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Abstract

The information content of the option implied equity volatility index (MVX) in Canada is

examined. We compare the in-sample and out-of-sample forecasting performance of the GJR

model and the combination of GJR and implied volatility index. Forecasts of two measures of

volatility are obtained by estimation using an ARCH model based on daily index stock returns

and the daily MVX index. The in-sample estimates show that nearly all relevant information is

provided by the index return. For out-of-sample forecasting, the MVX index provides the most

accurate forecast for all forecast horizons and performance measures considered.

Keywords: GJR model; Forecasting; Stock index return; Implied volatility
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1 Introduction

Volatility is of great importance in option trading, firm risk management, portfolio manage-

ment, and evaluating investor sentiment, among other things. For example, the determination of

option value, volatility has the single biggest effect. The recent financial crisis has highlighted the

importance of prudent financial risk management, including volatility forecasting.

There are different ways to forecast volatility, such as using intra-day or daily index returns,

option implied volatility or the combination of various factors. Some researchers have concluded

that in US, implied volatility provides the best method to forecast performance. In this thesis

paper, we summarize our attempt to determine which information content is provided by the

implied volatility index in Canada, the MVX.

We examined the in-sample estimate and out-of-sample forecasting ability of implied volatilities.

Three models were tested:

1. ARCH model based on daily index returns

2. Implied volatility model, and

3. a combination of both 1 and 2 above.

We used a maximum log-likelihood function to estimate the parameters of each model, and exam-

ined the models’ performance by calculating P, R2, RMSE and MAE.

2 Literature Review

ARCH model and Implied Volatility model have been researched in various studies to deter-

mine their ability to accurately predict volatility. Some studies (Mayhew and Stivers, 2003 and

Szakmarya et al, 2003) conclude that the Implied Volatility model outperforms the other models,

including GARCH. Mayhew and Stivers (2003) examine 50 firms with the highest option volume

on the Chicago Board Options Exchange between 1988 and 1995 and determine that the ability

of implied volatility to subsume all relevant information about conditional variance depends on

option trading volume. For most of the active options in the sample, implied volatility outperforms

GARCH and subsumes all information in return shocks beyond the first lag. Significantly, for
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lower option-volume firms, the performance of implied volatility deteriorates relative to time-series

volatility models. Finally, compared to a time-series approach, the implied volatility of equity index

options provides reliable incremental information about future firm-level volatility.

A similar study by Szakmarya et al. (2003) uses data from 35 futures options markets from

eight separate exchanges to test how well the Implied Volatilities (IVs) embedded in option prices

predict subsequently Realized Volatility (RV) in the underlying futures. Their results show that

IV outperforms Historical Volatility (HV) as a predictor of the subsequently RV in the underlying

futures prices. In most markets examined, they find that HV contains no economically significant

predictive information beyond what is already incorporated in IV. These results are consistent with

the hypothesis that futures options markets in general, with their minimal trading frictions, are

efficient.

The use of high frequency returns (intraday returns) proves to outperform even the Implied

Volatility model. Koopmana et al. (2004) compare the forecasting value of historical volatility

(extracted from daily return series), implied volatility (extracted from option pricing data) and

realized volatility (computed as the sum of squared high frequency returns within a day). They

take unobserved component (UC-RV) and long memory models into consideration for realized

volatility 1. Their empirical results show that realized volatility models produce far more accurate

volatility forecasts, when compared to models based on daily returns and that long memory models

seem to provide the most accurate forecasts.

The volatility forecast model is not only tested on equity return, but is also tested on foreign

exchange rates (Ponga et al. 2004), commodities (Martens and Zein, 2004) and futures (Noha and

Kimbc, 2006). Ponga et al. (2004) compare forecasts of foreign exchange realized volatility from

a short memory ARMA model, long memory ARFIMA model, GARCH model and option implied

volatilities. They find that intraday rates provide the most accurate forecasts for the one-day

and one-week forecast horizons which implied volatilities are at least as accurate as the historical

forecasts for the one-month and three-month horizons. The superior accuracy of the historical

forecasts, relative to implied volatilities, comes from the use of high frequency returns, and not

from a long memory specification. They also find significant incremental information in historical

1The true volatility is not observable. Both the realized and the implied volatilities are measures of the true
volatility. Realized is backward looking (historical) measure based on standard deviation of realized returns. Implied
is forward looking, calculated from option prices using Black-Scholes model.
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forecasts, beyond the implied volatility information, for forecast horizons up to one week.

Martens and Zein (2004) suggest that both the measurement and the forecasting of financial

volatility is improved using high-frequency data and long memory modeling based on three separate

asset classes, equity, foreign exchange, and commodities. Their results for S&P 500, YEN/USD,

and Light, Sweet Crude Oil indicate that volatility forecasts based on historical intraday returns

do provide good volatility forecasts that can compete with and even outperform implied volatility.

Noha and Kimbc (2006) forecast the volatility of futures market of S&P 500 and FTSE 100

futures using high frequency returns and implied volatility. They find that, for the FTSE 100

futures, historical volatility using high frequency returns outperform implied volatility, while for

S&P 500 futures, implied volatility outperform historical volatility. Their results also indicate that

historical volatility using high frequency returns could be an unbiased forecast for the FTSE 100

futures.

This thesis paper will concentrate on Canadian equity returns, and the forecast accuracy be-

tween ARCH and Implied Volatility models. The reference period used in this research includes

the recent financial crisis period, but the data will not be separated into two separate periods, due

to the lack of implied volatility index data. Only daily index returns and implied volatility data

will be used in this paper.

7



3 Data

There are two main types of data: daily index returns (TSX 60) and daily implied volatility

(MVX). The data are from 2 December 2002 to 15 October 2010 inclusive, with dates adjusted

according to the availability of returns and implied volatility data. The in-sample period is from

2 December 2002 to 13 March 2007 providing 1078 daily observations, followed by the out-of-

sample period from 14 March 2007 to 15 October 2010 providing 900 daily observations. The daily

index returns are obtained from Google Finance website, whereas the daily implied volatilities are

downloaded from Montreal Exchange website. The period chosen above is based on the availability

of MVX data.

3.1 Daily Index Returns

Daily returns for the TSX 60 index are defined as the natural logarithm of the ratio of consec-

utive daily closing levels.

3.2 Implied Volatilities

Implied volatilities are considered to be the market expectation of the volatility of the underlying

asset of an option, which is reflected in option prices. We can calculate implied volatility from

the Black Scholes model, given index level, risk free rate, dividends and contractual provisions.

However, the calculated volatilities are subject to biases due to measurement error in those variables.

Therefore, we use MVX, introduced by Montreal Exchange, as a substitute.

MVX is calculated from current prices of nearby at-the-money options on the iShares of the

CND S&P/TSX 60 Fund (XIU) that are traded on the Montreal Exchange. MVX is an implied

volatility index that is updated every minute of a trading day, and is a good proxy of investor

sentiment for the Canadian equity market; the higher the Index, the higher the risk of market

turmoil.
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4 Methodology

4.1 In Sample Model

The model estimations performed for in-sample data is primarily based on a Generalized Au-

toregressive Heteroskedasticity (GARCH) model. To account for the effect of both good news and

bad news, an asymmetric volatility model (GJR-GARCH) developed by Glosten, Jagannathan, and

Runkle (1993) is used instead. The implied volatilities are then added to the model(GJR-GARCH)

to verify the significance of its informational content. The following three models are estimated

(rt and εt apply for all models):

1. GJR-GARCH(1,1) model that utilizes only index returns.

rt = µ+ εt (1)

εt = σtzt, zt ∼ Φ(0, 1) (2)

σ2
t = α0 + α1ε

2
t−1 + α2st−1ε

2
t−1 + βσ2

t−1 (3)

2. MVX Volatility model - based on Peng He (2007)

σ2
t = α0 + δMVX2

t−1 (4)

3. Model that uses both MVX and index returns.

σ2
t = α0 + α1ε

2
t−1 + α2st−1ε

2
t−1 + βσ2

t−1 + δMVX2
t−1 (5)

Here σ2
t is the conditional variance of return in period t, st−1 is 1 when εt−1 < 0 and otherwise it is

zero, MVXt−1 is the daily implied index volatility computed from monthly volatility as MVX/
√

22.

Model 2 is estimated to test whether using MVX implied volatility only will provide result similar to

GJR-GARCH(1,1), whereas model 3 is estimated to test whether MVX volatility offers additional

information content not available in index returns.
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The parameters are estimated by quasi-likelihood methodology by assuming that the standard-

ized returns, zt, have normal distributions. The log-likelihood function is defined as:

LLF = −N
2

log(2π)− 1

2

N∑
t=1

log σ2
t −

1

2

N∑
t=1

ε2
t

σ2
t

(6)

The general parameters include: (µ, α0, α1, α2, β, δ). The log-likelihood function is maximized with

constraints: α1, α1 + α2 ≥ 0.

To assess the predictive power of the model, R2 value is estimated based on in-sample fitted

data (conditional variance σ2
t ) and realized volatility. The realized volatility will be described in

the later section of this paper. Higher values of R2 indicates more accurate in-sample forecasts of

volatilities. In addition to that, LLF values are also evaluated for each model, with higher LLF

values indicating a better model.

4.2 Calculating t-statistic

Before calculating the t-statistic for each coefficient, the standard errors for each coefficient

need to be determined. The standard errors of estimators or coefficients, θ̂, are the square roots of

the diagonal terms in the variance-covariance matrix.

var(θ) = [I(θ)]−1 (7)

=

(
−E

[
−∂2L

∂θ∂θ′

])−1

(8)

The variance covariance matrix is simply the negative of inverse of the information matrix. The

score is the gradient of the likelihood (∂L∂θ ). If the model is correctly specified, the expectation

of the outer product of the scores is equal to the information matrix. The steps to calculate the

t-statistics are defined as follow:

1. Given the set of coefficients c, the LLF values are calculated for each data.

2. To calculate the gradient of likelihood, define delta δ for coefficients, for example 1e − 10.

c delta is then defined as c× (1 + δ), dp is defined as δ × c.

3. Another set of LLF values (LLF delta) are calculated at the coefficients c delta.
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4. Score value for the coefficient can then be calculated as (LLF−LLF delta)
dp . Score is a matrix of

size (data length× no of coefficients).

5. The variance covariance matrix can then be determined by taking the inverse of outer product

of score matrix, i.e. (score′ score)−1.

6. The standard errors are determined by taking the square roots of the diagonal elements.

7. Finally, the t-statistic for each coefficients can be calculated by coefficient
std error

4.3 Forecasting Methods

The time series of forecasts are estimated based on rolling ARCH models. The in sample size is

1078 trading days, while the out of sample size is 900 trading days. Each model is estimated based

on the final 1000 trading days before the forecasted day. The model parameters are then used to

forecast the volatility for the next day (T + 1). The model and data are then rolled forward one

day, deleting the observation at time (T − 999), and adding the observation at time (T + 1). Next,

the same estimation is performed again, and the parameters are used to forecast the volatility at

time (T + 2). This rolling method is applied until the end of the out of sample period. The method

described here is shown on the following figure.

Figure 1: Rolling ARCH Forecast

11



On each day, forecasts are also made for 5, 10 and 20 day volatility. Realized volatility which is

used to check on the forecast accuracy is calculated as squared excess returns. The forecasts made

at time T are:

(rT+1 − µ)2 and

N∑
j=1

(rT+j − µ)2, N = 5, 10, 20

When predicting these values, we assume that the conditional expected return µ is constant, such

that the results are not sensitive to the choice of µ; annual expected return of 10% is used. The

daily µ is then calculated as:

µ = (1 + 0.1)1/252 − 1 = 0.000378

The forecasts are calculated based on the four models specified on the following subsections.

4.3.1 Historic Volatility

Historic volatility is based on a simple method, and is used as a comparison against more

sophisticated models. The one step ahead forecast is calculated as sample variance of daily returns

over recent 100 trading days (from time T − 99 to T inclusive).

σ2
T+1 =

1

100

99∑
j=0

(rT−j − r̄T )2, r̄T =
1

100

99∑
j=0

rT−j (9)

To calculate 5, 10 and 20 day volatility, the one-step ahead forecast is multiplied by 5, 10 and 20

respectively.

4.3.2 GJR(1,1) Forecast

The one-step ahead forecast, σ2
T+1 is defined by the following recursive formula,

σ2
T+1 = α0 + α1ε

2
T + α2sT ε

2
T + βσ2

T (10)

where sT equals 1 when εT < 0 and otherwise equals 0. The parameters above are estimated based

on 1000 trading days immediately preceding the forecasted day. Forecasts for 5, 10, and 20 day

12



volatility are calculated by aggregating expectations.

E(σ2
T+j |I

(1)
T ) = α0 + pgjrE(σ2

T+j−1|I
(1)
T ), j > 1 (11)

where I
(1)
T = {rT−i, 0 ≤ i ≤ 999} and persistence pgjr = α0 + 1

2α2 + β for GJR(1,1) model,

assuming that returns have symmetric distribution. Then the volatility forecast for N days becomes
N∑
j=1

E(σ2
T+j |I

(1)
T ).

4.3.3 Volatility Forecast using MVX

This forecast is based on solely MVX data. The model is based on a simple regression on MVX

volatility. The one step ahead forecast is defined by:

σ2
T+1 = α0 + δMVX2

T (12)

Parameters α0 and δ are estimated from I
(2)
T = {rT−i,MVXT−i, 0 ≤ i ≤ 999}. The 5, 10 and

20 day volatility forecast is produced by multiplying the one-step ahead forecast by 5, 10 and 20

respectively.

4.3.4 Volatility Forecast using Index Return and MVX

The last forecast is based on the fourth model, combining both index returns and MVX volatility

data. The one-step ahead forecast is given by:

σ2
T+1 = α0 + α1ε

2
T + α2sT ε

2
T + βσ2

T + δMVX2
T (13)

where sT equals 1 when εT < 0 and otherwise equals 0. Parameters α0, α1, α2, β and δ are estimated

from I
(2)
T = {rT−i,MVXT−i, 0 ≤ i ≤ 999}. To produce 5, 10 and 20 day volatility forecasts, the

simple multiplicative method is used, i.e. multiplying one-step ahead forecast by 5, 10 and 20

respectively.
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4.4 Forecast Evaluation

There are several evaluation criteria to assess the relative predictive accuracy of the four fore-

casting methods. Given forecasts xT,N made at times T = s, ..., n−N and realized volatilities yT,N

at the same time range, the following values are calculated:

1. Proportion of variance explained by forecasts, suggested by Blair et al. (2001)

P = 1−

n−N∑
T=s

(yT,N − xT,N )2

n−N∑
T=s

(yT,N − ȳ)2

(14)

Higher value of P-statistic indicates better accuracy.

2. Root Mean Square Error (RMSE)

RMSE =
1

n−N

n−N∑
T=s

(yT,N − xT,N )2 (15)

Lower value of RMSE indicates better accuracy.

3. Mean Absolute Error (MAE)

MAE =
1

n−N

n−N∑
T=s

|yT,N − xT,N | (16)

Lower value of MAE indicates better accuracy.

4. Squared correlation, R2 from regression

yt,N = α+ βxt,N + εt (17)

Higher value of R2 indicates better fit and accuracy.

P statistic, which measures the forecast accuracy, is at most equal to R2 that is often interpreted

as a measure of information content.
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5 Results

5.1 In Sample ARCH Results

The parameter estimates, along with the log-likelihoods and squared correlations R2 are pre-

sented in Table 1.

Models for S&P TSX 60 index daily returns from 2 Dec 2002 to 15 Oct 2010

rt = µ+ εt

εt = σtzt, zt ∼ Φ(0, 1)

Model 1: σ2
t = α0 + α1ε

2
t−1 + α2st−1ε

2
t−1 + βσ2

t−1

Model 2: σ2
t = α0 + δMVX2

t−1

Model 3: σ2
t = α0 + α1ε

2
t−1 + α2st−1ε

2
t−1 + βσ2

t−1 + δMVX2
t−1

st is 1 if εt is negative otherwise st is zero

MVX is a measure of implied volatility.

t-ratios are shown in parentheses.

Parameter Model

(1) (2) (3)

α0 × 10−6 3.1690 15.9616 5.6279

(2.79) (2.66) (2.64)

α1 0.0014 0

(0.08) (0)

α2 0.0845 0.1349

(2.97) (2.67)

β 0.8986 0.7044

(30.61) (7.58)

δ 0.0437 0.0077

(6.18) (2.06)

µ× 10−4 6.284 6.9542 6.5796

(2.76) (3.06) (2.88)

log-L 3749.69 3746.53 3753.43

Excess log-L -3.16 3.74

R2 0.0314 0.0234 0.0273

Table 1: In-Sample ARCH Result
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The results are obtained from 2 December 2002 to 12 March 2007 inclusive. Combination of GJR and

MVX has the highest log-likelihood value, while MVX model has the lowest log-likelihood. The excess log-

likelihood value is calculated by using GJR model (model 1) as the base. The excess log-likelihood value

for MVX model is negative, indicating that MVX data does not have incremental information, i.e. the data

from index return is sufficient to model the volatility. The third model has positive excess log likelihood,

but the value is not significant. This indicates that MVX data has little incremental value to the model.

The predictive power indicated by R2 shows that GJR model has the best fit among the models. The

comparison between realized volatilities and estimated in-sample volatilities for each model is shown on the

three plots below.

Figure 2: GJR(1,1) Model - In Sample Estimates
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Figure 3: MVX Model - In Sample Estimates

Figure 4: GJR(1,1) + MVX Model - In Sample Estimates
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The first model is the standard GJR(1,1) model, that uses only index returns to characterize the con-

ditional variance. The ratio between multiplier for squared negative returns α1 + α2 and squared pos-

itive returns α1 is fairly large, indicating a substantial asymmetric effect. The persistence estimate is

α1 + 1
2α2 + β = 0.94425.

The second model is the MVX model which makes use of MVX implied volatility data to estimate the

conditional variance. When compared to the other two models, the MVX model performs worse in data

fitting. However, the high t-statistic value of δ (6.18) shows the significance of the MVX implied volatility

index data on this model.

The third model is combination of GJR(1,1) and MVX model. Comparing Figure 2 and Figure 4, the

in sample estimates’ difference is fairly minimal, confirming that MVX volatility data has little incremental

information. Another observation is that the t-statistic value of δ (2.06) is no longer significant, assuming

99% confidence interval (critical t-statistic value = 2.58). It can be seen that the realized volatilities are

very noisy on the three plots, but the estimates are not so volatile.

5.2 Out of Sample Forecasting

The out-of-sample forecast accuracy is compared from 14 March 2007 to 15 October 2010. Table 2 sum-

marizes the four accuracy measures (P-statistic, RMSE, MAE and R2) for each model, including additional

Historical Volatility model. The results obtained are different with those from in-sample estimates.

The relative accuracy of volatility forecasts from March 2007 to October 2010

The accuracy of forecasts are measured by:

P = 1−

n−N∑
T=s

(yT,N−xT,N )2

n−N∑
T=s

(yT,N−ȳ)2

RMSE = 1
n−N

n−N∑
T=s

(yT,N − xT,N )2

MAE = 1
n−N

n−N∑
T=s

|yT,N − xT,N |

A. Values of P for forecasts of sums of squared excess returns

Forecast N=1 N=5 N=10 N=20

GJR 0.2542 0.5644 0.5646 0.4945

MVX 0.2773 0.5678 0.5827 0.5036

GJR + MVX 0.2033 0.4060 0.4383 0.3913

HV 0.0696 0.1384 0.1196 0.058
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B. Values of R2 for forecasts of sums of squared excess returns

Forecast N=1 N=5 N=10 N=20

GJR 0.2564 0.5736 0.5796 0.5229

MVX 0.3147 0.6223 0.6239 0.5213

GJR + MVX 0.2702 0.5224 0.5590 0.4889

HV 0.0880 0.1887 0.1909 0.1715

C. Values of RMSE for forecasts of sums of squared excess returns

Forecast N=1 N=5 N=10 N=20

GJR 0.00078 0.00195 0.00365 0.00741

MVX 0.00076 0.00194 0.00358 0.00734

GJR + MVX 0.00080 0.00228 0.00415 0.00813

HV 0.00087 0.00274 0.00519 0.01011

D. Values of MAE for forecasts of sums of squared excess returns

Forecast N=1 N=5 N=10 N=20

GJR 0.00029 0.00087 0.00163 0.00315

MVX 0.00029 0.00088 0.00162 0.00305

GJR + MVX 0.00027 0.00093 0.00180 0.00355

HV 0.00034 0.00126 0.00246 0.00496

Table 2: Out of Sample Forecast Accuracy

Based on the table, following are the observations:

1. Comparing the different N-day ahead forecasts, the accuracy of the forecast is increasing up to 10-day

ahead generally, as shown by the P-statistic and R2 value. The value of these statistics for 20-day

ahead forecast are decreasing for every model.

2. MVX Volatility model has the best accuracy for out of sample forecasting. Generally, it has the highest

P-statistic and R2, and the lowest RMSE and MAE.

3. GJR(1,1) ranks second to MVX. Combining both models results in decrease of accuracy.

4. Simple forecasting model, like Historical Volatility, are not better than the more sophisticated models.

5. The values of RMSE and MAE are increasing for all models when N is increased.

6. Combining GJR and MVX causes a decline in forecasting accuracy, as shown by the lower P and

higher error values. The stand-alone models work better in forecasting.
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7. The increase in value of R2 after 5-day ahead forecast is minimal, indicating the lack of incremental

information for 10-day and 20-day ahead forecasts.

8. 5-day ahead forecast is typically more accurate than 1-day ahead forecast, shown by the higher values

of P and R2.

9. The values of P and R2 are quite similar, the difference R2 − P is pretty small.

The following four figures show the plot of squared excess returns and forecasts for each model. Since

the accuracy of forecasts between GJR and MVX is difficult to observe based on the plots, the accuracy

needs to be determined based on the measures described above.

Figure 5: GJR(1,1) Model - Out of Sample Forecast
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Figure 6: MVX Model - Out of Sample Forecast

Figure 7: GJR(1,1) + MVX Model - Out of Sample Forecast
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Figure 8: HV Model - Out of Sample Forecast

6 Conclusions

Previous studies of index returns and implied volatilities have produced several differing outcomes. The

most often cited result states that the implied volatility model outperforms the other models, but it does

not outperform the high frequency return (intraday return) model. Our in-sample analysis shows that the

Implied Volatility model performs slightly worse than GJR-GARCH model (using daily index return), but

the MVX volatility data is comparable to the daily index return as shown by the high significance in MVX

volatility model. Combining the two models shows that MVX implied volatility does not offer incremental

information. This result is in agreement with the conclusion of Blair et al (2001) for VIX on S&P 100.

Out-of-sample volatility forecasts show that MVX volatility model performs the best. A combination of

daily index returns and MVX volatility data results in a decline in forecasting accuracy, showing that MVX

has little incremental information when combined with daily index returns. Additionally, the 5-day ahead

forecast is better than the 1-day ahead forecast, but the forecast accuracy does not increase for 10-day and

20-day ahead forecasts. This result confirms the conclusion produced by Mayhew and Stivers (2003) and

Szakmarya et al (2003).
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