

Novel ABC- and BBO-Based

Evolutionary Algorithms and Their Illustrations

to Wireless Communications

by

Saeed Ashrafinia

B.Sc., Sharif University of Technology, 2007

THESIS SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in the

School of Engineering Science

Faculty of Applied Sciences

 Saeed Ashrafinia 2013

SIMON FRASER UNIVERSITY

Spring 2013

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may

be reproduced, without authorization, under the conditions for
“Fair Dealing.” Therefore, limited reproduction of this work for the

purposes of private study, research, criticism, review and news reporting
is likely to be in accordance with the law, particularly if cited appropriately.

ii

Approval

Name: Saeed Ashrafinia

Degree: Master of Science (Electrical Engineering)

Title of Thesis: Novel ABC- and BBO-Based Evolutionary
Algorithms and Their Illustrations to
Wireless Communications

Examining Committee:

Chair: John Jones
Professor

Daniel C. Lee
Senior Supervisor
Professor

Rodney Vaughan
Supervisor
Professor

Sami Muhaidat
Internal Examiner
Assistant Professor
School of Engineering Science

Date Defended/Approved: December 19th, 2012

iii

Partial Copyright License

iv

Abstract

In this thesis we discuss some new Evolutionary Algorithms (EAs) as potential low-

complex solvers to some optimization problems in wireless communications. Delivering

high performance results while maintaining low computational complexity is extremely

important in solving complex optimization problems or problems with a large search

space. We propose our enhancements to Biogeography-Based Optimization (BBO) and

Artificial Bee Colony (ABC) algorithms. We further present a novel high performance

low-complex EA for optimization problems in both continuous and discrete domains, that

combines the advantages of both BBO and ABC algorithms, which is referred to as the

Hybrid ABC/BBO algorithm. This algorithm has shown higher performance in

comparison to other EAs when applied to some optimization problems. We applied these

algorithms to a single-objective unconstrained optimization problem (Multi Device STBC-

MIMO), a single-objective constrained optimization problem (relay assignment in

cognitive radio systems), and a multi-objective constrained optimization problem (Green

Resource Allocation in cognitive radio systems). We provide the formulation of these

problems and compared the hybrid algorithm results with exhaustive search (where

applicable), and further demonstrate the superiority of the hybrid algorithm in terms of

complexity and performance over ABC, BBO, other mainstream EAs and optimization

solvers through simulations.

Keywords: Evolutionary algorithms; optimization; cognitive radio; mimo detection;
biogeography-based optimization; artificial bee colony

v

Dedication

 To My Beloved Parents

vi

Acknowledgments

First and foremost, all praises are due to the almighty Allah, who has blessed me

with gift, strength, knowledge and patience to undertake my research.

I would like to thank my senior supervisor Professor Daniel C. Lee for his trust,

guidance and support over the past years. I have learnt a lot from his expertise,

understanding, and patience during my graduate studies. Through his invaluable

advices, he helped me to form a personality of an independent researcher and thinker.

I would also like to thank my supervisor, Professor Rodney Vaughan, for his

support and trust. His kind support was always there for anyone who was in need. He

would definitely be a role model of an exceptional faculty member with impressive

characteristics in my future life in academia.

Moreover, I would like to thank Professor Sami Muhaidat for his consistent

support during my studies. Professor Muhaidat is a respected knowledgeable faculty

member, and a true friend; and my deep appreciation is for his kind support and

patience.

I am grateful for the support and help of faculty, staff and graduate students of

the mobile communication lab. I give my special thanks to Dr. Muhammad Naeem, Udit

Pareek, Mehdi Seyfi, Maryam Dehghani, Miladamir Tootonchian, Moein Shayegannia,

Ali Zarei, Ehsan Seyedin, Seyed Amin Hejazi, Hafiz Munsub Ali, and others, who

provided me with great help and support during the last few years.

My deepest appreciations go out to my family members to whom I owe so much.

I would like to thank my parents for the sacrifices they have made, and for the inspiration

and support they have provided throughout my life.

vii

Table of Contents

Approval ...ii
Partial Copyright License .. iii
Abstract ...iv
Dedication ... v
Acknowledgments ...vi
Table of Contents ... vii
List of Tables ... x
List of Figures..xi
List of Acronyms and Abbreviations .. xiii
List of Symbols ...xv

Part I: Preliminary of Evolutionary Algorithms 1

1. Introduction .. 2
1.1. Evolutionary Algorithms ... 2

1.1.1. General Components ... 3
1.2. Algorithms Discussed in This Thesis ... 6
1.3. Organization of Thesis ... 7
1.4. Summary of Contributions .. 8
References .. 10

2. Biogeography-Based Optimization Algorithm .. 13
2.1. Introduction to Biogeography ... 13
2.2. Biogeography-Based Optimization (BBO) .. 13

2.2.1. BBO Migration .. 15
2.2.2. BBO Mutation ... 15
2.2.3. BBO Elitism .. 16
2.2.4. BBO Definitions and Algorithm ... 16

2.3. BBO Migration Models ... 19
2.3.1. Linear Immigration – Linear Emigration Model ... 20
2.3.2. Linear Immigration – Constant Emigration Model 21
2.3.3. Linear Immigration – Piece-wise Constant Emigration Model 22

References .. 24

3. Artificial Bee Colony Algorithm .. 27
3.1. Introduction to swarm intelligence .. 27
3.2. Real bees behavior .. 28
3.3. The Artificial Bee Colony (ABC) algorithm ... 29

3.3.1. The Artificial Bee Colony Definitions and Algorithm 30
3.4. Discrete Artificial Bee Colony Algorithm ... 36

viii

3.5. Improvements to the DABC algorithm .. 40
3.5.1. Selecting a Neighbor Food Source ... 40
3.5.2. Employed Bee Selection Probability ... 41
3.5.3. Improvements to Scout Bees Phase .. 41

References .. 43
Appendix. Neighborhood Food Source Selection in Discrete ABC 45

4. Hybrid ABC/BBO Algorithm .. 46
4.1. Introduction .. 46
4.2. Discussion on ABC and BBO ... 47

4.2.1. BBO’s Pros and Cons ... 47
4.2.2. ABC’s Pros and Cons ... 48

4.3. The Hybrid ABC/BBO algorithm ... 49
4.3.1. The Hybrid Migration Operator ... 50
4.3.2. Main Procedure of the Hybrid Algorithm ... 51
4.3.3. Configuring the Algorithm ... 53

4.4. Algorithms’ Computational Complexity .. 54
References .. 57

Part II: Applications of Evolutionary Algorithms to
Wireless Communication Problems 59

5. Computationally Efficient Symbol Detection Using EAs in Multi-User
STBC-MIMO Systems ... 60

5.1. Introduction .. 60
5.2. System Model .. 61
5.3. Signal Detection ... 64
5.4. Evolutionary Algorithms for solving MD-STBC-MIMO problem 65
5.5. Computational Complexity ... 66
5.6. Simulation Results ... 68

5.6.1. BER Performance Comparison .. 70
5.6.2. Complexity Comparison ... 82
5.6.3. Related Work .. 85

5.7. Conclusion ... 87
References .. 88

6. EAs for Joint Relay Assignment and Power Allocation in Cognitive
Radio Systems ... 90

6.1. Introduction .. 90
6.2. System Model .. 92
6.3. Evolutionary Algorithms-Based Relay Assignment with Greedy Power

Allocation .. 98
6.4. Simulation Results ... 101

ix

6.4.1. Algorithms’ Performance Results ... 101
6.4.2. EAs’ Evolution Comparison Results ... 109
6.4.3. BBO Migration Tuning Result ... 114
6.4.4. EAs’ Complexity Comparison Results .. 115
6.4.5. Related Work .. 116

6.5. Conclusion ... 116
References .. 118

7. Green Resource Allocation in Cognitive Radio Systems 121
7.1. Introduction .. 121
7.2. Multi-objective Optimization ... 122
7.3. Green Relay Assignment for GCCRN .. 124
7.4. Hybrid Solver for GCCRN MOO Problem .. 128

7.4.1. Evolutionary Algorithms for the Hybrid Solver .. 129
7.4.2. Iterative Greedy Algorithm .. 131
7.4.3. More Discussion on the Hybrid Solver ... 134

7.5. Simulation Results ... 135
7.6. Conclusion ... 152
References .. 153
Appendix. .. 155

x

List of Tables

Table 1.1: List of Contributed Literature ... 9

Table 2.1. Pseudo code of the BBO algorithm ... 18

Table 3.1. The ABC algorithm general pseudo code .. 31

Table 3.2. The DABC Algorithm Pseudo Code .. 38

Table 3.3. The DABC Employed Bee Phase Pseudo Code 38

Table 3.4. The DABC Onlooker Bee Phase Pseudo Code 39

Table 3.5. The DABC Scout Bee Phase Pseudo Code .. 39

Table 4.1. Hybrid Migration Operator for the th individual .. 50

Table 4.2. The Main Pseudo-Code for Hybrid ABC/BBO ... 51

Table 4.3. The Hybrid Algorithm’s Employed Bee Phase Pseudo Code 52

Table 4.4. The Hybrid Algorithm’s Onlooker Bee Phase Pseudo Code 52

Table 4.5. The Hybrid Algorithm’s Scout Bee Phase Pseudo Code 53

Table 4.6. Computational Complexity of BBO, ABC and hybrid algorithms 55

Table 5.1. System parameters for iteration – population size trade-off 77

Table 5.2. Comparison between detectors’ execution time (in seconds). 84

Table 5.3. The Average Number of EAs’ Fitness Function Evaluations. 85

Table 6.1. Pseudo code of the CCPA algorithm ... 100

Table 6.2. System parameters for iteration–population size trade-off 110

Table 7.1. Iterative greedy relay assignment for each EA individual 132

Table 7.2. EA Settings for Implementation ... 136

Table 7.3. 95% Confidence Interval of Figure 7.3 results 137

Table 7.4. 95% Confidence Interval of Figure 7.4 results 139

xi

List of Figures

Figure 2.1. Linear immigration rate and constant emigration curves 20

Figure 2.2. Linear Immigration – Constant Emigration curve 21

Figure 2.3. Linear Immigration – Piece-wise Constant Emigration curve 22

Figure 5.1. A block diagram of MD-STBC-MIMO system .. 62

Figure 5.2. Performance comparison for K = 4 .. 71

Figure 5.3. Performance comparison for K = 5 .. 72

Figure 5.4. Performance comparison for K=6 .. 73

Figure 5.5. Performance comparison for K = 7 .. 74

Figure 5.6. Performance comparison For K = 3... 75

Figure 5.7. BER vs. algorithm iteration comparison .. 78

Figure 5.8. BER vs. algorithm iteration comparison .. 79

Figure 5.9. Population size and iterations trade-off for GA with K = 4 80

Figure 5.10. Population size and iterations trade-off for EDA with K = 4 80

Figure 5.11. Population size and iterations trade-off for BBO with K = 4. 81

Figure 5.12. Population size and iterations trade-off for ABC with K = 4. 81

Figure 5.13. Population size and iterations trade-off for Hybrid with K = 4. 82

Figure 5.14. Performance Comparison with CE for K = 5 .. 86

Figure 6.1. Relay Assisted Cognitive Radio Network .. 93

Figure 6.2. Sum rate vs. number of relays For K = 6 ... 103

Figure 6.3. Sum rate vs. number of relays For K = 5 ... 104

Figure 6.4. Sum rate vs. number of users For L = 6 .. 105

Figure 6.5. Sum rate vs. number of users For L = 5 .. 106

Figure 6.6. Sum rate vs. interference threshold For K = 6 107

Figure 6.7. Sum rate vs. interference threshold For K = 7 108

xii

Figure 6.8. Sum rate vs. algorithms’ iteration For L = 6 ... 111

Figure 6.9. Sum rate vs. algorithms’ iteration For L = 5 ... 112

Figure 6.10. Sum rate vs. algorithms’ population size and iteration 113

Figure 6.11. Comparison between the number of BBO migration steps 114

Figure 6.12. Sum rate vs. number of relays comparison with BPSO for K = 5 117

Figure 7.1. Cooperative Cognitive Radio Network ... 125

Figure 7.2. Flowchart of the Hybrid solver for GCCRN problem 129

Figure 7.3. Fitness vs. different MOO power settings for K = 30 136

Figure 7.4. Fitness vs. different MOO power settings for K = 40 138

Figure 7.5. Fitness vs. number of users for L = 30 .. 141

Figure 7.6. Fitness vs. number of users for L = 20 .. 142

Figure 7.7. Fitness vs. number of users for L = 30 .. 143

Figure 7.8. Fitness vs. number of relays for K = 30 ... 144

Figure 7.9. Fitness vs. number of relays for K = 10 ... 145

Figure 7.10. Fitness vs. number of relays for K = 10 ... 146

Figure 7.11. Fitness vs. number of primary users for K = 50 147

Figure 7.12. Fitness vs. number of primary users for K = 60 148

Figure 7.13: Fitness vs. algorithms’ iterations for K = 10 ... 149

Figure 7.14. Fitness vs. algorithms’ iterations for K = 60 ... 150

Figure 7.15. Fitness vs. number of relays and algorithms’ iterations for K = 60 151

xiii

List of Acronyms and Abbreviations

ABC Artificial Bee Colony

ACO Ant Colony Optimization

AF Amplify and Forward

AFS Artificial Bee Swarm

AIS Artificial Immune System

BACO Binary Ant Colony Optimization

BBO Biogeography-Based Optimization

BER Bit Error Rate

BPSO Binary Particle Swarm Optimization

CCPA Constraint Check with Power Allocation

CPU Central Processing Unit

CRS Cognitive Radio System

DABC Discrete Artificial Bee Colony

DE Differential Evolution

EA Evolutionary Algorithm

ECG Electro Cardio Gram

EDA Estimation of Distributions Algorithm

ES Evolutionary Strategies

ESA Exhaustive Search Algorithm

GA Genetic Algorithm

GASP GA with Single-Point crossover

GCCRN Green Cooperative Cognitive Radio Network

HSI Habitat Suitability Index

i.i.d. independent and identically distributed

IABC Interactive Artificial Bee Colony

ICT Information and Communication Technology

IDS Intrusion Detection System

LTI Linear Time-Invariant

MAP Maximum A-Posteriori

MD Multi-Device

xiv

MIMO Multi Input Multi Output

ML Maximum Likelihood

MMSE Minimum Mean Square Error

MO Multi Objective

MOO Multi Objective Optimization

OBL Oppositional-Based Learning

PC Personal Computer

PSK Phase Shift Keying

PSO Particle Swarm Optimization

PU Primary User

QAM Quadrature Amplitude Modulation

ROC Receiver Operating Characteristic

SD Sphere-Decoding

SDR Semi-Definite Relaxation

SGA Stud Genetic Algorithm

SIV Suitability Index Variable

SNR Signal to Noise Ratio

SNR Signal to Noise Ratio

SO Single Objective

STBC Space-Time Block Code

TSP Travelling Salesman Problem

UCAV Uninhabited Combat Air Vehicle

VBA Virtual Bee Algorithm

VEABC Vector Evaluated Artificial Bee Colony

VEGA Vector Evaluated Genetic Algorithm

WSM Weighted Sum Method

ZF Zero Forcing

xv

List of Symbols

 BBO immigration rate

 The immigration rate of the th BBO habitat (th individual)

 BBO emigration rate

 The emigration rate of the th BBO habitat (th individual)

 Maximum immigration rate

 Maximum emigration rate

 Population size (number of individuals in an EA iteration, number of species
in BBO, number of food sources in ABC and hybrid)

 Maximum number of EA iterations

 A BBO habitat (an individual of the BBO algorithm)

 The th habitat of the BBO ecosystem (The th individual of the BBO
population)

 The fitness function of the optimization problem

 The th SIV of a BBO habitat (th component of a BBO individual)

 Dimension of an individual (number of components in an individual vector)

 A constraint set of real numbers

 The set of real numbers

 The set of integer numbers

 Number of pieces in the emigration curve of BBO’s Piece-wise Constant
Emigration curve

 A group of ABC food source positions (the ABC’s population set)

 A random real number []

 An ABC food source position (an ABC individual)

 The th coordinate of an ABC food source position (th component of an
ABC individual)

 The th food source position of ABC (th individual of the ABC population)

 The th coordinate of the th ABC food source position (th component of the

 th ABC individual)

 A new explored ABC food source position (a new explored ABC individual)

 The th coordinate of a new explored ABC food source position (th
component of a new explored ABC individual)

 The th new explored food source position of ABC (th new explored
individual of the ABC population)

xvi

 The th coordinate of the new explored th ABC food source position (th

component of the th new explored ABC individual)

 ̂ A randomly generated ABC food source position (ABC individual)

 ̂ The th coordinate of a randomly generated ABC food source position (th
component of a randomly generated ABC individual)

 ̂ The th randomly generated food source position of ABC (th randomly
generated individual of the ABC population)

 ̂
 The th coordinate of the th randomly generated ABC food source position

(th component of the th randomly generated ABC individual)

 Number of times that the nectar of a food source position (an individual) is
evaluated

 Number of times that the nectar of the th food source position (the fitness

value of the th individual in the ABC population) is evaluated

 The selection probability of the th food source position (the th individual of
the ABC population)

 Fitness of the th food source position (the th individual of the ABC
population)

 Lower bound of a feasible ABC food source position coordinate (ABC
individual component)

 Upper bound of a feasible ABC food source position coordinate (ABC
individual component)

 Maximum number of trials before an ABC individual is banned and its
associated employed bee becomes a scout bee

 Computational complexity of the objective function

 Number of feasible discrete numbers between and

 () The th SIV of the th BBO habitat (th component of the th BBO individual)

 BBO mutation factor

 Number of transmit antennas

 Number of receiving antennas

 Number of time slots in the space-time code block

 Number of user devices (mobile devices in MD-STBC-MIMO, secondary
user devices in cognitive radio systems)

 MIMO channel matrix

 The channel vector from the kth device to the receiver

 ̃ STBC complex output matrix

 STBC input signal matrix

xvii

 The input signal vector from mobile device k

 ̃ Additive White Gaussian Noise

 The number of symbols conveyed in a space time code block

 The th symbol real part

 The th symbol imaginary part

 A re-expressed version of the channel matrix

 A real-valued vector representing noise

 A rearranged output matrix

 A rearranged input matrix

 The total number of symbols (from all mobile devices) transmitted in a
space-time coded block

 ̂ The shortest Euclidean distance

 An individual of the MD-STBC-MIMO problem

 The th component of an individual of the MD-STBC-MIMO problem

 The size of the symbol constellation

 Number of relays in a cognitive radio system

 Number of Primary Users in a cognitive radio system

 The channel gain from the source to the th secondary user

 The channel gain from the source to the th relay

 The channel gain from the source to the th Primary User

 The channel gain from the th relay to the th Primary User

 The channel gain from the th relay to the th secondary user

 The transmit power of the th relay

 The maximum transmit power of the th relay

 The interference power from the th relay to the th Primary User

 A normalized complex-valued transmitted symbol

 The transmission power of the source to the th secondary user

 The complex white Gaussian noise received at the th relay

 The bandwidth of each user band

 A binary assignment indicating that weather the th relay is connected to the

 th secondary user

 The capacity between the source to the th secondary user

 The set of relay power levels

xviii

 The denominator of relay power levels (also is the number of possible

relay power values in the set)

 The maximum interference allowed to the th Primary User over the th

user band

 ̅ A -dimensional vector of assignment variables

 The th fitness function in a multi objective optimization problem

 The weight of the th fitness function in the Weighted Sum Method

 The th inequality function in the constraint set of a multi objective
optimization problem

 The th function in the constraint set of a multi objective optimization
problem

 Number of inequality constraints of a multi objective optimization problem

 Number of equality constraints of a multi objective optimization problem

 The channel gain from the th relay to the th Primary User

 The channel capacity of the th secondary user

 ̅ The objective function of the sum-rate capacity

 ̅

 The objective function of CO2 emissions

 Transmission power

 A constant representing the CO2 emissions in grams/hour

 An -dimensional vector comprising relays’ power levels

 The th individual of the EA comprising an -dimensional vector of relays’
power levels

 The power of the th relay

 The power of the th relay of the th individual

 An binary relay assignment matrix indicating relay to secondary users
connectivity

 The CO2 emissions due to the th relay

 The maximum CO2 emissions due to a relay

 The lower limit of a relay power

 The upper limit of a relay power

 The feasible upper limit of a relay power defined in (7.5)

 An -dimensional binary vector of temporary relay assignment values

 The set of relays that is temporarily assigned to the th secondary user

1

Part I:

Preliminary of Evolutionary Algorithms

2

1. Introduction

Recent advances in optimization facilitate progress in many areas of

communications. In wireless and mobile communications, this progress provides

opportunities for improving existing services and introducing new standards. Supporting

data traffic over multi-hop wireless networks, efficient symbol detection, resource

allocation and subcarrier assignment in MIMO communication, wireless sensor networks

cognitive radio systems and mobile ad hoc networks, and network planning in wireless

mesh networks etc., are challenging technical problems. This challenge is due to various

factors and constraints, including computational complexity, limited bandwidth and

battery power, channel variability and user mobility, protocol and standard compatibility,

higher data rates, system robustness, etc. Optimization methods have been recognized

as useful techniques that contribute to these challenges.

1.1. Evolutionary Algorithms

Evolutionary Algorithms (EAs) have been recognized as global optimization

problem solving techniques. EAs are inspired by natural evolution and survival of the

fittest [29]. Evolutionary Algorithms have been shown to be effective optimization

methods for many problems. They can efficiently be applied to problems with a large

search space or problems in which the objective function is complex, not differentiable,

or not clearly specified (e.g., black box approaches) [29]. The success of EAs in many

difficult optimization problems can be attributed to the large number of available

techniques and adjustable parameters that can be tailored to particular cases [1]. Some

evolutionary algorithms, such as Genetic Algorithm (GA) [2], Evolution Strategies (ES)

[3], Particle Swarm Optimization (PSO) [4], and Ant Colony Optimization (ACO) [5], have

been long studied. Some other popular techniques more recently introduced include

Differential Evolution (DE) [6], Biogeography-Based Optimization (BBO) [7], Estimations

of Distribution Algorithm (EDA) [8], Artificial Bee Colony (ABC) [9], etc.

Despite their differences, different EAs follow similar high-level approaches [10],

which can be summarized as the following steps:

3

1. Generate initial population randomly.

2. Evaluate the fitness value of the individuals in the initial population.

3. Repeat the following steps until termination condition satisfied:

a. Select higher quality individuals (parents) with a better fitness
value.

b. Generate new individuals from parents through variation operators
(crossover, mutation, etc.)

c. Evaluate the new population’s fitness value.

The variation operators contribute to explore the search space by running

specific procedures for generating new population [1] [11]. By applying these operators,

the algorithm explores new solutions that potentially return better results. The variation

operator is more discussed in the next subsection.

The remainder of this section is organized as follows: Section 1.1.1 describes

EAs’ general components. Section 1.2 explains the reasons behind choosing the two

particular EAs (ABC and BBO) in this thesis. The organization of this thesis is presented

in Section 1.3 and a summary of author’s contributions is presented in Section 1.4.

1.1.1. General Components

Two EA components: initialization and variation operators, do not depend directly

on the problem but on the representation [1]. These components are elaborated more in

detail in the rest of this subsection:

1.1.1.1. Initialization

The initialization step specifies how to choose initial population (the first set of

individuals). In most applications it is relatively simple: the initial population consists of

individuals generated at random from some probability distribution [1] [11]. Some other

approaches employ more complex or intelligent procedures to generate feasible

individuals that satisfy the constraints of a constrained optimization problem. While in

principle such procedures can be used for any problem, their relative cost and benefits

need to be considered prior to implementation [28].

4

1.1.1.2. Population

Two important features of a population are its size and feasibility. The population

size is simply the number of individuals within a population, which is usually kept

constant from one generation to another. The importance of choosing the right

population size is because it may affect the search time, complexity and the algorithm's

robustness in noisy fitness settings [11] [12] [13] [14]. Feasibility, on the other hand,

matters in problems defined within a certain domain or constraints. EAs can operate in

discrete or continuous domain, or both. Further, if the optimization problem contains

more constraints, the algorithm may require specific procedures in order to ensure the

population is feasible when it is modified during each algorithm iteration.

1.1.1.3. Parent Selection

Parent selection is the process of selecting parent solutions for mutation and

recombination. The goal is to select parents whose offspring have a high chance of

improving their predecessor’s fitness, which is usually accomplished through some

variant of fitness-proportionate selection; i.e. candidates with higher fitness values have

a higher chance of being selected for reproduction. Consequently, low-quality

candidates are rarely selected; although in many applications they are selected in order

to prevent the search to be stocked in local optima [11]. Parent selection can be

randomized to reduce the complexity, or it can be smarter to improve the algorithm’s

performance.

1.1.1.4. Variation Operators

The role of variation operators is to explore and exploit the search space by

generating new individuals from the existing population (parents) [1] [11]. A typical EA

such as GA has three variation operators: crossover, selection and mutation. In the

selection procedure, the parents of the next generation are chosen based on higher

fitness (greedy selection). The parents reproduce one or two individuals by copying

some of their components, with two possible changes: cross over and mutation.

Crossover recombines the parental genes (components) and mutation replaces

some of the components of an individual with randomly generated values. Mutation is

applied to some or all of the components of one candidate solution. The modifications

5

are usually stochastic [11]. The role of mutation varies in EA types. Nonetheless, the

general role of mutation is to explore new points within the search space to ensure that

the algorithm is not stocked in local optima. More discussion is presented in

Sections 2.2.2 and 3.3.1.3.

1.1.1.5. Elitism

If an EA contains elitism, it prevents a few best individuals to be altered via the

variation operators. Thus, the evolutionary algorithm ensures that the best individuals

are safely transferred to the next iteration. If the algorithm does not incorporate elitism,

there may be a chance of losing high quality individuals and it depends on the

algorithm’s variation operator(s) procedure. Some algorithms like ABC, BBO and EDA

may retain their best individuals, while some others like GA have the tendency to lose

their best individual through the crossover operator.

1.1.1.6. Termination Condition

Most EAs have no guarantee about finding the optimum solution in some

reasonable bounded time. As such, the algorithm requires specifying one or more

termination conditions. Some common ones include [11]:

 Maximum iterations: the algorithm iterates for a predefined number of iterations.

 Within optimum: the maximum theoretical value of the fitness function is known,

and the search is terminated when it comes to within of that optimum.

 Time limit: user-defined maximum running time has elapsed. Other related

measures, such as CPU time, the number of generations or the number of fitness

evaluations can be used as well.

 Convergence: the search has converged, i.e. fitness improvement in the last few

generations stayed below some small threshold.

Note that some of these conditions should be employed carefully in algorithms that

have the ability to get out of local optima.

In some cases, a combination of the above termination conditions is used. For

example, an algorithm might be terminated either when it comes to within of the

optimum, or a time limit has passed, whichever comes first [11].

6

1.2. Algorithms Discussed in This Thesis

The author’s first experience with EAs was applying Dan Simon’s Biogeography-

Based Optimization (BBO) algorithm [7] Simon’s paper showed good performance

compared with seven well-known EAs applied to 14 standard benchmark functions and a

real-world sensor problem [7]. After observing superior performance of BBO

implemented for computationally efficient joint symbol detection to a Multi-Device STBC-

MIMO system (Chapter 5) [17], with its BER results very close to Sphere Decoding with

much less complexity, the algorithm was implemented for other wireless communication

problems, while improving the algorithm and proposing some techniques to reduce its

complexity (Section 2.4).

Furthermore, we studied another novel EA, the Artificial Bee Colony (ABC)

Algorithm presented by Karaboga [9], which has shown good performance results

especially for continuous optimization problems. Karaboga’s comparison of ABC with

four well-known EAs for 50 benchmark functions demonstrates good performance of this

EA. However, the algorithm required adjustments to be applied to discrete optimization

problems. We modify the algorithm (Section 3.4), improve its performance and reduce its

complexity (Section 3.5). The results of applying the enhanced ABC to some wireless

communication applications (Chapter 5 and 6) were very promising and even better than

BBO or any other EA we included in our comparison.

These two algorithms (ABC and BBO) are the two with the highest efficiencies in

their class being applied to some optimization problems [7] [9] [16] [17] [18], and they

have usually returned the best solutions to different real world optimization problems,

including problems in wireless communications.

Subsequently, after extensively studying BBO and ABC along with other EAs,

and implementing them for wireless communication problems, we recognized the strong

and weak aspects of each EA (Section 4.2). The interesting point about ABC and BBO

algorithms was that the disadvantage of one is the advantage of the other (Section 4.3).

Taking the advantage of each of these algorithms’ strong features, we develop a novel

EA by hybridizing these algorithms, which is presented in Chapter four.

7

In 1995, Wolpert and Macready presented an important result in their “No Free

Lunch” theory for optimization [15]. Their work illustrated that all algorithms that search

for an extremum of a cost function perform exactly the same, when averaged over all

possible cost functions. In other words, “any two algorithms are equivalent when their

performance is averaged across all possible problems” [29]. Hence, from a problem

solving perspective it is difficult to formulate a universal optimization algorithm that could

solve all the problems. Droste et al have proved the theorem for more practical case in

[30]. Therefore, the algorithms discussed in this thesis may not unanimously outperform

other EAs. Nonetheless, for the problems discussed in Part II of this thesis, in addition to

some other problems studied but not included in this thesis cited in Section 1.4, the

implementation of hybrid algorithm returns better result than other EAs including BBO

and ABC.

1.3. Organization of Thesis

This thesis focuses on implementing EAs for various wireless communication

problems. The thesis consists of two parts. Part I contains the preliminary of EAs. We

start Chapter 2 and Chapter 3 with some sections for introducing BBO and ABC, and

we present some improvements to each of these algorithms in the subsequent sections.

We also provide a review of some of the interesting BBO and ABC research reported in

literature. The novel hybrid ABC/BBO algorithm is proposed in Chapter 4, with a brief

introduction of hybrid EAs, and a discussion on strong and weak aspects of ABC and

BBO, and finally presenting the algorithm’s procedure.

Part II of the thesis consists of implementations of EAs discussed in Part I to

three wireless communication problems and their performances comparison with other

EAs and deterministic solvers. Chapter 5 addresses a computationally efficient symbol

detection optimization problem in multi-user STBC-MIMO systems. Chapter 6 contains a

joint relay assignment and power allocation in cognitive radio systems using EAs.

Finally, Chapter 7 discussed a green resource allocation in cognitive radio systems.

Each of these three chapters contains a background of the problem, followed by defining

the system model and formulating the problem. The rest of the chapters contain

discussions on the methods of implementing EAs to that specific problem, and a

8

discussion on complexity where possible. Finally the simulation results are presented

and a summary is given in the conclusion section.

1.4. Summary of Contributions

This thesis discusses two recent EAs in the next two chapters in Part I. Although

these algorithms are already discussed in the literature and implemented to various

problems, we confronted some novel, important and interesting issues while studying

and implementing these algorithms. Our contributions to the BBO algorithm are

presented in:

• Section 2.3: BBO Migration Models

• Section 3.3: Comparison between Scout bees phase and mutation

• Section 3.4: Discrete Artificial Bee Colony Algorithm

• Section 3.5: Improvements to the DABC algorithm

The BBO algorithm is originally presented for the optimization problems in a

discrete or integer domain, and the ABC algorithm is primarily introduced for continuous

optimization problems. The proposed hybrid algorithm in Chapter 4 can be applied to

both types of problems. Moreover, this algorithm is implemented for optimization

problem types, and in all of these problems, this algorithm beats its predecessors BBO

and ABC in terms of BER performance (Chapter 5) and sum rate (Chapters 6 and 7), as

well as other mainstream EAs such as GA, EDA, ACO, in addition to other deterministic

algorithms. A collection of optimization problems that the author has implemented these

EAs for them are presented in Table 1.1. These algorithms are applied to some other

optimization problems not included in this thesis that are published in various journals

and conference proceedings. The list of these papers is presented at the end of the

Reference Section of this chapter.

In Part II of this thesis, the author has made the following contributions:

• Section 5.4: Evolutionary Algorithms for solving MD-STBC-MIMO problem

• Section 5.5: Computational Complexity

• Section 5.6: Simulation Results

9

• Section 6.3: Evolutionary Algorithms-Based Relay Assignment with Greedy
Power Allocation

• Section 6.4: Simulation Results

• Section 7.4: Hybrid Solver for GCCRN MOO Problem

The research on EAs has contributed to the community by publishing a number

of papers in reputed conferences and journals. These publications, along with few others

in submission and reports, can be found at the Reference Section of this chapter, which

are: [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. Some of these publications have

not been published yet, and are mentioned in the Reference Section. The author of the

thesis is the first author for most of these papers. The author has also presented some

of the conference papers in IEEE conference himself [17] [18] [22].

Table 1.1: List of Contributed Literature

Optimization Problem Type Problem Reference

Single objective, unconstraint
Computationally Efficient Symbol Detection in
Multi-User STBC-MIMO Systems

[17] [19] [20]
Chapter 5

Single objective, constraint
Relay Selection in Relay Assisted Cognitive
Radio Systems

[21]

Single objective, constraint
Joint Relay Assignment and Power Allocation in
Cognitive Radio Systems

[18] [22]
Chapter 6

Single objective, constraint Critical Node Detection Problem [24]

Multi objective, constraint (converted to
single objective using Weighted Sum
Method)

Wireless Mesh Network Planning [23]

Multi objective, constraint (converted to
single objective using Weighted Sum
Method)

Green Resource Allocation in Cognitive Radio
Systems

[25] [27]
Chapter 7

Multi objective, constraint (converted to
single objective using Weighted Sum
Method)

Base Station and Relay Station Broadband
Network Planning

[26]

10

References

 A. Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Universite [1]
Paris-Sud XI, Orsay, France, Dec. 2010.

 D. Goldberg, “Genetic algorithms in search, optimization, and machine learning, [2]
Artificial Intelligence, Addison-Wesley Pub. Co., 1989.

 H.-G. Beyer and H.-P. Schwefel. “Evolution Strategies: A Comprehensive [3]
Introduction,” Journal Natural Computing, vol.1, no.1, pp. 3–52, 2002.

 Kennedy, J.; Eberhart, R. (1995). "Particle Swarm Optimization". Proceedings of [4]
IEEE International Conference on Neural Networks, pp. 1942–1948.\

 M. Dorigo & L. M. Gambardella, "Ant Colony System: A Cooperative Learning [5]
Approach to the Traveling Salesman Problem," IEEE Transactions on Evolutionary
Computation, vol.1, no.1, pp. 53–66. 1997.

 Storn, R.; Price, K. (1997). "Differential evolution - a simple and efficient heuristic [6]
for global optimization over continuous spaces". Journal of Global Optimization
vol.11, pp. 341–359.

 D. Simon, “Biogeography-based optimization,” Evolutionary Computation, IEEE [7]
Transactions on, vol. 12, pp. 702 – 713, December 2008.

 P. Larrañaga and J. A Lozano, Estimation of Distribution Algorithms: A New Tool [8]
for Evolutionary Computation, Kluwer Academic Publishers, 2001.

 D. Karaboga B. Basturk, "An artificial bee colony (ABC) algorithm for numeric [9]
function optimization," in IEEE Swarm Intelligence Symposium 2006, Indianapolis,
IN, May 12-14, 2006.

 M. Pacula, “Evolutionary Algorithms for Compiler-Enabled Program Autotuning,” [10]
PhD thesis, Massachusetts Institute of Technology, June 2011.

 A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing, Springer- [11]
Verlag, 2003.

 J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O'Reilly, “An ancient evolutionary [12]
algorithm for solving bottom up problems,” In Annual Conference on Genetic and
Evolutionary Computation, Dublin, Ireland, July 2011.

 D. V. Arnold and H.-G. Beyer. “On the benefits of populations for noisy [13]
optimization,” Evolutionary Computation, vol. 11, no. 2, pp. 111-127, 2003.

http://www.engr.iupui.edu/~shi/Coference/psopap4.html
http://en.wikipedia.org/wiki/Luca_Maria_Gambardella

11

 J. Branke. “Creating robust solutions by means of evolutionary algorithms,” In [14]
Parallel Problem Solving from Nature, PPSN V, vol. 1498 of Lecture Notes in
Computer Science, pp. 119-. Springer Berlin / Heidelberg, 1998.

 D.H. Wolpert, W.G. Macready, "No Free Lunch Theorems for Optimization," IEEE [15]
Transactions on Evolutionary Computation vol. 1, no. 1, pp. 67-83, 1997.

 B. Akay D. Karaboga, "A comparative study of Artificial Bee Colony algorithm," [16]
Applied Mathematics and Computation, no. 214, pp. 108-132, 2009.

 S. Ashrafinia; M. Naeem; D. Lee; “A low complexity evolutionary algorithm for [17]
multi-user MIMO detection”, Computational Intelligence in Multicriteria Decision-
Making (MDCM), 2011 IEEE Symposium on, 11-15 April 2011, pp. 8 – 13, Paris,
France.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee; “Biogeography-based optimization [18]
for joint relay assignment and power allocation in cognitive radio systems”, Swarm
Intelligence (SIS), 2011 IEEE Symp. on, 11-15 April 2011, pp 1 – 8, Paris, France.

 S. Ashrafinia; M.Naeem; D. Lee; “Discrete Artificial Bee Colony for Computationally [19]
Efficient Symbol Detection in Multi-Device STBC MIMO Systems”, accepted in the
Journal of Advances in Artificial Intelligence, Nov. 2012.

 S. Ashrafinia; Naeem, M.; Lee, D.; “Heuristic Joint Symbol Detection in MIMO [20]
Systems”, Preliminary accepted in Journal of Algorithms in Cognition, Informatics
and Logic, special issue on “Bio-inspired Computing: Theory and Applications. The
paper got accepted for publication in June 2009, but the journal’s special issue was
canceled by the publisher.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee ; “Source and Relay Power Selection [21]
Using Biogeography-Based Optimization for Cognitive Radio Systems”, IEEE VTC
2011 – fall, 5-8 Sep. 2011, San Francisco, CA.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee; “Binary Artificial Bee Colony for [22]
Cooperative Relay Communication in Cognitive Radio Systems”,IEEE International
Conf. on Comm., ICC 2012, 10-15 Jun. 2012, Ottawa, Canada

 Ali H. M., Ashrafinia, S.; Liu J.C.; Lee, D.; “Wireless Mesh Network Planning Using [23]
Quantum Inspired Evolutionary Algorithm”, IEEE VTC 2011 – fall, 5-8 Sep. 2011,
San Francisco, CA.

 S. Ashrafinia, Critical Node Detection Problem, Directed Studies course report, [24]
Simon Fraser University, Aug. 2011.

 S. Ashrafinia; Naeem, M.; Lee, D.; “Hybrid Evolutionary Algorithm for Resource [25]
Allocation in Cognitive Radio and Green Communication Systems”, Submitting to
IEEE Transactions on Systems, Man, and Cybernetics.

12

 H. M. Ali; S. Ashrafinia; J. C. Liu; and Daniel C. Lee; "A Study of Evolutionary [26]
Algorithms for Base Station and Relay Station Broadband Network Planning",
Submitting to the journal of Ad Hoc Networks.

 M. Naeem; S. Ashrafinia; D. Lee; “Green Resource Allocation in Cognitive Radio [27]
Systems”, accepted on Sep. 2012 for proceedings of IEEE ICSPCS 2012, Dec
2012, Sydney, Australia.

 A. Bhattacharya; Chattopadhyay,"Hybrid Differential Evolution With Biogeography-[28]
Based Optimization for Solution of Economic Load Dispatch," Power Systems,
IEEE Transactions on , vol.25, no.4, pp.1955-1964, Nov. 2010.

 D. Wolpert; H.Macready, "Coevolutionary free lunches," Evolutionary Computation, [29]
IEEE Transactions on , vol.9, no.6, pp. 721- 735, Dec. 2005.

 S. Droste, T. Jansen, I. Wegener, "Optimization with randomized search heuristics: [30]
the (A)NFL theorem, realistic scenarios, and difficult functions," Theoretical
Computer Science, vol. 287, no. 1, pp. 131–144, 2002.

13

2. Biogeography-Based Optimization Algorithm

This chapter discusses the Biogeography-Based Optimization (BBO) algorithm.

BBO is a new global optimization population-based EA based on the biogeography

theory, which is the study of the geographical distribution of biological species. An

introduction to biogeography is given in Section 2.1 Section 2.2 contains the BBO

terminologies, definitions and algorithm. Our contribution to the BBO algorithm, as low-

complex migration models, is discussed in Section 2.3.

2.1. Introduction to Biogeography

The science of biogeography is the study of the geographical distribution of

biological species. The early study of biogeography was performed by Wallace [1] and

Charles Darwin [2] during the 19th century. These studies until the mid-twentieth century

were mostly descriptive and historical. Later in 1960s, Robert MacArthur and Edward

Wilson studied the mathematical models of biogeography, and wrote The Theory of

Island Biogeography [3]. Their work mainly was focused on the distribution of species

among neighboring islands, and their interest was in mathematical models for the

extinction and migration of species. During the recent few years, the implementations of

biogeography have been a breakthrough to the engineering applications of the Genetic

Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO),

as well as neural networks, fuzzy logic, and other areas of computer intelligence. More

elaboration on of biogeography and its mathematical models is provided in [5].

2.2. Biogeography-Based Optimization (BBO)

Biogeography-based optimization, introduced by Simon [5], is a population-

based, stochastic global optimizer Evolutionary Algorithm, based on the

14

mathematics of biogeography theory describes in the two sections above. Consider an

optimization problem:

(2.1)

where
 is a vector and is a constraint set. In the original BBO, each

candidate solution is represented by a vector variable of the optimization problem. In the

context of evolutionary algorithms, a candidate solution is also referred to as an

"individual," and a group of individuals is referred to as a "population" of individuals. In

BBO, each individual (candidate solution to an optimization problem) is analogically

considered as a habitat (island) in Biogeography. The fitness value of each

individual corresponds to the Habitat Suitability Index (HSI) of an island in

Biogeography. In Biogeography, features that affect HSI include vegetation, rainfall,

topographic diversity, temperature, etc., and these features are characterized by

variables that are called Suitability Index Variable (SIV). As mentioned earlier, a

candidate solution in optimization problem 2.1 analogically corresponds to a habitat

(an island) in Biogeography. Then, the components of (i.e. { }) correspond

to an island’s SIVs, and correspond to the HSI of habitat . We will often use these

terminologies to refer to an individual , its components and its fitness value.

The advantage of biogeography, as the nature’s way of distributing species, is

analogous to general problem solutions. Suppose there’s a problem presented with

some candidate solutions, which can be in any area of life, such as engineering,

economics, medicine, business, operations research, etc., as long as there is a

quantifiable measure of the suitability of a given solution (be able to calculate the fitness

value). A good solution is analogous to a habitat with a high HSI, while a poor one

represents a habitat with a low HSI. In an EA, high HSI habitats tend to share their

features (copy their SIVs) with low HSI solutions’ features. By sharing features, habitats

with high HSI are not going to lose their current features – they will remain intact and low

HSI solutions import features from high HSI habitats. Poor solutions accept many

features from good solutions, which may improve their HSI, thus their quality. This new

approach to problem solving has been presented by Dan Simon is called Biogeography-

Based Optimization (BBO) [5].

15

2.2.1. BBO Migration

The main consequence of BBO migration is using the immigration and emigration

rates of each solution to share information between habitats probabilistically. One

approach to the migration can be defined as following: with a random probability we

modify each solutions based on other solutions. Thus if a given solution is selected to be

modified, then we use its immigration rate to decide probabilistically whether to modify

each SIV in that solution. If a given SIV in a given solution is selected to be modified (i.e.

it is ready to accept the shared information from other solutions), then we use the

emigration rates of the other solutions to probabilistically decide which of the solutions

should emigrate (share information of) a randomly selected SIV to solution. One has to

remember that the associated immigration or emigration curves of a solution vector

(habitat) represents the corresponding rates of each SIV inside that solution [5].

BBO Migration and Other EAs

The BBO migration procedure is analogous to the Global Recombination

approach in the breeder GA [6] and Evolutionary Strategies (ES) [7] algorithms, where

many parents contribute to a single offspring. However, it is not quite the same; in the

ES algorithm Global Recombination produces new solutions, while BBO's migration

substitutes (copies) existing solutions. Global recombination in GA is a reproductive

process, whereas migration in BBO is an adaptive process – it modifies existing habitats.

2.2.2. BBO Mutation

Sometimes unusual natural incidents may happen to a habitat, such as large

flotsam arriving from a neighboring habitat, disease, hat drastically change the HSI of a

natural habitat, and may cause a species count to differ from its equilibrium value. As a

result, a habitat's HSI can change suddenly due to such random events. This natural

behavior in biogeography is interpreted as mutation in the BBO algorithm [5].

Mutation in BBO, just like other EAs like GA, prevents the algorithm to be

stocked in local optima, and it can occur for any SIV in any habitat in each generation. In

the BBO algorithm we employ a simple mutation procedure, in which all SIVs are

randomly compared with a relatively small constant called the mutation factor, denoted

16

by , and they will be mutated into some new randomly generated SIV that is eligible

according to the problem domain.

2.2.3. BBO Elitism

Similar to other population-based optimization algorithms, elitism may be

incorporated into BBO; so the algorithm prevents them from being modified during the

migration process, and the best solutions retain in the population.

2.2.4. BBO Definitions and Algorithm

Simon defines BBO terminologies in [5]. In this thesis, we present slightly

modified definitions according to the notations used as the first step towards formalizing

the BBO algorithm. In these definitions, is referred to the set of real numbers, and is

referred to the set of integers.

 Definition 2.1 A habitat is a vector of integers, and represents a

feasible solution to some problem.

 Definition 2.2 A Suitability Index Variable SIV is an integer that is allowed in

a habitat (a component of an individual).

 Definition 2.3 A Habitat Suitability Index HSI is a measure of the

goodness of the solution that is represented by the habitat (HSI is referred to as

“fitness” in most population-based optimization algorithms), where is the

domain of all feasible solutions to the problem.

 Definition 2.4 An ecosystem is a group of habitats, where is a constant

representing the size of an ecosystem (population size).

 Definition 2.5 Immigration rate is a monotonically non-increasing

function of HSI. is proportional to the likelihood that SIVs from neighboring

habitats migrate into habitat .

 Definition 2.6 Emigration rate is a monotonically non-decreasing

function of HSI. is proportional to the likelihood that SIVs from habitat

migrate to neighboring habitats.

17

Generally, population-based Evolutionary Algorithms have an iterative nature –

i.e., they are run for a number of generations (trials, iterations). The number of these

generations usually is determined by a variety of models described in Section 1.1.1.6.

The BBO algorithm uses a fixed number of generations.

Given the above definitions of BBO terminology, we provide the Biogeography-

Based Optimization algorithm pseudo-code in table 2.1.

18

Table 2.1. Pseudo code of the BBO algorithm

For each iteration

Migration Procedure

 for each island ;
 for each SIV

 with probability accepts immigration;

 If is decided to accept immigration, then,

probabilistically select an island that emigrates to based on ;

 { migrates into) };

 end if
 next SIV
 next island

Mutation Procedure

 for each island
 for each SIV

 if , then {Use mutation factor to decide whether to mutate ;}

 replace with a randomly generated SIV;

 end if
 next SIV
 next island

Calculates HSI

 for each island
 calculate HIS
 next island

Save beset results

 sort population
 save the best island

next iteration

19

2.3. BBO Migration Models

 There are various types of migration curves because of different mathematical

models of biogeography [3]. Simon has initially presented BBO with linear emigration

and immigration rate curves [5]. Thereupon, most of the literature utilized the linear

emigration and immigration curves [8-13].

Recently, several more complex curves are presented in [14], including the

comparison of various non-linear migration models, such as quadratic migration curve,

sinusoidal migration curve and generalized sinusoidal migration curve. Ma and Simon

concluded in [14] that a sinusoidal model for emigration and immigration curves has a

better performance than other models, including the linear model. In fact, they only

compared the result for best performance and closest result to the optimal value.

However, they have included neither computational complexity nor time comparisons in

their research, so one could have chosen the preferred migration model based on the

performance – computational complexity trade-off.

Complexity of the employed algorithms for optimization problems is a major

concern in communications applications. In real-time applications, such as real-time

symbol detection in wireless communication, it is crucial to employ an algorithm that not

only runs with a reasonable performance, but also returns the result quickly. The

computational power is an issue in some other applications, such as wireless sensors, or

mobile hand-held devices, that minimizing the consuming power is vital in order to

prolong the battery life. In addition, more complex algorithms demand more complicated

circuitry, which further increase the production cost. Therefore, it would be essential to

employ an algorithm that returns the best performance along with low complexity.

We have run simulations using the Simon's code in Matlab© language [15] that

he used to generate the results of his first paper [5], in which he employs linear

emigration and immigration curves. During our first implementation of BBO to joint

symbol detection in a multi-device STBC MIMO system [16], we observed although BBO

returns better results that some other EAs like GA and EDA, Simon's implementation of

linear curves takes more time than other EAs, including our contributed low-complex

migration curves.

20

This section continues with Simon’s linear migration model [5]. The rest of the

section contains two other migration models with lower complexity proposed by the

author, which are implemented for the optimization problems discussed in Part II of the

thesis.

2.3.1. Linear Immigration – Linear Emigration Model

 The immigration and emigration curves are functions of the number of species in

a single habitat. A typical leaner model [5] for and curves is illustrated in Figure 2-1.

immigration

emigration

ra
te





Number of species

E

I

H
2

H
1

Figure 2.1. Linear immigration rate and constant emigration curves

In the immigration curve , the maximum possible immigration rate to the habitat

is , which happens when there is no species in the habitat. As the number of species

inside the habitat increases, the immigration rate decreases; because the habitat has

become more crowded and there would be less resources for new species to

successfully survive. When the habitat has its largest possible number of species that

it can support, the immigration rate becomes zero.

In the emigration curve , while there are no species inside the habitat, the

emigration rate has to be zero. As the number of species increases, the habitat becomes

more crowded and some species tend to leave the habitat and explore other possible

habitats, thus the emigration curve increases. The maximum emigration rate happens

when the habitat has the largest possible number of species it can support.

21

The expressions for emigration rate and immigration rates can be expressed as:

 (

)

(1.9)

2.3.2. Linear Immigration – Constant Emigration Model

A low-complexity migration curve may consist of a linear immigration rate and a

constant emigration rate curves as depicted in Figure 2.2.

N

immigration

emigration

ra
te





Number of species

1/N

I

Figure 2.2. Linear Immigration – Constant Emigration curve

In this model, the emigration rate is constant. Emigration rate is the likelihood

of species to emigrate from a habitat; that is how likely a habitat wants to share its SIVs

with other individuals. A constant emigration curve implies that all habitats have the

same probability to share their SIVs. This statement induces to be constantly uniformly

distributed. For a maximum number of habitats, emigration rate is constantly uniformly

distributed if . Therefore, the two curves can be expressed as:

22

 (

)

(2.7)

where denotes the constant emigration rate, and represents the species count. As

the number of species increases, the immigration rate linearly decreases. The maximum

immigration rate occurs when there are zero species in the habitat. The immigration

rate becomes zero when the habitat accommodates the largest possible number of

species.

2.3.3. Linear Immigration – Piece-wise Constant Emigration Model

 In this model, the emigration rate is again constant, while we use a piece-wise

constant immigration rate as depicted in Figure 2.3.

N

immigration

emigration

ra
te





Number of species

E/w

I

E

Figure 2.3. Linear Immigration – Piece-wise Constant Emigration curve

 The immigration rate in this model is also linear with the maximum of . But the

emigration rate is piece-wise constant, composed of constant segments defined over

 intervals of equal size, with a maximum of . This model is closer to the linear

immigration rate – linear emigration rate. The two curves can be expressed as follows:

23

 (

)

{

 ⌈

⌉

⌈

⌉ ⌈

⌉

 ⌈

⌉

(2.8)

Once again, as the number of species increases, the immigration rate decreases

linearly. The behavior of the emigration rate curve (size of the intervals) is varies with

and the maximum number of species . The more number of the species in a habitat

results in the higher emigration rate (higher higher), while this emigration rate is

equal for habitats with closer number of species. The above emigration expression also

shows that more segments (larger) will result in a closer curve to the linear model. A

comparison between these first two models in presented in section 6.4 in Figure 6.11.

24

References

 A. Wallace, The Geographical Distribution of Animals. 1876. [1]

 C. Darwin, Origin of species. Everyman’s library, Dent, 1947. [2]

 R. MacArthur and E. Wilson, The theory of island biogeography, Princeton [3]
landmarks in biology, Princeton University Press, 1967.

 T. Wesche, C. Goertler, W. Hubert, U. of Wyoming, and W. W. R. Center, Modified [4]
habitat suitability index model for brown trout in southeastern Wyoming. Water
resources center publication, Wyoming Water Research Center, 1987.

 D. Simon, “Biogeography-based optimization,” Evolutionary Computation, IEEE [5]
Transactions on, vol. 12, pp. 702–713, December 2008.

 H.Mhlenbein and D. Schlierkamp-voosen, “Predictive models for the breeder [6]
genetic algorithm i. continuous parameter optimization,” Evolutionary Computation,
IEEE Transactions on, vol. 1, pp. 25–49, 1993.

 T. B¨ack, “Evolutionary algorithms in theory and practice: evolution strategies, [7]
evolutionary programming, genetic algorithms,” Oxford University Press, 1996.

 A. Bhattacharya and P. Chattopadhyay, “Biogeography-based optimization for [8]
solution of optimal power flow problem,” in Electrical Engineering/ Electronics
Computer Telecommunications and Information Technology (ECTI-CON), 2010
International Conference on, pp. 435 –439, May 2010.

 U. Singh, H. Kumar, and T. Kamal, “Design of yagi-uda antenna using [9]
biogeography based optimization,” Antennas and Propagation, IEEE Transactions
on, vol. 58, pp. 3375–3379, Oct. 2010.

 A. Bhattacharya and P. Chattopadhyay, “Oppositional biogeography-based [10]
optimization for multi-objective economic emission load dispatch,” in India
Conference (INDICON), 2010 Annual IEEE, pp. 1–6, Dec. 2010.

 A. Bhattacharya and P. Chattopadhyay, “Biogeography-based optimization for [11]
different economic load dispatch problems,” Power Systems, IEEE Transactions
on, vol. 25, pp. 1064–1077, May 2010.

 A. Bhattacharya and P. K. Chattopadhyay, “Biogeography-based optimization and [12]
its application to nonconvex economic emission load dispatch problems,” in
Advances in Power System Control, Operation and Management (APSCOM 2009),
8th International Conference on, pp. 1 –6, Nov. 2009.

 M. Lohokare, S. Pattnaik, S. Devi, K. Bakwad, and J. Joshi, “Parameter calculation [13]
of rectangular microstrip antenna using biogeography-based optimization,” in
Applied Electromagnetics Conference (AEMC), pp. 1 –4, Dec. 2009.

25

 D. Simon, R. Rarick, M. Ergezer, and D. Du, “Analytical and numerical [14]
comparisons of biogeography-based optimization and genetic algorithms,”
Information Sciences, vol. 181, no. 7, pp. 1224-1248, April 2011.

 D. Simon, A probabilistic analysis of a simplified biogeography-based optimization [15]
algorithm, Evolutionary Computation, vol. 19, no. 2, pp. 167-188, Summer 2011.

 S. Ashrafinia; M. Naeem; D. Lee ; “Computationally Efficient Symbol Detection [16]
Using Biogeography-Based Optimization in Multi-User STBC-MIMO Systems”,
accepted in the Journal of Advances in Artificial Intelligence, Nov. 2012.

 D. Simon, “A probabilistic analysis of a simplified biogeography-based optimization [17]
algorithm,” Evolutionary Computation, IEEE Transactions on, vol. 19, pp. 167–188,
June 2011.

 J. Kennedy, J. Kennedy, R. Eberhart, and Y. Shi, “Swarm intelligence,” The [18]
Morgan Kaufmann series in evolutionary computation, Morgan Kaufmann
Publishers, 2001.

 R. Storn and K. Price, “Differential evolution - a simple and efficient heuristic for [19]
global optimization over continuous spaces,” J. of Global Optimization, vol. 11, pp.
341–359, Dec. 1997.

 M. Dorigo and T. Stutzle, Ant colony optimization, Bradford Books, MIT Press, [20]
2004.

 D. Goldberg, Genetic algorithms in search, optimization, and machine learning, [21]
Artificial Intelligence, Addison-Wesley Pub. Co., 1989.

 H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehensive [22]
introduction,” Natural Computing: an international journal, vol. 1, pp. 3–52, May
2002.

 T. Back, U. Hammel, and H.-P. Schwefel, “Evolutionary computation: comments on [23]
the history and current state,” Evolutionary Computation, IEEE Transactions on,
vol. 1, pp. 3 –17, Apr. 1997.

 H. Pattee and U. S. O. of Naval Research, Natural automata and useful simulation: [24]
proceedings. Edited by H.H. Pattee [and others]. Spartan Books, 1966.

 A. E. Eiben, “Multi-parent recombination,” in Handbook of Evolutionary [25]
Computation, pp. 3–3, IOP Publishing Ltd. and Oxford University Press, 1997.

 D. Fogel, T. Back, and Z. Michalewicz, “Evolutionary Computation: Basic [26]
algorithms and operators,” Evolutionary Computation, Institute of Physics
Publishing, 2000.

http://embeddedlab.csuohio.edu/BBO/BBO_Papers/BBOvsGA.pdf
http://embeddedlab.csuohio.edu/BBO/BBO_Papers/BBOvsGA.pdf
http://embeddedlab.csuohio.edu/BBO/BBO_Papers/bbosimplified.pdf
http://embeddedlab.csuohio.edu/BBO/BBO_Papers/bbosimplified.pdf

26

 A. E. Eiben and C. Schippers, “Multi-parent’s niche: N-ary crossovers on nk-[27]
landscapes,” in Proceedings of the 4th Conference on Parallel Problem Solving
from Nature, number 1141 in Lecture Notes in Computer Science, pp. 319–328,
Springer, 1996.

 D. Ackley, “A connectionist machine for genetic hillclimbing,” Kluwer international [28]
series in engineering and computer science, Kluwer Academic Publishers, 1987.

 D. Simon, R. Rarick, M. Ergezer, and D. Du, “Analytical and numerical [29]
comparisons of biogeography-based optimization and genetic algorithms,” Inf. Sci.,
vol. 181, pp. 1224–1248, April 2011.

27

3. Artificial Bee Colony Algorithm

This chapter introduces the Artificial Bee Colony (ABC) algorithm, and continues

with presenting some improvements to the existing ABC algorithm and introducing a

modified ABC customized for discrete optimization. ABC is a recently presented EA for

real (continuous) parameter optimization in unconstrained optimization problems. An

introduction to the swarm intelligence is presented in the next section. Section 3.2

explains the behavior of real bees, from which ABC has been inspired. The ABC

definitions and algorithm is presented in Section 3.3. Our improvements to the ABC

algorithm are Sections 3.4 and 3.5. In Section 3.4, we present a modified ABC algorithm

specifically developed for discrete optimization problems. In Section 3.5 we discuss

some further improvements to the original ABC as well as the novel discrete ABC

algorithm to enhance the algorithm performance and complexity.

3.1. Introduction to swarm intelligence

In recent years, swarm intelligence has become a research interest to many

research scientists of related fields. Bonabeau et al. define the swarm intelligence as

“any attempt to design algorithms or distributed problem solving devices inspired by the

collective behavior of social insect colonies and other animal societies…” [2]. The term

“swarm” is generally referred to any restrained collection of interacting agents or

individuals. In fact, the classical example of a swarm colony is bees swarming around

their hive. The metaphor can easily be extended to other species with a similar behavior.

Some examples of swarms in different fields include [1]:

 an ant colony whose individual agents are ants,

 a flock of birds is a swarm of birds,

 an immune system is a swarm of cells

 a crowd is a swarm of people.

28

A few models have been presented to model the intelligent behavior of honeybee

swarms, and have been applied to some combinatorial-type problems [2, 3, 4, 5, 6, 7, 8,

9]. There are only a few research articles on numerical optimization problems based on

intelligent behavior of honeybee swarms. Yang has developed a Virtual Bee Algorithm

(VBA) to solve the numerical optimization problems [10]. VBA is only capable of

optimizing the functions with two parameters. Karaboga has presented a bee swarm

intelligence algorithm called the Artificial Bee Colony (ABC) algorithm [11] for

multivariable numerical functions, that has shown good performance compared to other

mainstream EAs such as GA, PSO, ACO, DE and others [12, 13].

3.2. Real bees behavior

A model of forage selection that leads to the emergence of collective intelligence

of honeybee swarms comprises three components: food sources, employed bees and

unemployed bees. We explain them from [14] and [18] for better comprehension of the

algorithm’s behavior.

1. Food sources: a food source quality depends on several factors including its

proximity to the nest, richness or the quality of the nectar, and the effortlessness of

extracting this nectar. For simplicity, the profitability of a food source can be

represented with a single quantity called food nectar [18].

2. Employed bees: Every time a bee returns to the hive from a patch of flowers, she

brings home not only food stored in her pollen baskets and honey stomach, but also

the information about her food source stored in her brain. She can share this

knowledge with her nest mates by means of the waggle dance communication

behavior [18].

3. Unemployed bees: Unemployed bees need to locate a food source, either because

they are just beginning their forage careers or because they have recently

abandoned a depleted patch of flowers [18]. Most such unemployed bees follow the

recruitment dances of their nest mates to find a food source [18]. These two types

can be summarized as:

29

3.1. Onlooker bees: onlooker bees check the recruitment dances of their nest mates

to receive the information of their food source. The exchange of information

about food sources that her nest mates present on the dance floor at the hive.

Once an employed bee shared its food source position and profitability

information with an onlooker bee, the onlooker becomes an employed bee that

flies to the food source [18].

3.2. Scout bees: these are explorer bees without any guidance while looking for

food. As a result of such behavior, the quality of their food source is

characterized as low, while occasionally one can accidentally discover a food

source rich in quality [18].

3.3. The Artificial Bee Colony (ABC) algorithm

The original Artificial Bee Colony (ABC) algorithm is presented by Karaboga [12]

for real (continuous) parameter optimization in unconstrained optimization problems.

ABC is a population-based, stochastic global optimizer Evolutionary Algorithm, based on

the theory of foraging bees described in the above section. This algorithm demonstrates

good accuracy and efficiency, compared with other EAs such as Differential Evolution

(DE) [15], Ant Colony Optimization (ACO) [16], PSO and GA, for numeric problems with

multi-dimensions [13].

Considering an optimization problem:

 subject to:

(3.1)

where
 is a vector of real numbers, and is a constraint set. In the

original ABC, each candidate solution is represented by a vector variable of the

optimization problem. In the context of evolutionary algorithms, a candidate solution is

also referred to as an “individual”, and a group of candidate solutions is referred to as a

“population” of individuals. In ABC, each individual (candidate solution to an optimization

30

problem) is analogically considered as a food source location. The fitness value of

each individual (food source) corresponds to the nectar quality of the food source.

3.3.1. The Artificial Bee Colony Definitions and Algorithm

In this section the definitions of some terms in the ABC algorithm is provided as a

first step towards formalizing the ABC algorithm, following by the algorithm’s pseudo-

code. An exact definition of the algorithm’s terminologies is required before presenting

the algorithm itself. In the definitions below, and are referred to the set of real

numbers and integer numbers, respectively.

 Definition 3.1: A food source position is a vector of real

numbers, and represents a solution to some problem. is referred to as an

individual.

 Definition 3.2: A food source position parameter is a real number

representing one coordinate of a food source, where is the set of all real

numbers that are allowed in the problem domain.

 Definition 3.3: A food source’s profitability, or the food source’s nectar quality,

 is a measure of the goodness of the solution that is measured by the

bees. (Nectar quality is referred to as “fitness function” in most population-based

optimization algorithms.) where is the domain of all feasible solutions to

the problem.

 Definition 3.4: A local environment { } is a group of food

source positions, where is a constant representing the number of food source

positions handled by the algorithm during each generation. can be referred to

as the algorithm population set; while would be the population size, and

represents the th individual in the population.

 Definition 3.4: Similar to the BBO algorithm, the ABC algorithm is a population-

based EA with an iterative nature – i.e. it runs for a number of generations (trials,

iterations). See Section 1.1.1.6.

31

The ABC algorithm is similar to the real behaviour of bees in finding food source

position and sharing information to other bees. As mentioned in the previous section, the

colony of bees is classified into three types:

 Employed bees

 Onlooker bees

 Scout bees

Each employed bee maintains one location, which analogically is the location of

its food source, and there are employed bees in each generation of this evolutionary

algorithm. The locations maintained by the employed bees are candidate solutions

(individuals) to (3.1) and are referred to as individuals in the population. A pseudo code

of the ABC algorithm is given in Table 3.1.

The main steps of the algorithms are presented in the pseudo code in table 3.1.

Table 3.1. The ABC algorithm general pseudo code

1. Send scouts (generate initial population)
2. Repeat
3. Employed bees phase
4. Onlooker bees phase
5. Scout bee phase
6. Memorize the best food source found so far
7. Until termination condition satisfied

At the beginning, the algorithm generates the initial set of food source positions

(individuals) by sending scouts; i.e. it randomly generates a set of random vectors,

where denotes the size of employed bees. There are vectors { } in

the local environment (individuals in the population), each consists of real

parameters (

)

, where denotes the number of optimization

parameters.

As soon as a scout founds a new food source (a new vector of parameters

generated), she is assigned to the source and she will become an employed bee. An

32

employed bee then saves the food source position in her memory depending on the

local information (visual information) to determine the nectar quality (fitness value) of the

food source and keeps that in her memory. As a result, at the end of this step there will

be employed bees, each assigned to food sources and know the fitness value for all

 vector solutions. Next, the algorithm will proceed to the generation loop. This loop will

continue until the algorithm meets one of the conditions mentioned in Definition 3.4. A

detailed explanation for each of the three phases is as follows:

3.3.1.1. The Employed Bees Phase

In the employed bees phase, an employed bee associated with the th food

source position and has saved its nectar quality in its memory, searches for a new

food source in the neighborhood in accordance with the following expression:

 (

) (3.2)

where
 denotes the th component of the current food source position (individual),

denotes the th component of the new food source position (location of a food source in a

neighborhood), { } is a randomly selected component of the food source

position vector, and { } is a randomly chosen food source index such that

 . is referred to as a neighbor of .
 is a random number between [] that

controls the production of neighbor food sources around
 and represents the

comparison of two food positions visually by a bee. If the nectar quality of the new food

source is better than the one she already has in her memory, she remembers this new

location and its nectar quality; otherwise she still keeps the location and the nectar

quality of the previous source (this is called the greedy selection).

There are several issues that have to be considered about the employed bees:

 Note that during this phase, the algorithm modifies only one parameter (the th

component) of the solution vector using (3.2), and copies the rest of the

components from to . The expression (3.2) is referred to as the “ABC’s

Explorer”.

 The algorithm has a control over the solutions’ domain such that if a parameter

value generated by (3.2) exceeds its predetermined lower bound and upper bond,

33

it is set to an acceptable value. For instance, the value of the parameter

exceeding the upper bound can be set to its limit value.

 Each employed bee (or its corresponding food source) has a variable associated

to it representing the number of trials, denoted by . It is initially set to zero,

and increases by one for each fitness function evaluation. If the new fitness value

is better than the prior, the algorithm resets to zero. The algorithm uses the

value of in the scout bees’ phase to decide to change an employed bee into

a scout.

As described in the section 3.2, after employed bees have found their new

food source positions and tested their nectars, they choose the best food source via

greedy selection and return to the hive. Onlooker bees are waiting for them in the dance

level to receive the information of the food sources from employed bees.

3.3.1.2. Onlooker Bees Phase

During this phase, first employed bees share their information about the nectar

quality of food sources with onlooker bees. An onlooker chooses a food source with a

probability related to nectar amount. Better nectar quality of a food source results in its

higher probability to be selected by onlookers. An onlooker bee can select an employed

bee to follow based on different selection methods. A typical selection method, also

presented in the original ABC paper, is the roulette wheel selection method [15].

Through this method, the selection probability can be calculated by the following

expression:

 ()

∑

(3.3)

where { } is the fitness value of the th solution, which is proportional to the

nectar amount of the th food source. We will present more selection methods in

section 3.5.2.

As soon as the onlooker receives the information from an employed bee, she

becomes an employed bee has the information about her associated food source

position and its nectar quality, and flies to the food source. Now she has become an

employed bee associated with that food source. Since then, the new employed bee

34

(former onlooker) performs the same act as the employed bee in the previous phase;

i.e., she searches for a new food source in the neighbor of her associated food source

using (3.2) for higher nectar quality, and saves the best food source and its nectar to her

memory. Then she tests the nectar of this new food source and selects the better food

source via the greedy selection, and keeps that information in her memory.

3.3.1.3. Scout Bees Phase

Scout bees are free bees responsible for finding new food sources and evaluate

their nectar. As soon as a scout bee finds a food source, she turns into an employed

bee. If there is no improvement in the nectar quality of a particular food source, the

algorithm abandons that source, and its associated employed bee turns into a scout bee

that randomly searches for a new food source. A scout bee is a former employed bee,

and becomes an employed bee again once it has been associated to a food source. She

tests the nectar and saves it in her memory, and returns to the hive to dance in front of

onlookers. The number of bees in the hive remains intact during the algorithm

During each cycle in the original ABC algorithm, maximum of one employed bee

is selected and classified as the scout bee [17, 12]. If there is more employed bee to

become a scout, the algorithm selects only one employed bee randomly. The

classification is controlled by a control parameter “ ” that has to be less than a

predetermined upper-bound . If a food source is not improved after number of trials,

the algorithm removes it from the population in the scout bees’ phase, and the employed

bee associated to the food source turns into a scout that searches for a new food

source. In other words, scout bees are sent for those food sources that { }.

The food source of which the nectar is abandoned is replaced with a new food

source, which is simulated by producing a position randomly and replacing it with the

abandoned one. The scout randomly generates a new food source ̂ (̂
 ̂

 ̂
) to

be replaced with the abandoned source , and each component of the new food source

 ̂ – i.e. ̂
 { } – is randomly generated using the following expression:

 ̂
 [] (3.4)

35

where and are the upper bound and the lower bound of a feasible parameter

variable. If the constraint set in (3.1) has more complexity than a box, then the

algorithm should incorporate a constraint checking procedure to make sure that each

individual is feasible. As soon as a scout finds a new food source position, she turns into

an employed bee. This employed bee then measures the nectar quality of the food

source, keeps it in her memory, and returns to the hive.

At the end of each cycle, the best solution is chosen via sorting the nectar

qualities of all employed bees. If the new value is better than that of the previous

generation, the algorithm saves the fitness value and the corresponding food source

position (individual).

Comparison between the Scout Bees Phase and Mutation

The role of the scout bees in the algorithm is similar to the “mutation” procedure

in other EAs like Genetic Algorithm [15]. The GA applies mutation to a predetermined

portion of its population during every algorithm generation. Each individual in the portion

would be selected for mutation with respect to a mutation probability, and its parameters

will be replaced with randomly generated values.

The scout bees’ phase in the ABC algorithm has an advantage and a

disadvantage compared with the GA’s mutation process. The advantage of the scout

bee procedure is in using the variable. ABC selects only those individuals that have

not improved after a predetermined number of trials indicated by the variable “ ”;

while the mutation procedure do not have such an intelligent choice of individuals. There

is a chance of losing a potential good solution in the mutation procedure, because

individuals are being selected completely random.

On the other hand, the drawback of the scout bees’ phase in ABC algorithm is

that it decreases exploration by enforcing maximum of one food source replacement

during each generation. Even though this disadvantage is a part of the original ABC

algorithm and has been employed in various applications, we have removed this

limitation, and improved the algorithm’s performance as explained in subsection 3.5.3.

36

In order to employ the ABC algorithm in some wireless communication problems,

we have to modify the algorithm to operate in the discrete domain. As a result, we

present the Discrete Artificial Bee Algorithm (DABC) in the next section, and we further

present other developments to the original ABC algorithm in subsequent sections.

3.4. Discrete Artificial Bee Colony Algorithm

The original ABC algorithm was presented for continuous optimization problems

[12]. Almost all of the applications and optimization problems solved by this algorithm

available in literature have encompassed a continuous (real) domain, while there are

less than a few publications on implementing ABC to discrete problems (the only two

published approaches are explained in Sections 3.5.1.2. and 3.5.1.3). However, some

applications in wireless communications, e.g. problems in symbol detection and

resource allocation, have a discrete or binary nature. The ABC algorithm has a high

performance compared to other EAs such as GA, DE, PSO, etc. in the continuous

domain [13]. With a motivation to apply the ABC algorithm’s idea to solving discrete

optimization problems, we developed a discrete version of the algorithm and assessed

its performance on problems in the discrete domain.

The definition of the terms employed in the ABC algorithm is given in section

3.3.1. Here we restate some of those definitions incorporated in the DABC (Discrete

Artificial Bee Colony) algorithm. We have the following definitions for the optimization

problem below:

 subject to:

Definition 3.5: A food source position is a vector of

integer numbers, and represents a candidate solution to the problem. Vector is

referred to as an individual as in most population-based EAs.

The principles of the DABC algorithm would be the same as the ABC algorithm in

some steps. Employed bees, onlooker bees and scouts retain their responsibilities.

37

However, some of the expressions comprising continuous solution vectors and their

parameter values have to be adjusted for discrete computation.

During the employed bees and onlooker bees phases, the ABC uses (3.2) to

produce a candidate food position from the old one in memory. DABC finds a new food

source in the neighborhood of the current food source position . Each components

of the new food source location
 is derived using the following expression:

 [{

 } {

 }] (3.5)

where ”randint ”' returns a random integer number between and , { }

is a random component of a food source position vector and { } are

randomly chosen indexes, where . This expression is held in both employed and

onlooker bees phases. The evaluation of (3.5) is expressed in Appendix of this chapter.

Similarly, scout bees have to explore new food source positions in a discrete set.

In DABC, a scout discovers a new food source (̂
 ̂

 ̂
)

 to replace it with the

abandoned source . The discrete parameter variables ̂
 , { } of the new

food source position can be randomly generated using the following expression:

 ̂
 [] (3.6)

where and are the minimum and the maximum possible values for a feasible

parameter variable, and is a function that generates random integer

numbers between and . Expression (3.6) is used by scouts at the initial step where

population is generated, and during each interval in the scout bees’ phase. A pseudo

code of the DABC algorithm is given in Table 3.2.

38

Table 3.2. The DABC Algorithm Pseudo Code

1. Initialize the population of solutions ,

2. Evaluate () ,

3. for = 1 to %(maximum algorithm iterations)%

4. run the modified employed bee phase, (Table ‎3.3)

5. run the modified onlooker bee phase, (Table ‎3.4)

6. run the modified scout bee phase, (Table ‎3.5)

7. save the best results,

8. end for,

Table 3.3. The DABC Employed Bee Phase Pseudo Code

1.

2. for each food source ,

3. Select a random food source { },

4. Select a random component { },

5.
 [{

 } {

 }]

6. ,

7. if then,

8. Evaluate (),

9. ,

10.

11. end if,

12. end for,

39

Table 3.4. The DABC Onlooker Bee Phase Pseudo Code

1. Calculate probability values for
 using (3.9~3.12),

2.

3. for , %(corresponds to the th onlooker bee)%

4. if then,%(select the
th employed bee to follow)%

5. Select a random food source { },

6. Select a random component { },

7.
 [{

 } {

 }]

8. ,

9. if then,

10. Evaluate (),

11. ,

12.

13. end if,

14.

15. end if

16.

17. if then %(reset)%

18. end for,

Table 3.5. The DABC Scout Bee Phase Pseudo Code

1. for { },

2. for each component { },

3. ̂
 [],

4. end for,

5. Evaluate (̂
),

6. ̂
 ,

7.

8. end for,

40

3.5. Improvements to the DABC algorithm

In addition to our contribution to the original ABC algorithm and developing the

DABC algorithm, we have further enhanced the DABC algorithm by optimizing different

steps of ABC to increase its performance. The following subsections discuss these

developments to the DABC algorithm, which some of them are applicable to the ABC as

well, and some are further implemented to the hybrid algorithm discussed in Chapter 4.

3.5.1. Selecting a Neighbor Food Source

In every algorithm generation, employed bees select a neighbor food source

twice. The first attempt is during the employed bees phase, when they are exploiting

their current food source position. The second time is during the onlooker bees phase,

while they are exploiting the area around the source they have received their information

from employed bees. In this subsection, we study the selection methods applicable to

the integer and binary domain.

3.5.1.1. Random Bounded Integer Selection for Integer Problems

The first neighborhood selection method for the DABC algorithm is the one we

presented in (3.5), we employ a random integer generator. The advantage of this

method is that since it is applicable to the problems in the integer domain, it works with

the problems in the binary domain as well. Our simulation results also prove that this

method outperform the other two neighborhood selection methods for integer problems.

3.5.1.2. Using Sigmoid Function for Binary Problems

Wang et al. have presented a discrete selection method to the ABC algorithm in

[18]. Their binary encoding method employs a sigmoid function of velocity as a logical

choice for binary selection. However, this procedure only applies to the binary

optimization problems, whereas the explorer procedure proposed in this thesis is

applicable to larger class of problems in the integer or discrete domain.

3.5.1.3. Using Logical Selection Expression for Binary Problems

Salim et al. present another neighbor selection method for binary problems in

[19]. They replace the operation signs with (binary) logical operators such as “OR” (⋁),

41

“AND” (⋀), and “XOR” (⊕) functions. Similar to the last method, this expression is only

applicable to binary problems.

3.5.2. Employed Bee Selection Probability

As mentioned before, the preference of a food source by an onlooker bee

depends on the nectar amount () of that food source. As the nectar amount of the

food source increases, the probability with the preferred source by an onlooker bee

increases proportionally. Clearly, in such a scheme good food sources should have

more chance (higher probability) to be selected by onlooker. In the original ABC

algorithm, this phenomenon is applied using the Roulette Wheel Selection method

stated in (3.3). We have employed some other selection probability expressions to our

simulations, including the following:

 ()

∑ ()

 { } (3.9)

 ()

(∑ ()
)

 { } (3.10)

 ()

 { ()}
 { } (3.11)

 √
 ()

 { ()}
 { } (3.12)

Our simulations demonstrate that the last expression (3.12) will yield to the better

results. Analysis of these probabilities and algorithm’s performance for different classes

of problems based on them is left for future work.

3.5.3. Improvements to Scout Bees Phase

Another improvement we present to the ABC algorithm is simple, yet effective

that boosts its performance. The original ABC algorithm selects only one food source to

abandon during each algorithm generation, and replaces its associated employed bee

with a scout. We have removed this limit of “maximum one” food source, and allow the

42

algorithm to choose all existing food sources { } of which . The

removal of this limit boosts the exploration attribute of the algorithm, and increases the

algorithm’s chance to get out of local optima.

43

References

[1] Wolpert, D.H.; Macready, W.G.; , "No free lunch theorems for optimization,"
Evolutionary Computation, IEEE Transactions on , vol.1, no.1, pp.67-82, Apr
1997

[2] E. Bonabeau, M. Dorigo, G. Theraulaz, Swarm Intelligence: From Natural to
Artificial Intelligence, Oxford University Press, New York, NY,1999.

[3] L. a. De Castro, J. Timmis, Artificial Immune Systems: A New Computational
Approach, Springer-Verlag, New York, NY, 2002.

[4] P. Miller; The Smart Swarm: How Understanding Flocks, Schools, and Colonies
Can Make UsBetter at Communicating, Decision Making, and Getting Things
Done, Avery, New York, NY, 2010.

[5] V. Tereshko, "Reaction-diffusion model of a honeybee colony’s foraging
behaviour, Springer- Berlin," Lecture Notes in Computer Science, vol. 1917, no.
M. Schoenauer, et al. (Eds.), Parallel Problem Solving from Nature VI, p. 807–
816, 2000.

[6] T. Lee, V. Tereshko, "How information mapping patterns determine foraging
behaviour of a honey bee colony," Open Syst. Inf. Dyn, vol. 9, pp. 181-193, 2002.

[7] A. Loeengarov. V. Tereshko, "Collective decision-making in honey bee foraging
dynamics," Computing Information System Journal, vol. 9, no. 3, pp. 1-7, 2005.

[8] D. Teodorovic, "Transport modeling by multi-agent systems: a swarm intellgence
approach," Transport. Plann. Technology, vol. 26, no. 4, pp. 289-312, 2003.

[9] D. Lucic, "Transportation Modeling: An Artificial Life Approach," in ICTAI, 216-
223, 2002.

[10] D. Teodorovic, M. Dell'orco; "Bee colony optimisation—a cooperative learning
approach to complex transportation problems," in 10th EWGT Meeting, Poznan,
2005.

[11] K. Benatchba, L. Admane, and M. Koudil, "Using bees to solve data-mining
problem expressed as a max-sat one, artificial intelligence and knowledge
engineering applications: a bioinspired approach," in First International Work-
Conference on the Interplay Between Natural and Artificial Computation, IWINAC
2005, Las Palmas, Canary Islands, Spain, 2005.

[12] H. Wedde, M. Farooq, Y. Zhang, "BeeHive: an efficient fault-tolerant routing
algorithm inspired by honey bee behavior, ant colony, optimization and swarm
intelligence," in 4th International Workshop, ANTS 2004, Brussels, Belgium,
September 5-8, 2004.

http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Eric+Bonabeau%22&source=gbs_metadata_r&cad=11
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Marco+Dorigo%22&source=gbs_metadata_r&cad=11
http://www.google.ca/search?tbo=p&tbm=bks&q=inauthor:%22Guy+Theraulaz%22&source=gbs_metadata_r&cad=11
http://www.citeulike.org/user/billpb/author/Wedde:HF
http://www.citeulike.org/user/billpb/author/Farooq:M
http://www.citeulike.org/user/billpb/author/Zhang:Y

44

[13] X. Yang, "Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms,,"
Lecture Notes in Computer Science, Springer-Verlag GmbH, no. 3562, p. 317,
2005.

[14] D. Karaboga, "An Idea Based On Honey Bee Swarm For Numerical
Optimization," Technical Report-TR06, Erciyes University, 2005.

[15] D. Karaboga. B. Basturk, "An artificial bee colony (ABC) algorithm for numeric
function optimization," in IEEE Swarm Intelligence Symposium 2006,
Indianapolis, IN, May 12-14, 2006.

[16] B. Akay. D. Karaboga, "A comparative study of Artificial Bee Colony algorithm,"
Applied Mathematics and Computation, no. 214, pp. 108-132, 2009.

[17] R. Jeanne, "The evolution of the organization of work in social insects," Monit.
Zool. Ital., vol. 20, pp. 267-287, 1986.

[18] T. Seeley, The wisdom of the hive: the social physiology of honey bee colonies,
Harvard University Press,Cambridge, MA, 1995.

[19] D. Goldber, Genetic Algorithms in Search, in: Optimization and Machine
Learning, Addison-Wesley Pub. Co., 1989.

[20] V. Maniezzo; A. Colorni; M. Dorigo, "Ant System: Optimization by a Colony of
Cooperating Agents," IEEE Transactions on Systems, Man, and Cybernetics–
Part B, vol. 26, no. 1, pp. 1-13, 1996.

[21] B. Basturk. D. Karaboga, "On the performance of artificial bee colony (ABC)
algorithm," Applied Soft Computing, vol. 8, p. 687–697, 2008.

[22] J. Wang, T. Li, R. Ren, "A Real Time IDSs Based on Artificial Bee Colony
Support Vector Machine Algorithm," in Third International Workshop on
Advanced Computational Intelligence, Suzhou, Jiangsu, China, Aug. 25-27,
2010.

[23] M. Salim; T. Vakil-Baghmisheh, "Discrete bee algorithms and their application in
multivariable function optimization," Artificial Intellignece Rev. Springer Journal
on, vol. 35, pp. 73-84, 2011.

http://link.springer.com/search?facet-author=%22M.+T.+Vakil-Baghmisheh%22

45

Appendix.

Neighborhood Food Source Selection in Discrete ABC

In (3.2),

 is a random number between []. We choose the minimum and maximum of this

interval and apply it to (3.2). For the minimum we have

 ; hence:

 (

)

A.1

For the maximum we have

 ; as a result:

Putting (B.1) and (B.2) together, replacing real parameter values

 with integer parameter values

, and using a random integer number generator function that returns a random

integer between and , we obtain:

However, there is no guarantee that

. Therefore, we generalize (B.3) to:

 (

)

A.2

 [

] A.3

 [{

} {

}] A.4

46

4. Hybrid ABC/BBO Algorithm

In this chapter we propose a novel Evolutionary Algorithm for optimization

problems in both continuous and discrete domains. This new algorithm intends to

combine the advantages of both BBO and ABC algorithms. We refer to this new

algorithm as hybrid ABC/BBO algorithm. This algorithm has shown good performance in

comparison to other EAs when applied to some optimization problems in wireless

communication, including single-objective unconstrained (e.g. MD-STBC-MIMO

(Chapter 5)), single-objective constrained (e.g. Relay Assignment in Cognitive Radio

(Chapter 6)), and multi-objective constrained optimization problems (e.g. Green

Resource Allocation in Cognitive Radio (Chapter 7)). In this chapter starts with an

introduction to the hybrid EAs in the next section, and followed be a brief discussion on

advantages and disadvantages of BBO and ABC in Section 4.2. Then the novel hybrid

ABC/BBO is presented in Section 4.3.

4.1. Introduction

For some problems, a simple evolutionary algorithm might be good enough to

find a desired solution. As reported in the literature, there are several types of problems

in which an application of a known EA could fail to obtain a good solution [1, 2, 3, 4, 5].

Recently, the hybridization of EAs has become popular due to its capabilities for

handling several real world problems involving complexity, noisy environment,

imprecision, uncertainty, and vagueness [11]. Some of the possible reasons for

hybridization are:

1. To improve the performance of the evolutionary algorithm (e.g. speed of
convergence)

2. To improve the quality of the solutions obtained by the evolutionary algorithm
3. To incorporate the evolutionary algorithm as a part of a larger system.

47

In order to balance the exploration and the exploitation in an EA, in this chapter

we propose a hybrid algorithm with ABC and BBO for the global numerical optimization

problems. In this hybrid algorithm, a hybrid migration operator is proposed, which

combines the exploration of ABC with the exploitation of BBO effectively. Exploitation

refers to the algorithm’s tendency to use the values it already has in order to refine its

search for an optimal solution, whereas exploration refers to the algorithm’s ability to

search in previously-unexplored regions of the search space [8].

4.2. Discussion on ABC and BBO

In this section first the strong and weak points of ABC and BBO are discussed,

following by the origin of the idea of hybridizing the two algorithms.

4.2.1. BBO’s Pros and Cons

BBO’s main operator is migration. As illustrated in Table 2.1, during the migration

procedure, each SIV (individual component) can be replaced with another existing SIV

from another habitat (individual); e.g. (third component of the 8th individual) can

be replaced with , where is another habitat being selected based on its

emigration rate. Thus, all possible values for new are other individuals’ third

components values, and no new value is generated. The migration operator of BBO has

a good exploitation attribute; i.e., BBO’s migration procedure uses the values it already

has in order to refine its search for an optimal solution. After the initial population is

generated at the beginning of the algorithm, during the next iterations the algorithm

shares the individual components (habitats’ SIVs) as a result of the migration operator.

In this phase, SIVs are copied from a habitat to another; and thus all current SIV values

retain in the population, and are highly dependent on the initial population.

BBO is proposed for discrete optimization problems, and its behavior best works

for the problems in the integer domain, because there are a few (discrete) possible

values for each SIV. However, if the number of choices are fairly large (large discrete

domain), or more importantly, if it is applied to the problems in the continuous domain,

then this migration feature would be a downside of BBO because it lacks exploration.

48

The migration process in unable to explore new SIVs; i.e., it only copies SIVs from one

habitat to another, and does not search previously unexplored regions of the search

space and cannot generate new values. In fact, BBO takes the advantage of its mutation

operator for exploration. Yet, the mutation factor has to be set to a very small number.

Dan Simon mentions in [7] that a high mutation rate of 10% () results in too much

exploration. However, the performance of the algorithm increases as the mutation rate

decreases to the more reasonable values of 1% and 0.1%; that is and

 respectively [7]. He also applies BBO to a real world problem in [13] and applies

mutation with . Fig. 4 in this chapter depicts the BBO simulation result with and

without mutation, and it is clear from this figure that even with a well-tuned mutation

factor, there is only a slight improvement in the result of the BBO with mutation.

4.2.2. ABC’s Pros and Cons

ABC does not use any gradient-based operator. It incorporates a simple

mechanism to adapt to the global and local exploration abilities within a short

computation time, while it uses just a few control parameters. Hence, this method is can

be used for solving multimodal and multidimensional optimization problems [15]. ABC’s

main evolutionary process is during its employed bee and onlooker bee phases, where

the algorithm explores the search space for finding new food sources in previously un-

explored locations. The algorithm can locate the region of global minimum during the

employed bee and onlooker bee phases, as a result of the exploring actions of the

employed bees while they are finding new food sources around their current associated

sources (equations (3.2) and (3.5)). We refer to these equations as “ABC’s explorer”.

This explorer operator effectively generates new values for a component of an individual.

ABC’s downside, apart from its great exploring feature, is exploitation – i.e. in

ABC, the algorithm does not retain the values of its population. In the employed bee and

onlooker bee phases of the original (continuous) ABC, all food sources have to be

modified by the explorer operator (equation (3.2)). An individual component survives

changes (its value would be unmodified during these two phases) only if

 = -1, then

 ,

 = 0, then

49

Only in these two cases, the new food source position
 preserves the values of a

component currently inside the population; i.e.,
 or

 . However, because
 is a

randomly generated real number in the closed interval [], it is highly unlikely that the

value of
 would be exactly -1 or zero.

Another disadvantage of ABC is the uniform selection of a neighbor food source

during the employed bee and onlooker bees phases. During these two phases, all food

sources are equally likely to be selected as a neighbor of a food source. The only

condition is that a neighbor has to be different from the food source itself; i.e. .

However, the algorithm could have developed more intelligently such that high quality

food sources would be more likely to be chosen as a neighbor. The result of this small

yet effective modification is a more efficient exploration. The original ABC has some

other drawbacks that are discussed in Chapter 3, and some improvements are proposed

in sections 3.4 and 3.5.

4.3. The Hybrid ABC/BBO algorithm

There are certain reasons to choose ABC with BBO for hybridization among

other EAs. The first reason is that these two algorithms already have shown good

performance in comparison with other EAs for the optimization problems of our interest

and similar applications [8, 9, 13, 14, 16,]. Therefore we can predict the hybridization of

these two algorithms may outperform other EAs even further. More importantly, BBO

and ABC’s advantages and disadvantages are such that the disadvantage of one is the

strong feature of the other. BBO benefits from exploitation, and lacks exploration; while

ABC has a great exploration feature, and its drawback is exploitation. Therefore a wise

idea would be to integrate the exploration of ABC with the exploitation of BBO to develop

an algorithm that probably outperforms ABC and BBO solely.

We explain the procedure of the new algorithm by taking the general scheme of

ABC and implementing BBO’s feature into that. The hybrid algorithm consists of three

phases: employed bee phase, onlooker bee phase, and scout phase. It benefits from the

BBO’s migration procedure, therefore it contains emigration rate and immigration rate

curves. This new migration operator is referred to as the “Hybrid Migration Operator”.

50

4.3.1. The Hybrid Migration Operator

The main operator of the hybrid algorithm is its hybrid migration operator, which

hybridizes the employed bees’ behavior with the BBO’s migration operator, and is

described in Table 4.1. The terminology is the same as Section 3.3.1 for ABC. According

to this procedure, the food source position is constituted by three components:

 the ABC’s explorer,

 the migration of other solutions,

 its corresponding food sources and .

The core idea of the proposed hybrid migration operator is based on two

considerations. First, good solutions would be less destroyed, while poor solutions can

accept many new features from good solutions. In this sense, the current population can

be exploited sufficiently. Second, the ABC’s explorer operator is able to explore the new

search space and make the algorithm more robust. Correspondingly, the original BBO

migration operator focuses on the intensification; while the ABC’s explorer operator

emphasizes on the diversification. From this analysis, it can be seen that the hybrid

migration operator can balance the exploration and the exploitation effectively.

Table 4.1. Hybrid Migration Operator for the th individual

1. select a random component { }

2. if then,

3. select with probability

4. if then,

5.

(

) for continuous problems, or

 [{

 } {

 }] for

discrete problems

6. end if

7. else

8.

9. end if

51

4.3.2. Main Procedure of the Hybrid Algorithm

We incorporate the above hybrid migration operator into ABC, and develop the

hybrid ABC/BBO algorithm as described in Section 4.3. The algorithm needs to calculate

 and before running the migration operator. Compared with the ABC algorithm

described in Sections 3.3 and 3.4, our approach needs only a small extra computational

cost for sorting the population and calculating the migration rates. In addition, the

structure of our proposed ABC/BBO is also very simple. Moreover, ABC/BBO is able to

explore the new search space with the explorer operator of ABC, and to exploit the

population information with the migration operator of BBO. This feature overcomes the

lack of exploitation of the original ABC algorithm. In the hybrid ABC/BBO, we have also

modified the ABC selection method to benefit from the BBO migration rates. Therefore,

this algorithm evolves more intelligently compared with original ABC algorithm and BBO.

Table 4.2. The Main Pseudo-Code for Hybrid ABC/BBO

1. Initialize the population of solutions ,

2. Evaluate () ,

3. Sort population

4. Calculate and ,

5. for = 1 to %(maximum algorithm iterations)%

6. Run the modified employed bee phase, (Table 4.3)

7. Sort the population

8. Calculate and ,

9. Run the modified onlooker bee phase, (Table 4.4)

10. Run the modified scout bee phase, (Table 4.5)

11. Save the best results,

12. end for,

52

Table 4.3. The Hybrid Algorithm’s Employed Bee Phase Pseudo Code

1.

2. for each food source ,

3. run the Hybrid Migration Operator (Table 4.1)

4. ,

5. if then,

6. Evaluate (),

7. ,

8.

9. end if,

10. end for,

Table 4.4. The Hybrid Algorithm’s Onlooker Bee Phase Pseudo Code

1. Calculate probability values for
 using (3.9~3.12),

2.

3. for , %(corresponds to the th onlooker bee)%

4. if then,%(select the
th employed bee to follow)%

5. run the Hybrid migration operator (Table 4.1)

6. ,

7. if then,

8. Evaluate (),

9. ,

10.

11. end if,

12.

13. end if

14.

15. if then %(reset)%

16. end for,

53

Table 4.5. The Hybrid Algorithm’s Scout Bee Phase Pseudo Code

1. for { },

2. for each component { },

3. ̂
 [],

4. end for,

5. Evaluate (̂
),

6. ̂
 ,

7.

8. end for,

It is worth pointing out that the computational complexity of this algorithm, based

on the number of fitness function evaluations, is similar to the ABC’s complexity; i.e. the

hybrid algorithm only has some more if conditions and numerical operators, and does

not include any more fitness evaluations. However, its complexity is higher than BBO; in

the sense that BBO runs with a total of fitness evaluations, where is the number of

algorithm iterations and is the population size. But both ABC and hybrid algorithm

once evaluate all the population in the employed bee phase, and once again in the

onlooker bee phase, in addition to evaluations for some mutated individuals in the scout

bee phase. However, because of the if conditions in lines 5 of Table 3.3 and 7 of

Table 3.4, the number of evaluations reduced to only those individuals which have been

modified during the exploring phase in ABC, and the hybrid migration in the hybrid

algorithm. The stochastic nature of these two algorithms does not allow us to find a

closed form expression for their complexity. More discussion on the issue of algorithms

computational complexity is provided in Section 5.5, where we derive the complexity of

the original ABC algorithm as well.

4.3.3. Configuring the Algorithm

Based on different options and a number of improvements discussed for BBO

and ABC in the previous two chapters, the hybrid algorithm can be developed into

54

various configurations. Some of these configuration options, according to the previous

chapters, are as follows:

 Continuous and discrete problems: To apply the algorithm to continuous or

discrete problems, the expression in line 5 of Table 4.1 and line 3 of Table 4.5 has to

be chosen correspondingly. Our results in Part II of this thesis illustrate that the

hybrid algorithm outperform other EAs in both discrete and continuous problems.

 The migration scheme: the hybrid migration operator’s immigration and emigration

rates curves can be any of the three schemes presented in Section 2.3. However, we

use the Linear Immigration (Piece-wise Emigration scheme (2.3.3)) because of its

reasonable performance and less complexity than the third model (2.3.1).

 Employed bee selection probability: onlooker bees can select employed bees at

the beginning of the onlooker bees phase, based on different probability expressions

discussed in Section 3.5.2. In our implementations presented in Part II we choose

the expression that results in the best performance.

 Mutation operator: The hybrid algorithm has different ways to handle mutation. The

scheme mentioned in Table 4.5, and is employed in our implementations, is the

enhanced scout bee phase described in Section 3.5.3. Another scheme is the

original ABC’s scout bees phase, which is not as efficient as the aforementioned

operator. The BBO’s mutation operator is another choice, where each food source

has the chance to be mutated, as discussed in Section 2.2.2. The mutation scheme

in Table 4.5 is more efficient than BBO’s mutation operator, since it only replaces

those individuals that have not been improved during a certain number of iterations.

The algorithm’s settings are given for each of the application implementations in

Part II of the thesis, and the simulation results demonstrate the superiority of the

algorithm over BBO and ABC, as well as other EAs.

4.4. Algorithms’ Computational Complexity

The complexity of the introduced EAs – BBO, ABC and hybrid – in terms of the

 notation is presented in this section. This complexity has been calculated based

on the algorithms’ pseudo codes discussed in sections 2.2, 3.4 and 4.4. Note that the

55

complexities of ABC and hybrid algorithms are presented for the discrete version of the

algorithms. These two algorithms are running the simple scout bees phase, where the

algorithm selects only one individual that has exceeded the predetermined number of

trials; similar to the scout bees procedure introduced in the original ABC paper [15].

Table 4.6 demonstrates the computational complexities of these algorithms and their

comprising procedures.

In this table refers to the computational complexity of the objective

function, denotes the number of feasible discrete numbers between and ,

and and have been already defined as the maximum number of generations,

population size and the number of components in an individual vector, respectively. BBO

and hybrid include one or more sorting procedures. The computational complexity of

some sorting algorithms such as selection sort, insertion sort, bubble sort and cycle sort

is , while the computational complexity of some other sorting algorithms such as

binary tree sort, tournament sort and merge sort is [17]. In Table 4.6 the first

group of sorting algorithms has been assumed that has a complexity of .

Table 4.6. Computational Complexity of BBO, ABC and hybrid algorithms

BBO

Migration

Mutation

Complete Algorithm

ABC

Employed Bees Phase

Onlooker Bees Phase

Scout Bees Phase

Complete Algorithm

Hybrid

Hybrid Migration Procedure

Employed Bees Phase

Onlooker Bees Phase

Scout Bees Phase

Complete Algorithm

The difference in the computational complexity order between BBO’s migration

and ABC/hybrid employed/onlooker bees phases is because the migration procedure

56

alters every component of an individual using migration rates, but employed bees only

select one component randomly and run line 5 of Table 4.1 to find a new food source. If

the employed bees were set to change all components of an individual, the complexity of

these phases would have contained the term instead of . It is also interesting to

see that ABC and hybrid algorithm have the same complexity order. In Part II of this

thesis, the computational complexity of the applications have been compared based on

other methods such as elapsed time or the average number of fitness function

evaluation (e.g. Section 5.6.2).

57

References

[1] S. Ashrafinia, "Critical Node Detection Problem," Directed Studies Course
Report, Simon Fraser University, Burnaby, BC, 2011.

[2] LY Tseng and SC. Liang, "A hybrid metaheuristic for the quadratic assignment
problem," Comp. Opt. and Applications, vol. 34, no. 1, pp. 85-113, 2005.

[3] R. Lakshmiramanan, K. Kuppusamy P. Somasundaram, "Hybrid algorithm based
on EP and LP for security constrained economic dispatch problem," Electric
Power Systems Research, vol. 76, no. 1-3, pp. 77-85, 2005.

[4] R. Morgan, and D. Williams F. Li, "Hybrid genetic approaches to ramping rate
constrained dynamic economic dispatch," Electric Power Systems Research, vol.
43, no. 11, pp. 97-103, 1997.

[5] WH. Chang CC. Lo, "A multiobjective hybrid genetic algorithm for the capacitated
multipoint network design problem," IEEE Transactions on Systems, Man and
Cybernetics - Part B, vol. 30, no. 3, pp. 461-470, 2000.

[6] WG. Macready DH. Wolpert, "No free lunch theorems for optimization," IEEE
Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67-82, 1997.

[7] D. Simon, M. Ergezer, D. Du, and R. Rarick, “Markov Models for
Biogeography-Based Optimization,” IEEE Transactions on Systems, Man and
Cybernetics, Part B: Cybernetics, vol. 41, no. 1, pp. 299–306, February 2011

[8] Simon, D., his brief discription is available at the website: .
http://academic.csuohio.edu/simond/courses/eec693b/homework.html, last
accessed summer 2012.

[9] Ashrafinia, S.; Pareek, U.; Naeem, M.; Lee, D.; “Biogeography-based
optimization for joint relay assignment and power allocation in cognitive radio
systems”, Swarm Intelligence (SIS), 2011 IEEE Symposium on, 11-15 April 2011,
pp 1 – 8, Paris, France.

[10] T. Bäck, Evolutionary algorithms in theory and practice: evolution strategies,
evolutionary programming, genetic algorithms, Oxford University Press, Oxford,
UK, 1996.

[11] A. Abraham,H. Ishibuchi C. Grosan, Hybrid Evolutionary Algorithms, Springer-
Verlag Berlin Heidelberg, Berlin, Germany, 2007.

[12] C. García-Martínezb M. Lozanoa, "Hybrid metaheuristics with evolutionary
algorithms specializing in intensification and diversification: Overview and
progress report," Computers and Operations Research, vol. 37, no. 3, pp. 481-
497, Mar. 2010.

http://academic.csuohio.edu/simond/courses/eec693b/homework.html

58

[13] D. Simon, "Biogeography-Based Optimization," IEEE Transactions on
Evolutionary Computation, vol. 12, no. 6, pp. 702-713, Dec 2008.

[14] B. Basturk D. Karaboga, "Powerful And Efficient Algorithm For Numerical
Function Optimization: Artificial Bee Colony (ABC) Algorithm," Journal of Global
Optimization, vol. 39, no. 3, pp. 459-471, 2007.

[15] B. Basturk D. Karaboga, "On the performance of Artificial Bee Colony (ABC)
Algorithm," Applied Soft Computing, vol. 8, no. 1, pp. 687–697, 2008.

[16] Ashrafinia, S.; Naeem, M.; Lee, D.; “A low complexity evolutionary algorithm
for multi-user MIMO detection”, Computational Intelligence in Multicriteria
Decision-Making (MDCM), 2011 IEEE Symposium on, 11-15 April 2011, pp. 8 –
13, Paris, France.

[17] D. Knuth; The Art of Computer Programming, Volume 3: Sorting and Searching,
Third Edition. Addison–Wesley, 1997.

http://en.wikipedia.org/wiki/Donald_Knuth

59

Part II: Applications of Evolutionary Algorithms

 to Wireless Communication Problems

60

5. Computationally Efficient Symbol Detection
Using EAs in Multi-User STBC-MIMO Systems

5.1. Introduction

The Multi Input Multi Output (MIMO) communication system has a significantly

higher channel capacity than the Single-Input-Single-Output (SISO) system for the same

total transmission power and bandwidth [1] [2]. The system considered in this chapter is

assumed to comprise one receiving station and multiple transmitting devices. The

receiver's front end has multiple antennas, and each transmitting device has multiple

transmit antennas. It is known that the use of Space Time Block Code (STBC) can

increase the capacity of MIMO systems and thus improve data throughput and spectral

efficiency [3]. Multi-antenna systems are widely used because of their ability to

dramatically increase the channel capacity in fading channels [4]. Each transmit device

uses a STBC, the receiver side performs the joint signal detection. In this thesis, such a

system is referred to as a Multi-Device (MD) STBC-MIMO system. In a MD-STBC-MIMO

system, the number of receive antennas is typically smaller than the cumulative number

of transmit antennas used by all transmitting devices in the system. An example of MD-

STBC-MIMO, with a smaller number of antennas at the base station or access point,

would be the uplink multiple access communication in cellular systems.

This chapter addresses the symbol detection problem in MD-STBC-MIMO

systems. The Maximum A-Posteriori probability (MAP) detection, which reduces to the

Maximum Likelihood (ML) detection in the case of a priori equally likely symbol blocks,

minimizes the probability of detection error. The ML detector returns optimal results, and

is further explained in section 5.3. However, a computationally efficient algorithm for

achieving MAP or ML detection is not known. Some studies with Sphere-Decoding (SD)

algorithms exhibit that their expected computational complexity grows polynomially with

the problem size up to some value of for the cases of small constellation sizes [5],

but it grows exponentially for the cases of large constellation sizes. In addition, for some

SD algorithms, operating at a low SNR requires inordinately high computation; yet

operation at a high SNR is efficient. In fact, reference [6] shows that even the expected

computational complexity of the SD grows exponentially with the problem size in MIMO

61

communication systems. In any case, an algorithm with polynomial growth of expected

complexity for all values of the problem size has not yet been found.

Due to unavailability of a computationally efficient algorithm for finding the

codeword that maximizes the MAP, a number of heuristic algorithms have been

suggested, such as BBO, ABC and Hybrid, as well as some mainstream EAs such as

GA and EDA. In this chapter, we consider applying Evolutionary Algorithms (EAs) to

MD-STBC-MIMO codeword detection.

Many EAs are inspired by biological evolution and mutation. We have applied

some EAs to the problem with much less computational complexity than the ML method.

For this purpose, we choose the Biogeography-Based Optimization (BBO), Artificial Bee

Colony (ABC), and a new developed hybrid ABC / BBO algorithm. This optimization

technique has some features in common with other bio-inspired optimization methods,

like Genetic Algorithm (GA) [9], and we have included the performance results of GA

and EDA for comparison. The MD-STBC-MIMO detection problem is a discrete

optimization problem and thus requires a discretized version of the ABC algorithm. Our

simulation results show that BBO, ABC and the hybrid algorithm can meet the best

known detector (i.e., SD) with less complexity, and have better performance than other

methods such as Minimum Mean Square Error (MMSE), Zero Forcing (ZF), Semi-

Definite Relaxation (SDR) [11], as well as EDA and GA.

In the rest of this chapter, the system model is presented in Section 5.2. The

application of existing symbol detection algorithms is discussed in Section 5.3. In

Section 5.4 the idea of applying EAs on the symbol detection problem is presented.

Section 5.5 compares the computational complexities, and the simulation results are

presented in section 5.6. Section 0 includes the conclusion and the future work.

5.2. System Model

Figure 5.1 shows an MD-STBC-MIMO system [21]. The system consists of

mobile devices transmitting signals and one receiver. Each mobile device has

transmitting antennas that apply STBC, whereas the receiver front end has receive

antennas. The multiple mobile devices in the proposed systems can cause co-channel

62

interference. An IQ-modulation scheme (e.g. -PSK, -QAM, etc.) maps source

information into complex numbers. Even if each transmit device employs an orthogonal

space-time code, the absence of coding across different wireless devices cannot

guarantee the orthogonality among their signals. In the case of a single mobile device

 , the wireless device transmits using transmit antennas, and communicates

with a receiver that has antennas. The number of time slots in the space-time code

block is denoted by .

Receiver

Mobile

Device 1

Mobile

Device 2

Mobile

Device K

1

2

1

NT

2

STBC encoder

and Modulator

1

NT

2

STBC encoder

and Modulator

1

NT

2

STBC encoder

and Modulator 3

NR

Mobile
Radio

Channel

Figure 5.1. A block diagram of MD-STBC-MIMO system

The channel is assumed to be quasi-static; i.e., the channel gain remains

constant during each time block of data. It is also assumed that the channel gain at each

time block is known to the receiver. This assumption is often used in literature and

reasonable if training or pilot signals are used. A complex dimensional matrix

represents the MIMO channel and another complex dimensional matrix

represents the input signal in a space-time code block. The relationship between the

input and output signal can be expressed as:

 ̃ ̃ (5.1)

where ̃ is the T×NR dimensional complex output matrix, and Z represents the additive

white noise matrix.

63

Equation (5.1) describes the relation between the input (transmitted signals) and

the output (received signals) in terms of a complex-valued matrix equation. The relation

between the input and the output of the channel in a system with linear dispersion

space-time coding can be equivalently expressed in terms of a real-valued matrix

equation. We now briefly discuss that real-valued matrix equation. The input signal in

Equation (5.1) in the case of the linear dispersion code [12] is denoted by a complex-

valued matrix that takes the form:

 ∑[() ()]

(5.2)

Here indicates the number of symbols conveyed in a space time code block, and

 is the complex number that represents the th symbol, where and

correspond to the real and imaginary parts of the symbol, respectively. In the IQ

constellation diagram, and are discrete valued variables, such that

corresponds to a symbol in the constellation diagram. In 4-QAM for example, each of

these two variables can take values of , and thus determines one of the four

possible symbols arranged in the square grid of and . These

 symbols can be represented as a -dimensional real-valued row vector ,

whose components are constituted by . The real and imaginary parts

of matrix ̃'s components can be arranged as a -dimensional real-valued row vector

 . The relation between and in this new alternative form can be expressed as:

 (5.3)

where 2Q × 2TNR real-valued matrix Ω is derived from the component of the matrices

 , Cq, Dq, q=1,…,Q, and Z is the 2TNR-dimensional real-valued vector representing

noise.

In the case of multiple mobile devices, equation (5.1) is naturally generalized to

64

 ̃ ∑

 ̃
(5.4)

where the T×NT-dimensional complex matrix, Sk, is the input signal from mobile device k,

and the NT×NR-dimensional complex matrix Hk represents the channel from the kth

device to the receiver. Correspondingly, (5.3) is naturally generalized to

 [] [

]

(5.5)

where χk is a 2Qk-dimensional real-valued row vector that represents the Qk complex

symbols sent from mobile device k in a space time code block. Note that (5.5) can model

the case in which different mobile devices use different code rates Qk /T and different

space time codes. We denote by ∑
 the total number of symbols (from all

mobile devices) transmitted in a space-time coded block through all of their transmit

antennas.

5.3. Signal Detection

The ML detection is known to yield the lowest symbol error probability in the case

of a-priori equally likely symbols. In the case of our problem, the detector at the receiver

has to choose from possible sequences of symbols transmitted in a space-time

code block, where is the size of the symbol constellation associated with the

modulation scheme. ML detection chooses transmitted symbols [] that

maximize (). In the case of additive white Gaussian noise , the ML

detection is reduced to choosing the vector [] from possibilities that

has the shortest Euclidean distance ̂ that is expressed as:

65

 ̂ ‖ ∑

 ‖
(5.6)

The ML detection scheme can be implemented by searching through all

 possible symbol sequences, where , and is the size of the symbol

constellation. Performing such an exhaustive search to find the minimum of (5.6) is

computationally inefficient, especially for large . Computational complexity increases

exponentially with ∑
 . High-speed communication requirements demand a

low-complexity detection scheme. For low-complexity near-optimal detection, in this

chapter the ABC algorithm is applied to this MD-STBC-MIMO detection problem. Section

5.4 describes how EAs are applied to the signal detection. In subsequent sections, we

compare the performance of the BBO-based algorithms with other low-complexity

suboptimal algorithms such as MMSE, SDR and SD.

5.4. Evolutionary Algorithms for solving MD-STBC-MIMO
problem

In this section, we present a MD-STBC-MIMO detector that utilizes EAs

presented in the first part of this thesis. The aim of applying discrete EAs to the MD-

STBC-MIMO symbol detection problem is to minimize the Euclidian distance defined in

(5.6). Therefore, the Euclidian distance in Equation (5.6) represents the fitness function;

and shorter Euclidian distance means better fitness. An EA individual corresponds to a

possible solution to the joint symbol detection problem; i.e., a set of conveyed symbols

from the transmit devices.

In the MD-STBC-MIMO system discussed in this chapter, transmitted symbols

are chosen from an IQ-modulation such as -QAM or -PSK constellation diagram. In

order to implement EAs, we represent each of the possible points in the constellation

by a unique integer in the set { }. The system comprises transmit devices,

each device indexed by k transmitting -QAM symbols in a space-time code block.

Therefore, an EA individual can be defined as a ∑
 -dimensional ()

66

integer row vector [
] where { } { }. The

integer vector represents the vector [] in equation (5.6) and the fitness

function is translated accordingly.

The integer vector requires implementation of discrete versions of EAs to the

MD-STBC-MIMO problem. The BBO algorithm’s implementation for problems in both

discrete and continuous domain is almost the same, and presented in Table 2.1. The

applied migration scheme is the linear immigration-constant emigration model presented

in 2.3.2. We used a linear decreasing λ (immigration rate) curve with a maximum of I and

a constant μ (emigration rate) in order to reduce complexity. This constant emigration

rate reduces the complex process of selecting habitats by assigning a constant (uniform)

probability to each habitat to be chosen for sharing its SIVs.

However, the problem requires the implementation of the discrete ABC algorithm

presented in section 3.4. The DABC algorithm’s pseudo code is given in Error!

Reference source not found., and the special version proposed for MD-STBC-MIMO

employs operators (3.5) and (3.12). Similarly, the hybrid algorithm uses the same

discrete approach. A complexity comparison between the algorithms applied to the MD-

STBC-MIMO is discussed in the subsequent section.

5.5. Computational Complexity

A motivation for applying the proposed near-optimal algorithms to a MD-STBC-

MIMO problem is their low computational complexity. In this section, the computational

complexities of BBO, ABC and the hybrid algorithm proposed for MD-STBC-MIMO

symbol detection are compared with that of MMSE, SD, SDR, GA and the exhaustive

search. The computational complexity of exhaustive search (an implementation of the

ML detector) is or O(2n), ; so exhaustive search is usually

impractical for real-time operations of symbol detection. A number of suboptimal

detection schemes with better computational complexity have been presented in

literature.

67

The worst-case complexity of SD is exponential, and its expected complexity

depends on problem size and SNR [15]. SD has high complexity of ̃ [16] at low

SNR, where ̃ . However, it has polynomial complexity, often roughly cubic

complexity, at high SNR [15]. MMSE is one of the sub-optimal detectors that involve

inverting a matrix, and its computational complexity is ̃ [17]. The computational

complexity of SDR [19] in each iteration is O(NT
3.5) where NT stands for the number of

transmit antennas.

Typically, the computational complexity of population-based algorithms is

analyzed in terms of the number of fitness function evaluations, which in our problem

would be (5.6). One important reason is that their complexity is highly dependent on their

implementation and coding efficiency. The number of function evaluations in three

algorithms BBO, GA and EDA are the same and equal to ; where and represent

the total number of generations, and the population size, respectively [9, 18].

In the original ABC algorithm presented in [8], there is more than one fitness

function evaluation phase for each individual during one generation. In the ABC, during

the employed bees phase, each employed bee tests a neighbor food source for its

quality, thus the fitness function evaluation has to be run once for the whole food

sources in this phase. By the same token, during the onlooker bees phase, there are

fitness function evaluations for every food source. As a result, the overall number of

fitness function evaluations for these two phases in one algorithm generation is . In

the scout bees phase, ABC randomly selects one food source (individual) that hasn’t

improved after trials for elimination. Then the algorithm replaces its associated

employed bee with a scout that randomly selects a new food source location and keeps

its nectar quality in her memory. The values of all of the solutions in the population

increase twice during an algorithm generation: once during the employed bees phase

and once during the onlooker bees phase, unless a solution’s quality improves, or one

turned into a scout. Moreover, an employed bee turns into a scout after trials.

Therefore, the first individual to exceed the trials would be at the th generation. After

the th generation in the worst case scenario, every generation sends one scout that

runs the function evaluation procedure. As a result, the total number of fitness function

evaluations for the original ABC algorithm would be:

68

 (

)

(5.7)

This complexity is of course higher than the complexity of other aforementioned EAs.

The complexity of our proposed discrete ABC (Error! Reference source not

ound.) is yet less than (5.7) because this algorithm does not run the function evaluation

procedure for all the individuals in the employed bees and onlooker bees phases. Due to

the stochastic nature of the algorithm, there wouldn't be a closed form expression for the

number of food source locations that do not change with equation (10). Moreover, the

discrete ABC algorithm doesn’t have the limit of randomly selecting one food source to

abandon in the scout phase. Yet it abandons all solutions whose , and replaces

their associated bee with a scout. The number of these replacements is unknown and

random due to the heuristic nature of the algorithm. Therefore, we only present an

average number of fitness function evaluation for each run of discrete ABC from our

simulations in section 5.7. This number clearly demonstrates that this enhancement to

the original ABC has a great effect on reducing the complexity of the algorithm, such that

its total number of fitness function evaluations would become less than other EAs.

The complexity of the hybrid algorithm follows the same approach as the DABC.

This algorithm takes the advantage of the aforementioned enhancements of DABC, and

there would not be a closed form solution for its complexity. However, since the hybrid

algorithm has more effective procedures than DABC, it is predictable that it has more

number of fitness function evaluations than DABC with equal and . The reason is

that less number of solutions remains unchanged during the employed and onlooker

phases, which results in more number of fitness evaluation. This prediction is further

confirmed in section 5.6 when we present the comparison result between the average

numbers of fitness function evaluations of different EAs.

5.6. Simulation Results

In this section we present the simulation results of the proposed EA-based

detection applied to a MD-STBC-MIMO system, and its comparison with other detection

69

techniques. The system model used in our simulations is depicted in Figure 5.1. The

channels are assumed to be quasi-static, and different channels in MD-STBC-MIMO

assumed to be independent. In all our simulations, it is assumed that the mobile data is

transmitted in a form of 4-QAM modulation from all wireless devices . For

simulation experiments we assumed that each of the devices transmit the same

number of symbols . Therefore, there are symbols conveyed from the

transmit devices to the receiver. Each point in the plots of Figures 5.4 − 5.10 is a value

averaged over multiple independent runs. In each trial, the set of transmitted signals (

 1 2 K   in Eqn. (5.5)), channel matrices ( 1 2

T

K   in Eqn. (5.5)), and

noise (Z in Eqn. (5.5)) are generated randomly and independently of other trials.

Therefore, in each simulation trial received signal y in Eqn. (5.6) set from those randomly

generated variable in accordance with Eqn. (5.5). Then, the algorithms are run to seek

the value of [] that minimizes ̂. Therefore, the averaged results over

different simulation trials are in fact averaged over the different channel and noise

realizations, and also different realizations of the algorithm evolution in the case of

probabilistic algorithms such as GA, EDA, DABC, hybrid and BBO. This experimental

setup enables us to compare different algorithms in terms of the performance averaged

over different channel and noise realizations.

In order to present a fair comparison between EAs, all of them have the same

number of generations and population size. They also share the same initial population

matrix, and all these setting is kept constant during all simulations. The BBO parameters

set for implementation are: I = 1 and m = 0.1. The DABC algorithm’s trial parameter is

set to the number of algorithm iterations. The hybrid algorithm has the same

parameters as BBO and ABC for its related BBO and ABC procedures, respectively.

Detailed system configuration and algorithm parameters are given in a table next to each

figure.

70

5.6.1. BER Performance Comparison

The simulation results in Figures 5-2 through 5-6 show the BER performance

comparison between MMSE, SDR1, SD2, GA, BBO, ABC and Hybrid BBO/ABC

detectors. The MD-STBC-MIMO system configuration, (K,NT,NR, ,T), is set (4,2,6,4,2),

(5,2,8,4,2), (6,2,10,4,2), (7,2,14,4,2) and (3,4,4,4,2) for Figures Figure 5.2, Figure 5.3,

Figure 5.4, Figure 5.5, and Figure 5.6, respectively. The Alamouti space-time coding [7]

is used in Figures Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5, but for Figure 5-6 a

non-orthogonal four transmit antennas configuration is used for each mobile device. EA

shared parameters, (), which denote the number of iterations and the population size

(the number of island), are set to (60, 60), (100,100), (100,120), (120,200), and

(120,200) for Figure 5.2, Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6, respectively.

For these figures, the total numbers of symbols transmitted from all users are set 8,

10, 12, 12, and 14, which indicates that search spaces of 48, 410, 412, 414 and 412 possible

solutions, respectively.

For each simulation, we tried to pick a pair of (,) not only to make the EAs’

results close to SD’s, but also to choose the smallest possible pair of and in order to

reduce the computational complexity of the algorithm. Moreover, in order to compare the

results more precisely, and are identical for all EAs. From these figures we observe

that the best algorithm, that almost always return the same result as the SD is the hybrid

algorithm, and after that the ABC decoder returns the result with over 97% of the SD’s.

The third place is for BBO, following by EDA and GA. Comparing the BER performance

results of various detectors, it can be observed that EAs outperform other sub-optimal

detection methods in all the five figures, and can meet the optimal result by searching

through a much smaller set of individuals by selecting a feasible pair of (,).

1
 For Semi-definite Relaxation (SDR) simulation we have used the software provided by Dr. Zhi-

Quan Luo [13]
2
 For Sphere Decoder, we have implemented the algorithm mentioned in [15].

71

a.

b.

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

4 2 6 4 2 48 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

60 60 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

c. 2 0 -2 -4 -6 -8

ZF 89 86 80 74 70 64

MMSE 96 92 86 78 74 66

SDR 84 84 80 78 78 77

GA 100 99 96 91 85 72

EDA 100 100 98 95 93 80

BBO 100 100 98 97 96 81

ABC 100 100 100 100 99 98

Hybrid 100 100 100 100 100 99

Figure 5.2. Performance comparison for K = 4

a. BER performance comparison for (K,NT,NR,) = (4,2,6,4),
b. simulation parameters,
c. decoders’ percentage of the SD results

72

a.

a.
b.

System

K NT NR M T Search space STBC type Channel Type No. of Simulation runs

5 2 8 4 2 410 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

100 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

c.

 2 0 -2 -4 -6 -8

ZF 88 85 81 75 64 58

MMSE 95 90 85 78 67 59

SDR 85 82 81 79 74 71

GA 100 99 98 95 89 73

EDA 100 100 100 99 96 92

BBO 100 99 100 100 98 93

ABC 100 100 100 100 99 100

Hybrid 100 100 100 100 100 100

Figure 5.3. Performance comparison for K = 5

a. BER performance comparison for (K,NT,NR,) = (5,2,8,4),
b. simulation parameters,
c. decoders’ percentage of the SD results

73

a.

b.

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

6 2 10 4 2 412 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

100 120 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

c.

 -2 0 2 4 6 8

ZF 87 85 81 72 66 61

MMSE 93 90 85 74 68 62

SDR 84 84 81 75 76 72

GA 99 99 98 93 92 81

EDA 100 100 98 97 93 95

BBO 100 100 100 98 99 96

ABC 100 100 100 100 100 99

Hybrid 100 100 100 100 100 100

Figure 5.4. Performance comparison for K=6

a. BER performance comparison for (K,NT,NR,) = (6,2,10,4),
b. simulation parameters,
c. decoders’ percentage of the SD results

74

a.

b. System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

7 2 14 4 2 414 Alamouti Quasi-static fading 1000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

120 150 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

c. 0 2 4 6 8

ZF 68 49 22 14 2

MMSE 74 54 24 15 2

SDR 60 48 26 25 7

GA 36 91 84 86 100

EDA 36 94 71 76 14

BBO 33 100 64 94 100

ABC 100 100 100 100 100

Hybrid 100 100 100 100 100

Figure ‎5.5. Performance comparison for K = 7

a. BER performance comparison for (K,NT,NR,) = (7,2,14,4),
b. simulation parameters,
c. decoders’ percentage of the SD results

0 1 2 3 4 5 6 7 8
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/No

B
E

R

SD

BBO

ABC

HYB

GA

EDA

SDR

ZF

MMSE

75

a.

b.

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

3 4 4 4 2 412 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

120 200 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

c.

 -2 0 2 4 6 8

ZF 88 85 81 75 64 58

MMSE 95 90 85 78 67 59

SDR 85 82 81 79 74 71

GA 100 99 98 95 89 73

EDA 100 100 100 99 96 92

BBO 100 99 100 100 98 93

ABC 100 100 100 100 99 100

Hybrid 100 100 100 100 100 100

Figure ‎5.6. Performance comparison For K = 3

a. BER performance comparison for (K,NT,NR,) = (3,4,4,4),
b. simulation parameters,
c. decoders’ percentage of the SD results

76

The experiment for Figure 5-6 was performed on a non-orthogonal space-time

code, whereas the experiments for other figures were performed on the Alamouti code

(simple and orthogonal). The total number SN of symbols transmitted from all users in a

space time code block is 12, and 4-QAM is used, so the size of the search space is 412.

The population size is 150 and the number of generations (iterations) is 120, so BBO,

GA and EDA are exploring only 18,000 points in the search space, which is a reasonably

small portion of the search space. Similar to other figures, SD and BBO has the best

BER performance. In higher SNRs, GA’s performance diminishes notably, while BBO

pursues the near-optimal SD. GA requires 1.8 dB less SNR than SD and BBO to

achieve BER of 10-2.

From the computational complexity point of view in EAs, finding the optimal pair

of () is essential in order to minimize the processing power and the required

memory. According to the computational complexity order of these algorithms, with a

fixed population size (), more iteration until termination means more computation.

Figure 5.7 and Figure 5.8 show number of iterations required by each detection scheme

to achieve a desirable BER. The MIMO system configurations are (K,NT,NR,M) =

(6,2,10,4) and (5,2,8,4) for Figure 5.7 and Figure 5.8, respectively, using the Alamouti

STBC and quasi-static channel, and the SNR is fixed to 8 dB. Figure 5.7 shows that the

hybrid algorithm with the population size fixed to 100 is the first algorithm achieves the

sphere decoding performance in less than 50 iterations. After the hybrid algorithm, the

ABC decoder reaches SD in iteration 64. Other EAs whether cannot reach the SD

results, or require much more iterations to reach meet the SD results. In Figure 5-8 we

observe that the hybrid algorithm reaches the SD in about 32 iterations, while ABC

cannot reach earlier than its 80th iteration. This improved performance is consistently

observed in several other simulations with different system configurations. As a result,

not only the hybrid algorithm outperforms other sub-optimal algorithms, it delivers better

results than other well-known EAs such as GA and EDA, its predecessors BBO and

ABC, and can reach SD.

Furthermore, increasing the number of population per iteration up to some

point tends to hasten finding an acceptable solution; i.e., decreases the number of

iterations, , until termination. Figures Figure 5.9 to Figure 5.12 show the trade-off

77

between the population size and the iterations required to achieve a desired BER in GA,

BBO, ABC and the hybrid algorithm. The MIMO system configuration is (K,NT,NR,M,) =

(4,2,4,4), using the Alamouti STBC and quasi-static channel, and the SNR is 8 dB. The

detailed system configuration is given in Table 5.1.This trade-off is useful from the

system design point of view. If a hardware system has high processing capabilities and

low memory, then we can set the population size low to get same BER performance and

vice versa. (Higher and needs more memory.)

Table 5.1. System parameters for iteration – population size trade-off

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

5 2 8 4 2 410 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

1 ~ 120 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

78

a.

b.

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

6 2 10 4 2 412 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

1 ~ 150 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

Figure ‎5.7. BER vs. algorithm iteration comparison

a. BER performance comparison vs. iterations for (K,NT,NR,) = (6,2,10,4),
b. simulation parameters

79

a.

b. b.

System

K NT NR T Search space STBC type Channel Type No. of Simulation runs

5 2 8 4 2 410 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

1 ~ 120 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

Figure ‎5.8. BER vs. algorithm iteration comparison

a. BER performance comparison vs. iterations for (K,NT,NR,) = (5,2,8,4),
b. simulation parameters

80

Figure 5.9. Population size and iterations trade-off for GA with K = 4

Figure 5.10. Population size and iterations trade-off for EDA with K = 4

81

Figure 5.11. Population size and iterations trade-off for BBO with K = 4.

Figure 5.12. Population size and iterations trade-off for ABC with K = 4.

82

Figure 5.13. Population size and iterations trade-off for Hybrid with K = 4.

From the above four 3D plots, the fastest decreasing algorithm is the hybrid

algorithm. GA is also a rapid algorithm to reach the minimum, but it doesn’t reach the

optimal value, and according to Figure 5.2 till Figure 5.6 at the best it can reach 80% of

the SD results. From the last three plots we conclude that the hybrid algorithm reaches its

minimum value faster than its predecessors ABC and BBO both in the directions of

iterations and population size.

5.6.2. Complexity Comparison

There are two considerable issues while dealing with optimization algorithms and

especially Evolutionary Algorithms. First issue is the algorithms’ performance

comparison in terms of the elapsed time during each simulation runs. Second issue

which is a concern about the EAs is the number of fitness function evaluations. The most

complex procedure of an EA is where it runs the fitness function evaluation procedure,

which has to be run at least once in a generation (sometimes more than once such as in

ABC and the hybrid). The other procedures of an EA are usually simple additions,

83

multiplications, if conditions, taking minimum or maximum, which are not usually as

much complex as the fitness function.

In order to compare the complexities of the algorithms mentioned earlier in

Section 5.5 more practically, we run simulations for four different system configurations,

to compare their complexity in terms of computation time. Table 5.2 compares SD , ZF,

MMSE and SDR with other EAs in terms of the average elapsed time. The system

configurations are the same as those in Figure 5.2 to Figure 5.5. For the purpose of

these simulations, we employed Matlab® R2010b, running on PCs with Intel® Quad-core

2.83 GHz CPUs and 3 GB of RAM. The results show that all EAs need much less time

than SD at very low SNRs. The reason for this difference is that SD has a high

computational complexity especially at very low SNRs, which also depends on the

search space. Therefore the case of -2 dB for five, six and seven users SD spends the

highest time during each simulation run among all other detectors in the same and

above SNRs. However, the time elapsed in every EA simulation run is almost constant in

different SNRs; because their complexities does not depend on SNR. These results

demonstrate that some EAs, especially hybrid and DABC are the best choices in the low

and mid SNRs. As the number of transmit devices increases, SD detector’s execution

time grows exponentially, and make it impracticable particularly for low to mid SNRs.

Table 5.3 contains the average number of fitness function evaluations for one

simulation run of each EA. The system parameters are the same as Figure 5.2,

Figure 5.3, and Figure 5.4. We observe that the number of fitness evaluations is identical

for GA, EDA and BBO and is equal to , as discussed earlier in section 5.5. The

original ABC algorithm requires fitness function evaluations, which is

equal to 7,220, 20,033 and 24,019 for four, five and six transmit devices, respectively.

These numbers are more than twice the number of fitness evaluations of BBO, GA and

EDA. However, after our enhancement to the DABC algorithm, we observe that these

numbers have been reduced and become closer to . We further observe the

outstanding results of the hybrid algorithm: despite of its performance results equal to

SDs’, its number of fitness function evalutions is mostly less than other EAs. In

conclusion, the hybrid algorithm would be a significantly considerable choice for joint

symbol detection in MD-STBC-MIMO systems.

84

Table 5.2. Comparison between detectors’ execution time (in seconds).

No. of
Devices

4 5

SNR -2 2 6 -2 2 6

ZF 0.0015 0.0013 0.0013 0.0015 0.0013 0.0013

MMSE 0.0012 0.0011 0.0011 0.0012 0.0011 0.0011

SDR 0.0046 0.0040 0.0033 0.0071 0.0060 0.0050

GA 0.2685 0.2684 0.3682 0.4820 0.4814 0.4819

EDA 0.4170 0.4168 0.4167 0.7361 0.7363 0.7361

BBO 0.0603 0.0601 0.0598 0.1036 0.1035 0.1035

ABC 0.2500 0.2530 0.2547 0.4176 0.4232 0.4252

Hybrid 0.3432 0.3442 0.3441 0.5636 0.5652 0.5649

SD 0.4462 0.1062 0.0223 3.8743 0.5213 0.0563

No. of
Devices

6 7

SNR -2 2 6 -2 2 6

ZF 0.0081 0.0024 0.0014 0.0109 0.0016 0.0016

MMSE 0.0015 0.0015 0.0012 0.0039 0.0013 0.0013

SDR 0.0111 0.0092 0.0069 0.0226 0.0108 0.0082

GA 0.5186 0.5214 0.5180 0.8181 0.8116 0.8116

EDA 0.7762 0.7802 0.7756 1.1836 1.1824 1.1814

BBO 0.1083 0.1083 0.1077 0.1690 0.1648 0.1650

ABC 0.4204 0.4292 0.4270 0.6125 0.6180 0.6194

Hybrid 0.5790 0.5849 0.5813 0.8627 0.8591 0.8617

SD 32.0401 2.3918 0.1875 356.9387 8.5781 0.2243

85

Table 5.3. The Average Number of EAs’ Fitness Function Evaluations.

No. of Transmit
Devices

4 5 6 7

GA 3,600 10,000 12,000 24,000

EDA 3,600 10,000 12,000 24,000

BBO 3,600 10,000 12,000 24,000

ABC 5,071 13,852 16,063 31,151

Hybrid 3,857 9,985 11,866 21,473

5.6.3. Related Work

The author has published the results of this chapter in [19, 20]. Naeem has

applied another EA to a similar system model presented in [21]. The EA he uses is

Central Entropy (CE) [22]. The simulation results of this paper show CE has a close

performance to SD. Note that as mentioned in Section 5.5, computational complexity is a

major concern. In the EAs discussed in this the thesis and in CE [21], computational

complexity, by the definition of number of fitness function evaluations, is . In the

simulation results of this chapter, small numbers for and have been selected to

demonstrate hybrid algorithm approaches SD with less number of thus less number

of fitness evaluations. Moreover, the simulation results in figures 5-7 until 5-13 show that

other EAs may have a closer approach to the SD if the number of iterations or

population size is increased. This can be intuitively explained as the more number of

 and , the higher chance of the algorithm to find the global optima. The results in [21]

include the simulations for and . However, for and other simulation

problems the same, the result of Figure 4 in [21] is obtained with where in

Figure 5.2 is set to . Also in Figure 3 of [21], with all other parameters the same,

 , while in Figure 5.3 is set to half of that amount. Therefore, a conclusion from

the above points is that not only for CE, but for other EAs presented in this chapter, if the

number of population size or the number of iterations is increased, most of them have

the potential to have a very close results as SD. But the computational complexity is a

major concern and the main goal is to choose the EA that meet SD results with less

number of fitness function evaluations. A simulation has been run to compare the results

of CE with the existing algorithms in this paper and is presented in Figure 5.14. This

86

simulation has been run for three times, where each run was an average BER of 2000

independent trials, and all these curves were quite identical. Note that as the number of

population size is 100 and is half of the number in the results presented in [21]. The

mediocre result for CE is the effect of decreasing the algorithm parameters and

(thus the number of fitness function evaluation), while keeping other simulation

parameters the same.

a.

b.

System

K NT NR M T Search space STBC type Channel Type No. of Simulation runs

5 2 8 4 2 410 Alamouti Quasi-static fading 2000

Common EAs BBO ABC GA EDA

Generation Pop I m Migration trial Pxover Pmut Psel Pxover Pmut Psel

100 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5

Figure ‎5.14. Performance Comparison with CE for K = 5

a. BER performance comparison for (K,NT,NR,M) = (5,2,8,4),
b. simulation parameters

87

Naeem has published another paper with the same system model in [22], where

he applies EDA to the optimization problem. Similar to the previous discussion, his

results are obtained with higher number of population size ; while even Figure 5.7 and

Figure 5.8 show that EDA can have a closer result to SD with higher or . In fact, the

simulation results in this chapter demonstrate a fairly good performance for EDA that is

about 90% of the SD results. Yet, the hybrid algorithm is the one that returns the best

results with the lowest fitness function evaluations. Another similar work is published in

[23] where authors applied EDA and BBO. Similar to the above discussion, it is clear that

the solver presented in this chapter outperform the BER performance of EDA and BBO.

5.7. Conclusion

In this chapter, we proposed three EAs discussed earlier in Part I of this thesis

for Multi-Device (MD) Space-Time Block Coded (STBC) Multi Input Multi Output (MIMO)

Communication System. The complexity of these algorithms is low as compared with

optimal ML detector, so they are suitable for high-speed real-time communications. In

addition, compared to the Sphere Decoding, other Evolutionary Algorithms like GA and

EDA, and decoding schemes such as MMSE, ZF and SDR, these EA detectors show

significantly better performance in MD-STBC-MIMO. The proposed algorithms also have

consistently better performance-complexity trade-off at low SNRs, in comparison to

existing algorithms. Even at high SNRs, these algorithms have relatively good

performance-complexity trade-off.

Among the proposed algorithms, the BBO decoder requires the least time to

return the results, and the hybrid algorithm usually returns the same results as the SD,

and it returns the results through the least number of fitness function evaluations.

Therefore, we conclude that the proposed EAs, particularly the hybrid algorithm, are

suitable for high-speed real-time communications.

The hybrid algorithm is a potential solution to be applied to the same type of

computationally complex problems in wireless communication because of its simplistic

model, low implementation complexity, and convergence to a nearly optimal solution

with a small number of iterations.

88

References

 G. J. Foschini and M. J. Gans, “On limits of wireless communications in a fading [1]
environment when using multiple antennas,” Wireless Personal Communications,
vol. 6, pp. 311-335, 1998.

 E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” European Trans. on [2]
Telecomm. vol. 10, pp. 569-709, Nov. 1999.

 V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-time codes for high data [3]
rate wireless communications: performance criterion and code construction,” IEEE
Trans. Information Theory, vol. 44, pp. 744-765, Mar. 1998.

 H. Vikalo and B. Hassibi, “On the sphere decoding algorithm: Part II, [4]
generalizations, second-order statistics and applications to communications,” IEEE
Trans. on Signal Processing, vol 53, no. 8, pp. 2819-2834, Aug 2005.

 J. Jalden and B. Ottersten, “On the complexity of sphere decoding in digital [5]
Communications,” IEEE Trans. on Signal Processing, vol. 53, no 4, pp. 1474-
14844, April 2005.

 S.Verdú, “Minimum Probability of Error for Asynchronous Gaussian Multiple [6]
Access Channels,” IEEE Trans. Information Theory, vol. 32, pp. 85-96, Jan. 1986.

 S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless [7]
Communications,” IEEE journal on select areas in communications, vol. 16, no. 8,
pp. 1451-1458, Oct. 1998.

 D. Karaboga, B. Basturk, “A powerful and efficient algorithm for numerical function [8]
optimization: artificial bee colony (ABC) algorithm”, Journal of Global Optimization,
vol.39, no. 3, pp. 459-471, 2007.

 D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, [9]
Addison-Wesley, 1989.

 J. Proakis, Digital Communication, McGraw-Hill, 5th Ed. 2007. [10]

 M. Nekuii, M. Kisialiou, T.N. Davidson, and Z. Q. Luo, “Efficient Soft Demodulation [11]
of MIMO QPSK via Semidefinite Relaxation," Proceedings of 2007 IEEE
International Conference on Acoustics, Speech, and Signal Processing, pp. 2665-
2668, April 2008.

 B. Hassibi and B.M. Hochwald, “High-rate codes that are linear in space and time,” [12]
IEEE Trans. Information Theory, vol.48, no.7, pp. 1804−1824, Jul. 2002.

 http://www.ece.umn.edu/~luozq/software/sw_about.html; last accessed Fall 2012. [13]

http://www.ece.umn.edu/~luozq/software/sw_about.html

89

 M. Kisialiou and Z.-Q. Luo, “Performance analysis of quasi-maximum-likelihood [14]
detector based on semi-definite programming,” Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., vol. 3, pp. 433-436, 2005.

 B. Hassibi, H. Vikalo, “On the sphere decoding algorithm: Part I, the expected [15]
complexity,” IEEE Trans. Signal Processing, vol.53, no.8, pp. 2806-2818, Aug
2005.

 O. Damen, A. Chkeif, and J. C. Belfiore, “Lattice code decoder for space-time [16]
codes,” IEEE Communications Lett., vol. 4, no. 5, pp. 161–163, May 2000.

 C. Comaniciu, N.B. Mandayam, and H.V. Poor, “Wireless Networks: Multiuser [17]
Detection in Cross-Layer Design,” Springer, NY, May 2005.

 Ashrafinia, S.; Pareek, U.; Naeem, M.; Lee, D.; "Biogeography-based optimization [18]
for joint relay assignment and power allocation in cognitive radio systems," Swarm
Intelligence (SIS), 2011 IEEE Symposium on, pp.1-8, 11-15 April 2011.

 S. Ashrafinia; M. Naeem;D. Lee; “A low complexity evolutionary algorithm for multi-[19]
user MIMO detection”, Computational Intelligence in Multicriteria Decision-Making
(MDCM), 2011 IEEE Symposium on, 11-15 April 2011, pp. 8 – 13, Paris, France.

 S. Ashrafinia; M. Naeem; D. Lee;“Discrete Artificial Bee Colony for Computationally [20]
Efficient Symbol Detection in Multi-Device STBC MIMO Systems”, accepted in the
Journal of Advances in Artificial Intelligence, Nov. 2012.

 M. Naeem; D.C. Lee; "A joint symbol detection algorithm efficient at low SNR for a [21]
Multi-Device STBC-MIMO system," Radio and Wireless Symposium (RWS), 2010
IEEE , pp.440-443, 10-14 Jan. 2010.

 M. Naeem; D.C. Lee; "Efficient symbol detection in Multi-Device STBC-MIMO [22]
System," Communications and Information Technology, 2009. ISCIT 2009. 9th
International Symposium on, pp.578-583, 28-30 Sept. 2009.

 D. C. Lee and M. Naeem, “Computationally Efficient Symbol Detection Schemes in [23]

Multi-Device STBC-MIMO Systems,” in MIMO Systems, Theory and Applications,

Vienna, Austria: INTECH, 2011.

90

6. EAs for Joint Relay Assignment and Power
Allocation in Cognitive Radio Systems

In this chapter, an EA-based (BBO, ABC and hybrid ABC/BBO algorithms) low-

complexity interference aware relay assignment scheme with power control is presented

for a relay-assisted cognitive radio network comprising one source node, multiple relays

and multiple destination nodes. Optimally relay assignment using the Exhaustive Search

Algorithm (ESA) has a high computational complexity, which grows exponentially with

the number of relays and users. The joint relay assignment formulation is presented with

source and relays' power allocation as a mixed integer non-linear programming problem,

which is further reduced to a simpler integer programming problem. The EA-based relay

assignment scheme with discrete power control at source and relays is presented for the

integer programming problem with the three algorithms, and compared with other EAs

such as EDA and BACO. The superiority of the hybrid algorithm over other EAs is

confirmed through computational experiments, and we present these results.

6.1. Introduction

Official reports show that spectrum lies fallow in certain areas, at certain times,

and on certain frequencies [1]. For example, a licensee may have exclusive use of

spectrum in a particular geographic area, but choose not to make use of the spectrum

over the entire area. Likewise, a licensee may fully utilize spectrum during times of peak

usage, but utilize only half of its spectrum during off-peak hours. The spectrum utilization

efficiency can be improved by allowing secondary (unlicensed) users to access the band

unused or partially occupied by the primary (licensed) users (PUs), under the condition

that the secondary users’ signals do not exceed the interference threshold at the PU [2].

Relay assisted cognitive radio networks of the secondary users [3-5] take the advantage

of cooperative communication [6], which reduces the source to the destination

transmission power, and consequently shrinks the interference at the primary users.

91

The cognitive radio system presented in this chapter comprises a single source

node, multiple destination nodes and multiple relays. We employ the spectrum underlay

[3] as a technique that allows the secondary users to share the whole licensed spectrum

with the PUs. Relays use amplify and forward (AF) relaying [7], in which the relay

amplifies the received signal from the source and simply forwards it to the destination.

We further assume that these relays can only transmit on discrete power levels. This

assumption simplifies the control channel traffic from source to destination, and

eliminates employing sophisticated circuit to support communication at arbitrary power

levels [8].

Researchers have shown interest to cooperative communications for wireless

networks, due to its ability to mitigate fading in wireless communication through

achieving spatial diversity [20]. However, using multiple relays rather than a single relay

raises the problem of how to assign each relay to receivers. In a system with multiple

destination nodes, one has to consider the issue of optimal assignment of relays to

different destinations. Running on the underlay mode is followed by constraints on the

relay transmission power, due to the interference constraints that need power control at

relays. In this chapter, our main objective for both problems is the optimal assignment of

relays to the secondary users, in a cognitive radio network with discrete power levels

working under AF mode. Therefore the sum capacity of the system is maximized under

the constraint that the interferences on the primary users should be below their specified

threshold.

The issue of optimal relay assignment has been proposed for cellular networks

and some work has been done on relay assignment and power allocation schemes [9].

Nonetheless, these schemes cannot be applied to cognitive radio systems as they may

violate the interference constraints at the PUs. Some works have also been done on the

optimal relay assignment in ad-hoc networks comprising multiple source-destination

pairs [10, 11]. A relay assignment schemes for cognitive radio networks with single

source node, single multiple destinations and multiple relays is proposed in [12]; yet the

power to source and relays are not assigned optimally.

We formulate the optimization problem of optimal relay assignment and power

control as a non-linear mixed integer programming with these variables: the source

92

transmission power, relays' transmission power levels and the assignment of relays to

receivers. We observe that the optimization of source and relays' power is separable

which enables us to present a closed-form expression for the optimum source power.

This further reduces our initial formulation into an integer programming problem.

We can use the Exhaustive Search Algorithm (ESA) to obtain the optimal

solution, due to the combinatorial nature of the problem. Although ESA provides the

optimal solution to the problem, it has a high computational complexity. Therefore, we

take the advantage of heuristic algorithms, particularly the EAs, and their ability to solve

optimization problems efficiently and come to an optimal solution as rapid as possible –

i.e. with relatively-low computational complexity.

In the rest of this chapter, we present the cognitive radio system model and

formulation in section 6.2, followed by the EAs’ implementations in 6.3. The simulation

results are presented in 6.4, and section 6.5 contains the conclusion.

6.2. System Model

This section presents the system model of a cognitive radio with a single source

node, multiple relays and multiple destinations in 6.2. The formulation of the joint source

and relay power allocation is presented as a mixed integer non-linear programming

problem, and further reduced to an integer programming problem. The EAs’

implementation is discussed in 6.3, and the simulation results are presented in

Section 6.4.

Our model of the relay assisted cognitive radio network comprises one source

(transmitting) node, K destination (receiving) nodes or secondary users, and L relay

nodes. There are M primary users (PUs) in this system, and these M primary users

can be interpreted as M geographic locations, where the strengths of the cognitive

radio signals must be limited. Figure 6.1 shows a block diagram of a multi destination

cooperative cognitive radio network.

93

S

1

l

L

K

m

1
.

, ls rh

Source

Relays

Receivers/

Destination

M

Primary Users

1

k

.
 . . .

 . . .

,lr mh

,lr kh

,s kh

,s mh

Figure 6.1. Relay Assisted Cognitive Radio Network

Each transmitter, receiver and relay has a single antenna. We denote by ksh , the

complex-valued channel gain from the source to the
thk receiver, lsh , the channel from

the source to the
thl relay, and klh , the channel from the

thl relay to the
thk receiver, as

depicted in Figure 1. Also we denote by msh , the channel gain from the source to the

thm primary user and mlh , the channel gain from the
thl relay to the

thl primary user.

We assume that the transmitter of the source and the receivers of the destinations have

knowledge of their incident channel states (channel gains). It is also assumed that the

complex-valued channel gains lsh , and klh , are known to the
thl relay, and all the relays

are perfectly synchronized, as assumed in [8]. In our system we assume that each relay

can transmit to the PUs at a finite number of transmission power levels between 0 and

max

lp , where
max

lp is the maximum power which the
thl relay is allowed to transmit; and

94

the
thl relay uses a fixed transmission power lp per dimension. The interference power

from the
thl relay to the

thm PU is denoted by
2

,, = mllml hpI .

In this cognitive radio system a two-step Amplify-and-Forward (AF) scheme is

employed for cooperative communication [8]. Each symbol is conveyed from the source

to destinations in two steps (time slots). In the first time slot, the source transmits its data

carrying signals, and all relays and destination nodes are able to receive these signals. It

is assumed that each source-destination pair of this cognitive radio network has been

allocated equal bandwidth, and each destination node receives its data on a separate

frequency band. This separation of receiver nodes’ frequency band paves the way of

assuming that different receiver nodes’ signals do not interfere with one another. Each

relay is assumed to transmits its received signal at the same frequency band it received

the signal. This models a low-cost relay that simply amplifies the signal and forwards it.

As mentioned above, the interference to each PU must be constrained by a

specific threshold in each user band and in each time slot. We denote by

 the transmission power of the source to the th user band. The received signal at the

 th relay is
lls

k

s ZshP ,
; where is normalized complex-valued transmitted symbol –

i.e. , and represent the complex white Gaussian noise with the power

spectral density of . The power of this white Gaussian noise is expressed as

WNW
N

N 0
0 =2

2
= in each user band [13], where W denotes the bandwidth of each

user band. In the second time slot, relays transmit the amplified received signal. In our

system model, the relay or relays assigned to the th user filter in the signal received in

the band indexed by , amplify, and then transmit it to the th user [8]. In the system

being studied in this chapter, a receiver can receive data from multiple relays, while each

relay can only transmit to one receiver. We define as a binary assignment indicator

with the following definition:





otherwise

receiverkthetoassignedisrelaylif thth

kl
0

1
=,

(6.1)

95

Now, we can express the channel capacity for the
thk user in shared bandwidth

[14] amplify and forwarding mode [8] as:

 ()

 [

 | |

(∑ | | √

)

 ∑ (| |√)

]

where

NhP ls

k

s

l


2

,

1
=

(6.2)

The goal of the optimal relay assignment problem formulation is to maximize the sum

capacity at the receivers, under the interference constraints of the PUs.

If we implement the interference constraints to the relay assignment problem,

we'll have the following mixed integer non-linear programming problem:

 

toubject

ph

phh

N

P

N

hP
OP

lkll

L

l

llkllskl

L

l
k

sks

k

s
K

kkll
pk

s
P

 s

1

1log
2

1
max:1

2

,

1=

2

,,,

1=

2

,

1=,
,,

































































   klPPpC

LlppC

kPPC

kmIhPC

kmIhpC

LlC

k

sLlkl

max

lkl

K

k

l

max

s

k

s

max

kmms

k

s

max

kmmllkl

L

l

kl

K

k

,0,,0,1:6

,1,2,=,:5

)(,:4

),(,:3

),(,:2

,1,2,=1,:1

,

,

1=

,

2

,

,

2

,,

1=

,

1=































(6.3)

96

where
max

mI is the maximum tolerable interference for the
thm primary user,

LP is a set

of relay power levels






 max

l

max

l

max

l p
pp

,,
2

,0, 


 with the cardinality of LP [12], and lp

is a discrete value from the set
LP representing the discrete power level.

Since the relays power levels are discrete, they can only operate on finite number of

transmission power levels. The advantage of discretizing the relay power levels is

twofold: first, fewer choices of transmission power – i.e. fewer bits in control messages

to indicate the relay power level, and second, employing inexpensive relays. The

constraint 1C ensures assignment of each relay to the maximum one user. The

constraints 2C and 3C define the interference constraints for the source and relay

transmission. The constraints 4C and 5C limit the power for the source and relays

respectively. Moreover, the constraints 1C , 5C and 6C together ensure that only the

selected relay transmits under its own specified power levels. Due to the fact that the

source transmission is in a different time slot than relays', 3C and 4C as source power

constraints, as well as 2C and 5C as relays' power constraints are decoupled.

We can re-write C3 as:

.,1,2,=,
2

,

, Mm
h

I
P

ms

max

kmk

s 

(6.4)

The optimum source power satisfying all M PUs at the
thk band is

.,,,,min=
2

,

,

2

,2

2,

2

,1

1,

,





























Ms

max

kM

s

max

k

s

max

kmax

s

k

opts

h

I

h

I

h

I
PP 

(6.5)

If optsP , is known, the optimization problem in (6.3) can be rewritten as the

following integer programming problem:

97

 

tosubject

ph

phh

N

P

N

hP
OP

lkll

L

l

llkllskl

L

l

k

optsks

k

opts
K

kkll
p



























































2

,

1=

2

,,,

1=,

2

,,

1=,
,

1

1log
2

1
max:2







   .,,0,1:4

,1,2,=,:3

),(,:2

,1,2,=1,:1

,

,

1=

,

2

,,

1=

,

1=

klPpC

LlppC

kmIhpC

LlC

Llkl

max

lkl

K

k

l

max

kmmllkl

L

l

kl

K

k



























(6.6)

Equation (6.6) can be bounded below by adding one-to-one constraint in relay

assignment to reduce its feasible set. This one-to-one constraint means that a relay can

only transmit data to at most one user, and a user can be assigned to at most one relay.

Thus, the modified version of (6.6) would be:

 

tosubject

ph

phh

N

P

N

hP
OP

lkll

L

l

llkllskl

L

l

k

optsks

k

opts
K

kkll
p



























































2

,

1=

2

,,,

1=,

2

,,

1=,
,

1

1log
2

1
max:3







   .,,0,1:5

,1,2,=,:4

),(,:3

,1,2,=1,:2

,1,2,=1,:1

,

,

1=

,

2

,,

1=

,

1=

,

1=

klPpC

LlppC

kmIhpC

KlC

LkC

Llkl

max

lkl

K

k

l

max

kmmllkl

L

l

kl

K

k

kl

L

l



































(6.7)

The Exhaustive Search Algorithm (ESA) evaluates all    1
1


 L

PL
K possible

relay assignments for 2OP (6.6) to reach to an optimal solution, while 3OP needs

98

 

  
















!

!,

0= iPL

PL
K

L

L

i
L

PLKmin

i
 relay assignments. The former number is computationally

inefficient because it grows exponentially with the number of relays and power levels;

while the latter has a lower complexity that increases with the number of users.

6.3. Evolutionary Algorithms-Based Relay Assignment with
Greedy Power Allocation

We present our contributed algorithm, the binary EA-based relay assignment with

greedy power allocation. This algorithm employs the binary EAs to assign relays to

receivers, by detecting suboptimal value of binary assignment indicators .

Subsequently, based on the values of the binary assignment indicators , the

algorithm utilizes a greedy algorithm to allocate the relays' discrete power levels. We

propose a general description of BBO in the following subsection, and will continue by

presenting our implementation of BBO to the relay assignment problem to determine the

suboptimal solutions for the optimization problem discussed in (6.6).

The optimization problem discussed in (6.6) is a constraint optimization problem.

Thus it needs to run a procedure to ensure that the interference and power allocation

constraints are satisfied. We present a “Constraint Check with Power Allocation” (CCPA)

procedure to perform this checking. This procedure’s task is to convert the non-feasible

candidate solutions to feasible solutions that satisfy the (6.6) constraints, and greedily

assign power to the relays. The pseudo code of CCPA is given in Table 6.1.

For implementing EAs and finding the matrix of the size , the matrix is

modified to a -dimensional vector ̅ and expressed as:

 ̅ []. If any candidate solution violates the

constraints C1 and C2 of the optimization problem presented in (6.6), CCPA intelligently

corrects the violation in the lines 3-9 of Table 6.1 by placing zeros and ones in some

position. The binary assignment indicator vector ̅ in the lines 7-8 helps relays to be

assigned to users. In the next step, the procedure sets the corresponding relays’ initial

power levels to the maximum possible discrete value. In the occasion of the PU

interference constraint C4 violation, the procedure selects the relay with the highest

99

individual sum interference in the lines 12-14. This is the same as writing

 , where ∑ | |

 , and if
 , then its power level

is reduced by one
 . Lastly, the procedure recalculates the PU

interference, and ensures the interference constraints are satisfied at every PU through

the repetition of the lines 12-15.

100

Table 6.1. Pseudo code of the CCPA algorithm

1: Initialization:
)(0,= ll 

2: for 1=j to N

3: for 1=l to L

4: if
1> ,

j

klk


5:
 1= _= ,

j

klfindofpermrandx 

6:
1= ,0,= (1),,

j

xl

j

kl k  

7: end if

8:
 1=)(,  L

j

klk
PlpFactor 

9:  1)/(=  L

max

l

j

l PlpFactorpp

10:

end for

11:

2

,,= ml

j

kl

j

ll

k

m hp 

12: while
),(,, kmI km

max

k

m 

13:

2

,= ml

j

lm

l hp

14:

l

Ll

l 
,1,2,=

*
argmax=

15:

   11= *

**  L

j

l

j

l
PlpFactorpp

16:

2

,,= ml

j

kl

j

ll

k

m hp 

17:

end while

18: if
0= j

lp

19:
kj

kl 0,=,

20: end if

21:  KLLKK ,,12,2,11,1,1 ,,,,,,,,,=  

22: end for

23: return

101

6.4. Simulation Results

In this section we illustrate our simulation results for the proposed EA-based

relay assignment with greedy power allocation problem, which provides a suboptimal

solution to the constraint optimization problem discussed in (6.6). The performance

comparison includes the Exhaustive Search Algorithm (ESA) that returns the exact

maximal capacity in the optimization problem (6.7). We also employ other bio-inspired

EAs, such as EDA and ACO, and compare them with BBO, ABC and hybrid, as well as

another scheme, called ESA one-to-one. The ESA one-to-one scheme serves as the

optimal solutions lower bound for the constraint optimization problem in (6.6), which

yields to the optimal solution of the constraint optimization problem presented in (6.7).

We compare these four schemes with different transmission power levels. The signal to

noise ratio is fixed to 10=/NPmax
 dB, where

maxP denotes the maximum allowed

transmission power from the source.

Each relay can either operate on two, or four

different transmission power levels -- i.e.  max

lL pP 0, or  max

l

max

l

max

lL pppP /3,2 /3, 0, .

6.4.1. Algorithms’ Performance Results

Figure 6.2 till Figure 6.7 illustrate the implementations results of the

aforementioned algorithms, obtained by averaging the individual capacity of different

randomly-generated scenarios based on above values. We compared these simulation

results based on different system parameters such as: L , K , M , and
max

mI . The channel

gain between source, relays and destinations are randomly generated in accordance

with the assumption of independent (i.i.d.) channel gain drawn from a complex Gaussian

distribution. As a consequence, the presented results averaged over different simulation

trials are in fact the average over different channel and noise realizations and also

different realizations of the algorithm evolution in case of EAs.

EA parameters are kept constant through all simulations, and they share the

same initial population for a fair comparison. BBO uses the piece-wise constant

migration explained in 2.3.3, and is based on the partial immigration-based BBO.

102

We present the plot for the capacity versus the number of relays in Figure 6.2

and Figure 6.3 for the set of parameters    /10,2,2,6,1=,,,, max

L

max

l

max

m PmWPpIKM

and  /10,4,4,5,1 maxPmW , respectively. We provide simulation results for the case of

 max

lL pP 0, and  max

l

max

l

max

lL pppP /3,/3,20,= . Here we observe that capacity

increases with the number of relays, because more relays increase the choices of relay

assignment.

Figure 6.4 and Figure 6.5 depict the capacity vs. number of secondary users, for

systems    /10,2,6,5,100=,,,, max

L

max

l

max

m PmWPpIML and  /10,4,5,4,100 maxPmW ,

respectively. In these two figures, we observe that the capacity increases with the

number of users.

Figure 6.6 and Figure 6.7 show the performance plots of the capacity versus the

interference threshold
max

mI for the case of    /10,16,1,4,=,,,, max

L

max

l PPpKML and

 /10,44,3,4, maxP respectively. Here again we observe that the capacity increases as we

amplify the interference threshold, because a feasible set of the optimization problem

with lower
max

mI is a subset of a feasible set with higher
max

mI .

103

a.

b.

System Common EAs

K M

 Search space No of Simulation runs Generations Pop

6 2 1mW 2 /10 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c.

2 3 4 5 6 7

ESA 1 to 1 97 95 93 90 89 85

EDA 100 100 98 95 92 90

BACO 100 100 99 98 97 96

BBO 100 100 99 96 94 92

ABC 100 99 97 95 95 94

Hybrid 100 100 100 99 98 98

Figure ‎6.2. Sum rate vs. number of relays For K = 6

a. Sum rate vs. number of relays for (
) ,

b. simulation parameters,
c. algorithms’ percentage of the ESA results

2 3 4 5 6 7
0.5

1

1.5

2

2.5

3

L

A
ve

ra
g
e

 C
a

p
a

ci
ty

 b
/s

/H
z

ESA, K = 6, I = 1

ESA 1 to 1, K = 6, I = 1

EDA, K = 6, I = 1

BBO, K = 6, I = 1

ABC, K = 6, I = 1

HYB, K = 6, I = 1

BACO, K = 6, I = 1

6

2.3

2.4

104

a.

b. System Common EAs

K M

 Search space No of Simulation runs Generations Pop

5 4 1mW 4 /10 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c.

1 2 3 4 5

ESA 1 to 1 97 92 89 86 84

EDA 100 100 100 97 95

BACO 97 98 97 96 96

BBO 100 100 100 98 96

ABC 100 100 99 97 97

Hybrid 100 100 100 99 98

Figure ‎6.3. Sum rate vs. number of relays For K = 5

a. Sum rate vs. number of relays for
 ,

b. simulation parameters,
c. algorithms’ percentage of the ESA results

1 2 3 4 5
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

L

A
ve

ra
g
e

 C
a

p
a

ci
ty

 b
/s

/H
z

ESA, K = 5, I = 1

ESA 1 to 1, K = 5, I = 1

EDA, K = 5, I = 1

BBO, K = 5, I = 1

ABC, K = 5, I = 1

HYB, K = 5, I = 1

BACO, K = 5, I = 1

4

1.5

105

a.

b. System Common EAs

L M

 Search space No of Simulation runs Generations Pop

6 5 100mW 2 /10 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c.

3 4 5 6 7

ESA 1 to 1 59 71 81 88 92

EDA 98 96 94 92 91

BACO 99 99 98 97 97

BBO 99 97 95 93 92

ABC 100 98 96 95 92

Hybrid 100 100 99 99 98

Figure ‎6.4. Sum rate vs. number of users For L = 6

a. Sum rate vs. number of users for (
) ,

b. simulation parameters,
c. algorithms’ percentage of the ESA results

3 4 5 6 7
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

K

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA, L = 6

ESA 1 to 1, L = 6

EDA, L = 6

BBO, L = 6

ABC, L = 6

HYB, L = 6

BACO, L = 6

106

a

.

b
.

System Common EAs

L M

 Search space No of Simulation runs Generations Pop

5 4 100mW 4 /10 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c
.

2 3 4 5

ESA 1 to 1 51 64 75 83

EDA 99 98 97 95

BACO 97 96 96 96

BBO 99 98 97 96

ABC 99 98 98 97

Hybrid 99 99 99 98

Figure ‎6.5. Sum rate vs. number of users For L = 5

a. Sum rate vs. number of users for (
) ,

b. simulation parameters,
c. algorithms’ percentage of the ESA results

2 3 4 5

0.8

1

1.2

1.4

1.6

1.8

2

K

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA, L = 5

ESA 1 to 1, L = 5

EDA, L = 5

BBO, L = 5

ABC, L = 5

HYB, L = 5

BACO, L = 5

4

1.7

3

1.6

107

a.

b. System Common EAs

L M K
 Search space No. of Simulation runs Generations Pop

6 5 6 2 76 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c.

 10-3 10-2 10-1 100 101 102

ESA 1 to 1 99 90 85 79 75 76

EDA 96 96 97 95 95 95

BACO 96 96 97 97 98 98

BBO 96 96 97 96 96 96

ABC 96 95 96 96 97 97

Hybrid 96 95 97 98 99 99

Figure ‎6.6. Sum rate vs. interference threshold For K = 6

a. Sum rate vs. interference threshold for ,
b. simulation parameters,
c. algorithms’ percentage of the ESA results

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

2

4

6

8

10

12

Interference (m Watts)

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA, L = 6, K = 6

ESA 1 to 1, L = 6, K = 6

EDA, L = 6, K = 6

BBO, L = 6, K = 6

ABC, L = 6, K = 6

HYB, L = 6, K = 6

BACO, L = 6, K = 6

10
1

9.8

10

10.2

108

a.

b. System Common EAs

L M K
 Search space No. of Simulation runs Generations Pop

6 5 7 2 86 200 20 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

c.

10-3 10-2 10-1 100 101 102

ESA 1 to 1 99 91 87 82 79 79

EDA 96 96 96 95 94 94

BACO 96 95 97 97 98 98

BBO 96 96 97 96 95 95

ABC 96 95 95 95 96 96

Hybrid 96 95 97 98 99 99

Figure ‎6.7. Sum rate vs. interference threshold For K = 7

a. Sum rate vs. interference threshold for ,
b. simulation parameters,
c. algorithms’ percentage of the ESA results

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

2

4

6

8

10

12

14

Interference (m Watts)

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA, L = 6, K = 7

ESA 1 to 1, L = 6, K = 7

EDA, L = 6, K = 7

BBO, L = 6, K = 7

ABC, L = 6, K = 7

HYB, L = 6, K = 7

BACO, L = 6, K = 7

10
1

12.5

13

109

In the above simulation results, the performance of all EAs is comparable to

ESA, while the hybrid algorithm consistently returns results closer to the optimal results.

In all results, the complexity of all EAs is less than the optimal ESA with power control.

For instance, according to section 6.2, for the scenario of Figure 6.5 and the system

parameters of    5,5,4=,, LPKL and a pair of population size and generations

 , the number of ESA iterations over all possible iterations is

1015 1035  ; whereas the number of iterations for BBO and GA is .

Thus the computational complexity of the EA-based schemes are significantly lower than

ESA with fairly competitive results, while sometimes the hybrid algorithm returns the

same result as the optimal ESA with the power control. The hybrid algorithm consistently

returns the closest results to the ESA, and following by ACO, BBO, ABC and GA. In

short, the hybrid-based scheme performs close to ESA, with significant lower

computational complexity.

6.4.2. EAs’ Evolution Comparison Results

From the practical point of view, computational complexity is a major concern for

any algorithm applied to the problem. Therefore we present some comparison result that

helps to choose the best algorithm and its settings that returns the favorable results with

a relatively low computational complexity. Similar to section 5.6.1, we present some

specific results for comparing the performance of EAs in the relay assignment problem.

The first set of results is the comparison between the EAs’ performances (the

average sum capacity in this problem) vs. the number of iterations for each algorithm

that is depicted in Figure 6.8 and Figure 6.9. These figures show the number of

iterations required by each algorithm to achieve a certain capacity. The system

configurations are (
) and for

Figure 6.8 and Figure 6.9, respectively. Figure 6.8 shows that the hybrid algorithm has

the fastest approach towards the optimal ESA results, and becomes very close to ESA

at its 17th iteration. Figure 6.9 also demonstrates the superiority of the hybrid algorithm

over other EAs, which constantly is the closest algorithm to the optimal ESA. As a result,

the hybrid algorithm outperforms other EAs such as BACO, GA and EDA, as well as its

predecessors BBO and DABC.

110

Furthermore, a better understanding of the EAs’ evolution towards the optimal

result can be observed from a three-dimensional plot that depicts the algorithm

performance vs. the number of iterations and population size. Figure 6.10 show the

trade-off between the population size and the iterations required to achieve a desired

average sum capacity for EDA, BACO, BBO, ABC and the hybrid algorithm. The system

configuration is (
) . The detailed system configuration

is given in Table 6.2.This trade-off is useful from the system design point of view. If a

hardware system has high processing capabilities and low memory, then we can set the

population size low to get same performance and vice versa. (Higher and needs

more memory.) These figures also show that EAs has faster evolution towards the

optimal result in the relay assignment problem than the MD-STBC-MIMO results

depicted in Figure 5.9 to Figure 5.13. We further observe that for population size above

10, the hybrid algorithm has the fastest convergence. As a result, we conclude that the

hybrid algorithm has the closest results to the optimal ESA, while it has the fastest

approach towards the results as well.

Table 6.2. System parameters for iteration–population size trade-off

System Common EAs

L M K

 Search space No. of Simulation runs Generation Pop

5 2 4 10mW 4 65 50 1 ~ 40 1~40

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3

111

a.

b.

System Common EAs

L M K

 Search space No. of Simulation runs Generation Pop

6 4 3 10mW 2 46 20 1 ~ 40 20

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3

Figure ‎6.8. Sum rate vs. algorithms’ iteration For L = 6

a. Sum rate vs. algorithms’ iteration for (

) ,

b. simulation parameters,

0 5 10 15 20 25 30 35 40
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Iterations

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA

ESA - 1 to 1

EDA

GA

BACO

BBO

ABC

HYB2 4 6 8 10

2.3

2.4

2.5

112

a.

b.

System Common EAs

L M K

 Search space No. of Simulation runs Generation Pop

5 4 5 10mW 2 65 20 1 ~ 40 50

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3

Figure ‎6.9. Sum rate vs. algorithms’ iteration For L = 5

a Sum rate vs. algorithms’ iteration for (

) ,

b. simulation parameters,

0 5 10 15 20 25 30 35 40
1.8

1.85

1.9

1.95

2

2.05

2.1

2.15

2.2

Iterations

A
ve

ra
g
e

 S
u

m
 C

a
p

a
c
it

y
b

/s
/H

z

ESA

ESA - 1 to 1

EDA

BACO

BBO

ABC

HYB

113

a.

b.

c.

d.

e.

Figure ‎6.10. Sum rate vs. algorithms’ population size and iteration

a. EDA BER performance comparison for (

) ,

b. BACO, c. BBO, d. ABC, e. Hybrid algorithm

0

10

20

30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

GenerationPopulation

C
a
p

a
ci

ty
 o

f
E

D
A

 r
e
s
u

lt
s

0

10

20

30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

GenerationPopulation

C
a
p

a
ci

ty
 o

f
B

A
C

O
 r

e
s
u
lt

s

0

10

20

30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

GenerationPopulation

C
a
p

a
ci

ty
 o

f
B

B
O

 r
e
s
u

lt
s

0

10

20

30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

GenerationPopulation

C
a
p

a
ci

ty
 o

f
A

B
C

 r
e
s
u

lt
s

0

10

20

30

40

0

10

20

30

40
0

0.5

1

1.5

2

2.5

GenerationPopulation

C
a
p

a
ci

ty
 o

f
H

Y
B

 r
e
s
u

lt
s

114

6.4.3. BBO Migration Tuning Result

At the end of this section, we present a plot to demonstrate the effect of number

of steps for the proposed linear immigration, piece-wise constant emigration BBO

migration scheme. The plot and detailed system model is presented in Figure 6.11.

a.

b.

System

K M

 Search space No of Simulation runs

7 4 1mW 4 /10 200

BBO parameters

I m Migration Levels Generations Pop

1.4 0.8 Piece-wise constant 1 ~ 7 30 30

Figure ‎6.11. Comparison between the number of BBO migration steps

a. Comparison between the number of BBO migration steps for
 ,

b. simulation parameters,

5 6 7 8 9 10
1.5

2

2.5

3

3.5

4

L

A
ve

ra
g
e

 C
a

p
a

ci
ty

 b
/s

/H
z

BBO, Steps = 1

BBO, Steps = 2

BBO, Steps = 3

BBO, Steps = 4

BBO, Steps = 5

BBO, Steps = 6

BBO, Steps = 7

10

3.75

3.8

3.85

115

In this figure, “steps = 1” refers to the linear immigration, constant emigration

scheme, which has the lowest performance. This figure clearly demonstrates the effect

of more steps in the piece-wise constant immigration scheme that results in better

overall algorithm performance, without increasing much complexity. Therefore, this

scheme would be a considerable setting for BBO to return high performance result with

low complexity.

6.4.4. EAs’ Complexity Comparison Results

Lastly, we present a complexity comparison result between the EAs applied to

this relay assignment problem. We compare these algorithms in terms of their numbers

of fitness function evaluations. As discussed in section 5.6.2, BBO and EDA both have a

fixed number of fitness function evaluations. Similarly, BACO has the same number

of evaluations.

A simulation is run with a cognitive radio system with the system parameters

(
) , and , where BBO, EDA and BACO

return their result by evaluating the fitness function times. Yet one simulation

run of DABC and hybrid algorithm needs an average of 665 and 560 fitness function

evaluations, which is 65% and 44% more than that number for the first three EAs

respectively. Note that all these EAs’ complexities are still much lower than the

complexity of the optimal ESA.

We observe that unlike the MD-STBC-MIMO problem, the hybrid algorithm

doesn’t beat other algorithms in terms of both performance and complexity (in terms of

the number of fitness function evaluations). This algorithm still returns the best

performance results compare to other EAs, yet it costs more number of function

evaluations. We conclude that at the presence of sufficient processing power that can

handle the 44% complexity of the hybrid algorithm, it would be the best choice to

achieve the closest results to the optimal ESA.

116

6.4.5. Related Work

The author has published two papers from the results of this chapter in [21] and

[22]. The issue of optimal relay assignment schemes has been proposed for cellular

networks with some work on relay assignment and power allocation schemes [23].

However, these schemes cannot be applied to cognitive radio, because they may violate

the interference constraints at the PUs. There are also some works on the optimal relay

assignment in ad-hoc networks that comprises multiple source-destination pairs [24],

[25]. Pareek et al proposed a relay assignment schemes for cognitive radio networks

with single source node, single multiple destinations and multiple relays in [26]; but the

power to source and relays are not assigned optimally. A similar work has been

published in [27] and a binary Particle Swarm Optimization (BPSO) [28] applied to the

cooperative cognitive radio system. A comparison between BPSO and other EAs

mentioned in 6.4.1 is presented in Figure 6.12. For a fair comparison between the

algorithms, the simulation parameters are tuned to the algorithms’ best performance for

solving the optimization problem. This figure shows that the hybrid algorithm and BPSO

curves are close together. Other papers are published with similar system models,

comprising only one receiver node such as [29] [30]. The work presented in this thesis

considers a more general case of a cognitive radio system with multiple destinations.

6.5. Conclusion

In this chapter, we present the optimization problem formulation for a relay

assignment problem in a multi-user cognitive radio network with discrete power control.

The cognitive radio network consists of a single source node, multiple relays and

multiple destination nodes. In section 6.2 we demonstrate the separation of the source

transmitted power and the relays' transmission power levels, in addition to the

optimization of the source and relays' transmission power levels in (6.3) are reduces to

the optimization of the relays' power levels, as in (6.6). Then we introduced EA-based

relay assignment algorithm with low computational complexity. We also propose a

constraint checker algorithm to ensure the interference threshold is satisfied in the

procedure of EA relay assignment. We observe that reduction in search space results in

low computational complexity and faster convergence to an acceptable solution. The

117

performance comparison results of the proposed schemes are comparable to the

optimal ESA, and can beat other mainstream EAs such as EDA and BACO. Using other

efficient constraint optimization techniques inside the bio-inspired heuristic algorithms,

multiuser cognitive radio network with imperfect channel gain, as well as constant power

level for relays and source are left for the future work.

a.

b.

System Common EAs

K M

 Search space No of Simulation runs Generations Pop

5 2 100mW 2 /10 150 24 24

BBO ABC ACO EDA

I m Migration Levels trial Pxover Pmut Psel

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3

Figure ‎6.12. Sum rate vs. number of relays comparison with BPSO for K = 5

a. BER comparison vs. number of relays for
 ,

b. simulation parameters,

118

References

 Federal Communications Commission, Spectrum Policy Task Force Report, FCC [1]
02-135, 2002.

 J. Mitola and G. Q. Maguire, “Cognitive radio: making software radios more [2]
personal,” IEEE Personal Communications Magazine, vol. 6, no. 4, pp. 13-18, Aug.
1999.

 S. Haykin, “Cognitive radio: brain-empowered wireless communications,” IEEE [3]
Journal on Selected Areas in Communications, vol. 23, no. 2, pp. 201-220, Feb.
2005.

 L. Berlemann and S. Mangold, Cognitive radio and Dynamic Spectrum Access, [4]
Wiley, 2009.

 L. E. Doyle, Essentials of Cognitive Radio, Cambridge University Press, 2009. [5]

 A. Nosratinia, T. E. Hunter, and A. Hedayat, “Cooperative Communication in [6]
Wireless Networks,” IEEE Communication Magazine, vol. 42, no. 10, pp. 68-73,
Oct. 2004.

 J. Laneman, D. Tse, and G. Wornell, “Cooperative Diversity in Wireless Networks: [7]
Efficient Protocols and Outage Behavior,” IEEE Trans. Inform. Theory, vol. 50, no.
12, pp. 3062-3080, Dec. 2004.

 Y. Jing and H. Jafarkhani, “Single and multiple relay selection schemes and their [8]
achievable diversity orders,” IEEE Transactions on Wireless Communications, vol.
8, no. 3, pp. 1414-1423, Mar. 2009.

 S. Kadloor, R. Adve, “Optimal Relay Assignment and Power Allocation in Selection [9]
Based Cooperative Cellular Networks,” ICC '09 IEEE International Conf. on, pp. 1-
5, 14-18 Jun. 2009.

 Yi Shi, Sushant Sharma, Y. Thomas Hou, and Sastry Kompella. “Optimal relay [10]
assignment for cooperative communications” In Proceedings of the 9th ACM
international symposium on Mobile ad hoc

 P. Zhang, Z. Xu, F. Wang, X. Xie, L. Tu, “A Relay Assignment Algorithm With [11]
Interference Mitigation For Cooperative Communication”, Wireless
Communications and Networking Conference, 2009. WCNC 2009. IEEE , vol., no.,
pp.1-6, 5-8 April 2009.

 M. Naeem, U. Pareek, D. C. Lee, “Interference Aware Relay Assignment Schemes [12]
For Multiuser Cognitive Radio Systems,” Proc. IEEE Vehicular Technology Conf.
Ottawa, Canada, Sep. 2010

 T. Cover and J. Thomas, Elements of Information Theory, 2nd Ed. Wiley, NY, [13]
2006.

119

 I. Maric and R. D. Yates, “Bandwidth and Power Allocation for Cooperative [14]
Strategies in Gaussian Relay Networks,” IEEE Trans. Inform. Theory, vol. 56, no.
4, pp. 1880-1889, Apr. 2010.

 R. Eberhart, Y. Shi, and J. Kennedy, Swarm Intelligence, Morgan Kaufmann, 2001. [15]

 H. Ma, “An analysis of the equilibrium of migration models for biogeography-based [16]
optimization,” Information Sciences, vol. 180, no. 18, pp. 3444-3464, Sep. 2010.

 D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching, [17]
Addison-Wesley, 1998.

 D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, [18]
Addison-Wesley, 1989.

 J. Proakis, Digital Communication, McGraw-Hill, 5th Ed. 2007. [19]

 Ibrahim, A.S.; Sadek, A.K.; Weifeng Su; Liu, K.J.R.;, "Cooperative communications [20]
with relay-selection: when to cooperate and whom to cooperate with?," Wireless
Communications, IEEE Transactions on , vol.7, no.7, pp.2814-2827, July 2008.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee; “Biogeography-based optimization [21]
for joint relay assignment and power allocation in cognitive radio systems”, Swarm
Intelligence (SIS), 2011 IEEE Symp. on, 11-15 April 2011, pp 1 – 8, Paris, France.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee ; “Binary Artificial Bee Colony for [22]
Cooperative Relay Communication in Cognitive Radio Systems”, IEEE
International Conf. on Comm., ICC 2012, 10-15 Jun. 2012, Ottawa, Canada

 S. Kadloor, R. Adve, “Optimal Relay Assignment and Power Allocation in [23]
Selection Based Cooperative Cellular Networks,” Commun., 2009. ICC ’09. IEEE
International Conf. on, pp. 1-5, 14-18 Jun. 2009.

 Yi Shi, Sushant Sharma, Y. Thomas Hou, and Sastry Kompella. “Optimal relay [24]
assignment for cooperative communications” In Proceedings of the 9th ACM
international symposium on Mobile ad hoc networking and computing (MobiHoc
’08). ACM, New York, NY, USA, pp. 3-12, 2008.

 P. Zhang, Z. Xu, F. Wang, X. Xie, L. Tu, A Relay Assignment Algorithm With [25]
Interference Mitigation For Cooperative Communication, Wireless Communications
and Networking Conference, WCNC 2009. IEEE ,pp.1-6, 5-8 April 2009.

 M. Naeem, U. Pareek, D. C. Lee, “Interference Aware Relay Assignment [26]
Schemes For Multiuser Cognitive Radio Systems,” Proc. IEEE Vehicular
Technology Conf. Ottawa, Canada, Sep. 2010.

 Pareek, U.; Naeem, M.; Lee, D.C.; , "An efficient relay assignment scheme for [27]
multiuser cognitive radio networks with discrete power control," Wireless and
Mobile Computing, Networking and Communications (WiMob), 2010 IEEE 6th
International Conference on , vol., no., pp.653-660, 11-13.

120

 J. Kennedy and R.C. Eberhart , “Particle Swarm Optimization,” Proceedings of [28]
IEEE Conf. on Neural Networks, Piscataway, NJ, USA, pp. 1942-1948, 1995.

 S. Ashrafinia; U. Pareek; M. Naeem; D. Lee ; “Source and Relay Power Selection [29]

Using Biogeography-Based Optimization for Cognitive Radio Systems”, IEEE VTC

2011 – fall, 5-8 Sep. 2011, San Francisco, CA.

 U. Pareek, M. Naeem, and D. C. Lee, “Quantum inspired evolutionary algorithm [30]

for joint user selection and power allocation for uplink cognitive MIMO systems,”

Proc. IEEE Symposium Series in Computational Intelligence 2011 - Track:

CISched - 2011 IEEE Symposium on Computational Intelligence in Scheduling.

121

7. Green Resource Allocation in Cognitive Radio
Systems

In this chapter, we formulate a resource allocation optimization problem for a

cooperative relay-assisted cognitive radio system, comprising a single source node,

multiple relays and multiple destinations. Our formulation takes into account the effects

of the resource allocation on CO2 emission, and we refer to it as a green resource

allocation problem. The green resource allocation problem is formulated as a non-linear

multi-objective optimization problem. We modify the objective function by applying the

weighted sum method, which results in a non-convex mixed integer non-linear

programming problem. We propose a hybrid evolutionary scheme that utilizes different

EAs such as GA, EDA, ABC and hybrid BBO/ABC to solve this optimization problem.

Simulation results demonstrate the efficiency of the hybrid algorithm approach in

comparison to other schemes such as ABC, GA and EDA.

7.1. Introduction

The Information and Communication Technology (ICT) has become one of the

21st century’s biggest industries and accordingly has a huge carbon foot print. According

to the Smart 2020 report, this industry will emit 1.4 Giga tons (109) of carbon dioxide

(CO2) emissions or 2.8% of global emissions by 2020 [1] [2] [3]. This sector is

responsible for approximately five per cent of the global electricity demand and CO2

emission [6] [7].

It is estimated that the ICT industry alone produces CO2 emission equivalent to

the carbon output of the entire aviation industry [2]. ICT emissions growth fastest of any

sector in society: doubling about every 4 – 6 years [5]. Currently ICT represent 8 – 9.4%

of total US electricity consumption, and 8% of the global electricity consumption, and it is

122

projected to grow to as much as 20% of all electrical consumption in the US [5]. Future

Broadband Internet alone is expected to consume 5% of all electricity.

The main aim of green ICTs is to minimize the CO2 emissions. Research in green

ICTs will enable the communication system designer to develop and design the

communication systems that will use power more efficiently and thus contribute to

reducing the CO2 emissions.

In the last few years, there have been increasing efforts towards green ICTs. A

comprehensive survey on green networking is presented in [4]. In [6], authors presented

the concept of energy efficiency in telecommunication networks. A detailed discussion

about ICTs footprint and its impact on the environment is presented in [8] [9] and [10]. In

[11], authors described a variable power/bandwidth efficient modulation strategy to save

the battery life of the communication device. Information and technology companies like

Google and Microsoft have already started working towards green ICTs [21] [22].

In the context of green communication, cooperative communication can

contribute to reducing the CO2 emissions. Cooperative communication is a powerful

concept for extending coverage and improving system’s efficiency [23]. Green

communications can utilize cooperative paradigms in order to reduce energy

consumption for signal transmission [24]. In this chapter, we present a multi-objective

optimization framework that jointly solves the problem of spectrum sharing and reducing

CO2 emissions. In particular, we propose a green multi-objective optimization framework

for joint relay assignment and power allocation in a cooperative Cognitive Radio System

(CRS). Then, we present evolutionary algorithms to solve the green multi-objective

optimization.

7.2. Multi-objective Optimization

Multi-objective optimization (MOO) is used in many complex engineering

optimization problems [12] − [15]. In typical MOO problems, different objectives can

conflict with each other. Optimization with respect to any particular objective can give

unacceptable results with respect to other objectives [14]. For resource allocation in

Green Cooperative Cognitive Radio Network (GCCRN), in this chapter we consider two

123

conflicting objectives: to maximize the sum-capacity and to minimize the CO2 emissions.

Determining the optimal set of decision variables’ values for a single objective (CO2)

emission minimization can result in a non-optimal solution with respect to other

objectives, e.g. sum-capacity maximization.

Two widely used methods to solve multi-objective optimization, along with other

methods, are weighted sum method and constraint objective method [12] – [15]. In the

Weighted Sum Method (WSM), a weighted sum of the multiple objective function is

considered as the metric to minimize (maximize). In WSM, the weight of each objective

is proportional to its importance placed for decision making. A general WSM multi-

objective optimization problem is expressed as follows:

 ∑

Subject to:

where the weights are such that ∑

 , is the number of objective functions, is

the number of inequality constraints, and is the number of equality constraints. In the

constraint objective method [14], each objective is transformed into a constraint. In our

formulation, we will use weighted sum method.

In formulating the weighted sum MOO, we will normalize each objective function

 so that each objective function has the same range of values. The main reason for

normalization is that the objective functions can have different dimensions (e.g., for the

GCCRN problem, one is bits/Hz, and the other is power (Watts)) – they become

dimensionless after normalization, and this enables their addition in the weighted sum

expression. Furthermore, in a weighted-sum method [14] for MOO, without

normalization, we cannot specify the bias toward a particular objective with weights

alone. For instance, if the value of one objective function is in the range of [0, 1], and the

value of second objective is in the range [0, x] (where), then the second

124

objective produces bias in the weighted fitness function, even if we use equal weights

 . In this work, all of the objective function values are normalized within

the range close to [0, 1]. In the case in which we do not have exact maximal and minimal

value of an individual objective function, we will normalize the objective function on the

basis of its upper bound and lower bound. The GCCRN MOO is formulated so that the

range of combined objective function is always within 0 and 1.

7.3. Green Relay Assignment for GCCRN

We consider a two-hop wireless network with one transmitter (source), K

receivers (secondary users), L relays, and M primary users, as illustrated in Figure 7.1.

Each relay, transmitter, and receiver is equipped with a single antenna. We denote by

 , the channel from the source to the th relay, the channel from the th relay to the

 th secondary user, and the channel from the th relay to the th primary user. We

denote by , the th relay’s transmission power. We consider a two-step amplify-and-

forward (AF) scheme [16]. We assumed in our cognitive radio network that data is

received by each destination node on a separate frequency band and that each source-

destination pair has been allocated equal bandwidth. We further assume that signals

destined for different users do not interfere with one another. We also assume that each

relay transmits its received signal at the same frequency band in which it received the

signal. This models a low-cost relay that simply amplifies the signal and forwards it. We

define as a binary assignment indicator variable such that:

 { if the th relay is assigned to the th receiver

 otherwise

125

S

1

l

L

K

m

1

.

,s lh

Source

Relays

Receivers/

Destination

M

Primary Users

1

k

.
 . . .

 . . .

,l mg

,l kh

Figure 7.1. Cooperative Cognitive Radio Network

The channel capacity of the th user for amplify and forward relaying is [16] [17] [25]:

 [

(
(∑ | | √

)

 ∑ (| |√)

)] (7.1)

where (√
 | |

)

, []
 is an binary matrix indicating relay to

secondary users connectivity, and [] is an -dimensional vector comprising

relays’ power levels. Our first objective is to maximize the sum-rate capacity ∑

 . As

mentioned in section 7.2, the division of the sum-rate capacity with ∑

normalizes the first objective between 0 and 1, where
 is an upper bound on the

capacity of the th secondary user. The upper bound on the sum capacity can be

obtained as follows:

126

 [

(∑ | | √

)

 ∑ (| |√)

] (7.2)

 [

(∑ | | √

)

 ∑ (| |√)

] (7.3)

 [

(∑ | |

) (∑ (| |)

)

 ∑ (| |√)

] (7.4)

 [

(∑ | |

) (∑ (| |)

)

 ∑ (| |√
)

]
 (7.5)

The second inequality is obtained from the Schwartz inequality. The last expression is

greater or equal than the third one because the third expression is an increasing function

of . A proof is provided in Appendix 7.A. The latter expression is referred to as
 .

Note that if the term (∑ (| |)

) is canceled out from the numerator and

denominator of the latter expression, the resulted upper bound is even looser and less

accurate than the current
 .

Mathematically, the objective of the sum-rate capacity can be expressed as:

 ̅
∑

∑

 (7.2)

The second objective is to reduce the CO2 emissions. The CO2 emissions are

measured in grams. If P is the transmission power and X is a constant in grams/KWh,

then the product, PX, of P and X represents the CO2 emissions in grams/hour. The value

of X is different for different types of material (fuel) used in electricity generation. There

are three major sources of fuel for electricity generation: oil, gas, and coal. The value of

127

X for lignite/brown coal, natural gas, crude oil and diesel oil is 940, 370, 640, and 670

grams/KWh, respectively [6] − [8]. The CO2 emissions due to the th relay would be

 . Therefore, the objective of CO2 emissions can be written as:

∑

∑

 (7.3)

where

 . To define a single objective, the maximization objective ̅ is

transformed into minimization using the relation ̅. Mathematically, the MOO

for GCCRN can be expressed as:

 {
 }

 ∑

 ∑ | |

 ∑

 { }

(7.4)

Both denominators of the two objective functions and
 require

 to be

evaluated. The definition of
 is [] which is non-differentiable at the

points , thus the objective functions would be non-differentiable at these

points too. Therefore, the optimization problem OP1 is non-convex. Moreover, is a

continuous variable, while is discrete; thus the problem is mixed integer.

Furthermore, the objective function , and the constraint C2 both are nonlinear

expressions of and . As a result, the formulation in (7.4) is a non-convex mixed

integer non-linear programming problem. The objective function in (7.4) is bounded by

zero and one. In this equation, the constraint C1 ensures that a relay can only be

128

assigned to one secondary user, C2 is the interference constraint, the constraints C3

and C4 jointly ensure that if the th relay is not assigned to any secondary user, then the

transmission power of the th relay should be zero. In the next section, we present a

low-complexity hybrid scheme, comprising an EA and an iterative greedy algorithm, for

the GCCRN MOO problem.

7.4. Hybrid Solver for GCCRN MOO Problem

In this section, we present a solver for the GCCRN multi-objective problem. The

proposed scheme is an integration of an EA and an Iterative Greedy Algorithm for relay

assignment and power allocation such that the constraints in (7.4) are satisfied. The

optimization variables of the GCCRN problem in (7.4) are (relays’ powers variable)

and (relays assignment variable). The hybrid solver handles both optimization

variables and , such a way that the EA operator modifies the variable towards

higher fitness value, and the Iterative Greedy algorithm verifies that the relays powers

(being modified by the EA) and the relays assignment variable satisfy the constraints in

the optimization problem (7.4).

In the GCCRN problem, there are relays that can handle continuous power

levels, which demands continuous EAs to be applied to the problem. We implement ABC

(Chapter 3) and the hybrid ABC/BBO algorithm (Chapter 4) for the EA part of the solver

for the GCCRN problem. We have not included the BBO algorithm, since this algorithm

is primarily presented for problems in the integer domain (Section 2.2). A continuous

version of BBO would be the hybrid algorithm, which is included in our implementations.

The Iterative Greedy Algorithm receives one EA individual as an input, and

performs two operations on it. It modifies the relay power levels such that the

constraints C2 and C3 in (7.4) are satisfied; while it also determines the relays’

assignment variable for each received EA individual heuristically, and ensures that

all constraints in (7.4) are satisfied.

Figure 7.2 illustrates the flowchart of the hybrid solver, which consists of an EA

and the Iterative Greedy Algorithm. In the rest of this section, first we discuss our EA

129

implementation for the GCCRN problem and in Section 7.4.1, and then we discuss the

Iterative Greedy Algorithm procedures in Section 7.4.2.

Generate initial population
{A set of EA individuals pj

within the limits (7.5)}

Iterative Greedy Algorithm
(Run Table 7.1 for all individuals)

{Determines relay assignment variables ε
Verifies pj and ε with constraints}

Evaluate Fitness Function
EA Term. Cond.
(max iterations)

Satisfied?
TerminateYes

EA Evolutionary Operator
(crossover and mutation in GA, three phases in ABC)

{modifies pj}

No

A

C

B

Figure ‎7.2. Flowchart of the Hybrid solver for GCCRN problem

The flowchart comprises an EA and an iterative greedy algorithm

7.4.1. Evolutionary Algorithms for the Hybrid Solver

EAs in general have been often used to solve MOO problems. Candidate

solutions to a multi-objective optimization problem are represented as individuals in the

population. In EAs, the objective function value of a candidate solution indicates the

fitness of the individual, which is associated with the concept of natural selection [18].

Each EA’s individual represents the relays’ transmission powers . We denote by

the th individual in the population. Each individual [

] is a vector of real

components, where

 { } represents the power of the th relay. Relays powers

are bounded by [], where and denote the lower and upper limits of

the EA’s search window. Therefore, each individual of an EA is a vector of continuous

real numbers between and .

The first step of the hybrid solver is to generate a random population of EA

individuals s. These relays’ powers have to satisfy the constraints of the optimization

problem (7.4) as well. According to the constraint C2 of this optimization problem, relay

powers should satisfy ∑ | |

 . If the initial population is

130

generated randomly within [], there is a possibility that some randomly

generated cause excessive interference to the PUs that violates the constraint C2.

The algorithm could have generated the initial population within the aforementioned

interval and further verify the constraints through an alternative procedure (Iterative

Greedy Algorithm to ensure that individuals satisfy the constraint C2; nonetheless, we

redefine the above generation interval to ensure that the randomly generated population

lies within [], while it also satisfies the constraint C2. The new interval for

randomly generating the initial population is expressed as:

[]

where {

| |

| |

| |
 }

(7.5)

The new limits in (7.5) results in a smaller yet more effective interval for randomly

generating the individuals. The smaller interval lets EAs to focus their exploration and

exploitation on the feasible domain, rather than to handle an individual that lies above

 and has to be repositioned by the Iterative Greedy Algorithm.

Although the initial population is ensured to satisfy the constraint C2, the

population in the rest of EA iterations may violate the constraint. For instance,

expression (3.2) for locating new food sources, in addition to line 5 of Table 3.3 and line

7 of Table 3.4 for ABC, and line 5 of Table 4.1 for the hybrid algorithm may cause a food

source to lay out of the limits mentioned in (7.5). Consequently, some individuals from

the population may require some modifications. The solver passes the population to the

Iterative Greedy Algorithm that determines the relay assignment variables , while it also

ensures that all relays powers s and relay assignment variables satisfy the

constraints of (7.4), and then passes the verified initial population to the next step to

evaluate its fitness. Later on, in every iteration, after the population is modified by EA

through its evolutionary operator, it will be passed to the Iterative Greedy algorithm for

determining the relay assignment variables and constraints verification.

131

7.4.2. Iterative Greedy Algorithm

In each EA iteration, after the algorithm modifies the population through its

specific evolutionary procedure (Point “B” in Figure 7.2), the solver has to determine

and verify and with the constraints in (7.4) before the population is passed towards

the fitness function evaluation step (Point “C” in Figure 7.2). We propose an Iterative

Greedy Algorithm to repair each EA individual such that constraints C2 and C3 are

satisfied, and to generate a feasible assignment variable for each individual

heuristically that satisfies all constraints in (7.4). At the end of this procedure, the

algorithm’s output is an individual with feasible relays’ power levels and the associated

assignment variables (Point “C” in Figure 7.2), which it is ready to be passed to the

fitness function evaluation process. This procedure has to be run for times (number of

individuals in the EA’s population) to determine the relay assignment variable and

ensure that all individuals satisfy the constraints.

Table 7.1 shows the pseudo-code of the iterative greedy algorithm. The algorithm

runs the procedure in Table 7.1 for every individual of the population in every EA

iteration. This algorithm consists of two steps. In the first step, the algorithm greedily

assigns relays to the secondary users based on the channel conditions. However, the

assigned relays in this step may not satisfy all the constraints. In the second step, the

algorithm verifies the assigned relays with the constraints and finalizes the power

allocation to ensure that the interference constraint at the PUs is satisfied.

7.4.2.1. Step 1: Partial Relay Assignment

For describing the basic idea behind the proposed suboptimal algorithm, we view

| |

| |

 (the product of the channel gain from the source to the th relay and the

channel gain from the th relay to the th secondary user) as the profit from investing

(assigning) the th relay to the th secondary user (because of the channel gain’s positive

effect on the throughput). Step 1 of the algorithm temporarily assigns each relay to the

secondary users that return the maximum profit. Note that according to C1 in problem

(7.4), each relay can be assigned only to one secondary user. Mathematically, for each

relay , the algorithm temporarily assigns secondary users as follows:

132

Table 7.1. Iterative greedy relay assignment for each EA individual

Initialization:

1.

2.

Step 1:

3. for ,

4. | |

5. end for

Step 2:

1. for

2.

 {

| |

| |

| |

} (power of the th relay of the th

individual)

3. end for,

4. for

5. { }

6. if then,

7. ,

8. while ,

9. if {constraint C2 is not satisfied with } then,

10. ̅ find the relay that causes the highest interference,

11. { }̅,

12. else

13. ,

14. calculate capacity from (7.1) using ,

15. end if

16. end while

17. end if

18. end for

133

 | |

| |

 (7.6)

where is an -dimensional vector that stores this temporary assignment. The variable

 is not dependent on ; thus we can rewrite (7.6) as:

 | |

 (7.7)

At the end of Step 1, every relay is assigned to one secondary user. However, the relay

powers, along with the temporarily relay assignment variables from (7.6), still need to

satisfy the interference constraint at the PUs. In Step 2 of the algorithm, based on

temporary relay assignment in Step 1, the algorithm performs a joint relay assignment

and power allocation such that the constraints are satisfied at all PUs.

7.4.2.2. Step 2: Final Relay Assignment with Interference Constraint

In the second step, the algorithm performs a final assignment to ensure that the

interference constraints at the PUs are all satisfied. Note that the relays’ power levels

randomly generated by the EA (Point “B” in Figure 7.2) can violate the constraint of the

limited interference to the PUs, which is to be taken care of by Step 2 of the iterative

greedy algorithm.

At the beginning of the second step, the algorithm repairs the power of any relay

that violates the interference constraint. For this purpose, first the algorithm examines

whether the transmission power of each relay violates any interference constraint. We

denote by

 the power of the th relay in the th individual of the population. If

 violates

any of the interference constraint, then the algorithm performs the following adjustment:

 {

| |

| |

| |

}

(7.7)

The algorithm then continues to iterate over all of the secondary users to complete the

final assignment of the relays. During every iteration over secondary users, the algorithm

134

collects the set of relays that has been temporarily assigned to the th secondary user

during Step 1 in the variable . Then it checks whether the relays in the set satisfy

the interference constraint. If the relays set violate the interference constraint at any

PU, the algorithm greedily removes the relay from the set that causes the maximum

interference to the PUs. This removal process continues until satisfies the

interference constraint. The whole algorithm in Step 2 then continues to run until relays

are assigned to all secondary users.

7.4.3. More Discussion on the Hybrid Solver

The cognitive radio discussed in the problem of this chapter operates in the

underlay mode. According to [25], two shared-use models are introduced for Dynamic

Spectrum Access: the spectrum overlay mode and the spectrum underlay mode. In

spectrum overlay, first the secondary users sense the spectrum to find a spectrum hole

(vacant frequency band). The secondary users transmit in these vacant frequency

bands. Nonetheless, the secondary users should be aware that once PUs start to

transmit over these bands, they have to stop utilizing them. In the spectrum underlay

technique, the secondary users can transmit over the frequency band utilized by the PUs

as long as they do not cause unacceptable interference to the PUs. One difference

between these two schemes is that in the overlay mode, either PUs or secondary users

are allowed to transmit over the spectrum, and when PUs are utilizing the bend,

secondary users have to cease transmitting. However, it is possible that both PUs and

secondary users transmit simultaneously over the same spectrum in the underlay mode

as long as the interference threshold is not violated. Therefore, by utilizing the spectrum

underlay mode in our problem, it is plausible to assume

 ; that is, the

interference does not dependent on the secondary users’ operation band.

As mentioned before, the Iterative Greedy Algorithm is heuristic in nature. Thus it

has the issue of efficiency-complexity trade-off. In other words, the algorithm can be

designed to allocate power to the relays more efficiently, but this effectiveness comes

with a price of higher complexity. For instance, instead of removing the relay ̂ in line 10

of Table 7.1, the algorithm could have reallocated the power by dividing the profit to cost

ratio. In this scenario, although the algorithm’s performance increases by better utilizing

135

the relays rather than to simply eliminate it, but we should consider the increase in

algorithm’s complexity after this modification. This division has to be run for times in

line 10 inside the while loop starting at line 8, where . Then it should run for

times because of the for loop in line 4, and the whole Iterative Greedy Algorithm is run

for times, where is the population size and is the maximum number of EA

generations. Consequently, one modification adds more calculation to the

algorithm. However, because the complexity of the problem matters for us, we

developed the algorithm with the less complex scheme proposed in Table 7.1.

7.5. Simulation Results

In this section we present the simulation results of EAs applied to a GCCRN

MOO problem. In all simulations, the channel gains between source, relays, PUs and

destinations have been randomly generated from independent complex Gaussian

distribution. Each result is an average of 250 independent simulation runs. We compare

the results of Hybrid EDA and ABC with EDA and the standard continuous GA [20]. All

algorithms have the same settings as given in Table 7.2.

In Figure 7.3 and Figure 7.4, depicts the trade-off plots of fitness vs. different

weights to the MOO objective function. These two figures demonstrate the effect of

green communication for different values of weights w1 and w2. The results show that

when w2 is greater than w1, there is more reduction in CO2 emissions (percentage

decrease in power). The reduction in CO2 emissions comes at the cost of throughput

reduction. The different weights settings are suitable for different geographical conditions

and regulatory policies. The results also show that hybrid algorithm dominantly returns

better results than other EAs. Moreover, because
 is larger than , we observe as

 moves towards, , the fitness value decreases. Furthermore, we observe

that in both figures, the difference between the EAs’ results for (0,1) are much smaller

than the EAs’ results for (1,0). This observation shows that the major challenge between

the EAs’ performances is solving , which is a much more complicated constraint

optimization problem. We have also included the 95% confidence interval of the fitness

results for the system models of these two figures. Table 7.3 and Table 7.4 contain the

confidence intervals for different weights of Figure 7.3 and Figure 7.4, respectively.

136

Table 7.2. EA Settings for Implementation

GA EDA ABC Hybrid

 Migration type

0.99 0.8 0.5 0.1 - 0.5 1 1 Piecewise-Constant

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

30 3 300
0 ~
1

0 ~
1

24 30 250

Figure ‎7.3. Fitness vs. different MOO power settings for K = 30

a. Fitness vs. different MOO power settings for

 ,
b. simulation parameters,

(0,1) (0.1,0.9) (0.3,0.7) (0.5,0.5) (0.7,0.3) (0.9,0.1) (1,0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Weights

F
it
n

e
s
s

Fitness vs. W1 and W2 for K = 30, L = 30, PU = 3, I = 1000W

EDA-F

GA-F

ABC-F

HYB-F

137

Table 7.3. 95% Confidence Interval of Figure 7.3 results

 EDA GA ABC Hybrid

Fitness 0.4053±0 0.4032±0.0004 0.3988±0.0037 0.399±0.0019

 0.2079±0 0.1998±0.0017 0.1871±0.0378 0.1234±0.0204

 0.4053±0 0.4032±0.0004 0.3988±0.0037 0.4015±0.0137

Fitness 0.3859±0.0007 0.3803±0.0019 0.3804±0.0045 0.3698±0.0063

 0.2414±0.0023 0.238±0.0016 0.2294±0.0007 0.1351±0.021

 0.4019±0.001 0.3961±0.0023 0.3972±0.0049 0.4123±0.0325

Fitness 0.3473±0 0.3473±0 0.3385±0.0027 0.3081±0.0128

 0.3424±0 0.3424±0 0.3364±0.0019 0.2196±0.0331

 0.3494±0 0.3494±0 0.3394±0.0031 0.3549±0.0541

Fitness 0.2987±0.0014 0.3054±0 0.2678±0.0093 0.2278±0.0384

 0.1959±0.012 0.1398±0 0.1781±0.0126 0.1304±0.0833

 0.4016±0.0148 0.4711±0 0.3576±0.0242 0.3873±0.0707

Fitness 0.2727±0 0.2685±0.0024 0.2444±0.0064 0.1786±0.0316

 0.1953±0 0.1918±0.0241 0.1855±0.0035 0.1641±0.0653

 0.4534±0 0.4474±0.0628 0.3817±0.0156 0.4868±0.0276

Fitness 0.1955±0 0.1905±0.0015 0.1825±0.0046 0.1085±0.0538

 0.1689±0 0.1543±0.0045 0.1544±0.0133 0.1264±0.0784

 0.4346±0 0.5162±0.0251 0.4352±0.0932 0.5326±0.0339

Fitness 0.1144±0.001 0.1145±0.0009 0.1143±0.0041 0.0251±0.0311

 0.1144±0.001 0.1145±0.0009 0.1143±0.0041 0.0803±0.0738

 0.565±0.0057 0.5608±0.0102 0.5526±0.0415 0.5195±0.0337

138

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

40 3 50
0 ~
1

0 ~
1

24 30 500

Figure ‎7.4. Fitness vs. different MOO power settings for K = 40

a. Fitness vs. different MOO power settings for

b. simulation parameters,

(0,1) (0.1,0.9) (0.3,0.7) (0.5,0.5) (0.7,0.3) (0.9,0.1) (1,0)
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Weights

F
it
n

e
s
s

Fitness vs. W1 and W2 for K = 40, L = 50, PU = 3, I = 1000W

EDA-F

GA-F

ABC-F

HYB-F

139

Table 7.4. 95% Confidence Interval of Figure 7.4 results

 EDA GA ABC Hybrid

Fitness 0.4254±0 0.4254±0 0.4225±0.0021 0.4208±0.0019

 0.1939±0 0.1939±0 0.198±0.0026 0.1783±0.0088

 0.4254±0 0.4254±0 0.4225±0.0021 0.4247±0.0199

Fitness 0.4254±0 0.4254±0 0.4225±0.0021 0.4208±0.0019

 0.1939±0 0.1939±0 0.198±0.0026 0.1783±0.0088

 0.4254±0 0.4254±0 0.4225±0.0021 0.4247±0.0199

Fitness 0.3344±0 0.3243±0.0022 0.331±0.0011 0.3038±0.0099

 0.2278±0 0.2112±0.0035 0.2318±0.0017 0.1436±0.0265

 0.3801±0 0.3727±0.0016 0.3735±0.002 0.3761±0.025

Fitness 0.3168±0 0.3069±0.0021 0.2961±0.0063 0.271±0.016

 0.1611±0 0.2041±0.0092 0.1888±0.0108 0.0716±0.0962

 0.4725±0 0.4097±0.0134 0.4035±0.0147 0.4844±0.0688

Fitness 0.2342±0 0.2298±0.0009 0.2342±0 0.1842±0.0196

 0.1095±0 0.1361±0.0057 0.1095±0 0.167±0.0529

 0.5252±0 0.4484±0.0163 0.5252±0 0.4906±0.0196

Fitness 0.1678±0.004 0.1784±0.0026 0.1863±0.001 0.0756±0.0441

 0.1282±0.0052 0.1373±0.0047 0.1536±0.0021 0.0476±0.0898

 0.5241±0.0063 0.5489±0.0167 0.4804±0.0284 0.5097±0.0219

Fitness 0.1364±0.0032 0.1414±0.0021 0.1504±0.0019 0.0688±0.029

 0.1364±0.0032 0.1414±0.0021 0.1504±0.0019 0.157±0.0259

 0.5166±0.0164 0.6353±0.0088 0.555±0.0517 0.494±0.0389

Figure 7.5, Figure 7.6 and Figure 7.7 depict the performance result of fitness vs.

number of secondary users for

 ,

 , and , respectively. The hybrid algorithm

returns lower fitness value compared with other EAs. We observe that there is an

increase in the fitness value as the number of secondary users grows, because

increasing the number of users increases the sum capacity

140

Figure 7.8, Figure 7.9 and Figure 7.10 illustrate the performance of fitness vs. the

number of relays for

 () ,

 and , respectively. An increase in the

number of relays results in the fitness growth. We observe that the first two figures have

much larger
 that have not yet affected by the sum capacity; whereas the non-

smooth fitness plot in the last figure implies that the fitness result has been affected by

the interference constraint that in fact has a lower
 .

Figure 7.11 and Figure 7.12 demonstrate the performance results of fitness vs.

number of Primary Users for

 ()

and . We observe that these two figures have constant

fitness values. The reason is that
 is large enough (103) that even increasing the

number of PUs does not cause the interference constraint to affect .

Figure 7.13 and Figure 7.14 depicts the EAs’ evolution as the algorithm iteration

increases for

 and

 , and it contains the weighted single objective function ,

along with the two objective functions and
. We observe that the hybrid algorithm

dominantly outperforms other EAs, and as the number of iterations grows, the hybrid

results improve even further. The reason is that other EAs cannot effectively exploit or

explore their population to advance like the hybrid algorithm. This behavior shows how

effectively the hybrid algorithm benefits from its both advantages, exploration and

exploitation, to keep improving, while other EAs inconsiderably tend to progress any

further.

Finally, Figure 7.15 contains 3D plots of EAs’ advancement as the number of

relays increases for

 . We

observe EDA starts with higher fitness value at the beginning. The reason is that this

algorithm does not improve its results only after its second iteration. We further observe

that the hybrid algorithm results decreases rapidly as the number of iterations grows,

which was also observed in Figure 7.13 and Figure 7.14.

141

a.

b.

System Parameters Weights
Common EA
parameters Number of

Simulation
runs

 Generation

Pop
size

10~60 9 30 0.5 0.5 24 24 250

Figure ‎7.5. Fitness vs. number of users for L = 30

a. Fitness vs. number of users for

 ,
b. simulation parameters,

10 20 30 40 50 60
0.24

0.245

0.25

0.255

0.26

0.265

0.27

Users

F
it
n

e
s
s

Fitness vs. Number of Users for L = 30, PU = 9, I = 10W

EDA-F

GA-F

ABC-F

HYB-F

142

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

10~60 2 20 0.5 0.5 24 24 250

Figure ‎7.6. Fitness vs. number of users for L = 20

a. Fitness vs. number of users for

 ,
b. simulation parameters,

10 20 30 40 50 60
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Users

F
it
n

e
s
s

Fitness vs. Number of Users for L = 20, PU = 2, I = 1W

EDA-F

GA-F

ABC-F

HYB-F

143

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

10~60 2 30 0.5 0.5 24 30 500

Figure ‎7.7. Fitness vs. number of users for L = 30

a. Fitness vs. number of users for

 ,
b. simulation parameters,

10 20 30 40 50 60
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Users

F
it
n

e
s
s

Fitness vs. Number of Users for L = 30, PU = 2, I = 1W

EDA-F

GA-F

ABC-F

HYB-F

144

a.

b.

System Parameters Weights
Common EA
parameters Number of

Simulation
runs

 Generation

Pop
size

30 5 10~60 0.5 0.5 24 24 500

Figure ‎7.8. Fitness vs. number of relays for K = 30

a. Fitness vs. number of relays for

 (),

b. simulation parameters,

10 20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35

Relays

F
it
n

e
s
s

Fitness vs. Number of Relays for K = 30, PU = 5, I = 1000W

EDA-F

GA-F

ABC-F

HYB-F

145

a.

b.

System Parameters Weights
Common EA
parameters Number of

Simulation
runs

 Generation

Pop
size

10 2 10~60 0.5 0.5 24 24 400

Figure ‎7.9. Fitness vs. number of relays for K = 10

a. Fitness vs. number of relays for

 ,

b. simulation parameters,

10 20 30 40 50 60
0.1

0.15

0.2

0.25

0.3

0.35

Relays

F
it
n

e
s
s

Fitness vs. Number of Relays for K = 10, PU = 2, I = 1000W

EDA-F

GA-F

ABC-F

HYB-F

146

a.

b.

System Parameters Weights
Common EA
parameters Number of

Simulation
runs

 Generation

Pop
size

10 2 10~60 0.5 0.5 24 24 250

Figure ‎7.10. Fitness vs. number of relays for K = 10

a. Fitness vs. number of relays for

 ,
b. simulation parameters,

10 20 30 40 50 60

0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Relays

F
it
n

e
s
s

Fitness vs. Number of Relays for K = 10, PU = 2, I = 10W

EDA-F

GA-F

ABC-F

HYB-F

147

a.

b. b.
System Parameters

Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

50 1~9 40 0.5 0.5 24 24 500

Figure ‎7.11. Fitness vs. number of primary users for K = 50

a. Fitness vs. number of primary users for

 ,
b. simulation parameters,

1 3 5 7 9
0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

PUs

F
it
n

e
s
s

Fitness vs. Number of Relays for K = 50, L = 40, I = 1000W

EDA-F

GA-F

ABC-F

HYB-F

148

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

60 1~9 30 0.5 0.5 24 24 500

Figure ‎7.12. Fitness vs. number of primary users for K = 60

a. Fitness vs. number of primary users for

 ,
b. simulation parameters,

1 3 5 7 9
0.2

0.22

0.24

0.26

0.28

0.3

0.32

PUs

F
it
n

e
s
s

Fitness vs. Number of Relays for K = 60, L = 30, I = 1W

EDA-F

GA-F

ABC-F

HYB-F

149

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

10 2 20 0.5 0.5 24 30 400

 Figure ‎7.13: Fitness vs. algorithms’ iterations for K = 10

a. Fitness vs. EAs’ iteration for

 ,
b. simulation parameters,

5 10 15 20 25 30
0.2

0.25

0.3

0.35

0.4
Fitness , K = 10, L = 20, PU = 2, I = 1000W

Iterations

F
it
n

e
s
s

EDA-f

GA-f

ABC-f

HYB-f

5 10 15 20 25 30
0.1

0.15

0.2

0.25

f
c

5 10 15 20 25 30
0.35

0.4

0.45

0.5

f
co2

150

a.

b.

System Parameters Weights
Common EA
parameters

Number of
Simulation

runs

 Generation Pop size

60 7 40 0.5 0.5 24 30 400

Figure ‎7.14. Fitness vs. algorithms’ iterations for K = 60

a. Fitness vs. EAs’ iteration for

 ,
b. simulation parameters,

5 10 15 20 25 30 35 40
0.22

0.24

0.26

0.28

0.3
Fitness , K = 40, L = 30, PU = 7, I = 1000W

Iterations

F
it
n

e
s
s

EDA-f

GA-f

ABC-f

HYB-f

10 20 30 40
0.1

0.12

0.14

0.16

0.18

f
c

10 20 30 40
0.35

0.4

0.45

0.5

f
co2

151

a.

b.

c.

d.

e.

System Parameters Weights Common EA parameters Number of
Simulation

runs

 Generation Pop size

60 5 10~60 0.5 0.5 24 30 500

Figure ‎7.15. Fitness vs. number of relays and algorithms’ iterations for K = 60

a. EDA, b. GA, c. ABC, d. Hybrid algorithm,

e. system parameters for

152

7.6. Conclusion

In this chapter, we presented a multi-objective framework for green resource

allocation in the multiuser cognitive radio network. We present the constrained

optimization formulation of the relay assisted cognitive radio system. Our formulation

includes effect transmission power on CO2 emission, which is a multi-objective

optimization in nature. We approached this problem by applying the weighted sum

method, which results in a non-convex mixed integer non-linear programming problem.

We proposed a hybrid continuous evolutionary scheme comprising an EA and a greedy

algorithm to solve this optimization problem. We apply four different EAs (GA, EDA, ABC

and hybrid), and the results demonstrate that in all combinations of system parameters

and weight values the hybrid algorithm outperforms other EAs. The simple underlying

concept and ease of implementation of our proposed algorithm make it a suitable

candidate for green resource allocation.

This chapter presented a simple optimization problem that takes into account the

effects of communication resource allocation on the environment. We believe that the

more system optimization models that take into account the system’s effect on the

environment will be developed and enhanced. The results of this chapter indicate that

our evolutionary algorithms proposed may be useful for various continuous multi-

objective optimization problems for green communication.

The future extensions of this research include considering different constraints on

the PUs for different frequency bands (different
), multiple source, other signal

transmitting scenarios, relaying strategies (compress and forward), and other more

complex or realistic system models.

153

References

 Global e-Sustainability Initiative (GeSI), SMART 2020: Enabling the low carbon [1]
economy in the information age, available at
www.gesi.org/Initiatives/ClimateChange/tabid/71/Default.aspx (Last accessed July
2012).

 International Telecommunication Union (ITU), Report on Climate Change, Oct. [2]
2008.

 IEA report, CO2 Emissions from Fuel Combustion 2010 – Highlights, [3]
http://www.iea.org/co2highlights/co2highlights.pdf

 R. Bolla, R. Bruschi, F. Davoli, and F. Cucchietti, , "Energy Efficiency in the Future [4]
Internet: A Survey of Existing Approaches and Trends in Energy-Aware Fixed
Network Infrastructures," IEEE Communications Surveys & Tutorials, (Accepted),
(http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5522467&isnumber=54
51756)

 B. Arnaud, “ICT and Climate Change: A Foundation for Innovation in Canada”, [5]
CANAIR Inc., available at https://www-
950.ibm.com/events/wwe/ca/canada.nsf/vLookupPDFs/Bil_Arnaud/$file/Bil_Arnaud
.pdf (last accessed July 2012)

 G. Koutitas, “Green Network Planning of Single Frequency Networks,” IEEE [6]
Transactions on Broadcasting, vol.56, no.4, pp.541-550, Dec. 2010.

 G. Koutitas, P. Demestichas, “A Review of Energy Efficiency in Telecommunication [7]
Networks,” Journal of Telecommunication Forum (TELFOR), 2010.

 K. Li, “Mobile Communications 2008: Green Thinking Beyond TCO Consideration,” [8]
In-Stat White paper, May 2008.

 L. Herault,E. C. Strinati ,O. Blume ,D. Zeller, Muhammad A. Imran, R. Tafazolli, Y. [9]
Jading ,J. Lundsjö and Michael Meyer, “Green Communications: a Global
Environmental Challenge,” In Proceeding of 12th International Symposium on
Wireless Personal Multimedia Communications, 2009.

 W. Vereecken, W. V. Heddeghem, D. Colle, M. Pickavet, and P. Demeester, [10]
“Overall ICT footprint and green communication technologies,” In Proceedings of
4th IEEE International Symposium on Communications, Control and Signal
Processing (ISCCSP), 2010.

 D. Grace, J. Chen, T. Jiang, and P.D. Mitchell, “Using cognitive radio to deliver [11]
Green communications,” In Proceedings of 4th IEEE International Conference on
Cognitive Radio Oriented Wireless Networks and Communications
(CROWNCOM), 2009.

http://www.gesi.org/Initiatives/ClimateChange/tabid/71/Default.aspx
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5522467&isnumber=5451756
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5522467&isnumber=5451756

154

 R.T. Marler and J.S. Arora, “Survey of multi-objective optimization methods for [12]
engineering,” Structural and Multidisciplinary Optimization, vol. 26, no.6, pp. 369-
395, April 2004.

 M. Elmusrati, H. El-Sallabi, and H. Koivo, “ Applications of multi-objective [13]
techniques in radio resource scheduling of cellular communication systems,” IEEE
Transaction of Wireless Communication, vol. 7, no. 1,pp. 343-353 Jan. 2008.

 K. Deb, Multi-objective optimization using evolutionary algorithms, Wiley, New [14]
York, 2001.

 T. Newman, R. Rajbanshi, A. Wyglinski, J. Evans, and G. Minden, “Population [15]
Adaptation for Genetic Algorithm-based Cognitive Radios,” ACM/Springer Mobile
Ad Hoc Networks -- Special Issue on Cognitive Radio Oriented Wireless Networks
and Communications, vol. 13, no. 5, pp. 442-451, 2008.

 J. N. Laneman, D. N. C. Tse, and G. W. Wornell, “Cooperative Diversity in [16]
Wireless Networks: Efficient Protocols and Outage Behavior,” IEEE Trans. Inform.
Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.

 I. Maric and R. D. Yates, “Bandwidth and Power Allocation for Cooperative [17]
Strategies in Gaussian Relay Networks,” In Proceedings of 38th Asilomar
Conference on Signals, Systems and Computers, Pacific Grove, CA, Nov. 2004.

 A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing, Springer [18]
Verlag, 2003.

 P. Larrañaga and J. A Lozano, “Estimation of Distribution Algorithms: A New Tool [19]
for Evolutionary Computation,” Kluwer Academic Publishers, 2001.

 R.L. Haupt and S.E. Haupt, Practical Genetic Algorithms, Wiley-Interscience, 2004. [20]

 R. H. Katz, “Tech Titans Building Boom,” IEEE Spectrum, vol. 46,pp. 40–54, Feb. [21]
2009.

 R. Barga, “Cloud Computing – A Microsoft Research Perspective.” Keynote [22]
Speech at IEEE P2P 2009, Sep. 2009.

 F. H. P. Fitzek and M. D. Katz, “Cooperation in wireless networks: principles and [23]
applications; real egoistic behavior is to cooperate,” Springer–Verlag, New York,
2006.

 COST (European Cooperation in Science and Technology), “Cooperative Radio [24]
Communications for Green Smart Environments”, ICT COST Action IC1004,
available at: http://www.cost.eu/domains_actions/ict/Actions/IC1004, (last
accessed July 2012).

 M. Naeem, “Computationally Efficient Algorithms for Resource Allocation in [25]
Cognitive Radio and Green Communication Systems”, PhD thesis, Simon Fraser
University, Summer 2011.

http://www.cost.eu/domains_actions/ict/Actions/IC1004

155

Appendix.

In this section, we show that the following function is an increasing function of .

 [

∑ | |

 ∑ (| |)

 ∑ (| |√)

]

A.1

The function is a monotonically increasing function; so proving that its

argument is increasing with is enough for the objective function to be monotonically

increasing with . Knowing that

 is non-negative, it would be enough to show that

∑ | |

 ∑ (| |)

 ∑ (| |√)

A.2

is increasing with :

∑ | |

 ∑ (| |)

 ∑ (| |√)

(∑ | |

) (∑ (| |)

) ∑ | |

 ∑ | |

 ∑ (| |√)

 (∑| |

) (

 ∑ (| |√)

)

A.3

The left summation is non-negative, and so is the summation in the denominator.

Therefore, this expression is increasing with , and as mentioned earlier, the

function is monotonically increasing. As a result, the function in (A.1) is an

increasing function.

	Approval
	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	List of Symbols
	Part I: Preliminary of Evolutionary Algorithms
	1. Introduction
	1.1. Evolutionary Algorithms
	1.1.1. General Components
	1.1.1.1. Initialization
	1.1.1.2. Population
	1.1.1.3. Parent Selection
	1.1.1.4. Variation Operators
	1.1.1.5. Elitism
	1.1.1.6. Termination Condition

	1.2. Algorithms Discussed in This Thesis
	1.3. Organization of Thesis
	1.4. Summary of Contributions
	References

	2. Biogeography-Based Optimization Algorithm
	2.1. Introduction to Biogeography
	2.2. Biogeography-Based Optimization (BBO)
	2.2.1. BBO Migration
	BBO Migration and Other EAs

	2.2.2. BBO Mutation
	2.2.3. BBO Elitism
	2.2.4. BBO Definitions and Algorithm

	2.3. BBO Migration Models
	2.3.1. Linear Immigration – Linear Emigration Model
	2.3.2. Linear Immigration – Constant Emigration Model
	2.3.3. Linear Immigration – Piece-wise Constant Emigration Model

	References

	3. Artificial Bee Colony Algorithm
	3.1. Introduction to swarm intelligence
	3.2. Real bees behavior
	3.3. The Artificial Bee Colony (ABC) algorithm
	3.3.1. The Artificial Bee Colony Definitions and Algorithm
	3.3.1.1. The Employed Bees Phase
	3.3.1.2. Onlooker Bees Phase
	3.3.1.3. Scout Bees Phase
	Comparison between the Scout Bees Phase and Mutation

	3.4. Discrete Artificial Bee Colony Algorithm
	3.5. Improvements to the DABC algorithm
	3.5.1. Selecting a Neighbor Food Source
	3.5.1.1. Random Bounded Integer Selection for Integer Problems
	3.5.1.2. Using Sigmoid Function for Binary Problems
	3.5.1.3. Using Logical Selection Expression for Binary Problems

	3.5.2. Employed Bee Selection Probability
	3.5.3. Improvements to Scout Bees Phase

	References
	Appendix. Neighborhood Food Source Selection in Discrete ABC

	4. Hybrid ABC/BBO Algorithm
	4.1. Introduction
	4.2. Discussion on ABC and BBO
	4.2.1. BBO’s Pros and Cons
	4.2.2. ABC’s Pros and Cons

	4.3. The Hybrid ABC/BBO algorithm
	4.3.1. The Hybrid Migration Operator
	4.3.2. Main Procedure of the Hybrid Algorithm
	4.3.3. Configuring the Algorithm

	4.4. Algorithms’ Computational Complexity
	References

	Part II: Applications of Evolutionary Algorithms to Wireless Communication Problems
	5. Computationally Efficient Symbol Detection Using EAs in Multi-User STBC-MIMO Systems
	5.1. Introduction
	5.2. System Model
	5.3. Signal Detection
	5.4. Evolutionary Algorithms for solving MD-STBC-MIMO problem
	5.5. Computational Complexity
	5.6. Simulation Results
	5.6.1. BER Performance Comparison
	Figure ‎5.5. Performance comparison for K = 7
	Figure ‎5.6. Performance comparison For K = 3
	Figure ‎5.7. BER vs. algorithm iteration comparison
	Figure ‎5.8. BER vs. algorithm iteration comparison

	5.6.2. Complexity Comparison
	5.6.3. Related Work
	Figure ‎5.14. Performance Comparison with CE for K = 5

	5.7. Conclusion
	References

	6. EAs for Joint Relay Assignment and Power Allocation in Cognitive Radio Systems
	6.1. Introduction
	6.2. System Model
	6.3. Evolutionary Algorithms-Based Relay Assignment with Greedy Power Allocation
	6.4. Simulation Results
	6.4.1. Algorithms’ Performance Results
	Figure ‎6.2. Sum rate vs. number of relays For K = 6
	Figure ‎6.3. Sum rate vs. number of relays For K = 5
	Figure ‎6.4. Sum rate vs. number of users For L = 6
	Figure ‎6.5. Sum rate vs. number of users For L = 5
	Figure ‎6.6. Sum rate vs. interference threshold For K = 6
	Figure ‎6.7. Sum rate vs. interference threshold For K = 7

	6.4.2. EAs’ Evolution Comparison Results
	Figure ‎6.8. Sum rate vs. algorithms’ iteration For L = 6
	Figure ‎6.9. Sum rate vs. algorithms’ iteration For L = 5
	Figure ‎6.10. Sum rate vs. algorithms’ population size and iteration

	6.4.3. BBO Migration Tuning Result
	Figure ‎6.11. Comparison between the number of BBO migration steps

	6.4.4. EAs’ Complexity Comparison Results
	6.4.5. Related Work

	6.5. Conclusion
	Figure ‎6.12. Sum rate vs. number of relays comparison with BPSO for K = 5

	References

	7. Green Resource Allocation in Cognitive Radio Systems
	7.1. Introduction
	7.2. Multi-objective Optimization
	7.3. Green Relay Assignment for GCCRN
	7.4. Hybrid Solver for GCCRN MOO Problem
	Figure ‎7.2. Flowchart of the Hybrid solver for GCCRN problem
	7.4.1. Evolutionary Algorithms for the Hybrid Solver
	7.4.2. Iterative Greedy Algorithm
	7.4.2.1. Step 1: Partial Relay Assignment
	7.4.2.2. Step 2: Final Relay Assignment with Interference Constraint

	7.4.3. More Discussion on the Hybrid Solver

	7.5. Simulation Results
	Figure ‎7.3. Fitness vs. different MOO power settings for K = 30
	Figure ‎7.4. Fitness vs. different MOO power settings for K = 40
	Figure ‎7.5. Fitness vs. number of users for L = 30
	Figure ‎7.6. Fitness vs. number of users for L = 20
	Figure ‎7.7. Fitness vs. number of users for L = 30
	Figure ‎7.8. Fitness vs. number of relays for K = 30
	Figure ‎7.9. Fitness vs. number of relays for K = 10
	Figure ‎7.10. Fitness vs. number of relays for K = 10
	Figure ‎7.11. Fitness vs. number of primary users for K = 50
	Figure ‎7.12. Fitness vs. number of primary users for K = 60
	Figure ‎7.13: Fitness vs. algorithms’ iterations for K = 10
	Figure ‎7.14. Fitness vs. algorithms’ iterations for K = 60
	Figure ‎7.15. Fitness vs. number of relays and algorithms’ iterations for K = 60

	7.6. Conclusion
	References
	Appendix.

