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A Discrete Artificial Bee Colony (DABC) is presented for joint symbol detection at the receiver in a multidevice Space-Time Block
Code (STBC) Mutli-Input Multi-Output (MIMO) communication system. Exhaustive search (maximum likelihood detection)
for finding an optimal detection has a computational complexity that increases exponentially with the number of mobile
devices, transmit antennas per mobile device, and the number of bits per symbol. ABC is a new population-based, swarm-based
Evolutionary Algorithms (EA) presented for multivariable numerical functions and has shown good performance compared to
other mainstream EAs for problems in continuous domain. This algorithm simulates the intelligent foraging behavior of honeybee
swarms. An enhanced discrete version of the ABC algorithm is presented and applied to the joint symbol detection problem to find
a nearly optimal solution in real time. The results of multiple independent simulation runs indicate the effectiveness of DABC
with other well-known algorithms previously proposed for joint symbol detection such as the near-optimal sphere decoding,
minimummean square error, zero forcing, and semidefinite relaxation, along with other EAs such as genetic algorithm, estimation
of distributions algorithm, and the more novel biogeography-based optimization algorithm.

1. Introduction

Multi-Input Multi-Output (MIMO) communication systems
can offer spatial diversity gains in the fading channels and
have significantly higher channel capacity than the Single-
Input Single-Output (SISO) systems for the same total trans-
mission power and bandwidth [1, 2]. The system proposed in
this paper comprises of one receiving station and multiple
transmitting devices. The receiver’s front end has multiple
antennas, and each transmitting device has multiple transmit
antennas. Employing the Space Time Block-Code (STBC) is
realized to increase the capacity ofMIMO systems and conse-
quently improves data throughput and spectral efficiency [3].
Multiantenna systems are widely used because of their ability
of dramatically increasing the channel capacity in fading
channels [4]. Each transmit device uses an STBC; the receiver
side performs the joint signal detection. Such a system is
referred to as a multidevice (MD) STBC-MIMO system.
Generally in an MD-STBC-MIMO system, the number of
receive antennas is typically smaller than the cumulative

number of transmit antennas used by all transmitting devices
in the system. An example of MD-STBC-MIMO, with a
smaller number of antennas at the base station or access
point, would be the uplink multiple access communication
in cellular systems.

This paper addresses the symbol detection in MD-
STBC-MIMO systems. The Maximum A Posteriori (MAP)
detection, which reduced to the Maximum Likelihood (ML)
detection in the case of a priori equally likely symbol blocks,
minimizes the probability of detection error, and thus is opti-
mal and is further explained in Section 3. However, a com-
putationally efficient algorithm for achieving MAP or ML
detection is not known. Some studies with Sphere Decoding
(SD) algorithms exhibit that their expected computational
complexity grows polynomially with the problem size 𝑀
up to some value of 𝑀 for the cases of small constellation
sizes [5], but it grows exponentially for the cases of large
constellation sizes. Also, for some SD algorithms, operation at
a low SNR requires inordinately high computation; yet opera-
tion at a high SNR is efficient. In fact, [6] shows that even the
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expected computational complexity of the SD grows expo-
nentially with the problem size in MIMO communication
systems. In any case, an algorithm with polynomial growth
of expected complexity for all values of the problem size𝑀
has not yet been found.

Due to the combinatorial nature of the problem, the ML
detection is a choice to obtain the optimal solution; yet it has
a high computational complexity. Taking advantage of heu-
ristic algorithms, evolutionary algorithms (EAs) more specif-
ically, and their ability to solve optimization problems effi-
ciently facilitates finding an optimal solution with relatively
low computational cost. evolutionary algorithms (EAs) are a
subset of heuristic algorithms, which is inspired by biological
evolution and mutation.

The Artificial Bee Colony (ABC) algorithm is one of the
novel EAs that has been introduced by Karaboga in [7]. He
presented the ABC algorithm for real (continuous) para-
meter optimization in unconstrained optimization problems
in [8]. ABC is a population-based, stochastic global opti-
mizer Evolutionary Algorithm. It is based on the theory of
foraging bees searching for food sources for their nectar and
sharing the information of food sources’ locations to other
bees in the hive. This algorithm demonstrates good accu-
racy and efficiency, compared with other mainstream EAs.
In [8], Karaboga and Akay showed that ABC algorithm out-
performs other EAs such as Differential Evolution (DE) [9],
Particle Swarm Optimization (PSO) [10], and Genetic Algo-
rithm (GA) [11] for numeric problems with multi-dimen-
sions. In his recent paper [12], Karaboga compared the ABC
programming with various genetic programming techniques
and crossovermethods available in [13] and demonstrated the
superiority of ABC over these schemes through simulations.
After introducing the ABC algorithm in 2007, some papers
are published on the applications of ABC to different opti-
mization problems [14–16], in addition to various real-world
applications including filter design [17], image processing
[18], control engineering [19], computer science [20, 21],
neural networks [22], and even biology [23]. In these studies,
ABC outperforms other EAs and is turned into a popular glo-
bal optimization solver to the continuous optimization prob-
lems and applications.

The ABC algorithm discussed in [24] is primarily pre-
sented for continuous functions; yet the MD-STBC-MIMO
detection problem is in the discrete domain. The impressive
results of ABC implementation for continuous problems
bring up the idea that a discretized versions of ABC can be
a potential high-efficient low-complex solver for discrete or
numerical optimization problems. In this paper we introduce
a discrete ABC algorithm, in addition to some new features to
enhance the overall algorithm’s performance. Although there
are a few discretized version of ABC in the literature, we will
discuss in Section 4 that their efficiency is the result of their
high complexity; thus they cannot be utilized for a real-time
symbol detection problem such as MD-STBC-MIMO.

Our simulation results show that discrete ABC can meet
the best known semi-optimal detector (i.e., SD) with less
complexity and has better performance than other methods
such asMinimumMean Square Error (MMSE), Zero Forcing
(ZF), and Semi-Definite Relaxation (SDR) [25], while it

outperforms other EAs such as GA, Estimation of Distri-
butions Algorithm (EDA) [26], and the recently proposed
Biogeography-Based Optimization (BBO) [27].

In the rest of this paper, the system model is presented
in Section 2. The application of existing symbol detection
algorithms is discussed in Section 3. The discrete ABC algo-
rithm and its application to the symbol detection problem are
presented in Section 4. The computational complexity com-
parison of EAs and other solvers is discussed in Section 5.The
simulation results are presented in Section 6, and Section 7
contains the conclusion and the future work.

2. System Model

The system consists of 𝐾 mobile devices transmitting sig-
nals and one receiver. This system can model the uplink
communication of the cellular system. Each mobile device
has 𝑁

𝑇
transmit antennas that apply STBC, whereas the

receiver front end has 𝑁
𝑅
receive antennas. The multiple

mobile devices in the proposed systems can cause cochannel
interference. An IQ-modulation scheme (e.g.,𝑀-QAM,𝑀-
PSK) maps source information into complex numbers. Even
if each transmit device employs an orthogonal space-time
code, the absence of coding across different wireless devices
cannot guarantee the orthogonality among their signals. In
the case of a single mobile device 𝐾 = 1, the wireless device
transmits using 𝑁

𝑇
transmit antennas and communicates

with a receiver that has𝑁
𝑅
antennas.Thenumber of time slots

in the space-time block code is denoted by 𝑇. The channel is
assumed to be quasistatic; that is, the channel gain remains
constant during each time block of data. It is also assumed
that the channel gain at each time block is known to the
receiver. This assumption is often used in the literature and
reasonable if training or pilot signals are used. A complex
𝑁
𝑇
× 𝑁
𝑅
dimensional matrix𝐻 represents the MIMO chan-

nel, and another complex𝑇 ×𝑁
𝑇
dimensionalmatrix 𝑆 repre-

sents the input signal in a space-time block code.The relation-
ship between the input and output signals can be expressed as

𝑌̃ = 𝑆𝐻 + 𝑍, (1)

where 𝑌̃ is a 𝑇 ×𝑁
𝑅
dimensional complex output matrix and

𝑍 denotes the additive white noise matrix.
Equation (1) describes the relation between the input

transmitted signals and the output received signals in terms of
complex-valued matrix equation.The relation between input
and output of the channel in a system with linear dispersion
space-time coding can be equivalently expressed in terms of a
real-valued matrix equation. We now briefly discuss the real-
valued matrix equation. The input signal in (1) in the case
of the linear dispersion code [28] is denoted by a complex-
valued matrix 𝑆 that takes the following form:

𝑆 =

𝑄

∑

𝑞=1

[(𝛼
𝑞
+ 𝑗𝛽
𝑞
) 𝐶
𝑞
+ (𝛼
𝑞
− 𝑗𝛽
𝑄
)𝐷
𝑞
] . (2)

Here, 𝛼
𝑞
+ 𝑗𝛽
𝑞
(𝑞 = 1, . . . , 𝑄) is the complex number that

represents the 𝑞th symbol, where 𝛼
𝑞
and 𝛽

𝑞
correspond to the

real and imaginary parts of the symbol, respectively, and 𝑄
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indicates the number of symbols conveyed in a space-time
code block. In the IQ constellation diagram, 𝛼

𝑞
and 𝛽

𝑞
are

discrete-valued variables, such that 𝛼
𝑞
+ 𝑗𝛽
𝑞
corresponds to a

symbol in the constellation diagram. In 4-QAM, for example,
each of these two variables can take values of ±1, and thus
𝛼 + 𝑗𝛽 determines one of the four possible symbols arranged
in the square grid of (1, 𝑖), (−1, 𝑖), (−1, −𝑖), and (1, −𝑖). These
𝑄 symbols 𝛼

𝑞
+ 𝑗𝛽
𝑞
can be represented as a 2𝑄-dimensional

real-valued row vectorX, whose components are constituted
by 𝛼
𝑞
,𝛽
𝑞
, 𝑞 = 1, . . . , 𝑄.The real and imaginary parts ofmatrix

𝑌̃’s components can be arranged as a 2𝑇𝑁
𝑅
-dimensional real-

valued row vector 𝑦. The relation between X and 𝑦 in this
new alternative form can be expressed as

𝑦 = XΓ + 𝑍, (3)

where𝑍 is a 2𝑇𝑁
𝑅
-dimensional real-valued vector represent-

ing noise, and Γ is a 2𝑄 × 2𝑇𝑁
𝑅
real-valued matrix derived

from the component of matrices𝐶
𝑞
,𝐷
𝑞
, 𝑞 = 1, . . . , 𝑄, and𝐻.

Equation (1) in the case of multiple wireless devices can be
expressed as

𝑌̃ =

𝐾

∑

𝑘=1

𝑆
𝑘
𝐻
𝑘
+ Z̃, (4)

where 𝑆
𝑘
is a𝑇×𝑁

𝑇
-dimensional complexmatrix of the input

signal from wireless device 𝑘 and the 𝑁
𝑇
× 𝑁
𝑅
-dimensional

complex matrix 𝐻
𝑘
represents the channel from the 𝑘th

device to the receiver. As a result, (3) can be written as

𝑦 = [X1X2 ⋅ ⋅ ⋅X𝐾]
[
[
[
[

[

Γ
1

Γ
2

...
Γ
𝐾

]
]
]
]

]

+ 𝑍, (5)

where X
𝑘
, 𝑘 = 1, 2, . . . , 𝐾 is a 2𝑄

𝑘
-dimensional real-valued

row vector that represents the𝑄
𝑘
complex symbols sent from

the 𝑘th wireless device in a space-time code block. Note that
(5) can model the case in which different wireless devices use
different code rates𝑄

𝑘
/𝑇 and different space-time codes.The

total number of symbols transmitted from all wireless devices
in a space-time code block through all transmit antennas is
denoted by𝑁

𝑆
= ∑
𝐾

𝑘=1
𝑄
𝑘
.

3. Signal Detection

The ML detection is known to yield the lowest symbol error
probability in the case of a priori equally likely symbols. In
the case of our problem, the detector at the receiver has to
choose from𝑀

𝑁𝑆 possible sequences of symbols transmitted
in a space-time code block, where 𝑀 is the size of the
symbol constellation associated with themodulation scheme.
MLdetection chooses transmitted symbols [X

1
,X
2
, . . . ,X

𝐾
]

that maximize 𝑃(𝑦 | X
1
,X
2
, . . . ,X

𝐾
). In the case of additive

white Gaussian noise 𝑍, the ML detection is reduced to
choosing the vector [X

1
,X
2
, . . . ,X

𝐾
] from𝑀

𝑁𝑆 possibilities

that has the shortest Euclidean distance 𝑙̂, which is expressed
as

𝑙̂ =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑦 −

𝐾

∑

𝑘=1

X
𝑘
Γ
𝑘

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

. (6)

TheML detection scheme can be implemented by search-
ing through all 𝑀𝑁𝑆 = 2

𝑏𝑁𝑆 possible symbol sequences,
where 𝑏 = log

2
𝑀 and𝑀 is the size of the symbol constella-

tion. Performing such an exhaustive search to find the mini-
mum Euclidean distance in (6) is computationally ineffi-
cient, especially for large 𝑁

𝑆
. Computational complexity

increases exponentially with 𝑁
𝑆
, the number of bits per

symbol, transmit antennas per device, and the number of
wireless devices 𝐾. High-speed communication require-
ments demand a low-complexity detection scheme. For low-
complexity near-optimal detection, in this paper the ABC
algorithm is applied to thisMD-STBC-MIMOdetection pro-
blem.TheMD-STBC-MIMO detection problem is converted
into a discrete optimization problem that searches the space
of 𝑀𝑁𝑆 = 2

𝑏𝑁𝑆 symbol combinations. Section 4.2 describes
how discrete ABC is applied to the signal detection. In the fol-
lowing sections, the performance of the discrete ABC-based
detector is compared with other low-complexity suboptimal
algorithms such as MMSE, ZF, SDR, and SD.

4. Discrete Artificial Bee Colony

This section presents the discreteArtificial BeeColony (ABC)
algorithm. A general description of ABC is given in the next
subsection, followed by themodified discrete ABC algorithm
in the subsequent section.

4.1. The Artificial Bee Colony Algorithm. evolutionary algo-
rithms (EAs) have been often used to solve difficult optimiza-
tion problems. Most of the EAs are inspired by the theory
of biological evolution (e.g., selection, crossover, mutation,
recombination, and reproduction). The ABC algorithm has
been recently presented by Karaboga for real (continuous)
parameter optimization in unconstraint optimization prob-
lems [24], which is based on a particular intelligent behavior
of the honey bee swarms. This algorithm demonstrates good
accuracy and efficiency compared to other EAs such as
differential evolution (DE) [29], ant colony optimization
(ACO) [30], PSO, and GA, for numeric problems with
multidimensions [8].

Consider an optimization problem

max
𝑥
𝐹 (𝑥)

subject to: 𝑥 ∈ 𝐶,

(7)

where 𝑥 ≡ (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝐷
)
𝑡 is a vector and 𝐶 is a constraint

set. In the original ABC, each candidate solution is repre-
sented by a vector variable of the optimization problem. In
the context of evolutionary algorithms, a candidate solution
is also referred to as an “individual,” and a group of candidate
solutions is referred to as a “population” of individuals. In
ABC, each individual (candidate solution to an optimization
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problem) is analogically considered as a food source position.
The fitness value, 𝐹(𝑥), of each individual (food source) 𝑥
corresponds to the nectar quality of the food source.

This algorithm imitates the behaviors of the real bees on
finding food source locations and sharing the information of
food sources to the other bees in the nest. In this algorithm
colony bees are classified into three types with certain respon-
sibilities: employed bees, onlooker bees, and scout bees.
Employed bees are the bees that have already been assigned
to a food source. Each of them saves the food source position
and selects another food source in her neighbor and chooses
out of two the one that has a better nectar.Then they return to
the hive and start to dance based on the quality of the nectar
of their associated food source. An onlooker bee watches the
dance of employed bees at the hive and selects an employed
bee based on the dances observed so that the probability
of choosing an employee bee is proportional to the nectar
quality of that employee bee. Then the onlooker bee receives
the information of the chosen employed bee associated with
food source (the food source position and its nectar quality)
from her and becomes an employed bee associated with
that food source. Since then, the new employed bee (former
onlooker) performs the same act as the employed bee in the
previous phase; that is, she searches for a new food source in
the neighbor of her associated food source for higher nectar
quality and saves the best food source and its nectar to her
memory. Finally, scout bees are free bees responsible for find-
ing new food sources and evaluating their nectar. As soon as a
scout bee finds a food source, she turns into an employed bee.

The algorithm assumes that there is only one employed
bee for every food source; thus the number of employed bees
is equal to the number of individuals in the population 𝑁.
If there is no improvement in the nectar quality of a food
source after certain number of trials, the food source will be
abandoned and the employed bee assigned to that food source
will become a scout bee that looks for a new food source. A
pseudocode of the ABC algorithm is given in Pseudocode 1.

At the first step, ABC generates randomly distributed
initial food source positions of the size 𝑁, whereas each
individual solution 𝑥𝑖, 𝑖 ∈ (1, 2, . . . , 𝑁) is a 𝐷-dimensional
vector of numbers. In this step each scout bee that finds a food
source location saves the current location in her memory
and becomes an employed bee. In the employed bees phase,
each employed bee finds a new food source position 𝑣𝑖 in the
neighborhood of her current associated food source 𝑥𝑖, and
if the new food source has a better nectar, she saves the new
position to her memory. In the original ABC algorithm, an
employed bee locates the new food source positions using the
following expression [24]:

𝑣
𝑖

𝑗
= 𝑥
𝑖

𝑗
+ 𝜙
𝑖𝑗
(𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
) . (8)

In this equation 𝑥𝑖
𝑗
is the 𝑗th component of the 𝑖th individual

of the population, 𝑙 ∈ {1, 2, . . . , 𝑁} is a randomly selected food
source location (different from 𝑖), and 𝑗 ∈ {1, 2, . . . , 𝐷} is a
randomly chosen index. 𝜙

𝑖𝑗
is a random real number between

[−1, 1] that controls the production of a neighbor food source
around 𝑥𝑖

𝑗
.

At the beginning of the onlooker bees phase, employed
bees share their information about the quality of food sources
with onlooker bees. An onlooker bee chooses an employed
bee to take the food source information based on the
following probability:

𝑝
𝑖
=

𝐹 (𝑥
𝑖
)

∑
𝑁

𝑖=1
𝐹 (𝑥𝑖)

, (9)

where 𝐹(𝑥𝑖) is the fitness value of the 𝑖th solution in the
population 𝑥𝑖. After an onlooker bee selects a food source,
she becomes an employed bee and locates a new food source
in the neighborhood using (8), then she compares its nectar
quality with the current food source, and saves the food
source position that has a better nectar quality to hermemory
and returns back to the hive to share this information.

If the number of trials 𝑡𝑖 of a food source 𝑥𝑖 is not
improved through a predetermined number of trials 𝑡, it
will be removed from the population, and the employed bee
assigned to that bee becomes a scout that searches for a new
food source. Each component of the new food source is rand-
omly selected from [𝑥min, 𝑥max], where 𝑥min and 𝑥max are
the minimum and maximum of the allowable values in the
problem domain. The previous steps are repeated until the
termination condition is satisfied, which here is a preset
maximum number of generations 𝐺.

4.2. Discrete ABC Algorithm for Joint Symbol Detection. This
subsection introduces a discrete version of the ABC algo-
rithm. The ABC algorithm discussed in the previous subsec-
tion is for optimization problems in the continuous domain.
However, some of the previous steps have to be modified
because the decision variables, which in this case are the
transmitted symbols of the MD-STBC-MIMO problem, are
a set of nonnegative integer numbers. In the discrete ABC
(DABC) algorithm, we define a new expression to search in
the neighborhood of the current food source position as a
replacement to expression (8):

𝑣
𝑖

𝑗
= randint (𝑥𝑙

𝑗
, 2𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
) , (10)

where “randint (𝑎, 𝑏)” returns a random integer number
between 𝑎 and 𝑏 (more specifically a random integer number
starting from min{𝑎, 𝑏} to max{𝑎, 𝑏}). Note that if the result
of (10) falls beyond the problem’s integer domain, that
number is replaced with the closest integer definedwithin the
boundaries. This expression is used in both employed bees
and onlooker bees phases. Moreover, the onlooker bees select
employed bees with the following probability:

𝑝
𝑖
= √

𝐹 (𝑥
𝑖
)

max
𝑖=1,...,𝑁

𝐹 (𝑥𝑖)
, (11)

which has been observed to increase the efficiency of the
algorithm more than other selection methods and the one in
(9). The evaluation of (10) is explained in the appendix.

We have applied more enhancements to the algorithm
in order to reduce its computational complexity. The most
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(1) Send scouts (generate initial population)
(2) Repeat
(3) Employed bees phase
(4) Onlooker bees phase
(5) Scout bee phase
(6) Memorize the best food source found so far
(7) Until termination condition satisfied

Pseudocode 1: Pseudocode of the general ABC algorithm.

(1) Initialize the population of solutions 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑁,
(2) Evaluate 𝐹(𝑥𝑖), ∀𝑖,
(3) repeat
(4) Run the DABC employed bee phase, (Pseudocode 3)
(5) Run the DABC onlooker bee phase, (Pseudocode 4)
(6) Run the DABC scout bee phase, (Pseudocode 5)
(7) Save the best results,
(8) until termination condition satisfied,

Pseudocode 2: The DABC algorithm pseudocode.

complex section of ABC, and most other EAs, is the fitness
function evaluation.Therefore, if the number of these evalua-
tion decreases, the algorithm runs faster. In this version of the
discrete ABC, during the employed bees and onlookers bees
phases, the algorithm is set to only evaluate those individuals
that are modified during the greedy selection process. When
the algorithm uses (10) to select a neighbor food source,
it may not always return a new food source position due
to the stochastic nature of (10). The DABC is set to check
whether a food source has beenmodified prior to proceeding
to the fitness function evaluation. In this case, it eliminates a
number of fitness evaluations for some individuals that were
already evaluated during the previous generations.

The last phase of the DABC is similar to the scout bee
phase of the original ABC. In the scout bee phase of DABC,
the algorithm selects only one food source 𝑥𝑖 that exceeds
maximum allowable number of trials 𝑡𝑖 to abandon and sends
one scout bee to explore new food source positions.The scout
bee randomly selects one food source, evaluates its nectar
quality, and saves it in her memory. This procedure helps the
algorithm to explore the search space more effectively, which
is an advanced version of the mutation process in GA and
some other EAs that they randomly mutate any individual of
the population. A detailed pseudocode for the discrete ABC
algorithm is given in Pseudocodes 2, 3, 4, and 5.

We found a few articles in the literature that employ
ABC for numerical optimization problem. In [31], Tsai et al.
presented an enhanced ABC, which is applied to numerical
optimization problems, and called it the interactive ABC
(IABC). They have modified the way in which onlooker
bees choose a neighboring food source position. IABC
incorporates the concept of universal gravitation into the
consideration of the affection between employed bees and
onlooker bees, and their simulation results demonstrate the

high performance of IABC compared with ABC and PSO.
Note that the higher performance of their newmethod comes
with the price of a significant increase in the complexity of the
algorithm—there is heavy computational load for calculating
the gravitation between 𝑛 employed bees in (10) and (11) in
[31] for every food source in every algorithm iteration. As
mentioned before, an important aspect of EAs’ implemen-
tation for wireless communication problems, specifically the
MD-STBC-MIMO detection, is to have high performance
results while maintaining low complexity.

There are other articles that apply ABC to optimization
problems with a binary domain. Wang et al. have presented
a binary selection method to the ABC algorithm in [32].
Their binary encoding method employs a sigmoid function
of velocity as a logical choice for binary selection. However,
because they are incorporating (8) with a sigmoid function,
their method has a higher complexity than (10) presented in
the present paper. Salim et al. introduce a discrete bee algo-
rithm for numerical optimization. However, their algorithm
includes binary operators ((8) and (11)–(13) in [33]). They
show that their algorithm has better performance than ABC;
but if this algorithm is applied to a numerical optimization
problem, integer-to-binary and binary-to-integer built-in
functions are required to convert all of the integer individuals
of each population to binary for food source exploration, and
they all have to be converted back into integer for fitness
function evaluation after population modification. This pro-
cedure has to be done at least two times (during employed
bee and onlooker bee phases) for all individuals in all genera-
tions, which dramatically increases the algorithm complexity.
The algorithm in the present paper has two advantages
over the aforementioned papers: it can be implemented
for numerical optimization problems, including problems
with a binary domain, and it clearly has less complexity
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(1) 𝑡
𝑖
= 0, ∀𝑖

(2) for each food source 𝑥𝑖, 𝑖 = 1, 2, . . . , 𝑁,
(3) Select a random food source 𝑙, 𝑙 ̸= 𝑖 ∈ {1, 2, . . . , 𝑁},
(4) Select a random component 𝑗, 𝑗 ∈ {1, 2, . . . , 𝐷},
(5) 𝑣

𝑖

𝑗
= randint (𝑥𝑙

𝑗
, 2𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
),

(6) 𝑡
𝑖
= 𝑡
𝑖
+ 1,

(7) if 𝑣𝑖 ̸= 𝑥𝑖 then,
(8) Evaluate 𝐹(𝑣𝑖),
(9) 𝑥

𝑖
← 𝑣
𝑖,

(10) 𝑡
𝑖
= 0,

(11) end if,
(12) end for,

Pseudocode 3: The DABC employed bee phase pseudocode.

(1) Calculate probability values 𝑝
𝑖
for 𝑥𝑖, ∀𝑖 using (11),

(2) 𝑤 = 1; 𝑖 = 1;
(3) for 𝑤 = 1, . . . , 𝑁, %(𝑤 corresponds to the 𝑤th onlooker bee)%
(4) if rand > 𝑝

𝑖
then, %(select the 𝑖th employed bee to follow)%

(5) Select a random food source 𝑙, 𝑙 ̸= 𝑖 ∈ {1, 2, . . . , 𝑁},
(6) Select a random component 𝑗, 𝑗 ∈ {1, 2, . . . , 𝐷},
(7) 𝑣

𝑖

𝑗
= randint(𝑥𝑙

𝑗
, 2𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
),

(8) 𝑡
𝑖
= 𝑡
𝑖
+ 1,

(9) if 𝑣𝑖 ̸= 𝑥𝑖 then,
(10) Evaluate 𝐹(𝑣𝑖 ),
(11) 𝑥

𝑖
← 𝑣
𝑖,

(12) 𝑡
𝑖
= 0,

(13) end if,
(14) 𝑤 = 𝑤 + 1,
(15) end if,
(16) 𝑖 = 𝑖 + 1;
(17) if 𝑖 > 𝑁 then 𝑖 = 1; %(reset 𝑖)%
(18) end for,

Pseudocode 4: The DABC onlooker bee phase pseudocode.

comparedwith algorithms presented in other papers. DABC’s
superior performance compared with other mainstream EAs
is demonstrated through simulation results in Section 6.

4.3. Application of DABC to MD-STBC-MIMO Joint Symbol
Detection. The aim of applying DABC to the MD-STBC-
MIMO symbol detection problem is to minimize the Euclid-
ian distance defined in (6). Therefore, the Euclidian distance
in (6) represents the fitness function or nectar quality, and
shorter Euclidian distancemeans better fitness. An individual
of the discrete ABC algorithm corresponds to a possible
solution to the joint symbol detection problem, that is, a set
of conveyed symbols from the 𝐾 transmit devices.

In the MD-STBC-MIMO system discussed in this paper,
transmitted symbols are chosen from an IQmodulation such
as 𝑀-QAM or 𝑀-PSK constellation diagram. We represent
each of the 𝑀 possible points in the constellation by a
unique integer in the set {0, . . . ,𝑀−1}.The system comprises
𝐾 transmit devices, each device indexed by 𝑘 transmitting
𝑄
𝑘
𝑀-QAM symbols in a space-time code block. Therefore,

a DABC individual 𝑥 (a food source location) can be defined
as a 𝑁

𝑆
= ∑
𝐾

𝑘=1
𝑄
𝑘
-dimensional (𝐷 = 𝑁

𝑆
) integer row

vector 𝑥 ≜ [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁𝑆
] where 𝑥

𝑣
∈ {0, . . . ,𝑀 − 1},

𝑣 ∈ {1, . . . , 𝑁
𝑆
}. For DABC, the integer vector 𝑥 represents

the vector [X
1
X
2
⋅ ⋅ ⋅X
𝐾
] in expression (6), and the fitness

function is translated accordingly. Consequently, a scout
bee generates a random vector of 𝐷 integer numbers in
{0, . . . ,𝑀−1} as a new individual (new food source location)
in line 1 of Pseudocode 2 and line 3 of Pseudocode 5; that is,
𝑥min = 0, 𝑥max = 𝑀 − 1.

5. Computational Complexity

A motivation for applying the proposed near-optimal algo-
rithms to anMD-STBC-MIMO problem is their low compu-
tational complexity. In this section, the computational com-
plexity of DABC for MD-STBC-MIMO symbol detection
is compared with that of ZF, MMSE, SD, SDR, EDA, BBO,
and GA. The computational complexity of the exhaustive
search (an implementation of the ML detector) is 𝑂(𝑀𝑁𝑆),
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(1) if there exists some 𝑥𝑖 | {𝑡𝑖 > 𝑡},
(2) Select one such 𝑥𝑖 randomly,
(3) for each component 𝑗, 𝑗 ∈ {1, 2, . . . , 𝐷},
(4) 𝑣

𝑖

𝑗
= randint[𝑥min, 𝑥max],

(5) end for,
(6) Evaluate 𝐹(𝑣𝑖),
(7) 𝑥
𝑖
← 𝑣
𝑖,

(8) 𝑡
𝑖
= 0,

(9) end if,

Pseudocode 5: The DABC scout bee phase pseudocode.

so exhaustive search is usually impractical for real-time
operations of symbol detection. A number of suboptimal
detection schemes with better computational complexity
have been presented in the literature.

The worst-case complexity of SD is exponential, and its
expected complexity depends on the problem size and SNR
[5]. SD has high complexity of𝑂(𝑛6) [34] at low SNRs, where
𝑛 = 𝑛 log

2
𝑀. However, it has polynomial complexity, often

roughly cubic complexity, at high SNRs [5]. MMSE is one
of the suboptimal detectors that involves inverting a matrix,
and its computational complexity is 𝑂(𝑛3) [35]. The compu-
tational complexity of SDR [36] in each iteration is 𝑂(𝑁

𝑇

3.5
)

where𝑁
𝑇
stands for the number of transmit antennas.

Typically, the computational complexity of population-
based algorithms is analyzed in terms of the number of fitness
function evaluations, which in this paper would be (6). One
important reason is that their complexity is highly dependent
on their implementation and coding efficiency. The number
of function evaluations in, BBO, GA, and EDA, is the same
and equal to 𝐺𝑁, where 𝐺 and𝑁 represent the total number
of generations and the population size, respectively [9]. The
reason is that in all these algorithms, every individual is
evaluated just once during one generation.

In the ABC algorithm however, there is more than one
fitness function evaluation for each individual during a gen-
eration. During one generation in ABC, during the employed
bees phase, each employed bee tests a neighbor food source
for its quality; thus the fitness function evaluation has to be
run for the whole𝑁 food source positions once. By the same
token, during the onlooker bees phase there are 𝑁 fitness
function evaluations for every food source. So the overall
number of fitness function evaluations for the algorithm for
these two phases would be 2𝐺𝑁. In the scout bees phase, the
algorithm selects only one individual that exceeds 𝑡 trials to
abandon and replaces its employed bee with a scout. Hence
the first individual to exceed 𝑡 trials would be in the (𝑡/2)th
algorithm generation. After that, in order to determine a
feasible number of function evaluations the worst case has to
be considered, in which after the (𝑡/2)th generation there is a
maximumof one abandoned food source in every generation.
As a result, the total number of fitness function evaluations
for ABC would be as follows:

2𝐺𝑁 + (𝐺 −
𝑡

2
) . (12)

This complexity is higher than the complexity of other afore-
mentioned EAs.However, the complexity ofDABCpresented
in this paper is yet less than (12) because this algorithm
does not run the function evaluation procedure for all the
individuals in the employed bees and onlooker bees phases
due to the conditions in line 7 of Pseudocode 3 and line 9
in Pseudocode 4. This stochastic behavior prevents DABC to
have a closed-form number of fitness function evaluations.

6. Simulation Results

This section contains the simulation results of the proposed
DABC-based detection and its comparison with other detec-
tion techniques applied to anMD-STBC-MIMO system.The
channels are assumed to be quasistatic, and different channels
in MD-STBC-MIMO are assumed to be independent. In
all our simulations, it is assumed that the mobile data is
transmitted in a formof 4-QAMmodulation from all wireless
devices (𝑀 = 4). For simulation experiments we assumed
that each of the 𝐾 devices transmits the same number of
symbols 𝑄

𝑘
= 𝑄. Therefore, there are 𝑁

𝑆
= 𝐾𝑄 symbols

conveyed from the 𝐾 transmit devices to the receiver. Each
point in the plots of Figures 1, 2, 3, 4, 5, 6, 7, and 8 is a
value averaged over multiple independent runs. During each
simulation runs, the set of symbols transmitted in a space-
time code block are generated randomly and independently
of other simulation run. Also the noise term is generated
randomly and independently of other simulation trials.

In order to present a fair comparison between the EAs,
they are tuned to their best performance, and they are
sharing the same number of generations, population size, and
initial population. Other EA parameters are kept constant
during all simulation runs. A list of parameters set for each
algorithm is presented in a table for each simulation result
next to its figure. Moreover, GA employs a greedy selection
scheme [11], and BBO uses a low complex emigration-based
migration scheme with a constant emigration curve and
linear immigration curve [9].

Each point in the plots of Figures 1–8 is a value averaged
over multiple independent runs. In each simulation run,
the set of transmitted symbols ([X

1
,X
2
, . . . ,X

𝐾
] in (5)),

channelmatrices ([Γ
1
, Γ
2
, . . . , Γ

𝐾
]
𝑇 in (5)), and noise (𝑍 in (5))

are generated randomly and independently of other trials.
Hence, in each simulation run the received signal 𝑦 in (6) is
set from those randomly generated variables in accordance
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60 60 1 0.015 Constant 0.4 × pop 0.9 0.5 0.5 0.99 0.95 0.5

𝑃xover 𝑃mut 𝑃sel𝑃xover 𝑃mut 𝑃sel𝑡

(b)

−2 0 2 4 6 8
ZF 89 86 80 74 70 64
MMSE 96 92 86 78 74 66
SDR 84 84 80 78 78 77
GA 100 99 96 91 85 83
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Figure 1: (a) BER performance comparison of (𝐾,𝑁
𝑇
, 𝑁
𝑅
,𝑀) = (4, 2, 6, 4), (b) simulation parameters, and (c) percentage of decoders with

the SD results.

with (5). Then the algorithms are run to search for the value
of the integer vector 𝑥 (which represents [X

1
,X
2
, . . . ,X

𝐾
]

as mentioned in Section 4.3) that minimizes 𝑙̂. Therefore, the
results averaged over different simulation runs are in fact
averaged over the different channel and noise realizations and
also different realizations of the algorithm’s evolution in the
case of probabilistic algorithms such asGA,DABC, EDA, and
BBO.This experimental setup compares different algorithms
in terms of the averaged performance over different channel
and noise realizations.

The simulation results in Figures 1 through 8 show the
BER performance comparison between ZF, MMSE, SDR,
SD, GA, EDA, BBO, and DABC detectors. The MD-STBC-
MIMO system configuration, (𝐾,𝑁

𝑇
, 𝑁
𝑅
,𝑀, 𝑇), is set to

(4, 2, 6, 4, 2), (5, 2, 8, 4, 2), (6, 2, 10, 4, 2), and (3, 4, 4, 4, 2) for
Figures 1, 2, 3, and 4, respectively. The Alamouti space-time
coding [24] is used in Figures 1, 2, and 3; but for Figure 4, a
nonorthogonal four transmit antennas configuration is used
for each mobile device.

EA’s shared parameters (𝐺,𝑁), are set to (60, 60),
(100, 100), (100, 120), and (120, 200) in Figures 1, 2, 3, and
4, respectively. For these figures, the total number 𝑁

𝑆
of

symbols transmitted fromall users is set to 8, 10, 12, and 14; the
algorithms are searching through a search space of 48, 410, 412,
and 412 possible solutions, respectively. For each simulation
run, the pair of (𝐺,𝑁) is selected not only to make the EAs’
results close to SD’s, but to choose the smallest possible𝐺 and
𝑁 to reduce their computational complexity.
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Figure 2: (a) BER performance comparison of (𝐾,𝑁
𝑇
, 𝑁
𝑅
,𝑀) = (5, 2, 8, 4), (b) simulation parameters, and (c) percentage of decoders with

the SD results.

In these figures, three EAs (DABC, BBO, andEDA) return
the closest results to the SDs. In most of the cases, DABC
and SD exactly match together and seem as a united line.
Observing these figures shows that the best algorithm that
almost always returns the same result as the SD is DABC,
followed by the BBO decoder that returns results with about
95% of SD. The third place is for EDA, followed by GA. All
EAs outperform other suboptimal detection methods in all
the five figures and can meet the optimal result by searching
through a much smaller set of individuals by selecting a
decent pair of (𝐺,𝑁).

Figures 1, 2, and 3 indicate that in the MD-STBC-MIMO,
DABC has significant better BER performance than ZF,

MMSE, SDR, GA, EDA, and BBO, while it closely matches
SD. In Figure 3, for example, although DABC and other EAs
are searching over approximately 𝐺𝑁 = 12, 000 individuals
over the entire search space of 412 ≅ 1.7 × 10

8 possible
solutions, DABC’s BER performance meets the near-optimal
SD. According to this figure, DABCmatches SD, where BBO,
EDA, and GA require about 0.1 dB, 0.5 dB, and 0.6 dB more
SNRs than BBO to achieve BER of 10−2, respectively.

The experiment in Figure 4 was performed on a nonorth-
ogonal space-time code, whereas the experiments in the other
figures were performed on the Alamouti code (simple and
orthogonal). The total number of symbols 𝑁

𝑆
transmitted

from all users in a space time code block is 12. Hence,
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Figure 3: (a) BER performance comparison of (𝐾,𝑁
𝑇
, 𝑁
𝑅
,𝑀) = (6, 2, 10, 4), (b) simulation parameters, and (c) percentage of decoders with

the SD results.

using 4-QAM, the size of the search space would be 412, while
EAs only evaluate 𝐺𝑁 = 24, 000 points in the search space,
which is significantly smaller than the search space ML has
to cover. Similar to other figures, SD and DABC have the
best BER performance. In higher SNRs, GA’s performance
diminishes notably, while DABC pursues the near-optimal
SD. It can be observed from the figure that BBO, EDA, and
GA require 0.3, 0.4, and 1.5 dB less SNR than SD andDABC to
achieve BER of 10−2, respectively. DABC perceptibly behaves
as the best detection algorithm among other suboptimal
detection methods in all the four figures.

From the computational complexity point of view in EAs,
finding the optimal pair of (𝐺,𝑁) is essential in order to

minimize the processing power and the required memory.
According to the computational complexity order of these
algorithms, with a fixed population size 𝑁, more iterations
until termination means more computation. Figure 5 shows
the number of iterations required by each detection scheme
to achieve a desirable BER. The MIMO system configuration
is (𝐾,𝑁

𝑇
, 𝑁
𝑅
,𝑀) = (6, 2, 10, 4), it uses the Alamouti STBC

and quasistatic channel, and the SNR is fixed to 8 dB. Figure
5 shows that the discrete ABC algorithm with the population
size fixed to 100 is the first algorithm that can reach SD’s
performance in less than 65 iterations. Other EAs whether
cannot reach the SD results, or require much more iterations
to converge to the SD results. This improved performance
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Figure 4: (a) BER performance comparison of (𝐾,𝑁
𝑇
, 𝑁
𝑅
,𝑀) = (3, 4, 4, 4), (b) simulation parameters, and (c) percentage of decoders with

the SD results.

is consistently observed in several other simulations with
different system configurations. As a result, not only DABC
algorithm outperforms other suboptimal algorithms, it deliv-
ers better results than other well-known EAs, such as GA,
BBO, and EDA, and can reach SD.

Figures 6 to 8 show the trade-off between the population
size and the iterations required to achieve a desired BER in
GA, BBO, and DABC. The MIMO system configuration is
(𝐾,𝑁

𝑇
, 𝑁
𝑅
,𝑀) = (4, 2, 4, 4), using the Alamouti STBC and

quasistatic channel, and the SNR is set to 8 dB. The detailed
system configuration is given in Table 1. This trade-off is
useful from the system design point of view. If a hardware
system has high processing capabilities and low memory,

then the population size can set lower to get same BER
performance and vice versa. (Higher 𝑁 and 𝐺 need more
memory.)

Finally, we compare the number of fitness function evalu-
ations between EAs to demonstrate the superiority of DABC
over other EAs. As mentioned in Section 5, BBO, EDA, and
GA all have the same number of fitness function evaluations
equal to 𝐺𝑁. For the parameters of a system described in
Figure 2 for instance, these EAs require 𝐺𝑁 = 10, 000 fitness
function evaluations. The original ABC requires 2𝐺𝑁 +

(𝐺 − 𝑡/2) = 20, 080, while DABC requires an average of
13,600 evaluations per independent simulation run, which
is comparable to other EAs, less than the original ABC and
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Figure 5: (a) BER performance comparison versus iterations for (𝐾,𝑁
𝑇
, 𝑁
𝑅
,𝑀) = (6, 2, 10, 4) and (b) simulation parameters.

Table 1: System parameters for iteration-population size trade-off.

System parameters
K 𝑁

𝑇
𝑁
𝑅

M T Search space STBC type Channel type No. of simulation runs
5 2 8 4 2 410 Alamouti Quasi-static fading 2000

Shared EAs BBO DABC GA EDA
Generation Pop 𝐼 𝑚 Migration 𝑡 𝑃xover 𝑃mut 𝑃sel 𝑃xover 𝑃mut 𝑃sel

1∼120 100 1 0.015 Constant 0.4 × pop 0.9 0.5 0.5 0.99 0.95 0.5

much less than the optimal ML detector with a search space
of 410 possible solutions. As a result, DABC would be a
significantly considerable choice for joint symbol detection
in MD-STBC-MIMO systems.

7. Conclusion and Future Work

In this paper, a modified version of the Artificial Bee Colony
algorithm is presented for the optimization problems in
discrete domain and is applied to a Multi Device (MD)
Space-Time Block Code (STBC) Multi-Input Multi-Output
(MIMO) system. The enhancements in this algorithm have
reduced its complexity, which is much less as compared
with optimal ML detector. Thus it is suitable for cost-
effective high-speed real-time communications. In addition,

compared to other evolutionary algorithms like GA, EDA,
and BBO, the presented discrete ABC (DABC) detection in
MD-STBC-MIMO shows a significantly better performance.
The proposed algorithm also has consistently better perform-
ance-complexity trade-offs at low SNRs, in comparison to
the existing algorithms. Even at high SNRs, this algorithm
has relatively good performance-complexity trade-offs. In
conclusion, the proposed DABC is suitable for cost-effective
high-speed real-time communications in MIMO systems.

DABC is a good candidate for solving the same type
of computationally complex problems in wireless communi-
cation because of its simplistic model, low implementation
complexity, and convergence to a nearly optimal solution
with a small number of iterations. In this work, our main
purpose was to employ a low-complexity algorithm that can
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Figure 6: A tradeoff between population size and iterations for GA.
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Figure 7: A trade-off between population size and iterations for
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,𝑀) = (4, 2, 6, 4).

beat the existing suboptimal detection schemes. To this end,
some of the evolutionary procedures of the algorithm have
been modified.

Currently, the authors are working on hybridizing DABC
with other EAs to take the best aspects of each algorithm
for specific applications. The authors are also working on
applyingDABC to other types of optimization problems, such
as multiobjective or constrained optimization problems.

Appendix

Food Source Selection in a Neighborhood
in DABC

In (8), 𝜙
𝑖𝑗
is a random number between [−1, 1]. We choose

the minimum and maximum of this interval and apply it to
(8). The minimum is 𝜙

𝑖𝑗
= −1; hence:

𝑣
𝑖

𝑗
= 𝑥
𝑖

𝑗
+ (−1) (𝑥

𝑖

𝑗
− 𝑥
𝑙

𝑗
)

𝑣
𝑖

𝑗
= 𝑥
𝑙

𝑗
.
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Figure 8: A trade-off between population size and iterations for
ABC. (𝐾,𝑁

𝑇
, 𝑁
𝑅
,𝑀) = (4, 2, 6, 4).

The maximum is 𝜙
𝑖𝑗
= +1; therefore:

𝑣
𝑖

𝑗
= 𝑥
𝑖

𝑗
+ (1) (𝑥

𝑖

𝑗
− 𝑥
𝑙

𝑗
)

𝑣
𝑖

𝑗
= 2𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
.

(A.2)

Putting (A.1) and (A.2) together and using a random integer
number generator function randint(𝑎, 𝑏) that returns a ran-
dom integer between 𝑎 and 𝑏, for the integer values of 𝑥 we
obtain

𝑣
𝑖

𝑗
= randint [𝑥𝑙

𝑗
, 2𝑥
𝑖

𝑗
− 𝑥
𝑙

𝑗
] . (A.3)
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