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Abstract

Scombrids (tunas, bonitos, Spanish mackerels and mackerels) support important fisheries in tropical, subtropical and
temperate waters around the world, being one of the most economically- and socially-important marine species globally.
Their sustainable exploitation, management and conservation depend on accurate life history information for the
development of quantitative fisheries stock assessments, and in the fishery data-poor situations for the identification of
vulnerable species. Here, we assemble life history traits (maximum size, growth, longevity, maturity, fecundity, spawning
duration and spawning interval) for the 51 species of scombrids globally. We identify major biological gaps in knowledge
and prioritize life history research needs in scombrids based on their biological gaps in knowledge, the importance of their
fisheries and their current conservation status according to the International Union for Conservation of Nature Red List. We
find that the growth and reproductive biology of tunas and mackerel species have been more extensively studied than for
Spanish mackerels and bonitos, although there are notable exceptions in all groups. We also reveal that reproductive
biology of species, particular fecundity, is the least studied biological aspect in scombrids. We identify two priority groups,
including 32 species of scombrids, and several populations of principal market tunas, for which life history research should
be prioritized following the species-specific life history gaps identified in this study in the coming decades. By highlighting
the important gaps in biological knowledge and providing a priority setting for life history research in scombrid species this
study provides guidance for management and conservation and serves as a guide for biologists and resource managers
interested in the biology, ecology, and management of scombrid species.
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Introduction

Life history information such as growth, age and maturity are
fundamental determinants of the population dynamics of fishes
and underpin the sustainable exploitation and management of
species [1-3]. As a result, in the last fifty years there has been
considerable effort devoted to the analysis of fish life histories.
However, even in the era of powerful databases, e.g. FishBase, this
information often remains scattered, incomplete and not readily
accessible [4,5]. Here, we compile life history studies for the 51
species of the family Scombridae, commonly known as tunas,
bonitos, Spanish mackerels and mackerels (Table 1 and Figure 1).
We aim to promote the best use of the existing life history
information, synthesize the current knowledge on life history traits
across species and identify priority biological research needs in an
effort to inform management and conservation of this important
group of species in the coming decades.

Scombrid species sustain some of the most important fisheries in
the world. They support diverse commercial fisheries throughout
their distributions, ranging from large-scale industrial to small-
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scale artisanal fisheries, and many species are caught in
recreational fisheries worldwide (Table S1). Annual catches of
scombrids have risen continuously since the 1950s, reaching 9.6
million tonnes in 2010 [6]. Together, all scombrid catches
contribute up to 15% of the annual total marine fish catch and
are worth in excess of US$ 5 billion each year [7,8]. Scombrids are
epipelagic predator and prey species and are widely distributed in
coastal and oceanic waters throughout the tropical, subtropical
and temperate waters of the world’s oceans. The majority of the
species are found in marine open waters and some are associated
with estuarine and riverine habitats and coral reefs [9]. Among the
fifteen species of tunas (Thunnini), seven are known as the
principal market tunas due to their economic importance in the
global markets (see list of species in Table 1). The principal market
tunas have widespread oceanic distributions, are highly-migratory,
sustain highly-industrialized fisheries worldwide and are a highly-
valued international trade commodity for canning and sashimi
[7,9,10]. The rest of scombrid species, the small tunas, bonitos,
Spanish mackerels, and mackerels have in general more coastal
distributions and are associated with continental shelves or oceanic
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Figure 1. Phylogeny of the family Scombridae showing the
four tribes of the subfamily Scombrinae [58]. The subfamily
Gasterochismatinae, which has only one species, butterfly kingfish
Gasterochisma melampus, is not shown.
doi:10.1371/journal.pone.0070405.g001

islands (Table 1). While the economic value of coastal scombrids is
lower in the global markets, they can reach high values locally
supporting a diversity of fisheries. These are largely small-scale
artisanal fisheries but also semi-industrial and industrial fisheries,
in both developed and developing countries (Table S1). Hence,
they are an important source of wealth and food security to local
fishing communities [7,9,11,12]. Given the global scale and
magnitude of scombrid fisheries and their economic and social
importance for many coastal countries, a global review of the life
history studies of scombrids seems essential to evaluate the
biological knowledge of this important group of species and set
the research agenda for the coming decades.

Two recent global evaluations have provided a global picture of
the current exploitation and conservation status of scombrid
species. One evaluation quantified the global fishing impacts on
fishery-assessed populations of scombrids showing the adult
biomass of scombrids (including 26 populations of 11 of the 51
species) have decreased on average by 60% over the past fifty years
[13]. It also revealed that the fisheries for the majority of these
scombrid populations, mostly principal market tunas and mack-
erels, are currently fully exploited worldwide, suggesting that the
further expansion of sustainable catches from these fisheries in the
short term are limited. This study also exposed that the large
majority of scombrid populations and species lack reliable and up-
to-date formal quantitative stock assessments of the long-term
mmpacts of fishing on population biomasses. Consequently, the
current exploitation status remains unknown or highly uncertain
for the majority of scombrid species worldwide. The other global
evaluation summarized the conservation status for scombrids
species using the International Union for Conservation of Nature
(IUCN) Red List criteria, hence, ranking species in terms of their
relative risk of global extinction [10]. Of the 51 species of
scombrids, 68% (35 of 51 spp.) were listed under the Least
Concern IUCN Red List category, having a relatively low risk of
global extinction. Sixteen percent (8 spp.) had declined sufficiently
in biomass to trigger listing under the Threatened or Near
Threatened categories having relatively higher risk of global
extinction. Lastly, 16% (8 spp.) of scombrids were listed under the
Data Deficient category, meaning these species have insufficient
information to evaluate their global conservation status. These two
global evaluations together revealed that the impacts of fishing and
the exploitation status for the majority of scombrid populations
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and species remains unknown or is highly uncertain globally and
highlighted which species are in need of further protection and
management. Consequently, the global life history dataset
assembled and synthesized in this study will become particularly
useful for those scombrid populations and species for which their
exploitation and conservation status is unknown. In an era where
stock assessments are expensive and data intensive and where it is
unlikely that there will ever be sufficient information to develop
long-term quantitative stock assessments for all exploited species,
the knowledge of life history parameters can provide a starting
framework in support of management [2].

In this study we first compile a data set of life history traits
(maximum size, growth, longevity, maturity, spawning season and
fecundity) for the 51 species of scombrids on a global scale.
Second, we synthesize this life history information and critically
review it to identify gaps and priorities in biological knowledge
across the species. Third, we recommend and prioritize life history
research needs in scombrid species based on their biological gaps
in knowledge, the importance of their fisheries and their current
conservation status according to the IUCN Red List of Threat-
ened Species.

Methods

Data collection, search criteria and data standardization

We assembled life-history data for the 51 species of scombrids
on a global scale. We specifically focused on reviewing the
available growth and reproductive studies for the adult stages of
the species, which are the essential information that generally feeds
quantitative fisheries stock assessment models and forms the basis
of their management and conservation. We assembled the life
history data from a wide range of published literature including:
scientific journals, reports and theses published in English,
Spanish, French, Portuguese, Italian and any other language that
provided an English summary.

To begin, we conducted a systematic literature review in the ISI
Web of Science for each scombrid species, searching for their
names (both Latin and common names) in combination with any
of the following terms: growth, reproductive biology, maturity,
fecundity, life history. In the search, we included all the studies up
to November of 2012. We also located additional studies through
the references of relevant papers obtained in the literature search;
this strategy allowed us specially to locate relevant studies
published as fisheries reports and theses. Additionally, we also
searched for relevant literature in the web pages of several
international organizations including the Food and Agricultural
Organization of the United Nations, and of several Regional
Fisheries Management Organizations, which regularly publish
research reports on the life histories and biology of scombrid
species. The Regional Fisheries Management Organizations
revised included the International Commission for the Conserva-
tion of Atlantic Tunas, the Inter-American Tropical Tuna
Commission, the Western and Central Pacific Fisheries Commis-
sion, the Indian Ocean Tuna Commission, the Commission for
the Conservation of Southern bluefin tuna and the Caribbean
Regional Fisheries Mechanism.

We reviewed all the studies identified (879 studies). We included
in the data set only those original life history studies that described
fully the methods employed to estimate the life history traits and
excluded review and synthesis articles. By reviewing only original
information, we avoided propagating widely-used but poorly-
supported or erronecous parameter estimates. We ended up with
684 original life history research studies (Appendix S1) from which
we extracted the following life history information:
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1. Maximum length (L,,,,, cm) of the fish observed from each life
history study.

2. Growth information derived from the von Bertalanfly growth
function, I, =L, (1-e "), where I, is the length at age ¢ in
years, L, is asymptotic length in cm - the mean size the
individuals in the population would reach if they were to grow
indefinitely; growth coefficient & (year™ ') expresses the rate at
which the asymptotic length is approached and ¢, is defined as
the hypothetical age in years that fish would have at zero
length.

3. Empirical longevity or maximum observed age (7., years)
extracted from growth and aging studies. We distinguished
between empirical longevities (7,,,), which are commonly
estimated by authors with direct and indirect aging techniques,
from theoretical longevities (7<) which are commonly calcu-
lated using Taylor’s relationship based on the von Bertalanfty
growth rate parameter k, as 7..=3/k [14]. The Taylor’s
longevity estimate is the age that a fish population would reach
at L. In this study, we only considered empirical longevities
(T

4. Length and age maturity estimates where we distinguished
between length and age at first maturity (L,,, cm; T, years;
which is the length and age at maturity first reached by an
individual in a sample) and length and age at 50% maturity
(Linso, cm; Ths0, years; which is the maturity at which 50% of
the individuals are matured in the sample).

5. Duration of the spawning season (Spwgeason, months).

6. Fecundity metrics including estimates of batch fecundity
(absolute average batch fecundity Fiyerage as the average
number of oocytes across all sampled females, and relative
batch fecundity, F,., as the average number of oocytes per
gram across all sampled females) and spawning intervals
(Spwi.s» the average number of days between spawning events).
We discuss later how we filtered fecundity studies based on the
accuracy of various methodologies to estimate fecundity.

From each life history study, we extracted the trait estimates
reported for females, males, and both sexes combined along with
the sample sizes, the method used to estimate each of the life
history traits, and the geographic extent of the study. We
transformed standard lengths or total lengths into fork lengths
using published length conversion equations.

Data analysis

In this study, we first synthesize and critically review the
biological knowledge on growth and reproductive biology for the
51 species of scombrids in order to identify gaps in knowledge.
Then, we develop a criteria to identify and propose priorities for
life history research for scombrid species.

Data synthesis and identification of data gaps. We
synthesized and critically reviewed the biological knowledge on
growth, longevity and reproductive traits including length and age
at 50% maturity, fecundity, spawning duration and spawning
intervals for the 51 species of scombrids. Additionally, we also
reviewed the life history information for the seven species of
principal market tunas at the population level (see list of species in
Table 1). The principal market tunas are oceanic species with
worldwide distributions, and some species are composed of various
populations, with one or two populations in each ocean. Due to
their widespread distributions and economic importance, the
principal market tunas are managed as 23 independent manage-
ment units or tuna stocks, here referred as populations, by five
Regional Fisheries Management Organizations. Therefore, we
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reviewed the life history information and identified gaps and
priorities for the 23 populations in the seven species of principal
market tunas, a distinction we deemed relevant given the scale of
their management. We used standard plots for basic descriptive
statistics to synthesize the life history information assembled. In all
the figures and analyses, we preferentially used the female
estimates whenever the traits were reported separately for sexes
in the studies.

We divided the synthesis of life history traits into two main
sections: (1) growth and longevity and (2) reproductive biology. In
the first section, we synthesized the growth and longevity estimates
available by counting the number of von Bertalanfly growth curves
available for each scombrid species, and by examining the von
Bertalanffy growth parameters and empirical longevity estimates
within and across all scombrid species. We also described the
growth patterns across scombrids and compared them to the rest
of marine fishes. To do this we extracted all the von Bertalanffy
growth curves available for all marine fishes from IishBase [3].
While the von Bertalanfly growth parameters, L. and £, are
fundamental to describe the growth trajectories of individual
species, it is not straight-forward to use L., which represents size,
and £, which has time dimensions (y~ "), by themselves to compare
multiple growth curves and growth rates across multiple species
[15]. Instead, a metric linking change in size or weight of a species
with time is needed to describe growth patterns across multiple
species [16]. Therefore, we used two complementary approaches
to describe the growth patterns in scombrid species. First, we used
the von Bertalanffy £ parameter, which conveys how fast a species
reaches its maximum body size to differentiate between “fast
growing” and “‘slow-growing” species given a maximum body size.
Second, we used the growth performance index, initially
developed by Pauly 1979, and defined as @' =log;ok+210g10Les,
which is a metric with dimensions of size and time, to differentiate
between species that have “high growth performances” from
species having “low growth performances” regardless of their
maximum body size [17]. A species with a high index of growth
performance would rapidly reach a large maximum body size in a
short time span and therefore would have both relatively high &
and L. values compared to species with low growth performances.
However, because the growth performance index is the product of
combining information from two parameters, L. and £, a high
index of growth performance could also be the result of having
only a high L., thus, it does not necessarily imply fast growth rates
(a high £) to reach L.. Yet, the species with the highest growth
performances will have both relatively high L., and £ Moreover,
we also used the growth performance index @' to highlight
potentially inaccurate growth curves. Given that the @' values for
a given species, or a taxonomically related group of species, is
expected to be normally distributed around the mean @’ of the
taxonomic unit, values further away from the mean of the
distribution must be interpreted with increasing caution [17]. In
addition, we also used an auximetric plot, which is a double
logarithmic plot of the parameters £ and L., [15,18] to portray and
visualize “fast vs slow growing” scombrid species given a
maximum body size and species with “high vs low growth
performances”, and visualize how the growth space of scombrid
species compare with the rest of marine fishes. By plotting £ vs Lo,
which are inversely related, in the auximetric plot, the growth
space utilized by fishes can be represented [15,16]. Different
population of a same species will tend to form a cluster of points,
describing the “growth space” of the species, and the cluster of
points will grow in size as higher taxonomic levels (e.g. genera and
families) are included in the plot.
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In the second section, we synthesized all the reproductive
studies by counting all the maturity and fecundity studies available
for each scombrid species, and by examining the maturity and
fecundity estimates within and across species. We first present an
overview of the maturity studies in scombrids by examining the
available estimates of length and age at 50% maturity and relative
ratios (length and age at maturity divided by maximum size) within
species and across species. These ratios describe the differences
among species in somatic and reproductive investments and they
can also be used to highlight potential inaccurate estimates within
cach species. Then, we provide an overview of the fecundity
studies. Understanding fecundity in scombrid fishes is challenging
because they are batch spawners, spawning multiple times during
the spawning season and have indeterminate fecundity. Indeter-
minate fecundity refers to species whose annual potential fecundity
1s not fixed before the spawning season, since unyolked oocytes
continue to be produced, matured and spawned during the
spawning season. In contrast, determinate fecundity refers to
species for which annual potential fecundity is fixed before the
spawning season [19]. In order to estimate the potential annual

A
Growth -
Longevity -
Length at maturity -
Age at maturity -
Spawning season -
Average batch fecundity -
Relative batch fecundity -
Spawning interval -
(I) 1(|)0 2(I)O 3(|)0 4(I)O 5(IJO 6(l)0
Number of life history estimates
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Longevity -
Length at maturity -
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Spawning season -
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| I I I I
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Number of species

Figure 2. Life history information in scombrid species.
Information includes life history estimates of von Bertalanfy growth
parameters, longevity, length and age at 50% maturity, duration of
spawning season, average batch fecundity, relative batch fecundity and
spawning interval. (A) Number of life history trait estimates in the
dataset for all the species combined. (B) Number of scombrid species
with at least one life history trait estimate. There are 51 species in the
family Scombridae.

doi:10.1371/journal.pone.0070405.g002
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fecundities of scombrids, three measurements are required: batch
fecundity (number of eggs released per spawning), spawning
frequency (number of days between spawning events), and the
duration of the spawning season [19-21]. In addition, the ovaries
of all scombrid species are considered asynchronous, meaning that
oocytes of all stages of development are present in the ovary
simultaneously without a distinctive oocyte size class [19,21]. This
is characteristic of species with protracted spawning season, where
oocyte development depends on the food available in the
environment [19]. Therefore, histological analysis of ovarian
tissue is needed to accurately measure batch fecundity in
scombrids since there is a critical moment along all the stages of
oocyte maturation when batch fecundity can be estimated [21]. At
the final stages of oocyte maturation, beginning with migratory-
nucleus phase and followed by hydration, which results in a clear
hiatus or size break along the distribution of ooyctes, batch
fecundity can be derived by counting the number of hydrated
oocytes in ovaries. While a more detailed description on the
methods to derive accurate batch fecundities in scombrid species
can be found in Schaefer ¢t al. (2001) and Murua and Saborido-
Rey (2003), what we need to know here is that only ripe, pre-
spawning females, with hydrated oocytes in their ovaries can be
used to estimate batch fecundity accurately by means of
histological analysis. Therefore, we reviewed all fecundity studies
(134 studies) and selected only those studies using accurate
methodologies that clearly stated that the species studied was
identified as batch spawner, had indeterminate fecundity, reported
asynchronous development of oocytes in the ovaries, used
histological analysis, and estimated batch fecundity based on the
count of the number of migratory-nucleus or hydrated oocytes
[21]. Our criteria led to a selection of 33 fecundity studies, which
we used to examine batch fecundities and spawning frequency
within and across scombrid species. Unfortunately most of the
fecundity studies of scombrid species conducted in the last 50 years
used inaccurate methodologies, for example, by wrongly assuming
determinate fecundity or overestimating fecundity by counting
oocytes before the hydration stage. This concern was already
raised by Schaefer ef al. (2001), which reviewed the reproductive
biology studies of tunas, but those concerns can be further
extended to all scombrid species. Furthermore, we had to exclude
from our analysis the majority of fecundity studies for Atlantic
mackerel (Scomber scombrus) for which total annual fecundity,
mstead of batch fecundity, is routinely estimated, given that this
species 1s managed in the Northeast Atlantic Ocean under the
assumption of a determinate fecundity pattern. The accuracy of
this assumption is, however, being revised [22,23]. Finally, we also
examined the extent of the spawning season in scombrid species
within major climates (tropical, subtropical and temperate) (see
species climate region in Table 1).

Criteria for setting life history research priorities. We
identified and proposed a set of priorities for life history research
for the 51 species of scombrids based on the following criteria: (1)
their biological life history data gaps, (2) the importance of their
fisheries throughout their distributions and (3) their current
conservation status according to the JUCN Red List of Threat-
ened species. Using our life history synthesis, we differentiated
between life history data-rich species, species having life history
studies on growth, maturity and fecundity, from life history data-
poor species, those lacking information on either growth, maturity
or fecundity. We also summarized the main fisheries of each
scombrid species (Table S1) and used this information to
differentiate between species that are commercially targeted and
non-targeted by fisheries. Finally, we differentiated between
species listed as Threatened, Near Threatened and Data Deficient
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Figure 3. Synthesis of life history information in scombrid species. Number of estimates for each life history trait within the main four
taxonomic groups of scombrids (tunas, bonitos, Spanish mackerels and mackerels). Within each taxonomic group, the species are plotted in
ascending rank order of body size, with the smallest species at the bottom (See Table 1 for maximum body size). The Butterfly kingfish (Gasterochisma
melampus), the only species in the subfamily Gasterochismatinae, is not included. The only life history trait recorded for this species is maximum
length, being 195 cm [59]. The area of the grey circles is proportional to the number of estimates available for each trait.

doi:10.1371/journal.pone.0070405.g003

from those listed as Least Concern in the IUCN Red List [10].
Threatened species are those listed as Critically Endangered,
Endangered, and Vulnerable in the IUCN Red List [24]. Species
in the Data Deficient category are species for which there is
insufficient information to evaluate their risk of extinction, and
they may or may not be Threatened. We constructed a Venn
Diagram to illustrate all possible logical relations between our
three main criteria. We assigned the highest priority rank for life
history research to those species that: (1) are life history-data poor,
(2) are targeted by commercial fisheries, and (3) are listed as
Threatened, or Near Threatened or Data Deficient on the [UCN

PLOS ONE | www.plosone.org

Red list. Because of the risk associated with the uncertainty in their
status, we treated Data Deficient species together with species in
the Near Threatened and Threatened categories as high priority
in life history research. Similarly, we assigned the second highest
priority to those species that are life history data-poor and are also
targeted by commercial fisheries throughout their ranges.

All data management, manipulation and plots were done using
the R statistical software, v.2.14.2 [25] and the packages ggplot2
[26] and VennDiagram [27]. The life history data set is available
upon request from the corresponding author.
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Figure 4. Synthesis of life history information in principal market tuna species. Number of estimates for each life history trait in the 23
populations of seven principal market tuna species. The area of the grey circles is proportional to the number of estimates available for each trait.

doi:10.1371/journal.pone.0070405.g004

Results and Discussion

Below we first present the global synthesis and review on the
biological knowledge on growth and reproductive traits for the 51
species of scombrids and 23 populations of principal market tunas.
Then, we propose priorities for life history research for scombrid
species based on their biological gaps in knowledge, the
importance of their fisheries throughout their distributions and
their current conservation status according to the IUCN Red List
of Threatened Species.

Biology of scombrids: Current knowledge, data gaps and
data concerns

Growth and longevity. There are a total of 547 von
Bertalanfly growth curves in the data set and growth has been
studied in 42 of 51 species of scombrids (Figure 2 and 3) and in all
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23 populations of principal market tunas (Figure 4). The L, and &
coeflicients vary greatly between scombrid species ranging from
244 cm and 2.3y ', respectively, in the short mackerel
(Rastrelliger brachysoma) to 309.7 cm and 0.12 y~', respectively, in
the Atlantic bluefin tuna (Thunnus thynnus) (Figure 5). Scombrids are
among the fastest growing species of all fishes with relatively high &
values (a mean £ of 0.48 y~') given their maximum size when
compared to the rest of fish species, exhibiting rapid growth
toward their maximum body size (Figure 6A). Among all scombrid
species, the fastest growing species (£ values>0.7 y~ ) given their
maximum body size are the three tropical Indian mackerels,
Indian mackerel (Rastrelliger brachysoma), Island mackerel (R. faughni)
and short mackerel (R. kanagurta), the Indo-Pacific king mackerel
(Scomberomorus guttatus) and frigate tuna (duxis thazard) (Figure 5).
Moreover, the three bluefin tuna species (Thunnus thynnus, T
orientalis, and T. maccoyiz) and two Spanish mackerels (Monterey
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Spanish mackerel Scomberomorus  concolor and Serra Spanish
mackerel S.  brasiliensis) are the slowest growing species
(k<0.2 y~') among scombrids.

The growth performance index @’ in scombrids is among the
highest in fish species, indicating not only that scombrids have
relatively high £ values given their maximum body size, but they
also have both relatively high £ and L., values, being able to grow
very fast to large body sizes compared to the rest of fish species
(Figure 6). Note how the growth space of scombrids is located
towards the top right quarter of the auximetric plot, although
there are some exceptions (Figure 6A). Four tuna species,
yellowfin, Atlantic bluefin, Pacific bluefin and bigeye tuna (7hunnus
albacares, T. thynnus, T. orientalis and T. obesus, respectively) have the
largest growth performances indices (@'>4) among scombrids,
followed by dogtooth tuna (Gymnosarda unicolor), wahoo (Acanthocy-
bium solandri) and the narrow-barred Spanish mackerel (Scomber-
omorus commerson) (Figure 6B). On the other hand, the four
temperate mackerel species, chub mackerel (Scomber japonicus),
Atlantic mackerel (S. scombrus), Atlantic chub mackerel (S. colias)
and blue mackerel (S. australasicus) have the lowest growth
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performances among scombrid species (Q'<2.7). Yet, scombrid
species have among the highest growth performances of all fishes
with an average @' values of 3.4, while the average @' for the rest
of marine fishes is 2.7 (Figure 6B). What explains the high growth
rates and high performances of scombrid species? Pauly’s theory of
growth in fishes states that the oxygen supply, and therefore the gill
surface area, is the limiting factor of growth in fishes [15,16,28].
The gill structure of scombrids is among the most advanced in
fishes. All scombrid species have disproportionally large gill surface
areas relative to their body weights, and tuna species have the
largest gill surface areas among all scombrids, permitting high
rates of the oxygen acquisition to maintain those high rates of
growth [29]. Pauly’s work on growth in fishes starting in the 1980s
already noticed that tuna species had relatively high growth rates
and large gill sizes compared with the rest of teleost fishes,
directing him to investigate the positive relationship between that
gill surface area of fishes, hence supply of oxygen, and their
maximum growth rates [15,28].

Longevity is a difficult parameter to estimate in fishes, as it
depends on the accuracy of the growth-determination methods
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and the age-validation techniques, but it is an essential parameter
to consider when managing exploited populations [30,31].
Longevity estimates were available for 36 of the 51 species of
scombrids (Figure 2 and 3) and in all 23 populations of principal
market tunas (Iigure 4). We find that the average longevity across
all scombrid species is 12.2 years, making scombrids medium-lived
species when compared to the rest of fishes, according to the life
history productivity classification of the American Fisheries Society
[32]. However, longevity estimates vary greatly within scombrid
species (Figure 5). On one extreme, the shortest-lived tropical
mackerels (short mackerel Rastrelliger brachysoma and Indian
mackerel R. kanagurta) have longevities of 1 and 4 vyears,
respectively. On the other extreme, the southern bluefin tuna
(Thunnus maccoyiz) with a maximum estimated longevity of 41 years,
Atlantic bluefin tuna (7. thynnus) (35 years) and narrow-barred
Spanish mackerel (Scomberomorus commerson) (31 years) are the
longest-lived species of scombrids.

Growth and longevity have not been studied at all in nine and
fifteen scombrid species, respectively. In addition, we find that the
estimates of the von Bertalanfty growth parameters, L, and £, the
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growth performance index @', and longevity vary substantially
within some scombrid species (Figure 5 and 6). This variation can
be attributed mainly to two factors: (1) the life histories of species
may vary with average temperature and seasonality at different
latitudes within their distributions [33], and (2) the accuracy of the
aging and growth approaches used, and the power of the
validation methods employed, if any [30]. The von Bertalanfly
growth curves of scombrids were estimated using a variety of aging
methods including direct methods such as calcified structures
(vertebrae, spines, scales and otoliths) and indirect methods such as
modal analysis of length frequencies and tagging studies, or by
various combinations of several of these methods (Figure SI).
While it is not the objective of this study to quantify how much
variation in growth might be due to environmentally-driven
intraspecific variability within species and how much by differ-
ences in aging techniques, we compared estimates of £, the growth
performance index @' and longevity between several aging
techniques, and observed that some of the differences can be
attributed to the ageing approaches employed (Figure S2, S3 and
S4). This type of analysis should ideally be carried out at the
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Figure 7. Length at 50% maturity estimates and the ratio length at 50% maturity/maximum body size for scombrid species. Within
each taxonomic group, the species are plotted in ascending rank order of body size, with the smallest species at the bottom (See Table 1 for

maximum body size).
doi:10.1371/journal.pone.0070405.g007

species level, to better determine the effect of different aging
techniques on growth estimates and to identify what methods are
more consistent leading to more accurate age and growth
estimates for each species. Moreover, while we cannot disentangle
casily the effect of aging techniques on growth and age estimations,
we can easily use the growth performance index @' to identify
potential inaccurate growth curves for each individual species. The
Q' values for a given species or taxonomically related group of
species is expected to be normally distributed around the mean @'
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of the taxonomic unit [17]. Therefore, we advise to interpret with
increasing caution the growth curves with @’ values the further
away from the mean of their distribution. We consider the
scombrid growth curves depicted as outliers in the boxplots in
figure 6B potentially unreliable and we advise against their use.
Reproductive biology. We first present an overview of the
maturity studies in scombrids followed by an overview of the
fecundity studies. The length at which 50% of the sampled
individuals have matured, were available for 38 of the 51 species
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(Figure 2 and 3) and 16 of the 23 principal market tuna
populations (Figure 4). While at first we observe that small
scombrid species tend to mature at smaller sizes than larger-
bodied scombrids, we also find that scombrids reach maturity at
similar proportional sizes, at around half of their maximum length,
typically at 44.7% of the maximum length (Figure 7). Multiple
studies have documented the relative constancy of the ratio L,50/
Linax within most families of fish and other taxonomic groups
[1,34]. Yet, it has also been documented that smaller species tend
to reach maturity at larger sizes relative to their maximum body
sizes while larger species tend to mature at relatively smaller sizes.
This pattern can also be discerned in Figure 7 where, for example,
the smallest scombrid for which maturity information exists, the
short mackerel (Rastrelliger brachysoma), matures at 16.7 cm (at 50%
of its maximum body size) and the largest scombrid, the Atlantic
bluefin tuna (Thunnus thynnus), matures at 155.2 cm (at 36% of its
maximum body size, combining information for both eastern and
western population). Moreover, we find that estimations of age at
first maturity are scarcer in scombrid species (Figure 2 and 3).
Reproductive studies only estimated age at 50% maturity or
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reported age at 50% maturity by converting length at maturity to
age using a Von Bertalanfty growth equation for 25 species of
scombrids (Figure 8). With the limited information available, we
find that scombrids appear to mature early in life compared to
their maximum life span, at around one quarter of their lifespan (at
25.4% of the maximum age across all the species) (Figure 8).
Extreme values in the distribution are provided by Australian
spotted mackerel (Scomberomorus munror), which matures at 0.3 years
(at 5% of the maximum age), while southern bluefin tuna (Thunnus
maccoyi) reaches maturity at 11 years old (at 27% of the maximum
age).

Absolute average batch fecundities, relative batch fecundities
and spawning frequencies were available for 17, 15 and 13 species
of scombrids, respectively (Figure 2 and 3). Estimates of average
absolute batch fecundities vary greatly across scombrid species,
ranging from 69,000 oocytes in blue mackerel (Scomber australasicus)
to 16 million eggs in Pacific bluefin tuna (Thunnus orientalis), which
is mainly driven by the different body sizes of the species
(Figure 9A). The average relative batch fecundity (number of
oocytes per gram) is a better metric to compare fecundity among
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species of different sizes. The number of oocytes per gram in
scombrids ranges from 38 in bigeye tuna (Thunnus obesus) to 242 in
bullet tuna (duxis rocher). Smaller scombrids tend to have higher
mass-specific fecundities, spawning a greater number of oocytes
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per gram of body mass than bigger scombrid species (Figure 9B).
The time between successive spawning events in scombrid species
varies between every 1.1 days in southern bluefin tuna (7hunnus
maccoyi) to every 6.5 days in blue mackerel (Scomber australasicus),
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and smaller scombrids tend to have greater intervals between
spawning events than larger body scombrids, although there are
more some exceptions (Figure 9C). Finally, tropical species have
generally longer spawning seasons (an average of 6 months), than
their subtropical (5 months) and temperate (3.5 months) relatives
(Figure 9D), suggesting an association between spawning duration
and the type of environment that species inhabit.

Information on the full reproductive biology, including length
and age at 50% maturity, batch fecundities, spawning duration
and frequency, is incomplete for most scombrid species (Figure 2
and 3), and around half of the populations of the principal market
tunas (Figure 4). The length at 50% maturity and spawning season
1s unknown for 13 and 9 species of scombrids, respectively. More
worrying, accurate fecundity studies are lacking for 34 of the 51
species of scombrids. We also find that estimates of length at 50%
maturity are less variable than growth estimates, suggesting that
there is more uniformity among the methods (Figure 7). However,
some species show large variability among studies, calling for some
detailed examinations. Given the relative constancy of the ratio
Lins0/ Linax within scombrid species, we find this ratio particularly
useful to identify those species and studies that need further
examination. For example, the estimates of length at 50%
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maturity and the ratio L,50/ L. vary greatly among studies for
the species Atlantic bluefin tuna (Thunnus thynnus), longtail tuna (7.
tongeol) and Atlantic chub mackerel (Scomber colias). In the case of
Atlantic bluefin tuna (7. thynnus), the different lengths at maturity
of the eastern and western Atlantic populations might be driving
some of the observed variation. It has been hypothesized that the
different histories of exploitation for the two populations might
explain some of the differences (ICCAT, 2009). The large
differences in length at 50% maturity for longtail tuna (7hunnus
tonggol) and Atlantic chub mackerel (Scomber colias) could be driven
by the different methodologies employed in the studies or perhaps
be an environmental-driven response of the species within its
distribution. Finally, we also see some discrepancies in the
estimates of relative batch fecundity within some species, for
example the relative fecundities of skipjack tuna (Katsuwonus pelamis)
differ greatly among studies.

Setting priorities in life history research and future
directions

Although we would ideally encourage a large range of biological
studies to fill all life history data gaps of scombrid species identified
in this study (Figure 3 and 4), we propose instead a set of priorities
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for research based on the following criteria: (1) their biological life
history data gaps distinguishing between data-rich and data-poor
species, (2) the importance of their fisheries distinguishing between
commercially target and non-target species, and (3) their current
conservation status according to the IUCN Red List, distinguish-
ing between species listed as Threatened, Near Threatened and
Data Deficient from those listed as Least Concern (Figure 10). We
find one-third of scombrid species (17 spp.) are life history data-
rich species, as they have reasonable information on growth,
maturity and fecundity (Figure 3, Table S2). Half of the species (26
spp.) lack information on either growth, maturity or fecundity, and
eight species have no information at all on growth, maturity or
fecundity, for which we know little more than their maximum
body sizes and their overall distributions; we refer to them as data-
poor species (Figure 3, Table S2). We also find that all scombrid
species are targeted by commercial fisheries, except only for two of
them: Butterfly kingfish (Gasterochisma melampus) and slender tuna
(Allothunnus fallai) (Table S1). Finally, 35 of the 51 species of
scombrids are listed under the Least Concern IUCN Red List
category, 8 species under the Threatened or Near Threatened
categories and 8 species of scombrids are listed under the Data
Deficient category [10].

Based on our criteria we identified two groups of species for
which life history research should be prioritized in the coming
decades (Figure 10). The first priority group is made up of ten
scombrid species for which we identified large life history-data
gaps, are currently targeted by commercial fisheries throughout
their distributions and are listed as Threatened, Near Threatened
or Data Deficient in the [IUCN Red List (Figure 10). These species
include six Spanish mackerels (Scomberomorus sinensis, S. plurilineatus,
S. munror, S. mphonius, S. guttatus, S. concolor), one tuna (7Thunnus
tonggol) and the three tropical mackerels (Rastrelliger kanagurta, R.
brachysoma and R. faughni). The full reproductive biology of these
species 18 unknown or very poorly known. This is particularly
relevant for Chinese seerfish (Scomberomorus sinensis) and Japanese
Spanish mackerel (S. niphonius), two important commercial species
off the coast of Japan, Korea and China [35-38]. While for
Japanese Spanish mackerel we lack any length or age at maturity
and fecundity estimates, for Chinese seerfish there is no data on
maturity, fecundity or growth. Given the large maximum size
reported for these species (Chinese seerfish ~240 cm and Japanese
Spanish mackerel ~103 cm), it is likely they might be vulnerable
to fishing pressure throughout its range. Moreover, all the species
in our top priority list were categorized as Data Deficient, with the
exceptions of Monterey Spanish mackerel (Scomberomorus concolor)
and Australian spotted mackerel (S. munro) which were listed as
Vulnerable [10]. For these Data Deficient species there is
msufficient data on their biology, population status, and current
threats to even conduct the IUCN assessments, yet, they sustain
diverse commercial fisheries in many countries throughout their
ranges (Table S1). Exacerbating the effect of poor biological
knowledge of these species and unknown exploitation and
conservation status, the landings of these species have increased
greatly in the last decade, but are usually misclassified and highly
underreported throughout their ranges [6,7,10].

The second group of species for which life history research
should be prioritized is made up of twenty-two data-poor and
commercially-targeted species of scombrids (Figure 10). For five of
them (shark mackerel Grammatorcynus bicarinatus, double-lined
mackerel G. bilineatus, Australian bonito Sarda australis, leaping bonito
Cybiosarda elegans, Papuan seerfish Scomberomorus multiradiatus), we
know little more than their maximum size and their overall
distributions. All those twenty-two species are currently supporting
diverse commercial fisheries throughout their distributions (Table
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S1), yet most of them lack either proper quantitative fisheries stock
assessments, or those available are outdated, and therefore their
exploitation status is unknown or poorly known throughout their
distributions [10,13]. Similar to the species in the first priority
group, landings for these scombrid species have been increasing
greatly in the last decades, but they are often misclassified and
underreported in the different fisheries statistics [6]. For all these
reasons, we stress life history research should be prioritized on
these two groups of species following the species-specific life history
gaps identified in this study (see life history data gaps in Figure 3)
in the coming decades. Basic life history knowledge on growth,
maturity and fecundity schedules has proven to be very valuable in
fishery data poor situations. Several methods have been developed
with the aim to support the management of species with a lack of
long term fisheries statistics based on basic life history information
of the species, which have proved useful to rank species according
to their intrinsic sensitivities to threats such as fishing [39-42].
These methods are now commonly used to identify and select
sensitive species to prioritize management and efforts to protect
and recover most threatened species. Finally, we also observe that
most of the species in the two priority groups are endemic in the
Indian Ocean and Indo-Pacific region, which we identified as the
region with the highest diversity of scombrid species, and the
region with the largest number of data-poor scombrid species.

Only one species of principal market tunas, the Pacific bluefin
tuna (Thunnus orientalis), was included in the priority species list.
However, the life history review for the 23 principal market tuna
populations revealed that there are multiple tuna populations for
which the reproductive biology, including length and age at
maturity and fecundity schedules, is still poorly known (Figure 4).
Particularly, the reproductive biology of albacore tuna (7Thunnus
alalunga) and Pacific bluefin tuna (7. orientalis) appear to be poorly
known when compared with other principal market tunas. This is
remarkable given the economic importance of these species
globally [7,13]. It is noteworthy that only recently the first
complete studies on the reproductive biology of north Pacific
albacore tuna, south Pacific albacore tuna and Pacific bluefin tuna
were published [43-45]. Although several old studies reporting
estimates of length at first maturity instead of length at 50%
maturity exists for these species, we believe these estimates must be
used with caution, and we do not report them here, because they
are highly variable and might not represent length at maturity for
the populations as a whole [21]. Therefore, we recommend
prioritizing research on the reproductive biology including
maturity and fecundity studies for Pacific bluefin tuna, and
populations of Albacore tuna, other than the northern and
southern Pacific populations.

Up to now, we have focused on identifying life history research
priorities for specific species of scombrids. Yet, the determination
of longevity and validation studies of age is one area of life history
research that we believe should also be given high priority in the
coming decades. Biological timings and rates, such as maximum
age, age at maturation and growth rate are one of the primary
axes of life history variation in vertebrates and especially
scombrids [46]. The ability to accurately estimate and validate
age in fishes is important for the subsequent estimation of
demographic parameters of growth, mortality, longevity and age
at maturity [30,31]. In light of the within-species variation
observed, longevity estimates in scombrids should be used with
caution and we recommend prioritizing age validation studies
particularly for long-lived scombrids. To date, age validation
techniques have only been applied recently to some populations
and species of the genera Thunnus, Scomber, and Scomberomorus
[43,47-51]. The ages and longevities of large-bodied, and
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potentially long-lived, species have often been underestimated in
fishes, potentially causing fisheries management plans to be less
successful [31]. Scombrid species include some of the most
valuable exploited species in the world and the sustainability
benefit of valid demographic estimates would seem worth the
comparatively modest outlay involved in age validation.

Finally, we highlight some of the caveats of this study and
suggest future directions to address them. First, by synthesizing
and identifying life history research priorities at the taxonomic unit
of species, we overlooked scombrid species that have widespread
distributions and therefore the possibility of multiple locally-
adapted populations throughout their geographical range. While it
was not the scope of the present study to review and prioritize life
history research in scombrids at the population level, in part due to
the large volume of work and time constraints, the population
structure for the large majority of scombrids species is unknown or
poorly known throughout their distributions, with very few
exceptions. Second, by focusing this study on the taxonomic unit
of species we also overlooked the potential spatial and temporal
patterns of life history variation within each scombrid species or
populations. Life history traits for a given species might vary
spatially in response to environmental effects and latitudinal clines
[33,52] and in addition vary temporally in response to fishing-
induced effects [53]. To our knowledge, very few studies have
quantified how growth and reproductive life history traits vary
spatially within the species distributions [45,54,55] or vary
temporally perhaps induced by fisheries exploitation [56,57]. We
therefore further encourage two broad lines of research. An
immediate line of research with relatively low cost could make use
of the life history data set assembled here to test the intraspecific
variation in the multiple life history traits across large-scale
environmental effects (e.g latitude, temperature, habitat types) in
scombrid species, and at the same time focus on identifying and
prioritizing regional life history data-gaps for each individual
species. As a second line of research, we encourage future studies
to continue determining the population structure of scombrid
species using multiple approaches from genetic techniques to the
use of biological markers such as otolith microstructure and
electronic tagging methods, in order to define geographic
boundaries of populations at scales relevant for fisheries manage-
ment.

Conclusions

We reviewed and synthesized the life history information on
growth and reproductive biology for the 51 species of scombrids,
including a population-level review for the principal market tuna
species, identified major biological gaps in knowledge and
prioritized life history research needs for scombrid species and
principal market tuna populations given the life history gaps
identified, importance of their fisheries and current conservation
status according to the IUCN Red List. We revealed that one third
of species (17 spp.) have reasonable information on growth,
maturity and fecundity. Half of the species (26 spp.) lack
information on either growth, maturity or fecundity, and eight
species have no information at all on growth, maturity or
fecundity, for which we know little more than their maximum
body sizes and their overall distributions. Additionally, we found
that the biology of tunas and mackerel species have been more
extensively studied than for Spanish mackerels and bonitos,
although there are notable exceptions in all the taxonomic groups.
Moreover, we also revealed that reproductive biology of species,
particular fecundity, is the least-studied biological aspect when
compared with growth and maturity.
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Given their economic and social importance and the increase in
global catches and demand, scombrid species will continue to be
central in future fisheries and ecological research. Globally the
majority of life history research has focused, and still is focused, on
the principal market tuna species and a few temperate mackerel
species, giving less priority to the life history research of the rest of
coastal scombrid species such as the small tunas, Spanish
mackerels and bonitos. In this study, we hope to have raised
attention to the urgent need for work on the life history of the
smaller coastal scombrid species. Although lower in economic
value in the global markets, coastal scombrid species support
diverse fisheries throughout their distributions and are an
important source of wealth and food security to the local fishing
communities in many countries [7,9,11,12]. However, we also
emphasize the need to continue field studies, employing proper
experimental design and methodologies on the life history data-
rich principal market tuna and mackerel species as needed, and
especially we advise to focus research to investigate the spatial
variation in growth and reproductive traits. Furthermore, we
encourage future studies to use the assembled life history data set
presented here to develop comparative analyses to make use of the
biological knowledge on data-rich scombrid species to data-poor
scombrid species with potential similar biology which could
potentially have a positive effect in the quality of management
advice. Last, by highlighting the important gaps in biological
knowledge and providing a priority setting for life history research
in scombrid species, we hope this study can serve as a guide for fish
biologists and resource managers interested in the biology, ecology
and management of scombrid species, particularly in areas of the
world where the information is lacking, inadequate or outdated.

Supporting Information

Appendix S1 Bibliography of life history data set.
DOC)

Figure S1 Number of studies to estimate age and
growth by method type in scombrid species. Aging
methods including direct methods such as calcified structures
(vertebrae, spines, scales and otoliths) and indirect methods such as
modal analysis of length frequencies and tagging studies, or by
various combinations of several of these methods.

(TIF)

Figure $2 Illustration of the effect of different aging and
growth techniques on the estimation of the growth
performance index @'. Only species for which there are more
than 15 von Bertalanfty growth curves are shown.

(TIF)

Figure S3 Illustration of the effect of different aging and
growth techniques on the estimation of the von Berta-
lanffy growth parameter k (y '). Only species for which
there are more than 15 von Bertalanfty growth curves are shown.

(TIF)

Figure $4 Illustration of the effect of different aging and
growth techniques on the estimation of longevity T,
(y). Only species for which there are more than 15 von Bertalanfly
growth curves are shown.

(TIF)

Table S1 List of scombrid species with a brief descrip-
tion of their fisheries.
(DOC)

Table 2 Ciriteria to construct the Venn Diagram of life
history research priorities in scombrid species. We
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differentiated between life history data-poor and data-rich species
(see definition in main text), between species targeted and not-
targeted by commercial fisheries (see Table S1), and between
species listed as Threatened, Near Threatened and Data Deficient
from those listed as Least Concern in the IUCN Red List [10].
IUCN Red List categories: CR - Ciritically Endangered, EN -
Endangered, VU - Vulnerable, NT - Near Threatened, LC - Least
Concern and DD - Data Deficient.
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