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Abstract

In this thesis, we investigate the computational power of some variants of Winfree’s abstract

Tile Assembly Model (aTAM) at Temperature 1 [43]. Although aTAM at temperatures

higher than 1 are proved to be Turing Universal, i.e. they can simulate an arbitrary Turing

Machine [43], the computational power of aTAM at temperature 1 is still an open question.

It is known that some modifications of aTAM are indeed Turing Universal at temperature

1 [11, 30]. In this thesis, we first show that two variants of aTAM, namely the Staged Tile

Assembly Model and Step-wise Tile Assembly Model at Temperature 1, are also Turing

Universal.

Next, we discuss the computational power of the self-assembly with triangular tiles and

hexagonal tiles, respectively. We prove that these models can simulate arbitrary systems

under aTAM and vice versa, and consequently, they have the same computational power as

aTAM.
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Chapter 1

Introduction

Self-assembly is a bottom-up process by which fundamental components autonomously coa-

lesce into more complex patterns or structures without human intervention. More formally,

self-assembly refers to the spontaneous formation of structures through a process that in-

volves assembly of existing components, and it can be controlled by proper design of the

components, the environment, and the interaction force [31]. Nature provides many exam-

ples: atoms react to form molecules, molecules react to form crystals and supermolecules.

This phenomenon is a key concept for fabrication of desired nano-structures. Instead of

building nano-scale objects molecule by molecule, molecular self-assembly enables the scien-

tists to produce these objects by designing the molecules and letting them to spontaneously

self-assemble useful structures.

DNA self-assembly, pioneered by Seeman [36], is one of the fruitful areas in the study

of self-assembly systems, in which double and triple crossover DNA molecules have been

designed to act as four-sided self-assembling nanoscale construction blocks or tiles that can

bind together via a fundamental concept called base pairing [37]. In 1982 Seeman [36]

proved experimentally the feasibility of practical implementation of self-assembling molecu-

lar tiles [36]. This method has made substantial progress over the past three decades. Reg-

ular arrays [44], polyhedra [17], fractal structures [19], curved three-dimensional vases [20],

DNA tweezers [46], logic circuits [32], neural networks [33] and molecular robots [28] are a

few examples of the many nano-structures successfully self-assembled in laboratory experi-

ments. Some of the industrial motivations for DNA self-assembly include designing efficient

computer chips, single molecule detection and achieving better in-cell diagnosis and treat-

ment.

1



CHAPTER 1. INTRODUCTION 2

In accordance with their practical importance, self-assembly models have received in-

creased theoretical attention over the last years. In 1998, Winfree [43] introduced the (ab-

stract) Tile Assembly Model (aTAM or TAM) – which utilizes the idea of Wang tiling [42]

– as a simplified mathematical model of the DNA tile self-assembly. Very briefly, a tile in

TAM is a unit square with a “glue” on each side of it. The four pairing ends of DNA tiles

are presented as four sides of the unit square. Each of the sides has a specific glue associated

with it, representing different nucleotide sequences. This idea is illustrated in Figure 1.1.

The bonding strength between different glue types can be different, and is often modeled as

0, 1 or 2 etc. A tile may attach to an existing structure if the sum of the bonding strengths

of the bonds formed between the tile and the existing structure exceeds some threshold tem-

perature τ . The self-assembly process starts from an initial seed assembly ψ, and proceeds

by iteratively attaching copies of tile types to the growing structure one by one. This model

is described more formally in Section 1.1.

Several fundamental problems in the field of tile assembly model have been studied. A

few of these problems are the following. (1) Shape fabrication measures: given a shape S

(where S is a finite, connected subset of Z×Z) what is the minimum number of distinct non-

empty tile types that uniquely self-assemble into S [29, 4, 2, 35, 23]? Since the total number

of tile types dominates the cost (in money and time) of practical implementation, this

measure is crucial in programming large complex molecular self-assembly systems. Another

resource constraint that has been considered is the time required to build a shape S [1, 9, 34].

(2) Shape complexity : given a small number of tile types, what shapes can be constructed

under TAM or related models [40, 24]? (3) Error detection: TAM makes two assumptions

that in practical experiments may not hold: it is assumed that tiles never detach from an

assembly and a tile only attaches to the growing structure when the binding strength exceeds

the temperature. To address these practical issues in theoretical models, several techniques

and tools are suggested [43, 39, 39, 14, 10]. (4) Computational complexity : given algorithmic

essence of TAM, it is important to find the computational power of this model. It is shown

that despite its deliberate over-simplification, the TAM is computationally very powerful.

In fact, it is proved that TAM at temperature 2 or higher, is computationally universal, that

is, it is able to simulate an arbitrary Turing machine [43]. Although significant amount of

work has been done on temperature 1 self-assembly models [7, 11, 26, 30, 3, 15], the answer

to the following question is still unknown: what is the computational power of deterministic

planar positive-strength temperature 1 self-assembly? In this thesis, we are making further
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step in answering the above question. In particular, we will prove computational universality

in two known self-assembly models, namely, Step-wise and Staged self-assembly models at

temperature 1.

Besides the square tiles, experiments have been done to produce tiles of triangular and

hexagonal shapes. For example, Liu et al [27] reported the construction of a DNA triangle

tile composed of three four-arm junctions, also Ding et al [13] obtained a triangular DNA

tile formed from some different forms of DNA molecules, and He et al [21] built a hexagonal

DNA tile. This motivated the study of comparing limitations self-assemblies using the

square, triangular and hexagonal tiles [25]. In particular, they designed shapes that can be

assembled in one model, but not the others at temperatures 2 and 3. In the second part,

of this thesis, we study the computational power of Self-Assembly systems with triangular

and hexagonal tile shapes at temperature 1.

Thesis Layout. In the remainder of this chapter, we give a formal description of the

abstract Tile Assembly Model and in Section 1.2 we describe some variants of aTAM that

have been proposed through the past two decades. In Chapter 2 we present some known

results on tile complexity and computational power of tile assembly models. In Section 2.1

we survey some tile complexity results in aTAM and two other tile assembly models, namely

Step-wise tile assembly model and Staged tile assembly model. In Section 2.2 we discuss

some known work on computational power of tile self-assembly models. In particular we

present the results on Turing Universality of few self-assembly models.

In Chapter 3 we present our result on computational power of two tile assembly models,

namely Step-wise tile assembly model and Staged tile assembly model. We show that at

temperature 1 these two models are very powerful from computational point of view and

are in fact capable of simulating an arbitrary Turing Machine on an arbitrary input. An

extended abstract of the results in chapter 3 appeared in [7].

In Chapter 4 we study the impacts of using different tile shapes on computational of

power of tile assembly systems at temperature 1. We show that at temperature 1 Triangular

and Hexagonal tile assembly models are equivalent to aTAM from computational point of

view.



CHAPTER 1. INTRODUCTION 4

Figure 1.1: A DNA tile mapping to a tile type in TAM.

1.1 Definition of the Abstract Tile Assembly Model

In this section, we present a brief description of the tile assembly model based on Rothemund

and Winfree [43]; for a more detailed description we refer the reader to [43]. We will be

working on a Z×Z grid of unit square positions. The set of directions D = {N,E,W, S} is

composed of four Z×Z7→Z×Z functions such that:

N(i, j) = (i, j + 1), E(i, j) = (i+ 1, j), S(i, j) = (i, j − 1) and W (i, j) = (i− 1, j).

The inverse directions are defined naturally, for example N−1(i, j) = S(i, j), etc.

Let Σ be a set of binding domains (glues). The set Σ contains a special binding domain

null that represents no glue, in this thesis we also denote the glue null by . A tile type,

t, is a 4-tuple [ tN , tE , tS , tW ] ∈ Σ4 indicating the associated binding domains on the

north, east, south and west sides of t, respectively. We denote the glue on the side d (d ∈ D)

of a tile t with td. Note that tile types are oriented, thus a rotated version of a tile type is

considered to be a different tile type. Let T be the set of tile types. There is a special tile

type empty = (null, null, null, null) in T which represents an empty space, i.e., no tile has

been place in that position. A configuration is a function C, mapping Z×Z to the set of tile

types in T . Hence, C(i, j) denotes the tile placed at the position (i, j) in the configuration

C. We call the tiles which share a side with t, neighbors of t. Let a structure Struc(C) of a

configuration be the set of positions that are not mapped to empty in C.

Under Tile Assembly Model a tile assembly system (TAS) is a 5-tuple T = 〈Σ, T, ψ, sΣ, τ〉,
where T is the finite set of tile types with binding domains from Σ and contains the tile

empty, ψ is a set of configurations on T called set of seed configurations, sΣ is a function

which determines the bonding strength between glues in Σ, and τ is a threshold parameter

called temperature. In this thesis we will omit parameters Σ and sΣ when they are clear

from the context.
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A strength function sΣ : Σ× Σ 7→N, satisfying sΣ(σ, σ′) = sΣ(σ′, σ) and sΣ(σ, null) = 0,

measures the strength of interaction between binding domains. Two tiles abut on the sides

with glues σ and σ′ respectively, bind with strength sΣ(σ, σ′). For example, many authors

consider the simple strength function, sΣ(σ, σ′) = 1 if σ = σ′ 6= null, and sΣ(σ, σ′) = 0

otherwise. In this thesis, we assume sΣ(σ, σ′) > 0 if σ = σ′ and sΣ(σ, σ′) = 0 otherwise.

A tile t can be added to a configuration at position (x, y), only if the sum of the strengths

of interactions between glues on sides of t that abut the already placed tiles at neighboring

positions is at least τ (the temperature). Consequently, given a position (x, y), a direction

d ∈ D and a configurations C, we say there is a bond between positions (x, y) and d(x, y) in

C if and only if sΣ(C(x, y)d, C(d(x, y))d−1) > 0. That is to say, the strength function of the

pair of glues on the abutting sides of the tiles placed at the two positions (x, y) and d(x, y)

is non-zero.

Given two configurations C and D, we define their union by A = C ∪ D to be the

following map from Z× Z to T ∪ {∞}:

A(x, y) =


C(x, y) : if D(x, y)=empty or C(x, y) = D(x, y)

D(x, y) : if C(x, y)=empty or C(x, y) = D(x, y)

∞ : otherwise

We say that C ∪ D is a configuration if it is a map to T . Thus, self-assembly can

be defined as relation between configurations on T . Let C and D be two configurations

under a tile assembly system, say T, such that C = D except at a position (x, y), where

C(x, y) = empty and D(x, y) = t, for some t ∈ T\{empty}. Then we write C→TD, if and

only if the sum of interaction strengths on the sides of t with tiles at neighboring positions

reaches τ . In this sense, we can define the self-assembly process as a sequence of tiles that

attach to the growing structure one by one under the self-assembly relation starting from

the seed tile. Formally, the self-assembly process is the transitive closure of C→TD, which

we denote by C→+
TD.

The seed configuration is the configuration where the We focus on a subset of configu-

rations that are produced by the self-assembly process starting from seed configuration. In

particular, a tile system T and the self-assembly relation →+
T define the partially ordered

set of configurations, called assemblies of T, denoted by Asmb(T) = {A : ψ→∗TA}. A tile

system uniquely assembles A if for all B ∈ Asmb(T), B→+
TA. We say that a system is de-

terministic if for every A,B ∈ Asmb(T), either A→∗T B or B →∗T A, i.e., there is a unique

sequence of assemblies producing the terminal assembly. Note that a deterministic system
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always uniquely assembles the terminal assembly. An assembly A is said to have no binding

domain mismatches if for any two neighboring positions (x, y) and d(x, y), where d ∈ D,

such that A(x, y) 6= empty and A(d(x, y)) 6= empty, we have A(x, y)d = A(d(x, y))d−1 . If

the assembly process reaches a point when no more attachments are possible, the produced

assembly is called terminal and is considered the output assembly of the system. We denote

terminal assemblies of a system T by Term(T ). For a finite deterministic system, we have

|Term(T )| = 1 and we define T (i, j) = Term(T )(i, j).

A shape S is a connected subgraph of the lattice induced by V (S) ⊆ Z × Z. We say

an assembly A has shape S if and only if V (A) = V (S). For example, a shape S is an

N ×N square if there exists a position (x0, y0) ∈ V (S) if and only if x0 ≤ x < x0 +N and

y0 ≤ y < y0 + N . We say an assembly A is full if for any two neighboring position (x, y)

and d(x, y) in V (A), where d ∈ D, there is a bond between them in A. We say a tile system

uniquely produces a full shape S, if the terminal assembly of the tile system is unique, full

and has shape S. The smallest number of non-empty tile types and non-null glues required

to assemble a given shape are called the tile complexity and glue complexity of the shape,

respectively.

Given a deterministic assembly system T, we say that g is an input glue of a tile t at a

position (x, y) via side d if td = g and when placing t into the growing structure it forms

a bond with the tile at position d(x, y) already present in the structure, and we say that g

is an output glue of a tile t at a position (x, y) via side d of an assembly if td = g 6= null

and after placing t into the growing structure, side d of t is exposed, i..e., there is no tile at

position d(x, y) in the structure just after t was placed. Note that by this definition, input

and output glues cannot be null, and since the system is deterministic, the input and output

glues are well defined. Also, we call a set of tiles that are attached together a supertile.

Given a standard tile system T = 〈Σ, T, ψ, sΣ, 1〉, and a configuration C of T, the

backbone graph of C, G(C) = (V,E) is the subgraph of the square lattice whose vertex set

is V (C), and there is an edge between two vertices (x, y) and (x′, y′) if and only if there

is a bond between C(x, y) and C(x′, y′) in C. Note that if the configuration C is also an

assembly of T, then its backbone graph is connected.
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1.2 Other Models of Self-Assembly

Over the years new models and variants of TAM have been introduced and studied for

both theoretical and experimental purposes. Further, we will see that adding some simple

constraints and concepts to TAM, substantially improves efficiency and “power” of tile self-

assembly models.

• Staged Tile Assembly Model.[12] Erik D. Demaine, et. al, presented the Staged tile

assembly model, a generalization of the standard tile assembly model that captures the

temporal aspect of laboratory experiment, and enables more flexibility in the design

and fabrication of complex shapes using a small tile and glue complexity. In this model

the tiles can be added gradually in a sequence of stages, and non-attached tiles can be

washed away and removed at the end of each stage (in practice, this can be done by

using a weight-based filter, for example). Also, there can be any number of bins, each

containing tiles and/or assemblies that self-assemble as in the standard tile assembly

model. During a stage, any collection of the following two operations are allowed: (1)

add (arbitrarily many copies of) a new tile to an existing bin; and (2) pour one bin into

another bin, mixing the contents of the former bin into the latter bin. In both cases,

tiles that do not assemble into larger structures are removed at the end of the stage.

These operations let us build intermediate terminal assemblies in isolation (i.e. in a

separate bin) and then combine different terminal assemblies to form more complex

structures. Two new complexity measures in addition to tile and glue complexity

arise: the number of stages, or stage complexity, measures the time required by the

operator of the experiment, and the number of bins, or bin complexity, measures the

space required for the experiment. Note that, when both of these complexities are 1,

the model is a equivalent to the regular tile assembly model.

• Step-wise Tile Assembly Model. [34] This model is the special case of Staged tile

assembly model, in which only one bin is being used. Under Step-wise tile assembly

model, each step can have a different tile set. Let {Ti}ki=1 be a sequence of finite sets

of tiles, where Ti represents the tile set used for ith step of the experiment. In the

first step, the seed tile is immersed into T1, the terminal assembly is retained and the

rest are filtered out. In the next step the assembled structure is placed in T2, where

it acts as a seed configuration. The assembly continues in this manner. Step-wise tile
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assembly model enables production of more efficient assemblies in terms of tile types

at the price of the work of an operator [29]. The time required for the experiment is

measured by the number of steps or step complexity.

• Zig-Zag Tile Assembly Model. [11] Informally, a Zig-Zag assembly is an assembly

in which the assembly can grow only left to right (or right to left) up to the point at

which a first tile is placed into the next row north, and after entering the next row,

the direction of growth is reversed compared to the row below, see Figure 1.2.

Temperature 2 Zig-Zag assembly system: A tile system Γ = 〈T, 2, s〉 is called temper-

ature 2 Zig-Zag system if:

1. The assembly sequence, which specifies the order in which tile types are attached

to the system is unique, i.e. the system is deterministic.

2. If the i − 1th tile added to the assembly sequence is placed in an even row

(counting from 0 starting with the row containing the seed tile) in position (x, y)

of the grid, then the ith tile is either placed in position E(x, y) or N(x, y). And

if the i − 1th tile added is placed in an odd row, then the next tile to be added

(ith tile in the sequence) is placed either in W (x, y) or N(x, y).

Figure 1.2: The direction of growth in a Zig-Zag system alternates between left and right.

• 3D Tile Assembly Model. [11, 8] In this model the abstract Tile Assembly Model

is extended to 3 dimensions by using unit cubes as the building blocks instead of 2

dimensional unit squares used in TAM, and adding glues to the top and bottom side

of the cubes. In this model the domain of the mapping function explained in 1.1 is

extended to Z×Z×Z instead of a 2-dimensional grid in TAM. A tile attaches to any

of the six sides of already placed tiles if the strength function at the corresponding

position exceeds the temperature threshold τ .
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• Restricted Glue Tile Assembly Model (rgTAM). [30] In comparison to TAM,

here the range of the strength function sΣ is {1,−1} and there exists exactly one glue,

say a, that satisfies the following statement,

∃a ∈ Σ : ∀b ∈ Σ, sΣ(a, b) = −1.

Similar to what described before, in any rgTAS a tile t can attach to an assembly at

a specific position, if and only if the sum of strength function between glues on the

abutting sides of the already placed tiles and t is at least equal to the temperature

threshold τ .

• Multiple Temperature Model. [5] In the multiple temperature model, the integer

temperature threshold τ is replaced with a sequence of integer temperatures {τi}ki=1,

called the temperature sequence of the tile system. In a tile system with k tempera-

tures, assembly takes place in k phases. First, tiles are added to the seed tile as in

the standard tile assembly model under temperature τ1. When no more tiles can be

attached, phase 2 starts and the temperature of the tile system switches to τ2. Now,

tiles can be added as in the standard tile assembly model under τ2, and some tiles may

also break off, if the strength of their bonds are strictly less than τ2 and the assembly

containing the seed tile is retained at the end of each phase. Once no more tiles can

be added or removed, phase 2 is complete and phase 3 starts. The temperature is set

to τ3 and tiles are now added and removed under this new temperature. This process

continues until phase k is complete.

• Flexible Glue Model. [5] In contrast to TAM, in this model unequal glues may bind

together with non-zero strength. One can think of this by designing several sticky ends

on the sides of the DNA tile molecule, while the binding between tiles are dependent

to the number of matching glues on the abutting sides of the tiles.

• Unique Shape Model. [5] A tile system, T , under this tile assembly model, must

uniquely assemble a shape S, that is to say the terminal assemblies produced by the tile

system are all have shape S. In other words, contrary to TAM, T may have several

different terminal assemblies (i.e. nondeterministic growth) but all these terminal

assemblies are in shape S.
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• Kinetic Tile Assembly Model [43] Comparing to the other models previously

described, Kinetic tile assembly model is a more realistic model of tile assembly that

is suggested by Winfree, to address some of the practical issues that are not considered

in TAM. The assumption here is that a tile type can attach to any of the exposed glues

on an assembly, at a rate proportional to its concentration, regardless of its strength

of attachment. For more details see [45].



Chapter 2

Related Work

In theory, Winfree’s abstract Tile Assembly Model is very powerful in the sense that rela-

tively small sets of tiles may be used to simulate the universal Turing machines [11] or a

cellular automata [43]. This suggests that a self-assembly system may be viewed as a pro-

gram to build complex (computable) shapes [2]. Such an algorithmic view to self-asselmbly

is interesting because it suggests that computer algorithms and programs should be able to

capture all of the complex behaviours of self-assembly systems and help as a mean of design-

ing efficient self-assembly systems. Also, theoretical principles of computer science can be

translated to statements about objects in real world. Working under assumption that any

tile system can be implemented physically, researchers have begun to explore the computa-

tional powers of these systems. In this section, we review some results on the self-assembly

systems from the point of view of computational complexity.

2.1 Tile Complexity in Tile Based Self-Assembly Models

The algorithmic aspect of tile self-assembly systems declares that their ability to perform

computation is directly related with their ability to build large and complex configurations

by using small variety of tile types compared to the size of the constructed structure.

Also, as mentioned earlier, reducing the number of tile types decreases the cost of practical

experiments. Hence, one of the most popular questions that arises in the area is: given a

specific shape, find the tile system with minimum number of tile types to self-assemble this

shape. The decidability version of this question can be described as the following: given

a shape A, a positive integer c and a threshold temperature τ , is there a tile system with

11
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Figure 2.1: [35] A tile assembly system that uniquely assembles a 5×5 full square

less than c tile types which self-assembles A at the given temperature. Adelman et. al [2],

proved the latter question is NP-complete. Then they asked, “What is the [tile] complexity of

generating an N×N square with self-assembly?”. The attempts to answer this question and

its varieties led to a fruitful body of work in self-assembly studies and have had great impacts

in understanding the computational aspects of self-assembly systems[2, 12, 41, 35, 5, 29].

In this section, we study some of these results.

2.1.1 Tile Complexity of Full Squares in the Abstract Tile Assembly

Model

We start by stating some of the early results regarding temperature 2. By the end of this

section, we will also show that the tile complexity of an N ×N square at temperature 1 is

quadratic in regard to N , while this measure can be much smaller for temperature 2.

Theorem 1. [35] The tile complexity of an N×N full square at temperature 2 is at most

O(N).

Proof Sketch. Figure 2.1 shows a tile system that uniquely assembles a 5×5 full square

using only N + 4 = 9 tile types. In this figure, the seed tile is positioned at the top leftmost

position of the square and the top border is formed with strength 2 bonds with tile types

labeled with numbers. When the top border is finished, the tile types labeled A in the

picture attach to the top border with the strength 2 glue on their north side and enter the

next row. Then the tile types labeled B fill in the diagonal positions and unlabeled tiles

bind to the existing assembly with the strength 1 glues. The described process for the 5×5

full square can be generalized to any positive integer N .
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Even a better bound is possible by combining the method mentioned in [35], to self-

assemble a fixed width binary counter, with the construction mentioned in the proof of

Theorem 1. A sketch of the construction for binary counter is mentioned in the next lemma.

Lemma 2. [35] There exists a self-assembly system T = 〈T, s, 2〉 that simulates a simple

binary counter machine.

Proof Sketch. The general idea of the proof is illustrated in Figure 2.2. The assembly

contains seven distinct tile types. The borders are assembled with strength 2 bonds and

the rest of the assembly is finished with strength 1 glues. Simulation of the action of

incrementing is regulated by the location of the glue c in each row by controlling which

“digits” are changing from 0 to 1 or vice versa as the assembly grows row by row.

Figure 2.2: Simulating a binary counter with self-assembly. The set of tile types is depicted
in the left side. In this figure, thick sides represent strength 0 glue, thin lines represent
strength 1 glues and strength 2 glues are shown by double lined sides. The assembly shown
in the right is not complete and the arrows indicates the positions that the assembly can
grow further.

Combining the ideas in proof for Theorem 1 and Lemma 2 yields a better bound for

assembling a full square at temperature 2.

Theorem 3. [35] The tile complexity of an N×N full square at temperature 2 is at most

O(log(N)).

Proof Sketch. We can reach this bound for assembling an N×N full square by combining

the structures mentioned before. Let n = d log(N)e and c = 1 + 2n−1 − dN − n/2e. The
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Figure 2.3: Constructing an N×N full square using O(log(N)) tile types by combining
structure in Figure 2.1 and Figure 2.2. Here N = 52, n = 6 and 28 tiles are used overall.

structure of the assembly is slightly different depending on the parity of the number N −n.

The system shown in Figure 2.3 starts the assembly by constructing an (n − 1)×(n − 1)

square with the method described in Theorem 1 with n + 3 tiles. But the seed row of this

(n− 1)×(n− 1) square constructs the binary number c− 1 by encrypting each binary digit

at each tile.

On the top of this smaller square the binary counter, that is similar to the one described in

Lemma 2, starts counting from c to 2n−1. The rows of this counter basically perform two

main actions:

• Increment rows: As the name suggests, these rows increment the number on the row

below themselves by 1. The glues n and c belong to the tiles constructing the incre-

ment rows in Figure 2.3. More precisely, c is used to simulate the action of carrying

to the next digit and n indicates that action of carrying is completed. The assembly

in these rows extends from right to left.

• Copy rows: These rows copy the binary number of the row below, by ”reading” this

number with the help of glues on the south side of their tiles. Conceptually, these tiles

are responsible for reading the output of incrementing rows from the right side and

fetch it to the next incrementing rows. The tiles that have glue x on their left or right

side belong to copy rows. In these rows self-assembly grows from left to right.
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Hence, two rows are used for each integer in the process of counting. Also, note that we use

a special binding domain of strength 2 on the north side of the tiles corresponding to the

first and last digits in each row. This is so that the system identifies the end of a row, and

also to initiate the next row with the use of this binding domain of strength 2.

For the even N − n the counter starts by (i.e. the seed row is) an increment row and it

starts by a copy row for an odd N − n. When the number 2n−1 is reached the leftmost

digit changes from 0 to 1. In this case there is a unique binding domain on the north side

of the tile with the leftmost digit and the assembly of the counter halts by this tile. Also,

there’s a special tile for the rightmost digit of the first row after the seed row which initiates

the assembly of the rest of the square diagonally with tiles labeled a and b in the picture.

Overall, the counter has O(n) tile types and the rest of the square is filled with 4 tiles on the

diagonals and two blank tiles filling out the rest of the square as shown in Figure 2.3.

Most of the work that has been done on the tile complexity of self-assembly models is

focused on temperature 2 assembly. While temperature 2 assembly yields very complex

and efficient constructions, it comes with its own flaws. One of the main hurdles in experi-

mental work on DNA self-assembly at temperature 2 is the high error rates in the order of

attachments. Often tiles attach with less than strength 2 bond although the lab conditions

are arranged to prevent this to happen [11]. From practical point of view, temperature 1

systems are more well-mannered and easier to control for laboratory experiments. For this

reason, exploring the power of temperature 1 assembly can lead to influential improvements

for experimental purposes.

Theorem 4. [35] The tile complexity of an N×N full square at temperature 1 is N2.

Proof Sketch. Assume the seed tile is positioned at (0, 0) in the Z×Z grid. To prove N2 tile

types suffice, we can simply place a unique tile at each position in the square with a unique

binding domain between all adjacent pairs of tiles in the square. To prove necessity, assume

there exists a tile assembly system T with tile set T , such that |T | < N2 and T uniquely

produces an N×N full square, A, as the terminal assembly. Since |T | < N2, there exists

some tile r ∈ T that is present in two different positions, say P0 = (x0, y0) and P1 = (x1, y1),

in A. Without loss of generality, we assume x0 < x1. Let φ(x, y) be the function translating

P0 to P1 and let L be the shortest path between P0 and P1 in the backbone graph of A

passing through (x1, y0) and let Q = A[L].

Assume R ∈ Asmb(T) is the assembly with fewest number of tiles in A, which connects
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Figure 2.4: The assembly of R∪Q∗∈Asmb(T)

the seed tile to Q, since A is a full square, R always exists. Since R ∈ Asmb(T) there

exists a Q∗ ∈ {Q,φ−1(Q)} such that R∪Q∗∈Asmb(T). More precisely, Q∗ is Q if x1 > 0

and Q−1 otherwise. This assembly can be extended indefinitely by adding more copies of

translated versions of Q, i.e. R ∪
⋃n

i=1φ
n(Q∗)∈Asmb(T) is true for every integer n ≥ 0

and this contradicts the assumption that the terminal assembly of T is a finite full square.

Figure 2.4 depicts the idea of the proof.

2.1.2 Tile Complexity of Full Squares in Other Models of Self-Assembly

at Temperature 1

While, as seen before, the tile complexity of full squares at temperature 1, compared to

temperature 2, is very large, it is shown, this is not necessarily the case for other models of

tile-based self-assembly at temperature 1 [12, 29, 30].

Theorem 5. [12] There exists a tile system under Staged tile assembly model that self-

assembles an N×N full square at temperature 1 with O(1) tiles, O(1) bins and in O(log(N))

stages.

Proof Sketch. Basically, we start by decomposing an N × N hypothetical square, with no

glues on the sides of its tiles, to fixed-size shapes in several levels with recursively using two

simple operations on the shape, called vertical decomposition and horizontal decomposition.

In a vertical decomposition a shape with n rows and m columns is divided into two shapes

along the i = bm+ 1/2cth column such that all the tiles belonging to columns 1 (first) to

i−1 plus the two tiles on row 1 and n of the ith column, belong to one shape, which we call

the left output of the operation. The rest of the tiles belong to the other shape, right output.

The vertical decompositions continue until all the resulting shapes have at most 3 columns.
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At this point these smaller shapes go through a series of horizontal decompositions, in which

the shapes are divided by a straight cut into two shapes such that the difference between the

number of rows in these two shapes is at most 1. These recursive decompositions continue

until the number of rows in all the final shapes is at most 3 and by the end of the operations

we end with little pieces of the starting square with at most 3 columns and 3 rows. This

process can be shown with a rooted binary tree such that the N ×N square shape is placed

at the root and the children of each node are the outputs of either a vertical decomposition

operation or a horizontal one. In a vertical decomposition, we define the left child of a

node v to be associated with the left output of the vertical decompostion of the shape

corresponding to v and the right child is defined as the shape corresponding to the right

output of the vertical decomposition of v. Figure 2.5 shows the decomposition of an 8 × 8

square to constant-sized shapes.

Figure 2.5: The binary tree depicting the process of decomposition of an 8 × 8 square to
smaller shapes through the recursive use of vertical and horizontal decompositions [12].

Starting from the leaves of the tree, the glues are assigned to the boundaries of each

shape (or nodes of the tree) in a bottom-up manner. For the nodes that have equal distance

from the root (same level in the binary tree), same three colors are used to color those

sides of the tiles that the decomposition cuts along them. Figure 2.6 illustrates this idea

of assigning 3 colors (glues) to the boundaries. Ultimately, we use 3 sets, c1, c2 and c3,

of 3 distinct colors which we alternate between them level by level. The final pattern of

coloring the boundaries of the shapes is shown in Figure 2.7. To see this, assign a distinct

combination ci to each letter a, b and c, in an arbitrary order, and use the same arrangement
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of these combinations on the boundaries of the shapes corresponding to leaves of the tree,

based on their order in the tree (leftmost to rightmost) and recursively continue coloring

border this way going up the tree. Note that, this color assignment is done first on the

nodes that represent horizontal decompositions. As the coloring procedure goes up the tree,

eventually the nodes representing vertical decompositions will be reached, in which point

the color assignment will begin coloring the left and right boundaries.

Figure 2.6: Assignment of constant number of colors to the shapes corresponding to the
nodes of the binary tree [12].

Figure 2.7: The figure illustrates the underlying idea in coloring the boundaries of the shapes
that belong to the same level of the binary tree. Each letter in this figure corresponds to
a combination of the 3 colors (ci) and squares in the figure corresponds to shapes of the
same level in the binary tree, such that the left most square corresponds to the left most
shape (node) among the nodes of same level in the tree and also the right most square tile
corresponds to the right most child. These combinations of 3 colors are assigned to the
boundaries of the shapes as shown in Figure 2.6 [12].

Demaine et al. showed four bins suffice for the whole process of assembling a square

with tiles that are designed in the manner described in Figure 2.6. The nodes in each level

of the tree, are assembled in one stage, therefore the number of stages is dependent to the

height of the tree which is of order O(logN).

Manuch et al. [29] proved that the assembly of a full squares under Step-wise assembly

model can be done with a constant number of tile types as well.

Theorem 6. [29] Under Step-wise assembly model, an N ×N full square can be assembled
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at temperature 1 by using 4 distinct tile types if N is odd and 9 distinct tile types if N is

even.

Proof Sketch. First assume N is odd. The tile sequence {Ti}N−1
i=1 in this case is defined as

below:

Ti =


S1 : if i is odd

S2 : if i is in form 4k + 2 for some k ∈ N
S3 : if i is divisible by 4

where S1, S2 and S3 are depicted in Figure 2.8. The process of assembly of a 3×3 full square

Figure 2.8: From left to right, the first two tile types belongs to S1, the third tile type
belongs to S2 and the last one belongs to S3 [29].

with this tile set sequence is shown in Figure 2.9. This process can be extended to even Ns

Figure 2.9: Tile sets S1, S2 and S3 [29].

by adding some extra tile sets shown in Figure 2.10. The idea is to start by assembling an

(N − 1) × (N − 1) square as shown above and attach the extra row and column by using

the tile sets in Figure 2.10 in the order E1, E2 and E3. The process of assembling a 4 × 4

square starting by a 3 × 3 square and using the tile sets Eis in Figure 2.10 is pictured in

Figure 2.11.

At temperature 1, under Step-wise and Staged models a full square can be assembled

much more efficiently than under aTAM. In Chapter 3 we prove that Step-wise and Staged
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Figure 2.10: E1 includes the first two tile types from left, E2 includes the third and fourth
tile type from the left and the rightmost tile type belongs to E3 [29].

Figure 2.11: Assembling a 4× 4 square by starting with a 3× 3 square and in 3 extra steps
with addtional tile sets E1, E2 and E3 [29].

tile assembly models are in fact very powerful and are capable of simulating Universal Turing

machine.

2.2 Turing Universality of Self-Assembly Models

The computational power of self-assembly models was exploited for the first time in [4],

where linear self-assembly was used as a step in solving the Hamiltonian Path Problem.

As mentioned in Chapter 1, the aTAM is computationally and geometrically powerful at

temperature 2. At temperature 2, for the case where all the glues on a tile can form

strength 1 bonds, the tile is not permitted to bond to the growing assembly until two tiles

are already present on the neighboring locations to match the glues on the bonding sides.

This cooperative behaviour grants a very beneficial control on the placement of new tiles

and growth of the assembly. Winfree [43] proved that at temperature 2 the TAM is Turing

Universal. This means, it is capable of simulating Universal Turing Machine, which is a

Turing machine that can simulate (informally act as) an arbitrary Turing machine on an

arbitrary input and produces the same result [22]. We refer the reader to [6] for further

reading on description and existence of Universal Turing machine (UTM).

While at temperature 1 TAM is conjectured to be only capable of computing simple
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infinite shapes and patterns [15], but this is not the case for other models of tile assembly

which are variants of aTAM. It is known that by adding simple constraints and features to

the original model, universal computation is achievable [11, 30, 7]. In this section we review

some of the results for two of these models, namely 3D tile assembly model and Restricted

Glue tile assembly model (rgTAM). To this end, first we mention some important definitions.

Note that, the rgTAM and 3D tile assembly model are described in Section 1.2.

Definition 7. [11] A tile system Υ = 〈T ′, s′, τ ′〉 simulates a deterministic tile system Γ =

〈T, s, τ〉 at horizontal scale factor x and vertical scale factor y (or simply simulates), if

there exists an onto function SIM : R 7→T , for some R ⊆ T ′, such that for any non-empty

tile type placed at position (i, j) in the terminal assembly of Γ, there exists a subset of tile

types R′ ⊆ R where for each tile type r ∈ R′ such that Υ(k, l) = r, for some k and l that

ix≤k < (i+ 1)x and jy≤l < (j + 1)y and SIM(r) = Γ(i, j),

for each position (i, j) such that Γ(i, j) = empty, then for each k and l such that ix < k <

(i+ 1)x and jy < l < (j + 1)y, Υ(k, l) = empty.

Informally, a system Υ simulates a system Γ if for each tile type t in system Γ a non-

empty set of tile types, representing t, is placed by Υ at the same position but scaled up by

some fixed vertical and horizontal scale. In other words, the simulating tile system should

have a specific set of tile types which “acts” as each single tile types in Γ.

Definition 8. [38] A Turing machine is a 7-tuple, (Q,Σ,Γ, δ, q0, qaccept, qreject), where Q,

Σ and Γ are all finite and

1. Q is the set of states,

2. Σ is the input alphabet not containing null,

3. Γ is the tape alphabet where null ∈ Γ and also Σ ⊆ Γ,

4. δ : Q×Γ 7→ Q× Γ× {L,R, S} is the transition function,

5. q0∈Q is the start state,

6. qaccept is the accept state, and

7. qreject is the reject state and qaccept 6=qreject.
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Cook et al [11], developed an algorithm for transferring an arbitrary Turing machine to

a Zig-Zag system with carefully constructing tiles.

Theorem 9. [18] For a given Turing machine M with alphabet Σ and alphabet w ∈ Σ∗

there exists a temperature 2 Zig-Zag tile system that simulates M over input w with tile

complexity polynomial in number of states of M and size of w. More precisely, there exists

a Zig-Zag system that, given a seed assembly consisting of a horizontal line with north glues

denoting an input string, the assembly will place a unique accept tile type if and only if

T accepts the input string, and a unique reject tile type if and only if M rejects the input

string.

They used Theorem 9 to prove Turing universality for 3D tile assembly model at tem-

perature 1.

Theorem 10. [11] For any 2 dimensional temperature 2 Zig-Zag tile system Γ = 〈T, s, 2〉,
there exists a 3D temperature 1 tile system that simulates Γ at vertical scale = 4, horizonal

scale O(log |T |), and tile complexity O(|T | log(|T |)).

Proof Sketch. Here we present the basic idea behind the proof of Theorem 10. The goal is

to design a 3D tile system Γ′ = 〈T ′, s′, 1〉 which simulates Γ. To this end, for each tile type

in T a set of tile types is added to T ′ that assembles a configuration, called a macro-tile,

which will “fake” the cooperative attachment of tiles in temperature 2 with geometrical

enforcements. In this process we simulate any east/west bonds or any strength 2 bonds in

Γ with a single strength 1 glue in Γ′.

Let G be the set of all strength 1 glues on the north and south sides of the tiles that

appeared in the system Γ. Label each type of these glues with numbers 0 to |G| − 1 in

an arbitrary order. For any glue g∈G let b(g) be the binary representation of the label of

g. For a copy tile t ∈ T , which has input glues x on its east side and input glue y on its

south side, the assembly of the macro-tile starts when the macro-tiles corresponding to the

east and south nieghbors of t are fully assembled. Assume the assembly of this macro-tile

starts in plane z = i. The assembly of this macro-tile starts by a glue (x,−), this glue

knows the input glue on the east is x but has no information about the glue on the south

of t. The glue on the south is read in its binary form bit by bit. Each bit, 0 or 1, has a

specific assembly path. For example for the kth (k = 0, . . . , dlog(|G| − 1)e) bit, there exists

a specific set of tile types in T ′ which can read 0 and another set of tiles in T ′ which can
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read 1. Each of these tile sets assembles a unique path and either of them can attach to

the assembly of the macro-tile which has by now read glue x and the first k − 1 bits of

b(y). To ensure that the macro-tile reads the correct number as the kth bit, one of these

paths (which corresponds to the wrong bit) is blocked by the pre-built assemblies which

are already placed in the necessary position. These assemblies are placed while assembling

the macro-tile corresponding to the tile which is present at the south side of t in Γ, say t′.

Let m′ be the macro-tile corresponding to t′. The tile set T ′ is designed such that, during

the assembly process of m′, these blocking tiles are guaranteed to be placed in the correct

positions in z = i based on the north glue of t′ which is y. After all the bits of b(y) are read,

then the assembly process continues by propagating the output glues which are on the west

and north side of t. There exists a specific set of tiles in T ′ for this task. As before, the

north glue of t is assembled bit by bit in the macro-tile and while writing each bit, a new

set of blocking tiles are placed in the correct positions in z = i+ 1 which are going to block

the assembly path of the macro-tile of the tile above t to make sure it reads the correct

bits of the glue on its south (which is the north glue of t). A similar idea can be used for

simulating tiles with input glues on their west and south sides.

In a nutshell, the assembly process of the tiles that are in row i of the Zig-Zag assembly

is being simulated in plane z = i and is controlled by the blocking tiles that are already

placed in z = i (these tiles are placed when the tiles of the row i− 1 were being simulated

in Γ′). And while simulating the tiles in row i of the Zig-Zag assembly, the next blocking

tiles are placed in z = i + 1 based on the binary representation of glues on the north side

of the tiles in row i. These blocking tiles in z = i + 1, control the assembly path which

reads the glues on the south side of the macro-tiles corresponding to the tiles in row i+ 1.

Assume m is the macro-tile corresponding to some copies of the tile type t, which has input

glues c and d on its west (or east) and south side, respectively. m first “reads” c and b(d)

and then by assembling the blocking tiles to make sure that in future the macro-tiles that

correspond to the tiles that has north glue of these copies of t as their south input, read

this glue correctly.

Thus, there exists a subset of T ′ that uniquely produces a macro-tile for a tile type t

with input glues c and d. Each tile t ∈ T can have up to two distinct sets of input glues. To

be exact, it has two sets of input glues if and only if a copy of t has its west side glue as its

input glue in a position and another copy of t has its east side glue as its input at another

position in the assembly. Each macro-tile has O(log (|G|)) distinct tile types and for each
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tile in T there is at most two macro-tiles, which leads to O(|T | log |T |) tile types in T ′.

Next we review a similar result for rgTAM.

Theorem 11. [30] For every zig-zag Tile Assembly System T = 〈T, s, 2〉, there exists a

restricted Tile Assembly Model S = 〈S, s′, 1〉 such that S simulates T at horizontal scale

factor factor O(log(|T |)) and |S| = O(|T | log(|T |)).

Proof Sketch. Again, we map each tile type in T to a set of tiles in T ′ that assembles a

supertile called macro-tile. A tile t can have an input glue either on east side, west side or

neither, but never both. A macro-tile must be self-assembled in whole before self-assembly

of another macro− tile starts. Let G be the number of unique strength 1 north/south glues

in T . In this construction, each macro-tile contains 2d log(G)e+ 30 tiles.

We label each strength 1 north/south glue in T with a unique dlog(|G|)e-bit binary num-

ber. We geometrically represent each of these binary numbers with bumps and dents on

specific positions along the north/south side of each macro-tile. Each dent and bump will

uniquely represent one binary digit based on the location of the negative glue on specific

sides of it. The west/east glues and glues of strength 2 are encoded with a strength 1 glue on

the beginning or end of each macro-tile. We briefly sketch the construction procedure for a

sample macro-tile simulating a tile type with input glues on south and east. The macro-tile

that emulates other tile types are constructed in a similar manner. The self-assembly of

the macro tile contains two main logical steps: reading the input glues and then writing

the output glues. The assembly of the macro-tile starts by binding to the macro-tile on its

east side via the glue on the east and then the tiles that assembles the south side of each

macro-tile read the binary number, from the north side of the macro-tile beneath, bit by

bit as the assembly grows. The placement of negative glue determines if the bit is 0 or 1

as shown in Figure 2.12(c). The tile types that read a binary string from the top of an

existing macro-tile as they self-assemble from right to left are depicted in Figure2.13. Once

all bits have been read, the output glues are determined since T is detereministic. As the

assembly goes on along the north side of the macro-tile beneath, the bits of the glue on

the south are read bit by bit until all the bits are read. An example depicting the north

side of a macro-tile being read by the south side of another macro-tile is shown in Figure 2.14.
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After the output glues of the macro-tile have been determined, the macro-tile path crawls

back across itself and starts writing the north output glue. This is accomplished in a manner

that is similar to reading a dlog(|G|)e-bit binary string. Again, we use O(log(|G|)) distinct

tile types to do this. The tile types for this task are shown in Figure 2.15.
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(a) The set of input and
output side combinations
in a Zig-Zag assembly
system

(b) Macro-tiles simulate the behaviour of tiles in Γ. The arrow shows
the direction of the growth and the schematic tiles on the right side
pictures the related input and output.

(c) Reading 1 bit of
the south bond.

Figure 2.12: Creating macro-tiles according to possible input and output sides of copies of
tiles in T.
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Figure 2.13: The tile types that read a binary string from the top of an existing macro-tile

as they self-assemble from right to left. For each i = 0, 1, . . . , G + 1, let xi = {0, 1}i. Note
that the east input glue is implicitly encoded into the tile types shown here. The upper right
tile initiates the process of reading the input binary string. The upper left tile completes
the process by mapping a pair of south-east input glues to the corresponding north-west
output glues. Tiles for south-west input macro tiles are designed similarly.

Figure 2.14: An example of a macro-tile “reading” the glue from the north side of the macro-
tile beneath. The glue is represented by binary number “0011”. The assembly grows from
right to left and it reads the binary number bit by bit as the assembly grows. The negative
glue (pictured in red) determines if the bit that is being read is 0 or 1, by restricting the
tiles that can be place at each dent.

Figure 2.15: The tile types responsible for writing the output glue on the north side of a

macro tiles. For each i = 0, 1, . . . , dlog(|G|)e, let xi = {0, 1}i.



Chapter 3

Turing Universality Results

In this chapter, we present our results on computational power of two tile self-assembly

models, namely Step-wise tile self-assembly model and Staged tile self-assembly model, at

temperature 1. As we mentioned in Section 2.1.2, at temperature 1, assembly of an N ×N
full square under these two models requires only a constant number of tile types. On the

other hand the tile complexity of a full square is proved to be N2 under the aTAM (see

Theorem 4). This suggests that these models might be capable of assembling complex

shapes more efficiently than the aTAM. Here, we prove that both these models are capable

of simulating an arbitrary Turing machine over an arbitrary input.

3.1 Turing Universality of Step-wise Tile Assembly Model at

Temperature 1

In this section, we present our result on Step-wise tile assembly model. We design a Step-

wise tile assembly system for simulating an arbitrary Zig-Zag tile assembly system. Then,

according to Theorem 9, it is possible to simulate an arbitrary Turing machine in Step-wise

model by simulating the corresponding Zig-Zag system.

Theorem 12. [7] For any deterministic temperature 2 Zig-Zag tile assembly system Γ =

〈Σ, T, s, sΣ, 2〉 there exists a Step-wise tile assembly system Υ = 〈Σ′, T ′, s′, s′Σ′ , 1〉 at temper-

ature 1 that simulates Γ at vertical scale y = 5, horizontal scale x = O(log(|T |)) and with

tile complexity O(|T | log(|T |)).

According to the definition of simulation (see Definition 7), we have to design a system Υ

28
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such that there exists an onto function SIM : R 7→ T for some R ⊆ T ′, such that for any tile

Γ(i, j) at position (i, j) in the terminal assembly of Γ, there must exist a unique non-empty

tile type t′ ∈ R, such that Γ′ (k, l) = t′ for some k = log(|Σ|) and l where ix ≤ k < (i+ 1)x

and jy ≤ l < (j + 1)y and SIM(t′) = Γ(i, j).

To this end, first we prove the following lemma and in part Final Steps of the Proof we

present the proof for Theorem 12.

Lemma 13. For any deterministic temperature 2 Zig-Zag tile assembly system Γ = 〈Σ, T, s, sΣ, 2〉
there exists a Step-wise tile assembly system Γ′ = 〈Σ′, T ′, s′, s′Σ′ , 1〉 at temperature 1, for

which there is a bijective function f : R′ 7→ T , where R′ ⊆ P(T ′) and P(T ′) is the set of

all subsets of T ′, such that for each (i, j) ∈ Struc(Term(Γ)) where Γ(i, j) = t 6= empty,

there exists a unique subset T ∗ ∈ R′ with a tile t′ ∈ T ∗, such that Γ′ (k, l) = t′ for some

k = log(|NS|) and l, where ix ≤ k < (i+ 1)x and jy ≤ l < (j + 1)y, and f(T ∗) = t and

t′ /∈
⋃
∀t′′∈T,t′′ 6=t f

−1 (t′′).

Proof. The proof is constructive. We design a system Γ′ that satisfies the conditions of this

lemma. In our construction for Γ′, we simulate the growth of assemblies in Γ at temperature

2 in Γ′ at temperature 1. Intuitively, Γ′ simulates Γ by converting each tile type t ∈ T into

a group of tile types in Γ′ that self-assemble into a macro-tile. A “macro-tile” is a supertile,

which is in shape close to a rectangle. As mentioned in Section 1.1, a copy of a tile type

t ∈ T attaches to the growing structure via its input sides and it interacts with its succeeding

tiles in the tile sequence via the output sides. The macro-tiles corresponding to this copy of

t “fakes” in Γ′ this functionality of t in Γ. This macro-tile “reads” the inputs of t with help

of geometrical enforcements (bumps and dents) that prevent erroneous growth of assembly

and then maps the read inputs to the corresponding outputs. This is done by some specific

tiles in the system called mapping tiles. Once the outputs are determined, the macro-tile

“writes” the outputs by specific geometrical representations. According to properties of

Zig-Zag assembly model at temperature 2, a tile in Term(Γ) might have up to 2 inputs. For

the case that the number of inputs is 2, the macro-tile must read two input glues. To make

this action possible at temperature 1, one glue is transferred (read) via a single strength 1

bond in the macro-tile and the other glue is read by geometrical enforcements. In this way,

macro-tiles can simulate the cooperative behavior of temperature 2 systems at temperature

1.

Our construction for Γ′ is similar to what is presented in [30, 11], except that we improve
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the tile complexity of the final system fromO(|T | log(|T |)) in [30] toO(min{|T |, |Σ|2} log(|T |))
by introducing the new idea of mapping tiles which allows us to reuse input/output inter-

faces of macro-tiles and therefore possibly saving in number of tile types. In what follows,

we present this construction for Γ′ in detail and will describe the process of geometrical

simulation in macro-tiles. First, we define some notations that we will be using throughout

the proof.

Let {terminal} = Term(Γ). For a tile type t ∈ T , the function IO(t) returns the set of

all feasible input/output side combinations for t in Γ. The function IO will be computed by

Algorithms 1 and 2.

For every (i, j) ∈ Struc(terminal), define

Input(i, j) = {d : d ∈ D,Γ(i, j)d is an input glue of Γ(i, j) at (i, j) via side d} ,

and

Output(i, j) = {d : d ∈ D,Γ(i, j)d is an output glue of Γ(i, j) at (i, j) via side d} .

For all t ∈ T , define

• pos(t) = {(i, j) : (i, j) ∈ Struc(terminal),Γ(i, j) = t} is the set of all position where

tile type t appears in terminal,

• I(t) = {I : (I,O) ∈ IO(t)} and O(t) = {O : (I,O) ∈ IO(t)} are the sets of possible

input (output) glues for tile type t,

• for all (I,O) ∈ IO(t), let Cop(t, (I,O)) = {(i, j) ∈ pos(t) : Input(i, j) = I,Output(i, j) = O}
be the set of positions containing tile type t with input glues I and output glues O.

We have the following simple observation. For every tile type t ∈ T , {(Input(i, j),Output(i, j) :

(i, j) ∈ pos(t)} ⊆ IO(t).

Some Observations on Assemblies under Zig-Zag systems at Temperature 2 In

this part, we review some properties of terminal, using the notations defined above.

Observation 14. For all t ∈ T and (I,O) ∈ IO(t), |I| ≤ 2.

Observation 15. For all t ∈ T and (I,O) ∈ IO(t), if I = {d} for some d ∈ D (i.e. |I| = 1),

then sΣ(td, td) = 2.
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Algorithm 1 The algorithm for computing IO(t).

Input: a tile type t ∈ T
Output: IO(t)
IO(t) = ∅
if t = s then
in = ∅
out =OUTPUT(W,N)
Add (I,O) to IO(t)

end if
if sΣ(ts, ts) = 2 then
in = {S}
O1 =OUTPUT(E,N)
O2 =OUTPUT(W,N)
out = O2 ∪O1

Add (I,O) to IO(t)
end if
if sΣ(tE , tE) = 2 then
in = {E}
out =OUTPUT(W,N)
Add (I,O) to IO(t)

end if
if sΣ(tW , tW ) = 2 then
in = {W}
out =OUTPUT(E,N)
Add (I,O) to IO(t)

end if
if sΣ(tS , tS) = 1 and sΣ(tE , tE) = 1 then
in = {E,S}
out =OUTPUT(W,N)
Add (I,O) to IO(t)

end if
if sΣ(tS , tS) = 1 and sΣ(tW , tW ) = 1 then
in = {W,S}
out =OUTPUT(E,N)
Add (I,O) to IO(t)

end if
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Algorithm 2 OUTPUT(t, d1, d2): returns the possible output sides of t among d1, d2

Input: tile t, directions d1, d2

Output: OUTPUT(t, d1, d2)
OUTPUT(t, d1, d2) = ∅
if td1 6= then

add d1 to OUTPUT(t, d1, d2)
end if
if td2 6= then

add d2 to OUTPUT(t, d1, d2)
end if

If a tile is not positioned at the beginning or end of any row in terminal, then we call

it an internal copy, otherwise we call it a boundary copy.

Observation 16. For all t ∈ T and (I,O) ∈ IO(t), if E ∈ I and W ∈ O, or vice versa, then

by properties of the Zig-Zag model, the tiles at positions in Cop(t, (I,O)) are all internal

copies. In addition, {E,W} ⊆ I ∪ O if and only if all the tiles placed at positions in

Cop(t, (I,O)) are internal copies.

Observation 17. For all t ∈ T and (I,O) ∈ IO(t), if either I = {d} or O = {N},
where d =∈ {N,S}, then by the properties of the Zig-Zag model, the tiles at positions in

Cop(t, (I,O)) are all boundary copies. In addition, I = {d} or O = {N}, if and only if all

the tiles placed at the positions in Cop(t, (I,O)) are boundary copies. Moreover, according

to Observation 14, the north or south bond corresponding to side d must have strength 2.

Note that the last part of the above observation is consistent with the fact that in the

Zig-Zag assembly model at temperature 2, the assembly can enter a row only with a strength

2 bond.

Next, we define function Label which will be mapping every north (south) side of every

tile type t ∈ T which is not in O(t) (I(t)) to a special glue g∗, and mapping all other sides to

the original glues. This will be used later to prevent mismatches in macro-tiles. For every

t ∈ T and (I,O) ∈ IO(t), the function

Label :
⋃
t∈T
{N,S} × {t} × IO(t) 7→ G,
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where G = Σ ∪ {g∗}, is defined as follows:

Label(N, t, (I,O)) =

tN , if N ∈ O

g∗, if N /∈ O
(3.1)

Label(S, t, (I,O)) =

tS , if S ∈ I

g∗, if S /∈ I
(3.2)

Then, we define NS =
⋃

d∈{S,N},t∈T,(I,O)∈IO(t){Label(d, t, (I,O))}.
Since NS is a subset of Σ ∪ {g∗}, it is obvious that |NS| = O(|Σ|). Assign to each

g ∈ NS \ {g∗} a unique number from 1 to |NS|, and let bg be the binary representation of

the number assigned to g. For g∗, let bg∗ = ε, the empty string.

Macro-tiles and Geometrical Encoding In this part, we describe the simulation pro-

cess. We use the idea of simulation by macro-tiles from [30]. A “macro-tile” is a supertile,

which is in shape close to a rectangle. We describe the macro-tiles in details later in part

Classification and Algorithms.

For each tile type t ∈ T we design | IO(t)| macro-tile types. We design function Macro :⋃
t∈T {t} × IO(t) 7→ P(T ′) which will map each (I,O) ∈ IO(t) to the set of tiles types that

assemble together to create the specific macro-tile type for tile type t with input/output

side combination (I,O). The function Macro is computed by Algorithms 4, 6 and 8 which

are stated in part Classifications and Algorithms. Later in part Final Steps of the Proof, we

define bijection f using the function Macro which will satisfy the conditions of the lemma.

The tile types of each macro-tile type will be split into two sets, namely T ′1 and T ′2.

These two sets will be used to design the sequence of sets of tile types, T ′ = {Tn}n≥1 which

is the sequence of sets of tile types of Γ′. The sequence will alternate between two sets of

tile types T ′1 and T ′2. More formally, Tn is defined as follows,

Tn =

T ′1, if n is odd.

T ′2, if n is even.
(3.3)

Each macro-tile has four boundaries (see Figure 3.1). We denote the boundary on side

d of a macro-tile m by md, where d ∈ D. The macro-tile Macro(t, (I,O)) “reads” the input

glues via the boundaries corresponding to the directions in set I and “writes” the output

glues on the boundaries corresponding to the directions in set O.
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(a) A macro-tile corresponding to a tile with input glue via south, and output glues
via east and north.

(b) A macro-tile corresponding to a tile with input glue via east, and output glue via
north.

(c) A macro-tile corresponding to a tile with input glues via east and south, and output
glues via west and north.

Figure 3.1: In Γ′, macro-tiles simulate the behavior of tiles in Γ. In each subfigure the macro-
tile on the left simulates a tile of Γ on the right together with its particular input/output
side combination. In macro-tiles the arrows show the direction of growth, and in the tiles
(on the right) the arrows represent the input and output sides.
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For a macro-tile m = Macro(t, (I,O)), if N ∈ O then the binary representation of tN ,

btN , is geometrically encoded on the north boundary of m by a sequence of “bumps”, where

each bump encodes one digit of btN , see Figure 3.1. If S ∈ I, the south boundary of m

geometrically decodes btS as described in the next paragraph. If there is a side d ∈ N ∪ S
that d /∈ I ∪ O, then md contains no bumps, as illustrated in Figure 3.1(b) for d = S. In

particular, the geometrical representation of g ∈ NS \ {g∗} is based on the digits of bg,

where each bit, 0 or 1, is represented by the position (right or left) of the bump on the

boundary, we call these positions 0 and 1, respectively. Each bump is a tile of the boundary

with three exposed sides. Figure 3.2 illustrates the geometric representation of each bit 0

and 1. To read and write each bit, the simulation will use a constant number of tiles in T ′1

and T ′2.

Figure 3.2: The geometrical representation for bits 0 and 1 for an east growing row. The
top figure pictures a bump at position 1. The bottom figure pictures a bump at position 0.

Next, we describe how the north boundary of a macro-tile enforces the south boundary

of the macro-tile above it. Assume g ∈ NS\{g∗} is assigned to the south side of a copy of tile

type t in terminal located at position (i, j), i.e., g = Label(S, t, (Input(t, (i, j)),Output(t, (i, j))).

The south boundary of macro-tile Macro(t, (Input(t, (i, j)),Output(t, (i, j)))) reads bg bit by

bit by immersing the structure first in T ′1 and then in T ′2 as follows. To read each bit from

the north side of the macro-tile corresponding to Γ(i, j − 1), the construction of macro-tiles

will guarantee that structure continues to grow in two branches: east and north. If the

bump is at position 1, the east branch is blocked by this bump and north branch continues

to grow when the current structure is immersed in T ′2, and if the bump is at position 0,

then the east branch continues to grow in the set T ′1 and blocks the north branch before we

immerse the structure in T ′2. When the structure finishes to grow in T ′2 both branches finish
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at the same position and the glue on the exposed side of the last tile placed contains the

information of the bits read so far. For details see Figure 3.2. Once all the bits are read the

exposed glue on the last tile has the information of all input glues. Since Γ is deterministic,

this information uniquely determines the tile in the system Γ which is being simulated, and

hence the output glues are determined as well. The tile of the macro-tile which attaches

next, can be assigned a glue which contains the unique information about the output glues

of the macro-tile. We call this tile a mapping tile. The purpose of the mapping tile is to

initiate the assembly for the rest of the macro-tile with the correct output glues. Note that

mapping tiles will be crucial for defining bijection f. In the next section, we describe the

location of mapping tiles within the macro-tiles explicitly, as well as the glues on the sides

of tiles in Γ so that tiles of Γ′ can form all the required macro-tiles.

Notice that the south boundary of each macro-tile has two vertical teeth, one attached to

the south side of the tile that assembly of the macro-tile starts with and one attached to the

south side of the last tile on south boundary of the macro-tile. Although these vertical teeth

are not necessary for the construction we present for Step-wise assembly, but in Section 3.2,

they will be crucial for the system presented for Staged tile assembly model.

Classification and Algorithms. In this part, we present the algorithms for constructing

T ′, which generate the tile types in T ′1 and T ′2 for assembling each macro-tile. For each tile

type t ∈ T and each (I,O) ∈ IO(t) these algorithms describe the tile types in T ′ that

assemble the corresponding macro-tile.

To that end, we classify the elements of IO(T ) to 5 classes. The construction for each

class is slightly different, although the idea remains the same. Algorithm 3 classifies the

input/output side combinations to the desired 5 classes.

Consider a tile type t ∈ T with input and output side combination (I,O) ∈ IO(t) and

assume S ∈ I. The construction of tile types in T ′ responsible for reading the south input

is the same for all the classes and is done Algorithm 4, by adding appropriate tile types into

T ′1 and T ′2. We define the glues in Σ′ as triples (x, y, z) where x ∈ Σ, y is a binary string

and z ∈ Z determines the function of tile within its macro-tile. For any binary string b let

b1b2 . . . b|b| be the sequence digits of b. Let k = dlog2 |NS|e. The Algorithm 4 constructs

the tiles using the pattern for reading bits shown in Figure 3.1 repeatedly.

Assume d /∈ I ∪ O, where d ∈ {N,S} and let m = Macro(t, (I,O)). In this case, if

d = N , the assembly does not write any output on the north side of m, and if d = S, the
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(c) The final assembly reading bit 0 af-
ter exposing to the first tile set. The
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(f) The final assembly reading bit 0.
The tiles that are colored light gray be-
long to T ′1.

Figure 3.3: The tiles and final assemblies for reading the ith bit of btS for cases that
Label (S, t, (I,O)) 6= g∗. The tiles necessary for reading either 0 or 1 is included in T ′ for
each bit, but the already placed tiles of the macro-tile below guarantees the system assembles
only the right assembly. In the figures the dark gray tiles belong to the macro-tile below.
W in the glue labels represent tW and si represent the bits read up to this point. The letter
A . . .N determines the location of tiles inside the macro-tile.



CHAPTER 3. TURING UNIVERSALITY RESULTS 38

Algorithm 3 Classify the input/output side combinations of tiles in T to 5 classes.

Input: t ∈ T and (I,O) ∈ IO(t)
Output: classify(t, (I,O)) ∈ {1, 2, 3, 4, 5}
if I = ∅ then

classify(t, (I,O)) = 4
else if O = ∅ then

classify(t, (I,O)) = 5
else if {E,W} ⊆ I ∪O and I 6= {S} then

classify(t, (I,O)) = 1
else if I = {S} then

classify(t, (I,O)) = 2
else if O = {N} then

classify(t, (I,O)) = 3
end if

macro-tile does not read any input from the south. Therefore, there are no bumps or dents

on md. For example, for the case d = S, we assemble the south boundary as a horizontal

one layer sequence of tiles of length 4k−2, which passes the input (from west or east) along

(see Figure 3.1(b)). This enables this macro-tile to be compatible with any macro-tile below

it (possibly creating mismatches). Algorithms 6 and 7 generates the tiles types to assemble

this sequence. The same idea is used to assemble the north boundary for the case d = N .

Algorithms 8 and 9 generates the tile types to assemble the north boundary in this case.

Both algorithms can be applied to all 5 classes if such d exists.

In what follows, we study each class according to Algorithm 3, respectively, and for

each class we describe the direction of growth and the mapping tile in the macro-tiles

corresponding to a t ∈ T and (I,O) ∈ IO(t).

Class 1 (classify(t, (I,O)) = 1). Recall in this class both east and west glues are either

an input or an output for t and I 6= {S}. According to Observation 16 this copy of t is

an internal copy. Figure 3.4 illustrates a macro-tile corresponding to t and (I,O) in class 1

which belongs to an east growing row of the Zig-Zag assembly (input via the west side). In

this figure the tile has input glues via both south and west sides and output glues via north

and east sides. For the opposite direction see Figure 3.1(c).

The assembly of macro-tile starts by reading the west glue, and reads the south input

as it grows on south boundary. When both inputs are read the mapping tile attaches to the
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Algorithm 4 The algorithm generates the tile types in Macro(t, (I,O)), for reading the
south input, when I = {S,W}.

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that I = {S,W}
Output: Corresponding tile types in T ′1 and T ′2
g = Label (S, t, (I,O))
if W ∈ I then

for i = 0 to k − 1 do
Add the following tile types to T ′1:

[ (tW , b
0
g . . . b

i−1
g 1, A) , (tW , b

0
g . . . b

i−1
g 0, B) , , (tW , b

0
g . . . b

i−1
g 0, C) ]

[ (tW , b
0
g . . . b

i−1
g 0, D) , , , (tW , b

0
g . . . b

i−1
g 0, B) ]

[ , (tW , b
0
g . . . b

i−1
g 0, E) , , ]

[ , (tW , b
0
g . . . b

i−1
g 0, F ) , (tW , b

0
g . . . b

i−1
g 0, D) , (tW , b

0
g . . . b

i−1
g 0, E) ]

[ , (tW , b
0
g . . . b

i−1
g 0, G) , , (tW , b

0
g . . . b

i−1
g 0, F ) ]

Add the following tile types to T ′2:

[ , , (tW , b
0
g . . . b

i−1
g 0, H) , (tW , b

0
g . . . b

i−1
g 0, G) ]

[ (tE , b
0
g . . . b

i−1
g 0, H) , (tW , b

0
g . . . b

i−1
g 0, C) , , ]

[ , (tW , b
0
g . . . b

i−1
g 1, I) , (tW , b

0
g . . . b

i−1
g 1, A) , ]

[ , (tW , b
0
g . . . b

i−1
g 1, J) , , (tW , b

0
g . . . b

i−1
g 1, I) ]

[ , (tW , b
0
g . . . b

i−1
g 1,K) , (tW , b

0
g . . . b

i−1
g 1, L) , (tW , b

0
g . . . b

i−1
g 1, J) ]

[ (tW , b
0
g . . . b

i−1
g 1, L) , (tW , b

0
g . . . b

i−1
g 1, N) , , ]

[ , , (tW , b
0
g . . . b

i−1
g 1,M) , (tW , b

0
g . . . b

i−1
g 1,K) ]

[ (tW , b
0
g . . . b

i−1
g 1,M) , (tW , b

0
g . . . b

i−1
g 1, C) , , (tW , b

0
g . . . b

i−1
g 1, N) ]

end for
end if
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Algorithm 5 The algorithm generates the tile types in Macro(t, (I,O)), for reading the
south input, when I = {S,E}.

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that I = {S,E}
Output: Corresponding tile types in T ′1 and T ′2
g = Label (S, t, (I,O))
if E ∈ I then

for i = 0 to k − 1 do
Add the following tile types to T ′1:

[ (tE , b
0
g . . . b

i−1
g 0, A) , (tE , b

0
g . . . b

i−1
g , C) , , (tE , b

0
g . . . b

i−1
g 1, B) ]

[ (tE , b
0
g . . . b

i−1
g 1, D) , (tE , b

0
g . . . b

i−1
g 1, B) , , ]

[ , , , (tE , b
0
g . . . b

i−1
g 0, E) ]

[ , (tE , b
0
g . . . b

i−1
g 0, F ) , (tE , b

0
g . . . b

i−1
g 1, D) , (tE , b

0
g . . . b

i−1
g 0, E) ]

[ , (tE , b
0
g . . . b

i−1
g 0, F ) , , (tE , b

0
g . . . b

i−1
g 0, G) ]

Add the following tile types to T ′2:

[ , (tE , b
0
g . . . b

i−1
g 0, G) , (tE , b

0
g . . . b

i−1
g 0, H) , ]

[ (tE , b
0
g . . . b

i−1
g 0, H) , , , (tE , b

0
g . . . b

i−1
g 0, C) ]

[ , , (tE , b
0
g . . . b

i−1
g 1, A) , (tE , b

0
g . . . b

i−1
g 1, I) ]

[ , (tE , b
0
g . . . b

i−1
g 1, I) , , (tE , b

0
g . . . b

i−1
g 1, J) ]

[ , (tE , b
0
g . . . b

i−1
g 1, J) , (tE , b

0
g . . . b

i−1
g 1, L) , (tW , b

0
g . . . b

i−1
g 1,K) ]

[ (tE , b
0
g . . . b

i−1
g 1, L) , , , (tE , b

0
g . . . b

i−1
g 1, N) ]

[ , (tE , b
0
g . . . b

i−1
g 1,K) , (tE , b

0
g . . . b

i−1
g 1,M) , ]

[ (tE , b
0
g . . . b

i−1
g 1,M) , (tE , b

0
g . . . b

i−1
g 1, N) , , (tE , b

0
g . . . b

i−1
g 1, C) ]

end for
end if
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Algorithm 6 The algorithm generates the tile types in Macro(t, (I,O)), for reading the
south input, when I = {E} (S /∈ I).

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that I = {E}
Output: Corresponding tile types in T ′1 and T ′2
if Label(S, t, (I,O)) = g∗ and E ∈ I then

Add the following tile types to T ′1
[ (tE , ε, S) , (tE , ε, S) , , ]

[ , , (tE , ε, S) , (tE , ε, A0) ]

[ , (tE , ε, B0) , , (tE , ε, C0) ]

Add the following tile types to T ′2
[ , (tE , ε, A0) , , (tE , ε, B0) ]

[ , (tE , ε, C0) , , (tE , ε,D0) ]

for i = 1 to k − 2: do
Add following tile types to T ′1:

[ , (tE , ε,Di−1) , , (tE , ε, Ai) ]

[ , (tE , ε, Bi) , , (tE , ε, Ci) ]

Add the following tile types to T ′2:

[ , (tE , ε, Ai) , , (tE , ε, Bi) ]

[ , (tE , ε, Ci) , , (tE , ε,Di) ]

end for
Add following tile types to T ′1:

[ , (tE , ε,Dk−2) , , (tE , ε, Ak−1) ]

[ , (tE , ε, Bk−1) , , (tW , ε, Ck−1) ]

Add the following tile types to T ′2:

[ , (tE , ε, Ak−1) , , (tE , ε, Bk−1) ]

[ , (tE , ε, Ck−1) , (tE , ε,Dk−1) , ]

[ (tE , ε,Dk) , , , (TE , btN , P ) ]

end if
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Algorithm 7 The algorithm generates the tile types in Macro(t, (I,O)), for reading the
south input, when I = {W} (S /∈ I).

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that I = {W}
Output: Corresponding tile types in T ′1 and T ′2
if Label(S, t, (I,O)) = g∗ and W ∈ I then

Add the following tile types to T ′1
[ (tW , ε, S) , , , (tW , ε, S) ]

[ , (tW , ε, S) , , (tW , ε, A0) ]

[ , (tW , ε, B0) , , (tW , ε, C0) ]

Add the following tile types to T ′2
[ , (tW , ε, B0) , , (tW , ε, A0) ]

[ , (tW , ε,D0) , , (tW , ε, C0) ]

for i = 1 to k − 2: do
Add following tile types to T ′1:

[ , (tW , ε, Ai) , (tW , ε,Di) , ])

[ , (tW , ε, Ci) , , (tW , ε, Bi) ]

Add the following tile types to T ′2:

[ , (tW , ε, Bi) , , (tW , ε, Ai) ]

[ , (tW , ε,Di) , , (tW , ε, Ci) ]

end for
Add following tile types to T ′1:

[ , (tW , ε, Ak−1) , (tW , ε,Dk−1) , ]

[ , (tW , Ck−1) , , (tW , ε, Bk−1) ]

Add the following tile types to T ′2:

[ , (tW , ε, Bk−1) , , (tW , ε, Ak−1) ]

[ , , (tW εDk) , (tW , ε, Ck−1) ]

[ (tW , ε,Dk) , (TE , btN , P ) , , ]

end if
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Algorithm 8 The algorithm generates the tile types in Macro(t, (I,O)), for assembling the
north boundary, when O = {E} (N /∈ O).

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that N = {E}
Output: Corresponding tile types in T ′1 and T ′2
if Label(N, I,O, t) = g∗ and E ∈ I then

Add the following tile types to T ′1
[ , (tE , ε,N) , (tW , ε,N) , ]

[ (tW , ε,N) , , , (tE , ε, A0) ]

[ , (tW , ε, B0) , , (tW , ε, C0) ]

Add the following tile types to T ′2
[ , (tW , ε, A0) , , (tW , ε, b

0
g) ]

[ , (tW , ε, C0) , , tW , ε,D0 ])

for i = 1 to k − 1: do
Add following tile types to T ′1:

[ , (tW , ε,Di−1) , , (tW , ε, Ai) ]

[ , (tW , ε, Bi) , , (tW , ε, Ci) ]

Add the following tile types to T ′2:

[ , (tW , ε, Ai) , , (tW , ε, Bi) ]

[ , (tW , , ε, Ci) , , (tW , ε,Di) ]

end for
Add following tile types to T ′1:

[ , (tW , ε,Dk−1) , , (tW , ε, Ak−1) ]

[ , (tW , ε, Bk−1) , , (tW , ε, Ck−1) ]

Add the following tile types to T ′2:

[ , (tW , ε, Ak−1) , , (tW , ε, k − 1) ]

[ , (tW , ε, Ck−1) , (tW , ε,Dk) , ]

[ (tW , ε,Dk) , , , (TW , , ε, F ) ]

end if
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Algorithm 9 The algorithm generates the tile types in Macro(t, (I,O)), for assembling the
north boundary, when O = {W} (N /∈ O).

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that N = {W}
Output: Corresponding tile types in T ′1 and T ′2
if Label(N, I,O, t) = g∗ and W ∈ I then

Add the following tile types to T ′1
[ , , (tE , ε, S) , (tE , ε, S) ]

[ , (tE , ε, S) , , (tE , ε, A0) ]

[ , (tE , ε, b
0
g) , , (tE , ε, C0) ]

Add the following tile types to T ′2
[ , (tE , ε, b

0
g) , , (tE , ε, A0) ]

[ , (tE , ε,D0) , , (tE , ε, C0) ]

for i = 1 to k − 2: do
Add following tile types to T ′1:

[ , (tE , ε, Ai) , (tE , ε,Di) , ]

[ , (tE , ε, Ci) , , (tE , ε, Bi) ]

Add the following tile types to T ′2:

[ , (tE , ε, Bi) , , (tE , ε, Ai) ]

[ , (tE , ε,Di) , , (tE , ε, Ci) ]

end for
Add following tile types to T ′1:

[ , (tE , ε, Ak−1) , (tE , ε,Dk−1) , ]

[ , (tE , ε, Ck−1) , , (tE , ε, Bk−1) ]

Add the following tile types to T ′2:

[ , (tE , ε, Bk−1) , , (tE , ε, Ak−1) ]

[ , , (tE , ε,Dk) , (tE , ε, Ck−1) ]

[ , (TE , ε, F ) , (tE , ε,Dk) , ]

end if
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assembly. If W ∈ I, the mapping tile is of the form,

[ (tE , btN , P ) , , , (tW , btS , P ) ],

and if E ∈ I, the mapping tile is,

[ (tW , btN , P ) , (tE , btS , P ) , , ].

When the mapping tile attaches to the assembly, the growing process switches its di-

rection toward west by some filler tiles. The filler tiles are the tiles in the assembly that

are not involved in the process of reading inputs or writing outputs, but rather pass the

information to the required positions in the macro-tile for writing and reading inputs and

outputs, respectively. If N ∈ O, when the assembly process reaches the north boundary, it

starts writing the the north glue, tN , of the original tile t ∈ T by placing bumps in position

0 or 1 on the north boundary according to the digits of btN . In the following we describe

this process in detail. Recall that for reading the south input the assembly process had

grown two branches one for each possible bit. Of these two branches only one survived in

the assembly and the other one was blocked by a bump. Unlike this approach, for writing

the north output, the assembly process will grow only one branch for each bit in btN . Note

that all the tile types for assembling the north boundary are in tile set T ′1. We can do this

since the assembly process proceeds only along one branch. Let g′ = Label (N, t, (I,O)).

Algorithm 10 adds appropriate tile types to T ′1 for assembling the north boundary of each

macro-tile Macro(t, (I,O)) such that N ∈ O.

If N /∈ O, we use Algorithm 8 and 9 to generate the tile types for assembling the north

boundary. Once the north boundary is assembled, the assembly process continues growing

on the east or west boundary depending on whether E ∈ O or W ∈ O. For example, in

Figure 3.4 it is east boundary. If E ∈ O, the last tile which creates the east output with a

single bond on the east boundary is [ , (tE , ε, S) , (tE , ε, V ) , (tE , ε, Q) ], and if W ∈ O,

this tile is [ , (tW , ε, Q) , (tW , ε, V ) , (tW , ε, S) ].

Class 2 (classify(t, (I,O)) = 2). Recall that in this class I = {S}, and all the other

sides with non-null glues are included in the output set. According to Observation 17,

sΣ(tS , tS) = 2 and the copies of t are boundary copies. Since the only input is via the south

side, these copies must be the first tile in the rows they belong to in terminal, in other

words, they are the tiles that enter the next row. The assembly process of the macro-tiles

for this class starts with the mapping tile. The mapping tile for t and (I,O) in this class is
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Algorithm 10 The algorithm generates the tile types in Macro(t, (I,O)), for writing the
north output on the north boundary, when N ∈ O.

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that N ∈ O
Output: Corresponding tile types in T ′1
g′ = Label (N, t, (I,O))
if W ∈ O then

for i = 0 to k − 1 do
if bi = 0 then

Add the following tile types to T ′1:

[ , , (tW , b
0
g′ . . . b

i−1
g′ 0, A′) , (tW , b

0
g′ . . . b

i−1
g 0, B′) ]

[ (tW , b
0
g′ . . . b

i−1
g 0, B′) , (tW , b

0
g′ . . . b

i−1
g′ 0, C ′) , , ]

[ (tW , b
0
g′ . . . b

i−1
g′ 0, D′) , , , (tW , b

0
g′ . . . b

i−1
g′ 0, C ′) ]

[ (tW , b
0
g′ . . . b

i−1
g 0, E′) , (tW , b

0
g′ . . . b

i−1
g , F ′) , (tW , b

0
g′ . . . b

i−1
g′ 0, D′) , ]

[ , , (tW , b
0
g′ . . . b

i−1
g′ , G

′) , (tW , b
0
g′ . . . b

i−1
g′ , F

′) ]

[ (tW , b
0
g′ . . . b

i−1
g′ , G

′) , (tW , b
0
g′ . . . b

i−1
g′ , H

′) , , ]

[ (tW , b
0
g′ . . . b

i−1
g′ , I

′) , , , (tW , b
0
g′ . . . b

i−1
g′ , H

′) ]

[ , (tW , b
0
g′ . . . b

i−1
g′ , A

′) , (tW , b
0
g′ . . . b

i−1
g′ , I

′) , ]

end if
if bi = 1 then

Add the following tile types to T ′1:

[ , , (tW , b
0
g′ . . . b

i−1
g′ 1, A′) , (tW , b

0
g′ . . . b

i−1
g 1, B′) ]

[ (tW , b
0
g′ . . . b

i−1
g 1, B′) , (tW , b

0
g′ . . . b

i−1
g′ 1, C ′) , , ]

[ (tW , b
0
g′ . . . b

i−1
g′ 1, D′) , , , (tW , b

0
g′ . . . b

i−1
g′ 1, C ′) ]

[ , (tW , b
0
g′ . . . b

i−1
g 1, E′) , (tW , b

0
g′ . . . b

i−1
g 1, D′) , ]

[ (tW , b
0
g′ . . . b

i−1
g′ 1, F ′) , , (tW , b

0
g′ . . . b

i−1
g′ , G

′) , (tW , b
0
g′ . . . b

i−1
g′ 1, E′) ]

[ (tW , b
0
g′ . . . b

i−1
g′ , G

′) , (tW , b
0
g′ . . . b

i−1
g′ , H

′) , , ]

[ (tW , b
0
g′ . . . b

i−1
g′ , I

′) , , , (tW , b
0
g′ . . . b

i−1
g′ , H

′) ]

[ , (tW , b
0
g′ . . . b

i−1
g′ , A

′) , (tW , b
0
g′ . . . b

i−1
g′ , I

′) , , ]

end if
end for

end if
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[ , (tE , ε, P ) , ( , btS , S) , (tW , btN , P ) ], regardless of the parity of the row (either east

growing or west growing). The reading tiles that assemble the south boundary are produced

by Algorithms 4 and 5.

Next we describe the assembly process for the filler tiles and the north boundary. If

sΣ(tN , tN ) = 2, the process of assembly is illustrated in Figure 3.5. The filler and writing

tiles are designed such that the direction of growth follows the arrows pictured in Figure 3.5.

This design is the same for the both cases when t is in an even or odd row.

If sΣ(tN , tN ) < 2, the only difference from the previous case is that there is no glue on

the north boundary. Figure 3.6 illustrates the direction of growth for this case, regardless

of the parity of the row.

Note that the assembly process for macro-tiles in this class may not finish before the

assembly process of the next macro-tile starts. But it is guaranteed that the assembly process

for these macro-tiles finishes before the assembly process of the succeeding macro-tile.

Also notice that if both E,W ∈ O then both glues will be written on east and west

boundaries, but we will show that before the assembly process for the next macro-tile

finishes the assembly process continues to grow in the correct direction. Assume a copy

of t with input/output side combination (I,O) is placed at location (i, j) in terminal and

d ∈ {E,W} is the direction of growth for the row below j and therefore the wrong direction

for row j. According to the properties of Zig-Zag systems, S(d(i, j)) has to be empty in

terminal. Thus, when reading the south input there are no bumps to block the 0 bit

branch and the south boundary will read the all 0 binary sequence. Recall that number 0

is not assigned to any g ∈ NS (i.e. there is no g ∈ NS with bg = 0). Therefore there is no

mapping tile, and hence macro-tile, with inputs td and 0, and the assembly for this direction

terminates when k = log(|NS|) bits of 0 are assembled.

Class 3 (classify(t, (I,O)) = 3). Recall that in this case O = {N} but I 6= {S}. The

copies of t are all boundary copies and since the only output is via the north side, we can

deduce that these copies are the last tiles in their rows and since the row of the copy of t is

not the last row in the terminal, sΣ(tN , tN ) = 2. Both directions of growth in this case are

illustrated in Figure 3.7. If E ∈ I then the mapping tile type is,

[ , (tE , btS , P ) , , ( , btN , P ) ],

and if W ∈ I, the mapping tile type is of the form,

[ ( , btN , P ) , , , (tE , btS , P ) ].
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Class 4 (classify(t, (I,O)) = 4). Recall that in this class I = ∅ which implies that this

copy of t is the seed tile in Γ (i.e. t = s). Hence, the macro-tile m = Macro(t, (I,O)) is

the first macro-tile that is assembled in Γ′ and the seed tile of Γ′ is the tile that starts the

assembly process for m. The assembly process of a macro-tile m in this class starts with its

mapping tile, which is s′ = [ , (tE , btN , P ) , , ]. Algorithm 6and 7 generates the

corresponding tile types in T ′1 and T ′2 for assembling the south boundary and Algorithm 10

generates the tile types for assembling north boundary if N ∈ O, otherwise if N /∈ O the

tile types for assembling the north boundary are generated by Algorithm 8. As before, the

glue tW (the glue on the west side of t) is transferred to the neighboring macro-tile via a

strength 1 glue on the west boundary of m.

Class 5 (classify(t, (I,O)) = 5). In this class O = ∅ and I 6= ∅. Therefore, the assembly

of terminal ends with a copy of t. The input boundaries are assembled as before by tile

types generated by Algorithms 4 and 6. The tile type for assembling the north boundary is

constructed with Algorithm 8.
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Figure 3.4: A macro-tile corresponding to a tile with input glues via west and south sides,
and output glues via east and north sides.

Figure 3.5: General shape of a macro-tile, for a tile types t ∈ T and (I,O) ∈ IO(t), with
I = {S} and sΣ(tN , tN ) = 2.

Figure 3.6: General shape of a macro-tile, for a tile types t ∈ T and (I,O) ∈ IO(t), with
I = {S} and sΣ(tN , tN ) < 2.
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(a) An east growing macro-tile in class 3.

(b) A west growing macro-tile in class 3.

Figure 3.7: The macro-tiles corresponding to the copies of tiles in class 3.
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Final Steps of the Proof In this part, we complete the definition of function f (see

Lemma 13) by using the function Macro and we show that it satisfies the conditions of

Lemma 13. Since Γ is deterministic, for a tile type t ∈ T and an input/output side com-

bination (I,O) ∈ IO(t), the mapping tile in Macro(t, (I,O)) is unique to t and (I,O).

Therefore Macro is bijective, i.e. its inverse function is well defined. Recall that,

T ′ =
⋃

t∈T,(I,O)∈IO(t)

Macro(t, (I,O)).

For each tile type t ∈ T , we created | IO(t)| ≤ 2 macro-tiles and each macro-tile in-

cludes a unique tile type, the mapping tile described before, while all the other tile types

in Macro(t, (I,O)), where (I,O) ∈ IO(t), depend only either on the glues on sides in

I or on the glues on sides in O and they might exist in other macro-tiles. Hence we

have |T ′| = O(min{|G|2, |T |} log(|T |) + 2|T |) = O(min{|G|2, |T |} log(|T |)). Now, function

f :
⋃

t∈T {
⋃

(I,O)∈IO(t) Macro(t, (I,O))} 7→ T is defined such that for each t ∈ T ,

f({
⋃

(I,O)∈IO(t)

Macro(t, (I,O))}) = t.

In other words, for each t ∈ T the function f maps the set of tile types in T ′ that

assemble to | IO(t)| macro-tiles of t, to t. For a set of tile types A ⊆ T ′ let Map(A) be the

set of all mapping tiles in the set A. Then, for each t ∈ T and (I,O) ∈ IO(t), since the

mapping tile of Macro(t, (I,O)) is unique to t and (I,O), we have Map(Macro(t, (I,O))) /∈⋃
t′∈T\{t},(I′,O′)∈IO(t′) Macro(t′, (I ′, O′)). Therefore for each t ∈ T ,

Map(
⋃

(I,O)∈(IO(t))

Macro(t, (I,O))) /∈
⋃

t′∈T\{t},(I′,O′)∈IO(t′)

Macro(t′, (I ′, O′)),

in other words, the set of mapping tiles of the | IO(t)| macro-tiles of tile t ∈ T is unique to

t and this implies that f is bijective.

It remains to show that for each copy of t ∈ T located at position (i, j) in terminal,

there exists a set T ∗ ⊆ T ′ in the domain of f with a unique tile type t′ ∈ T ∗ such that

Γ′(k, l) = t′, for some (4k+ 6)i ≤ k < (4k+ 6)(i+ 1) and 5i ≤ l < 5(i+ 1) and f(T ∗) = t. It

is tedious but not difficult to show by induction on the number of tiles in the terminal that if

Γ(i, j) = t then the mapping tile of the macro-tile Macro(t, Input(t, (i, j)),Output(t, (i, j)),

is placed in the square region (4k + 6)i ≤ k < (4k + 6)(i+ 1) and 5i ≤ l < 5(i + 1).

Since Map(Macro(t, (I,O))) /∈
⋃

t′∈T f
−1(t′), for Γ(i, j) = t we can define t′ to be the

Map(Macro(t, Input(t, (i, j)),Output(t, (i, j)))), and this completes the proof.
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Note that the number of steps for assembling each macro-tile is O(log(|T |)) and therefore

the number of steps to assemble the terminal assembly of Γ′ is linear in the number of tiles

present in terminal with a factor log(|T |). Also, note that since for a given Turing machine

M with alphabet A and input w ∈ A∗ the Zig-Zag system presented for Theorem 9 in [11]

simulates each step of M in O(|p|) steps, where p is the size of the tape of M at that step,

therefore Γ′ simulate each step of M in O(p log |T |). Now, we can prove Theorem 12.

Proof of Theorem 12. Let Υ = Γ′, where Γ′ is the tile system which has been constructed

in the proof of Lemma 13. Let R = Map(T ′), then for each t′ ∈ R there exists a macro-tile

m where t′ = Map(m) and each macro-tile m. Define function SIM : R 7→ T as SIM(t′) = t

where t is such that for some (I,O) ∈ IO(t), t′ = Map(Macro(t, (I,O))). Function SIM is

well defined since t′ is a mapping tile. We claim SIM satisfies the conditions in Theorem 12.

For each t = Γ(i, j) 6= empty, the tile Map(Macro(t, Input(t, (i, j)),Output(t, (i, j)))) is

unique to t and the combination Input(t, (i, j)) and Output(t, (i, j)), and is placed in the

region (4k + 6)i ≤ k < (4k + 6)(i+ 1) and 5i ≤ l < 5(i + 1), where k = dlog(|NS|)e and

NS is defined as in proof of Lemma 13. Thus Υ simulates Γ with horizontal scale factor

4(log(|NS|)) + 6 and vertical scale factor 5. It is trivial that log(|NS|) = O(log |T |). This

completes the proof for Theorem 12.

As we mentioned in Theorem 9, Zig-Zag tile assembly model at temperature 2 is capable

of simulating an arbitrary Turing machine and hence is Turing Universal. Now, since in

Theorem 12 we showed that Step-wise tile assembly model at temperature 1 can simulate

any Zig-Zag tile assembly model at temperature 2, we can deduce the following theorem.

Theorem 18. Step-wise tile assembly model is Turing Universal.
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3.2 Turing Universality of Staged Tile Assembly Model at

Temperature 1

In this section, we prove the Turing Universality for Staged tile assembly model.

Theorem 19. [7] For any deterministic temperature 2 Zig-Zag tile assembly system Γ =

〈Σ, T, s, sΣ, 2〉 there exists a Staged tile assembly system Ω at temperature 1 that simulates

Γ at vertical scale 5, horizontal scale O(log(|T |)) and with tile complexity O(|T | log(|T |)).

Proof. We present a system similar to Υ in the proof for Theorem 12. Trivially, Υ can

simulate Γ by using two bins, one for T ′1 and the other for T ′2, in |Struc(Term(Γ))| log(|T |)
stages. In what follows we show that with using more bins in Staged assembly model, the

number of stages can be reduced to 2. In the first stage, all the macro-tiles are assembled in

|T | bins. In the second stage, the assembled macro-tiles are mixed in an additional bin and

they automatically attach together and produce the terminal assembly which is associated

with Term(Γ). In this proof we use the functions we defined in the proofs of Lemma 13 and

Theorem 12.

The assembly process of macro-tiles in this system is a bit different than that used for

Step-wise model, although the tiles that appear in the macro-tiles are exactly the same.

For each t ∈ T , we use a distinct bin Bt at stage 1. All copies of the | IO(t)| macro-tiles

that simulate copies of t in Ω, assemble in bin Bt. For a tile t ∈ T and input/output

side combination (I,O) ∈ IO(t), let Macro′(t, (I,O) be the set of tile types that assem-

ble the macro-tile corresponding to the tile t and input/output side combination (I,O).

If Label(S, t, (I,O)) = g 6= g∗, for each big, the tile set Macro′(t, (I,O) includes the tile

types to assemble only the correct digit big. This is different from the approach we used in

Macro(t, (I,O)) for Step-wise model. The set Macro′(t, (I,O)) includes all other tile types

in Macro(t, (I,O)) (tile types for assembling north, east and west boundaries as well as the

filler and mapping tiles).

The way in which the tile types in Macro′(t, (I,O)) are defined guarantees that each

glue is used on at most two tile types. Hence the assembly process in bin Bt proceeds in a

linear way and the terminal assemblies will always be the macro-tiles for t. Algorithm 11

produces the tile types for assembling the south boundaries of the macro-tiles in Bt. We

denote the tile set in bin Bt by TBt .

At stage 2, we use one addition bin, B∗, to mix the terminal assemblies from all bins
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Algorithm 11 The algorithm generates the tile types in Macro′(t, I, O) for assembling the
south boundary where S ∈ I.

Input: k = log(|NS|), t ∈ T and (I,O) ∈ IO(t) such that S ∈ I
Output: Corresponding tile types in TBt

if W ∈ I then
for i = 0 to k − 1 do

if bi = 0 then
Add the following tile types to TBt:

[ (tW , b
0
g . . . b

i−1
g , A) , (tW , b

0
g . . . b

i−1
g , B) , , (tW , b

0
g . . . b

i−1
g , ) ]

[ (tW , b
0
g . . . b

i−1
g , D) , , , (tW , b

0
g . . . b

i−1
g , B) ]

[ , (tW , b
0
g . . . b

i−1
g , E) , , ]

[ , (tW , b
0
g . . . b

i−1
g , G) , (tW , b

0
g . . . b

i−1
g , D) , (tW , b

0
g . . . b

i−1
g , E) ]

[ , (tW , b
0
g . . . b

i−1
g , 0I) , , (tW , b

0
g . . . b

i−1
g , G) ]

[ , , (tW , b
0
g . . . b

i−1
g , 0F ) , (tW , b

0
g . . . b

i−1
g , 0I) ]

[ (tE , b
0
g . . . b

i−1
g , 0F ) , (tW , b

0
g . . . b

i−1
g , 0) , , ]

end if
if bi = 1 then

Add the following tile types to TBt:

[ (tW , b
0
g . . . b

i−1
g , A) , (tW , b

0
g . . . b

i−1
g , B) , , (tW , b

0
g . . . b

i−1
g ) ]

[ , (tW , b
0
g . . . b

i−1
g , G) , (tW , b

0
g . . . b

i−1
g , A) , ]

[ , (tW , b
0
g . . . b

i−1
g , 1J) , , (tW , b

0
g . . . b

i−1
g , G) ]

[ , (tW , b
0
g . . . b

i−1
g , 1E) , (tW , b

0
g . . . b

i−1
g , 1D) , (tW , b

0
g . . . b

i−1
g , 1J) ]

[ (tW , b
0
g . . . b

i−1
g , 1D) , (tW , b

0
g . . . b

i−1
g , 1B) , , ]

[ , , (tW , b
0
g . . . b

i−1
g , 1I) , (tW , b

0
g . . . b

i−1
g , 1E) ]

[ (tW , b
0
g . . . b

i−1
g , 1I) , (tW , b

0
g . . . b

i−1
g , 1) , , (tW , b

0
g . . . b

i−1
g , 1B) ]

end if
end for

end if
if E ∈ I then

Generate the same tile types as for the case W ∈ I of this algorithm, except for the
generated tile types flip the east and west glues and exchange tW with tE in glue labels.

end if
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described before. In this stage, the vertical teeth on the south boundaries of macro-tiles

become useful. The vertical teeth in this system, guarantee that the macro-tiles only share

the right boundaries and corresponding digits of the north or south glues abut. Without

these vertical horizontal slips would be possible at stage 2. Figure 3.8 illustrates a possible

slip where the beginning portion of sequence corresponding to a glue in NS is the same as

the end portion of binary sequence for another glue in NS.

Figure 3.8: The possible slips for two macro-tiles one with south side depicting (110) the
other with north side (101). The two segments of (10) can be matched together without the
vertical teeth of length two on the south of macro-tiles.

We can define SIM to be a bijection between the set of all mapping tiles corresponding to

t, to tile t ∈ T . With exact same arguments as we did before, one can see SIM is satisfying

the conditions in Theorem 19.

As we saw before in Theorem 9, Zig-Zag tile assembly model is capable of simulating an

arbitrary Turing machine. Since Staged tile assembly model can simulate any Zig-Zag tile

assembly system over an arbitrary input, we can deduce the following,

Theorem 20. Staged tile assembly model is Turing Universal.



Chapter 4

Triangular and Hexagonal

Self-Assembly Models

In this chapter, we study the computational power of Self-Assembly systems with different

tile shapes at temperature 1. In the models we studied up to this point, the basic component

blocks were square tiles. In this chapter we investigate, instead of square tiles, triangular

tiles and hexagonal tiles. Namely we discuss the self-assembly by equilateral-triangular and

hexagonal tile systems.

4.1 Computational aspects of Triangular Tile Self-Assembly

systems at Temperature 1

The Triangular tile self-assembly model is defined in a similar way to aTAM in Section 1.1.

The difference is, the underlying grid is triangular. Each tile type under this model is

an equilateral triangle with three sides, that is either in an upward (base facing up) or

downward (base facing down) orientation, as illustrated in Figure 4.1. More formally, an

equilateral triangular tile is represented as a quadruple (a, b, c, k), where a, b, c ∈ Σ are the

glues on the sides of the tile in the counter-clockwise order starting from the horizontal side

and k ∈ {u, d} presents the upward (u) or downward orientation (d) (see Figure 4.1). Thus,

for the tile set of a triangular system we have T4 ⊆ Σ × Σ × Σ × {u, d}. Through this

section, we will call the equilateral triangular tiles, simply triangular tiles. For a tile type

t ∈ T4, the notations γ1(t), γ2(t) and γ3(t) denote the glues on the sides of t in a clockwise

56
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order starting with γ1(t), where γ1(t) is the glue on the base of the corresponding triangle.

(a) (b)

Figure 4.1: Triangular tile types can have upward or downward orientation based on the
position of the horizontal side. (a) A triangular type (c, b, a, d) with downward orientation.
(b) A triangular type (c, a, b, u) with upward orientation.

Theorem 21. For any temperature 1 tile assembly system Γ = 〈Σ, T, s, sΣ, 1〉 under aTAM

there exists a Triangular tile assembly system ∆ = 〈Σ′, T4, s′, s
′
Σ′ , 1〉 at temperature 1 that

simulates each square tile type of Γ by two triangular tile types in ∆.

Proof. We use the idea of macro-tiles in ∆ simulating the behavior of tiles in Γ. For each

tile t ∈ T we add two tiles t1 and t2 to T4. Since both systems are under temperature 1 the

process is much simpler. Figure 4.2 illustrates the tile types in T4 that attach together to

assemble the supertile mapped to t. Label the two tile types mapped to t by t1 and t2 in

arbitrary order. Each tile type t1 or t2 is unique to t (the dash in the Figure 4.2 is a glue

unique to t), thus there’s a one to one mapping between the pair of tile types t1 and t2 in

t4 and t ∈ T . Thus we define a bijective function SIM :
⋃

t∈T {t1 : Macro(t) = {t1, t2}} 7→ T

as SIM(t1) = t. Note that |T4| = 2|T |.

(a) A tile t ∈
T .

(b) The tiles in
T4 simulating t.

Figure 4.2: The supertile simulating tile t ∈ T in ∆. The dashes represent distinct glues
that are unique to t.

Theorem 22. For any temperature 1 Triangular tile assembly system

∆ = 〈Σ′, T4, s′, s
′
Σ′ , 1〉 there exists a tile assembly system Γ = 〈Σ, T, s, sΣ, 1〉 under aTAM

at temperature 1 that simulates each triangular tile type in ∆ by 4 square tile types in Γ.
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Proof. For each tile types t ∈ T4, we design a macro-tile to simulate t in Γ. The unique tile

types in T which simulate a tile type t ∈ T4 are pictured in Figure 4.3. We can describe the

function SIM, in a similar way as before, to map a fixed tile type from the set of 9 tile types

in T that assemble to the macro-tile for t ∈ T4, to t. Note that the dashes in Figure 4.3 are

unique to t and therefore all the tile types in T that simulate a tile type t ∈ T4 are unique

to t.

(a) The supertile
in Γ simulating
the tile (c, b, a, d)
in ∆ pictured in
Figure 4.1(a)

(b) The supertile
in Γ simulating
the tile (c, a, b, u)
in ∆ pictured in
Figure 4.1(b)

Figure 4.3: The supertile simulating a tile type t ∈ T4 in Γ. The dashes represent distinct
glues that are unique to t.

Consequently, from computational point of view Triangular tile assembly model is equiv-

alent to aTAM at temperature 1.

4.2 Computational aspects of Hexagonal Tile Self-Assembly

systems at Temperature 1

The Hexagonal tile self-assembly model is similar to aTAM, described in Section 1.1. Again,

here the difference is that in this model we will be working with a hexagonal grid. Each

tile type under this model is a regular hexagon. Without loss of generality, we assume that

all regular hexagonal tiles are oriented as illustrated in Figure 4.4. More formally, a regular

hexagonal tile is represented as a 6-tuple (a, b, c, d, e, f), where a, b, c, d, e, f ∈ Σ are the

glues on the sides of the tile in the clockwise order starting from the top horizontal side.

Therefore, for the tile set of a Hexagonal system we have THEX ⊆ Σ6. Through this section,

we will call the regular hexagonal tiles, simply hexagonal tiles.

Theorem 23. For any temperature 1 tile assembly system Γ = 〈Σ, T, s, sΣ, 1〉 under aTAM
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Figure 4.4: A tile type (a, b, c, d, e, f) in THEX

there exists a Hexagonal tile assembly system χ = 〈Σ′, THEX , s
′, s
′
Σ′ , 1〉 at temperature 1 that

simulates a square tile type in Γ with four hexagonal tile types in χ.

Proof. The supertiles in χ that simulates a tile types t ∈ T is illustrated in Figure 4.5. We

can define SIM in the same way as we did in previous section (Section 4.1).

Figure 4.5: The macro-tile in χ simulating a tile type (b, c, d, a) in T

Theorem 24. For any deterministic temperature 1 tile assembly system χ = 〈Σ′, THEX , s
′, s
′
Σ′ , 1〉

under Hexagonal tile assembly model there exists a deterministic Standard tile assembly sys-

tem Γ = 〈Σ, T, s, sΣ, 1〉 at temperature 1 that simulates χ with tile complexity O(|T |).

Proof. The supertiles in Γ that simulates a tile types t ∈ THEX is illustrated in Figure 4.6.

Figure 4.2 pictures how Γ simulates a sample super tile in χ. The function SIM can be

defined in the same way as previous section.

Thus, the Hexagonal tile assembly model has the same computational power as aTAM

at temperature 1.
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Figure 4.6: The supertile in Γ simulating a tile type (a, b, c, d, e, f) in THEX

(a) A supertile
in χ consisting
of 4 hexagonal
tiles attached
together.

(b) The super tile under Γ which simulates
the super tile illustrated in part (a).

Figure 4.7: Simulating a sample supertile with 4 hexagonal tiles in χ by 4× 18 square tiles
in Γ.
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