
 

 

 

 

Massively Parallelized Monte Carlo Simulation  

and its Applications in Finance 

 

 

by: 

 

 

Ashkan Ziabakhshdeylami 
BASC in Electronic Engineering - Simon Fraser University 

 

Lauren Looi 
BBusSc in Finance - Drexel University 

 

 

 

 

 

 

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF  

THE REQUIREMENTS FOR THE DEGREE OF  

 

MASTER OF FINANCIAL RISK MANAGEMENT  

 

In the   

Faculty  

of  

Business Administration  

 

 

 

Financial Risk Management Program 

© Ashkan Ziabakhshdeylami & Lauren Looi, 2011 

SIMON FRASER UNIVERSITY  

 

 

 

 

 

All rights reserved.  However, in accordance with the Copyright Act of Canada, this work  

may be reproduced, without authorization, under the conditions for Fair Dealing.   

Therefore, limited reproduction of this work for the purposes of private study, research,  

criticism, review and news reporting is likely to be in accordance with the law,  

particularly if cited appropriately. 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Simon Fraser University Institutional Repository

https://core.ac.uk/display/56377206?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

 

 

Approval  

Name: Ashkan Ziabakhshdeylami 

Lauren Looi 

Degree:  

Title of Project: Massively parallelized Monte Carlo simulation  

and its applications in finance 
 
 

 
Supervisory Committee  

 Dr.  Andrey Pavlov 
Associate Professor 

Academic Chair, Master of Financial Risk Management 

  

 

 

 

 Dr.  Dave Peterson 

Chief Financial Engineer 

Markit 

  

 

 

 

Date Approved 

 

 

 



[i] 

 

ABSTRACT  
In this paper, we propose, develop and implement a tool that increases the computational speed of 

exotic derivatives pricing at a fraction of the cost of traditional methods.  Our paper focuses on 

investigating the computing efficiencies of GPU systems.  We utilize the GPU’s natural 

parallelization capabilities to price financial instruments.  We outline our implementation, solutions 

to practical complications arising during implementation and how much faster GPU systems are.  

Each step that we explore has a significant impact on the efficiency and performance of GPU pricing.  

Rather than speaking in theoretical, abstract terms, we detail each step in an attempt to give the 

reader a clear sense of what’s going on. 

Efficiency is one of the pillars of financial calculations.  With the volume of risk calculations 

mandated by prudent risk management practices, even moderate improvements in calculation  

efficiency can translate into material changes in trading limits or savings in regulatory capital.  This 

can make the difference between a growing, successful trading operation or an also-ran. 

Unfortunately, a decent algorithm written in VBA cannot calculate option prices at the same speed 

as a farm of computers, particularly if we must price the trade in less than 150 milliseconds using 

10 million simulation paths.  

Fast forward from one trade to a book of several hundred thousand trades, many of which are 

exotic products.  Not only is it necessary to price each trade, but we must do so in each of thousands 

of different market scenarios in order to calculate even basic risk measures such as Greeks and 

Value-at-Risk (VaR).  At the end of the paper, we discuss how GPUs are currently used in the 

industry and their various advantages, including cost, time, accuracy and calculation frequency.  In 

addition, we discuss the implementation challenges of GPU systems and the attention to detail that 

is required for memory allocation. 

Keywords: GPGPU, Derivative Pricing, Monte Carlo Simulation, High Frequency trading 



[ii] 

 

ACKNOWLEDGEMENTS  
 

Special thanks to Dr. Dave Peterson, who gave us the opportunity to explore what we are 
passionate about in a meaningful way.  Thank you. 

Many thanks to Dr. Andrey Pavlov, for his continued support and his encouragements. 

Many thanks to Dr. Anton Theunissen, for continuously pushing us to expand our horizons and 
explore our financial creativity. 

We are grateful to QuIC Financial Technologies for providing us with our test platforms.    



[iii] 

 

Table Of Contents 
 

1 Introduction ______________________________________________________________ 1 

2 Literature Review _________________________________________________________ 3 

3 Simulation of Default Risky Bond _____________________________________________ 4 
3.1 Model _____________________________________________________________________ 4 

3.1.1 Default Risky Bond __________________________________________________________________ 4 
3.1.2 VaR ______________________________________________________________________________ 5 
3.1.3 Derivative on a portfolio of these bonds _________________________________________________ 5 

3.2 MC ________________________________________________________________________ 5 
3.3 GPU implementation _________________________________________________________ 7 

3.3.1 Implementation ____________________________________________________________________ 7 
3.3.2 Numerical results ___________________________________________________________________ 9 
3.3.3 Performance Comparison ____________________________________________________________ 10 

4 Simulation of Barrier Bond _________________________________________________ 11 
4.1 Model ____________________________________________________________________ 11 
4.2 MC _______________________________________________________________________ 12 
4.3 GPU implementation ________________________________________________________ 13 

4.3.1 Numerical results __________________________________________________________________ 16 
4.4 Performance comparison _____________________________________________________ 17 

5 CUDA __________________________________________________________________ 18 
5.1 Architecture _______________________________________________________________ 18 
5.2 Parallelism on GPU __________________________________________________________ 19 

5.2.1 Threads __________________________________________________________________________ 19 
5.2.2 Warps ___________________________________________________________________________ 19 
5.2.3 Blocks ___________________________________________________________________________ 20 
5.2.4 Grids ____________________________________________________________________________ 20 

5.3 Memory __________________________________________________________________ 20 
5.4 Precision & Performance _____________________________________________________ 21 
5.5 Parallel Number Generators __________________________________________________ 23 

5.5.1 MC Motivation ____________________________________________________________________ 23 
5.5.2 CUDA and RNGs ___________________________________________________________________ 24 
5.5.3 Linear Congruential Generator ________________________________________________________ 25 
5.5.4 Mersenne Twister __________________________________________________________________ 25 
5.5.5 XORWOW ________________________________________________________________________ 26 
5.5.6 Our Tests _________________________________________________________________________ 27 
5.5.7 Comments ON RNG ________________________________________________________________ 31 

6 Real world applications and advantages ______________________________________ 31 

7 Conclusion ______________________________________________________________ 33 

8 Appendix - Codes _________________________________________________________ 34 
8.1 Random Number Generators __________________________________________________ 34 
8.2 Instruments _______________________________________________________________ 42 

9 Bibliography ____________________________________________________________ 48 

 

  



[iv] 

 

Abbreviations 
CUDA Compute Unified Device Architecture 

LCG Linear Congruential Generator 

MC Monte Carlo 

MT Mersenne Twister 

PFE Potential future exposure 

RNG Random Number Generator 

SIMT Single-Instruction, Multiple-Thread 

SM Streaming Multiprocessors 

VaR Value-at-Risk 

ZCB Zero Coupon Bond 



 

Page 1 of 51 

 

1 INTRODUCTION  
We developed a tool that calculates the pricing of certain financial instruments on GPUs, thus 

utilizing performance advantages over standard CPUs. This translates into other key advantages, 

such as improvements in accuracy.  Computational efficiency is such a significant concern for 

portfolio-level credit risk measures that certain liberties are often taken with the details of the 

derivative pricing models employed.  However, attempts to  achieve greater model realism bear a 

substantial cost in terms of computing time.  Consequently, simpler pricing models that do not 

capture all relevant market features are typically used instead.  The resulting “broad brush” results 

are deemed sufficient, recognizing the steep  performance versus realism trade-off.  However, 

recent developments in high performance computing technology allow for computationally efficient 

implementations of realistic pricing models.  The use of such models would lead to greater 

confidence in the integrity of these portfolio-level risk measures. 

Previous studies have focused on pricing basic options via Monte Carlo simulation or very 

complicated products using a Partial Differential Equation approach.  Our focus is to price a slightly 

more complicated barrier option using Monte Carlo that would be useful for an organization to 

implement.  Our analysis includes a more detailed look in various aspects of GPU computing 

including the practicality and use of the increased computing speed in the financial industry.  

With technology improving at a lightning fast rate, the finance industry is taking advantages of the 

extra speed for their risk analytics, algorithmic trading and option pricing through GPU (Graphical 

Processing Unit) programming.  Many financial goliaths have explored these technologies through 

pilot programs with JP Morgan and BNP Paribas’ publicly announcing their GPU-based risk-

analysis.  JP Morgan recently was awarded a prize for innovation in banking technology by the 

Banker magazine (Turner, 2011).   



 

Page 2 of 51 

 

Our test hardware includes 2 NVidia GPUs: 

Tesla C2050 and Quadro 2000.  Visual Studio 

2010 express as our IDE, and programmed 

the models using C++ to interface with the 

Compute Unified Device Architecture 

(CUDA).  During our tests, we predominantly utilized the Tesla C2050 card for our calculations.  As 

a baseline test, we used MATLAB, which was programmed on an Intel-based MacBook Pro running 

a Core i7 processor.  The details of the systems used to run the CPU and GPU tests are in Table 1. 

To test the calculation efficiencies produced by GPUs, we reproduced the stochastic pricing, risk 

calculation and hedging possibilities of two financial products; (1) default risky bonds and (2) 

barrier bond options.  They were tested against MATLAB running on Windows running on an Intel-

based MacBook Pro.  In addition to the ability to parallelize the calculations, we also achieved 

mathematical efficiencies through the generation of the random variables for the Monte Carlo 

simulation in parallel.  We tested three different random number generators (RNG) namely Linear 

Congruential Generator (LCG), XORWOW and Mersenne Twister (MT).  Ultimately, the XORWOW 

method yielded the best results and we thereby simulated our testing using this methodology. 

We faced a few thoughtful issues, as the pricing of each of these products requires attention to 

memory management.  Since graphics cards operate differently from regular processors, careful 

consideration towards planning, allocation and usage of the CUDA is required for the most efficient 

use of this powerful technology.  This paper gives a brief overview of the architecture to better 

facilitate that understanding of the implementation. 

We conclude the paper with discussing how GPUs are currently being used in the industry and its 

various advantages including cost, time, accuracy and frequency.   

TABLE 1 SYSTEM DETAILS 

CUDA  
 
Graphics Card 1: Tesla 
C2050 
Graphics Card 2: Quadro 
2000 

 MATLAB Tests 
 
Processor: 
2.66 GHz Intel Core i7  
RAM: 4 GB 
 
 

 



 

Page 3 of 51 

 

2 LITERATURE REVIEW  
The speedups of GPUs have been analyzed in various papers.  Niramarnsakul, Chongstitvatana and 

Curtis found that an overall speedup of 900 times was achieved by implementing a Monte-Carlo 

method to price a European option on an Nvidia GEforce8600GT (Niramarnsakul, Chongstitvatana, 

& Curtis, 2011).  Other work has been done on pricing an American lookback option through a 

binomial and trinomial lattice which achieved speedups of 101 times (Solomon, Thulasiram, & 

Thulasiraman, 2010).   Binomial trees have also been used to price a convertible bond which 

achieved speedup factors of 511 – 668 depending on the number of bonds on a 960-core Tesla 

C1060 (King, Cai, Lu, Wu, Shih, & Chang).   

More advanced instrument pricings have been investigated by Dang, Christara and Jackson in 

pricing of exotic cross-currency interest rate derivatives.  However, these instruments were priced 

using Partial Differential Equations (PDE) and achieved a 30 to 60 times speedup based on using 

two GPU cards (Dang, Christara, & Jackson, 2011). 

Past implementations have mainly been in the pricing of options.  However, we were interested in 

investigating the speedup in pricing of more exotic instruments such as a barrier bond or those that 

can be immediately useful to an organization.  An additional focus was to gain efficiencies in 

multiple areas, which includes the testing of various random number generators and memory 

management.  We wanted to build instruments that would be practical and of immediate benefit to 

the industry and have thus also incorporated potential opportunities.  This paper aims to give a full 

perspective of pricing financial instruments on GPUs. 

 

 



 

Page 4 of 51 

 

3 SIMULATION OF DEFAULT RISKY BOND  

3.1 Model 

3.1.1  DEFAULT R IS KY  BO ND  

Initially we tested the speed of the GPUs by simulating a portfolio of one hundred corporate bonds 

with the possibility of default.  The calculations that we used were fairly simple in nature as a first 

test to get some rough speed results.  With a simple problem, the implementation will be more or 

less similar on different platforms, yielding a more comparable result across various platforms.   

Our goal is to calculate the value of a portfolio consisting of 100 corporate bonds modeled as Zero 

Coupon bonds (ZCB).  The ZCB bond pays $1 if it does not default and $0 if it does default.  The 

probabilities of default within a week are estimated as follows, where x is the number of 

independent defaults in a week for the whole portfolio: 

       {
  .        
 .        
 .        

 (1) 

We used a Monte Carlo simulation to calculate the 90% Value-at-Risk (VaR) for the portfolio.  Each 

simulation has52 time steps to represent each week in the year.  At each step if a bond does default, 

no other bond can default for that week.  The calculations were done in a series of steps: 

1. Generate a random number,  , for each period for the corresponding number of simulations 

2. Default occurs if    .  

3. Count the number of times the bond defaults and arrange the number from smallest to 

biggest 

 

 



 

Page 5 of 51 

 

3.1.2  VAR 

Calculation of the VaR of the portfolio at the confidence level,   = 99%, is given by the smallest 

number,  , such that the probability that the loss,  , in excess of   is not larger than     or 1%.  

The VaR result for this calculation is shown in Figure 1, where the 99% VaR is at bond 9 defaulting. 

             inf                   (2) 

 

FIGURE 1PORTFOLIO OF DEFAULT RISKY BONDS VAR REPRESENTATION 

3.1.3  DERIV ATIV E ON  A P ORT FO LIO  OF T HESE BON DS  

We’d like to also calculate the price of a derivative with the following payment structure: 

         {
  

   
       

                          

 (3) 

Where: 

X: number of defaults during the year 

We value this option by taking the present value of its expected payoff under the risk neutral 
measure, with risk free rate at 5% 

                 [      ]     .    (4) 

3.2 MC 

Monte Carlo simulation is the natural choice for this given problem.  We can simulate a portfolio of 

bonds, and record the end result in a result grid.  The Matlab implementation of this is given as in 

Table 2. 

Line at 9 means that  

the 99% VaR is at 9 bond 

defaults 



 

Page 6 of 51 

 

 

TABLE 2 BOND PORTFOLIO DEFAULT SIMULATION – MATLAB IMPLEMENTATION – SPEED OPTIMIZED 

clc;clear; format compact; format short; 

tic; 

 

numPeriods          = 364/7; 

numSim              = 1000000; 

 

%Default simulation 

toss= rand(numPeriods,numSim); 

toss=toss<.1; 

numDefaultsAtT =sum(toss); 

 

%VaR 

numDefaultsAtT=sort(numDefaultsAtT); 

VaR= (100-numDefaultsAtT(floor(numSim *0.01))) - 90;   % VT-V0 

 

%Derivative Payoff 

discountedDerivativePayoffs = exp(-0.05)*exp(numDefaultsAtT)/500 .* (numDefaultsAtT>5); 

 

s=summary(numDefaultsAtT); 

d=summary(discountedDerivativePayoffs); 

toc; 

s 

d 

Note in this implementation that we are sacrificing memory for speed.  We could save memory by 

sacrificing efficiency by simulating the defaults as outlined in Table 3. 

TABLE 3 BOND PORTFOLIO DEFAULT SIMULATION – MATLAB IMPLEMENTATION – MEMORY OPTIMIZED 

%Default simulation 

for i=1:numPeriods 

    toss= rand(numSim,1); 

    toss=toss<.1; 

numDefaultsAtT = numDefaultsAtT + toss; 

end 

 

The second implementation runs 26% slower on our machine.  One should note that this sacrifice of 

efficiency for memory is reversed on the CUDA devices.  On CUDA, the lower amount of global 

memory accessed results in a more efficient code.  We discuss this in more details in its 

corresponding section.  

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/tic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/rand.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sum.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sort.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/var.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/floor.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/toc.html


 

Page 7 of 51 

 

A very simple intuitive parallelization of this code is to simulate each path in parallel to the other 

paths.  We discuss one way to implement this on a GPU in the following section. 

3.3 GPU implementation 

3.3.1  IMP LEMENT ATION  

On the abstract level, we need a parallelization mechanism to compute the paths of default and a 

data container to store the data.  One possibility is to use low level kernel implementation, i.e. use 

CUDA kernels.  This technique is very effective and yields the most amount of flexibility.  However, 

one drawback of writing low level code is the need for a larger number of code lines and the 

associated costs of development.  Here for this example, we used the Thrust library instead of 

writing CUDA kernels.  Thrust is a flexible compile time library that provides us with parallelism 

mechanics and data containers necessary to work with the GPU efficiently.  We will employ CUDA 

kernels in the next section where we simulate and price a barrier bond. 

As the authors of Thrust put it, “Thrust is a CUDA library of parallel algorithms with an interface 

resembling the C++ Standard Template Library (STL).  Thrust provides a flexible high-level 

interface for GPU programming that greatly enhances developer productivity.  Develop high-

performance applications rapidly with Thrust!” (Jared Hoberock, Thrust Code at the speed of light, 

2011) 

The general idea is depicted in Figure 2, where the threads are simulating a portfolio of bonds and 

then saving the portfolio values in a simulation grid in the global memory. 



 

Page 8 of 51 

 

 

FIGURE 2 MC OVERVIEW – GPU IMPLEMENTATION 

Our GPU implementation code might look different to the Matlab code on the surface but rest 

assured that it is accomplishing similar task.  The heart of the code is given in Table 4, as follows: 

TABLE 4 BOND PORTFOLIO DEFAULT SIMULATION –CUDA THRUST  IMPLEMENTATION 

thrust::device_vector<int>defaultsAtT(numSim); 

printf("\n [%f(ms.)]   Memory Allocated on device",  cpuTime.StopTimer()); 

 

thrust::transform(     thrust::counting_iterator<int>(0),      // Start from memory 0 

                         thrust::counting_iterator<int>(numSim), // # of simulation paths 

                         defaultsAtT.begin() ,   // memory location for storing the result 

                         bond_Simulate());       //bond_Simulate() simulate portfolio over its life time 

 

printf("\n [%f(ms.)]   Bond simulation finished.",  cpuTime.StopTimer()); 

 

 

thrust::sort(defaultsAtT.begin(), defaultsAtT.end()); 

printf("\n [%f(ms.)]   Sorting finished.",  cpuTime.StopTimer()); 

 

//VaR 

intValueAtRisk=100-defaultsAtT[(int)(numSim*0.01)]-90;            //Value at Risk(VT-V0) 

 

 

// setup arguments 

//Get all types of information on the derivative payoff distribution ( including the mean) 

printf("\nStats on derivative payoff:"); 

stat_summary2( thrust::make_transform_iterator(defaultsAtT.begin() ,derivative_payoffPV()) , 

               thrust::make_transform_iterator(defaultsAtT.end() ,derivative_payoffPV())     ); 

 

printf("\n [%f(ms.)]   Computed Stats On DerivativePayoff",  cpuTime.StopTimer()); 

 



 

Page 9 of 51 

 

// compute summary statistics 

printf("\n**DONE** Whole Program: %f(ms.)\n\n",  cpuTime.StopTimer()); 

 

As it can be seen the code written using Thrust is very readable and modular.  We invite the first 

time reader to first read “An Introduction to Thrust” (Jared Hoberock, An Introduction to Thrust) 

and get familiarized with concepts such as thrust containers and kernel fusion before reviewing this 

code.   

Thrust uses the bond_Simulate() function, not shown here, to simulate paths in parallel.  So at one 

time, many instances of this function are run in parallel and their results are recorded in the 

simulation result container, which is a device_vector called “defaultsAtT”.  The rest of the code sorts 

the results to calculate the VaR, the derivatives payoff and finally the statistics summary. 

Within this code, we have used Thrust kernel fusing concepts to minimize global memory access 

and to increase efficiency.  This advanced technique should be employed whenever possible. 

One fundamental issue for MC simulations is the employment of the random number generators 

(RNG).  Here we present our result with different RNG techniques.  Later on in this paper, we 

provide an in-depth analysis of random number generation techniques for MC simulations. 

3.3.2  NUMERI CAL R ES ULT S  

The calculation of the default risky bonds were calculated across two platforms; Matlab and CUDA 

while the CUDA platform was testing using three types of RNG.  As can be seen in Table 5, each 

platform generated numbers within 4% of each other. 

 

 

 

 



 

Page 10 of 51 

 

TABLE 5 NUMERICAL RESULTS FROM SIMULATION OF DEFAULT RISKY BONDS 

 
Matlab Mersenne Twister 

Thrust 
(Disjoint Seq) 

XORWOW 

Simulation Paths (#) 1 M 200K 10M 10M 
Defaults: (#)     

Minimum 0 0 0 0 
Maximum 18 18 19 19 
Mean 2.1638 5.20098 5.20011 5.20402 
Std 2.1638 2.16448 2.16356 2.16375 

VaR ($) 9 9 9 9 
Option Price ($) 7.4192 7.06221 7.13648 7.35462 
 Minimum 0 0 0 0 
 Maximum 124,915 124,915 339,555 339,555 
 Mean 7.4192 7.06221 7.13648 7.35462 
 Std 288.6925 180.613 281.603 297.137 
Simulation Time (ms) 1,387.9 316.427 196.406728 119.83 
Simulation Time per path (ms) 1.39 1.58 0.02 0.01 

 

3.3.3  Performance Comparison 

As the results in Table 5 show, the GPU programs runs faster than the CPU irrelevant of the RNG 

used, with the exception of MT.  One must note that a high quality RNG such as MT takes much 

longer than the other two RNGs used.  Also a random number generator that produces all the 

numbers from the same seed will take much longer, since it needs to synchronize threads (thread 

will become sequential more or less), or discard numbers (there is a time penalty involved with 

higher number of discards).   

Writing the Matlab code is much easier for a person without C++ experience.  Also another 

challenge is writing CUDA optimized C++ code.  This requires some expertise in the field.  Two 

codes might achieve the same thing, but in a very different way.  If efficiency is desired, the coding 

must be left to the experts in the field. 

 



 

Page 11 of 51 

 

4 SIMULATION OF BARRIER BOND 

4.1 Model 

Merton models corporate debt as a riskless bond plus a short position in a put option on the firm’s 

assets.  Equity, on the other hand, is a call option on the firm’s assets.  (Merton, 1973) 

Assuming that the market value of the firm’s assets follows the stochastic process: 

                   (5) 

A put on the assets of the company can then be written as  

 

                                  

 :                    

          min            

(6) 

An analytical solution is then obtained from the famous Black-Scholes formula: 

 

                                  

   
ln (

    

 
)  (  

  

 
)      

 √   
        √    

           volatility of asset A 

(7) 

As a side note, this simple example with its analytical solution can be used as a control variate in 

more complicated problems and for accuracy measurement. 

Moving onto a more interesting instrument, let the bond default with recovery value R, at the first 

time          that the values of the assets of the firm      fall below a trigger level L.  This 

barrier bond is what we will be simulating and pricing using Monte Carlo simulations.  

 

 



 

Page 12 of 51 

 

4.2 MC 

The Matlab code for the simulation of this bond is given in Table 6 as: 

TABLE 6 BARRIER BOND PRICING– MATLAB IMPLEMENTATION 

clc; clear; format short; 

 

%dA = (alpha A - div ) dt + sig * dZ 

 

tic; 

 

% MC Simulation Parameters 

N=1000000; 

T=2;             % Time to maturity (All units in Years) 

dt = .05;        % Time steps 

alpha = .05;     % alpha 

sigma = .3;      % volatility of assets 

div = 10;       % continuous dividend yield 

rf = .05;        % risk free rate 

A0 = 150;        %Initial asset price  

 

% Simulation Setup 

A = ones(N,1) * A0;            

 

%Bond 

PVd=zeros(N,1);         %Present value of the bond for each path 

defaultTime = zeros(N,1); 

barrier = 100; 

faceValueD = 100; 

RecoveryPercentage = .8; 

 

% Simulation 

for t=0:dt:T 

    dA = (alpha * A(:,1)- div ) * dt+ sigma * A(:,1) * sqrt(dt) .* randn(N,1)  ; 

    A(:,1) = A(:,1)+dA; 

 

    for n=1:N               %If default occur at this time step record it 

        if((A(n,1)< barrier)&&(defaultTime(n,1) == 0)) 

            defaultTime(n,1) = t; 

            PVd(n,1) = RecoveryPercentage * faceValueD * exp( -rf * (T-t)); 

        end 

    end 

end 

 

%For the bonds which didn't default: 

for n=1:N               %If default occur at this time step record it 

    if(defaultTime(n,1) == 0) 

        PVd(n,1) = faceValueD * exp( -rf * (T)); 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clc.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/clear.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/format.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/tic.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/ones.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/zeros.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/zeros.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/sqrt.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/randn.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.html
http://www.mathworks.com/access/helpdesk/help/techdoc/ref/exp.html


 

Page 13 of 51 

 

    end 

end 

 

% bond price at initial time 0 

BondPrice=summary(PVd); 

toc; 

 

BondPrice 

 

4.3 GPU implementation 

Our GPU implementation this time is solely based on CUDA kernels and we do not use Thrust.  We 

have created a Monte Carlo engine that is optimized for running on CUDA.  The Monte Carlo engine 

will simulate the stochastic differential equation (SDE) of the assets of the company using a 

simulation grid.  During this simulation it will probe an object that defines the cash flows of a 

barrier bond.  The cash flows are then discounted back using the risk-free ZCB.  This result will be 

stored in a simulation grid which is a piece of memory on the global memory space of the GPU. 

Visually we can represent our implementation as in Figure 3. 

 

FIGURE 3 MC BARRIER BOND – BARRIER BOND – SIMULATION BLOCK AND SIMULATION GRID 

 

The MC Engine is implemented as a CUDA kernel, represented in Figure 3.  The model numbers are 

copied from the CPU memory into the GPU memory and it is then simulated using the engine. 

http://www.mathworks.com/access/helpdesk/help/techdoc/ref/toc.html


 

Page 14 of 51 

 

When executing the kernel, each thread block is responsible for one set of simulations.  Within the 

thread block, each thread is responsible for simulating one instrument. 

For each thread block, we load the model from global memory of the GPU into the shared memory 

of the thread block.  All the threads within the block will be sharing that specific simulation path.  

For each thread, we load its corresponding instrument into thread memory.  These memory access 

optimizations will reduce the execution time of the kernels. 

Table 7 shows that the Barrier Bond has a simple implementation in C++. 

TABLE 7 BARRIER BOND – GPU IMPLEMENTATION 

structBarrierBond                                      // An example of an instrument 

{ 

//Contract definitions 

        size_triskFactorNum; 

        GQDate maturity; 

        GQDate start; 

         

        float R;                  //Recovery 

        float barrier;           //Barrier 

        floatfaceValue;         //faceValue 

        floatcouponRate;            //Coupons by the bond if not defaulted. 

 

// Simulation of this contract through time 

        BarrierBond() 

        { 

                bondHasDefaulted=false; 

                couponRate=0; 

        } 

 

        __device__ inlinefloatdoTimeStep(GQDate t, float A)   //Asset price 

        { 

                if(bondHasDefaulted==true)//In case of default or after maturity the bond  

        //doesn't produce any cash flow 

                        return0; 

 

                if( t>(maturity+0.0025)  )//Floating point issues, adding .5 of a day is  

       //the accuracy 

                        return0; 

                 

                if(gqequalf( maturity, t, 0.001))  // Bond matured 

                        returnfaceValue; 

                 



 

Page 15 of 51 

 

                if( A<barrier )                          // Bond defaults or not 

                { 

                        bondHasDefaulted=true; 

                        return(faceValue*R); 

                } 

 

                if(couponRate==0)          // Bond doesn’t pay coupon 

                        return0; 

 

                return(faceValue*couponRate);                // Bond pays coupon 

        }; 

private: 

        bool  bondHasDefaulted; 

}; 

The main program, detailed in  

host_Bonds[i].start     =0;                //starts from 0 day 

host_Bonds[i].maturity  =2;                 //300 days from inception 

 

host_Bonds[i].faceValue=100; 

host_Bonds[i].barrier   =100; 

host_Bonds[i].R         =0.8;               //Recovery amount in case of default 

 

host_Bonds[i].riskFactorNum=1;      //It's a call on the first asset. 

 

 

After this setup, we ran a grid of CUDA kernels responsible for pricing, where lg is the lognormal 

model of assets, dev_bonds are the bonds to be priced on device, and sim_grid is the memory 

allocated for the results as show in Table 9. 

Table 9 is responsible for extracting and initializing instances of barrier bond. 

TABLE 8 BARRIER BOND CONTRACT SETUP 

host_Bonds[i].start     =0;                //starts from 0 day 

host_Bonds[i].maturity  =2;                 //300 days from inception 

 

host_Bonds[i].faceValue=100; 

host_Bonds[i].barrier   =100; 

host_Bonds[i].R         =0.8;               //Recovery amount in case of default 

 

host_Bonds[i].riskFactorNum=1;      //It's a call on the first asset. 

 

 



 

Page 16 of 51 

 

After this setup, we ran a grid of CUDA kernels responsible for pricing, where lg is the lognormal 

model of assets, dev_bonds are the bonds to be priced on device, and sim_grid is the memory 

allocated for the results as show in Table 9. 

TABLE 9 BARRIER BOND KERNEL INVOCATION 

LognormalMC<<<numSimulations,numBonds>>>(lg, dev_Bonds, sim_grid);      

//MC simulation that prices all the Bonds 
 

4.3.1  Numerical results  

As an example, we simulate assets of one company with the assumptions detailed in Table 10. 

TABLE 10 BARRIER BOND MARKET SETUP 

// Market Setup 

LognormalModellg;                                               

lg.alpha        =.05; 

lg.sigma        =.3; 

lg.delta        =10;           //Annual Continous div yield 

         

lg.A0    =150; 

lg.start=0;                  //unit:Years 

lg.end=2;                     //unit:Years 

lg.dt=0.05;                  //unit:Years 

Note that, the simulation time goes from 0 to 2, in 0.05 time steps.  We value one barrier bond with 

characteristics given as Table 8. 

The numerical result and timing from the Matlab implementation and the GPU are presented in 

Table 11. 

TABLE 11 MATLAB GPU TIMING COMPARISON – BARRIER BOND 

1 Trade, 1Million Simulations Matlab GPU 

Simulation Time (ms) 1,755.081 4,923.64 

Calculated Price ($) 84.5910 84.6047 

Std Price 7.1026 1.85098 

Std/#Simulations 7.1026E-06 1.85098E-06 

Simulation time per Bond (ms) 1,755.081 4,923.64 

 



 

Page 17 of 51 

 

As it can be seen the Matlab code running on a CPU is running faster than the GPU.  The underlying 

reason is that we are not fully utilizing the power of our Tesla GPU when we simulate only one 

trade.  In order to improve this, we can start by pricing multiple trades in parallel.  Table 12 

summarizes a comparison of simulation time versus trades to be priced with a single run. 

TABLE 12 BARRIER BOND GPU TIMING 

Num Grids Sim/Grid Bonds Simulation Time(ms) Simulation Time/Bond 

65000 15 1 4,923.64 4,923.64 

65000 15 32 4,981.03 155.66 

65000 15 33 5,767.60 174.78 

65000 15 128 8,304.05 64.88 

65000 15 256 15,927.68 62.21 

65000 15 512 42,415.55 82.84 

4.4  Performance comparison 

When we utilize the full power of GPUs and price multiple trades in parallel, we can achieve 

performances that are far superior to what can be achieved with CPUs.  For example, pricing 256 

trades in parallel on the GPU, we spend roughly 16seconds.  This translates into 62ms per trade.  

However, per trade execution time is fixed at its best in Matlab.  Therefore, pricing 256 trades in 

Matlab takes roughly 256*1,755.081=449,280ms or 7 minutes. 

Pricing 1 trade vs.32 trades practically takes the same amount of time in CUDA.  This is explained 

by the fact that threads are run in warps of 32 parallel threads on the Streaming 

Multiprocessors(SM).  Therefore, running 1 or 32 threads takes practically the same amount of 

time. 

One other note is that the more trades we price, i.e. the more resident blocks we have on the SM, the 

faster the code runs.  Therefore, pricing more trades in parallel is beneficial to us.  However, the 

upper limit of parallel trades to be priced is dictated by the maximum number of threads per thread 



 

Page 18 of 51 

 

block.  Also, there is a limit on global memory where the simulate prices are stored.  These limits 

should be taken into consideration when designing an efficient MC engine. 

5 CUDA 

5.1 ARCHITECTURE  

A simple graphic that compares the CPU and GPU architecture is depicted in Figure 4 (NVIDIA, 

2011): 

 

FIGURE 4 CPU GPU ARCHITECTURE COMPARISON (NVIDIA, 2011) 

Any CPU or GPU consist of two major parts, one is the processing units (ALUs) and the other one is 

the Memory Units which are responsible for storing the data.  There are different types of Memory 

Units and there is a speed associated with each type.  On a quad-core CPU, there are 4 ALUs, and 

two types of memory, the DRAM and Cache.  The Cache is a smaller but faster memory that is close 

to the ALUs.  Any data processed by the ALU should go through the Cache.   

The CUDA is built around a scalable array of multithreaded Streaming Multiprocessors (SMs), 

something similar to the ALU part of the CPU, but different in detail.  A SM is designed to execute 

hundreds of threads concurrently.  The instructions are pipelined to leverage instruction-level 

parallelism within a single thread, as well as thread-level parallelism.  Each SM has its own fast on 

chip memory (Local memory), which is essential for speed considerations. 

 



 

Page 19 of 51 

 

5.2 PARALLELISM ON GPU 

 

FIGURE 5 PARALLELISM VISUALIZATION IN CUDA 

5.2.1  THR EADS  

In the CUDA world, a thread is the smallest possible unit of work as seen in Figure 5.  A collection of 

threads run in parallel, and collectively aim to solve a problem.  Usually, many replications (if not 

thousands) run in parallel.  The function that defines a thread is sometimes called a kernel.  So, we 

run a thread, by invoking its kernel. 

One must remember that one kernel is limited to 2 Million instructions.  Therefore, a bigger project 

is divided into different kernels and each kernel accomplishes one task.  So, for example one kernel 

might filter a stock price to get log returns and another kernel executes a regression on the log 

returns. 

5.2.2  WARP S  

The multiprocessor creates, manages, schedules, and executes threads in groups of 32 parallel 

threads called warps.  Individual threads within a warp start together at the same program address, 

but they have their own instruction address counter and register state and are therefore free to 

branch and execute independently.  However, this branching slows the program down and should 



 

Page 20 of 51 

 

be avoided.  On the programing level a lower number of if statements in the kernel code translate 

into less branching. 

As a programmer you do not have control on the number of Warps within a thread block, but you 

do have control over the number of threads within a Block, and number of blocks within a grid. 

5.2.3  BLO CK S  

After warps, the next unit of thread grouping is a block, as seen in Figure 5.  Threads are grouped 

into blocks of threads.  A Block conceptually organizes the threads into a maximum 

3dimensionalspaces(2D space on devices with compute capability < 2).  The maximum number of 

threads in a block is dictated by the CUDA hardware architecture.  On the Arch2, there is a 

maximum of 1024 threads per block.  (NVIDIA, 2011). 

5.2.4  GRI DS  

A number of thread-blocks are organized into a Grid.  A grid conceptually organizes the blocks in a 

3 dimensional space.  So, each block can be identified by a X,Y,Z address. 

5.3 MEMORY  

Memory is usually the bottleneck of GPU programs.  Therefore, attention to memory management is 

probably the most important part of CUDA programming.  Table 13 provides a brief type and speed 

comparison of memories (NVIDIA, 2011). 

TABLE 13 MEMORY TYPES WITHIN CUDA ENABLED SYSTEMS 

Memory Scope Location Cached Size(Compute 2) 

Registers One thread On-chip No 32K  / MP 
Local Thread Device Memory No 512 K  /Thread 
Shared Thread Block On-chip N/A 48K  /MP 
Global All Threads + Host Device Memory No  
Constant Memory All Threads + Host Device Memory Yes 64 KB /MP 
Texture and Surface Memory All Threads + Host Device Memory Yes  

 



 

Page 21 of 51 

 

5.4 PRECISION &  PERFORMANCE  

When we dive into the world of numerical calculation, precision becomes an issue.  On a very basic 

level, the data containers and standards used by the hardware become important.  Fortunately, 

CUDA devices like many other processors follow IEEE Standards for Binary Floating-Point 

Arithmetic (ANSI/IEEE, 1985).  Within this standard, a floating point number depending on its 

accuracy is represented in Table 14. 

TABLE 14 FLOATING AND DOUBLE DATA TYPE BIT LENGTHS 

 Total Bit Size sign exponent Fraction 
float 32 bits 1 8 23 
double 64 bits 1 11 52 
 

Let us motivate the issue with an example.  We need to do Monte Carlo simulation for 2 years, with 

time steps of 0.05 (T=5, dt= 0.05).  The counter for simulation is t. There is an option that monitors 

the counter, and whenever its maturity arrives (t= 2), it produces $1.  The sudo code for this can be 

as simple as outlined in Table 15. 

TABLE 15 OPTION THAT NEVER MATURES 

T=2;     t=0     dt=.05;        option =0; 
While t< T 
{ 
        If ( t==2) 
                Option =1; 
        t+=dt 
} 

 

The problem is that Option will never equal to 1.  Underlying reason for this is that 0.05 cannot be 

represented perfectly in either float or double container.  Table 16 shows how it can be 

represented. 

 

 



 

Page 22 of 51 

 

TABLE 16 OPTION THAT NEVER MATURES 

printf ("\n (double) .05 %.24f,  (float) 0.05  %.24f" , (double) .05 , (float) 0.05 ); 

Output: 
(double) 0.05 0.050000000000000003000000 (float)  0.05 0.050000000745058060000000 
 

After 40 iterations depending on the data type used, the result is shown in Table 17. 

TABLE 17 THE TIME COUNTER AFTER 40 ITERATION 

Float Double 
1.9999991655349731000 2.0000000000000009000 
 

Neither of these equals to 2.  To avoid problems as such, one must remember to never use == sign 

for floating point numbers and always use an error bound range.  There are many ways to do so, 

each of which with some advantages, and disadvantages.  Matthias Rupp provides a very short and 

concise report on different techniques in his paper titled “Comparison of Floating Point Numbers” 

(Rupp, 2007).  Bruce Dawson also has written a very comprehensive article on Comparing floating 

point numbers (Dawson), where he proposes a fast 2s complement method for comparison of 

floats. 

For our purposes, we used the Relative error bound technique proposed by Donald Knut in the 

book “The Art Of Computer Programming” (Knuth, 1997).  We based our CUDA floating compare on 

a public C implementation of this by Theodore Belding (Belding, 2009). 

One must mention that iterative addition of dt will yield more error than multiplication of dt by a 

factor.  For example, adding dt to t 40 times will produce more error than adding 40*dt to t.  For 

illustrative purposes, our curious reader can run the code illustrated in Table 18 on her platform. 

 

 

 



 

Page 23 of 51 

 

TABLE 18 TESTING OF NUMERICAL DEFICIENCIES OF FLOAT AND DOUBLE 

template<class T>   

voidnumericTesters(size_t iterations, T step)   

{   

    T a;   

    a=0;   

    for(size_t n=0;n<iterations;n++)   

        a=a+step;   

    printf("Iterated answer:%.19f,  Multiplied Answer:%.19f\n", a, iterations*step);   

}   

       

int main(intargc, char*argv[])   

{   

    numericTesters<float>(40, .05);   

    numericTesters<double>(40, .05);   

}   

Output: 

Iterated answer:1.9999991655349731000,  Multiplied Answer:2.0000000298023224000 

Iterated answer:2.0000000000000009000,  Multiplied Answer:2.0000000000000000000 

 

One might think about this problem, in the world of Matlab or excel.  In Matlab, the equality sign is 

in fact an error bounded if statement rather than a primitive equality check like ==.  Essentially, 

the authors of Matlab have already implemented this for the user, and the problem is concealed to 

some extent. 

Excel solves this issue by showing only certain number of decimal points, and doing the if statement 

on the same basis.  However, if you start adding 0.05 to 0 repetitively, after 73 repetitions or so, the 

error becomes significant. 

5.5 PARALLEL NUMBER GENERATORS  

5.5.1  MC  MOTI VATI ON  

An essential part to Monte Carlo simulation is generation of random numbers.  Starting with an Ito 

process as: 

                      (8) 



 

Page 24 of 51 

 

We would like to value an option      .  One way to do this is to derive the PDE of        and then 

solve it either analytically or numerically using finite difference techniques.  One other way is to 

write the present value of        in terms of expectations, and then generate random numbers for 

dW, and calculate the expectations for a large number of samples.  This is essentially possible 

through the infamous Feynman-Kac formula, and can be written as: 

         *  ∫        
 

      |    + (9) 

As Peter Jaeckel puts it “Feynman-Kac connects the solutions of a specific class of partial differential 

equations to an expectation which establishes the mathematical link between the PDE formulation 

of the diffusion problems we encounter in finance  and Monte Carlo simulations.” (Jackel, 2002) 

One way to solve this expectation is to do integration over the sample space.  However, in the MC 

method we draw lots of samples from the sample space, and then do the average on our limited 

number of realizations.  Since this sampling is done randomly, the quality of RNG directly affects the 

quality of calculated expectation. 

Since RNG is a very important topic for scientists, many papers have been written on this topic.  

Here, the focus of this paper is not the RNG, but since it is fundamentally important for efficiency, 

timing, quality and pricing of any instrument, we spent considerable time to compare the 

possibilities.  We briefly discuss some of the more famous and useful ones here in this paper. 

5.5.2  CUDA  AND RNGS  

Random number generators fall into two categories: pseudorandom and quasirandom.  A 

pseudorandom sequence is generated by a deterministic algorithm, but it satisfies most of the 

statistical properties of a truly random sequence.  From the tests that have been proposed, 

BigCrush test is a famous one.  CUDA RNG library uses a BigCrushuniform(0,1) test platform 

(Simard., August 2007).  Only a small number of generators pass all of the BigCrush tests.  For 



 

Page 25 of 51 

 

example the widely-respected Mersenne twister (Nishimura, January 1998) consistently fails two 

of the linear complexity tests. 

We’ll be discussion the following types of RNG: 

1. Linear Congruential Generators (LCG) 

2. XORWOW 

3. Mersenne twister 

5.5.3  L INEAR  CON GR UENT I AL  GEN ER ATO R  

Linear Congruential Generator (LCG) is one of the oldest and most well understood RNG, however 

there are disadvantages to this methodology, particularly with serial correlation.  For example, a 

point in an n-dimensional space will lie on, at most,  
 

  hyperplanes if that point is chosen by an 

LCG  Marsaglia’s Theorem  developed by George Marsaglia  because of serial correlations between 

successive values of the sequence.   

An additional disadvantage is that if   is set to a power of 2, then the lower-order bits of the 

generated sequence have shorter cycles than the sequence as a whole.  The  th least significant 

digit in the base b representation of the output sequence repeats with at most period   , where 

     for some integer  .  Substituting    for the modulus term demonstrates the shorter cycles. 

This methodology is beneficial when the amount of memory available is limited.  However, as 

mentioned above, the lower-order bits are not reliable when   is set to a power of 2, as it will 

produce alternatively odd and even results (Kato, 1996). 

5.5.4  MER S ENN E TWIS TER  

Makoto Matsumoto and Takuji Nishimura developed the Mersenne Twister (MT) to fix the flaws 

from older algorithms.  It is based on a matrix linear recurrence over a finite binary field    for fast 



 

Page 26 of 51 

 

generation of high-quality pseudorandom numbers.  The name originates from the fact that the 

length of the period is a Mersenne prime (Matsumoto M. a., 1998).  

There are two variants of the algorithm, the newer 32-bit word length MT19937 and the older 64-

bit word length MT19937-64.  They differ only by the size of the Mersenne primes used.  The 

numbers are generated with an almost uniform distribution in the range [      ]. 

The most common 32-bit word length MT19937 has the following advantages: 

 Very long period          

  -distributed to   -bit accuracy for every        .  This means that the following 

holds for the pseudorandom sequence    of 32-bit integers of period  : 

Let            denote the number formed by the leading 32 bits of  , and consider   of the     - 

bit vectors 

(                                           )           

All-zero combinations occurs once less often than each of the      possible combinations of bits. 

 Passes most of the statistical randomness tests including Diehard and TestU01 Crush 

randomness tests.   

5.5.5  XORWOW 

The xorshift RNG is based off of a repeated use of a simple computer construction: exclusive-or 

(xor) a shifted version of itself (Marsaglia, 2003).  This produces a sequence of             or 

      sequences for integers  , pairs    , or triples       respectively.  The advantages of using 

such operations with various shifts and arguments are speed, simplicity and the high quality of 

randomness.   

In C, these basic operations can be used: 



 

Page 27 of 51 

 

y^ ( y<<a ) for shifts to the left 

y^ ( y>>a ) for shifts to the right 

The simple C procedure demonstrates the power and effectiveness of xorshift operations.  Only 

three xorshift operations are needed to provide        random 32-bit integers using four random 

seeds        : 

tmp = (x^ (x<<15) ); x = y; y = z; z = w; return w = (w^ (w>>21) ) ^ (tmp ^ (tmp>>4)); 

Marsaglia proposed the XORWOW generator, which has been tested using the TestU01 Crush 

randomness test in addition to the full suite of NIST pseudorandomness tests.  The most rigorous 

TestU01 test has been the BigCrush, which executes 106 statistical tests over the course of five 

hours.  The XORWOW generator is noted to “pass all of the tests on most runs  but does produce 

occasional suspect statistics.” (NVIDIA, January 2011) 

5.5.6  OUR  TEST S  

For our purposes we tested 7 techniques of random number generations.  In the first three 

techniques we generate the random numbers on the CPU and transfered them to the GPU.  We 

tested these on the context of valuing a portfolio of default risky bonds.  A brief overview is 

presented in Table 19. 

TABLE 19 RANDOM NUMBER GENERATION TIMING COMPARISON – ON THE CPU 

 rand() MT Thrust min_std 
Memory Allocated on device and CPU 92.058467 91.857008 111.313523 
Random Numbers generated 714.157580 500.139225  
Random Numbers transferred to device 769.857255 557.298299 415.055440 
Bond simulation finished. 905.593321 692.318780 547.274307 
Sorting finished. 910.726453 696.417244 552.635485 
Computed Stats On Data 910.975817 698.288970 554.005934 
* Tests run on Quad Core Intel Xeon CPU 2.40GHz 



 

Page 28 of 51 

 

In the first column of Table 19, the C++ rand() implementation is presented.  This implementation 

is one of the worst ones possible, time wise and quality wise. 

The second implementation is the famous Mersenne Twister MT19937  implementation by Makoto 

Matsumoto and Takuji Nishimura (Matsumoto T. N., 2002).  This implementation is probably one of 

the best and widely used RNGs.  It runs faster and produces high quality random numbers. 

The third implementation is Thrust’s default RNG engine min_std  which produces reasonable 

quality numbers very fast. 

In the next phase, we explored the generation of random numbers in parallel.  Going from 

sequential to parallel has its own advantages and challenges.  The biggest challenge is the tracking 

of states between different threads.   

A pseudorandom number generator starts with a seed and creates a predictable sequence of 

numbers that has statistical properties of numbers coming from a random distribution.  As the RNG 

moves along the sequence, it keeps an internal state that is used to generate the next number.  One 

can either share and update the states between the threads or alternatively start from the same 

seed in each thread, and discard the first n numbers.  There are penalties associated with either of 

these two techniques.  In first technique, we run the hazard of our programing becoming sequential 

due to sequential memory read and writes.  In second technique, there is a cost associated with 

discarding first N numbers in thread N.  This may be proven to be drastically in efficient. 

The third alternative way is to have different threads start with different seed numbers.  One might 

notice that, a sequence of N numbers generated from N seeds, will not yield the exact same 

properties as N numbers generated from the same seed.  Never the less, if we choose a smart way to 

choose these seed sequences we may be able to produce random numbers in parallel with 

reasonable quality. 



 

Page 29 of 51 

 

One way to choose the seeds for each thread that produces reasonable numbers is using thread 

number in conjunction with Robert Jenkin’s    bit integer hash function. 

The C++ code is reflected in Table 20. 

TABLE 20 ROBERT JENKIN’S 32BIT INTEGER HASH FUNCTION 

uint32_t hash(uint32_t a) 

{ 

   a =(a+0x7ed55d16)+(a<<12); 

   a =(a^0xc761c23c)^(a>>19); 

   a =(a+0x165667b1)+(a<<5); 

   a =(a+0xd3a2646c)^(a<<9); 

   a =(a+0xfd7046c5)+(a<<3); 

   a =(a^0xb55a4f09)^(a>>16); 

   return a; 

} 

 

Since, the focus of our paper is not Random numbers; we don’t fully test RNGs for their statistical 

properties.  What we look for is whether they produce reasonable option prices with reasonable 

number of paths and execution time. 

We tested 3 parallel number generators.  First is the CUDA random number generator which is 

based on min_std implementation.  The numbers start from the same seed and are created using a 

skip-ahead functionality.  Then we test the RNG that comes with CUDA Library, the XORWOW.  In 

this method  we hash the thread number using Jenkin’s   bit hash  and use that number as the seed 

number.  At the end, we tested an implementation of Mersenne Twister by Makoto Matsumoto and 

Mutsuo Saito specifically designed for GPUs (Mutsuo Saito, 2011).  However with this third 

implementation, we are not able to do kernel fusing and we needed to store the generated random 

numbers in the global memory which reduces efficiency. 

 

 



 

Page 30 of 51 

 

TABLE 21 RANDOM NUMBER GENERATION TIMING COMPARISON – ON THE GPU 

 Thrust RNG CUDA RNG MT RNG 
Method min_std XORWOW Mersenne 

Twister 
Number Of Paths 10 M 10 M 2M 
    
Memory Allocated 55.006395 45.664290 - 
Memory Allocated on device with random 
numbers 

  110.789124 

Bond simulation finished 55.192030 45.988511 296.744956 
Sorting finished. 180.262713 157.273804 301.221176 
Derivative Payoff Statistic computed 194.770543 184.723107 313.132670 
The summaries of the observations are as follows as well as been captured in Table 21: 

1. Thrust RNG (based on minstd_rnd ) 

a. 10M Paths takes 190ms 

b. Does not need much memory since we generate the numbers to do the calculation 

and discard them. 

2. XORWOW 

a. We do hashing on seeds (Robert Jenkins' 32 bit integer hash function), since skip-

ahead cost is not justifiable.  The numbers are created in parallel and not stored, 

since we do not need them to be stored for pricing of the bonds 

b. 10M Paths takes 180ms. 

c. Does not need much memory since we generate the numbers, do the calculation and 

then discard them. 

3. MT 

a. The numbers should be created and stored in global memory, even though we do 

not need them to be stored. 

b. 2M Paths takes about 300ms. 

c. Requires a large amount of the GPU’s global memory  since we cannot do kernel 

fusion.  We can generate numbers using the MT code and use the random numbers 

stored in the global memory for the simulation.  Storage in global memory (on the 

GPU) is very costly overall and also makes our bond pricing code more complex. 



 

Page 31 of 51 

 

5.5.7  CO MMENTS  ON  RNG 

The choice of the best RNG is based on both cycle periods and the amount of memory required.  

From a memory perspective, MT requires a significant amount of memory (624 words) that needs 

to be updated if used on the CUDA framework where tens of thousands of threads share it.  In 

contrast, XORWOW requires only four words to generate        random 32-bit integers.  This is 

beneficial from a performance perspective while passing the standard tests of RNG quality. 

We suggest using the CUDA RAND library for the purposes of random number generation.  If seed 

numbers are shared between threads XORWOW is a reasonable choice quality wise.  For more 

speed, one can resort to hashing tables and using thread numbers as the key and outputting the 

hash table as the seed number.  If even more speed is desired, an implementation of LCG is 

favourable. 

6 REAL WORLD APPLICATIONS AND ADVANTAGES  
The ability to use GPUs in finance have a significant economic and performance benefit.  There have 

already been a few large companies that have utilized the power of parallel processing and over 

time, the power will be utilized in a much great capacity in the future.  Bloomberg went live in 2009 

running 48 server or Tesla GPU pairs to calculate pricing for 1.3 million hard-to-price asset-backed 

securities, instead of 1,000 servers (Crosman, 2009).  BNP Paribas has also adopted a small cluster 

containing 2 NVIDIA Tesla units that replace 

250 dual-core CPUs.  Ultimately, this conversion 

helped them get a 10x savings in power (Giles, 

2010).  The world’s largest investment bank  JP 

Morgan, recently adopted a combination of CPUs and GPUs to accelerate performance by 40X 

allowing the bank to calculate risk across a wide spectrum of products in minutes rather than 

TABLE 22 ORGANIZATIONS THAT ADOPTED GPUS 

 CPU Only GPU and CPU 
Bloomberg 1,000 48 Tesla 
BNP Paribas 250 2 Tesla 
JP Morgan 40 x faster 
 



 

Page 32 of 51 

 

overnight providing a significant market advantage.  Calculations can now be run as needed, 

enabling flexibility, increasing speed, improving accuracy and allowing for more complex scenario 

calculations (Marketwire, 2011).   Table 22 summarizes the list of companies who have adopted 

GPU technologies.  

Organizations such as Bloomberg and JP Morgan are pioneers in the large-scale adoption of GPUs 

and are just beginning to explore the benefits of the technology.  Utilizing GPUs can provide 

companies with a high-performance, cost-effective and energy savings solutions to processes that 

require computational-intensive services.  King, Cai, Lu, Wu, Shih and Chang created a system that 

may offer real-time pricing for traders to better arbitrage or hedge their positions and for the 

creation of better trading strategies.  (King C. L., 2010).   

The surrounding industries have started to support computational finance on GPUs, including 

support by MATLAB and C++ Accelerated Massive Parallelism (C++ AMP) amongst others.  The 

libraries are continuously growing to support future development in GPU coding.  In addition to 

this, independent software vendors (ISVs) are beginning to offer software based on CUDA making it 

easy for clients to take advantage of this technology.  Murex claims that its exotic derivatives 

models are 60 – 250 times faster, SciComp can run Monte Carlo simulations 7 – 300 times faster 

and Quantifi Solutions has achieved a 100 times faster calculation of Brace-Gatarek-Musiela (BGM) 

interest rate derivative pricing model (Davidson, 2010). 

There are many advantages for traders and risk managers to increase the speed of their 

calculations and improve accuracy in their modelling.  This will give them a competitive edge 

against competitors at significantly reduced costs.  With the supporting market, enabling the 

development in this area and overcoming the programming difficulty that there once was, the 

future of derivative pricing is likely to quickly take advantage of the new speed and power. 



 

Page 33 of 51 

 

7 CONCLUSION  
Based on our tests, we have seen significant performance enhancements of 28 times– 140 times 

faster when using a GPU.  The calculations of the bond default time improved by 140 times while 

the calculation of the barrier bond improved by 28 times when moving from MATLAB to CUDA via 

C++.  This can provide a large time saving advantage for companies who calculate risk exposures 

on large portfolios.  Additionally, this is beneficial for traders who would like to run real-time 

derivative pricing and risk models.  GPUs provide advantages on three fronts: cost reduction, 

performance enhancement and calculation accuracy.  However, special attention needs to be paid to 

memory management and algorithmic programming in order for the whole system to be efficient.  

This skill needs to be learned as it varies from the traditional form of programming. 

It is for this reason that schools are beginning to offer GPU programming courses which will help to 

accelerate further development in this area in the near future.  The memory management, floating 

point and specific algorithmic details (including RNG) have been discussed in our paper.  These are 

only a few of the issues that have been outlined, which pose initial challenges for adoption of GPU 

technology in finance.  However, once we built the libraries and programmed solutions, the 

implementation portion of the product pricings became easier.  As is true with most things, we 

focused on building solid foundations and building blocks that we can utilize in other projects. 

The adoption of GPU technology required us to learn three different subjects: (1) the CUDA, (2) 

memory management and (3) financial pricing.  Once the understanding for grids, blocks, warps 

and threads were understood, we could assimilate how to increase efficiency in the calculations and 

control the way the data was handled.  For each of physical pieces, there are memory devices that 

vary in speeds depending on which one is used.  The coding needed to be designed so that the most 

efficient steps, in the correct order were taken to minimize slow transfers of data.  Finally, we 



 

Page 34 of 51 

 

utilized our financial understanding to price various instruments that are present in the market 

starting from the simpler default risky bond and then pricing barrier bond via Monte Carlo 

simulation.  Various risk measures can be calculated on these prices including Value-at-Risk (VaR), 

PFE and Greeks.  VaR has already been calculated on the default risky bond, but other risk measures 

will be left to another time.   

Our goal was to demonstrate to increased performance gained by using GPUs in the calculation of 

pricing derivatives.  As we can see, there are significant advantages and these methodologies are 

trickling through the financial market.  With Bloomberg, BNP Paribas and JP Morgan adopting the 

faster technologies, many companies are likely to follow suit.  Therefore, GPUs are becoming a vital 

participant of computational finance.   

8 APPENDIX -  CODES  

8.1 RANDOM NUMBER GENERATORS  

Here we use the Thrust RNG, disjoint Sequences techniques in pricing of a portfolio of bonds. 

#include <thrust/host_vector.h> 
#include <thrust/device_vector.h> 
#include <thrust/generate.h> 
#include <thrust/reduce.h> 
#include <thrust/functional.h> 
#include <thrust/random.h> 
#include <thrust/sort.h> 
#include <thrust/extrema.h> 
#include <cmath> 
#include <limits> 
 
#include <cuda.h> 
 
#include <curand_kernel.h> 
 
 
#include "HRTimer.h" 
#include "random.h" 
#include "stats.h" 
 
 
 
#include <iostream> 
#include <iomanip> 



 

Page 35 of 51 

 

 
 
 
struct bond_Simulate : public thrust::unary_function<unsigned int,float>  
{ 
  __device__ 
  float operator()(unsigned int thread_id) 
  { 
 float defaultsAtT = 0; // defaults at the end of the year. 
 
 unsigned int numWeeks = 52; // Weeks per year 
     
    // note that M * N <= default_random_engine::max, 
    // which is also the period of this particular RNG 
    // this ensures the substreams are disjoint 
 
    // create a random number generator 
    // note that each thread uses an RNG with the same seed 
 thrust::default_random_engine rng; 
 
    // jump past the numbers used by the subsequences before me 
    rng.discard(numWeeks * thread_id); 
 
    // create a mapping from random numbers to [0,1) 
    thrust::uniform_real_distribution<float> u01(0,1); 
 
 
    // take N samples in a quarter circle 
    for(unsigned int i = 0; i < numWeeks; ++i) 
    { 
      // draw a sample from the unit square 
      float toss = u01(rng); 
   defaultsAtT += toss>.1 ? 0 : 1; 
    } 
 
 return defaultsAtT; 
  }  
}; 
 
 
struct derivative_payoffPV : public thrust::unary_function<float,float> 
{ 
  
 __device__ 
    float operator()(float numDefaultsAtT ) 
    { 
  float ret; 
  ret= numDefaultsAtT>4? (float)exp(-0.05)*exp( (float) numDefaultsAtT)/500.0 : 0.0 ; 
  //ret = numDefaultsAtT; 
 
  return ( ret ); 
    } 
}; 
 
int main(void) 
{ 
 HRTimer cpuTime; //Timer 
 
 
 printCUDAdevices(); 
 cudaSetDevice(0);            // Set device 1 (the tesla card)  as current  



 

Page 36 of 51 

 

 
    int numSim = 10000000;   // number of simulations, ie. rows 
 
 printf("\nProgram start with %d paths", numSim ); 
 cpuTime.StartTimer(); 
 
  
    // allocate storage for row sums and indices 
    thrust::device_vector<int> defaultsAtT(numSim); 
 printf("\n [%f(ms.)]   Memory Allocated on device",  cpuTime.StopTimer()); 
 
 thrust::transform( thrust::counting_iterator<int>(0), // Start from memory 0 
      thrust::counting_iterator<int>(numSim), // # of simulation paths 
      defaultsAtT.begin() ,    // memory location 
for storing the result 
      bond_Simulate());     // 
bond_Simulate() simulate one bond over it's life time of one year 
 
 printf("\n [%f(ms.)]   Bond simulation finished.",  cpuTime.StopTimer()); 
  
 
 thrust::sort(defaultsAtT.begin(), defaultsAtT.end()); 
 printf("\n [%f(ms.)]   Sorting finished.",  cpuTime.StopTimer()); 
 
//VaR 
 int ValueAtRisk = 100-defaultsAtT[ (int)(numSim*0.01) ] -90;  //Value at Risk(VT-V0) 
  
 
//derivative pricing (code for statistics copied from summary_statistics.cu) 
 // setup arguments 
  
 //Get all types of information on the derivative payoff distribution ( including the mean) 
 printf( "\nStats on derivative payoff:"); 
 stat_summary2( thrust::make_transform_iterator( defaultsAtT.begin() ,derivative_payoffPV() ) , 
     thrust::make_transform_iterator( defaultsAtT.end() ,derivative_payoffPV() ) ); 
 
 printf("\n [%f(ms.)]   Computed Stats On DerivativePayoff",  cpuTime.StopTimer()); 
 
 // compute summary statistics 
  printf("\n**DONE** Whole Program: %f(ms.)\n\n",  cpuTime.StopTimer()); 
 
 
 printf ( "\n Yearly 99%% Value at Risk (VaR) is %d .", ValueAtRisk); 
  
 printf( "\nStats on defaults:"); 
 stat_summary( defaultsAtT  ); 
 
 std::cin >> ValueAtRisk;; 
 
    return 0; 
} 
 
 
 

 

Here we use XORWOW RNG in pricing of Portfolio of bonds, using Thrust library. 



 

Page 37 of 51 

 

#include <thrust/host_vector.h> 
#include <thrust/device_vector.h> 
#include <thrust/generate.h> 
#include <thrust/reduce.h> 
#include <thrust/functional.h> 
#include <thrust/random.h> 
#include <thrust/sort.h> 
#include <thrust/extrema.h> 
#include <cmath> 
#include <limits> 
 
#include <cuda.h> 
 
#include <curand_kernel.h> 
 
 
#include "HRTimer.h" 
#include "random.h" 
#include "stats.h" 
 
 
 
#include <iostream> 
#include <iomanip> 
 
__host__ __device__ 
unsigned int hash(unsigned int a) 
{ 
    a = (a+0x7ed55d16) + (a<<12); 
    a = (a^0xc761c23c) ^ (a>>19); 
    a = (a+0x165667b1) + (a<<5); 
    a = (a+0xd3a2646c) ^ (a<<9); 
    a = (a+0xfd7046c5) + (a<<3); 
    a = (a^0xb55a4f09) ^ (a>>16); 
    return a; 
} 
 
 
 
 
 
 
 
struct bond_Simulate : public thrust::unary_function<unsigned int,float>  
{ 
  __device__ 
  float operator()(unsigned int thread_id) 
  { 
    
 
 float defaultsAtT = 0; // defaults at the end of the year. 
 
    unsigned int seed = hash(thread_id); 
 unsigned int numWeeks = 52; // Weeks per year 
 
    curandState s; 
 
    // seed a random number generator 
    curand_init(seed, 0, 0, &s); 
 
    // take N samples in a quarter circle 



 

Page 38 of 51 

 

    for(unsigned int i = 0; i < numWeeks; ++i) 
    { 
      // draw a sample from the unit square 
      float toss = curand_uniform(&s); 
   defaultsAtT += toss>.1 ? 0 : 1; 
    } 
 
 return defaultsAtT; 
  }  
}; 
 
 
struct derivative_payoffPV : public thrust::unary_function<float,float> 
{ 
  
 __device__ 
    float operator()(float numDefaultsAtT ) 
    { 
  float ret; 
  ret= numDefaultsAtT>4? (float)exp(-0.05)*exp( (float) numDefaultsAtT)/500.0 : 0.0 ; 
  //ret = numDefaultsAtT; 
 
  return ( ret ); 
    } 
}; 
 
int main(void) 
{ 
 HRTimer cpuTime; //Timer 
 
 
 printCUDAdevices(); 
 cudaSetDevice(0);            // Set device 1 (the tesla card)  as current  
 
    int numSim = 10000000;   // number of simulations, ie. rows 
 
 printf("\nProgram start with %d paths", numSim ); 
 cpuTime.StartTimer(); 
 
  
    // allocate storage for row sums and indices 
    thrust::device_vector<int> defaultsAtT(numSim); 
 printf("\n [%f(ms.)]   Memory Allocated on device",  cpuTime.StopTimer()); 
 
 thrust::transform( thrust::counting_iterator<int>(0), // Start from memory 0 
      thrust::counting_iterator<int>(numSim), // # of simulation paths 
      defaultsAtT.begin() ,    // memory location 
for storing the result 
      bond_Simulate());     // 
bond_Simulate() simulate one bond over it's life time of one year 
 
 printf("\n [%f(ms.)]   Bond simulation finished.",  cpuTime.StopTimer()); 
  
 
 thrust::sort(defaultsAtT.begin(), defaultsAtT.end()); 
 printf("\n [%f(ms.)]   Sorting finished.",  cpuTime.StopTimer()); 
 
//VaR 
 int ValueAtRisk = 100-defaultsAtT[ (int)(numSim*0.01) ] -90;  //Value at Risk(VT-V0) 
  
 



 

Page 39 of 51 

 

//derivative pricing (code for statistics copied from summary_statistics.cu) 
 // setup arguments 
  
 //Get all types of information on the derivative payoff distribution ( including the mean) 
 printf( "\nStats on derivative payoff:"); 
 stat_summary2( thrust::make_transform_iterator( defaultsAtT.begin() ,derivative_payoffPV() ) , 
     thrust::make_transform_iterator( defaultsAtT.end() ,derivative_payoffPV() ) ); 
 
 printf("\n [%f(ms.)]   Computed Stats On DerivativePayoff",  cpuTime.StopTimer()); 
 
 // compute summary statistics 
  printf("\n**DONE** Whole Program: %f(ms.)\n\n",  cpuTime.StopTimer()); 
 
 
 printf ( "\n Yearly 99%% Value at Risk (VaR) is %d .", ValueAtRisk); 
  
 printf( "\nStats on defaults:"); 
 stat_summary( defaultsAtT  ); 
 
 std::cin >> ValueAtRisk;; 
 
    return 0; 
} 
 
 
 

 

Here we use XORWOW Disjoint Sequences RNG in pricing of Portfolio of bonds, using Thrust 

library. 

/* 
For the highest quality parallel pseudorandom number generation, each experiment should 
be assigned a unique seed. Within an experiment, each thread of computation should be 
assigned a unique sequence number. If an experiment spans multiple kernel launches, it is 
recommended that threads between kernel launches be given the same seed, and sequence 
numbers be assigned in a monotonically increasing way. If the same configuration of 
threads is launched, random state can be preserved in global memory between launches to 
avoid state setup time. 
 
Source: CURAND_Library.pdf 
 
*/ 
 
#include <thrust/host_vector.h> 
#include <thrust/device_vector.h> 
#include <thrust/generate.h> 
#include <thrust/reduce.h> 
#include <thrust/functional.h> 
#include <thrust/random.h> 
#include <thrust/sort.h> 
#include <thrust/extrema.h> 
#include <cmath> 
#include <limits> 
 
#include <cuda.h> 
 



 

Page 40 of 51 

 

#include <curand_kernel.h> 
 
 
#include "HRTimer.h" 
#include "random.h" 
#include "stats.h" 
 
 
 
 
#include <iostream> 
#include <iomanip> 
 
__host__ __device__ 
unsigned int hash(unsigned int a) 
{ 
    a = (a+0x7ed55d16) + (a<<12); 
    a = (a^0xc761c23c) ^ (a>>19); 
    a = (a+0x165667b1) + (a<<5); 
    a = (a+0xd3a2646c) ^ (a<<9); 
    a = (a+0xfd7046c5) + (a<<3); 
    a = (a^0xb55a4f09) ^ (a>>16); 
    return a; 
} 
 
 
 
 
 
 
 
struct bond_Simulate : public thrust::unary_function<unsigned int,float>  
{ 
  __device__ 
  float operator()(unsigned int thread_id) 
  { 
    
 
 float defaultsAtT = 0; // defaults at the end of the year. 
 
    unsigned int seed = 1234; //hash(thread_id); 
 unsigned int numWeeks = 52; // Weeks per year 
 
    curandState s; 
 
    // seed a random number generator 
    curand_init(seed, 0, 0 , &s); 
 
    // take N samples in a quarter circle 
    for(unsigned int i = 0; i < numWeeks; ++i) 
    { 
      // draw a sample from the unit square 
      float toss = curand_uniform(&s); 
   defaultsAtT += toss>.1 ? 0 : 1; 
    } 
 
 return defaultsAtT; 
  }  
}; 
 
 



 

Page 41 of 51 

 

struct derivative_payoffPV : public thrust::unary_function<float,float> 
{ 
  
 __device__ 
    float operator()(float numDefaultsAtT ) 
    { 
  float ret; 
  ret= numDefaultsAtT>4? (float)exp(-0.05)*exp( (float) numDefaultsAtT)/500.0 : 0.0 ; 
  //ret = numDefaultsAtT; 
 
  return ( ret ); 
    } 
}; 
 
int main(void) 
{ 
 HRTimer cpuTime; //Timer 
 
 
 printCUDAdevices(); 
 cudaSetDevice(1);            // Set device 1 (the tesla card)  as current  
 
    int numSim = 200000;   // number of simulations, ie. rows 
 
 printf("\nProgram start with %d paths", numSim ); 
 cpuTime.StartTimer(); 
 
  
    // allocate storage for row sums and indices 
    thrust::device_vector<int> defaultsAtT(numSim); 
 printf("\n [%f(ms.)]   Memory Allocated on device",  cpuTime.StopTimer()); 
 
 thrust::transform( thrust::counting_iterator<int>(0), // Start from memory 0 
      thrust::counting_iterator<int>(numSim), // # of simulation paths 
      defaultsAtT.begin() ,    // memory location 
for storing the result 
      bond_Simulate());     // 
bond_Simulate() simulate one bond over it's life time of one year 
 
 printf("\n [%f(ms.)]   Bond simulation finished.",  cpuTime.StopTimer()); 
  
 
 thrust::sort(defaultsAtT.begin(), defaultsAtT.end()); 
 printf("\n [%f(ms.)]   Sorting finished.",  cpuTime.StopTimer()); 
 
//VaR 
 int ValueAtRisk = 100-defaultsAtT[ (int)(numSim*0.01) ] -90;  //Value at Risk(VT-V0) 
  
 
//derivative pricing (code for statistics copied from summary_statistics.cu) 
 // setup arguments 
  
 //Get all types of information on the derivative payoff distribution ( including the mean) 
 printf( "\nStats on derivative payoff:"); 
 stat_summary2( thrust::make_transform_iterator( defaultsAtT.begin() ,derivative_payoffPV() ) , 
     thrust::make_transform_iterator( defaultsAtT.end() ,derivative_payoffPV() ) ); 
 
 printf("\n [%f(ms.)]   Computed Stats On DerivativePayoff",  cpuTime.StopTimer()); 
 
 // compute summary statistics 
  printf("\n**DONE** Whole Program: %f(ms.)\n\n",  cpuTime.StopTimer()); 



 

Page 42 of 51 

 

 
 
 printf ( "\n Yearly 99%% Value at Risk (VaR) is %d .", ValueAtRisk); 
  
 printf( "\nStats on defaults:"); 
 stat_summary( defaultsAtT  ); 
 
 std::cin >> ValueAtRisk;; 
 
    return 0; 
} 
 
 
 

 

 

8.2 INSTRUMENTS  

 
// C headers 
#include <cmath> 
#include <limits> 
#include <iostream> 
#include <iomanip> 
#include <stdint.h>    //The definition of the basic data types used in this project 
 
 
//Cuda Headers 
#include <cuda.h> 
#include <curand_kernel.h> 
 
 
 
/* 
//Thrust Headers 
#include <thrust/generate.h> 
#include <thrust/reduce.h> 
#include <thrust/functional.h> 
#include <thrust/random.h> 
#include <thrust/sort.h> 
#include <thrust/extrema.h> 
*/ 
#include <thrust/host_vector.h> 
#include <thrust/device_vector.h> 
#include <thrust/reduce.h> 
 
 
 
 
// Our Classes 
#include "HRTimer.h" 
#include "GQDate.hpp" 
#include "GQDVector.hpp" 
#include "cudaSafeCall.hpp" 
#include "cudautilities.hpp" 



 

Page 43 of 51 

 

 
 
//#include "random.h" 
#include "stats.h" 
 
 
#define urand ((float) rand()) / (float) RAND_MAX 
 
 
__host__ __device__ 
unsigned int hash(unsigned int a) 
{ 
    a = (a+0x7ed55d16) + (a<<12); 
    a = (a^0xc761c23c) ^ (a>>19); 
    a = (a+0x165667b1) + (a<<5); 
    a = (a+0xd3a2646c) ^ (a<<9); 
    a = (a+0xfd7046c5) + (a<<3); 
    a = (a^0xb55a4f09) ^ (a>>16); 
    return a; 
} 
 
 
#define DrivingFactor float 
#define RiskFactor float 
#define NULL 0 
 
 
 
/* 
In case of default, ie. the bond hit the barrier ( ie, the underlying company has defaulted) 
the bond holders get the recovery amount R * faceValue; 
 
Otherwise, the bond holders get the faceValue at time T. 
*/ 
 
struct BarrierBond     // An example of an instrument 
{ 
//Contract definitions 
 size_t riskFactorNum; 
 GQDate maturity; 
 GQDate start; 
  
 
 float R;   //Recovery 
 float barrier;  //Barrier 
 float faceValue; //faceValue 
 
 float couponRate;  //Coupons by the bond if not defaulted. 
 
// Simulation of this contract through time 
 BarrierBond() 
 { 
  bondHasDefaulted=false; 
  couponRate=0; 
 } 
 
 __device__ inline float doTimeStep(GQDate t, float A) //Asset price 
 { 
  if (bondHasDefaulted==true )  //In case of default or after maturity the bond doesn't produce any cash flow 
   return 0; 
 



 

Page 44 of 51 

 

  if ( t> (maturity+0.0025)  )  //Floating point issues, adding .5 of a day is the accuracy 
   return 0; 
   
  if ( gqequalf ( maturity, t, 0.001) )      // Bond matured 
   return faceValue; 
   
  if ( A<barrier )      // Bond defaults or not 
  { 
   bondHasDefaulted = true; 
   return (faceValue*R); 
  } 
 
  if ( couponRate == 0 ) 
   return 0; 
 
  return ( faceValue * couponRate); 
 }; 
private: 
 bool  bondHasDefaulted; 
}; 
 
 
 
/* 
Simulation of 
 [(dS_i)/S_i ]_N=[µ_i]_N dt+[A]_NM [dZ]_M 
*/ 
struct LognormalModel  //Data to be transfered to a Lognormal MC Kernel. 
{ 
 float A0; 
  
 float alpha; 
 float sigma; 
 float delta; 
 
  
 GQDate start; 
 GQDate end; 
 GQDate dt; 
}; 
 
 
 
__global__ void LognormalMC(LognormalModel lg, GQDVector<BarrierBond> callOptions,  GQDVector<float> simGrid) 
{ 
 // The first thread in the block does the allocation  
    // and then shares the pointer with all other threads  
    // through shared memory, so that access can easily be  
    // coalesced. 64 bytes per thread are allocated.  
 const size_t MC_LOOPS_PER_KERNEL = 1;        
   //Number of simulations per Grid Point 
 const size_t seed = threadIdx.x + (blockIdx.x + blockDim.x*blockIdx.y); 
 
 const size_t simGridPos = threadIdx.x+blockDim.x*blockIdx.x; 
 const size_t Ti = threadIdx.x; 
 
 
 
//Block Specific 
 __shared__ float A; 
 __shared__ float alpha; 



 

Page 45 of 51 

 

 __shared__ float delta; 
 __shared__ float sigma; 
 
 float dz; 
 
 if ( Ti==0 )     //First thread allocate the memory for the block specific data 
 { 
  alpha= lg.alpha; 
  delta= lg.delta; 
  sigma= lg.sigma; 
 } 
 
 
 
//Thread Specific 
  
 curandState s; 
 curand_init( hash(seed) , 0, 0, &s);    // seed a random number generator 
             
 //First Thread in the block initialize the random number generator for this block 
 double simPrices[MC_LOOPS_PER_KERNEL];    //Holds the prices calculated within this 
thread; Each thread will have it's own, for the Instrument it's responsible for 
 
 
 
// if ( Ti < INSTRUMENT_SIZE )        //Simulation of one 
instrument in this block 
//  __shared__ Instrument thisInstrument = Instruments[Ti]; 
  
 for(size_t mc_counter=0; mc_counter<MC_LOOPS_PER_KERNEL; mc_counter++)  //# of simulation per thread 
 { 
  BarrierBond c=callOptions[Ti];      //The trade that this thread is 
responsible for. 
 
  GQDate startTime = lg.start; 
  GQDate SimulationEndTime = lg.end; 
  GQDate dt = lg.dt; 
 
   
 
  simPrices[mc_counter] = 0; 
 
  if (Ti==0) 
   A=lg.A0; 
 
  GQDate t=startTime; 
 
  while (  t < (SimulationEndTime+dt) )    //One Path Simulation 
  { 
   if (Ti==0) //First thread do the calculation, then all the other trades get priced 
   { 
    // dZ simulations 
    float dA; 
    dA = ( alpha * A - delta ) * dt + sigma * A * curand_normal(&s) * sqrt(dt) ; 
    A += dA; 
   } 
   __syncthreads();        //Make 
sure all the riskFactors are loaded  
 
 
   //Simulation of call options 



 

Page 46 of 51 

 

   //if ( Ti < INSTRUMENT_SIZE ) 
    float cashflow = c.doTimeStep(t, A); 
    if ( cashflow != 0) 
     simPrices[mc_counter]+= cashflow * exp(- 0.05 * (t-startTime) ) ; 
 
   //__syncthreads();        //Make 
sure all the INSTRUMENT_SIZE are loaded 
    
   t = t+ dt; 
  } 
 
 } 
 
  
 float avgPrice=0; 
 for ( size_t i=0; i<MC_LOOPS_PER_KERNEL;i++) 
  avgPrice += simPrices[i] /MC_LOOPS_PER_KERNEL ; 
 
  
 simGrid[simGridPos] = avgPrice; 
 
 
 
 
 //__syncthreads(); 
} 
 
double CUDA_Simulate_Bond(size_t numSimulations, size_t numBonds) 
{ 
 /* These are inputs to the function now 
 
  // size_t devNumber = 0;    // The device that these simulations will be 
run on 
  // const size_t numSimulations = 65000; // max 65K, Number of simulations per trade to be runned, would 
be the number of blocks 
  // const size_t numBonds = 33;  // There is one thread per block for each call, multiple of 32 is the 
best 
 */ 
 
 //printCUDAdevices(); 
 cudaSetDevice(0); 
 
  
  
 
// Instrument Setup   
 BarrierBond * host_Bonds; 
 cudaHostAlloc( &host_Bonds, numBonds * sizeof(BarrierBond),cudaHostAllocDefault ); 
 //= (BarrierBond*) malloc(numBonds* sizeof(BarrierBond) ); 
 
 for ( size_t i=0; i<numBonds; i++) 
 { 
  host_Bonds[i].start  = 0 ;   //starts from 0 day 
  host_Bonds[i].maturity = .05 * (rand()%40); //Random maturities between 0 and 2 years. only on steps .05 
 
  host_Bonds[i].faceValue = 100; 
  host_Bonds[i].barrier = 100; 
  host_Bonds[i].R   = 0.8;   //Recovery amount in case of default 
   
  host_Bonds[i].riskFactorNum = 1;  //It's a call on the first asset. 
 } 



 

Page 47 of 51 

 

 
 
  
 HRTimer cpuTime;       //Timer start 
 cpuTime.StartTimer(); 
 //cpuTime.dEcho( "Program Started" ); 
 
 
 // Transfering the call options to be priced to the GPU 
 GQDVector<BarrierBond> dev_Bonds(host_Bonds,numBonds,0); // Allocate memory and transfer 1024 options to the device0 
  
 
 // Market Setup 
 LognormalModel lg;       
 //lg.alpha = .15; 
 lg.alpha = .05; 
 lg.sigma = .3; 
 lg.delta = 10;   //Annual Continous div yield 
  
 lg.A0  = 150; 
 lg.start = 0 ;    //unit:Years 
 lg.end = 2;     //unit:Years 
 lg.dt = 0.05;    //unit:Years 
  
 //lg.mu.print(); 
 
// Simulation Grid memory allocation 
 GQDVector<float> sim_grid(0, numBonds*numSimulations); 
 
 cudaDeviceSynchronize(); 
 LognormalMC<<<numSimulations,numBonds>>>(lg, dev_Bonds, sim_grid ); //MC simulation that prices all the Bonds 
  
  
 cudaError_t cudaErr = cudaDeviceSynchronize(); 
 if(cudaErr != cudaSuccess){ 
   std::cout << "problem " << cudaErr << "\n"; 
 } 
 
 
 //cpuTime.dEcho( "Bond Simulation Ended" ); 
 //sim_grid.print(); 
 for ( size_t i=0; i<numBonds; i++) 
 { 
  thrust::device_ptr<float> dev_ptr ( sim_grid.dptr + i   ); 
  thrust::device_ptr<float> dev_ptr_end(sim_grid.dptr + i +  numSimulations ); 
  stat_summary<float> ( dev_ptr , dev_ptr_end ); 
 } 
 /*thrust::device_ptr<float> dev_ptr ( sim_grid.dptr  ); 
 thrust::device_ptr<float> dev_ptr_end(sim_grid.dptr + sim_grid.arraySize ); 
 stat_summary<float> ( dev_ptr , dev_ptr_end ); 
 */ 
 
 //cpuTime.dEcho( "Bonds Priced" ); 
 
 double endTime = cpuTime.Lap(); 
 
 //delete host_Bonds; 
 cudaFreeHost ( host_Bonds); 
 dev_Bonds.kill(); 
 
 return (endTime ) ; 



 

Page 48 of 51 

 

} 
 
size_t simCounter=0; 
 
int main(void) 
{ 
 double simulationTimes[6*5]; 
  
 
 for ( size_t numSimulations = 10000; numSimulations<60001; numSimulations+=10000 ) 
 { 
  for ( size_t numTrades=32; numTrades<513; numTrades=numTrades*2 ) 
  { 
      simulationTimes[simCounter] = CUDA_Simulate_Bond( numSimulations,numTrades ); 
   simCounter++; 
   printf("Simulation:%d\n", simCounter ); 
  } 
 } 
     
 
    char c; 
    scanf("\n\n Press any key to exit... %c", &c); 
 
    return 0; 
} 
 
 
 

 

9 BIBLIOGRAPHY  
Marketwire. (2011, August 4). Retrieved August 8, 2011, from NVIDIA: 

http://www.marketwire.com/press-release/-1546009.htm 

ANSI/IEEE. (1985). IEEE Standard for Binary Floating-Point Arithmetic. American National 

Standards Institute, p. 754. 

Belding, T. (2009, 07 17). FCMP. Retrieved from http://fcmp.sourceforge.net/: 

http://fcmp.sourceforge.net/ 

Crosman, P. (2009, September 24). Retrieved August 8, 2011, from Wall Street and Tech: 

http://www.wallstreetandtech.com/articles/220200055 



 

Page 49 of 51 

 

Dang, D. M., Christara, C. C., & Jackson, K. R. (2011). GPU pricing of exotic cross-currency interest 

rate derivatives with a foreign exchange volatility skew model. JCCPE, 16. 

Davidson, C. (2010, November 01). Balancing the benefits and costs of GPUs. Retrieved August 8, 

2011, from Risk Magazine: http://www.risk.net/risk-

magazine/feature/1741590/balancing-benefits-costs-gpus 

Dawson, B. (n.d.). Comparing floating point numbers. Retrieved from Comparing floating point 

numbers: http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm 

Giles, M. (2010, March 8). Using GPUs for Computational Finance. United Kingdom. 

Jackel, P. (2002). Monte Carlo methods in finance. Wiley. 

Jared Hoberock, N. B. (2011, 07 25). Thrust Code at the speed of light. Retrieved from 

http://code.google.com/p/thrust/ 

Jared Hoberock, N. B. (n.d.). An Introduction to Thrust. Retrieved from 

thrust.googlecode.com/files/An%20Introduction%20To%20Thrust.pdf 

Kato, T. (1996). On a Nonlinear Congruential Pseudorandom Number Generator . Mathematics of 

Computation , 227-233. 

King, C. L. (2010). A High-Performance Multi-user Service System for Financial Analytics Based on 

Web Service and GPU Computation. International Symposium on Parallel and Distributed 

Processing with Applications, 7. 

King, G.-H., Cai, Z.-Y., Lu, Y.-Y., Wu, J.-J., Shih, H.-P., & Chang, C.-R. (n.d.). A High-Performance Multi-

user Service System for Financial Analytics Based on Web Service and GPU Computation. 

International Symposium on Parallel and Distributed Processing with Applications, 7. 



 

Page 50 of 51 

 

Knuth, D. (1997). Seminumerical Algorithms. In D. Knuth, volume 2 of The Art Of Computer 

Programming. Addison Addison. 

Marsaglia, G. (2003). Xorshift RNGs. Journal of Statistical Software, 1--6. 

Matsumoto, M. a. (1998). Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-

random number generator. ACM Trans. Model. Comput. Simul., 3--30. 

Matsumoto, T. N. (2002, 1 26). Retrieved from http://www.math.sci.hiroshima-u.ac.jp/~m-

mat/MT/MT2002/CODES/mt19937ar.c 

Merton, R. C. (1973, December 28-30). On the Pricing of Corporate Debt: The Risk Structure of 

Interest Rates. The Journal of Finance, Vol. 29(No. 2), pp. 449-470. 

Mutsuo Saito, M. M. (2011, 6 20). Mersenne Twister for Graphic Processors. Retrieved from 

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MTGP/index.html 

Niramarnsakul, C., Chongstitvatana, P., & Curtis, M. (2011). Parallelization of European Monte-Carlo 

Options Pricing on Graphics Processing Units. Eighth International Joint Conference on 

Computer Science and Software Engineering, 3. 

Nishimura, M. M. (January 1998). Mersenne twister: A 623-dimensionally equidistributed uniform 

pseudorandom number generator. ACM Transactions on Modeling and Computer 

Simulation, pp. 8(1):3–30. 

NVIDIA. (2011). NVIDIA CUDA C Programming Guide. NVidia. 

NVIDIA. (January 2011). CUDA Toolkit 4.0 CURAND Guide. NVIDIA. 

Rupp, M. (2007). Comparison of Floating Point Numbers. Frankfurt am Main, Germany. 



 

Page 51 of 51 

 

Simard., P. L. (August 2007). TestU01: A C library for empirical testing of random number 

generators. ACM Transactions on Mathematical Software, 33(4), Retrived From: 

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/testu01.pdf. 

Solomon, S., Thulasiram, R. K., & Thulasiraman, P. (2010). Option Pricing on the GPU. 12th IEEE 

International Conference on High Performance Computing and Communications, 8. 

Turner, R. (2011, July 01). Ovum. Retrieved July 26, 2011, from 

http://about.ovum.com/app/jpmorgan-goes-public-about-using-gpus-and-inspires-use-in-

capital-markets/ 

Wilmott, P. (2007). Paul Wilmott Introduces Quantitative Finance . Wiley. 

 


