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Abstract 

The purpose of this study is to evaluate the predictive power of ARMA/GARCH 

models through the implementation of a momentum strategy on all stocks traded 

on the New York Stock Exchange (NYSE) and the NASDAQ stock market. The data 

series is tested for serial-correlation in their daily stock price returns, followed 

by several screening and filtering phases. A floating order ARMA/GARCH model 

is used to capture the signal from the noise in the data, which is used to forecast 

future prices. It is shown that the tickers that are successfully predictable carry 

their momentum into the short-term future. A trading strategy is then proposed 

and tested to validate the above market returns resulted from this predictive 

behavior of the tickers. 
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Introduction  

  Designing and developing tools to predict future prices or returns 

on financial securities has been a major topic for research for both practical 

and academic purposes.  Such work is witnessed and examined in fields of 

economics and finance.  Many researchers, economists and financiers have 

tried to demonstrate whether or not it is even possible to forecast and 

model future returns. Some believe that equity returns are governed by the 

random walk hypothesis and thus are unpredictable. Others, however, 

disagree and have utilized various methods and technologies, which 

supposedly has allowed them to gain future price information. 

Development of such predictive tools is important due to the simple fact 

that an accurate model would result in profitable decision-making. 

Although academics and industry professionals have differing views on 

market predictability, one thing is for certain; that is the concept of market 

efficiency, predictability of stock returns and related investment strategies 

have been one of the main topics in the financial industry.  

  The initial research done by Fama in 1970 concluded that markets 

are generally efficient meaning that share prices reflect all available 

information, thus making it virtually impossible for one to earn excess 

return. More specifically it was stated that share prices exhibited no serial 

correlation and that there are no patterns in asset prices (Fama, 1970). 

This implied that future price movements were determined entirely by 

information not contained in the price series and therefore followed a 

random walk. Thus, preventing one from earning excess returns based on 

historical share prices or returns. However, more recent articles by Lo and 

Mackinley (1988) concluded otherwise and reported various forms of 

serial correlations in weekly returns. This was important as the serial 

correlation in the data could be utilized to forecast future returns; a 

conclusion that went against the Market Efficiency Hypothesis (MEH) that 

was originally put forward by Fama.  
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  Yet another example of work against MEH is of Schiller’s (1984, 

2003), who examined the performance of the U.S stock market since the 

1920s, and concluded that the volatility of the stock market is greater than 

could possibly be explained by any rational view of the future. Other 

successful investors and industry professional such as Warren Buffet and 

Peter Lynch have also supported the inefficiency and referring to their 

successful careers as evidence. While there are different arguments and 

approaches in support and against the MEH and its ability to forecast future 

returns, one thing is clear; that is if there exists some form of correlation 

(serial correlation) between the asset price and some other variable such 

as trading volume or the previous day’s closing prices or such, one can 

predict future outcomes. 

  While there are various prediction methodologies, including 

fundamental analysis, technical analysis and technological methods, this 

paper will focus on the technical analysis methodology to further examine 

market predictability. Additionally, the paper seeks to determine the future 

returns of stocks based solely on the trends of historical prices, an 

approach referred to as time series analysis. More specifically, the study 

will utilize the concept of momentum investing and strategies as it applies 

to finance to provide further analysis on the concept of market efficiency. 

Additionally, the model will impose several filtering criteria, followed by a 

trading strategy to demonstrate the ability of above-mentioned models in 

predicting the direction of change in prices in short term horizons.  So, the 

thesis objective is to evaluate the predictive power of ARMA/GARCH 

models through the implementation of momentum strategy. 

Literature Review 

  Over the past several decades substantial amount of academic and 

professional articles have been published in relation to momentum 

strategies and return predictability. Momentum, which refers to the 

predictable patterns of stock returns states that stocks with an above 

average return in previous time periods have the tendency to outperform 



7 

 

other stocks in subsequent time periods. Such strategies involve buying 

stocks that have performed well and selling those that have 

underperformed previously. 

  Lee and Swaminathan (2000) used data from all companies traded 

on the NYSE and AMEX to perform an empirical study. They discovered that 

the price momentum effect finally reverses and the timing is foreseeable 

based on trading volume. According to their research, past trading 

“predicts both the scale and the persistence of future price momentum”.  It 

was concluded that stocks that have gone up accompanied with high 

volume experience faster momentum and reversals than low volume losers. 

  Connolly and Stivers (2003) have found significant amount of 

momentum in consecutive weekly returns when the latter week has 

unexpectedly high turnover. They also found reversals in consecutive 

weekly returns when the latter week had an unexpected low turnover. 

Their research was based on empirical studies of weekly returns of large 

and small firm portfolio in the U.S., Japanese and U.K. It was reported that 

the first-order autoregressive coefficient “increases around 0.80 as the 

turnover shock moves from its 5th to its 95th percentile” 

  Substantial evidence also indicates that past returns over periods 

shorter than one year are useful for forecasting future returns (Dijk et al). 

Jagadeesh and Titman (2001) reported that over a period of 3-12 months, 

on average, past winners are future winners. Likewise, past losers are the 

loser of the next period. Rouwenhorst (1999) who also performed a similar 

research to that of Jegadeesh and Titmat on the European market also 

reported comparable findings.  

  With regards to other financial instruments, Jacobs (2000) argued 

that option-replication strategies are a potential cause of price momentum. 

That is, investors buy stocks as prices increase to capture the upside of 

price momentum and sell as they go down to limit downside risk. This is 

exemplified as portfolio insurance that attempts to replicate a protective 

put option offering upside gains with a floor against downside losses.   
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Data 

  The data used in this model is based on daily closing prices of 

stocks. The time series record goes from December 31, 2008 to July 1, 2012. 

After converting the prices to returns and analyzing the data for serial 

correlation, the tickers that pass the tests are listed from both NASDAQ and 

NYSE. Then they are sorted by market cap. 

  A list of 2754 tickers traded in NASDAQ and 3245 tickers traded in 

NYSE are passed to an in-house developed MATLAB code, which reads the 

ticker prices from Yahoo Finance, calculates the returns, and checks each 

one for serial correlation. The tickers, which pass the tests, are stored in a 

new list. These tickers include 193 companies from NASDAQ and 33 

companies from the NYSE. The market cap ranges from $19.6 billion to 24.8 

million for NYSE, and from $137 billion to $1.6 million dollars in NASDAQ.  

  Sorted by market capitalization, 30 stocks (15 from each 

Exchange) are selected from the top of the list, due to the fact that finding 

serial correlation in more liquid tickers is more valuable. Market cap has 

positive correlation with liquidity, and can be used as a proxy. According to 

Agrrawal and Clark (2009) there is a 5-factor model to determine how 

liquid a ticker or an ETF is, and market cap is one of those factors. Since 

they have reported a positive correlation between market cap and liquidity, 

this paper uses this measure as our criteria for selection of stocks that are 

“liquid enough”.  For tickers that are not liquid, there is a high spread 

between bid and ask prices, which can result in a false observation of serial 

correlation. 

  Noteworthy is the fact that the model uses data following the 2008 

financial crises. This helped us not to include data from during and before 

the crisis, since we had access to 3 years of data, and a rolling 240 days 

(about a year of working days) to back-test the model. The trends and 

correlations that is found represent the after crisis global economy, and is 

not a result of analysis of data which is fragmented in time. The results are 
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therefore more consistent with recent patterns and are considered more 

reliable to use for forecasting and predictability purposes. 

The figure below demonstrates the data used for validating and testing the 

model, in a timeline format. 

 

Figure 1:  Demonstration data usage and steps in forecasting, 
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Methodology  

  The following section will present how the study is conducted. For 

simplification purposes this segment is divided into four phases: Stock 

Selection, Model Training, Portfolio Creation, and Testing. To demonstrate 

more effectively, an example of work performed in the actual model is 

presented in each sub-section. 

 

Figure 2: Methodology phases 

          Phase 1: Stock Selection 

  Implied by the name, the main purpose of this phase is to filter and 

create a list of stock tickers that have serial correlation with a 95% 

confidence. As previously mentioned, serial correlation refers to the 

relationship between a given variable  (stock return) and itself over various 

time intervals. In order to identify such tickers, a MATLAB code is 

developed which examines all companies in the NYSE and NASDAQ.  

  The model performs two major tests for each company: the Ljung-

Box Test and Autocorrelation test. Ljung-Box Test, which is a type of 

statistical test, indicates whether any of a group of autocorrelations of a 

time series is significantly different from zero. Similarly, Autocorrelation 

Stock Selection 

•Search NYSE & 
NASDAQ 

• For Serial 
Correlation 
•LBQ Test 
•Auto-
Correlation Test 

Model Training 

•ARMA/GARCH 
•Test different 
orders 

• AIC: best fit 
• Forecast future 
prices 

• Calculate 
Success Rate 

Portfolio Creation 

•Strategy 
Development 

•Choose 
Prospective 
Winners:  
Predictable 
Tickers 

•Strategy 
Implementation 

Model Testing 

• Take Same Steps 
as Model 
Training Phase 

•Calculate Success 
Rate 

• Propose Trading 
Strategy 

• Expected Return 
•Compare to 
benchmark 



11 

 

test finds the points that are out of bound in an “autocorr graph”. If both of 

these tests support serial correlation, the company’s name is passed to the 

list of prospects. One condition worth noting is that since penny-stocks may 

behave differently from the norm, the model has incorporated a 4 dollars 

minimum price limitation on the prospects to filter such abnormalities. So, 

after a thorough search in all the listed companies in both exchanges, a list 

of tickers with a potential for momentum strategy is at hand. 

  A sample of 30 tickers is selected for the purpose of this study. This 

list of prospects is then sorted by market cap in both markets. Market cap is 

one of the indicators of liquidity, so it’s assumed that finding serial 

correlation and proving the effectiveness of an alpha-generating strategy 

on high market cap prospects, would be more difficult, and also more 

valuable in terms of costs of trade and bid-ask spread. Following that, the 

model selects the top 15 tickers from both exchanges. These tickers are 

then passed to the MATLAB code to be evaluated for the best orders of the 

fit and to be tested in two consecutive 120 day windows. Below chart 

illustrates a list 6 stocks that have passed the stock selection phase and 

therefore have serial correlation.   

Stock Selection: Serially Correlated Companies 

Company Ticker LBQ Test P-Value Market Cap ($) Serial Correlation 

MKTX (NASDAQ) 4.1033e-6 1.22B PASS 

AWH (NYSE) 1.8939e-4 7.53B PASS 

CNK (NYSE) 0.0084 2.75B PASS 

TLAB (NASDAQ) 0.0331 1.23B PASS 

FFIN (NASDAQ) 9.6405e-12 1.11B PASS 

CATO (NYSE) 0.0015 864.97M PASS 

Figure 3: Stock Selection 

          Phase 2: Model Training 

  The purpose of this phase is to test the tickers with serial-

correlation in a time period of several months to observe if the 
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ARMA/GARCH model is able to predict future returns. ARMA, which stands 

for Autoregressive-Moving-Average, provides an analysis of a weakly 

stationary stochastic process in terms of two polynomials, one for the auto-

regression and the second for moving average.  

Autoregressive-Moving-Average (ARMA) model defined as: 

      ∑       

 

   

 ∑      

 

   

     

And the ARCH/GARCH model is defined as: 
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 ∑   
 
   

 

   

 

                                                   

  As shown in the above-mentioned formula the ARMA model can be 

altered to reflect additional information and serial correlation.  The key 

idea here is to be able to identify the orders “r” and “m” of the ARMA model.  

  If ARMA model is assumed for the error variance, the model is a 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) 

(Bollerslev,1986). The primary use of the GARCH (p,q) model is to provide 

a measure for volatility  that can be used for forecasting and portfolio 

selection (Engle, 2001). The “p” is the order of the GARCH terms   and “q” 

is the order for the ARCH terms   .   

  With taking into account the time frame needed to test the model, 

the study has taken the last 240 days of daily returns out of the data series. 

The model is then trained for each ticker in the first 120 days to find the 

orders (r, m, p and q) for the ARMA/GARCH fit and find the companies that 

show predictability.  

  Referred to as AIC and BIC, these two methods find the best order 

for the polynomials above. AIC tries to select a model that best describes 
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the unknown, high dimensional reality. This means that reality is never in 

the set of candidate models that are being considered. On the contrary, BIC 

tries to find the true model among the set of candidates. So, AIC assumes 

that there is no true model and therefore the best fit with the least 

innovations is a suitable approximation of what is to be estimated, but BIC 

assumes that there is a true model, so it prevents over-fitting. There is no 

preferred method between the two, and the selection of one over the other 

is still the subject for debates.  Minimum AIC is what is used here as the 

indicator for the goodness of the ARMA/GARCH fit. The orders are changed 

in a structure of 4 integrated loops and the AIC is calculated and stored. 

Minimum AIC is then found and the respective orders are then reported as 

the orders of the best ARMA/GARCH fit. As demonstrated in the MATLAB 

code shown below in figure 3, by putting a floor of 0 and a cap of 5 on AR 

and MA orders and a floor of 0 and a cap of 2 on ARCH and GARCH orders, 

the 4 integrated loops store all values for AIC and then the minimum 

indicates the best orders for the fit.  

 

Figure 4: MATLAB Code to demonstrate the use of AIC 

  With step increments of 4 days in 120 days of data, the model ends 

up with 30 data-points. At each of these dates we run the model to find the 

AIC = NaN(nAR+1,nMA+1,nGARCH+1,nARCH+1); 
BIC = NaN(nAR+1,nMA+1,nGARCH+1,nARCH+1); 
 

for Q=1:nARCH+1 
  for P=1:nGARCH+1 
    if Q-1==0 && P-1~=0 
        break 
    end 
    for M=1:nMA+1 
      for R=1:nAR+1 
        spec = garchset('R',R-1,'M',M-1,'C',1,'P',P-1,'Q',Q-1,'K',1, …  

     'Display','off'); 

        [coeff,errors,LLF,Innovations,Sigmas] = garchfit(spec,(Returns)); 
        [AIC(R,M,P,Q),BIC(R,M,P,Q)] = aicbic(LLF,garchcount(coeff), …  

        length(Returns)); 
      end 
    end 
  end 
end 
 

[minNum, minIndex] = min(AIC(:)); 
[r, m, p, q] = ind2sub(size(AIC), minIndex); 
r = r-1;   m = m-1;   p = p-1;   q = q-1; 
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orders of the ARMA/GARCH fit. Following that, the model develops a 

forecast returns vector for the next 20 days. These returns are then used to 

forecast prices in 10, 15 and 20 days (two, three and four weeks). The 

reason for such (10, 15 and 20 days) windows is to give the noise a chance 

to cancel out and to observe if the model is able to capture the drift. Also by 

taking 2 out of 3 successes in predicting price movements as an indicator of 

success in prediction, the model is effectively reducing the impact of noise 

on those certain dates. Figure 4 illustrates a snapshot of the data points for 

the ticker MKTX.  

Example: Prediction Result for Ticker MKTX 

MKTX 
Pass or Fail 
1      or    0 

Pass or Fail 
1      or    0 

Pass or Fail 
1      or    0 

Total Pass 
is => 2 

Day 0  1 1 0 1 

Day 4 1 1 1 1 
     

Day 116 0 0 1 0 

Day 120 1 0 1 1 

Average 
Success 
Rate(%) 

51.6 51.6 74.2 54.8 

Demonstrating whether the model has successfully predicted the 
direction of change in price in increments of 4 days 

Figure 5: MKTX data snapshot of forecasts 

  It should be noted that the testing phase is performed on the last 

120 days of data available (most recent). The same step of 4 days to 

process the 120 days of data is selected and thus end-up with 30 results. 

Each result consists of 3 success rates for 10, 15 & 20 days, which we 

combine into one indicator of ticker’s prediction success rate.     

. 

. 

. 
. 
. 
. 
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. 
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          Phase 3: Portfolio Creation 

  This phase represents a strategy in trading or a way one can create 

a portfolio based on the stocks selected to create profit. Following phase 2, 

every ticker has a total of 30 dates in which the model has managed to 

capture the price movements in increments of 10, 15 and 20 days. If the 

model has successfully been able to capture the direction of the movement 

2 out of 3 times, it is considered a success case. In order to prevent the 

weekday effect, the model works with a 4 days step between start dates, 

which is not a multiplication of 5 (a working week). As a result the 30-start 

date sample out of 120 training days can be considered to represent the 

data. At this point each ticker is assigned a number representing the 

average success rate of the model predicting that ticker for 30 sample dates.  

Training Window: Sample Ticker Results 

Company Name 10 Day 

Forecast(%) 

15 Day 

Forecast(%) 

20 Day 

Forecast(%) 

Success 

Rate (%) 

MKTX (NASDAQ) 51.6 51.6 74.2 54.8 

AWH (NYSE) 51.6 58.1 64.5 61.3 

CNK (NYSE) 45.2 38.7 35.5 35.5 

TLAB (NASDAQ) 38.7 54.8 38.7 48.4 

FFIN (NASDAQ) 32.3 32.3 29.0 38.7 

CATO (NYSE) 48.4 48.4 48.4 45.2 

Figure 6: Training Window Results 

The following phase will introduce the selection criteria to the results. The 

tickers that have a success rate of more than 50% are to be tested in the 

next phase.  
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          Phase 4: Testing 

  The tickers selected in the previous phase can be used to form an 

identically weighted portfolio of investments. To avoid dealing with 

portfolio optimisation tools, the investments are purposely chosen to be 

equally weighted. To test the portfolio, we forecast the prices for 10, 15 and 

20 days and then check the portfolio return for a 10, 15 and 20 day 

windows. If the selected tickers generate positive alpha in comparison to 

the market return (benchmark) then we conclude that the strategy is 

effective. 

  The testing phase is performed on the last 120 days of data 

available, referred to as out-of-sample window. With the same step of 4 

days we end-up with 30 sample dates to test the portfolio. The criteria for 

success for such dates are the overall ability of the model to forecast the 

direction of price movements after 10, 15 & 20 days. 

  By counting the success cases for each time horizon, 3 success 

rates are calculated for each ticker, leading to the calculation of portfolio 

success rate for each time horizon (2, 3 and 4 weeks). These numbers, if 

greater than the market return, can be used to form a portfolio of digital 

options, since we are only interested in the direction of price movement. 

  To compare the overall success rate, a measure of 2 out of 3 

successful predictions of direction of price movement is again used. This 

number then can be compared with the success rate of the selected tickers 

in the previous phase and be an indicator of existence of momentum in 

returns. 

  An example of the way the model performs the abovementioned 

filtering in the out of sample window is provided in the below chart: 
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Example: Out of Sample Window (Prediction Vs. Actual) 

 Actual Forecasted 
 

 
Initial 

Price 

End-of-

Period 

Price 

Movement 
Initial 

Price 

Forecas

ted 

Price 

Movement 
Success 

Case 

Sample Day 1 25.4 23.4 -2 25.4 27.4 +2 0 

Sample Day 2 25.4 26.9 +1.5 25.4 27.4 +2 1 

Figure 7: Arbitrary example to show how the model decides whether it has generated the 

correct forecast. If the actual movement and forecasted movement are the same it is 

considered a success. 

  The model utilizes price data from the end of 2008 to July 1st 2012. 

A window of 240 days is subtracted from the end of the vector (more 

recent prices) and the remaining data is used to determine the order of the 

ARMA/GARCH fit and to calculate coefficients for the model. The model is 

then used to forecast returns for 10 day (2 weeks), 15 day (3 weeks) and 20 

day (4 weeks) horizons, and these forecasted returns are used in evolution 

of the prices to see if the model can predict the direction of price changes. 

This process is done every 4 days for the last 120 days and the returns are 

compared (as shown in figure 8).  This setting provides 30 test date points 

in the 120 recent dates (about half a year).  The probability of a successful 

prediction in at least 2 out of 3 time horizons is calculated and stored. 

Figure 8: Out of sample window results 

  By comparing the results for the selected tickers from the first 120 

days (training) and the second 120 days (testing) the model is able to show 
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the effectiveness of momentum strategies using a floating order 

ARMA/GARCH model. 

The Methodology Process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Methodology Process 
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Results  

  The average predictability of the direction of price movements for 

the 30 tickers is about 50 percent. For tickers that have above 0.54 

probability of being predicted correctly, the probability of successful 

prediction in the out-of-sample window shows proof of momentum. These 

tickers (in our sample of 30, 10 tickers) had overall average success rate of 

0.597 in the training window. The same tickers, have an impressive overall 

success rate of 0.573 in the out-of-sample window.   

  As we got approximately 50 percent on average for direction 

prediction, the plain ARMA/GARCH model without screening and filtering 

criteria fails to produce a winning strategy, but with addition of the 

proposed selection strategy, the selected tickers can be used to form an 

alpha-generating portfolio. Since we only care about the direction of the 

change and not the actual change in prices, this model can be used to 

pursue winner opportunities in digital derivative trading. There are 10 

tickers out of 30 tickers in the sample that pass the criteria for the strategy, 

7 of which carry the momentum into the second 120 days.  Below graph 

demonstrate the difference in ability to forecast between the training and 

out-of-sample windows. 

 

Figure 10: Success rate chart 

61.3% 67.7% 
54.8% 

74.2% 
58.1% 54.8% 58.1% 54.8% 54.8% 58.1% 

86.7% 
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0

0.2
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1
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  From a trader’s point of view, the same strategy can be 

implemented when the model fails. For example for a ticker that can be 

predicted successfully only 30 percent of the time using this model a 

strategy can be implemented reversing the strategy proposed by the model.  

  To implement a digital derivative trading strategy, the trader 

should buy or sell digital options whenever the model proposes so (on the 

tickers that are selected in the training window). In the case of this 

research if a trader follows the predictions of the model, 57 percent of the 

options will end-up in the money on average. If digital double or nothing 

options are to be used, 0.57 2   43 0=1.14, which is 14 percent return 

on average for a set of executed trades. Of course commissions, fees, and 

transaction costs have to be taken into account, but the margin here 

(although risky) surpasses those costs with an acceptable spread. 

 

These are the steps of the proposed trading Strategy: 

 Proposed Trading Strategy: 

 Find tickers that have a success rate of more than a defined 

threshold (e.g. 54 percent) in the last 120 days 

 Form a portfolio of digital double-or-nothing options 

 For dates that model predicts positive price movement buy a 

digital call, for the ones with a negative prediction buy a digital put 

 Do the same for 120 days 

 The model suggests that you’re holdings will end-up in the money 

more than 50 percent of the time (in our case 57 percent) 

 This is a 14 percent return in 120 days 
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Conclusion 

  Momentum strategies have been the subject of a lot of research, 

and have been tested thoroughly. They are considered common indicators 

of market efficiency. Yet there are cases (and in our case, tickers) that show 

positive results when the returns are evaluated for serial correlation. The 

signal to noise ratio is low in most cases, and the predictability greatly 

suffers from it. Even the majority of tickers that pass the tests for serial 

correlation, when tested intensely; fail to predict the direction of price 

change with an overall success rate of more than 50 percent. 

  Our approach consisted of 4 basic modules. The first module 

screens all the tickers and generates a list of prospects. The second module 

goes deeper into the analysis of data and uses some kind of pattern 

recognition or regression tool to distinguish the signal from the noise. The 

third module devises a screening criterion to choose the tickers that show 

hints of serial correlation and predictability in recent dates. The fourth 

module is about testing the tickers chosen. The ARMA/GARCH “fit” is then 

tested in recent months to see how accurate the model can predict the 

subjects of the test. 

  After these 4 steps are taken, by analysing the results we can come 

up with trading or investing strategies in cases that the used model can 

predict actual results with high success rate. 

Devising a well-established screening in combination with a trading 

strategy and an exit strategy is of key importance, especially when we are 

dealing with risky models like the one we presented here. These models 

can be used as part of a diverse portfolio of investments, as a means to 

generate returns alongside other less risky components of the portfolio. 

Areas for Further Research 

Each of the steps taken in our methodology can be a subject for change, 

improvement, and further research. 
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The regression tool in the 2nd module is the core characteristic that 

separates different models from each other. This part is so important that it 

gives models their name. Further researches can use other methods like 

VARMA, EGARCH , etc. as the regression tool and then the first module 

should change to find prospects consistent with the new setup.  

Another major opportunity for further research is to change in the nature 

or frequency of the data series. The model can be tested in other areas like 

volatility or other interesting criteria, and with incorporating data with 

other frequencies from minute to seasonal with respect to the subject and 

the nature of the phenomenon that is going to be predicted. 

Testing the same model and strategy during times of financial crisis to see if 

there is ability to capture momentum and implement the same strategy can 

be another area for further research. 

Economics of these predictive tools, and determination or interpretation of 

both the tools and the results is another major area for further research. 

And for more practical purposes, development of relevant trading 

strategies for each case needs design and refinement, and can be a subject 

of further investigation. 
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Appendix 

Definitions 

1 Price to Return Conversion - Once the data has been gathered and populated 

from NYSE and NASDAQ it is converted to log returns in order to end-up with 

a stationary (more accurately: a zero mean) data series. 

 

Mean -
 The returns are then checked for zero and constant mean by performing 

a t-test using test statistic. The null hypothesis of constant and zero mean can 

then be rejected (fail to be rejected) at a=5% significance level if the condition 

below is satisfied(not satisfied).   

       

Variance – The fact that sample variance for independent and identical 

distributed process has a Chi-Squared distribution can be utilized as the basis for 

a hypothesis test of constant variance. Due to the fact that almost all financial 

time series illustrate time-varying volatility, referred to as “heteroscedasticty”, it 

is preferred to identify constant variance graphically and search for “volatility 

clustering”. In addition to testing for constant variance visually, out model also  

performs a chi-square test, which checks for constant variance.  

Serial Correlations – While there are number of ways to detect the presence of 

serial correlation, our model utilizes Ljung-Box test statistics, and rejects (fail to 

reject) the null hypothesis of no serial correlation if the condition 

 is satisfied. This is done through the MATLAB functions 

lbqtest and autocorr. 
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Auto Correlations - the correlation between two random variables X and Y is 

defined as      
        

√            
 . When the linear dependence between returns 

today (    and its past value          is of interest, the concept of correlation is 

referred to as autocorrelation. Furthermore the correlation coefficient between 

(    and its past value          is called lag-l autocorrelation of   . Denoted as   , 

the autocorrelation for a weakly stationary series is defined as     
            

       
 

where the property Var(              for a weakly stationary series is used. 

A weakly stationary series    is not serially correlated if and only if       for 

all l > 0.  

Partial Autocorrelation Function (PACF) – The partial autocorrelation function 

plays a significant role when it comes to data analyses at identifying the extent 

of the lag in an AR model. Once the order has been determined, the model 

checks whether it is below or above 5 lags. Our model is designed to have a 

maximum of 5 lags even if the PACF function determines a higher order. 

GARCHFIT – At this point we pass the orders we have obtained from the 

previous two steps and place into GARCHFIT. Given an observed univariate 

return series, garchfit estimates the parameters of a conditional mean 

specification and conditional variance specification of GARCH. The estimation 

process infers the innovation (its residuals) from the returns series. It then fits 

the model specification to the return series by maximum likelihood. Using the 

likelihood values as input, the model utilizes the Akalke (AIC) information 

criteria and computes the best possible orders for AR and MA model and 

therefore a superior fit. The same process is then repeated in order to find the 

best orders to the GARCH function to estimate and forecast volatility.  


