, S. H., Wang, Y., Weiner, M. P., Yu,
P., Begley, R. F., and Rothberg, J. M. Genome sequencing in microfabricated
high-density picolitre reactors. Nature 437, 7057 (Sep 2005), 376–380.

[83] McKernan, K. J., Peckham, H. E., Costa, G. L., McLaughlin, S. F., Fu,
Y., Tsung, E. F., Clouser, C. R., Duncan, C., Ichikawa, J. K., Lee, C. C.,

BIBLIOGRAPHY 114

Zhang, Z., Ranade, S. S., Dimalanta, E. T., Hyland, F. C., Sokolsky,
T. D., Zhang, L., Sheridan, A., Fu, H., Hendrickson, C. L., Li, B., Kotler,
L., Stuart, J. R., Malek, J. A., Manning, J. M., Antipova, A. A., Perez,
D. S., Moore, M. P., Hayashibara, K. C., Lyons, M. R., Beaudoin, R. E.,
Coleman, B. E., Laptewicz, M. W., Sannicandro, A. E., Rhodes, M. D.,
Gottimukkala, R. K., Yang, S., Bafna, V., Bashir, A., MacBride, A.,
Alkan, C., Kidd, J. M., Eichler, E. E., Reese, M. G., De La Vega, F. M.,
and Blanchard, A. P. Sequence and structural variation in a human genome un-
covered by short-read, massively parallel ligation sequencing using two-base encoding.
Genome Research 19, 9 (2009), 1527–41.

[84] McPherson, A., Hormozdiari, F., Zayed, A., Giuliany, R., Ha, G., Sun, M.
G. F., Griffith, M., Heravi Moussavi, A., Senz, J., Melnyk, N., Pacheco,
M., Marra, M. A., Hirst, M., Nielsen, T. O., Sahinalp, S. C., Huntsman,
D., and Shah, S. P. deFuse: an algorithm for gene fusion discovery in tumor RNA-
Seq data. PLoS Computational Biology 7, 5 (May 2011), e1001138.

[85] McPherson, A., Wu, C., Hajirasouliha, I., Hormozdiari, F., Hach, F.,
Lapuk, A., Volik, S., Shah, S., Collins, C., and Sahinalp, S. C. Comrad:
detection of expressed rearrangements by integrated analysis of RNA-Seq and low
coverage genome sequence data. Bioinformatics 27, 11 (Jun 2011), 1481–1488.

[86] McPherson, A., Wu, C., Wyatt, A., Shah, S., Collins, C., and Sahinalp, C.
nFuse: discovery of complex genomic rearrangements in cancer using high-throughput
sequencing. Genome Research 22, 11 (Nov 2012), 2250–2261.

[87] Medvedev, P., Stanciu, M., and Brudno, M. Computational methods for dis-
covering structural variation with next-generation sequencing. Nature Methods 6, 11
Suppl (Nov 2009), 13–20.

[88] Miller, W., and Myers, E. W. Sequence comparison with concave weighting
functions. Bulletin of Mathematical Biology 50, 2 (1988), 97–120.

[89] Mills, R. E., Pittard, W. S., Mullaney, J. M., Farooq, U., Creasy, T. H.,
Mahurkar, A. A., Kemeza, D. M., Strassler, D. S., Ponting, C. P., Web-
ber, C., and Devine, S. E. Natural genetic variation caused by small insertions
and deletions in the human genome. Genome Research 21, 6 (Jun 2011), 830–839.

[90] Minoche, A. E., Dohm, J. C., and Himmelbauer, H. Evaluation of genomic
high-throughput sequencing data generated on Illumina HiSeq and Genome Analyzer
systems. Genome Biology 12, 11 (Nov 2011), R112.

[91] Mott, R. EST GENOME: a program to align spliced DNA sequences to unspliced
genomic DNA. Computer Applications in the Biosciences 13, 4 (Aug 1997), 477–478.

BIBLIOGRAPHY 115

[92] Myers, E. W. A Sublinear Algorithm for Approximate Keyword Searching. Algo-
rithmica 12, 4/5 (1994), 345–374.

[93] Nacu, S., Yuan, W., Kan, Z., Bhatt, D., Rivers, C. S., Stinson, J., Peters,
B. A., Modrusan, Z., Jung, K., Seshagiri, S., and Wu, T. D. Deep RNA
sequencing analysis of readthrough gene fusions in human prostate adenocarcinoma
and reference samples. BMC Med Genomics 4 (2011), 11.

[94] Ng, S. B., Bigham, A. W., Buckingham, K. J., Hannibal, M. C., McMillin,
M. J., Gildersleeve, H. I., Beck, A. E., Tabor, H. K., Cooper, G. M., Mef-
ford, H. C., Lee, C., Turner, E. H., Smith, J. D., Rieder, M. J., Yoshiura,
K.-I., Matsumoto, N., Ohta, T., Niikawa, N., Nickerson, D. A., Bamshad,
M. J., and Shendure, J. Exome sequencing identifies MLL2 mutations as a cause
of Kabuki syndrome. Nature Genetics 42, 9 (Sep 2010), 790–793.

[95] Nothnagel, M., Herrmann, A., Wolf, A., Schreiber, S., Platzer, M.,
Siebert, R., Krawczak, M., and Hampe, J. Technology-specific error signatures
in the 1000 Genomes Project data. Human Genetics 130, 4 (Feb 2011), 505–516.

[96] Ondov, B. D., Varadarajan, A., Passalacqua, K. D., and Bergman, N. H.
Efficient mapping of Applied Biosystems SOLiD sequence data to a reference genome
for functional genomic applications. Bioinformatics 24, 23 (Dec 2008), 2776–2777.

[97] O’Roak, B. J., Deriziotis, P., Lee, C., Vives, L., Schwartz, J. J., Girirajan,
S., Karakoc, E., Mackenzie, A. P., Ng, S. B., Baker, C., Rieder, M. J.,
Nickerson, D. A., Bernier, R., Fisher, S. E., Shendure, J., and Eichler,
E. E. Exome sequencing in sporadic autism spectrum disorders identifies severe de
novo mutations. Nature Genetics 43, 6 (Jun 2011), 585–589.

[98] Pushkarev, D., Neff, N. F., and Quake, S. R. Single-molecule sequencing of
an individual human genome. Nature Biotechnology 27, 9 (Sep 2009), 847–850.

[99] Rissanen, J., and Langdon, G. G. Arithmetic Coding. IBM Journal of Research
and Development 23, 2 (march 1979), 149 –162.

[100] Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., and
Brudno, M. SHRiMP: Accurate Mapping of Short Color-space Reads. PLoS Com-
putational Biology 5, 5 (2009), 11.

[101] Sahinalp, S. C., and Vishkin, U. Symmetry breaking for suffix tree construction.
In STOC 1994 (1994), pp. 300–309.

[102] Sahinalp, S. C., and Vishkin, U. Efficient Approximate and Dynamic Matching
of Patterns Using a Labeling Paradigm. In FOCS 1996 (1996), pp. 320–328.

BIBLIOGRAPHY 116

[103] Said, A. Introducing to Arithmetic Coding - Theory and Practice, published as a
chapter in lossless compression handbook by khalid sayood ed. HPL-2004-76. Imaging
Systems Laboratory, HP Laboratories Palo Alto, Apr. 2004.

[104] Sboner, A., Habegger, L., Pflueger, D., Terry, S., Chen, D. Z., Rozowsky,
J. S., Tewari, A. K., Kitabayashi, N., Moss, B. J., Chee, M. S., Demichelis,
F., Rubin, M. A., and Gerstein, M. B. FusionSeq: a modular framework for
finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biology
11, 10 (2010), R104.

[105] Schadt, E. E., Linderman, M. D., Sorenson, J., Lee, L., and Nolan, G. P.
Computational solutions to large-scale data management and analysis. Nature Re-
views. Genetics 11 (Sep 2010), 647–657.

[106] Sherry, S. T., Ward, M. H., Kholodov, M., Baker, J., Phan, L., Smigielski,
E. M., and Sirotkin, K. dbSNP: the NCBI database of genetic variation. Nucleic
Acids Research 29 (Jan 2001), 308–311.

[107] Slater, G. S. C., and Birney, E. Automated generation of heuristics for biological
sequence comparison. BMC Bioinformatics 6 (2005), 31.

[108] Smith, D. R., Quinlan, A. R., Peckham, H. E., Makowsky, K., Tao, W.,
Woolf, B., Shen, L., Donahue, W. F., Tusneem, N., Stromberg, M. P.,
Stewart, D. A., Zhang, L., Ranade, S. S., Warner, J. B., Lee, C. C., Cole-
man, B. E., Zhang, Z., McLaughlin, S. F., Malek, J. A., Sorenson, J. M.,
Blanchard, A. P., Chapman, J., Hillman, D., Chen, F., Rokhsar, D. S.,
McKernan, K. J., Jeffries, T. W., Marth, G. T., and Richardson, P. M.
Rapid whole-genome mutational profiling using next-generation sequencing technolo-
gies. Genome Research 18, 10 (Oct 2008), 1638–1642.

[109] Smith, T. F., and Waterman, M. S. Identification of common molecular subse-
quences. Journal of Molecular Biology 147, 1 (Mar 1981), 195–197.

[110] Sudmant, P. H., Kitzman, J. O., Antonacci, F., Alkan, C., Malig, M.,
Tsalenko, A., Sampas, N., Bruhn, L., Shendure, J., Project, . G., and
Eichler, E. E. Diversity of human copy number variation and multicopy genes.
Science 330, 6004 (Oct 2010), 641–646.

[111] Tembe, W., Lowey, J., and Suh, E. G-SQZ: compact encoding of genomic se-
quence and quality data. Bioinformatics 26, 17 (Sep 2010), 2192–2194.

[112] Trapnell, C., Pachter, L., and Salzberg, S. L. TopHat: discovering splice
junctions with RNA-Seq. Bioinformatics 25, 9 (May 2009), 1105–1111.

[113] Vissers, L. E. L. M., de Ligt, J., Gilissen, C., Janssen, I., Steehouwer,
M., de Vries, P., van Lier, B., Arts, P., Wieskamp, N., del Rosario, M.,

BIBLIOGRAPHY 117

van Bon, B. W. M., Hoischen, A., de Vries, B. B. A., Brunner, H. G., and
Veltman, J. A. A de novo paradigm for mental retardation. Nature Genetics 42, 12
(Dec 2010), 1109–1112.

[114] Wan, R., Anh, V. N., and Asai, K. Transformations for the compression of FASTQ
quality scores of next-generation sequencing data. Bioinformatics 28, 5 (2012), 628–
635.

[115] Weese, D., Emde, A. K., Rausch, T., Doring, A., and Reinert, K. RazerS–
fast read mapping with sensitivity control. Genome Research 19, 9 (Sep 2009), 1646–
1654.

[116] Weese, D., Holtgrewe, M., and Reinert, K. RazerS 3: faster, fully sensitive
read mapping. Bioinformatics 28, 20 (Oct 2012), 2592–2599.

[117] Wheeler, D. A., Srinivasan, M., Egholm, M., Shen, Y., Chen, L., McGuire,
A., He, W., Chen, Y.-J., Makhijani, V., Roth, G. T., Gomes, X., Tartaro,
K., Niazi, F., Turcotte, C. L., Irzyk, G. P., Lupski, J. R., Chinault, C.,
zhi Song, X., Liu, Y., Yuan, Y., Nazareth, L., Qin, X., Muzny, D. M.,
Margulies, M., Weinstock, G. M., Gibbs, R. A., and Rothberg, J. M. The
complete genome of an individual by massively parallel DNA sequencing. Nature 452,
7189 (Apr 2008), 872–876.

[118] Witten, I. H., Neal, R. M., and Cleary, J. G. Arithmetic coding for data
compression. Commun. ACM 30, 6 (June 1987), 520–540.

[119] Wu, C., Wyatt, A. W., Lapuk, A. V., McPherson, A., McConeghy, B. J.,
Bell, R. H., Anderson, S., Haegert, A., Brahmbhatt, S., Shukin, R., Mo,
F., Li, E., Fazli, L., Hurtado-Coll, A., Jones, E. C., Butterfield, Y. S.,
Hach, F., Hormozdiari, F., Hajirasouliha, I., Boutros, P. C., Bristow,
R. G., Jones, S. J., Hirst, M., Marra, M. A., Maher, C. A., Chinnaiyan,
A. M., Sahinalp, S. C., Gleave, M. E., Volik, S. V., and Collins, C. C.
Integrated genome and transcriptome sequencing identifies a novel form of hybrid and
aggressive prostate cancer. J. Pathol. 227, 1 (May 2012), 53–61.

[120] Wu, T. D., and Nacu, S. Fast and SNP-tolerant detection of complex variants and
splicing in short reads. Bioinformatics 26, 7 (Apr 2010), 873–881.

[121] Wu, T. D., and Watanabe, C. K. GMAP: a genomic mapping and alignment
program for mRNA and EST sequences. Bioinformatics 21, 9 (May 2005), 1859–
1875.

[122] Yanovsky, V. ReCoil - an algorithm for compression of extremely large datasets of
DNA data. Algorithms Mol Biol 6 (2011), 23.

BIBLIOGRAPHY 118

[123] Yorukoglu, D., Hach, F., Swanson, L., Collins, C. C., Birol, I., and Sahi-
nalp, S. C. Dissect: detection and characterization of novel structural alterations in
transcribed sequences. Bioinformatics 28, 12 (Jun 2012), i179–187.

[124] Ziv, J., and Lempel, A. A Universal Algorithm for Sequential Data Compression.
IEEE Transactions on Information Theory 23, 3 (1977), 337–343.

[125] Ziv, J., and Lempel, A. Compression of Individual Sequences via Variable-Rate
Coding. IEEE Transactions on Information Theory 24, 5 (1978), 530–536.

	Approval
	Partial Copyright License
	Abstract
	Dedication
	Quotation
	Acknowledgments
	Contents
	List of Tables
	List of Figures
	Introduction
	Contribution
	Organization of the thesis

	Background and Related Work
	Sequence Mapping
	Definitions
	Burrows Wheeler Transform, Suffix Arrays, FM-index and Exact Matching
	Existing Methods

	Sequence Compression
	HTS data format
	Popular Encodings: Huffman, Golomb, Gamma, Delta and Arithmetic Coding
	Golomb Coding
	Existing Methods

	Conclusion

	A Cache-Oblivious Algorithm for Mapping
	Methods
	Indexing the Reference Genome
	Indexing the Donor Genome
	Search

	Additional Features
	Results
	Conclusion

	SNP-aware Mapping
	Methods
	Compact Indexing of the Reference Genome
	Search.
	SNP awareness

	Additional Features
	Results

	Sensitive and Fast Mapping of di-base Reads
	Methods
	Genome transformation
	Indexing the Reference Genome
	Indexing the Donor Reads
	Searching
	Extending

	Additional Features
	Results
	Conclusion

	Transcript to Genome Alignment
	Methods
	Nucleotide-level transcriptome to genome alignment under structural alterations.
	Fragment chaining for transcriptome to genome alignment under structural alterations.
	Whole genome analysis and discovery of novel transcriptional structural alterations with Dissect.

	Results
	Conclusion

	Boosting Sequence Compression Algorithms
	Methods
	A theoretical exposition to the LCP technique
	Example
	A practical implementation of LCP for reordering reads
	A data structure for identifying core substrings of reads
	Compressing the quality scores

	Results
	Conclusion

	Conclusion
	Future Directions

	Bibliography

