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Abstract 

In this thesis we discuss some new Evolutionary Algorithms (EAs) as potential low-

complex solvers to some optimization problems in wireless communications. Delivering 

high performance results while maintaining low computational complexity is extremely 

important in solving complex optimization problems or problems with a large search 

space. We propose our enhancements to Biogeography-Based Optimization (BBO) and 

Artificial Bee Colony (ABC) algorithms. We further present a novel high performance 

low-complex EA for optimization problems in both continuous and discrete domains, that 

combines the advantages of both BBO and ABC algorithms, which is referred to as the 

Hybrid ABC/BBO algorithm. This algorithm has shown higher performance in 

comparison to other EAs when applied to some optimization problems. We applied these 

algorithms to a single-objective unconstrained optimization problem (Multi Device STBC-

MIMO), a single-objective constrained optimization problem (relay assignment in 

cognitive radio systems), and a multi-objective constrained optimization problem (Green 

Resource Allocation in cognitive radio systems). We provide the formulation of these 

problems and compared the hybrid algorithm results with exhaustive search (where 

applicable), and further demonstrate the superiority of the hybrid algorithm in terms of 

complexity and performance over ABC, BBO, other mainstream EAs and optimization 

solvers through simulations. 

Keywords:  Evolutionary algorithms; optimization; cognitive radio; mimo detection; 
biogeography-based optimization; artificial bee colony  
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Part I:  

Preliminary of Evolutionary Algorithms 
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1. Introduction 

Recent advances in optimization facilitate progress in many areas of 

communications. In wireless and mobile communications, this progress provides 

opportunities for improving existing services and introducing new standards. Supporting 

data traffic over multi-hop wireless networks, efficient symbol detection, resource 

allocation and subcarrier assignment in MIMO communication, wireless sensor networks 

cognitive radio systems and mobile ad hoc networks, and network planning in wireless 

mesh networks etc., are challenging technical problems. This challenge is due to various 

factors and constraints, including computational complexity, limited bandwidth and 

battery power, channel variability and user mobility, protocol and standard compatibility, 

higher data rates, system robustness, etc. Optimization methods have been recognized 

as useful techniques that contribute to these challenges.  

1.1. Evolutionary Algorithms 

Evolutionary Algorithms (EAs) have been recognized as global optimization 

problem solving techniques.  EAs are inspired by natural evolution and survival of the 

fittest [29]. Evolutionary Algorithms have been shown to be effective optimization 

methods for many problems. They can efficiently be applied to problems with a large 

search space or  problems in which the objective function is complex, not differentiable, 

or not clearly specified (e.g., black box approaches) [29]. The success of EAs in many 

difficult optimization problems can be attributed to the large number of available 

techniques and adjustable parameters that can be tailored to particular cases [1]. Some 

evolutionary algorithms, such as Genetic Algorithm (GA) [2], Evolution Strategies (ES) 

[3], Particle Swarm Optimization (PSO) [4], and Ant Colony Optimization (ACO) [5], have 

been long studied. Some other popular techniques more recently introduced include 

Differential Evolution (DE) [6], Biogeography-Based Optimization (BBO) [7], Estimations 

of Distribution Algorithm (EDA) [8], Artificial Bee Colony (ABC) [9], etc.   

Despite their differences, different EAs follow similar high-level approaches [10], 

which can be summarized as the following steps:  
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1.  Generate initial population randomly. 

2.  Evaluate the fitness value of the individuals in the initial population. 

3.  Repeat the following steps until termination condition satisfied: 

a. Select higher quality individuals (parents) with a better fitness 
value. 

b.  Generate new individuals from parents through variation operators 
(crossover, mutation, etc.) 

c.  Evaluate the new population’s fitness value. 

The variation operators contribute to explore the search space by running 

specific procedures for generating new population [1] [11]. By applying these operators, 

the algorithm explores new solutions that potentially return better results. The variation 

operator is more discussed in the next subsection. 

The remainder of this section is organized as follows: Section 1.1.1 describes 

EAs’ general components. Section 1.2 explains the reasons behind choosing the two 

particular EAs (ABC and BBO) in this thesis. The organization of this thesis is presented 

in Section 1.3 and a summary of author’s contributions is presented in Section 1.4. 

1.1.1. General Components  

Two EA components: initialization and variation operators, do not depend directly 

on the problem but on the representation [1]. These components are elaborated more in 

detail in the rest of this subsection:  

1.1.1.1. Initialization  

The initialization step specifies how to choose initial population (the first set of 

individuals). In most applications it is relatively simple: the initial population consists of 

individuals generated at random from some probability distribution [1] [11]. Some other 

approaches employ more complex or intelligent procedures to generate feasible 

individuals that satisfy the constraints of a constrained optimization problem. While in 

principle such procedures can be used for any problem, their relative cost and benefits 

need to be considered prior to implementation [28].  
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1.1.1.2. Population  

Two important features of a population are its size and feasibility. The population 

size is simply the number of individuals within a population, which is usually kept 

constant from one generation to another. The importance of choosing the right 

population size is because it may affect the search time, complexity and the algorithm's 

robustness in noisy fitness settings [11] [12] [13] [14]. Feasibility, on the other hand, 

matters in problems defined within a certain domain or constraints. EAs can operate in 

discrete or continuous domain, or both. Further, if the optimization problem contains 

more constraints, the algorithm may require specific procedures in order to ensure the 

population is feasible when it is modified during each algorithm iteration.  

1.1.1.3. Parent Selection  

Parent selection is the process of selecting parent solutions for mutation and 

recombination. The goal is to select parents whose offspring have a high chance of 

improving their predecessor’s fitness, which is usually accomplished through some 

variant of fitness-proportionate selection; i.e. candidates with higher fitness values have 

a higher chance of being selected for reproduction. Consequently, low-quality 

candidates are rarely selected; although in many applications they are selected in order 

to prevent the search to be stocked in local optima [11]. Parent selection can be 

randomized to reduce the complexity, or it can be smarter to improve the algorithm’s 

performance.  

1.1.1.4. Variation Operators  

The role of variation operators is to explore and exploit the search space by 

generating new individuals from the existing population (parents) [1] [11]. A typical EA 

such as GA has three variation operators: crossover, selection and mutation. In the 

selection procedure, the parents of the next generation are chosen based on higher 

fitness (greedy selection). The parents reproduce one or two individuals by copying 

some of their components, with two possible changes: cross over and mutation.  

Crossover recombines the parental genes (components) and mutation replaces 

some of the components of an individual with randomly generated values. Mutation is 

applied to some or all of the components of one candidate solution. The modifications 
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are usually stochastic [11]. The role of mutation varies in EA types. Nonetheless, the 

general role of mutation is to explore new points within the search space to ensure that 

the algorithm is not stocked in local optima. More discussion is presented in 

Sections  2.2.2 and  3.3.1.3. 

1.1.1.5. Elitism  

If an EA contains elitism, it prevents a few best individuals to be altered via the 

variation operators. Thus, the evolutionary algorithm ensures that the best individuals 

are safely transferred to the next iteration. If the algorithm does not incorporate elitism, 

there may be a chance of losing high quality individuals and it depends on the 

algorithm’s variation operator(s) procedure. Some algorithms like ABC, BBO and EDA 

may retain their best individuals, while some others like GA have the tendency to lose 

their best individual through the crossover operator. 

1.1.1.6. Termination Condition  

Most EAs have no guarantee about finding the optimum solution in some 

reasonable bounded time. As such, the algorithm requires specifying one or more 

termination conditions. Some common ones include [11]:  

 Maximum iterations: the algorithm iterates for a predefined number of iterations. 

 Within optimum: the maximum theoretical value of the fitness function is known, 

and the search is terminated when it comes to within    of that optimum.  

 Time limit: user-defined maximum running time has elapsed. Other related 

measures, such as CPU time, the number of generations or the number of fitness 

evaluations can be used as well.  

 Convergence: the search has converged, i.e. fitness improvement in the last few 

generations stayed below some small threshold.  

Note that some of these conditions should be employed carefully in algorithms that 

have the ability to get out of local optima. 

In some cases, a combination of the above termination conditions is used. For 

example, an algorithm might be terminated either when it comes to within    of the 

optimum, or a time limit has passed, whichever comes first [11].   
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1.2. Algorithms Discussed in This Thesis 

The author’s first experience with EAs was applying Dan Simon’s Biogeography-

Based Optimization (BBO) algorithm [7] Simon’s paper showed good performance 

compared with seven well-known EAs applied to 14 standard benchmark functions and a 

real-world sensor problem [7]. After observing superior performance of BBO 

implemented for computationally efficient joint symbol detection to a Multi-Device STBC-

MIMO system (Chapter 5) [17], with its BER results very close to Sphere Decoding with 

much less complexity, the algorithm was implemented for other wireless communication 

problems, while improving the algorithm and proposing some techniques to reduce its 

complexity (Section 2.4).   

Furthermore, we studied another novel EA, the Artificial Bee Colony (ABC) 

Algorithm presented by Karaboga [9], which has shown good performance results 

especially for continuous optimization problems. Karaboga’s comparison of ABC with 

four well-known EAs for 50 benchmark functions demonstrates good performance of this 

EA. However, the algorithm required adjustments to be applied to discrete optimization 

problems. We modify the algorithm (Section 3.4), improve its performance and reduce its 

complexity (Section 3.5). The results of applying the enhanced ABC to some wireless 

communication applications (Chapter 5 and 6) were very promising and even better than 

BBO or any other EA we included in our comparison.  

These two algorithms (ABC and BBO) are the two with the highest efficiencies in 

their class being applied to some optimization problems [7] [9] [16] [17] [18], and they 

have usually returned the best solutions to different real world optimization problems, 

including problems in wireless communications. 

Subsequently, after extensively studying BBO and ABC along with other EAs, 

and implementing them for wireless communication problems, we recognized the strong 

and weak aspects of each EA (Section 4.2). The interesting point about ABC and BBO 

algorithms was that the disadvantage of one is the advantage of the other (Section 4.3). 

Taking the advantage of each of these algorithms’ strong features, we develop a novel 

EA by hybridizing these algorithms, which is presented in Chapter four. 
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In 1995, Wolpert and Macready presented an important result in their “No Free 

Lunch” theory for optimization [15]. Their work illustrated that all algorithms that search 

for an extremum of a cost function perform exactly the same, when averaged over all 

possible cost functions. In other words, “any two algorithms are equivalent when their 

performance is averaged across all possible problems” [29]. Hence, from a problem 

solving perspective it is difficult to formulate a universal optimization algorithm that could 

solve all the problems. Droste et al have proved the theorem for more practical case in 

[30]. Therefore, the algorithms discussed in this thesis may not unanimously outperform 

other EAs. Nonetheless, for the problems discussed in Part II of this thesis, in addition to 

some other problems studied but not included in this thesis cited in Section 1.4, the 

implementation of hybrid algorithm returns better result than other EAs including BBO 

and ABC. 

1.3. Organization of Thesis 

This thesis focuses on implementing EAs for various wireless communication 

problems. The thesis consists of two parts. Part I contains the preliminary of EAs. We 

start Chapter 2 and Chapter 3 with some sections for introducing BBO and ABC, and 

we present some improvements to each of these algorithms in the subsequent sections. 

We also provide a review of some of the interesting BBO and ABC research reported in 

literature. The novel hybrid ABC/BBO algorithm is proposed in Chapter 4, with a brief 

introduction of hybrid EAs, and a discussion on strong and weak aspects of ABC and 

BBO, and finally presenting the algorithm’s procedure. 

Part II of the thesis consists of implementations of EAs discussed in Part I to 

three wireless communication problems and their performances comparison with other 

EAs and deterministic solvers. Chapter 5 addresses a computationally efficient symbol 

detection optimization problem in multi-user STBC-MIMO systems. Chapter 6 contains a 

joint relay assignment and power allocation in cognitive radio systems using EAs. 

Finally, Chapter 7 discussed a green resource allocation in cognitive radio systems. 

Each of these three chapters contains a background of the problem, followed by defining 

the system model and formulating the problem. The rest of the chapters contain 

discussions on the methods of implementing EAs to that specific problem, and a 
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discussion on complexity where possible. Finally the simulation results are presented 

and a summary is given in the conclusion section. 

1.4. Summary of Contributions 

This thesis discusses two recent EAs in the next two chapters in Part I. Although 

these algorithms are already discussed in the literature and implemented to various 

problems, we confronted some novel, important and interesting issues while studying 

and implementing these algorithms. Our contributions to the BBO algorithm are 

presented in: 

• Section  2.3: BBO Migration Models 

• Section 3.3: Comparison between Scout bees phase and mutation  

• Section  3.4: Discrete Artificial Bee Colony Algorithm 

• Section  3.5: Improvements to the DABC algorithm 

The BBO algorithm is originally presented for the optimization problems in a 

discrete or integer domain, and the ABC algorithm is primarily introduced for continuous 

optimization problems. The proposed hybrid algorithm in Chapter  4 can be applied to 

both types of problems. Moreover, this algorithm is implemented for optimization 

problem types, and in all of these problems, this algorithm beats its predecessors BBO 

and ABC in terms of BER performance (Chapter 5) and sum rate (Chapters 6 and 7), as 

well as other mainstream EAs such as GA, EDA, ACO, in addition to other deterministic 

algorithms. A collection of optimization problems that the author has implemented these 

EAs for them are presented in Table  1.1. These algorithms are applied to some other 

optimization problems not included in this thesis that are published in various journals 

and conference proceedings. The list of these papers is presented at the end of the 

Reference Section of this chapter.  

In Part II of this thesis, the author has made the following contributions: 

• Section  5.4: Evolutionary Algorithms for solving MD-STBC-MIMO problem 

• Section  5.5: Computational Complexity 

• Section  5.6: Simulation Results 
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• Section  6.3: Evolutionary Algorithms-Based Relay Assignment with Greedy 
Power Allocation 

• Section  6.4: Simulation Results 

• Section  7.4: Hybrid Solver for GCCRN MOO Problem  

The research on EAs has contributed to the community by publishing a number 

of papers in reputed conferences and journals. These publications, along with few others 

in submission and reports, can be found at the Reference Section of this chapter, which 

are: [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27]. Some of these publications have 

not been published yet, and are mentioned in the Reference Section. The author of the 

thesis is the first author for most of these papers. The author has also presented some 

of the conference papers in IEEE conference himself [17] [18] [22]. 

Table  1.1: List of Contributed Literature 

Optimization Problem Type Problem Reference 

Single objective, unconstraint 
Computationally Efficient Symbol Detection in 
Multi-User STBC-MIMO Systems 

[17] [19] [20] 
Chapter  5 

Single objective, constraint 
Relay Selection in Relay Assisted Cognitive 
Radio Systems 

[21] 

Single objective, constraint 
Joint Relay Assignment and Power Allocation in 
Cognitive Radio Systems 

[18] [22] 
Chapter 6 

Single objective, constraint Critical Node Detection Problem [24] 

Multi objective, constraint (converted to 
single objective using Weighted Sum 
Method) 

Wireless Mesh Network Planning [23] 

Multi objective, constraint (converted to 
single objective using Weighted Sum 
Method) 

Green Resource Allocation in Cognitive Radio 
Systems 

[25] [27] 
Chapter 7 

Multi objective, constraint (converted to 
single objective using Weighted Sum 
Method) 

Base Station and Relay Station Broadband 
Network Planning 

[26] 
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2. Biogeography-Based Optimization Algorithm 

This chapter discusses the Biogeography-Based Optimization (BBO) algorithm. 

BBO is a new global optimization population-based EA based on the biogeography 

theory, which is the study of the geographical distribution of biological species. An 

introduction to biogeography is given in Section  2.1 Section  2.2 contains the BBO 

terminologies, definitions and algorithm. Our contribution to the BBO algorithm, as low-

complex migration models, is discussed in Section  2.3. 

2.1. Introduction to Biogeography 

The science of biogeography is the study of the geographical distribution of 

biological species. The early study of biogeography was performed by Wallace [1] and 

Charles Darwin [2] during the 19th century. These studies until the mid-twentieth century 

were mostly descriptive and historical. Later in 1960s, Robert MacArthur and Edward 

Wilson studied the mathematical models of biogeography, and wrote The Theory of 

Island Biogeography [3]. Their work mainly was focused on the distribution of species 

among neighboring islands, and their interest was in mathematical models for the 

extinction and migration of species. During the recent few years, the implementations of 

biogeography have been a breakthrough to the engineering applications of the Genetic 

Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), 

as well as neural networks, fuzzy logic, and other areas of computer intelligence. More 

elaboration on of biogeography and its mathematical models is provided in [5]. 

2.2. Biogeography-Based Optimization (BBO) 

Biogeography-based optimization, introduced by Simon [5], is a population-

based, stochastic global optimizer Evolutionary Algorithm, based on the 
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mathematics of biogeography theory describes in the two sections above. Consider an 

optimization problem:  

   
 

          

                
(2.1) 

where               
  is a vector and   is a constraint set. In the original BBO, each 

candidate solution is represented by a vector variable of the optimization problem. In the 

context of evolutionary algorithms, a candidate solution is also referred to as an 

"individual," and a group of individuals is referred to as a "population" of individuals. In 

BBO, each individual (candidate solution to an optimization problem) is analogically 

considered as a habitat (island) in Biogeography. The fitness value      of each 

individual   corresponds to the Habitat Suitability Index (HSI) of an island in 

Biogeography. In Biogeography, features that affect HSI include vegetation, rainfall, 

topographic diversity, temperature, etc., and these features are characterized by 

variables that are called Suitability Index Variable (SIV). As mentioned earlier, a 

candidate solution   in optimization problem 2.1 analogically corresponds to a habitat 

(an island) in Biogeography. Then, the components of   (i.e.     {     } ) correspond 

to an island’s SIVs, and      correspond to the HSI of habitat  . We will often use these 

terminologies to refer to an individual  , its components            and its fitness value. 

The advantage of biogeography, as the nature’s way of distributing species, is 

analogous to general problem solutions. Suppose there’s a problem presented with 

some candidate solutions, which can be in any area of life, such as engineering, 

economics, medicine, business, operations research, etc., as long as there is a 

quantifiable measure of the suitability of a given solution (be able to calculate the fitness 

value). A good solution is analogous to a habitat with a high HSI, while a poor one 

represents a habitat with a low HSI. In an EA, high HSI habitats tend to share their 

features (copy their SIVs) with low HSI solutions’ features. By sharing features, habitats 

with high HSI are not going to lose their current features – they will remain intact and low 

HSI solutions import features from high HSI habitats. Poor solutions accept many 

features from good solutions, which may improve their HSI, thus their quality. This new 

approach to problem solving has been presented by Dan Simon is called Biogeography-

Based Optimization (BBO) [5]. 
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2.2.1. BBO Migration 

The main consequence of BBO migration is using the immigration and emigration 

rates of each solution to share information between habitats probabilistically. One 

approach to the migration can be defined as following: with a random probability we 

modify each solutions based on other solutions. Thus if a given solution is selected to be 

modified, then we use its immigration rate   to decide probabilistically whether to modify 

each SIV in that solution. If a given SIV in a given solution is selected to be modified (i.e. 

it is ready to accept the shared information from other solutions), then we use the 

emigration rates of the other solutions to probabilistically decide which of the solutions 

should emigrate (share information of) a randomly selected SIV to solution. One has to 

remember that the associated immigration or emigration curves of a solution vector 

(habitat) represents the corresponding rates of each SIV inside that solution [5]. 

BBO Migration and Other EAs 

The BBO migration procedure is analogous to the Global Recombination 

approach in the breeder GA [6] and Evolutionary Strategies (ES) [7] algorithms, where 

many parents contribute to a single offspring. However, it is not quite the same; in the 

ES algorithm Global Recombination produces new solutions, while BBO's migration 

substitutes (copies) existing solutions. Global recombination in GA is a reproductive 

process, whereas migration in BBO is an adaptive process – it modifies existing habitats. 

2.2.2. BBO Mutation 

Sometimes unusual natural incidents may happen to a habitat, such as large 

flotsam arriving from a neighboring habitat, disease, hat drastically change the HSI of a 

natural habitat, and may cause a species count to differ from its equilibrium value. As a 

result, a habitat's HSI can change suddenly due to such random events. This natural 

behavior in biogeography is interpreted as mutation in the BBO algorithm [5]. 

Mutation in BBO, just like other EAs like GA, prevents the algorithm to be 

stocked in local optima, and it can occur for any SIV in any habitat in each generation. In 

the BBO algorithm we employ a simple mutation procedure, in which all SIVs are 

randomly compared with a relatively small constant called the mutation factor, denoted 



 

16 

by  , and they will be mutated into some new randomly generated SIV that is eligible 

according to the problem domain. 

2.2.3. BBO Elitism 

Similar to other population-based optimization algorithms, elitism may be 

incorporated into BBO; so the algorithm prevents them from being modified during the 

migration process, and the best solutions retain in the population. 

2.2.4. BBO Definitions and Algorithm 

Simon defines BBO terminologies in [5]. In this thesis, we present slightly 

modified definitions according to the notations used as the first step towards formalizing 

the BBO algorithm. In these definitions,   is referred to the set of real numbers, and   is 

referred to the set of integers. 

 Definition 2.1 A habitat        is a vector of   integers, and represents a 

feasible solution to some problem.  

 Definition 2.2 A Suitability Index Variable SIV    is an integer that is allowed in 

a habitat (a component of an individual). 

 Definition 2.3 A Habitat Suitability Index HSI      is a measure of the 

goodness of the solution that is represented by the habitat (HSI is referred to as 

“fitness” in most population-based optimization algorithms), where      is the 

domain of all feasible solutions to the problem. 

 Definition 2.4 An ecosystem      is a group of   habitats, where   is a constant 

representing the size of an ecosystem (population size).  

 Definition 2.5 Immigration rate            is a monotonically non-increasing 

function of HSI.    is proportional to the likelihood that SIVs from neighboring 

habitats migrate into habitat   .  

  Definition 2.6 Emigration rate            is a monotonically non-decreasing 

function of HSI.    is proportional to the likelihood that SIVs from habitat    

migrate to neighboring habitats.  
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Generally, population-based Evolutionary Algorithms have an iterative nature – 

i.e., they are run for a number of generations (trials, iterations). The number of these 

generations usually is determined by a variety of models described in Section  1.1.1.6. 

The BBO algorithm uses a fixed number of generations. 

Given the above definitions of BBO terminology, we provide the Biogeography-

Based Optimization algorithm pseudo-code in table 2.1. 
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Table  2.1. Pseudo code of the BBO algorithm 

For each iteration   

Migration Procedure 

 

    for each island               ; 
        for each SIV                

            with probability           accepts immigration; 

            If        is decided to accept immigration, then, 

probabilistically select an island    that emigrates to          based on   ; 

                               {       migrates into      ) }; 

            end if 
        next SIV  
    next island 

Mutation Procedure 

   for each island    
        for each SIV    

            if        , then {Use mutation factor   to decide whether to mutate       ;} 

                replace       with a randomly generated SIV; 

            end if 
        next SIV  
    next island 

Calculates HSI 

    for each island    
       calculate HIS 
    next island 

Save beset results 

    sort population 
    save the best island 
 
next iteration 
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2.3. BBO Migration Models 

 There are various types of migration curves because of different mathematical 

models of biogeography [3]. Simon has initially presented BBO with linear emigration 

and immigration rate curves [5]. Thereupon, most of the literature utilized the linear 

emigration and immigration curves [8-13]. 

Recently, several more complex curves are presented in [14], including the 

comparison of various non-linear migration models, such as quadratic migration curve, 

sinusoidal migration curve and generalized sinusoidal migration curve. Ma and Simon 

concluded in [14] that a sinusoidal model for emigration and immigration curves has a 

better performance than other models, including the linear model. In fact, they only 

compared the result for best performance and closest result to the optimal value. 

However, they have included neither computational complexity nor time comparisons in 

their research, so one could have chosen the preferred migration model based on the 

performance – computational complexity trade-off. 

Complexity of the employed algorithms for optimization problems is a major 

concern in communications applications. In real-time applications, such as real-time 

symbol detection in wireless communication, it is crucial to employ an algorithm that not 

only runs with a reasonable performance, but also returns the result quickly. The 

computational power is an issue in some other applications, such as wireless sensors, or 

mobile hand-held devices, that minimizing the consuming power is vital in order to 

prolong the battery life. In addition, more complex algorithms demand more complicated 

circuitry, which further increase the production cost. Therefore, it would be essential to 

employ an algorithm that returns the best performance along with low complexity. 

We have run simulations using the Simon's code in Matlab© language [15] that 

he used to generate the results of his first paper [5], in which he employs linear 

emigration and immigration curves. During our first implementation of BBO to joint 

symbol detection in a multi-device STBC MIMO system [16], we observed although BBO 

returns better results that some other EAs like GA and EDA, Simon's implementation of 

linear curves takes more time than other EAs, including our contributed low-complex 

migration curves.  
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This section continues with Simon’s linear migration model [5]. The rest of the 

section contains two other migration models with lower complexity proposed by the 

author, which are implemented for the optimization problems discussed in Part II of the 

thesis. 

2.3.1. Linear Immigration – Linear Emigration Model 

 The immigration and emigration curves are functions of the number of species in 

a single habitat. A typical leaner model [5] for   and   curves is illustrated in Figure 2-1. 
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Figure  2.1. Linear immigration rate and constant emigration curves 

In the immigration curve  , the maximum possible immigration rate to the habitat 

is  , which happens when there is no species in the habitat. As the number of species 

inside the habitat increases, the immigration rate decreases; because the habitat has 

become more crowded and there would be less resources for new species to 

successfully survive. When the habitat has its largest possible number of species   that 

it can support, the immigration rate becomes zero. 

In the emigration curve  , while there are no species inside the habitat, the 

emigration rate has to be zero. As the number of species increases, the habitat becomes 

more crowded and some species tend to leave the habitat and explore other possible 

habitats, thus the emigration curve increases. The maximum emigration rate   happens 

when the habitat has the largest possible number of species it can support. 
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The expressions for emigration rate and immigration rates can be expressed as: 

    (  
 

 
)   

   
 

 
  

(1.9) 

2.3.2. Linear Immigration – Constant Emigration Model 

A low-complexity migration curve may consist of a linear immigration rate and a 

constant emigration rate curves as depicted in Figure  2.2. 
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Figure  2.2. Linear Immigration – Constant Emigration curve 

In this model, the emigration rate   is constant. Emigration rate is the likelihood 

of species to emigrate from a habitat; that is how likely a habitat wants to share its SIVs 

with other individuals. A constant emigration curve implies that all habitats have the 

same probability to share their SIVs. This statement induces   to be constantly uniformly 

distributed. For a maximum number of   habitats, emigration rate is constantly uniformly 

distributed if      . Therefore, the two curves can be expressed as: 
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(2.7) 

where   denotes the constant emigration rate, and   represents the species count. As 

the number of species increases, the immigration rate linearly decreases. The maximum 

immigration rate   occurs when there are zero species in the habitat. The immigration 

rate becomes zero when the habitat accommodates the largest possible number of 

species.  

2.3.3. Linear Immigration – Piece-wise Constant Emigration Model 

  In this model, the emigration rate is again constant, while we use a piece-wise 

constant immigration rate as depicted in Figure  2.3. 

N

immigration

emigration

ra
te





Number of species

E/w

I

E

 

Figure  2.3. Linear Immigration – Piece-wise Constant Emigration curve 

 The immigration rate in this model is also linear with the maximum of  . But the 

emigration rate is piece-wise constant, composed of   constant segments defined over 

  intervals of equal size, with a maximum of  . This model is closer to the linear 

immigration rate – linear emigration rate. The two curves can be expressed as follows: 
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(2.8) 

Once again, as the number of species increases, the immigration rate decreases 

linearly. The behavior of the emigration rate curve (size of the intervals) is varies with   

and the maximum number of species  . The more number of the species in a habitat 

results in the higher emigration rate (higher     higher  ), while this emigration rate is 

equal for habitats with closer number of species. The above emigration expression also 

shows that more segments (larger  ) will result in a closer curve to the linear model. A 

comparison between these first two models in presented in section  6.4 in Figure  6.11. 
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3. Artificial Bee Colony Algorithm 

This chapter introduces the Artificial Bee Colony (ABC) algorithm, and continues 

with presenting some improvements to the existing ABC algorithm and introducing a 

modified ABC customized for discrete optimization. ABC is a recently presented EA for 

real (continuous) parameter optimization in unconstrained optimization problems. An 

introduction to the swarm intelligence is presented in the next section. Section  3.2 

explains the behavior of real bees, from which ABC has been inspired. The ABC 

definitions and algorithm is presented in Section  3.3. Our improvements to the ABC 

algorithm are Sections  3.4 and  3.5. In Section  3.4, we present a modified ABC algorithm 

specifically developed for discrete optimization problems. In Section  3.5 we discuss 

some further improvements to the original ABC as well as the novel discrete ABC 

algorithm to enhance the algorithm performance and complexity. 

3.1. Introduction to swarm intelligence 

In recent years, swarm intelligence has become a research interest to many 

research scientists of related fields. Bonabeau et al. define the swarm intelligence as 

“any attempt to design algorithms or distributed problem solving devices inspired by the 

collective behavior of social insect colonies and other animal societies…” [2]. The term 

“swarm” is generally referred to any restrained collection of interacting agents or 

individuals. In fact, the classical example of a swarm colony is bees swarming around 

their hive. The metaphor can easily be extended to other species with a similar behavior. 

Some examples of swarms in different fields include [1]:  

 an ant colony whose individual agents are ants, 

 a flock of birds is a swarm of birds, 

 an immune system is a swarm of cells  

 a crowd is a swarm of people. 
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A few models have been presented to model the intelligent behavior of honeybee 

swarms, and have been applied to some combinatorial-type problems [2, 3, 4, 5, 6, 7, 8, 

9]. There are only a few research articles on numerical optimization problems based on 

intelligent behavior of honeybee swarms. Yang has developed a Virtual Bee Algorithm 

(VBA) to solve the numerical optimization problems [10]. VBA is only capable of 

optimizing the functions with two parameters. Karaboga has presented a bee swarm 

intelligence algorithm called the Artificial Bee Colony (ABC) algorithm [11] for 

multivariable numerical functions, that has shown good performance compared to other 

mainstream EAs such as GA, PSO, ACO, DE and others [12, 13]. 

3.2. Real bees behavior 

A model of forage selection that leads to the emergence of collective intelligence 

of honeybee swarms comprises three components: food sources, employed bees and 

unemployed bees. We explain them from [14] and [18] for better comprehension of the 

algorithm’s behavior. 

1. Food sources: a food source quality depends on several factors including its 

proximity to the nest, richness or the quality of the nectar, and the effortlessness of 

extracting this nectar. For simplicity, the profitability of a food source can be 

represented with a single quantity called food nectar [18]. 

2. Employed bees: Every time a bee returns to the hive from a patch of flowers, she 

brings home not only food stored in her pollen baskets and honey stomach, but also 

the information about her food source stored in her brain. She can share this 

knowledge with her nest mates by means of the waggle dance communication 

behavior [18].  

3. Unemployed bees: Unemployed bees need to locate a food source, either because 

they are just beginning their forage careers or because they have recently 

abandoned a depleted patch of flowers [18]. Most such unemployed bees follow the 

recruitment dances of their nest mates to find a food source [18]. These two types 

can be summarized as: 
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3.1. Onlooker bees: onlooker bees check the recruitment dances of their nest mates 

to receive the information of their food source. The exchange of information 

about food sources that her nest mates present on the dance floor at the hive. 

Once an employed bee shared its food source position and profitability 

information with an onlooker bee, the onlooker becomes an employed bee that 

flies to the food source [18]. 

3.2. Scout bees: these are explorer bees without any guidance while looking for 

food. As a result of such behavior, the quality of their food source is 

characterized as low, while occasionally one can accidentally discover a food 

source rich in quality [18]. 

3.3. The Artificial Bee Colony (ABC) algorithm  

The original Artificial Bee Colony (ABC) algorithm is presented by Karaboga [12] 

for real (continuous) parameter optimization in unconstrained optimization problems. 

ABC is a population-based, stochastic global optimizer Evolutionary Algorithm, based on 

the theory of foraging bees described in the above section. This algorithm demonstrates 

good accuracy and efficiency, compared with other EAs such as Differential Evolution 

(DE) [15], Ant Colony Optimization (ACO) [16], PSO and GA, for numeric problems with 

multi-dimensions [13]. 

Considering an optimization problem: 

           

 subject to:     

(3.1) 

where               
  is a vector of   real numbers, and   is a constraint set. In the 

original ABC, each candidate solution is represented by a vector variable of the 

optimization problem. In the context of evolutionary algorithms, a candidate solution is 

also referred to as an “individual”, and a group of candidate solutions is referred to as a 

“population” of individuals. In ABC, each individual (candidate solution to an optimization 
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problem) is analogically considered as a food source location. The fitness value      of 

each individual (food source)   corresponds to the nectar quality of the food source. 

 

3.3.1. The Artificial Bee Colony Definitions and Algorithm  

In this section the definitions of some terms in the ABC algorithm is provided as a 

first step towards formalizing the ABC algorithm, following by the algorithm’s pseudo-

code. An exact definition of the algorithm’s terminologies is required before presenting 

the algorithm itself. In the definitions below,   and   are referred to the set of real 

numbers and integer numbers, respectively. 

 Definition 3.1: A food source position                   is a vector of   real 

numbers, and represents a solution to some problem.   is referred to as an 

individual. 

 Definition 3.2: A food source position parameter      is a real number 

representing one coordinate of a food source, where     is the set of all real 

numbers that are allowed in the problem domain.  

 Definition 3.3: A food source’s profitability, or the food source’s nectar quality, 

      is a measure of the goodness of the solution that is measured by the 

bees. (Nectar quality is referred to as “fitness function” in most population-based 

optimization algorithms.) where      is the domain of all feasible solutions to 

the problem. 

 Definition 3.4: A local environment   {          } is a group of   food 

source positions, where   is a constant representing the number of food source 

positions handled by the algorithm during each generation.   can be referred to 

as the algorithm population set; while   would be the population size, and    

represents the  th individual in the population.  

 Definition 3.4: Similar to the BBO algorithm, the ABC algorithm is a population-

based EA with an iterative nature – i.e. it runs for a number of generations (trials, 

iterations). See Section  1.1.1.6. 
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The ABC algorithm is similar to the real behaviour of bees in finding food source 

position and sharing information to other bees. As mentioned in the previous section, the 

colony of bees is classified into three types: 

 Employed bees 

 Onlooker bees 

 Scout bees 

Each employed bee maintains one location, which analogically is the location of 

its food source, and there are   employed bees in each generation of this evolutionary 

algorithm. The   locations maintained by the employed bees are   candidate solutions 

(individuals) to (3.1) and are referred to as individuals in the population. A pseudo code 

of the ABC algorithm is given in Table  3.1. 

The main steps of the algorithms are presented in the pseudo code in table 3.1.  

Table  3.1. The ABC algorithm general pseudo code 

 

1. Send scouts (generate initial population) 
2. Repeat 
3. Employed bees phase  
4. Onlooker bees phase 
5. Scout bee phase 
6. Memorize the best food source found so far 
7. Until termination condition satisfied 

 

At the beginning, the algorithm generates the initial set of food source positions 

(individuals) by sending scouts; i.e. it randomly generates a set of   random vectors, 

where   denotes the size of employed bees. There are   vectors      {       } in 

the local environment   (  individuals in the population), each consists of   real 

parameters    (  
    

      
 )

 
, where   denotes the number of optimization 

parameters.  

As soon as a scout founds a new food source (a new vector of parameters 

generated), she is assigned to the source and she will become an employed bee. An 
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employed bee then saves the food source position in her memory depending on the 

local information (visual information) to determine the nectar quality (fitness value) of the 

food source and keeps that in her memory. As a result, at the end of this step there will 

be   employed bees, each assigned to   food sources and know the fitness value for all 

  vector solutions. Next, the algorithm will proceed to the generation loop. This loop will 

continue until the algorithm meets one of the conditions mentioned in Definition 3.4. A 

detailed explanation for each of the three phases is as follows:  

3.3.1.1. The Employed Bees Phase 

In the employed bees phase, an employed bee associated with the  th food 

source position    and has saved its nectar quality in its memory, searches for a new 

food source in the neighborhood in accordance with the following expression: 

  
    

    
 (  

    
 ) (3.2) 

where   
  denotes the  th component of the current food source position (individual),   

  

denotes the  th component of the new food source position (location of a food source in a 

neighborhood),   {       } is a randomly selected component of the food source 

position vector, and   {       } is a randomly chosen food source index such that 

   .    is referred to as a neighbor of   .    
  is a random number between [    ] that 

controls the production of neighbor food sources around   
  and represents the 

comparison of two food positions visually by a bee. If the nectar quality of the new food 

source is better than the one she already has in her memory, she remembers this new 

location and its nectar quality; otherwise she still keeps the location and the nectar 

quality of the previous source (this is called the greedy selection).  

There are several issues that have to be considered about the employed bees: 

 Note that during this phase, the algorithm modifies only one parameter (the  th 

component) of the solution vector    using (3.2), and copies the rest of the 

components from    to   . The expression (3.2) is referred to as the “ABC’s 

Explorer”. 

 The algorithm has a control over the solutions’ domain such that if a parameter 

value generated by (3.2) exceeds its predetermined lower bound and upper bond, 
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it is set to an acceptable value. For instance, the value of the parameter 

exceeding the upper bound can be set to its limit value. 

 Each employed bee (or its corresponding food source) has a variable associated 

to it representing the number of trials, denoted by      . It is initially set to zero, 

and increases by one for each fitness function evaluation. If the new fitness value 

is better than the prior, the algorithm resets       to zero. The algorithm uses the 

value of       in the scout bees’ phase to decide to change an employed bee into 

a scout. 

As described in the section  3.2, after   employed bees have found their new 

food source positions and tested their nectars, they choose the best food source via 

greedy selection and return to the hive. Onlooker bees are waiting for them in the dance 

level to receive the information of the food sources from employed bees. 

3.3.1.2. Onlooker Bees Phase 

During this phase, first employed bees share their information about the nectar 

quality of food sources with onlooker bees. An onlooker chooses a food source with a 

probability related to nectar amount. Better nectar quality of a food source results in its 

higher probability to be selected by onlookers. An onlooker bee can select an employed 

bee to follow based on different selection methods. A typical selection method, also 

presented in the original ABC paper, is the roulette wheel selection method [15]. 

Through this method, the selection probability can be calculated by the following 

expression: 

   
 (  )

∑       
   

 
(3.3) 

where      {       } is the fitness value of the  th solution, which is proportional to the 

nectar amount of the  th food source. We will present more selection methods in 

section  3.5.2.  

As soon as the onlooker receives the information from an employed bee, she 

becomes an employed bee has the information about her associated food source 

position and its nectar quality, and flies to the food source. Now she has become an 

employed bee associated with that food source. Since then, the new employed bee 
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(former onlooker) performs the same act as the employed bee in the previous phase; 

i.e., she searches for a new food source in the neighbor of her associated food source 

using (3.2) for higher nectar quality, and saves the best food source and its nectar to her 

memory. Then she tests the nectar of this new food source and selects the better food 

source via the greedy selection, and keeps that information in her memory. 

3.3.1.3. Scout Bees Phase 

Scout bees are free bees responsible for finding new food sources and evaluate 

their nectar. As soon as a scout bee finds a food source, she turns into an employed 

bee. If there is no improvement in the nectar quality of a particular food source, the 

algorithm abandons that source, and its associated employed bee turns into a scout bee 

that randomly searches for a new food source. A scout bee is a former employed bee, 

and becomes an employed bee again once it has been associated to a food source. She 

tests the nectar and saves it in her memory, and returns to the hive to dance in front of 

onlookers. The number of bees in the hive remains intact   during the algorithm 

During each cycle in the original ABC algorithm, maximum of one employed bee 

is selected and classified as the scout bee [17, 12]. If there is more employed bee to 

become a scout, the algorithm selects only one employed bee randomly. The 

classification is controlled by a control parameter “     ” that has to be less than a 

predetermined upper-bound  . If a food source is not improved after   number of trials, 

the algorithm removes it from the population in the scout bees’ phase, and the employed 

bee associated to the food source turns into a scout that searches for a new food 

source. In other words, scout bees are sent for those food sources that       {        }. 

The food source of which the nectar is abandoned is replaced with a new food 

source, which is simulated by producing a position randomly and replacing it with the 

abandoned one. The scout randomly generates a new food source  ̂  ( ̂ 
   ̂ 

     ̂ 
 ) to 

be replaced with the abandoned source   , and each component of the new food source 

 ̂  – i.e.  ̂ 
     {       } – is randomly generated using the following expression: 

 ̂ 
           [   ]                   (3.4) 
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where      and       are the upper bound and the lower bound of a feasible parameter 

variable. If the constraint set   in (3.1) has more complexity than a box, then the 

algorithm should incorporate a constraint checking procedure to make sure that each 

individual is feasible. As soon as a scout finds a new food source position, she turns into 

an employed bee. This employed bee then measures the nectar quality of the food 

source, keeps it in her memory, and returns to the hive. 

At the end of each cycle, the best solution is chosen via sorting the nectar 

qualities of all   employed bees. If the new value is better than that of the previous 

generation, the algorithm saves the fitness value and the corresponding food source 

position (individual).  

Comparison between the Scout Bees Phase and Mutation  

The role of the scout bees in the algorithm is similar to the “mutation” procedure 

in other EAs like Genetic Algorithm [15]. The GA applies mutation to a predetermined 

portion of its population during every algorithm generation. Each individual in the portion 

would be selected for mutation with respect to a mutation probability, and its parameters 

will be replaced with randomly generated values.  

The scout bees’ phase in the ABC algorithm has an advantage and a 

disadvantage compared with the GA’s mutation process. The advantage of the scout 

bee procedure is in using the       variable. ABC selects only those individuals that have 

not improved after a predetermined number of trials indicated by the variable “     ”; 

while the mutation procedure do not have such an intelligent choice of individuals. There 

is a chance of losing a potential good solution in the mutation procedure, because 

individuals are being selected completely random. 

On the other hand, the drawback of the scout bees’ phase in ABC algorithm is 

that it decreases exploration by enforcing maximum of one food source replacement 

during each generation. Even though this disadvantage is a part of the original ABC 

algorithm and has been employed in various applications, we have removed this 

limitation, and improved the algorithm’s performance as explained in subsection 3.5.3. 



 

36 

In order to employ the ABC algorithm in some wireless communication problems, 

we have to modify the algorithm to operate in the discrete domain. As a result, we 

present the Discrete Artificial Bee Algorithm (DABC) in the next section, and we further 

present other developments to the original ABC algorithm in subsequent sections. 

3.4. Discrete Artificial Bee Colony Algorithm 

The original ABC algorithm was presented for continuous optimization problems 

[12]. Almost all of the applications and optimization problems solved by this algorithm 

available in literature have encompassed a continuous (real) domain, while there are 

less than a few publications on implementing ABC to discrete problems (the only two 

published approaches are explained in Sections 3.5.1.2. and 3.5.1.3). However, some 

applications in wireless communications, e.g. problems in symbol detection and 

resource allocation, have a discrete or binary nature. The ABC algorithm has a high 

performance compared to other EAs such as GA, DE, PSO, etc. in the continuous 

domain [13]. With a motivation to apply the ABC algorithm’s idea to solving discrete 

optimization problems, we developed a discrete version of the algorithm and assessed 

its performance on problems in the discrete domain. 

The definition of the terms employed in the ABC algorithm is given in section 

3.3.1. Here we restate some of those definitions incorporated in the DABC (Discrete 

Artificial Bee Colony) algorithm. We have the following definitions for the optimization 

problem below: 

           

 subject to:     

 

Definition 3.5: A food source position                   is a vector of   

integer numbers, and represents a candidate solution to the problem. Vector   is 

referred to as an individual as in most population-based EAs. 

The principles of the DABC algorithm would be the same as the ABC algorithm in 

some steps. Employed bees, onlooker bees and scouts retain their responsibilities. 
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However, some of the expressions comprising continuous solution vectors and their 

parameter values have to be adjusted for discrete computation.   

During the employed bees and onlooker bees phases, the ABC uses (3.2) to 

produce a candidate food position from the old one in memory. DABC finds a new food 

source    in the neighborhood of the current food source position   . Each components 

of the new food source location   
  is derived using the following expression: 

  
             [   {  

       
     

 }      {  
       

     
 }]   (3.5) 

where ”randint      ”' returns a random integer number between   and  ,    {       } 

is a random component of a food source position vector and     {       } are 

randomly chosen indexes, where    . This expression is held in both employed and 

onlooker bees phases. The evaluation of (3.5) is expressed in Appendix of this chapter.  

Similarly, scout bees have to explore new food source positions in a discrete set. 

In DABC, a scout discovers a new food source     ( ̂ 
   ̂ 

     ̂ 
 )

 
 to replace it with the 

abandoned source   . The discrete parameter variables  ̂ 
 ,   {       } of the new 

food source position can be randomly generated using the following expression: 

 ̂ 
          [          ]  (3.6) 

where      and      are the minimum and the maximum possible values for a feasible 

parameter variable, and              is a function that generates random integer 

numbers between   and  . Expression (3.6) is used by scouts at the initial step where 

population is generated, and during each interval in the scout bees’ phase. A pseudo 

code of the DABC algorithm is given in Table 3.2. 
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Table  3.2. The DABC Algorithm Pseudo Code 

1. Initialize the population of solutions             , 

2. Evaluate  (  )   , 

3. for   = 1 to   %(maximum algorithm iterations)% 

4. run the modified employed bee phase, (Table ‎3.3) 

5. run the modified onlooker bee phase, (Table ‎3.4) 

6. run the modified scout bee phase, (Table ‎3.5) 

7. save the best results, 

8. end for, 

 

Table  3.3. The DABC Employed Bee Phase Pseudo Code 

1.                 

2. for each food source             ,  

3. Select a random food source          {       }, 

4. Select a random component        {       }, 

5.   
             [   {  

       
     

 }      {  
       

     
 }] 

6.                 , 

7. if         then, 

8. Evaluate  (  ), 

9.         , 

10.           

11. end if, 

12. end for, 



 

39 

Table  3.4. The DABC Onlooker Bee Phase Pseudo Code 

1. Calculate probability values    for  
     using (3.9~3.12),  

2.          

3. for        , %(  corresponds to the  th onlooker bee)% 

4. if         then,%(select the  
th employed bee to follow)% 

5. Select a random food source          {       }, 

6. Select a random component        {       }, 

7.   
             [   {  

       
     

 }      {  
       

     
 }] 

8.                 , 

9. if         then, 

10. Evaluate  (   ), 

11.          , 

12.           

13. end if,  

14.        

15. end if 

16.         

17. if     then      %(reset  )% 

18. end for, 

Table  3.5. The DABC Scout Bee Phase Pseudo Code 

1. for       {        },  

2. for each component        {       }, 

3.  ̂ 
          [          ], 

4. end for,  

5. Evaluate  ( ̂ 
 ), 

6.       ̂ 
  , 

7.           

8. end for, 
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3.5. Improvements to the DABC algorithm 

In addition to our contribution to the original ABC algorithm and developing the 

DABC algorithm, we have further enhanced the DABC algorithm by optimizing different 

steps of ABC to increase its performance. The following subsections discuss these 

developments to the DABC algorithm, which some of them are applicable to the ABC as 

well, and some are further implemented to the hybrid algorithm discussed in Chapter 4. 

3.5.1. Selecting a Neighbor Food Source 

In every algorithm generation, employed bees select a neighbor food source 

twice. The first attempt is during the employed bees phase, when they are exploiting 

their current food source position. The second time is during the onlooker bees phase, 

while they are exploiting the area around the source they have received their information 

from employed bees. In this subsection, we study the selection methods applicable to 

the integer and binary domain. 

3.5.1.1. Random Bounded Integer Selection for Integer Problems 

The first neighborhood selection method for the DABC algorithm is the one we 

presented in (3.5), we employ a random integer generator. The advantage of this 

method is that since it is applicable to the problems in the integer domain, it works with 

the problems in the binary domain as well. Our simulation results also prove that this 

method outperform the other two neighborhood selection methods for integer problems. 

3.5.1.2. Using Sigmoid Function for Binary Problems 

Wang et al. have presented a discrete selection method to the ABC algorithm in 

[18]. Their binary encoding method employs a sigmoid function of velocity as a logical 

choice for binary selection. However, this procedure only applies to the binary 

optimization problems, whereas the explorer procedure proposed in this thesis is 

applicable to larger class of problems in the integer or discrete domain. 

3.5.1.3. Using Logical Selection Expression for Binary Problems 

Salim et al. present another neighbor selection method for binary problems in 

[19]. They replace the operation signs with (binary) logical operators such as “OR” ( ⋁ ), 
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“AND” ( ⋀ ), and “XOR” (⊕) functions. Similar to the last method, this expression is only 

applicable to binary problems. 

3.5.2. Employed Bee Selection Probability 

As mentioned before, the preference of a food source by an onlooker bee 

depends on the nectar amount  (  ) of that food source. As the nectar amount of the 

food source increases, the probability with the preferred source by an onlooker bee 

increases proportionally. Clearly, in such a scheme good food sources should have 

more chance (higher probability) to be selected by onlooker. In the original ABC 

algorithm, this phenomenon is applied using the Roulette Wheel Selection method 

stated in (3.3). We have employed some other selection probability expressions to our 

simulations, including the following: 

   
      (  ) 

∑  (  )  
   

     {       }  (3.9) 

   
 (  ) 

(∑  (  ) 
   )

    {       }  (3.10) 

   
 (  ) 

    { (  )}
     {       }  (3.11) 

   √
 (  ) 

    { (  )}
     {       }  (3.12) 

Our simulations demonstrate that the last expression (3.12) will yield to the better 

results. Analysis of these probabilities and algorithm’s performance for different classes 

of problems based on them is left for future work. 

3.5.3. Improvements to Scout Bees Phase 

Another improvement we present to the ABC algorithm is simple, yet effective 

that boosts its performance. The original ABC algorithm selects only one food source to 

abandon during each algorithm generation, and replaces its associated employed bee 

with a scout. We have removed this limit of “maximum one” food source, and allow the 
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algorithm to choose all existing food sources      {       } of which         . The 

removal of this limit boosts the exploration attribute of the algorithm, and increases the 

algorithm’s chance to get out of local optima.  
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Appendix. 
 
Neighborhood Food Source Selection in Discrete ABC 

In (3.2),   
 
 is a random number between [    ]. We choose the minimum and maximum of this 

interval and apply it to (3.2). For the minimum we have   
 
   ; hence: 
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A.1 

For the maximum we have   
 
   ; as a result: 

Putting (B.1) and (B.2) together, replacing real parameter values   
 
 with integer parameter values 

   
 
, and using a random integer number generator function              that returns a random 

integer between   and  , we obtain: 

However, there is no guarantee that   
 
        

 
    

 
. Therefore, we generalize (B.3) to: 
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4. Hybrid ABC/BBO Algorithm 

In this chapter we propose a novel Evolutionary Algorithm for optimization 

problems in both continuous and discrete domains. This new algorithm intends to 

combine the advantages of both BBO and ABC algorithms. We refer to this new 

algorithm as hybrid ABC/BBO algorithm. This algorithm has shown good performance in 

comparison to other EAs when applied to some optimization problems in wireless 

communication, including single-objective unconstrained (e.g. MD-STBC-MIMO 

(Chapter 5)), single-objective constrained (e.g. Relay Assignment in Cognitive Radio 

(Chapter 6)), and multi-objective constrained optimization problems (e.g. Green 

Resource Allocation in Cognitive Radio (Chapter 7)). In this chapter starts with an 

introduction to the hybrid EAs in the next section, and followed be a brief discussion on 

advantages and disadvantages of BBO and ABC in Section 4.2. Then the novel hybrid 

ABC/BBO is presented in Section 4.3. 

4.1. Introduction 

For some problems, a simple evolutionary algorithm might be good enough to 

find a desired solution. As reported in the literature, there are several types of problems 

in which an application of a known EA could fail to obtain a good solution [1, 2, 3, 4, 5]. 

Recently, the hybridization of EAs has become popular due to its capabilities for 

handling several real world problems involving complexity, noisy environment, 

imprecision, uncertainty, and vagueness [11]. Some of the possible reasons for 

hybridization are:  

1. To improve the performance of the evolutionary algorithm (e.g. speed of 
convergence)  

2. To improve the quality of the solutions obtained by the evolutionary algorithm  
3. To incorporate the evolutionary algorithm as a part of a larger system.  
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In order to balance the exploration and the exploitation in an EA, in this chapter 

we propose a hybrid algorithm with ABC and BBO for the global numerical optimization 

problems. In this hybrid algorithm, a hybrid migration operator is proposed, which 

combines the exploration of ABC with the exploitation of BBO effectively. Exploitation 

refers to the algorithm’s tendency to use the values it already has in order to refine its 

search for an optimal solution, whereas exploration refers to the algorithm’s ability to 

search in previously-unexplored regions of the search space [8]. 

4.2. Discussion on ABC and BBO 

In this section first the strong and weak points of ABC and BBO are discussed, 

following by the origin of the idea of hybridizing the two algorithms.   

4.2.1. BBO’s Pros and Cons 

BBO’s main operator is migration. As illustrated in Table 2.1, during the migration 

procedure, each SIV (individual component) can be replaced with another existing SIV 

from another habitat (individual); e.g.        (third component of the 8th individual) can 

be replaced with       , where    is another habitat being selected based on its 

emigration rate. Thus, all possible values for new        are other individuals’ third 

components values, and no new value is generated. The migration operator of BBO has 

a good exploitation attribute; i.e., BBO’s migration procedure uses the values it already 

has in order to refine its search for an optimal solution. After the initial population is 

generated at the beginning of the algorithm, during the next iterations the algorithm 

shares the individual components (habitats’ SIVs) as a result of the migration operator. 

In this phase, SIVs are copied from a habitat to another; and thus all current SIV values 

retain in the population, and are highly dependent on the initial population.  

BBO is proposed for discrete optimization problems, and its behavior best works 

for the problems in the integer domain, because there are a few (discrete) possible 

values for each SIV. However, if the number of choices are fairly large (large discrete 

domain), or more importantly, if it is applied to the problems in the continuous domain, 

then this migration feature would be a downside of BBO because it lacks exploration. 
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The migration process in unable to explore new SIVs; i.e., it only copies SIVs from one 

habitat to another, and does not search previously unexplored regions of the search 

space and cannot generate new values. In fact, BBO takes the advantage of its mutation 

operator for exploration. Yet, the mutation factor   has to be set to a very small number. 

Dan Simon mentions in [7] that a high mutation rate of 10% (     ) results in too much 

exploration. However, the performance of the algorithm increases as the mutation rate 

decreases to the more reasonable values of 1% and 0.1%; that is       and   

     respectively [7]. He also applies BBO to a real world problem in [13] and applies 

mutation with       . Fig. 4 in this chapter depicts the BBO simulation result with and 

without mutation, and it is clear from this figure that even with a well-tuned mutation 

factor, there is only a slight improvement in the result of the BBO with mutation.  

4.2.2. ABC’s Pros and Cons 

ABC does not use any gradient-based operator. It incorporates a simple 

mechanism to adapt to the global and local exploration abilities within a short 

computation time, while it uses just a few control parameters. Hence, this method is can 

be used for solving multimodal and multidimensional optimization problems [15]. ABC’s 

main evolutionary process is during its employed bee and onlooker bee phases, where 

the algorithm explores the search space for finding new food sources in previously un-

explored locations. The algorithm can locate the region of global minimum during the 

employed bee and onlooker bee phases, as a result of the exploring actions of the 

employed bees while they are finding new food sources around their current associated 

sources (equations (3.2) and (3.5)). We refer to these equations as “ABC’s explorer”. 

This explorer operator effectively generates new values for a component of an individual. 

ABC’s downside, apart from its great exploring feature, is exploitation – i.e. in 

ABC, the algorithm does not retain the values of its population. In the employed bee and 

onlooker bee phases of the original (continuous) ABC, all food sources have to be 

modified by the explorer operator (equation (3.2)). An individual component survives 

changes (its value would be unmodified during these two phases) only if 

  
  = -1, then   

     
 ,  

  
  = 0, then   
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Only in these two cases, the new food source position   
  preserves the values of a 

component currently inside the population; i.e.,   
  or   

 . However, because   
  is a 

randomly generated real number in the closed interval [    ], it is highly unlikely that the 

value of   
  would be exactly -1 or zero.   

Another disadvantage of ABC is the uniform selection of a neighbor food source 

during the employed bee and onlooker bees phases. During these two phases, all food 

sources are equally likely to be selected as a neighbor of a food source. The only 

condition is that a neighbor has to be different from the food source itself; i.e.     . 

However, the algorithm could have developed more intelligently such that high quality 

food sources would be more likely to be chosen as a neighbor. The result of this small 

yet effective modification is a more efficient exploration. The original ABC has some 

other drawbacks that are discussed in Chapter 3, and some improvements are proposed 

in sections 3.4 and 3.5.  

4.3. The Hybrid ABC/BBO algorithm 

There are certain reasons to choose ABC with BBO for hybridization among 

other EAs. The first reason is that these two algorithms already have shown good 

performance in comparison with other EAs for the optimization problems of our interest 

and similar applications [8, 9, 13, 14, 16,]. Therefore we can predict the hybridization of 

these two algorithms may outperform other EAs even further. More importantly, BBO 

and ABC’s advantages and disadvantages are such that the disadvantage of one is the 

strong feature of the other. BBO benefits from exploitation, and lacks exploration; while 

ABC has a great exploration feature, and its drawback is exploitation. Therefore a wise 

idea would be to integrate the exploration of ABC with the exploitation of BBO to develop 

an algorithm that probably outperforms ABC and BBO solely.  

We explain the procedure of the new algorithm by taking the general scheme of 

ABC and implementing BBO’s feature into that. The hybrid algorithm consists of three 

phases: employed bee phase, onlooker bee phase, and scout phase. It benefits from the 

BBO’s migration procedure, therefore it contains emigration rate and immigration rate 

curves. This new migration operator is referred to as the “Hybrid Migration Operator”. 
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4.3.1. The Hybrid Migration Operator 

The main operator of the hybrid algorithm is its hybrid migration operator, which 

hybridizes the employed bees’ behavior with the BBO’s migration operator, and is 

described in Table  4.1. The terminology is the same as Section  3.3.1 for ABC. According 

to this procedure, the food source position    is constituted by three components:  

 the ABC’s explorer,  

 the migration of other solutions,  

 its corresponding food sources    and   .  

The core idea of the proposed hybrid migration operator is based on two 

considerations. First, good solutions would be less destroyed, while poor solutions can 

accept many new features from good solutions. In this sense, the current population can 

be exploited sufficiently. Second, the ABC’s explorer operator is able to explore the new 

search space and make the algorithm more robust. Correspondingly, the original BBO 

migration operator focuses on the intensification; while the ABC’s explorer operator 

emphasizes on the diversification. From this analysis, it can be seen that the hybrid 

migration operator can balance the exploration and the exploitation effectively.  

Table  4.1. Hybrid Migration Operator for the  th individual 

1. select a random component        {     } 

2. if    then, 

3. select    with probability      

4. if         then, 

5.   
 
   

    
 
(  

    
 ) for continuous problems, or  

  
          [   {  

        
     

 }      {  
       

     
 }] for 

discrete problems 

6. end if 

7. else 

8.   
    

  

9. end if  
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4.3.2. Main Procedure of the Hybrid Algorithm 

We incorporate the above hybrid migration operator into ABC, and develop the 

hybrid ABC/BBO algorithm as described in Section  4.3. The algorithm needs to calculate 

  and   before running the migration operator. Compared with the ABC algorithm 

described in Sections 3.3 and 3.4, our approach needs only a small extra computational 

cost for sorting the population and calculating the migration rates. In addition, the 

structure of our proposed ABC/BBO is also very simple. Moreover, ABC/BBO is able to 

explore the new search space with the explorer operator of ABC, and to exploit the 

population information with the migration operator of BBO. This feature overcomes the 

lack of exploitation of the original ABC algorithm. In the hybrid ABC/BBO, we have also 

modified the ABC selection method to benefit from the BBO migration rates. Therefore, 

this algorithm evolves more intelligently compared with original ABC algorithm and BBO.  

Table  4.2. The Main Pseudo-Code for Hybrid ABC/BBO 

1. Initialize the population of solutions             , 

2. Evaluate  (  )   , 

3. Sort population 

4. Calculate    and      ,  

5. for   = 1 to   %(maximum algorithm iterations)% 

6. Run the modified employed bee phase, (Table  4.3) 

7. Sort the population 

8. Calculate    and      ,  

9. Run the modified onlooker bee phase, (Table  4.4) 

10. Run the modified scout bee phase, (Table  4.5) 

11. Save the best results, 

12. end for, 
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Table  4.3. The Hybrid Algorithm’s Employed Bee Phase Pseudo Code 

1.                 

2. for each food source             ,  

3. run the Hybrid Migration Operator (Table  4.1) 

4.                 , 

5. if         then, 

6. Evaluate  (  ), 

7.         , 

8.           

9. end if, 

10. end for, 

Table  4.4. The Hybrid Algorithm’s Onlooker Bee Phase Pseudo Code 

1. Calculate probability values    for  
     using (3.9~3.12),  

2.          

3. for        , %(  corresponds to the  th onlooker bee)% 

4. if         then,%(select the  
th employed bee to follow)% 

5. run the Hybrid migration operator (Table  4.1) 

6.                 , 

7. if         then, 

8. Evaluate  (   ), 

9.          , 

10.           

11. end if,  

12.        

13. end if 

14.         

15. if     then      %(reset  )% 

16. end for, 
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Table  4.5. The Hybrid Algorithm’s Scout Bee Phase Pseudo Code 

1. for       {        },  

2. for each component        {       }, 

3.  ̂ 
          [          ], 

4. end for,  

5. Evaluate  ( ̂ 
 ), 

6.       ̂ 
  , 

7.           

8. end for, 

It is worth pointing out that the computational complexity of this algorithm, based 

on the number of fitness function evaluations, is similar to the ABC’s complexity; i.e. the 

hybrid algorithm only has some more if conditions and numerical operators, and does 

not include any more fitness evaluations. However, its complexity is higher than BBO; in 

the sense that BBO runs with a total of    fitness evaluations, where   is the number of 

algorithm iterations and   is the population size. But both ABC and hybrid algorithm 

once evaluate all the population in the employed bee phase, and once again in the 

onlooker bee phase, in addition to evaluations for some mutated individuals in the scout 

bee phase. However, because of the if conditions in lines 5 of Table  3.3 and 7 of 

Table  3.4, the number of evaluations reduced to only those individuals which have been 

modified during the exploring phase in ABC, and the hybrid migration in the hybrid 

algorithm. The stochastic nature of these two algorithms does not allow us to find a 

closed form expression for their complexity. More discussion on the issue of algorithms 

computational complexity is provided in Section  5.5, where we derive the complexity of 

the original ABC algorithm as well.  

4.3.3. Configuring the Algorithm 

Based on different options and a number of improvements discussed for BBO 

and ABC in the previous two chapters, the hybrid algorithm can be developed into 



 

54 

various configurations. Some of these configuration options, according to the previous 

chapters, are as follows: 

 Continuous and discrete problems: To apply the algorithm to continuous or 

discrete problems, the expression in line 5 of Table  4.1 and line 3 of Table  4.5 has to 

be chosen correspondingly. Our results in Part II of this thesis illustrate that the 

hybrid algorithm outperform other EAs in both discrete and continuous problems. 

 The migration scheme: the hybrid migration operator’s immigration and emigration 

rates curves can be any of the three schemes presented in Section  2.3. However, we 

use the Linear Immigration (Piece-wise Emigration scheme ( 2.3.3)) because of its 

reasonable performance and less complexity than the third model ( 2.3.1).  

 Employed bee selection probability: onlooker bees can select employed bees at 

the beginning of the onlooker bees phase, based on different probability expressions 

discussed in Section  3.5.2. In our implementations presented in Part II we choose 

the expression that results in the best performance. 

 Mutation operator: The hybrid algorithm has different ways to handle mutation. The 

scheme mentioned in Table  4.5, and is employed in our implementations, is the 

enhanced scout bee phase described in Section  3.5.3. Another scheme is the 

original ABC’s scout bees phase, which is not as efficient as the aforementioned 

operator. The BBO’s mutation operator is another choice, where each food source 

has the chance to be mutated, as discussed in Section  2.2.2. The mutation scheme 

in Table  4.5 is more efficient than BBO’s mutation operator, since it only replaces 

those individuals that have not been improved during a certain number of iterations. 

The algorithm’s settings are given for each of the application implementations in 

Part II of the thesis, and the simulation results demonstrate the superiority of the 

algorithm over BBO and ABC, as well as other EAs.  

4.4. Algorithms’ Computational Complexity  

The complexity of the introduced EAs – BBO, ABC and hybrid – in terms of the 

    notation is presented in this section. This complexity has been calculated based 

on the algorithms’ pseudo codes discussed in sections 2.2, 3.4 and 4.4. Note that the 
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complexities of ABC and hybrid algorithms are presented for the discrete version of the 

algorithms. These two algorithms are running the simple scout bees phase, where the 

algorithm selects only one individual that has exceeded the predetermined number of 

trials; similar to the scout bees procedure introduced in the original ABC paper [15]. 

Table  4.6 demonstrates the computational complexities of these algorithms and their 

comprising procedures.  

In this table        refers to the computational complexity of the objective 

function,   denotes the number of feasible discrete numbers between      and     , 

and     and   have been already defined as the maximum number of generations, 

population size and the number of components in an individual vector, respectively. BBO 

and hybrid include one or more sorting procedures. The computational complexity of 

some sorting algorithms such as selection sort, insertion sort, bubble sort and cycle sort 

is      , while the computational complexity of some other sorting algorithms such as 

binary tree sort, tournament sort and merge sort is          [17]. In Table  4.6 the first 

group of sorting algorithms has been assumed that has a complexity of      . 

Table  4.6. Computational Complexity of BBO, ABC and hybrid algorithms 

BBO 

Migration        

Mutation      

Complete Algorithm            

ABC 

Employed Bees Phase          

Onlooker Bees Phase             

Scout Bees Phase        

Complete Algorithm                

Hybrid 

Hybrid Migration Procedure        

Employed Bees Phase             

Onlooker Bees Phase             

Scout Bees Phase        

Complete Algorithm                

The difference in the computational complexity order between BBO’s migration 

and ABC/hybrid employed/onlooker bees phases is because the migration procedure 
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alters every component of an individual using migration rates, but employed bees only 

select one component randomly and run line 5 of Table  4.1 to find a new food source. If 

the employed bees were set to change all components of an individual, the complexity of 

these phases would have contained the term     instead of   . It is also interesting to 

see that ABC and hybrid algorithm have the same complexity order. In Part II of this 

thesis, the computational complexity of the applications have been compared based on 

other methods such as elapsed time or the average number of fitness function 

evaluation (e.g. Section  5.6.2).  
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Part II: Applications of Evolutionary Algorithms 

 to Wireless Communication Problems 
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5. Computationally Efficient Symbol Detection 
Using EAs in Multi-User STBC-MIMO Systems 

5.1. Introduction  

The Multi Input Multi Output (MIMO) communication system has a significantly 

higher channel capacity than the Single-Input-Single-Output (SISO) system for the same 

total transmission power and bandwidth [1] [2]. The system considered in this chapter is 

assumed to comprise one receiving station and multiple transmitting devices. The 

receiver's front end has multiple antennas, and each transmitting device has multiple 

transmit antennas. It is known that the use of Space Time Block Code (STBC) can 

increase the capacity of MIMO systems and thus improve data throughput and spectral 

efficiency [3]. Multi-antenna systems are widely used because of their ability to 

dramatically increase the channel capacity in fading channels [4]. Each transmit device 

uses a STBC, the receiver side performs the joint signal detection. In this thesis, such a 

system is referred to as a Multi-Device (MD) STBC-MIMO system. In a MD-STBC-MIMO 

system, the number of receive antennas is typically smaller than the cumulative number 

of transmit antennas used by all transmitting devices in the system. An example of MD-

STBC-MIMO, with a smaller number of antennas at the base station or access point, 

would be the uplink multiple access communication in cellular systems. 

This chapter addresses the symbol detection problem in MD-STBC-MIMO 

systems. The Maximum A-Posteriori probability (MAP) detection, which reduces to the 

Maximum Likelihood (ML) detection in the case of a priori equally likely symbol blocks, 

minimizes the probability of detection error. The ML detector returns optimal results, and 

is further explained in section 5.3. However, a computationally efficient algorithm for 

achieving MAP or ML detection is not known. Some studies with Sphere-Decoding (SD) 

algorithms exhibit that their expected computational complexity grows polynomially with 

the problem size   up to some value of   for the cases of small constellation sizes [5], 

but it grows exponentially for the cases of large constellation sizes. In addition, for some 

SD algorithms, operating at a low SNR requires inordinately high computation; yet 

operation at a high SNR is efficient. In fact, reference [6] shows that even the expected 

computational complexity of the SD grows exponentially with the problem size in MIMO 



 

61 

communication systems. In any case, an algorithm with polynomial growth of expected 

complexity for all values of the problem size   has not yet been found. 

Due to unavailability of a computationally efficient algorithm for finding the 

codeword that maximizes the MAP, a number of heuristic algorithms have been 

suggested, such as BBO, ABC and Hybrid, as well as some mainstream EAs such as 

GA and EDA. In this chapter, we consider applying Evolutionary Algorithms (EAs) to 

MD-STBC-MIMO codeword detection.  

Many EAs are inspired by biological evolution and mutation. We have applied 

some EAs to the problem with much less computational complexity than the ML method. 

For this purpose, we choose the Biogeography-Based Optimization (BBO), Artificial Bee 

Colony (ABC), and a new developed hybrid ABC / BBO algorithm. This optimization 

technique has some features in common with other bio-inspired optimization methods, 

like Genetic Algorithm (GA) [9], and we have included the performance results of GA 

and EDA for comparison. The MD-STBC-MIMO detection problem is a discrete 

optimization problem and thus requires a discretized version of the ABC algorithm. Our 

simulation results show that BBO, ABC and the hybrid algorithm can meet the best 

known detector (i.e., SD) with less complexity, and have better performance than other 

methods such as Minimum Mean Square Error (MMSE), Zero Forcing (ZF), Semi-

Definite Relaxation (SDR) [11], as well as EDA and GA.  

In the rest of this chapter, the system model is presented in Section  5.2. The 

application of existing symbol detection algorithms is discussed in Section  5.3. In 

Section 5.4 the idea of applying EAs on the symbol detection problem is presented. 

Section  5.5 compares the computational complexities, and the simulation results are 

presented in section  5.6. Section  0 includes the conclusion and the future work. 

5.2. System Model 

Figure 5.1 shows an MD-STBC-MIMO system [21]. The system consists of    

mobile devices transmitting signals and one receiver. Each mobile device has    

transmitting antennas that apply STBC, whereas the receiver front end has    receive 

antennas. The multiple mobile devices in the proposed systems can cause co-channel 
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interference. An IQ-modulation scheme (e.g.  -PSK,  -QAM, etc.) maps source 

information into complex numbers. Even if each transmit device employs an orthogonal 

space-time code, the absence of coding across different wireless devices cannot 

guarantee the orthogonality among their signals. In the case of a single mobile device 

   , the wireless device transmits using    transmit antennas, and communicates 

with a receiver that has    antennas. The number of time slots in the space-time code 

block is denoted by  .  
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Figure  5.1. A block diagram of MD-STBC-MIMO system 

The channel is assumed to be quasi-static; i.e., the channel gain remains 

constant during each time block of data. It is also assumed that the channel gain at each 

time block is known to the receiver. This assumption is often used in literature and 

reasonable if training or pilot signals are used. A complex       dimensional matrix   

represents the MIMO channel and another complex      dimensional matrix   

represents the input signal in a space-time code block. The relationship between the 

input and output signal can be expressed as: 

 ̃      ̃  (5.1) 

where  ̃ is the T×NR dimensional complex output matrix, and Z represents the additive 

white noise matrix.  
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Equation (5.1) describes the relation between the input (transmitted signals) and 

the output (received signals) in terms of a complex-valued matrix equation. The relation 

between the input and the output of the channel in a system with linear dispersion 

space-time coding can be equivalently expressed in terms of a real-valued matrix 

equation. We now briefly discuss that real-valued matrix equation. The input signal in 

Equation (5.1) in the case of the linear dispersion code [12] is denoted by a complex-

valued matrix   that takes the form: 

  ∑[(      )   (      )  ]

 

   

 

(5.2) 

Here   indicates the number of symbols conveyed in a space time code block, and    

               is the complex number that represents the  th symbol, where    and    

correspond to the real and imaginary parts of the symbol, respectively. In the IQ 

constellation diagram,    and    are discrete valued variables, such that        

corresponds to a symbol in the constellation diagram. In 4-QAM for example, each of 

these two variables can take values of   , and thus      determines one of the four 

possible symbols arranged in the square grid of                      and       . These 

  symbols        can be represented as a   -dimensional real-valued row vector  , 

whose components are constituted by               . The real and imaginary parts 

of matrix  ̃'s components can be arranged as a     -dimensional real-valued row vector 

 . The relation between   and   in this new alternative form can be expressed as: 

          (5.3) 

where 2Q × 2TNR  real-valued matrix Ω  is derived from the component of the matrices 

 , Cq, Dq, q=1,…,Q, and Z is the 2TNR-dimensional real-valued vector representing 

noise.  

In the case of multiple mobile devices, equation (5.1) is naturally generalized to  
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 ̃  ∑     

 

   

  ̃ 
(5.4) 

where the T×NT-dimensional complex matrix, Sk, is the input signal from mobile device k, 

and the NT×NR-dimensional complex matrix Hk represents the channel from the kth 

device to the receiver. Correspondingly, (5.3) is naturally generalized to  

  [       ] [

  

  

 
  

]     

(5.5) 

where χk is a 2Qk-dimensional real-valued row vector that represents the Qk complex 

symbols sent from mobile device k in a space time code block. Note that (5.5) can model 

the case in which different mobile devices use different code rates Qk /T and different 

space time codes. We denote by    ∑   
      the total number of symbols (from all 

mobile devices) transmitted in a space-time coded block through all of their transmit 

antennas.      

5.3. Signal Detection 

The ML detection is known to yield the lowest symbol error probability in the case 

of a-priori equally likely symbols. In the case of our problem, the detector at the receiver 

has to choose from     possible sequences of symbols transmitted in a space-time 

code block, where   is the size of the symbol constellation associated with the 

modulation scheme. ML detection chooses transmitted symbols [          ] that 

maximize  (            ). In the case of additive white Gaussian noise  , the ML 

detection is reduced to choosing the vector [          ] from     possibilities that 

has the shortest Euclidean distance  ̂ that is expressed as:  
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 ̂  ‖  ∑  

 

   

    ‖  
(5.6) 

The ML detection scheme can be implemented by searching through all     

     possible symbol sequences, where        , and   is the size of the symbol 

constellation. Performing such an exhaustive search to find the minimum of (5.6) is 

computationally inefficient, especially for large   . Computational complexity increases 

exponentially with    ∑   
     . High-speed communication requirements demand a 

low-complexity detection scheme. For low-complexity near-optimal detection, in this 

chapter the ABC algorithm is applied to this MD-STBC-MIMO detection problem. Section 

5.4 describes how EAs are applied to the signal detection. In subsequent sections, we 

compare the performance of the BBO-based algorithms with other low-complexity 

suboptimal algorithms such as MMSE, SDR and SD.   

5.4. Evolutionary Algorithms for solving MD-STBC-MIMO 
problem  

In this section, we present a MD-STBC-MIMO detector that utilizes EAs 

presented in the first part of this thesis. The aim of applying discrete EAs to the MD-

STBC-MIMO symbol detection problem is to minimize the Euclidian distance defined in 

(5.6). Therefore, the Euclidian distance in Equation (5.6) represents the fitness function; 

and shorter Euclidian distance means better fitness. An EA individual corresponds to a 

possible solution to the joint symbol detection problem; i.e., a set of conveyed symbols 

from the   transmit devices.  

In the MD-STBC-MIMO system discussed in this chapter, transmitted symbols 

are chosen from an IQ-modulation such as  -QAM or  -PSK constellation diagram. In 

order to implement EAs, we represent each of the  possible points in the constellation 

by a unique integer in the set {       }. The system comprises   transmit devices, 

each device indexed by k transmitting     -QAM symbols in a space-time code block. 

Therefore, an EA individual   can be defined as a    ∑   
     -dimensional (    ) 
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integer row vector     [           
] where    {       }   {      }. The 

integer vector   represents the vector [          ] in equation (5.6) and the fitness 

function is translated accordingly.  

The integer vector   requires implementation of discrete versions of EAs to the 

MD-STBC-MIMO problem. The BBO algorithm’s implementation for problems in both 

discrete and continuous domain is almost the same, and presented in Table 2.1. The 

applied migration scheme is the linear immigration-constant emigration model presented 

in  2.3.2. We used a linear decreasing λ (immigration rate) curve with a maximum of I and 

a constant μ (emigration rate) in order to reduce complexity. This constant emigration 

rate reduces the complex process of selecting habitats by assigning a constant (uniform) 

probability to each habitat to be chosen for sharing its SIVs.  

However, the problem requires the implementation of the discrete ABC algorithm 

presented in section  3.4. The DABC algorithm’s pseudo code is given in Error! 

Reference source not found., and the special version proposed for MD-STBC-MIMO 

employs operators (3.5) and (3.12).  Similarly, the hybrid algorithm uses the same 

discrete approach. A complexity comparison between the algorithms applied to the MD-

STBC-MIMO is discussed in the subsequent section. 

5.5. Computational Complexity 

A motivation for applying the proposed near-optimal algorithms to a MD-STBC-

MIMO problem is their low computational complexity. In this section, the computational 

complexities of BBO, ABC and the hybrid algorithm proposed for MD-STBC-MIMO 

symbol detection are compared with that of MMSE, SD, SDR, GA and the exhaustive 

search. The computational complexity of exhaustive search (an implementation of the 

ML detector) is        or O(2n),          ; so exhaustive search is usually 

impractical for real-time operations of symbol detection. A number of suboptimal 

detection schemes with better computational complexity have been presented in 

literature.  
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The worst-case complexity of SD is exponential, and its expected complexity 

depends on problem size and SNR [15]. SD has high complexity of    ̃   [16] at low 

SNR, where  ̃        . However, it has polynomial complexity, often roughly cubic 

complexity, at high SNR [15]. MMSE is one of the sub-optimal detectors that involve 

inverting a matrix, and its computational complexity is    ̃   [17]. The computational 

complexity of SDR [19] in each iteration is O(NT
3.5) where NT stands for the number of 

transmit antennas.  

Typically, the computational complexity of population-based algorithms is 

analyzed in terms of the number of fitness function evaluations, which in our problem 

would be (5.6). One important reason is that their complexity is highly dependent on their 

implementation and coding efficiency. The number of function evaluations in three 

algorithms BBO, GA and EDA are the same and equal to   ; where   and   represent 

the total number of generations, and the population size, respectively [9, 18].  

In the original ABC algorithm presented in [8], there is more than one fitness 

function evaluation phase for each individual during one generation. In the ABC, during 

the employed bees phase, each employed bee tests a neighbor food source for its 

quality, thus the fitness function evaluation has to be run once for the whole   food 

sources in this phase. By the same token, during the onlooker bees phase, there are   

fitness function evaluations for every food source. As a result, the overall number of 

fitness function evaluations for these two phases in one algorithm generation is   . In 

the scout bees phase, ABC randomly selects one food source (individual) that hasn’t 

improved after   trials for elimination. Then the algorithm replaces its associated 

employed bee with a scout that randomly selects a new food source location and keeps 

its nectar quality in her memory. The       values of all of the solutions in the population 

increase twice during an algorithm generation: once during the employed bees phase 

and once during the onlooker bees phase, unless a solution’s quality improves, or one 

turned into a scout. Moreover, an employed bee turns into a scout after   trials. 

Therefore, the first individual to exceed the   trials would be at the    th generation. After 

the    th generation in the worst case scenario, every generation sends one scout that 

runs the function evaluation procedure. As a result, the total number of fitness function 

evaluations for the original ABC algorithm would be:  



 

68 

     (  
 

 
)  

(5.7) 

This complexity is of course higher than the complexity of other aforementioned EAs. 

The complexity of our proposed discrete ABC (Error! Reference source not 

ound.) is yet less than (5.7) because this algorithm does not run the function evaluation 

procedure for all the individuals in the employed bees and onlooker bees phases. Due to 

the stochastic nature of the algorithm, there wouldn't be a closed form expression for the 

number of food source locations that do not change with equation (10). Moreover, the 

discrete ABC algorithm doesn’t have the limit of randomly selecting one food source to 

abandon in the scout phase. Yet it abandons all solutions whose        , and replaces 

their associated bee with a scout. The number of these replacements is unknown and 

random due to the heuristic nature of the algorithm. Therefore, we only present an 

average number of fitness function evaluation for each run of discrete ABC from our 

simulations in section 5.7. This number clearly demonstrates that this enhancement to 

the original ABC has a great effect on reducing the complexity of the algorithm, such that 

its total number of fitness function evaluations would become less than other EAs.  

The complexity of the hybrid algorithm follows the same approach as the DABC. 

This algorithm takes the advantage of the aforementioned enhancements of DABC, and 

there would not be a closed form solution for its complexity. However, since the hybrid 

algorithm has more effective procedures than DABC, it is predictable that it has more 

number of fitness function evaluations than DABC with equal   and  . The reason is 

that less number of solutions remains unchanged during the employed and onlooker 

phases, which results in more number of fitness evaluation. This prediction is further 

confirmed in section 5.6 when we present the comparison result between the average 

numbers of fitness function evaluations of different EAs. 

5.6. Simulation Results 

In this section we present the simulation results of the proposed EA-based 

detection applied to a MD-STBC-MIMO system, and its comparison with other detection 
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techniques. The system model used in our simulations is depicted in Figure 5.1. The 

channels are assumed to be quasi-static, and different channels in MD-STBC-MIMO 

assumed to be independent. In all our simulations, it is assumed that the mobile data is 

transmitted in a form of 4-QAM modulation from all wireless devices      . For 

simulation experiments we assumed that each of the   devices transmit the same 

number of symbols     . Therefore, there are       symbols conveyed from the   

transmit devices to the receiver. Each point in the plots of Figures 5.4 − 5.10 is a value 

averaged over multiple independent runs. In each trial, the set of transmitted signals (

 1 2 K    in Eqn. (5.5)), channel matrices (  1 2

T

K    in Eqn. (5.5)), and 

noise ( Z  in Eqn. (5.5)) are generated randomly and independently of other trials. 

Therefore, in each simulation trial received signal y in Eqn. (5.6) set from those randomly 

generated variable in accordance with Eqn. (5.5).  Then, the algorithms are run to seek 

the value of [          ] that minimizes  ̂. Therefore, the averaged results over 

different simulation trials are in fact averaged over the different channel and noise 

realizations, and also different realizations of the algorithm evolution in the case of 

probabilistic algorithms such as GA, EDA, DABC, hybrid and BBO. This experimental 

setup enables us to compare different algorithms in terms of the performance averaged 

over different channel and noise realizations.  

In order to present a fair comparison between EAs, all of them have the same 

number of generations and population size. They also share the same initial population 

matrix, and all these setting is kept constant during all simulations. The BBO parameters 

set for implementation are: I = 1 and m = 0.1. The DABC algorithm’s trial parameter is 

set to        the number of algorithm iterations. The hybrid algorithm has the same 

parameters as BBO and ABC for its related BBO and ABC procedures, respectively. 

Detailed system configuration and algorithm parameters are given in a table next to each 

figure.  
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5.6.1. BER Performance Comparison 

The simulation results in Figures 5-2 through  5-6 show the BER performance 

comparison between MMSE, SDR1, SD2, GA, BBO, ABC and Hybrid BBO/ABC 

detectors. The MD-STBC-MIMO system configuration, (K,NT,NR,  ,T), is set (4,2,6,4,2), 

(5,2,8,4,2), (6,2,10,4,2), (7,2,14,4,2) and (3,4,4,4,2) for Figures Figure  5.2, Figure  5.3, 

Figure  5.4, Figure  5.5, and Figure  5.6, respectively. The Alamouti space-time coding [7] 

is used in Figures Figure  5.2, Figure  5.3, Figure  5.4, and Figure  5.5, but for Figure 5-6 a 

non-orthogonal four transmit antennas configuration is used for each mobile device. EA 

shared parameters, (   ), which denote the number of iterations and the population size 

(the number of island), are set to (60, 60), (100,100), (100,120), (120,200), and 

(120,200) for Figure  5.2, Figure  5.3, Figure  5.4, Figure  5.5, and Figure  5.6, respectively. 

For these figures, the total numbers    of symbols transmitted from all users are set 8, 

10, 12, 12, and 14, which indicates that search spaces of 48, 410, 412, 414 and 412 possible 

solutions, respectively.   

For each simulation, we tried to pick a pair of ( , ) not only to make the EAs’ 

results close to SD’s, but also to choose the smallest possible pair of   and   in order to 

reduce the computational complexity of the algorithm. Moreover, in order to compare the 

results more precisely,   and   are identical for all EAs. From these figures we observe 

that the best algorithm, that almost always return the same result as the SD is the hybrid 

algorithm, and after that the ABC decoder returns the result with over 97% of the SD’s. 

The third place is for BBO, following by EDA and GA. Comparing the BER performance 

results of various detectors, it can be observed that EAs outperform other sub-optimal 

detection methods in all the five figures, and can meet the optimal result by searching 

through a much smaller set of individuals by selecting a feasible pair of ( , ). 

 

 

 

                                                 
1
 For Semi-definite Relaxation (SDR) simulation we have used the software provided by Dr. Zhi-

Quan Luo [13] 
2
 For Sphere Decoder, we have implemented the algorithm mentioned in [15]. 
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a. 

 
b. 

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

4 2 6 4 2 48 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

60 60 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

  

c.   2 0 -2 -4 -6 -8 

ZF 89 86 80 74 70 64 

MMSE 96 92 86 78 74 66 

SDR 84 84 80 78 78 77 

GA 100 99 96 91 85 72 

EDA 100 100 98 95 93 80 

BBO 100 100 98 97 96 81 

ABC 100 100 100 100 99 98 

Hybrid 100 100 100 100 100 99 
 

Figure  5.2. Performance comparison for K = 4 

a. BER performance comparison for (K,NT,NR,  ) = (4,2,6,4),  
b. simulation parameters,  
c. decoders’ percentage of the SD results 
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a. 

a.  
b. 

System  

K NT NR M T Search space STBC type Channel Type No. of Simulation runs 

5 2 8 4 2 410 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

100 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

c. 

 

  2 0 -2 -4 -6 -8 

ZF 88 85 81 75 64 58 

MMSE 95 90 85 78 67 59 

SDR 85 82 81 79 74 71 

GA 100 99 98 95 89 73 

EDA 100 100 100 99 96 92 

BBO 100 99 100 100 98 93 

ABC 100 100 100 100 99 100 

Hybrid 100 100 100 100 100 100 
 

Figure  5.3. Performance comparison for K = 5 

a. BER performance comparison for (K,NT,NR, ) = (5,2,8,4),  
b. simulation parameters,  
c. decoders’ percentage of the SD results 



 

73 

a. 

 
b. 

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

6 2 10 4 2 412 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

100 120 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

c. 

 

  -2 0 2 4 6 8 

ZF 87 85 81 72 66 61 

MMSE 93 90 85 74 68 62 

SDR 84 84 81 75 76 72 

GA 99 99 98 93 92 81 

EDA 100 100 98 97 93 95 

BBO 100 100 100 98 99 96 

ABC 100 100 100 100 100 99 

Hybrid 100 100 100 100 100 100 
 

Figure  5.4. Performance comparison for K=6 

a. BER performance comparison for (K,NT,NR,  ) = (6,2,10,4),  
b. simulation parameters,  
c. decoders’ percentage of the SD results 
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a. 
  

 
b. System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

7 2 14 4 2 414 Alamouti Quasi-static fading 1000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

120 150 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

c.   0 2 4 6 8 

ZF 68 49 22 14 2 

MMSE 74 54 24 15 2 

SDR 60 48 26 25 7 

GA 36 91 84 86 100 

EDA 36 94 71 76 14 

BBO 33 100 64 94 100 

ABC 100 100 100 100 100 

Hybrid 100 100 100 100 100 
 

Figure ‎5.5. Performance comparison for K = 7 

a. BER performance comparison for (K,NT,NR,  ) = (7,2,14,4),  
b. simulation parameters,  
c. decoders’ percentage of the SD results 
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a. 

  
b. 

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

3 4 4 4 2 412 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

120 200 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

c. 
 

  -2 0 2 4 6 8 

ZF 88 85 81 75 64 58 

MMSE 95 90 85 78 67 59 

SDR 85 82 81 79 74 71 

GA 100 99 98 95 89 73 

EDA 100 100 100 99 96 92 

BBO 100 99 100 100 98 93 

ABC 100 100 100 100 99 100 

Hybrid 100 100 100 100 100 100 
 

Figure ‎5.6. Performance comparison For K = 3 

a. BER performance comparison for (K,NT,NR,  ) = (3,4,4,4),  
b. simulation parameters,  
c. decoders’ percentage of the SD results 



 

76 

The experiment for Figure 5-6 was performed on a non-orthogonal space-time 

code, whereas the experiments for other figures were performed on the Alamouti code 

(simple and orthogonal). The total number SN  of symbols transmitted from all users in a 

space time code block is 12, and 4-QAM is used, so the size of the search space is 412. 

The population size is 150 and the number of generations (iterations) is 120, so BBO, 

GA and EDA are exploring only 18,000 points in the search space, which is a reasonably 

small portion of the search space. Similar to other figures, SD and BBO has the best 

BER performance. In higher SNRs, GA’s performance diminishes notably, while BBO 

pursues the near-optimal SD. GA requires 1.8 dB less SNR than SD and BBO to 

achieve BER of 10-2. 

From the computational complexity point of view in EAs, finding the optimal pair 

of (   ) is essential in order to minimize the processing power and the required 

memory. According to the computational complexity order of these algorithms, with a 

fixed population size ( ), more iteration until termination means more computation. 

Figure  5.7 and Figure  5.8 show number of iterations required by each detection scheme 

to achieve a desirable BER. The MIMO system configurations are (K,NT,NR,M) = 

(6,2,10,4) and (5,2,8,4) for Figure  5.7 and Figure  5.8, respectively, using the Alamouti 

STBC and quasi-static channel, and the SNR is fixed to 8 dB. Figure  5.7 shows that the 

hybrid algorithm with the population size fixed to 100 is the first algorithm achieves the 

sphere decoding performance in less than 50 iterations. After the hybrid algorithm, the 

ABC decoder reaches SD in iteration 64. Other EAs whether cannot reach the SD 

results, or require much more iterations to reach meet the SD results. In Figure 5-8 we 

observe that the hybrid algorithm reaches the SD in about 32 iterations, while ABC 

cannot reach earlier than its 80th iteration. This improved performance is consistently 

observed in several other simulations with different system configurations. As a result, 

not only the hybrid algorithm outperforms other sub-optimal algorithms, it delivers better 

results than other well-known EAs such as GA and EDA, its predecessors BBO and 

ABC, and can reach SD.  

Furthermore, increasing the number of population   per iteration up to some 

point tends to hasten finding an acceptable solution; i.e., decreases the number of 

iterations,  , until termination. Figures Figure  5.9 to Figure  5.12 show the trade-off 
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between the population size and the iterations required to achieve a desired BER in GA, 

BBO, ABC and the hybrid algorithm. The MIMO system configuration is (K,NT,NR,M,) = 

(4,2,4,4), using the Alamouti STBC and quasi-static channel, and the SNR is 8 dB. The 

detailed system configuration is given in Table  5.1.This trade-off is useful from the 

system design point of view. If a hardware system has high processing capabilities and 

low memory, then we can set the population size low to get same BER performance and 

vice versa. (Higher   and   needs more memory.)  

 

 

 

 

 

 

 

 

Table  5.1. System parameters for iteration – population size trade-off 

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

5 2 8 4 2 410 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

1 ~ 120 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
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a. 

  
b.  

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

6 2 10 4 2 412 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

1 ~ 150 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

  

Figure ‎5.7. BER vs. algorithm iteration comparison 

a. BER performance comparison vs. iterations for (K,NT,NR,  ) = (6,2,10,4),   
b. simulation parameters 
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a. 

  
b. b. 

System  

K NT NR   T Search space STBC type Channel Type No. of Simulation runs 

5 2 8 4 2 410 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

1 ~ 120 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

Figure ‎5.8. BER vs. algorithm iteration comparison 

a. BER performance comparison vs. iterations for (K,NT,NR,  ) = (5,2,8,4),   
b. simulation parameters 
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Figure  5.9. Population size and iterations trade-off for GA with K = 4  

 

Figure  5.10. Population size and iterations trade-off for EDA with K = 4 
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Figure  5.11. Population size and iterations trade-off for BBO with K = 4. 

 

Figure  5.12. Population size and iterations trade-off for ABC with K = 4. 
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Figure  5.13. Population size and iterations trade-off for Hybrid with K = 4. 

From the above four 3D plots, the fastest decreasing algorithm is the hybrid 

algorithm. GA is also a rapid algorithm to reach the minimum, but it doesn’t reach the 

optimal value, and according to Figure  5.2 till Figure  5.6 at the best it can reach 80% of 

the SD results. From the last three plots we conclude that the hybrid algorithm reaches its 

minimum value faster than its predecessors ABC and BBO both in the directions of 

iterations and population size. 

5.6.2. Complexity Comparison 

There are two considerable issues while dealing with optimization algorithms and 

especially Evolutionary Algorithms. First issue is the algorithms’ performance 

comparison in terms of the elapsed time during each simulation runs. Second issue 

which is a concern about the EAs is the number of fitness function evaluations. The most 

complex procedure of an EA is where it runs the fitness function evaluation procedure, 

which has to be run at least once in a generation (sometimes more than once such as in 

ABC and the hybrid). The other procedures of an EA are usually simple additions, 
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multiplications, if conditions, taking minimum or maximum, which are not usually as 

much complex as the fitness function.  

In order to compare the complexities of the algorithms mentioned earlier in 

Section  5.5 more practically, we run simulations for four different system configurations, 

to compare their complexity in terms of computation time. Table  5.2 compares SD , ZF, 

MMSE and SDR with other EAs in terms of the average elapsed time. The system 

configurations are the same as those in Figure  5.2 to Figure  5.5. For the purpose of 

these simulations, we employed Matlab® R2010b, running on PCs with Intel® Quad-core 

2.83 GHz CPUs and 3 GB of RAM. The results show that all EAs need much less time 

than SD at very low SNRs. The reason for this difference is that SD has a high 

computational complexity especially at very low SNRs, which also depends on the 

search space. Therefore the case of -2 dB for five, six and seven users SD spends the 

highest time during each simulation run among all other detectors in the same and 

above SNRs. However, the time elapsed in every EA simulation run is almost constant in 

different SNRs; because their complexities does not depend on SNR. These results 

demonstrate that some EAs, especially hybrid and DABC are the best choices in the low 

and mid SNRs. As the number of transmit devices increases, SD detector’s execution 

time grows exponentially, and make it impracticable particularly for low to mid SNRs.  

Table  5.3 contains the average number of fitness function evaluations for one 

simulation run of each EA. The system parameters are the same as Figure  5.2, 

Figure  5.3, and Figure  5.4. We observe that the number of fitness evaluations is identical 

for GA, EDA and BBO and is equal to   , as discussed earlier in section  5.5. The 

original ABC algorithm requires             fitness function evaluations, which is 

equal to 7,220, 20,033 and 24,019 for four, five and six transmit devices, respectively. 

These numbers are more than twice the number of fitness evaluations of BBO, GA and 

EDA. However, after our enhancement to the DABC algorithm, we observe that these 

numbers have been reduced and become closer to   . We further observe the 

outstanding results of the hybrid algorithm: despite of its performance results equal to 

SDs’, its number of fitness function evalutions is mostly less than other EAs. In 

conclusion, the hybrid algorithm would be a significantly considerable choice for joint 

symbol detection in MD-STBC-MIMO systems.  
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Table  5.2. Comparison between detectors’ execution time (in seconds). 

No. of 
Devices 

4 5 

SNR -2 2 6 -2 2 6 

ZF 0.0015 0.0013 0.0013 0.0015 0.0013 0.0013 

MMSE 0.0012 0.0011 0.0011 0.0012 0.0011 0.0011 

SDR 0.0046 0.0040 0.0033 0.0071 0.0060 0.0050 

GA 0.2685 0.2684 0.3682 0.4820 0.4814 0.4819 

EDA 0.4170 0.4168 0.4167 0.7361 0.7363 0.7361 

BBO 0.0603 0.0601 0.0598 0.1036 0.1035 0.1035 

ABC 0.2500 0.2530 0.2547 0.4176 0.4232 0.4252 

Hybrid 0.3432 0.3442 0.3441 0.5636 0.5652 0.5649 

SD 0.4462 0.1062 0.0223 3.8743 0.5213 0.0563 

   

No. of 
Devices 

6 7 

SNR -2 2 6 -2 2 6 

ZF 0.0081 0.0024 0.0014 0.0109 0.0016 0.0016 

MMSE 0.0015 0.0015 0.0012 0.0039 0.0013 0.0013 

SDR 0.0111 0.0092 0.0069 0.0226 0.0108 0.0082 

GA 0.5186 0.5214 0.5180 0.8181 0.8116 0.8116 

EDA 0.7762 0.7802 0.7756 1.1836 1.1824 1.1814 

BBO 0.1083 0.1083 0.1077 0.1690 0.1648 0.1650 

ABC 0.4204 0.4292 0.4270 0.6125 0.6180 0.6194 

Hybrid 0.5790 0.5849 0.5813 0.8627 0.8591 0.8617 

SD 32.0401 2.3918 0.1875 356.9387 8.5781 0.2243 
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Table  5.3. The Average Number of EAs’ Fitness Function Evaluations. 

No. of Transmit 
Devices 

4 5 6 7 

GA 3,600 10,000 12,000 24,000 

EDA 3,600 10,000 12,000 24,000 

BBO 3,600 10,000 12,000 24,000 

ABC 5,071 13,852 16,063 31,151 

Hybrid 3,857 9,985 11,866 21,473 

5.6.3. Related Work 

The author has published the results of this chapter in [19, 20]. Naeem has 

applied another EA to a similar system model presented in [21]. The EA he uses is 

Central Entropy (CE) [22]. The simulation results of this paper show CE has a close 

performance to SD. Note that as mentioned in Section 5.5, computational complexity is a 

major concern. In the EAs discussed in this the thesis and in CE [21], computational 

complexity, by the definition of number of fitness function evaluations, is   . In the 

simulation results of this chapter, small numbers for   and   have been selected to 

demonstrate hybrid algorithm approaches SD with less number of    thus less number 

of fitness evaluations. Moreover, the simulation results in figures 5-7 until 5-13 show that 

other EAs may have a closer approach to the SD if the number of iterations   or 

population size   is increased. This can be intuitively explained as the more number of 

  and  , the higher chance of the algorithm to find the global optima. The results in [21] 

include the simulations for     and    . However, for     and other simulation 

problems the same, the result of Figure 4 in [21] is obtained with      where in 

Figure  5.2    is set to   . Also in Figure 3 of [21], with all other parameters the same, 

     , while in Figure  5.3   is set to half of that amount. Therefore, a conclusion from 

the above points is that not only for CE, but for other EAs presented in this chapter, if the 

number of population size or the number of iterations is increased, most of them have 

the potential to have a very close results as SD. But the computational complexity is a 

major concern and the main goal is to choose the EA that meet SD results with less 

number of fitness function evaluations. A simulation has been run to compare the results 

of CE with the existing algorithms in this paper and is presented in Figure 5.14. This 



 

86 

simulation has been run for three times, where each run was an average BER of 2000 

independent trials, and all these curves were quite identical. Note that as the number of 

population size   is 100 and is half of the number in the results presented in [21]. The 

mediocre result for CE is the effect of decreasing the algorithm parameters   and   

(thus the number of fitness function evaluation), while keeping other simulation 

parameters the same. 

a. 
 

 
b.  

System  

K NT NR M T Search space STBC type Channel Type No. of Simulation runs 

5 2 8 4 2 410 Alamouti Quasi-static fading 2000 

Common EAs   BBO  ABC GA  EDA 

Generation Pop I m Migration trial Pxover  Pmut  Psel  Pxover  Pmut  Psel 

100 100 1 0.015 Constant 0.4× pop 0.9 0.5 0.5 0.99 0.95 0.5 
 

Figure ‎5.14. Performance Comparison with CE for K = 5  

a. BER performance comparison for (K,NT,NR,M) = (5,2,8,4),  
b. simulation parameters 



 

87 

Naeem has published another paper with the same system model in [22], where 

he applies EDA to the optimization problem. Similar to the previous discussion, his 

results are obtained with higher number of population size  ; while even Figure  5.7 and 

Figure  5.8 show that EDA can have a closer result to SD with higher   or  . In fact, the 

simulation results in this chapter demonstrate a fairly good performance for EDA that is 

about 90% of the SD results. Yet, the hybrid algorithm is the one that returns the best 

results with the lowest fitness function evaluations. Another similar work is published in 

[23] where authors applied EDA and BBO. Similar to the above discussion, it is clear that 

the solver presented in this chapter outperform the BER performance of EDA and BBO.  

5.7. Conclusion   

In this chapter, we proposed three EAs discussed earlier in Part I of this thesis 

for Multi-Device (MD) Space-Time Block Coded (STBC) Multi Input Multi Output (MIMO) 

Communication System. The complexity of these algorithms is low as compared with 

optimal ML detector, so they are suitable for high-speed real-time communications. In 

addition, compared to the Sphere Decoding, other Evolutionary Algorithms like GA and 

EDA, and decoding schemes such as MMSE, ZF and SDR, these EA detectors show 

significantly better performance in MD-STBC-MIMO. The proposed algorithms also have 

consistently better performance-complexity trade-off at low SNRs, in comparison to 

existing algorithms. Even at high SNRs, these algorithms have relatively good 

performance-complexity trade-off. 

Among the proposed algorithms, the BBO decoder requires the least time to 

return the results, and the hybrid algorithm usually returns the same results as the SD, 

and it returns the results through the least number of fitness function evaluations. 

Therefore, we conclude that the proposed EAs, particularly the hybrid algorithm, are 

suitable for high-speed real-time communications.  

The hybrid algorithm is a potential solution to be applied to the same type of 

computationally complex problems in wireless communication because of its simplistic 

model, low implementation complexity, and convergence to a nearly optimal solution 

with a small number of iterations.  
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6. EAs for Joint Relay Assignment and Power 
Allocation in Cognitive Radio Systems 

In this chapter, an EA-based (BBO, ABC and hybrid ABC/BBO algorithms) low-

complexity interference aware relay assignment scheme with power control is presented 

for a relay-assisted cognitive radio network comprising one source node, multiple relays 

and multiple destination nodes. Optimally relay assignment using the Exhaustive Search 

Algorithm (ESA) has a high computational complexity, which grows exponentially with 

the number of relays and users. The joint relay assignment formulation is presented with 

source and relays' power allocation as a mixed integer non-linear programming problem, 

which is further reduced to a simpler integer programming problem. The EA-based relay 

assignment scheme with discrete power control at source and relays is presented for the 

integer programming problem with the three algorithms, and compared with other EAs 

such as EDA and BACO. The superiority of the hybrid algorithm over other EAs is 

confirmed through computational experiments, and we present these results.  

6.1. Introduction 

Official reports show that spectrum lies fallow in certain areas, at certain times, 

and on certain frequencies [1]. For example, a licensee may have exclusive use of 

spectrum in a particular geographic area, but choose not to make use of the spectrum 

over the entire area. Likewise, a licensee may fully utilize spectrum during times of peak 

usage, but utilize only half of its spectrum during off-peak hours. The spectrum utilization 

efficiency can be improved by allowing secondary (unlicensed) users to access the band 

unused or partially occupied by the primary (licensed) users (PUs), under the condition 

that the secondary users’ signals do not exceed the interference threshold at the PU [2]. 

Relay assisted cognitive radio networks of the secondary users [3-5] take the advantage 

of cooperative communication [6], which reduces the source to the destination 

transmission power, and consequently shrinks the interference at the primary users. 
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The cognitive radio system presented in this chapter comprises a single source 

node, multiple destination nodes and multiple relays. We employ the spectrum underlay 

[3] as a technique that allows the secondary users to share the whole licensed spectrum 

with the PUs. Relays use amplify and forward (AF) relaying [7], in which the relay 

amplifies the received signal from the source and simply forwards it to the destination. 

We further assume that these relays can only transmit on discrete power levels. This 

assumption simplifies the control channel traffic from source to destination, and 

eliminates employing sophisticated circuit to support communication at arbitrary power 

levels [8]. 

Researchers have shown interest to cooperative communications for wireless 

networks, due to its ability to mitigate fading in wireless communication through 

achieving spatial diversity [20]. However, using multiple relays rather than a single relay 

raises the problem of how to assign each relay to receivers. In a system with multiple 

destination nodes, one has to consider the issue of optimal assignment of relays to 

different destinations. Running on the underlay mode is followed by constraints on the 

relay transmission power, due to the interference constraints that need power control at 

relays. In this chapter, our main objective for both problems is the optimal assignment of 

relays to the secondary users, in a cognitive radio network with discrete power levels 

working under AF mode. Therefore the sum capacity of the system is maximized under 

the constraint that the interferences on the primary users should be below their specified 

threshold. 

The issue of optimal relay assignment has been proposed for cellular networks 

and some work has been done on relay assignment and power allocation schemes [9]. 

Nonetheless, these schemes cannot be applied to cognitive radio systems as they may 

violate the interference constraints at the PUs. Some works have also been done on the 

optimal relay assignment in ad-hoc networks comprising multiple source-destination 

pairs [10, 11]. A relay assignment schemes for cognitive radio networks with single 

source node, single multiple destinations and multiple relays is proposed in [12]; yet the 

power to source and relays are not assigned optimally. 

We formulate the optimization problem of optimal relay assignment and power 

control as a non-linear mixed integer programming with these variables: the source 
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transmission power, relays' transmission power levels and the assignment of relays to 

receivers. We observe that the optimization of source and relays' power is separable 

which enables us to present a closed-form expression for the optimum source power. 

This further reduces our initial formulation into an integer programming problem. 

We can use the Exhaustive Search Algorithm (ESA) to obtain the optimal 

solution, due to the combinatorial nature of the problem. Although ESA provides the 

optimal solution to the problem, it has a high computational complexity. Therefore, we 

take the advantage of heuristic algorithms, particularly the EAs, and their ability to solve 

optimization problems efficiently and come to an optimal solution as rapid as possible – 

i.e. with relatively-low computational complexity.  

In the rest of this chapter, we present the cognitive radio system model and 

formulation in section 6.2, followed by the EAs’ implementations in 6.3. The simulation 

results are presented in 6.4, and section 6.5 contains the conclusion.  

6.2. System Model 

This section presents the system model of a cognitive radio with a single source 

node, multiple relays and multiple destinations in  6.2. The formulation of the joint source 

and relay power allocation is presented as a mixed integer non-linear programming 

problem, and further reduced to an integer programming problem. The EAs’ 

implementation is discussed in  6.3, and the simulation results are presented in 

Section  6.4. 

Our model of the relay assisted cognitive radio network comprises one source 

(transmitting) node, K  destination (receiving) nodes or secondary users, and L  relay 

nodes. There are M  primary users (PUs) in this system, and these M  primary users 

can be interpreted as M  geographic locations, where the strengths of the cognitive 

radio signals must be limited. Figure  6.1 shows a block diagram of a multi destination 

cooperative cognitive radio network.  
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Figure  6.1. Relay Assisted Cognitive Radio Network 

Each transmitter, receiver and relay has a single antenna. We denote by ksh ,  the 

complex-valued channel gain from the source to the 
thk  receiver, lsh ,  the channel from 

the source to the 
thl  relay, and klh ,  the channel from the 

thl  relay to the 
thk  receiver, as 

depicted in Figure 1. Also we denote by msh ,  the channel gain from the source to the 

thm  primary user and mlh ,  the channel gain from the 
thl  relay to the 

thl  primary user. 

We assume that the transmitter of the source and the receivers of the destinations have 

knowledge of their incident channel states (channel gains). It is also assumed that the 

complex-valued channel gains lsh ,  and klh ,  are known to the 
thl  relay, and all the relays 

are perfectly synchronized, as assumed in [8]. In our system we assume that each relay 

can transmit to the PUs at a finite number of transmission power levels between 0 and 

max

lp , where 
max

lp  is the maximum power which the 
thl  relay is allowed to transmit; and 
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the 
thl  relay uses a fixed transmission power lp  per dimension. The interference power 

from the 
thl  relay to the 

thm  PU is denoted by 
2

,, = mllml hpI . 

In this cognitive radio system a two-step Amplify-and-Forward (AF) scheme is 

employed for cooperative communication [8]. Each symbol is conveyed from the source 

to destinations in two steps (time slots). In the first time slot, the source transmits its data 

carrying signals, and all relays and destination nodes are able to receive these signals. It 

is assumed that each source-destination pair of this cognitive radio network has been 

allocated equal bandwidth, and each destination node receives its data on a separate 

frequency band. This separation of receiver nodes’ frequency band paves the way of 

assuming that different receiver nodes’ signals do not interfere with one another. Each 

relay is assumed to transmits its received signal at the same frequency band it received 

the signal. This models a low-cost relay that simply amplifies the signal and forwards it. 

As mentioned above, the interference to each PU must be constrained by a 

specific threshold in each user band and in each time slot. We denote by  

  
  the transmission power of the source to the  th user band. The received signal at the 

 th relay is 
lls

k

s ZshP ,
; where   is normalized complex-valued transmitted symbol – 

i.e.          , and    represent the complex white Gaussian noise with the power 

spectral density of     . The power of this white Gaussian noise is expressed as 

WNW
N

N 0
0 =2

2
=  in each user band [13], where W  denotes the bandwidth of each 

user band. In the second time slot, relays transmit the amplified received signal. In our 

system model, the relay or relays assigned to the  th user filter in the signal received in 

the band indexed by  , amplify, and then transmit it to the  th user [8]. In the system 

being studied in this chapter, a receiver can receive data from multiple relays, while each 

relay can only transmit to one receiver. We define      as a binary assignment indicator 

with the following definition:  





otherwise

receiverkthetoassignedisrelaylif thth

kl
0

1
=,

 

(6.1) 
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Now, we can express the channel capacity for the 
thk  user in shared bandwidth 

[14] amplify and forwarding mode [8] as:  
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(6.2) 

The goal of the optimal relay assignment problem formulation is to maximize the sum 

capacity at the receivers, under the interference constraints of the PUs. 

If we implement the interference constraints to the relay assignment problem, 

we'll have the following mixed integer non-linear programming problem:  
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(6.3) 
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where 
max

mI  is the maximum tolerable interference for the 
thm  primary user, 

LP  is a set 

of relay power levels 






 max

l

max

l

max

l p
pp

,,
2

,0, 


 with the cardinality of LP  [12], and lp  

is a discrete value from the set 
LP  representing the discrete power level.  

Since the relays power levels are discrete, they can only operate on finite number of 

transmission power levels. The advantage of discretizing the relay power levels is 

twofold: first, fewer choices of transmission power – i.e. fewer bits in control messages 

to indicate the relay power level, and second, employing inexpensive relays. The 

constraint 1C  ensures assignment of each relay to the maximum one user. The 

constraints 2C  and 3C  define the interference constraints for the source and relay 

transmission. The constraints 4C  and 5C  limit the power for the source and relays 

respectively. Moreover, the constraints 1C , 5C  and 6C  together ensure that only the 

selected relay transmits under its own specified power levels. Due to the fact that the 

source transmission is in a different time slot than relays', 3C  and 4C  as source power 

constraints, as well as 2C  and 5C  as relays' power constraints are decoupled. 

We can re-write C3 as: 

.,1,2,=,
2

,

, Mm
h

I
P

ms

max

kmk

s 

 

(6.4) 

The optimum source power satisfying all M  PUs at the 
thk  band is  
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(6.5) 

If optsP ,  is known, the optimization problem in (6.3) can be rewritten as the 

following integer programming problem:  
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(6.6) 

Equation (6.6) can be bounded below by adding one-to-one constraint in relay 

assignment to reduce its feasible set. This one-to-one constraint means that a relay can 

only transmit data to at most one user, and a user can be assigned to at most one relay. 

Thus, the modified version of (6.6) would be:  
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(6.7) 

The Exhaustive Search Algorithm (ESA) evaluates all    1
1


 L

PL
K  possible 

relay assignments for 2OP  (6.6) to reach to an optimal solution, while 3OP  needs 
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i
 relay assignments. The former number is computationally 

inefficient because it grows exponentially with the number of relays and power levels; 

while the latter has a lower complexity that increases with the number of users. 

6.3. Evolutionary Algorithms-Based Relay Assignment with 
Greedy Power Allocation 

We present our contributed algorithm, the binary EA-based relay assignment with 

greedy power allocation. This algorithm employs the binary EAs to assign relays to 

receivers, by detecting suboptimal value of binary assignment indicators     . 

Subsequently, based on the values of the binary assignment indicators     , the 

algorithm utilizes a greedy algorithm to allocate the relays' discrete power levels. We 

propose a general description of BBO in the following subsection, and will continue by 

presenting our implementation of BBO to the relay assignment problem to determine the 

suboptimal solutions for the optimization problem discussed in (6.6). 

The optimization problem discussed in (6.6) is a constraint optimization problem. 

Thus it needs to run a procedure to ensure that the interference and power allocation 

constraints are satisfied. We present a “Constraint Check with Power Allocation” (CCPA) 

procedure to perform this checking. This procedure’s task is to convert the non-feasible 

candidate solutions to feasible solutions that satisfy the (6.6) constraints, and greedily 

assign power to the relays. The pseudo code of CCPA is given in Table  6.1.  

For implementing EAs and finding the matrix   of the size    , the   matrix is 

modified to a     -dimensional vector   ̅ and expressed as: 

 ̅   [                                     ]. If any candidate solution violates the 

constraints C1 and C2 of the optimization problem presented in (6.6), CCPA intelligently 

corrects the violation in the lines 3-9 of Table  6.1 by placing zeros and ones in some 

position. The binary assignment indicator vector   ̅ in the lines 7-8 helps relays to be 

assigned to users. In the next step, the procedure sets the corresponding relays’ initial 

power levels to the maximum possible discrete value. In the occasion of the PU 

interference constraint C4 violation, the procedure selects the relay with the highest 
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individual sum interference in the lines 12-14. This is the same as writing    

                     , where    ∑   |    |
 

 , and if        
   , then its power level 

is reduced by one             
     . Lastly, the procedure recalculates the PU 

interference, and ensures the interference constraints are satisfied at every PU through 

the repetition of the lines 12-15.   
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Table  6.1. Pseudo code of the CCPA algorithm 

1: Initialization: 
)(0,= ll 

 

2: for 1=j  to N   

3:     for 1=l  to L   

4:         if 
1> ,

j

klk


  

5:             
 1=  _= ,

j

klfindofpermrandx 
 

6:             
1= ,0,= (1),,

j

xl

j

kl k  
 

7:         end if  

8:         
 1=)( ,  L

j

klk
PlpFactor   

9:          1)/(=  L

max

l

j

l PlpFactorpp  

10: 
    

end for   

11:     

2

,,= ml

j

kl

j

ll

k

m hp 
 

12:     while 
),(,, kmI km

max

k

m 
  

13: 
        

2

,= ml

j

lm

l hp
 

14: 
        

l

Ll

l 
,1,2,=

*
argmax=

 

15: 
        

   11= *

**  L

j

l

j

l
PlpFactorpp

 

16: 
        

2

,,= ml

j

kl

j

ll

k

m hp 
 

17: 
    

end while   

18:     if 
0= j

lp
  

19:         
kj

kl 0,=,
 

20:     end if  

21:      KLLKK ,,12,2,11,1,1 ,,,,,,,,,=    

22: end  for  

23: return  
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6.4. Simulation Results 

In this section we illustrate our simulation results for the proposed EA-based 

relay assignment with greedy power allocation problem, which provides a suboptimal 

solution to the constraint optimization problem discussed in (6.6). The performance 

comparison includes the Exhaustive Search Algorithm (ESA) that returns the exact 

maximal capacity in the optimization problem (6.7). We also employ other bio-inspired 

EAs, such as EDA and ACO, and compare them with BBO, ABC and hybrid, as well as 

another scheme, called ESA one-to-one. The ESA one-to-one scheme serves as the 

optimal solutions lower bound for the constraint optimization problem in (6.6), which 

yields to the optimal solution of the constraint optimization problem presented in (6.7). 

We compare these four schemes with different transmission power levels. The signal to 

noise ratio is fixed to 10=/NPmax
 dB, where 

maxP  denotes the maximum allowed 

transmission power from the source.
 
Each relay can either operate on two, or four 

different transmission power levels -- i.e.  max

lL pP  0,  or  max

l

max

l

max

lL pppP  /3,2 /3, 0, . 

6.4.1. Algorithms’ Performance Results  

Figure  6.2 till Figure  6.7 illustrate the implementations results of the 

aforementioned algorithms, obtained by averaging the individual capacity of different 

randomly-generated scenarios based on above values. We compared these simulation 

results based on different system parameters such as: L , K , M , and 
max

mI . The channel 

gain between source, relays and destinations are randomly generated in accordance 

with the assumption of independent (i.i.d.) channel gain drawn from a complex Gaussian 

distribution. As a consequence, the presented results averaged over different simulation 

trials are in fact the average over different channel and noise realizations and also 

different realizations of the algorithm evolution in case of EAs.  

EA parameters are kept constant through all simulations, and they share the 

same initial population for a fair comparison. BBO uses the piece-wise constant 

migration explained in  2.3.3, and is based on the partial immigration-based BBO.  
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We present the plot for the capacity versus the number of relays in Figure  6.2 

and Figure  6.3 for the set of parameters    /10,2,2,6,1=,,,, max

L

max

l

max

m PmWPpIKM  

and  /10,4,4,5,1 maxPmW , respectively. We provide simulation results for the case of 

 max

lL pP  0,  and  max

l

max

l

max

lL pppP /3,/3,20,= . Here we observe that capacity 

increases with the number of relays, because more relays increase the choices of relay 

assignment.  

Figure  6.4 and Figure  6.5 depict the capacity vs. number of secondary users, for 

systems    /10,2,6,5,100=,,,, max

L

max

l

max

m PmWPpIML  and  /10,4,5,4,100 maxPmW , 

respectively. In these two figures, we observe that the capacity increases with the 

number of users.  

Figure  6.6 and Figure  6.7 show the performance plots of the capacity versus the 

interference threshold 
max

mI  for the case of    /10,16,1,4,=,,,, max

L

max

l PPpKML  and 

 /10,44,3,4, maxP  respectively. Here again we observe that the capacity increases as we 

amplify the interference threshold, because a feasible set of the optimization problem 

with lower 
max

mI  is a subset of a feasible set with higher 
max

mI .  
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a. 

 
b. 

System  Common EAs 

K M   
           

    Search space No of Simulation runs Generations Pop 

6 2 1mW 2     /10        200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c. 
 

 
2 3 4 5 6 7 

ESA 1 to 1 97 95 93 90 89 85 

EDA 100 100 98 95 92 90 

BACO 100 100 99 98 97 96 

BBO 100 100 99 96 94 92 

ABC 100 99 97 95 95 94 

Hybrid 100 100 100 99 98 98 
 

Figure ‎6.2. Sum rate vs. number of relays For K = 6 

a. Sum rate vs. number of relays for (      
        )               ,  

b. simulation parameters,  
c. algorithms’ percentage of the ESA results 
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a. 

 
b. System  Common EAs 

K M   
           

    Search space No of Simulation runs Generations Pop 

5 4 1mW 4     /10         200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c. 
 

 
1 2 3 4 5 

ESA 1 to 1 97 92 89 86 84 

EDA 100 100 100 97 95 

BACO 97 98 97 96 96 

BBO 100 100 100 98 96 

ABC 100 100 99 97 97 

Hybrid 100 100 100 99 98 
 

Figure ‎6.3. Sum rate vs. number of relays For K = 5 

a. Sum rate vs. number of relays for        
                       ,  

b. simulation parameters,  
c. algorithms’ percentage of the ESA results  
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a. 

 
b. System  Common EAs 

L M   
           

    Search space No of Simulation runs Generations Pop 

6 5 100mW 2     /10        200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c. 
 

 
3 4 5 6 7 

ESA 1 to 1 59 71 81 88 92 

EDA 98 96 94 92 91 

BACO 99 99 98 97 97 

BBO 99 97 95 93 92 

ABC 100 98 96 95 92 

Hybrid 100 100 99 99 98 
 

Figure ‎6.4. Sum rate vs. number of users For L = 6 

a. Sum rate vs. number of users for (      
        )                 ,  

b. simulation parameters,  
c. algorithms’ percentage of the ESA results  
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a

. 

 
b
. 

System  Common EAs 

L M   
           

    Search space No of Simulation runs Generations Pop 

5 4 100mW 4     /10          200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c
. 

 

 
2 3 4 5 

ESA 1 to 1 51 64 75 83 

EDA 99 98 97 95 

BACO 97 96 96 96 

BBO 99 98 97 96 

ABC 99 98 98 97 

Hybrid 99 99 99 98 
 

Figure ‎6.5. Sum rate vs. number of users For L = 5 

a. Sum rate vs. number of users for (      
        )                 ,  

b. simulation parameters,  
c. algorithms’ percentage of the ESA results  
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a. 

 
b. System  Common EAs 

L M K        
    Search space No. of Simulation runs Generations Pop 

6 5 6 2         76 200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c. 
 

  10-3 10-2 10-1 100 101 102 

ESA 1 to 1 99 90 85 79 75 76 

EDA 96 96 97 95 95 95 

BACO 96 96 97 97 98 98 

BBO 96 96 97 96 96 96 

ABC 96 95 96 96 97 97 

Hybrid 96 95 97 98 99 99 
 

Figure ‎6.6. Sum rate vs. interference threshold For K = 6 

a. Sum rate vs. interference threshold for                        ,  
b. simulation parameters,  
c. algorithms’ percentage of the ESA results  
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a. 

 
b. System  Common EAs 

L M K        
    Search space No. of Simulation runs Generations Pop 

6 5 7 2         86 200 20 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

c. 
 

 
10-3 10-2 10-1 100 101 102 

ESA 1 to 1 99 91 87 82 79 79 

EDA 96 96 96 95 94 94 

BACO 96 95 97 97 98 98 

BBO 96 96 97 96 95 95 

ABC 96 95 95 95 96 96 

Hybrid 96 95 97 98 99 99 
 

Figure ‎6.7. Sum rate vs. interference threshold For K = 7 

a. Sum rate vs. interference threshold for                       ,  
b. simulation parameters,  
c. algorithms’ percentage of the ESA results  
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In the above simulation results, the performance of all EAs is comparable to 

ESA, while the hybrid algorithm consistently returns results closer to the optimal results. 

In all results, the complexity of all EAs is less than the optimal ESA with power control. 

For instance, according to section  6.2, for the scenario of Figure  6.5 and the system 

parameters of    5,5,4=,, LPKL  and a pair of population size and generations 

             , the number of ESA iterations over all possible iterations is 

1015 1035  ; whereas the number of iterations for BBO and GA is            . 

Thus the computational complexity of the EA-based schemes are significantly lower than 

ESA with fairly competitive results, while sometimes the hybrid algorithm returns the 

same result as the optimal ESA with the power control. The hybrid algorithm consistently 

returns the closest results to the ESA, and following by ACO, BBO, ABC and GA. In 

short, the hybrid-based scheme performs close to ESA, with significant lower 

computational complexity. 

6.4.2. EAs’ Evolution Comparison Results 

From the practical point of view, computational complexity is a major concern for 

any algorithm applied to the problem. Therefore we present some comparison result that 

helps to choose the best algorithm and its settings that returns the favorable results with 

a relatively low computational complexity. Similar to section  5.6.1, we present some 

specific results for comparing the performance of EAs in the relay assignment problem.  

The first set of results is the comparison between the EAs’ performances (the 

average sum capacity in this problem) vs. the number of iterations for each algorithm 

that is depicted in Figure  6.8 and Figure  6.9. These figures show the number of 

iterations required by each algorithm to achieve a certain capacity. The system 

configurations are (        
        )                   and                 for 

Figure  6.8 and Figure  6.9, respectively. Figure  6.8 shows that the hybrid algorithm has 

the fastest approach towards the optimal ESA results, and becomes very close to ESA 

at its 17th iteration. Figure  6.9 also demonstrates the superiority of the hybrid algorithm 

over other EAs, which constantly is the closest algorithm to the optimal ESA. As a result, 

the hybrid algorithm outperforms other EAs such as BACO, GA and EDA, as well as its 

predecessors BBO and DABC.  
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Furthermore, a better understanding of the EAs’ evolution towards the optimal 

result can be observed from a three-dimensional plot that depicts the algorithm 

performance vs. the number of iterations and population size. Figure  6.10 show the 

trade-off between the population size and the iterations required to achieve a desired 

average sum capacity for EDA, BACO, BBO, ABC and the hybrid algorithm. The system 

configuration is (        
        )                  . The detailed system configuration 

is given in Table  6.2.This trade-off is useful from the system design point of view. If a 

hardware system has high processing capabilities and low memory, then we can set the 

population size low to get same performance and vice versa. (Higher   and   needs 

more memory.) These figures also show that EAs has faster evolution towards the 

optimal result in the relay assignment problem than the MD-STBC-MIMO results 

depicted in Figure  5.9 to Figure  5.13. We further observe that for population size above 

10, the hybrid algorithm has the fastest convergence. As a result, we conclude that the 

hybrid algorithm has the closest results to the optimal ESA, while it has the fastest 

approach towards the results as well.  

 

 

 

 

Table  6.2. System parameters for iteration–population size trade-off 

System  Common EAs 

L M K   
           

    Search space No. of Simulation runs Generation Pop 

5 2 4 10mW 4         65 50 1 ~ 40 1~40 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3 
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a. 
  

 

b.  

System  Common EAs 

L M K   
           

    Search space No. of Simulation runs Generation Pop 

6 4 3 10mW 2         46 20 1 ~ 40 20 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

Figure ‎6.8. Sum rate vs. algorithms’ iteration For L = 6 

a. Sum rate vs. algorithms’ iteration for (        
   

     )                  ,  

b. simulation parameters,   
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a. 
  

 

b.  

System  Common EAs 

L M K   
           

    Search space No. of Simulation runs Generation Pop 

5 4 5 10mW 2         65 20 1 ~ 40 50 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 1 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

Figure ‎6.9. Sum rate vs. algorithms’ iteration For L = 5 

a Sum rate vs. algorithms’ iteration for (        
   

     )                  ,  

b. simulation parameters,  
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a. 

 

b. 

 

c. 

 

d. 

 
e. 

 

Figure ‎6.10. Sum rate vs. algorithms’ population size and iteration  

a. EDA BER performance comparison for (        
   

     )                  ,  

b. BACO, c. BBO, d. ABC, e. Hybrid algorithm  
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6.4.3. BBO Migration Tuning Result 

At the end of this section, we present a plot to demonstrate the effect of number 

of steps for the proposed linear immigration, piece-wise constant emigration BBO 

migration scheme. The plot and detailed system model is presented in Figure  6.11. 

a. 
  

 

b.  

System  

K M   
           

    Search space No of Simulation runs 

7 4 1mW 4     /10          200 

BBO parameters 

I m Migration Levels Generations Pop 

1.4 0.8 Piece-wise constant 1 ~ 7 30 30 
 

Figure ‎6.11. Comparison between the number of BBO migration steps  

a. Comparison between the number of BBO migration steps for        
                       ,  

b. simulation parameters,  
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In this figure, “steps = 1” refers to the linear immigration, constant emigration 

scheme, which has the lowest performance. This figure clearly demonstrates the effect 

of more steps in the piece-wise constant immigration scheme that results in better 

overall algorithm performance, without increasing much complexity. Therefore, this 

scheme would be a considerable setting for BBO to return high performance result with 

low complexity.  

6.4.4. EAs’ Complexity Comparison Results 

Lastly, we present a complexity comparison result between the EAs applied to 

this relay assignment problem. We compare these algorithms in terms of their numbers 

of fitness function evaluations. As discussed in section  5.6.2, BBO and EDA both have a 

fixed number of     fitness function evaluations. Similarly, BACO has the same number 

of     evaluations.  

A simulation is run with a cognitive radio system with the system parameters 

(        
        )                  , and       , where BBO, EDA and BACO 

return their result by evaluating the fitness function        times. Yet one simulation 

run of DABC and hybrid algorithm needs an average of 665 and 560 fitness function 

evaluations, which is 65% and 44% more than that number for the first three EAs 

respectively. Note that all these EAs’ complexities are still much lower than the 

complexity of the optimal ESA. 

We observe that unlike the MD-STBC-MIMO problem, the hybrid algorithm 

doesn’t beat other algorithms in terms of both performance and complexity (in terms of 

the number of fitness function evaluations). This algorithm still returns the best 

performance results compare to other EAs, yet it costs more number of function 

evaluations. We conclude that at the presence of sufficient processing power that can 

handle the 44% complexity of the hybrid algorithm, it would be the best choice to 

achieve the closest results to the optimal ESA.   
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6.4.5. Related Work 

The author has published two papers from the results of this chapter in [21] and 

[22]. The issue of optimal relay assignment schemes has been proposed for cellular 

networks with some work on relay assignment and power allocation schemes [23]. 

However, these schemes cannot be applied to cognitive radio, because they may violate 

the interference constraints at the PUs. There are also some works on the optimal relay 

assignment in ad-hoc networks that comprises multiple source-destination pairs [24], 

[25]. Pareek et al proposed a relay assignment schemes for cognitive radio networks 

with single source node, single multiple destinations and multiple relays in [26]; but the 

power to source and relays are not assigned optimally. A similar work has been 

published in [27] and a binary Particle Swarm Optimization (BPSO) [28] applied to the 

cooperative cognitive radio system. A comparison between BPSO and other EAs 

mentioned in 6.4.1 is presented in Figure  6.12. For a fair comparison between the 

algorithms, the simulation parameters are tuned to the algorithms’ best performance for 

solving the optimization problem. This figure shows that the hybrid algorithm and BPSO 

curves are close together. Other papers are published with similar system models, 

comprising only one receiver node such as [29] [30]. The work presented in this thesis 

considers a more general case of a cognitive radio system with multiple destinations. 

6.5. Conclusion 

In this chapter, we present the optimization problem formulation for a relay 

assignment problem in a multi-user cognitive radio network with discrete power control. 

The cognitive radio network consists of a single source node, multiple relays and 

multiple destination nodes. In section  6.2 we demonstrate the separation of the source 

transmitted power and the relays' transmission power levels, in addition to the 

optimization of the source and relays' transmission power levels in (6.3) are reduces to 

the optimization of the relays' power levels, as in (6.6). Then we introduced EA-based 

relay assignment algorithm with low computational complexity. We also propose a 

constraint checker algorithm to ensure the interference threshold is satisfied in the 

procedure of EA relay assignment. We observe that reduction in search space results in 

low computational complexity and faster convergence to an acceptable solution. The 
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performance comparison results of the proposed schemes are comparable to the 

optimal ESA, and can beat other mainstream EAs such as EDA and BACO. Using other 

efficient constraint optimization techniques inside the bio-inspired heuristic algorithms, 

multiuser cognitive radio network with imperfect channel gain, as well as constant power 

level for relays and source are left for the future work. 

a. 

  
b.  

System  Common EAs 

K M   
           

    Search space No of Simulation runs Generations Pop 

5 2 100mW 2     /10        150 24 24 

BBO  ABC ACO EDA 

I m Migration Levels trial     Pxover  Pmut  Psel 

1.4 0.8 Piece-wise constant 10 0.4× pop 0.5 0.9 0.99 0.95 0.3 
 

Figure ‎6.12. Sum rate vs. number of relays comparison with BPSO for K = 5 

a. BER comparison vs. number of relays for        
                       ,  

b. simulation parameters,  
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7. Green Resource Allocation in Cognitive Radio 
Systems 

In this chapter, we formulate a resource allocation optimization problem for a 

cooperative relay-assisted cognitive radio system, comprising a single source node, 

multiple relays and multiple destinations. Our formulation takes into account the effects 

of the resource allocation on CO2 emission, and we refer to it as a green resource 

allocation problem. The green resource allocation problem is formulated as a non-linear 

multi-objective optimization problem. We modify the objective function by applying the 

weighted sum method, which results in a non-convex mixed integer non-linear 

programming problem. We propose a hybrid evolutionary scheme that utilizes different 

EAs such as GA, EDA, ABC and hybrid BBO/ABC to solve this optimization problem. 

Simulation results demonstrate the efficiency of the hybrid algorithm approach in 

comparison to other schemes such as ABC, GA and EDA.  

7.1. Introduction  

The Information and Communication Technology (ICT) has become one of the 

21st century’s biggest industries and accordingly has a huge carbon foot print. According 

to the Smart 2020 report, this industry will emit 1.4 Giga tons (109) of carbon dioxide 

(CO2) emissions or 2.8% of global emissions by 2020 [1] [2] [3]. This sector is 

responsible for approximately five per cent of the global electricity demand and CO2 

emission [6] [7].  

It is estimated that the ICT industry alone produces CO2 emission equivalent to 

the carbon output of the entire aviation industry [2]. ICT emissions growth fastest of any 

sector in society: doubling about every 4 – 6 years [5]. Currently ICT represent 8 – 9.4% 

of total US electricity consumption, and 8% of the global electricity consumption, and it is 
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projected to grow to as much as 20% of all electrical consumption in the US [5]. Future 

Broadband Internet alone is expected to consume 5% of all electricity.  

The main aim of green ICTs is to minimize the CO2 emissions. Research in green 

ICTs will enable the communication system designer to develop and design the 

communication systems that will use power more efficiently and thus contribute to 

reducing the CO2 emissions.   

In the last few years, there have been increasing efforts towards green ICTs. A 

comprehensive survey on green networking is presented in [4]. In [6], authors presented 

the concept of energy efficiency in telecommunication networks. A detailed discussion 

about ICTs footprint and its impact on the environment is presented in [8] [9] and [10]. In 

[11], authors described a variable power/bandwidth efficient modulation strategy to save 

the battery life of the communication device. Information and technology companies like 

Google and Microsoft have already started working towards green ICTs [21] [22]. 

In the context of green communication, cooperative communication can 

contribute to reducing the CO2 emissions. Cooperative communication is a powerful 

concept for extending coverage and improving system’s efficiency [23]. Green 

communications can utilize cooperative paradigms in order to reduce energy 

consumption for signal transmission [24]. In this chapter, we present a multi-objective 

optimization framework that jointly solves the problem of spectrum sharing and reducing 

CO2 emissions. In particular, we propose a green multi-objective optimization framework 

for joint relay assignment and power allocation in a cooperative Cognitive Radio System 

(CRS). Then, we present evolutionary algorithms to solve the green multi-objective 

optimization. 

7.2. Multi-objective Optimization  

Multi-objective optimization (MOO) is used in many complex engineering 

optimization problems [12] − [15]. In typical MOO problems, different objectives can 

conflict with each other. Optimization with respect to any particular objective can give 

unacceptable results with respect to other objectives [14]. For resource allocation in 

Green Cooperative Cognitive Radio Network (GCCRN), in this chapter we consider two 
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conflicting objectives: to maximize the sum-capacity and to minimize the CO2 emissions. 

Determining the optimal set of decision variables’ values for a single objective (CO2) 

emission minimization can result in a non-optimal solution with respect to other 

objectives, e.g. sum-capacity maximization.  

Two widely used methods to solve multi-objective optimization, along with other 

methods, are weighted sum method and constraint objective method [12] – [15]. In the 

Weighted Sum Method (WSM), a weighted sum of the multiple objective function is 

considered as the metric to minimize (maximize). In WSM, the weight of each objective 

is proportional to its importance placed for decision making. A general WSM multi-

objective optimization problem is expressed as follows: 

        ∑       

 

   

 

Subject to:  

                  

                   

 

where the weights are such that ∑   
 
     ,   is the number of objective functions,   is 

the number of inequality constraints, and   is the number of equality constraints. In the 

constraint objective method [14], each objective is transformed into a constraint. In our 

formulation, we will use weighted sum method.  

In formulating the weighted sum MOO, we will normalize each objective function 

 
 
    so that each objective function has the same range of values. The main reason for 

normalization is that the objective functions can have different dimensions (e.g., for the 

GCCRN problem, one is bits/Hz, and the other is power (Watts)) – they become 

dimensionless after normalization, and this enables their addition in the weighted sum 

expression. Furthermore, in a weighted-sum method [14] for MOO, without 

normalization, we cannot specify the bias toward a particular objective with weights 

alone. For instance, if the value of one objective function is in the range of [0, 1], and the 

value of second objective is in the range [0, x] (where        ), then the second 
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objective produces bias in the weighted fitness function, even if we use equal weights  

          .  In this work, all of the objective function values are normalized within 

the range close to [0, 1]. In the case in which we do not have exact maximal and minimal 

value of an individual objective function, we will normalize the objective function on the 

basis of its upper bound and lower bound. The GCCRN MOO is formulated so that the 

range of combined objective function is always within 0 and 1. 

7.3. Green Relay Assignment for GCCRN  

We consider a two-hop wireless network with one transmitter (source), K 

receivers (secondary users), L relays, and M primary users, as illustrated in Figure  7.1. 

Each relay, transmitter, and receiver is equipped with a single antenna. We denote by 

    , the channel from the source to the  th relay,     the channel from the  th relay to the 

 th secondary user, and      the channel from the  th relay to the  th primary user. We 

denote by   , the  th relay’s transmission power. We consider a two-step amplify-and-

forward (AF) scheme [16]. We assumed in our cognitive radio network that data is 

received by each destination node on a separate frequency band and that each source-

destination pair has been allocated equal bandwidth. We further assume that signals 

destined for different users do not interfere with one another. We also assume that each 

relay transmits its received signal at the same frequency band in which it received the 

signal. This models a low-cost relay that simply amplifies the signal and forwards it. We 

define     as a binary assignment indicator variable such that: 

      { if the  th relay is assigned to the  th receiver

 otherwise                                                        
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Figure  7.1. Cooperative Cognitive Radio Network 

The channel capacity of the  th user for amplify and forward relaying is [16] [17] [25]:  

        
 

 
   [  

  
 

 
(
(∑     |         |  √  

 
   )

 

  ∑ (  |     |√  )
  

   

)] (7.1) 

where    (√  
 |     |

 
  )

  

,   [    ]   
 is an     binary matrix indicating relay to 

secondary users connectivity, and   [  ]   is an  -dimensional vector comprising   

relays’ power levels.  Our first objective is to maximize the sum-rate capacity ∑   
  

   . As 

mentioned in section 7.2, the division of the sum-rate capacity with ∑   
    

    

normalizes the first objective between 0 and 1, where   
    is an upper bound on the 

capacity of the  th secondary user. The upper bound on the sum capacity can be 

obtained as follows:   
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    (7.5) 

The second inequality is obtained from the Schwartz inequality. The last expression is 

greater or equal than the third one because the third expression is an increasing function 

of   . A proof is provided in Appendix 7.A. The latter expression is referred to as   
   . 

Note that if the term (∑ (|     |  )
  

     
   ) is canceled out from the numerator and 

denominator of the latter expression, the resulted upper bound is even looser and less 

accurate than the current   
   .  

Mathematically, the objective of the sum-rate capacity can be expressed as: 

  ̅      
∑         

   

∑   
    

   

 (7.2) 

The second objective is to reduce the CO2 emissions. The CO2 emissions are 

measured in grams. If P is the transmission power and X is a constant in grams/KWh, 

then the product, PX, of P and X represents the CO2 emissions in grams/hour. The value 

of X is different for different types of material (fuel) used in electricity generation. There 

are three major sources of fuel for electricity generation: oil, gas, and coal. The value of 
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X for lignite/brown coal, natural gas, crude oil and diesel oil is 940, 370, 640, and 670 

grams/KWh, respectively [6] − [8]. The CO2 emissions due to the  th relay would be 

  
           . Therefore, the objective of CO2 emissions can be written as:  

    
    

∑   
       

   

∑  
    
    

   

 (7.3) 

where      
       

   . To define a single objective, the maximization objective   ̅ is 

transformed into minimization using the relation         ̅. Mathematically, the MOO 

for GCCRN can be expressed as: 

          {                
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(7.4) 

Both denominators of the two objective functions    and     
 require   

    to be 

evaluated. The definition of   
    is    [          ] which is non-differentiable at the 

points           , thus the objective functions would be non-differentiable at these 

points too. Therefore, the optimization problem OP1 is non-convex. Moreover,    is a 

continuous variable, while      is discrete; thus the problem is mixed integer. 

Furthermore, the objective function    , and the constraint C2 both are nonlinear 

expressions of    and     . As a result, the formulation in (7.4) is a non-convex mixed 

integer non-linear programming problem. The objective function in (7.4) is bounded by 

zero and one.  In this equation, the constraint C1 ensures that a relay can only be 
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assigned to one secondary user, C2 is the interference constraint, the constraints C3 

and C4 jointly ensure that if the  th relay is not assigned to any secondary user, then the 

transmission power of the  th relay should be zero.  In the next section, we present a 

low-complexity hybrid scheme, comprising an EA and an iterative greedy algorithm, for 

the GCCRN MOO problem.  

7.4. Hybrid Solver for GCCRN MOO Problem  

In this section, we present a solver for the GCCRN multi-objective problem. The 

proposed scheme is an integration of an EA and an Iterative Greedy Algorithm for relay 

assignment and power allocation such that the constraints in (7.4) are satisfied. The 

optimization variables of the GCCRN problem in (7.4) are   (relays’ powers variable) 

and   (relays assignment variable). The hybrid solver handles both optimization 

variables   and  , such a way that the EA operator modifies the variable   towards 

higher fitness value, and the Iterative Greedy algorithm verifies that the relays powers   

(being modified by the EA) and the relays assignment variable   satisfy the constraints in 

the optimization problem (7.4).  

In the GCCRN problem, there are   relays that can handle continuous power 

levels, which demands continuous EAs to be applied to the problem. We implement ABC 

(Chapter 3) and the hybrid ABC/BBO algorithm (Chapter 4) for the EA part of the solver 

for the GCCRN problem. We have not included the BBO algorithm, since this algorithm 

is primarily presented for problems in the integer domain (Section  2.2). A continuous 

version of BBO would be the hybrid algorithm, which is included in our implementations.  

The Iterative Greedy Algorithm receives one EA individual   as an input, and 

performs two operations on it. It modifies the relay power levels   such that the 

constraints C2 and C3 in (7.4) are satisfied; while it also determines the relays’ 

assignment variable   for each received EA individual   heuristically, and ensures that 

all constraints in (7.4) are satisfied.  

Figure  7.2 illustrates the flowchart of the hybrid solver, which consists of an EA 

and the Iterative Greedy Algorithm. In the rest of this section, first we discuss our EA 
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implementation for the GCCRN problem and in Section  7.4.1, and then we discuss the 

Iterative Greedy Algorithm procedures in Section  7.4.2. 

Generate initial population
{A set of EA individuals pj

within the limits (7.5)}

Iterative Greedy Algorithm
(Run Table 7.1 for all individuals)

{Determines relay assignment variables ε 
Verifies pj and ε with constraints}

Evaluate Fitness Function
EA Term. Cond.     
(max iterations) 

Satisfied?
TerminateYes

EA Evolutionary Operator
(crossover and mutation in GA, three phases in ABC)

{modifies pj}

No

A

C

B

 

Figure ‎7.2. Flowchart of the Hybrid solver for GCCRN problem  

The flowchart comprises an EA and an iterative greedy algorithm  

7.4.1. Evolutionary Algorithms for the Hybrid Solver 

EAs in general have been often used to solve MOO problems. Candidate 

solutions to a multi-objective optimization problem are represented as individuals in the 

population. In EAs, the objective function value of a candidate solution indicates the 

fitness of the individual, which is associated with the concept of natural selection [18]. 

Each EA’s individual represents the relays’ transmission powers  . We denote by    

the  th individual in the population. Each individual    [  
 
   

 
     

 
] is a vector of   real 

components, where   
 
   {     } represents the power of the  th relay. Relays powers 

are bounded by [          ], where      and       denote the lower and upper limits of 

the EA’s search window. Therefore, each individual of an EA is a vector of continuous 

real numbers between      and      . 

The first step of the hybrid solver is to generate a random population of EA 

individuals   s. These relays’ powers have to satisfy the constraints of the optimization 

problem (7.4) as well. According to the constraint C2 of this optimization problem, relay 

powers should satisfy ∑       |     |
  

      
          . If the initial population is 
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generated randomly within [          ], there is a possibility that some randomly 

generated     cause excessive interference to the PUs that violates the constraint C2. 

The algorithm could have generated the initial population within the aforementioned 

interval and further verify the constraints through an alternative procedure (Iterative 

Greedy Algorithm to ensure that individuals satisfy the constraint C2; nonetheless, we 

redefine the above generation interval to ensure that the randomly generated population 

lies within [          ], while it also satisfies the constraint C2. The new interval for 

randomly generating the initial population is expressed as: 

[           ] 

where               {
  
   

|    |
  

  
   

|    |
    

  
   

|    |
       }     

(7.5) 

The new limits in (7.5) results in a smaller yet more effective interval for randomly 

generating the individuals. The smaller interval lets EAs to focus their exploration and 

exploitation on the feasible domain, rather than to handle an individual that lies above  

       and has to be repositioned by the Iterative Greedy Algorithm.  

Although the initial population is ensured to satisfy the constraint C2, the 

population in the rest of EA iterations may violate the constraint. For instance, 

expression (3.2) for locating new food sources, in addition to line 5 of Table  3.3 and line 

7 of Table  3.4 for ABC, and line 5 of Table  4.1 for the hybrid algorithm may cause a food 

source to lay out of the limits mentioned in (7.5). Consequently, some individuals from 

the population may require some modifications. The solver passes the population to the 

Iterative Greedy Algorithm that determines the relay assignment variables  , while it also 

ensures that all relays powers   s and relay assignment variables   satisfy the 

constraints of (7.4), and then passes the verified initial population to the next step to 

evaluate its fitness. Later on, in every iteration, after the population is modified by EA 

through its evolutionary operator, it will be passed to the Iterative Greedy algorithm for 

determining the relay assignment variables and constraints verification.  
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7.4.2. Iterative Greedy Algorithm  

In each EA iteration, after the algorithm modifies the population through its 

specific evolutionary procedure (Point “B” in Figure  7.2), the solver has to determine   

and verify   and    with the constraints in (7.4) before the population is passed towards 

the fitness function evaluation step (Point “C” in Figure  7.2). We propose an Iterative 

Greedy Algorithm to repair each EA individual    such that constraints C2 and C3 are 

satisfied, and to generate a feasible assignment variable   for each individual 

heuristically that satisfies all constraints in (7.4). At the end of this procedure, the 

algorithm’s output is an individual with feasible relays’ power levels and the associated 

assignment variables   (Point “C” in Figure  7.2), which it is ready to be passed to the 

fitness function evaluation process. This procedure has to be run for   times (number of 

individuals in the EA’s population) to determine the relay assignment variable and 

ensure that all individuals satisfy the constraints. 

Table  7.1 shows the pseudo-code of the iterative greedy algorithm. The algorithm 

runs the procedure in Table  7.1 for every individual    of the population in every EA 

iteration. This algorithm consists of two steps. In the first step, the algorithm greedily 

assigns relays to the secondary users based on the channel conditions. However, the 

assigned relays in this step may not satisfy all the constraints. In the second step, the 

algorithm verifies the assigned relays with the constraints and finalizes the power 

allocation to ensure that the interference constraint at the PUs is satisfied. 

7.4.2.1. Step 1: Partial Relay Assignment  

For describing the basic idea behind the proposed suboptimal algorithm, we view 

|    |
 
|    |

 
 (the product of the channel gain from the source to the  th relay and the 

channel gain from the  th relay to the  th secondary user) as the profit from investing 

(assigning) the  th relay to the  th secondary user (because of the channel gain’s positive 

effect on the throughput). Step 1 of the algorithm temporarily assigns each relay to the 

secondary users that return the maximum profit. Note that according to C1 in problem 

(7.4), each relay can be assigned only to one secondary user. Mathematically, for each 

relay  , the algorithm temporarily assigns secondary users as follows: 
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Table  7.1. Iterative greedy relay assignment for each EA individual 

Initialization: 

1.            

2.           

Step 1: 

3. for        , 

4.                    |    |
 
  

5. end for 

Step 2: 

1. for         

2.  
 

 
    {

  
   

|    |
  

  
   

|    |
    

  
   

|    |
    

 
}      (power of the  th relay of the  th 

individual) 

3. end for, 

4. for         

5.    {          } 

6. if      then, 

7.      , 

8. while      , 

9. if {constraint C2 is not satisfied with   } then, 

10.  ̅    find the relay that causes the highest interference, 

11.             { }̅, 

12. else 

13.      , 

14.        calculate capacity from (7.1) using   , 

15. end if  

16. end while  

17. end if 

18. end for 
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                   |    |
 
|    |

 
 (7.6) 

where   is an  -dimensional vector that stores this temporary assignment. The variable 

     is not dependent on  ; thus we can rewrite (7.6) as: 

                   |    |
 
 (7.7) 

At the end of Step 1, every relay is assigned to one secondary user. However, the relay 

powers, along with the temporarily relay assignment variables from (7.6), still need to 

satisfy the interference constraint at the PUs. In Step 2 of the algorithm, based on 

temporary relay assignment in Step 1, the algorithm performs a joint relay assignment 

and power allocation such that the constraints are satisfied at all PUs.  

7.4.2.2. Step 2: Final Relay Assignment with Interference Constraint 

In the second step, the algorithm performs a final assignment to ensure that the 

interference constraints at the PUs are all satisfied. Note that the relays’ power levels 

randomly generated by the EA (Point “B” in Figure  7.2) can violate the constraint of the 

limited interference to the PUs, which is to be taken care of by Step 2 of the iterative 

greedy algorithm.  

At the beginning of the second step, the algorithm repairs the power of any relay 

that violates the interference constraint. For this purpose, first the algorithm examines 

whether the transmission power of each relay   violates any interference constraint. We 

denote by   
 
 the power of the  th relay in the  th individual of the population. If   

 
 violates 

any of the interference constraint, then the algorithm performs the following adjustment:  

  
 
    {

  
   

|    |
  

  
   

|    |
    

  
   

|    |
    

 
}     

(7.7) 

The algorithm then continues to iterate over all of the secondary users to complete the 

final assignment of the relays. During every iteration over secondary users, the algorithm 
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collects the set of relays that has been temporarily assigned to the  th secondary user 

during Step 1 in the variable   . Then it checks whether the relays in the set    satisfy 

the interference constraint. If the relays set    violate the interference constraint at any 

PU, the algorithm greedily removes the relay from the set   that causes the maximum 

interference to the PUs. This removal process continues until    satisfies the 

interference constraint. The whole algorithm in Step 2 then continues to run until relays 

are assigned to all secondary users.  

7.4.3. More Discussion on the Hybrid Solver 

The cognitive radio discussed in the problem of this chapter operates in the 

underlay mode. According to [25], two shared-use models are introduced for Dynamic 

Spectrum Access: the spectrum overlay mode and the spectrum underlay mode. In 

spectrum overlay, first the secondary users sense the spectrum to find a spectrum hole 

(vacant frequency band). The secondary users transmit in these vacant frequency 

bands. Nonetheless, the secondary users should be aware that once PUs start to 

transmit over these bands, they have to stop utilizing them. In the spectrum underlay 

technique, the secondary users can transmit over the frequency band utilized by the PUs 

as long as they do not cause unacceptable interference to the PUs. One difference 

between these two schemes is that in the overlay mode, either PUs or secondary users 

are allowed to transmit over the spectrum, and when PUs are utilizing the bend, 

secondary users have to cease transmitting. However, it is possible that both PUs and 

secondary users transmit simultaneously over the same spectrum in the underlay mode 

as long as the interference threshold is not violated. Therefore, by utilizing the spectrum 

underlay mode in our problem, it is plausible to assume     
      

   ; that is, the 

interference does not dependent on the secondary users’ operation band.  

As mentioned before, the Iterative Greedy Algorithm is heuristic in nature. Thus it 

has the issue of efficiency-complexity trade-off. In other words, the algorithm can be 

designed to allocate power to the relays more efficiently, but this effectiveness comes 

with a price of higher complexity. For instance, instead of removing the relay  ̂ in line 10 

of Table  7.1, the algorithm could have reallocated the power by dividing the profit to cost 

ratio. In this scenario, although the algorithm’s performance increases by better utilizing 
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the relays rather than to simply eliminate it, but we should consider the increase in 

algorithm’s complexity after this modification. This division has to be run for   times in 

line 10 inside the while loop starting at line 8, where      . Then it should run for   

times because of the for loop in line 4, and the whole Iterative Greedy Algorithm is run 

for     times, where   is the population size and   is the maximum number of EA 

generations. Consequently, one modification adds         more calculation to the 

algorithm. However, because the complexity of the problem matters for us, we 

developed the algorithm with the less complex scheme proposed in Table  7.1. 

7.5. Simulation Results  

In this section we present the simulation results of EAs applied to a GCCRN 

MOO problem. In all simulations, the channel gains between source, relays, PUs and 

destinations have been randomly generated from independent complex Gaussian 

distribution. Each result is an average of 250 independent simulation runs. We compare 

the results of Hybrid EDA and ABC with EDA and the standard continuous GA [20]. All 

algorithms have the same settings as given in Table  7.2. 

In Figure  7.3 and Figure  7.4, depicts the trade-off plots of fitness vs. different 

weights to the MOO objective function. These two figures demonstrate the effect of 

green communication for different values of weights w1 and w2. The results show that 

when w2 is greater than w1, there is more reduction in CO2 emissions (percentage 

decrease in power). The reduction in CO2 emissions comes at the cost of throughput 

reduction. The different weights settings are suitable for different geographical conditions 

and regulatory policies. The results also show that hybrid algorithm dominantly returns 

better results than other EAs. Moreover, because     
 is larger than   , we observe as 

        moves towards,      , the fitness value decreases. Furthermore, we observe 

that in both figures, the difference between the EAs’ results for (0,1) are much smaller 

than the EAs’ results for (1,0). This observation shows that the major challenge between 

the EAs’ performances is solving   , which is a much more complicated constraint 

optimization problem. We have also included the 95% confidence interval of the fitness 

results for the system models of these two figures. Table  7.3 and Table  7.4 contain the 

confidence intervals for different weights of Figure  7.3 and Figure  7.4, respectively.  
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Table  7.2. EA Settings for Implementation 

GA EDA ABC Hybrid 

                                          Migration type 

0.99 0.8 0.5 0.1 - 0.5 1 1 Piecewise-Constant 

 

a.  

 

b.  

System Parameters Weights 
Common EA 
parameters 

Number of 
Simulation 

runs         
      

          Generation Pop size 

30 3 300          
0 ~ 
1 

0 ~ 
1 

24 30 250 

 

Figure ‎7.3. Fitness vs. different MOO power settings for K = 30 

a. Fitness vs. different MOO power settings for          
      

                        ,  
b. simulation parameters,   
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Table  7.3. 95% Confidence Interval of Figure 7.3 results  

         EDA GA ABC Hybrid 

       

Fitness 0.4053±0 0.4032±0.0004 0.3988±0.0037 0.399±0.0019 

   0.2079±0 0.1998±0.0017 0.1871±0.0378 0.1234±0.0204 

    
 0.4053±0 0.4032±0.0004 0.3988±0.0037 0.4015±0.0137 

           

Fitness 0.3859±0.0007 0.3803±0.0019 0.3804±0.0045 0.3698±0.0063 

   0.2414±0.0023 0.238±0.0016 0.2294±0.0007 0.1351±0.021 

    
 0.4019±0.001 0.3961±0.0023 0.3972±0.0049 0.4123±0.0325 

           

Fitness 0.3473±0 0.3473±0 0.3385±0.0027 0.3081±0.0128 

   0.3424±0 0.3424±0 0.3364±0.0019 0.2196±0.0331 

    
 0.3494±0 0.3494±0 0.3394±0.0031 0.3549±0.0541 

           

Fitness 0.2987±0.0014 0.3054±0 0.2678±0.0093 0.2278±0.0384 

   0.1959±0.012 0.1398±0 0.1781±0.0126 0.1304±0.0833 

    
 0.4016±0.0148 0.4711±0 0.3576±0.0242 0.3873±0.0707 

           

Fitness 0.2727±0 0.2685±0.0024 0.2444±0.0064 0.1786±0.0316 

   0.1953±0 0.1918±0.0241 0.1855±0.0035 0.1641±0.0653 

    
 0.4534±0 0.4474±0.0628 0.3817±0.0156 0.4868±0.0276 

           

Fitness 0.1955±0 0.1905±0.0015 0.1825±0.0046 0.1085±0.0538 

   0.1689±0 0.1543±0.0045 0.1544±0.0133 0.1264±0.0784 

    
 0.4346±0 0.5162±0.0251 0.4352±0.0932 0.5326±0.0339 

       

Fitness 0.1144±0.001 0.1145±0.0009 0.1143±0.0041 0.0251±0.0311 

   0.1144±0.001 0.1145±0.0009 0.1143±0.0041 0.0803±0.0738 

    
 0.565±0.0057 0.5608±0.0102 0.5526±0.0415 0.5195±0.0337 
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a. 

 

b.  

System Parameters Weights 
Common EA 
parameters 

Number of 
Simulation 

runs         
      

          Generation Pop size 

40 3 50          
0 ~ 
1 

0 ~ 
1 

24 30 500 

 

Figure ‎7.4. Fitness vs. different MOO power settings for K = 40 

a. Fitness vs. different MOO power settings for          
      

                         
b. simulation parameters, 
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Table  7.4. 95% Confidence Interval of Figure 7.4 results 

         EDA   GA   ABC Hybrid 

       

Fitness 0.4254±0 0.4254±0 0.4225±0.0021 0.4208±0.0019 

   0.1939±0 0.1939±0 0.198±0.0026 0.1783±0.0088 

    
 0.4254±0 0.4254±0 0.4225±0.0021 0.4247±0.0199 

           

Fitness 0.4254±0 0.4254±0 0.4225±0.0021 0.4208±0.0019 

   0.1939±0 0.1939±0 0.198±0.0026 0.1783±0.0088 

    
 0.4254±0 0.4254±0 0.4225±0.0021 0.4247±0.0199 

           

Fitness 0.3344±0 0.3243±0.0022 0.331±0.0011 0.3038±0.0099 

   0.2278±0 0.2112±0.0035 0.2318±0.0017 0.1436±0.0265 

    
 0.3801±0 0.3727±0.0016 0.3735±0.002 0.3761±0.025 

           

Fitness 0.3168±0 0.3069±0.0021 0.2961±0.0063 0.271±0.016 

   0.1611±0 0.2041±0.0092 0.1888±0.0108 0.0716±0.0962 

    
 0.4725±0 0.4097±0.0134 0.4035±0.0147 0.4844±0.0688 

           

Fitness 0.2342±0 0.2298±0.0009 0.2342±0 0.1842±0.0196 

   0.1095±0 0.1361±0.0057 0.1095±0 0.167±0.0529 

    
 0.5252±0 0.4484±0.0163 0.5252±0 0.4906±0.0196 

           

Fitness 0.1678±0.004 0.1784±0.0026 0.1863±0.001 0.0756±0.0441 

   0.1282±0.0052 0.1373±0.0047 0.1536±0.0021 0.0476±0.0898 

    
 0.5241±0.0063 0.5489±0.0167 0.4804±0.0284 0.5097±0.0219 

       

Fitness 0.1364±0.0032 0.1414±0.0021 0.1504±0.0019 0.0688±0.029 

   0.1364±0.0032 0.1414±0.0021 0.1504±0.0019 0.157±0.0259 

    
 0.5166±0.0164 0.6353±0.0088 0.555±0.0517 0.494±0.0389 

Figure  7.5, Figure  7.6 and Figure  7.7 depict the performance result of fitness vs. 

number of secondary users for        
      

                                    ,  

                      , and                       , respectively. The hybrid algorithm 

returns lower fitness value compared with other EAs. We observe that there is an 

increase in the fitness value as the number of secondary users grows, because 

increasing the number of users increases the sum capacity 
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Figure  7.8, Figure  7.9 and Figure  7.10 illustrate the performance of fitness vs. the 

number of relays for        
      

            (                      )  , 

                         and                        , respectively. An increase in the 

number of relays results in the fitness growth. We observe that the first two figures have 

much larger   
    that have not yet affected by the sum capacity; whereas the non-

smooth fitness plot in the last figure implies that the fitness result has been affected by 

the interference constraint that in fact has a lower   
   . 

Figure  7.11 and Figure  7.12 demonstrate the performance results of fitness vs. 

number of Primary Users for        
      

            (                       )  

and                          . We observe that these two figures have constant 

fitness values. The reason is that   
    is large enough (103) that even increasing the 

number of PUs does not cause the interference constraint to affect   .  

Figure  7.13 and Figure  7.14 depicts the EAs’ evolution as the algorithm iteration 

increases for          
      

                                         and 

                         , and it contains the weighted single objective function  , 

along with the two objective functions    and     
. We observe that the hybrid algorithm 

dominantly outperforms other EAs, and as the number of iterations grows, the hybrid 

results improve even further. The reason is that other EAs cannot effectively exploit or 

explore their population to advance like the hybrid algorithm. This behavior shows how 

effectively the hybrid algorithm benefits from its both advantages, exploration and 

exploitation, to keep improving, while other EAs inconsiderably tend to progress any 

further. 

Finally, Figure  7.15 contains 3D plots of EAs’ advancement as the number of 

relays increases for        
      

                                       . We 

observe EDA starts with higher fitness value at the beginning. The reason is that this 

algorithm does not improve its results only after its second iteration. We further observe 

that the hybrid algorithm results decreases rapidly as the number of iterations grows, 

which was also observed in Figure  7.13 and Figure  7.14.   
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a.  

 

b.  

System Parameters Weights 
Common EA 
parameters Number of 

Simulation 
runs         

      
          Generation 

Pop 
size 

10~60 9 30         0.5 0.5 24 24 250 
 

Figure ‎7.5. Fitness vs. number of users for L = 30 

a. Fitness vs. number of users for        
      

                                   ,  
b. simulation parameters,  
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a. 

 

b.  

System Parameters Weights 
Common EA 
parameters 

Number of 
Simulation 

runs         
      

          Generation Pop size 

10~60 2 20        0.5 0.5 24 24 250 
 

Figure ‎7.6. Fitness vs. number of users for L = 20 

a. Fitness vs. number of users for        
      

                                  ,  
b. simulation parameters,  
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a. 

 

b.  

System Parameters Weights 
Common EA 
parameters 

Number of 
Simulation 

runs         
      

          Generation Pop size 

10~60 2 30        0.5 0.5 24 30 500 
 

Figure ‎7.7. Fitness vs. number of users for L = 30 

a. Fitness vs. number of users for        
      

                                  ,  
b. simulation parameters,  
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a. 

 

b.  

System Parameters Weights 
Common EA 
parameters Number of 

Simulation 
runs         

      
          Generation 

Pop 
size 

30 5 10~60          0.5 0.5 24 24 500 
 

Figure ‎7.8. Fitness vs. number of relays for K = 30 

a. Fitness vs. number of relays for        
      

            (                      ),  

b. simulation parameters, 
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a.  

 

b.  

System Parameters Weights 
Common EA 
parameters Number of 

Simulation 
runs         

      
          Generation 

Pop 
size 

10 2 10~60          0.5 0.5 24 24 400 
 

Figure ‎7.9. Fitness vs. number of relays for K = 10 

a. Fitness vs. number of relays for        
      

                    
                ,  
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a. 

 

b.  

System Parameters Weights 
Common EA 
parameters Number of 

Simulation 
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size 

10 2 10~60         0.5 0.5 24 24 250 
 

Figure ‎7.10. Fitness vs. number of relays for K = 10 

a. Fitness vs. number of relays for        
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b. simulation parameters, 
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a. 

 

b. b.   
System Parameters 
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Figure ‎7.11. Fitness vs. number of primary users for K = 50 

a. Fitness vs. number of primary users for        
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b. simulation parameters, 
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a. 

 

b.  

System Parameters Weights 
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Figure ‎7.12. Fitness vs. number of primary users for K = 60 

a. Fitness vs. number of primary users for        
      

                                     ,  
b. simulation parameters, 
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a. 

 

b.  

System Parameters Weights 
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 Figure ‎7.13: Fitness vs. algorithms’ iterations for K = 10 

a. Fitness vs. EAs’ iteration for          
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b. simulation parameters, 
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a. 

 

b.  

System Parameters Weights 
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Figure ‎7.14. Fitness vs. algorithms’ iterations for K = 60 

a. Fitness vs. EAs’ iteration for          
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b. simulation parameters, 
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a. 
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d. 
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Figure ‎7.15. Fitness vs. number of relays and algorithms’ iterations for K = 60 

a. EDA, b. GA, c. ABC, d. Hybrid algorithm,  

e. system parameters for        
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7.6. Conclusion 

In this chapter, we presented a multi-objective framework for green resource 

allocation in the multiuser cognitive radio network. We present the constrained 

optimization formulation of the relay assisted cognitive radio system. Our formulation 

includes effect transmission power on CO2 emission, which is a multi-objective 

optimization in nature. We approached this problem by applying the weighted sum 

method, which results in a non-convex mixed integer non-linear programming problem. 

We proposed a hybrid continuous evolutionary scheme comprising an EA and a greedy 

algorithm to solve this optimization problem. We apply four different EAs (GA, EDA, ABC 

and hybrid), and the results demonstrate that in all combinations of system parameters 

and weight values the hybrid algorithm outperforms other EAs. The simple underlying 

concept and ease of implementation of our proposed algorithm make it a suitable 

candidate for green resource allocation.  

This chapter presented a simple optimization problem that takes into account the 

effects of communication resource allocation on the environment. We believe that the 

more system optimization models that take into account the system’s effect on the 

environment will be developed and enhanced. The results of this chapter indicate that 

our evolutionary algorithms proposed may be useful for various continuous multi-

objective optimization problems for green communication. 

The future extensions of this research include considering different constraints on 

the PUs for different frequency bands (different     
   ), multiple source, other signal 

transmitting scenarios, relaying strategies (compress and forward), and other more 

complex or realistic system models. 
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Appendix. 
  

In this section, we show that the following function is an increasing function of    . 

         [  
  

 

 
 
∑ |     |

  
   ∑ (|     |  )

  
     

  ∑ (  |     |√  )
  

   

] 

A.1 

The       function is a monotonically increasing function; so proving that its 

argument is increasing with    is enough for the objective function to be monotonically 

increasing with   . Knowing that 
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is increasing with   : 
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A.3 

The left summation is non-negative, and so is the summation in the denominator. 

Therefore, this expression is increasing with   , and as mentioned earlier, the       

function is monotonically increasing. As a result, the function       in (A.1) is an 

increasing function.   
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