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The process of collision between particles is a subject of interest in many fields of physics,
astronomy, polymer physics, atmospheric physics, and colloid chemistry. If two types of
particles are allowed to participate in the cluster coalescence, then the time evolution of
the cluster distribution has been described by an infinite system of ordinary differential
equations. In this paper, we describe the model with a second-order two-dimensional partial
differential equation, as a continuum model.
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1. Introduction. The Becker-Döring equations model the behavior of clusters of par-

ticles when the coagulation and fragmentation done by only one particle may leave or

join a cluster at a time [2]. The time evolution of the cluster distribution cr (t) has been

described by the infinite system of ordinary differential equations (ODEs) [1]

ċr = 1
2

r−1∑
k=1

Jr−k,k−
∞∑
k=1

Jr,k, r = 1,2, . . . , (1.1)

where Jr,k = ar,kcr ck−br,kcr+k = Jk,r , and for r = 1, the first sum is omitted. Jr,k is the

net rate of converting the clusters with r -particles (r -clusters) to (r +k)-clusters, with

nonnegative symmetric constants ar,k and br,k which determine the coagulation and

fragmentation rates, respectively. If two different types of particles participated in the

cluster coalescence, then the two-component Becker-Döring system is defined based on

the following hypotheses:

(1) the number of particles of each type over all clusters is constant;

(2) the clusters are distributed uniformly in space;

(3) the cluster size distribution changes when clusters coagulate or fragment by

gaining or losing only monomers of each type.

2. Two-component Becker-Döring system. The concentration of clusters contain-

ing r type-I particles and s type-II particles at time t is denoted by cr,s(t). There are two

net rates for converting the clusters. Hence, c1,0(t) and c0,1(t) are the concentrations of

type-I and type-II monomers, respectively. Jr,s is the rate at which (r ,s)-clusters change

to (r+1,s)-clusters, and J′r ,s is the rate at which (r ,s)-clusters alter to (r ,s+1)-clusters.
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They are defined by

Jr,s = ar,scr ,sc1,0−br+1,scr+1,s ,

J′r ,s = a′r ,scr ,sc0,1−b′r ,s+1cr,s+1,
(2.1)

where ar,s , br,s are the kinetic coefficients (coagulation and fragmentation rates) for the

particle of type I anda′r ,s , b′r ,s are the coagulation and fragmentation rates of particles of

type II. All coefficients are nonnegative constants with b1,0 = 0, b′0,1 = 0. The equations

can be formulated as follows:

ċr ,s = Jr−1,s+J′r ,s−1−Jr,s−J′r ,s , r ≥ 1, s ≥ 1,

ċr ,0 = Jr−1,0−Jr,0−J′r ,0, r ≥ 2,

ċ0,s = J′0,s−1−J0,s−J′0,s , s ≥ 2,

ċ1,0 =−J1,0−J′1,0−
∑

(r ,s)∈If
Jr ,s ,

ċ0,1 =−J0,1−J′0,1−
∑

(r ,s)∈If
J′r ,s ,

(2.2)

where

If =
{
(r ,s), r = 0,1,2, . . . , s = 0,1,2, . . .

}−{(0,0)}. (2.3)

The densities of the system are defined by

ρI =
∑

(r ,s)∈If
rcr ,s , ρII =

∑
(r ,s)∈If

scr ,s . (2.4)

The two-component Becker-Döring system is formulated as an infinite system of ODEs

and so for numerical approximation, the system has to be truncated [4, 5].

For the truncated model, we set Jr,s = J′r ,s = 0 for r ≥ nr and s ≥ ns , where nr and

ns are the maximum numbers of particles of type I and type II that can be collected in

the clusters. We can use the truncated formulation of the system and obtain

ns∑
s=0

nr∑
r=0

r ċr ,s(t)= J0,1+2J1,0+J′1,0+
ns−1∑
s=0

nr−1∑
r=0

Jr,s =−ċ1,0(t), r +s ≥ 2. (2.5)

Hence,
∑
s
∑
r rcr,s(t) has a constant value of time t. The same holds for

∑
s
∑
r scr ,s(t).

On the other hand, the first summation is the number of type-I particles in the overall

clusters which we call density of type-I of particles in the system and is denoted by

ρI; so

ρI =
∑
r ,s
rcr ,s , ρII =

∑
r ,s
scr ,s . (2.6)
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3. PDE formulation. For both types of particles, the fragmentation coefficients are

br,s = ar−1,sQr−1,s

Qr,s
, b′r ,s =

a′r ,s−1Qr,s−1

Qr,s
. (3.1)

In this paper, we have the following kinetic coefficients [4]:

ar,s = a′r ,s = 1,

Qr,s = exp
[
−a(r −1)2/3−b(s−1)2/3

]
.

(3.2)

Now using the definitions of Jr,s and Qr,s , we have

Jr,s
ar,sQr,scr+1

1,0
= cr,s
Qr,scr1,0

− cr+1,s

Qr+1,scr+1
1,0

, (3.3)

and similarly,

J′r ,s
a′r ,sQr,scs+1

0,1
= cr,s
Qr,scs0,1

− cr,s+1

Qr,s+1cs+1
0,1

. (3.4)

Thus, we can approximate Jr,s , J′r ,s as follows:

Jr,s ≈−ar,sQr,scr+1
1,0

∂
∂r

(
cr,s

Qr,scr1,0

)
,

J′r ,s ≈−a′r ,sQr,scs+1
0,1

∂
∂s

(
cr,s

Qr,scs0,1

)
.

(3.5)

In this case, all the parameters of the system are functions of nonnegative continuous

variables r , s. On the other hand, we have

J(r ,s)=−a(r ,s)Q(r ,s)c(1,0)r+1 ∂
∂r

(
c(r ,s)

Q(r ,s)c
(
1,0

)r
)
,

J′(r ,s)=−a′(r ,s)Q(r ,s)c(0,1)s+1 ∂
∂s

(
c(r ,s)

Q(r ,s)c
(
0,1

)s
)
.

(3.6)

The system formulation can be stated as follows (assuming ∆r =∆s = 1):

ċ(r ,s)=− ∂
∂r
J(r ,s)− ∂

∂s
J′(r ,s), r ≥ 1, s ≥ 1,

ċ(r ,0)=− ∂
∂r
J(r ,0)−J′(r ,0), r > 1,

ċ(0,s)=−J(0,s)− ∂
∂s
J′(0,s), s > 1.

(3.7)

3.1. Truncated model. Assume Jr,s = J′r ,s = 0 for r > nr or s > ns , where nr , ns are

the largest numbers of particles of type I and II which can be collected in one cluster.

The truncated model is restricted on the area R = {(r ,s), 0 < r < nr , 0 < s < ns} and

can be formulated as follows:

∂c
∂t
(r ,s,t)=− ∂J

∂r
(r ,s,t)− ∂J

′

∂s
(r ,s,t) (r ,s)∈ R, t > 0. (3.8)
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The boundary conditions are

∂c
∂t
(0,s,t)=−J(0,s,t)− ∂J

′

∂s
(0,s,t), 0< s <ns,

∂c
∂t
(
r ,ns,t

)=− ∂J
∂r
(
r ,ns,t

)−J′(r ,n−s ,t), 0< r <nr ,

∂c
∂t
(
nr ,s,t

)=−J(n−r ,s,t)− ∂J′∂s
(
nr ,s,t

)
, 0< s <ns,

∂c
∂t
(r ,0, t)=− ∂J

∂r
(r ,0, t)−J′(r ,0, t), 0< r <nr ,

(3.9)

and for the area vertices,

∂c
∂t
(
nr ,0, t

)= J(n−r ,0, t)−J′(nr ,0, t),
∂c
∂t
(
0,ns,t

)= J′(0,n−s ,t)−J(0,ns,t),
∂c
∂t
(
nr ,ns,t

)= J(n−r ,ns,t)+J′(nr ,n−s ,t).
(3.10)

The densities of the model are defined as

∫ ns
0

∫ nr
0
rc(r ,s)drds = ρI,∫ ns

0

∫ nr
0
sc(r ,s)drds = ρII.

(3.11)

Thus, we have applied the density conservations (does not depend on time) instead

of the monomer concentrations, and so the model is approximated by a differential

algebraic equation [3].

The initial conditions of the system are

c(r ,s,0)= 0, r +s > 0,

c
(
0+,0,0

)= ρI,

c
(
0,0+,0

)= ρII.

(3.12)

In the discrete form of the system, we assume

c
(
r±,s,t

)≈ c(r ±∆r ,s,t),
c
(
r ,s±, t

)≈ c(r ,s±∆s,t). (3.13)

Hence, the discrete model is initialized with monomers, that is,

c(∆r ,0,0)= ρI

∆r
,

c(0,∆s,0)= ρII

∆s
,

c(r ,s,0)= 0, r ≠∆r or s ≠∆s.

(3.14)
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4. Numerical approximation. The truncated model is discretized by central differ-

ence in spaces and backward difference in time, that is, for

∂c
∂t
=− ∂J

∂r
− ∂J

′

∂s
, (r ,s)∈ R, (4.1)

the discrete form at the mesh point (ri,sj)∈ R and tk = k∆t(cki,j ≈ c(ri,sj,tk)) is

ck+1
i,j −cki,j
∆t

=−
(
∂J
∂r

)k+1

i,j
−
(
∂J′

∂s

)k+1

i,j
, (4.2)

where, for example, the first term on the right-hand side can be formulated as follows:

J(r ,s,t)=−a(r ,s)Q(r ,s)c(∆r ,0, t)r+1 ∂
∂r

(
c(r ,s,t)

Q(r ,s)c(∆r ,0, t)r

)
,

∂J
∂r
(r ,s,t)=− ∂

∂r
(
a(r ,s)Q(r ,s)c(∆r ,0, t)r+1) ∂

∂r

(
c(r ,s,t)

Q(r ,s)c(∆r ,0, t)r

)

−a(r ,s)Q(r ,s)c(∆r ,0, t)r+1 ∂2

∂r 2

(
c(r ,s,t)

Q(r ,s)c
(
∆r ,0, t

)r
)
,

(4.3)

(
∂J
∂r

)k+1

i,j
= −1

2∆r

(
ai+1,jQi+1,j

(
ck+1

1,0

)ri+∆r+1−ai−1,jQi−1,j

(
ck+1

1,0

)ri−∆r+1
)

× 1
2∆r


 ck+1

i+1,j

Qi+1,j

(
ck+1

1,0

)ri+∆r −
ck+1
i−1,j

Qi−1,j

(
ck+1

1,0

)ri−∆r



−ai,jQi,j
(
ck+1

1,0

)ri+1 1
∆r 2


 ck+1

i+1,j

Qi+1,j

(
ck+1

1,0

)ri+∆r −2
ck+1
i,j

Qi,j
(
ck+1

1,0

)ri

+ ck+1
i−1,j

Qi−1,j

(
ck+1

1,0

)ri−∆r

;

(4.4)

(∂J′/∂s)k+1
i,j can be similarly evaluated.

For the boundary conditions, the discrete form of rates Jk+1
i,j or J′k+1

i,j computed by the

forward difference formula and the density conservation equations can be discretized

as follows:

∑
j

∑
i
rick+1

i,j = ρI,
∑
j

∑
i
sjck+1

i,j = ρII. (4.5)
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nr = ns = 10
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Figure 4.1. The monomer concentration of the two-component Becker-
Döring system c(0,1) against time. The densities are ρI(0)= ρII(0)= 1.5 and
kinetic coefficients are as in (3.14).

We write the two-dimensional array ck+1
r ,s as a vector yk+1

� using the formula

� = r
([
ns
∆s

]
+1

)
+s; (4.6)

so the variables are ordered from ck+1
0,1 =yk+1

1 to ck+1
nr /∆r ,ns/∆s =yk+1

(nr /∆r+1)(ns/∆s+1)−1.
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Figure 4.2. The cluster concentrations cr ,s at time t = 3 for nr =ns = 10.

The discrete form of the model creates a nonlinear system of equations. We have

solved them by Newton’s method. The Jacobian matrix is very big, sparse, and has a

regular structure. Because of the Becker-Döring system, the cluster size distribution

changes when clusters gain or lose only monomers of each type. So the monomer con-

centrations appear in all equations from the definitions of Jr,s and J′r ,s . Therefore, the

Jacobian matrix is a pentadiagonal matrix with nonzero elements in the first row and

the first column (because of y1 and (2.4)) and similarly in the [ns/∆s+1]th row and

column.

Here we present the numerical approximation for square (nr = ns ) and rectangular

(nr ≠ns ) models. They have different behaviors. In Figure 4.1, the monomer concentra-

tion of type-II particle (c(0,1)) is plotted against time. In Figure 4.1(a), the system size

is nr =ns = 10 and ρI = ρII = 1.5, while in Figure 4.1(b), the system is 5×10 and 5×15

with the same densities. The numerical approximation of the system at time t = 3 is

plotted against r and s in Figure 4.2. The PDE approximation needs more theoretical

work. In our numerical experiment,

(1) when ∆r =∆s = 1, the results have a good accuracy;

(2) when ∆r < 1, ∆s < 1, the approximation does not work good and the roots of

the nonlinear system are complex numbers after a few iterations. It should be

related to the stiffness of the model;

(3) when ∆r > 1, ∆s > 1, the numerical results have a good stability and can be

used for reduced models of a big truncated system.

For the reduced model, we guess that the nonuniform mesh with successive nodes

around the monomers gives good results. The adaptive methods such as moving-mesh

methods especially for the initial period of time give a useful nodes’ distribution for

time-dependent solutions.
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