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ABSTRACT. We have introduced, in this paper, the generalized classes of starlike

and convex functions of order by using the fractional calculus. We then

proved some subordination theorems, argument theorems, and various results of

modified Hadamard product for functions belonging to these classes. We have also

established some properties about the generalized Libera operator defined on these

classes of functions.
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i. INTRODUCTION.

Let A denote the class of functions of the form

f(z) z + 7 a znn
n=2

(i.i)

which are analytic in the unit disk U {z:Iz < I}. Furthermore, let S denote

the subclass of A consisting of all univalent functions. A function f(z) of

S is said to be starlike of order if

Re(Zf’(z)
f(z)

> a (1.2)

for some (0 = a < i) and for all z U We use S* () to denote the class
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of all starlike functions of order Similarly, a function f (z) belonging

to S is said to be convex of order if we replace (1.2) by

zf" (z)
Re(l + > (1.3)

f’ (z)

We use K() to denote the class of all convex functions of order Note

that f(z) K() if and only if zf’ (z) S*(d) and that S*() S*(0) S*,

K() K(0) K and K() S*() (0 _<- < i). The class S*() and K()

were introduced by Robertson [I], and studied subsequently by Schlld [2],

MacGregor [3], Pinchuk [4], and others.

Many essentially equivalent definitions of the fractional calculus (that is,

fractional derivatives and fractional integrals) have been given in the literature

(cf., e.g., [5, Chapter 13], [6], [7], [8], [9], [i0, p. 28 at seq.], and [ii]).

For our discussion, it is more convenient to use the following definitions which

were employed recently by Owa [12 and by Srivastava and Owa [13].

DEFINITION 1.1. The fractional integral of order % is defined, for a

functlon f (z) by
z- 1 f()

D f(z)
z J (z-.) l-i d (1.4)

0

where I > 0 f(z) Is an analytlc function in a simply-connected region of the
l-i

Z-plane containing the origin, and the multiplicity of (z-) is removed by

requiring log(Z-) to be real when z- > 0

DEFINITION 1.2. The fractional derivative of order l is defined, for a

function f (z) by
z

1 d l f()
D f(z)
z F(1-1) dz

0
j (z-)

(1.5)

where 0 _<- I < 1 f(z) is an analytic function in a simply-connected region of

the z-plane, and the multiplicity of (z-) is removed as in Definition i. 1

above.

DEFINITION 1.3. Under the hypotheses of Definition 1.2 the fractional

derivative of order n+% is defined by

d
n lDn+f(z) D f(z)

z dz n z
(1.6)

where 0 _<- < I n N
O

{0,1,2

Let S*(,) be the class of all functions f(z) in S satlsfying the

inequality

Re(A(l’f) > e
f (z")

fcr i, 0 < i, and for all z U where

(1.7)

I+IDI+A(l,f) F(1-l) z f(z) (1.8)
z

Also let K(C,l) be the class of all functlons f(z) in S such that

A(l,f) S*(,l) for < 1 and 0 <- < 1 We note that S*(,0) S*() and
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K(,0) K(). Thus S*(,l) and K(,I) are the generalizations of the

classes S*(e) and K() respectively. The classes S*(,I) and K(,I) were

introduced by Owa [14]. Recently, Owa and Shen [15] proved some coefficient

inequalities for functions belonging to the classes S*(,I) and K(,I)

Let T be the subclass of S conslsting of all functions of the form

f(z) z a z
n

n
n=2

(1.9)

with a

_
0 for all n We introduce the classes of function T* (,l) andn

C (, l) as follows

T*(,I) S*(,l) N T (i.i0)

C(,I) K(,l) q T (I.ii)

The classes T* (e,l) and C(,I) were studied by Owa [14 ], and the special

cases T*(,0) and C(,0) were studied by Silverman [16]. Thus the classes

T*(,l) and C(,I) provide an interesting generalizatlon of the ones considered

by Silverman [16].

In sections 2, 3 and 4, we shall prove several results for functions

belonging to the generalized classes S*(,l) K(,l) T*(,I) and C(,I) We

then introduce the class S*(,l;a,b) of functions in section 5. In the last

section, we shall study a certain Integral operator defined on A.

2. SUBORDINATION THEOREMS.

Let f(z) and g(z) be analytic in the unit disk U Then we say that

f(z) is subordinate to g(z), written f(z) ,< g(z), if there exists a function

w(z) analytic in the unit disk U which satisfies w(0) 0, lw(z) < i, and

f(z) g(w(z)). In particular, if the function g(z) is univalent In the unit

disk U then f(z) .< g(z) if and only if f(0) g(0) and f(U) g(U)

(cf. [17], [18]).

In order to prove our first theorem, we require the following lemma due to

Miller, Mocanu, and Reade [19].

LEMMA 2.1. Let Re(8) > 0, Re(y) >- 0, f(z) A, and g(z) A with

g’ (0) @ 0 and

where

Re {(8-1) zg’ (z)
+ z@"(z) + 1 >-6

g(z) g’ (z) (2.1)

rain(Re(7’) (5
0

(2.2)

and

60
2Re (B) Re (y)

II/l / I-1
If f(z) -< g(z), then

z 1 z 1
i B ty(Z’ f(t) tY-idt) (7-" g (t) -idt)

0 0

(2.4)
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Using Lemma 2. i, we can prove

THEOREM 2.1. Let the function f(z) defined by (i.I) be in the class

S*(,l) (0 <_ < i; < i). Then

z
1 A(l, f) 1

f(t)
dt ,< (2-i) (i + log(l-z))

z
0

(2.5)

where A(l,f) is given by (1.8).

PROOF. Note that the function g (z) defined by

I+ (i-2) z
g(z)

l-z
(z U)

maps the unit disk U onto the half domain such that Re (w) > This Implies

from the definition of the class S*(,I) that

A(l,f)
g(z)

l+(l-2)z
f(z) l-z

(2.6)

Furthermore, the function g(z) is analytic wlth g’ (0) 2 (l-s) M 0 and

I + Re (zg"(z)
g’ (z))> 0 (z U) (2.7)

Taking l, y 1 in Lemma 2.1, we see that the function g(z) satls fies

the hypotheses of Lemma 2.1. Thus we have

z z
1 I !(l’f))dt-< 1 I l+(l-2)t

f (t) l-t
dt (2.8)

0 0

which implies (2.5).

COROLLARY 2.1. Let the function f(z) defined by (i.i) be in the class

S*(0,I) ( < i). Then

z
1 I A(,f)

dt 1
1

log(l-z) (2 9)Jf (t)
0

COROLLARY 2.2. Let the function f(z) defined Dy (I.ii be in the class

S*() (0 <- < I). Then

z
1 tf’ (t) 1

j (--f(----) dt - (2-i)(i + --z log(l-z)) (2.10)

0

Similarly, we have

THEOREM 2.2. Let the function f(z) defined by (i.I) be in the class

K(,I) (0 _<- < i; I < i). Then

z
1 I A(A(I,f))

dt -< (2-i) (i +
1

log(l-z)(%(l,f)
0

(2.11)

where A(l,f) is given by (1.8).

PROOF. Note that f(z) K(,I) f and only if A(%,f) S*(,l).

Consequently, on replacing f(z) by A(l,f) in Theorem 2.1, we have Theorem 2.2.

COROLLARY 2.3. Let the function f(z) defined by (I.i) be in the class
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K(O,I) (I < i) Then

1 ? A(A(I, f) i

0

(2.12)

COROLLARY 2.4. Let the function f(z) defined by (i.i) be in the class

K() (0 & e < I). Then

Z

1 I tf" (t) 1(I + -f, (t)) at - (2-i) (I + -z log(l-z))

0

(2.13)

3. ARGUMENT THEOREMS.

In this section, we derive the argument theorems for functions belonging to

the classes S*(,I) and K(e,l).

THEOREM 3. i. Let the function f (z) deflned by (i. i) be in the class

S*(,l) (0 _<- < i; < i). Then

A
0
(I, f)

arg ("f(z) <- sin-l( 2(i-) Izl
+(-2) Izl

(z (U) (3.1)

i+I l+l
where A0(l,f) z D f(z)

Z

PROOF. In view of (2.6), we can write

A(I, f) i+ (I-2) w (z)
f(z) l-w (z) (3.2)

where w(z) is an analytic function in the unit disk U and satisfies w(O) O

and lw(z) < 1 We note that the linear transformation

1 + Bw(z)
p(z)

1 + Aw(z)
(3.3)

maps the disk wl & z onto the disk.

(3.4)

It follows from (3.4) that

fz, l-’zl
(3.5)

This completes the proof of Theorem 3.1.

COROLLARY 3.1. Let the function f(z) defined by (i.i) be in the class

S*(0,I) ( < i). Then

arg f(z) ’=< sin (z U) (3.6)

where AO(l,f) zl/IDl+tf (Z)

CO.’.OLLARY 3.2 Let the function f(z) defined by (i i) be in the class

S*(e,l) (0 =< c < i; I < i). Then
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l-(l-2e) Izl IA(l,f) l+(l-2e)Izl
l+Izl llf(z) l-lz (z U)

where A(A,f) is given by (1.8).

PROOF. The proof is clear from (3.5).

Moreover it is easy to show that

THEOREM 3.2. Let the function f(z) defined by (I.i) be in the class

K(,A) (0 < i; A < i). Then

(3.7)

A
0
(A

0
(A, f)

arg
A0(A f)

<- sin
-I 2(i-) Izl (z u)

+(-) Izl 2

I+ADI+A fw,efe A0(A,f) z (z)
z

COROLLARY 3.3. Let the function f(z) defined by (i.i) be in the class

K(0,A) (A < i). Then

(3.8)

A0 (A0 (A,f))
1 2!zarg A0(A f)

Z sin-
l+Izl 2

(z u) (3.9)

where A0(A,f zl+ADl+Af(z)
z

COROLLARY 3.4. Let the function f(z) defined by (i.I) be in the class

K(,A) (0 _-< < i; A < i). Then

l-(l-2e) Izl A(A(I,f) ]& l+(l-2e)Izl (z U)
l+Iz <--I A(A-f) l-lz

(3. i0)

where A(A,f) is given by (1.8)

4. MODIFIED HADAMARD PRODUCT.

Let f.(z) (j 1,2) be defined by

n
f.(z) z 7. a. z

n=2 3’n
(a. 0)
3,n

(4.1)

We define the modified Hadamard product fl*f2 (z) of fl(z) and f2 (z) by

n
fl*f2 (z) z 7. a

I
z

n=2
,na2 ,n

(4.2)

We recall here the following two lemmas due to Owa [14] before state and

prove our results of this section.

LEMMA 4.1. Let the function f(z) be defined by (1.9). Then f(z) is in

the class T*(,I) (0 <= < I; A < i) if and only if

F (n+l) F (l-A)
l"(n-A) a _<- 1 (4.3)

n=2
n

for 0 <= < i and A < 1 The result (4.3) is sharp.

LEMMA 4.2. Let the function f(z) be defined by (1.9). Then f(z) is in

the class C(,A) (0 -< < I; A < I) if and only if

E F(n+I) F(1-A) {F(n+I) F(1-A)
F(n-l) F(n-l) } an -< 1 (4.4)

n=2

for 0 < 1 and A < 1 The result (4.4) is sharp.
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With the aid of Lemma 4. i, we can prove

THEOREM 4.1 Let the functions f. (z) (j 1,2) defined by (4.1) be in the

class T*(Q,A) (0 _<- < i; A < i). Then the modified Hadamard product fl*f2(z)
is in the class T*(Z(Q,A) ,l) where

2
2(l-Q) (l-l)

1
2

(Q,A) C2-+l)
2 2

(1-) (1-1)
1

2
(2-e+l)

The result is sharp.

PROOF. We use a technique due to Schild and Silverman [20]. It is

sufficient to prove that

7 F (n+l) P (l-A) 8} al,na2, n -<- 1 8(n-A)
n=2

(4.5)

(4.6)

for 8 <- 8(Q,l). By using the Cauchy-Schwarz inequality, we know from (4.3) that

(n+l) F (l-) /a
I

a
2

<_- I-Q (4.7)7.
F(n-l)

Q
,n ,n

n= 2

Therefore we need find the largest 8 such that

7. F(n+I) F(I-A) 8} al, /(1-8)F (n-l) na2,n
n=2

<= 7.
F (n+l) F (1-7,) Q} al,na2,nF (n-l) / (l-Q)

n=2

(4.8)

or

(i-)
F(n+l) F(1-1) }

F(n-l)
(n >- i)6al’na2’n (l-Q) {F(n+I) F(I-I) }F (n-A)

(4.9)

In view of (4.7), we observe that it suffices to find the largest 8 such that

I-Q
(1-8) F(n+l)? (l-A) Q}

F (n-k)
F (n+l) F (1-1)

(l-Q)
F(n+l)F(1-1) 8r (n-l) r Cn-l)

(4.10)

we note that (4.10) gives

I-Q )21 H(n)(H(n)_
i- 2

(n i) (4.11)

where

F (n+l) F (i-I)
H (n) F (n-l)

(4.12)

Since, for fxed a
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1 H (n)
l-e 2

H (n)-

I-C }2i-
H (n)ia

is an increasing function of n we have

i- 2 i
1 H(2) (H--)_--)

I-C )21
H(2)-C

1

2
2 (l-s) (i-I)

2
2 -o+al

2 2
(l-a) (i-I)

2
(2-0+(]1)

(4.13)

Finally, by taking the functions f. (z) (j 1,2) defined by

(l-s) (1-1) 2
f.(z) z z2-a+C (4.14)

we can see that the result is sharp.

COROLLARY 4.1. Let the functions f. (z) (j 1,2) defined by (4.1) be In

the class T*(0,1) (I < i). Then the modified Hadamard product fl*f2(z) is in

the class T*(8(I) ,I) where

8(I) 2(1+I)
(4.15)

3+21-I2

The result is sharp.

By using the same technique and Lemma 4.2, we have

THEOREM4.2. Let the functions f. (z) (j 1,2) defined by (4.1) be in the

*f2 (z)class C(d .) (0 < i; I < I) Then the modified Hadamard product fl
is in the class C(y(e,1) ,k) where

2 2
(l-a) (1-I)

1
2

2-e+I
(e,1)

2 3
i

(l-a) (1-I)
2

2 (2-e+el)

(4.16)

The result is sharp for the functions f.(z) (j 1,2) defined by

2
(l-e) (1-I) 2

f (z) z- z (4 17)2 (2-e+el)

COROLLARY 4.2. Let the functions f. (z) (j 1,2) defined by (4.1) be in

the class C(0,I) (I < i). Then the modified Hadamard product fl*f2(z) is in

the class C(y(1) ,i) where

2 (3+21-I
2

y(1) (4.18)
7+31-312+I 3

The result is sharp.

5. THE CLASS S* (e,l;a,b)

Let the function f(z) defined by (1.1) be in the class A and let

a b
P(f(z);e,l;a,b) (A(l,f____)_ s) (A(A(I,f)

f(z) A(l,f) (5.1)
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where a and b are real numbers. Then we say that f(z) is in the class

S*(,l;a,b) if f(z) satisfies

Re{P(f(z) ;,l;a,b) > 0 (5.2)

for 0 -< e < i I < i and z 6 U

We observe that S*(e,l;l,0) S*(,l) and S*(,I;0,1) K(e,l)

THEOREM 5.1. Let 0 <- ( < i, I < I, and 0 _<- t <- 1 Then

S*(e,l;a,b) S*(,I;I,0)

c S*(,l; (a-l)t+l,bt) (5.3)

PROOF. Let the function f(z) defined by (1.1) be in the class

S*(,l;a,b) D S*(e,l;l,0) and let

a bA (l,f) A(A(I,f)
v(z)

f(z)
)

A(,f)
) (5.4)

Then we have Re(V(z)) 0 for z E U Further, setting

A(l,f)
u(z) (5.5)

f(z)

we have Re(U(z)) > 0 for z E U It follows from (5.4) and (5.5) that

(A(l,f) e)
f(z)

(a-l) t+l btA (A (l,f))

l-t t
(U(z)) (V(z)) (5.6)

Define the function F(z) by

l-t t
F(z) (U(z)) (V(z)) (5.7)

(a+b-l) t+l
Then we have F(0) (l-e) > 0 and

larg(F(z)) & (l-t)larg(U(z)) + tlarg(V(z)) -< (5.8)

whlch shows that F (z) maps the unit disk U onto a domain whlch is contained in

the right half-plane. Hence we complete the proof of Theorem 5.1.

COROLLARY 5.1. Let 0 < i, I < 1 and 0 -< t -< i. Then

S*(e,l;a,b) N S*(,l;0,1)

c S*(,I; at, (b-l)t+l). (5.9)

6. GENERALIZED LIBERA OPERATOR J (f).
c

For a functlon f(z) belonging to the class A we define the operator

J (f) by
c

Jc (f) c+ic Iz tc-lf(t)dt
z 0

(c >= 0). (6.1)

This operator J (f) when c is a natural number was studied by Bernardi [21].
c

In particular, the operator Jl(f) was studied by Libera [22], Lvingston [23],

and Mocanu, Reade and Ripeanu [24]. It follows from (6.1) that
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c+l fz tn+c_lJ (f) = J
7. a

c
0 n=l

n
dt (a

I
i)

7. (c---l) a z
n

n+c n
n=l

(6.2)

In order to prove our theorem, we recall here the following theorem due to

Jack [25].

LEMMA 6.1. Let w(z) be regular in the unit disk U with w(0) 0

Then, if lw(z)l attains its maximum value on the clrcle Izl r (0 _<- r < i) at

a point z
0

we can write

z0w’(z0) mw(z0)
where m is real and m->_ 1

Furthermore, we need the following lamina by Pascu [26].

LEMMA 6.2. If f(z) S*, then J (f) ( S*.
c

With the aid of Laminas 6.1 and 6.2, we prove

THEOREM 6.1. Let the function f(z) defined by (i.i) be in the class

S*(,I) S* (0 -< < I; i < i). Then the functional J (f) is in the class
c

s* (,l).

PROOF. Define the function w (z) by

(6.3)

A(l,J (f))
c

J (f) l-w(z)
c

i+(i-2) w (z)
(w(z) i) (6.4)

Then w(z) is a regular function in the unit disk U with w(0) 0.

Differentiating both sides of (6.4), we obtain

Note that

z(A(l,J (f))) z(J (f)) A(l,J (f))
c c c 2 (l-s) zw’ (z)

j (f) j (f) j (f) 2
c c c (l-w (z))

z(J (f)) z( 7 (c+l) a zn) (a i)
c n+c n n

n=l

(6.5)

7. n (c+l) n
a z

n+c n
n=l

7. (c+l)
c(c+l)

a z
n

n+c n
n=l

(c+l) f(z) -c J (f
c

and z(A(l,J (f))) z[F(l-l) zl+iDl+IJ (f) ]’
c z c

ItIDl+l (c+l)z[F(1-1) z 7. a zn) ]’
z n+c n

n=l

z( 7.
(c+l)F(n+l)F(l-l)_ a zn)

(n+c) F (n-l) n
n=l

(6.6)
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7. n (c+l) F (n+l) F (i-I) n

n=l
(n+c) F (n-l) anZ

7. {(c+l) c(c+l).} F(n+I)F(I A)
a z

n+c F (n-l) n
n=l

F (n+l) F (l-l) n
(c+l) 7. F (n-A) anZ c Z

n=l n=l

(c+l) F (n+l) F
(n+c) F (n-l)

or

Since

(c+l) A(A,f) -cA(A,J (f))
c

Applying (6.6) and (6.7) to (6.5) we have

A(A,J (f))A(A, f) ,f(z) c
(c+l) (c+l)

J (f) J (f) J (f)
c c c

2 (l-s) zw’ (z)
2

(l-w (z))

A(I f)
A(A J (f)) J (f)

c 2 (l-o) zw’ (z) c
f(z) J (f) (c+l) f(z)

c (l-w (z)) 2

z(J (f))
(c+l) f (z) c
J (f) J (f)
c c

+ c

equatlon (6.9) becomes

A(I, f) i+ (i-20) w (z)
f (Z) l-w (Z)

2 (l-S) zw’ (z) 1
2 z(J (f))

l-w (z)) c
J (f)
c

+ c

Assume that there exists a polnt z
0

U such that

n%ax

Then, Lemma 6.1. implies that

(w(z0) i)

ZoW’(ZO) m w(zO)

where m is real and m-> i Applying Lemma 6.1

i@
0

w(zO) e we know that

Re( f(z Re
i+ (i-2) w (Zo)
l-w (zO)

to w(z) and putting

2 (l-S) mw (Zo) 1+Re{
(l-w (zO)

2 Zo (Jc (f))

J (f)
c

+ c

(l-z) m ie
1-cos @ Re

0 Zo (Jd (f))

J (f)
c

/ c

We note that Lemma 6.2 gives, for f(z) S*

n
a z
n

(6.7)

(6.8)

(6.9)

(6 .i0)

(6.11)

(6.12)
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1
Re {z (J (f))% -}

0 c
+ c

J (f)
c

z
0 (Jc (f))

Re( +c
J (f)
c

z0(J (f))’ 2 z (J (f))’ 2
c

+ c} + {I 0 c )}
J (f) m J (f)
c c

> 0 (6.14)

Consequently, we conclude that

A(I, f)
Re (f-) _-< C (6.15)

which contradicts the condition f(z) S*(,I)

Thus we have w(z) < 1 for all z U This proves from (6.4) that

A(I,J (f))
Re

c
Re (l+(l-2)w(z) >

J (f) l-w (z)
c

or, that J (f) S*(a,l). Hence we have completed the proof of the theorem.c

COROLLARY 6.1. Let the function f (z) defined by (1.1) be in the class

S*(a) (0 _<- a < i). Then the operator J (f) is also in the class S*(e).
c

PROOF. Taking I 0 in Theorem 6.1, we have

f(z) S*(a) Q S* J (f) S*(a)
c

Noting S*() c S* for 0 <- < 1 we have the corollary.

Finally, we state and prove

THEOREM 6.2. Let the function f (z) defined by (i. i) be in the class

K(,I) with (0 _-< < I) and l(l < i) such that S*(,l) c S* Then the

operator J (f) Is also in the class K(,l)

PROOF. In view of Theorem 8, we observe that J (f) S*(,l) for
c

f(z) S*(a,l) c S* From the definition of the class K(,I), we obtain that

f(z) K(a,l) A(l,f) S*(a,l)

J (ACl,f)) S*Ce,l)
c

A(I,J (f)) S*(e,l)
c

J (f) K(e,l)

Thls completes the proof of the theorem.

COROLLARY 6.2. Let the definition f (z) defined by (i.I) be in the class

K() (0 <= < i). Then the operator J (f) is also in the class K(e).
c

PROOF. Letting i 0 in Theorem 6.2, we can easily obtain the result.
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