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Abstract

We present a system called Tuner to systematically analyze the parameter space of com-

plex computer simulations, which are time consuming to run and consequently cannot be

exhaustively sampled. We begin with a sparse initial sampling of the parameter space, then

use these samples to create a fast emulator of the simulation. Analyzing this emulator gives

the user insight on further sampling the simulation. Tuner guides the user through sampling

and provides tools to find optimal parameter settings of up to two objective functions and

perform sensitivity analysis. We present use-cases from the domain of image segmentation

algorithms.

Since our method must utilize samples of the simulation and relies on an inherently

interactive visualization method, we perform a complexity analysis to see how many sam-

ples can be rendered while staying interactive. We examined how rendering performance

changes with the dimensionality, reconstruction kernel size, and number of sample points.

To study this, we decomposed the rendering complexity into a predictive cost function that

combines the cost of filtering each data point and then the cost to draw each pixel on screen.

This cost function is calibrated to the time to filter and draw for two di↵erent hardware

configurations. The cost formulation is used to examine the e↵ects on rendering time from

using box filtering versus a radial distance measure in high-dimensional data spaces as used

for the filtered scatterplot and HyperSlice visualization methods, respectively. We find that

for a constant kernel volume, rendering performance increases with dimensionality in the

HyperSlice technique while it decreases with the filtered scatterplot technique. We also find

that the total number of sample points and not the size of the reconstruction kernel is a

much stronger determinant of the rendering time.
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“Humans are just barely intelligent tool users; Darwinian evolutionary selection stopped

when language and tool use converged, leaving the average hairy meme carrier sadly

deficient in smarts.”

— Accelerando, Charles Stross, 2005
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Chapter 1

Introduction

In a diverse set of domains such as high energy particle physics, astronomy, finance, and im-

age segmentation, experimentation via computer simulations and algorithm development is

one of the driving forces in science today. Increasing developments in computer technology

have opened doors previously unavailable to scientists in terms of how they conduct exper-

iments and develop hypotheses. Before the advent of computational simulation scientists

were limited by experiments they could perform in the lab. Now, simulations may provide

a cheaper alternative to running experiments in the lab. For example, the CERN facility

in Switzerland has a budget of 7.5bln Euros per year1 all directed to a single experimental

goal: the detection of the Higgs boson particle. Simulations permit one to describe their

hypotheses as a set of machine-evaluatable formulae. These codes can then be incorporated

as modules into larger systems of simulations allowing us to better algorithmically describe

the natural world. In addition, one can run a number of simulation experiments in quick

succession under tightly controlled conditions.

In fact, algorithms allow even “fixed” parameters such as the gravitational constant

to be varied in an experiment. This has been used, for example, in the Coyote Universe

simulation suite [23, 22, 31]. The goal of this simulation is to find precise predictions of

the nonlinear matter power spectrum which is important in the precise detection of dark

energy. The Coyote Universe is an ensemble of 38 simulated “universes” that physicists are

using to match up to experimental evidence.

1Large Hadron Collider — Wikipedia, the free encyclopedia. Retrieved: August 13, 2012, from http:

//en.wikipedia.org/wiki/Large_Hadron_Collider.

1

http://en.wikipedia.org/wiki/Large_Hadron_Collider
http://en.wikipedia.org/wiki/Large_Hadron_Collider
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Simulation modelling enables one to solve formulae that are too complex to solve ana-

lytically. Applications of the Navier-Stokes formula, for example, occur in fluid simulation,

weather simulation, and aerodynamics. There is no analytic solution for Navier-Stokes which

means that all “solutions” must be computed numerically through simulations. Proper anal-

ysis of these simulations in terms of how do changes in the settings of the input parameters

a↵ect the outputs is vital to successfully verifying scientific theories. In this work we present

one type of system to analyze these experiments.

All of these computer codes can be characterized as a “black box” in that the simula-

tion code is viewed as an unknown function that takes a number of inputs controlling the

simulation and returns a number of outputs as a result of the simulation. These inputs and

outputs may be scalar, categorical, or a complex object. For example, image segmentation

algorithms take as input a source image and a number of additional parameters and return

a transformed image as the result. As another example, a particle accelerator simulation

produces a 3D+time output of the spatial locations of sub-atomic particles. Examining

just a single instance of one of these complex output objects is not an easy task. Volume

visualization and vector field visualization are active areas of research.

However, analyzing just a single experiment at a time does not allow one to infer many

details about how input settings a↵ect the output. In order to properly do this, one must

run a bank of experiments, for each one varying the input parameters and recording the

outputs. Now the di�culty lies in comparing a large number of outputs, evaluating their

di↵erences, and devising rules for how the parameters a↵ect the output. This requires

careful consideration of the di↵erences between the outputs. In order to help with this, one

can define a number of scalar quality measures that summarize the outputs. This allows

us to examine the relationship between inputs and outputs in purely numerical means for

which there are known techniques.

Using this methodology the process of understanding the behaviour of a simulation can

be viewed as a kind of pipeline, shown in Fig. 1.1. We first generate sample locations which

determine the parameter settings for a number of simulation results. The complex output

object is then reduced via a number of objective functions to produce a number of scalar

outputs. One then builds an emulator model of the continuous result space using an inter-

polation function, which typically involves estimating a number of modelling parameters.

We can then perform analysis and possibly further sample the parameter space in order to

build a better estimation model.
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Sampling Simulation Objective 
functions Interpolation AnalysisSample 

locations
Simulation 

results
Scalar 
results

Functional 
results

Sequential sampling

Figure 1.1: An overview of the analysis pipeline for analyzing computer simulations. In order
to understand the simulation we must run a number of discrete parameter configurations,
known as sampling. The results of the simulation are converted to a number of scalar
measures using objective functions. We then want to interpolate these scalars to form an
estimate of the response surface. After analyzing this continuous response surface one may
take additional samples of the simulation.

In this thesis we focus primarily on the analysis step but also touch upon the interpo-

lation and further sampling steps. As we will demonstrate, we feel that visualization of the

parameter space best accomplishes our analysis goals.

1.1 Definitions

A number of terms will be used in this thesis and it is convenient to define them here:

Parameter space: The total range of all parameter settings controlling the simulation.

Objective function: A function that takes a complex object (e.g. an image) as input and

returns a scalar output describing the “goodness” of the object.

Response surface: A manifold representing one of the (possibly many) scalar output val-

ues of the simulation.

Design sites: The locations in the parameter space for a set of discrete samples of the

parameter space of the simulation. This is essentially a table containing the locations

in the parameter space where we sample the simulation.

1.2 Goals

In order to decide whether it is more prudent to examine our data with, on one extreme, a

purely numerical analysis or, on the other extreme, visual analysis methods, we must con-

sider the analysis goals. Numerical methods, such as gradients or ANOVA, are advantageous

when we can clearly quantify the goals of the analysis in the form of a handful of precise
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measurements on data. However, there are cases where the objective measurements are not

100 percent accurate. With visual methods it is very di�cult to derive precise numerical

accuracy. However, one of the benefits of visualization methods is that they show the context

of that measurement in a visual fashion in order to allow the user confirm the results of the

analysis for themselves. To put it another way, when there is a clear numerical measurement

that tells us everything we want to know then it’s better to use that. Otherwise, a workflow

using visual analysis may be best.

The goals of analysis discussed in this thesis are exploration of the full parameter space,

multi-objective optimization, and analyzing the sensitivity of the objective measurements

to those settings.

1.2.1 Exploration

By exploration we are referring to a user’s desire to understand the full response surface.

At a minimum one wants to view where in the high dimensional parameter space are the

locations of “optimal” points: the local minima and maxima.

This is somewhat undirected in that the user is not interested in examining particular

areas of the parameter space. Instead, they are interested in every area of the parameter

space. On the surface, it seems that we would evaluate the simulation at some su�ciently

small resolution to see all the behaviour we expect to see. However, these simulations are

very complex and often slow in terms of time (on the order of minutes or hours) to evaluate.

Therefore, it isn’t feasible to run, for example, a hundred thousand samples and expect an

answer in a reasonable amount of time.

There is the further cognitive di�culty of understanding a high-dimensional response

surface. We live in a 3D+time-dimensional world and our perceptual limits reflect this fact.

We simply do not have an intuitive grasp of what a higher-dimensional object “looks” like.

We are further limited by display technology. 3D screens are available but their benefits

over traditional 2D screens for data visualization purposes remains to be seen [56].

1.2.2 Multi-objective optimization

The user may also want to find the optimal parameter settings with respect to one or more

objective functions. This type of analysis is called “multi-objective optimization.” If we look

at the computer simulation from the perspective of a functional that takes scalar inputs and
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returns a number of scalar outputs (after the objective function evaluations) then the task

is to find parameter settings that maximize (or minimize) this functional.

The di�culty here is that the objective measures often compete with each other. A

classic example is the trade o↵ between precision and recall measurements in classifica-

tion problems [18]. Precision measures the number of positive classifications over the total

number of positive results. Recall measures the number of positive classifications over the

total number of possible positive classifications. Written in terms of true positive, tp, true

negative, tn, false positive, fp, and false negative, fn, precision and recall are written as,

precision =
tp

tp + fp

recall =
tp

tp + fn

In addition, the weightings of these objectives may not be able to be precisely defined.

In fact, the weightings may change depending on the relative value of the various objective

measurements.

1.2.3 Sensitivity analysis

With any goal the user wants to know the sensitivity of the objective measures to the

parameter settings. In the case of optimization, this may a↵ect their choice of which optima

to select. In the case of two closely valued optima one may choose the one that is more

“stable” in the sense that changes in the parameter settings will not a↵ect the output a

great deal. This is illustrated in Fig. 1.2. What constitutes “a great deal” is application

dependent.

1.3 Methods of analysis

Given these goals, the question is now, how best to analyze the input/output relationships

in these computer simulations? Visualization encourages active participation of the user in

performing their analysis. Furthermore, visualization methods, because the analyst is part of

the feedback loop, also allow one to reason in the context of fuzzy goals such as described in

Sec. 1.2. The human visual system is very good at tasks such as pattern recognition and edge

detection which are still very di�cult to perform algorithmically. Furthermore, looking at
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Figure 1.2: A 1D example of parameter sensitivity. The output or response value is on the
y-axis and the input parameter is on the x-axis. (a) shows that the output is relatively
stable with respect to changes in the parameter setting, particularly in comparison to (b)
where small changes in the parameter a↵ects the output greatly.

numerical summaries can be deceiving. A classic example is Anscombe’s Quartet [1] shown

in Fig. 1.3. Data in each of these four charts have the same summary statistics in terms of

mean, regression formula, and variance but upon visual inspection are actually very di↵erent

data sets. In this particular case one could look at the residuals from the linear regression

to tell these datasets apart. However, one would have to know to do this and given that the

other summary statistics are identical it is unclear if that would happen.

1.3.1 Context

During the development of Tuner (discussed in Chapter 2) we found that our users want to

see not just, for example, the critical points of the response surface but also the surrounding

area. Physicists and environmental scientists have also expressed interest in seeing the

context of these critical points. This gives one a sense of how the response surface changes

around a particular focus point. In other words, one would be able to see not just the most

likely response value but also other potential responses.

1.3.2 Fuzzy goals

Visualization fits in perfectly when we have fuzzy goals by which we mean we cannot define

in a precise algorithmic manner what the goal of analysis is. This does not mean this goal
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Figure 1.3: The four plots known as Anscombe’s Quartet [1] demonstrating how summary
statistics can be deceiving. Each of these have the same mean, regression formula, and
variance despite being very di↵erent datasets.

is not achievable as the human analyst may have an exact idea of the goal, it may just be

prohibitively complex to define a computable method. We believe that a human, through

a proper visualization method, can very quickly evaluate a number of potential solutions

and then select the best one as their analysis goal. In addition, analysis goals may change.

A single visualization method may support a number of analysis goals which the human

analyst can decide to use depending on the task at hand. Again, because the human is

involved in making the final decision this increases confidence as they are not beholden to

a fixed algorithm.
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1.4 Contributions

In Chapter 2 we present Tuner, a system designed to guide the user through the entire

analysis pipeline presented earlier including performing the initial sampling, analyzing the

response surface, and resampling. The development of this tool focused on analysis of image

segmentation algorithms. Image segmentation algorithms are characterized by being expen-

sive to run, having complex inputs and outputs, and requiring many input parameters.

Furthermore, the developers of these algorithms lacked a comprehensive solution for eval-

uating the sensitivity of their algorithm to the parameter settings. A key feature of Tuner

is the interactive exploration of the response surface. Because maintaining this interaction

is vital to understanding the relationship between parameters and outputs we then focused

on how much data can Tuner handle before the interaction breaks down. In Chapter 3 we

show how to calculate the expected rendering time of Tuner’s HyperSlice [58] view of the

response surface so that the inherently interactive exploration of the response surface can

stay that way.

1.4.1 Tuner

Tuner was originally designed to address the di�cult problem of parameter-finding in image

segmentation. We replace a tedious manual process that is often based on guess-work and

luck by a principled approach that systematically explores the parameter space. Our core

idea is the following two-stage technique: We start with a sparse sampling of the parameter

space and apply a statistical model to estimate each response of the segmentation algorithm.

The statistical model incorporates a model of uncertainty of the estimation which we use

in conjunction with the actual estimate in (visually) guiding the user towards areas that

need refinement by placing additional sample points. In the second stage the user navigates

through the parameter space in order to determine areas where the response values (good-

ness of segmentation metrics) are high. Our exploration method allows one to evaluate the

tradeo↵s of optimizing two response values simultaneously. We also allow the user to see the

sensitivity of the response values with respect to the currently selected parameter setting.

We rely on existing ground-truth images in order to evaluate a number of “goodness” mea-

surements of an image segmentation technique. We evaluate its usefulness by demonstrating

this technique on two image segmentation algorithms: a three parameter model to detect

microtubules in electron tomograms and an eight parameter model to identify functional



CHAPTER 1. INTRODUCTION 9

regions in dynamic Positron Emission Tomography scans.

1.4.2 Evaluation of rendering time

We then present a complexity analysis for local visual analysis methods for multi-dimensional

data sets with the display focused around a particular point of interest. Apart from enabling

more confined interpretation tasks, this also provides a way to cut down rendering costs for

potentially large data sets. To study this e↵ect we decompose the rendering complexity into

a predictive cost function that combines the cost of filtering each data point and then the

cost to draw each pixel on screen. This cost function is calibrated to the time to filter and

draw for two di↵erent hardware configurations. The cost formulation is used to examine

the e↵ects on rendering time from using box filtering versus a radial distance measure in

high-dimensional data spaces as used for the Prosection matrix and HyperSlice visualization

methods, respectively.



Chapter 2

Tuner

For visual analysis image data often need to be segmented. Segmentation refers to the

process of partitioning the image into multiple segments, i.e. sets of pixels or voxels, that

form contiguous and semantically meaningful regions. If each of these regions is marked by

a unique identifier, image segmentation simply means labelling of pixels or voxels. In bio-

medical imaging, where images are acquired using some kind of tomography or microscopy,

segmented regions might correspond to anatomical structures in the case of non-functional

imaging, and to regions with specific physiological activity in the case of functional imaging.

In recent years a variety of semi- and fully automatic techniques have been developed

to address the segmentation problem [41]. However, even the current state-of-the-art ap-

proaches fall short of providing a “silver bullet” for image segmentation. This has several

reasons. One reason is that given some image, the segmentation problem is not well defined;

in fact it depends on the application which regions are semantically meaningful. Another

reason is that due to di↵erent image degradation factors such as low signal-to-noise ratio,

imaging artifacts, partial volume e↵ects and shape variability, di↵erent kinds of a priori

knowledge need to be included. Additionally, the majority of the existing segmentation

methods rely on and are sensitive to setting a number of parameters. For example, most

of the algorithms contain weighting parameters between multiple competing image-driven

or prior-driven cost terms in an attempt to mimic the cognitive capabilities of expert users

(e.g. radiologists for medical images).

A good parameter setting is usually found by a manual trial and error procedure. The

segmentation algorithm developer starts with a particular parameter configuration and then

checks for a quality or response measure of the final segmentation measured against a ground

10
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truth image where the correct segmentation is available. If the segmentation quality is

not satisfactory, another parameter configuration will be tested. This is a tedious, time-

consuming, and error-prone task. Furthermore, once a good parameter setting is found the

developer then goes on (using the set of found parameters) to apply the algorithm to images

without a ground truth. Because the developer has no context for the space around these

ideal parameters they have no real idea of the applicability to other datasets.

Here we propose a visual analysis tool to systematically explore the multi-dimensional

parameter space impacting the quality of image segmentation algorithms. We adopt a

statistical model known as a Gaussian process model [44] to interpolate the response values

given a sampling of the parameter space. We then use an interactive visualization to enable

the exploration and refinement of the parameter space. The proposed tool can be applied to

any fully automatic segmentation algorithm controlled by a number of tunable parameters

and a quality measure for the obtained results.

2.1 Problem Statement

Image segmentation algorithms are typically plagued by a plethora of di↵erent tuning pa-

rameters. Conceptually, we di↵erentiate model parameters from algorithmic parameters.

2.1.1 Model Parameters

An important class of segmentation methods are variational methods, see e.g. [38]. They

rely on the minimization of an objective, or energy, functional whose minima correspond

to “good” segmentations. For this class, model parameters are the weights of the di↵erent

terms in the energy functional. Building an energy functional gives the algorithm designer

the ability to allow multiple competing goals to be considered. The energy functional is

generally formulated as follows

E(�, I) = ↵1E1(�, I) + ↵2E2(�, I) + ....+ ↵kEk(�, I), (2.1)

where I represents the input image to be segmented, � represents a segmentation, and

E1, E2, . . . , Ek represent k di↵erent energy terms. Therefore, the parameters ↵1,↵2, . . . ,↵k

represent a weighting of the importance of every energy term. The final segmentation b� is
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obtained by minimizing (Eq. 2.1) as follows:

b� = argmin
�

E(�, I). (2.2)

For example, consider the popular Snakes algorithm [28]. Here an approximate boundary

evolves to the desired boundary guided by minimizing two competing energy terms. A

boundary energy term attracts the solution to pixels with high gradients. However, since

boundaries optimized with only this condition tend to be jaggy due to noise in the image, an

additional smoothness term is introduced to enforce the boundary of the segmented object

to act like a membrane or thin plate that is trying the stretch out. Many other energy

terms have been considered in the segmentation literature and we are not trying to provide

a complete list here. For a good overview see, for example, Pham, Xu, and Prince [41].

2.1.2 Algorithmic Parameters

Algorithmic parameters fine-tune di↵erent parts of the algorithms. For variational segmen-

tation, for instance, there exist approaches, like Graph Cuts [9] and Random Walker [20],

where the energy term itself contains parameters to be tuned. We could describe these

terms using E(�, I,�) where � would impact how similar two nodes are that are connected

through an edge.

Algorithms not based on energy minimization also have tuning parameters. For in-

stance it is quite common to have thresholding parameters. One of the fundamental image

processing algorithms is edge detection; the most popular algorithm, the Canny edge detec-

tor [12], uses three parameters, controlling the size of a Gaussian smoothing function and

thresholding with hysteresis (using min/max thresholds).

In addition, almost any segmentation algorithm also includes parameters like number of

iterations, accuracies for termination conditions, etc. Parameter tuning is an integral part

of almost any image processing task.

2.1.3 Quality Measures

In order to produce an image segmentation, a particular parameter setting is determined and

a segmentation algorithm is applied to the image. During algorithm development an expert-

segmented image, or ground truth, is crucial to measure the quality of the segmentation.

Often a visual comparison of the automatic segmentation to the expert-segmented images is



CHAPTER 2. TUNER 13

desired, but fine subtleties or 3D images are hard to inspect properly. Therefore, a number

of other quality metrics have been developed.

One of the most popular metrics is the Dice similarity coe�cient [16]. It measures the

overlap between a segmented region and ground truth, with a value of one corresponding

to a perfect overlap. Precision and Recall are two other widely used quantities to assess the

quality of a classifier. In the case of image segmentation, precision measures the percentage

of true positives, i.e., which of the segmented pixels have the right label relative to all the

pixels labelled with this label by the segmentation algorithm. In contrast, Recall measures

the number of correctly labelled pixels relative to all the pixels that should carry said label

based on the ground truth. Ideally, both of these measures should come out to one, but

often improved Precision comes at the cost of reduced Recall and vice versa. Therefore, it

is useful to examine these di↵erent measures simultaneously to ensure better segmentation

performance with respect to di↵erent criteria. Other commonly used tradeo↵s include loss

versus penalty in pattern recognition [63] and image thresholding algorithms [50]. Tuner

is able to work with any segmentation technique controlled by a set of parameters and

associated with a set of numerical quality measures.

2.1.4 Finding the Right Parameters

Given a segmentation model, a ground-truth, and one or several quality measures that eval-

uate the segmentation output relative to the ground-truth, an algorithm developer typically

enters a time-consuming, tedious, and error-prone process to find good parameter values.

Experience often goes a long way to come up with an initial guess. Manual variation of the

parameter settings give a hint to the user of whether an improved segmentation is possible

and whether the segmentation result changes slowly (i.e. we have a stable parameter region)

or quickly (i.e. the segmentation result is very sensitive to the exact parameter setting).

Often a single segmentation could take minutes if not tens of minutes or hours and every

new parameter combination that needs to be tested will add to the frustration of the exper-

imenter. Furthermore, keeping track of all the previously tested parameter combinations

amounts to a test of patience, good memory, and being well organized. At no time of the

exploration process is one ever sure, whether all the relevant parameter regions have been

found. The algorithm developer has neither a systematic method for evaluating the trade-

o↵s among a number of objective measurements of their algorithm nor for examining the

sensitivity of these objective measurements.
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To facilitate the parameter exploration process, we identify a set of tasks that our tool

needs to support. The identification of these tasks is the result of a user-centred design

process. By working directly with our users during development of Tuner we were able to

produce a tool that catered directly to their needs.

Exploring the full parameter space: A comprehensive and systematic way is needed

to explore the full parameter space e�ciently. This requires a strategy and tools for getting

a quick overview and overall understanding of the parameter space in order to identify

interesting regions. Furthermore, it requires means for refining the search in interesting

regions.

Finding optimal parameter settings: The tool should allow the user to quickly

navigate to all local optima in the global parameter space or in a sub-region of it.

Assessing the sensitivity of a parameter region: The tool should enable the user

to quickly assess the sensitivity of segmentation results to parameter changes.

Simultaneous exploration of multiple quality measures: Tradeo↵s between com-

peting quality measures should be made clear and easy to explore and comprehend.

2.1.5 Contributions

Given these design constraints, we introduce a two-stage process to find optimal parameter

ranges for image segmentation algorithms. During the first stage we employ an approach

that samples the complete parameter space as densely as the time budget allows and then

(in a batch process) automatically acquires all the corresponding segmentations. While this

process is running “over-night” the user can devote his or her attention to other matters.

Our approach also employs an uncertainty measure based on statistical reasoning to auto-

matically refine regions that have not been sampled well. In the second stage the researcher

explores the results of the first stage in an interactive setting. We use multidimensional nav-

igation tools to find areas of high interest and to investigate the stability of these regions.

The contributions of Tuner can be summarized as follows: (i) We develop a systematic

model to explore the full parameter space based on a Gaussian process model [27]. (ii) We

allow the user to visually explore the full parameter space using sliced-based navigation

(similar to HyperSlice [58]) of the response function for up-to tens of parameters. (iii) We

allow the user to study the trade-o↵ of up to two quality measures. (iv) We provide uncer-

tainty visualization of the response surface as well as the expected gain in order to facilitate

refined sampling of the parameter space.
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2.2 Related work

Understanding and analyzing high-dimensional spaces has always been a challenge in statis-

tical graphics as well as visualization. Approaches such as scatterplot matrices [14], parallel

coordinates [25], and star-glyphs [59] are now common for visualizing high-dimensional data.

Their main purpose, is to understand “point-clouds” or discrete entities. However, if one

needs to understand continuous high-dimensional spaces, these approaches fail mostly, since

they do not properly convey the continuity of the underlying space. Recently, Bachthaler

and Weiskopf [2] extended scatterplots in order to properly portray continuous functions.

However, the essence of scatterplots and similar approaches is to separate the data values

from its intrinsic embedding in some metric space. This embedding is crucial if we want

to understand the local sensitivity of the response surface. Sensitivity analysis studies the

variance of the function to its embedding.

In medical imaging it is common to create a mental model of a 3D image of a patient

by studying three orthogonal axis-aligned slices. Creating a mental model of a higher-

dimensional continuous function is next to impossible, but the local behaviour of a function

can be externalized leading to a cognitive relief of the user. Using a slice-plane matrix

for the understanding of a high-dimensional function had been suggested by van Wijk and

van Liere using a technique which they coined HyperSlice [58]. This idea was extended by

Tweedie and Spence by what they called the Prosection Matrix [57]. Here, a thick (n� 2)-

dimensional slab is being summarized as opposed to a simple 2D slice of the n-dimensional

space under study. Since we believe, that a slice will be a more accurate portrayal of the

space, we use the HyperSlice approach in this paper.

While van Wijk and van Liere were inspired by the study of parameter combinations

for computational steering in chemical reactions, a complete system for this study was

not proposed. The idea of “seeing” into a high-dimensional parameter space in order to

understand the distribution of optimal places and their sensitivity has recently found a lot of

attention in the visualization community. Computational steering has been a known problem

for a while, which is addressed by several researchers in the visualization community, most

recently in WorldLines by Waser et al. [60]. This problem is fundamentally di↵erent from

the problem we are trying to solve. In computational steering the user studies a simulation

over time and actually wants to change the parameters while the simulation is running. In

our case, we must set the parameters at the start of a new simulation with the intention of
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optimizing the final output according to some quality measure. This is closer to the work

by Bruckner and Möller in FluidExplorer [11]. However, one of the major accomplishments

of FluidExplorer was dealing with simulation outputs where temporal behaviour is crucial.

Furthermore, they did not address optimization of any objective function.

Approaches where an objective function is missing typically require the user to express

their preference after comparing di↵erent simulation outputs (see e.g. the work by Brochu

et al. [10]). This is an area also known as active learning. Very recently Pretorius et

al. [43] have been developing a system for the exploration of parameter values for image

segmentation. In their case they are not making use of any quality measures and don’t

assume the availability of any ground truth. Therefore, their system is quite di↵erent from

ours.

Alternative approaches to facilitate parameter explorations have resulted in systems like

Design Galleries [34], Image Graphs [32], spreadsheet-like exploration interfaces [26], and

VisTrails [48]. None of these approaches is utilizing an optimization function nor is the

user able to see a comprehensive overview of which places of the parameter space have been

“looked at” and which have not.

The inspiring work by Piringer et al. [42, 5, 6] is perhaps closest to ours. Their system,

HyperMoVal, was one of the first comprehensive environments for studying the impact of

parameters on simulation experiments. HyperMoVal was also using the ideas of HyperSlice

for navigating through a high-dimensional scalar function as well as facilitating a sensi-

tivity analysis. However, HyperMoVal was geared toward industrial applications and was

validated in the automobile industry. Our scope is slightly smaller and we are focused on

finding good parameter combination for image segmentation. Therefore, in many ways, our

problem is more constrained and requires a much less complex system. The major di↵er-

ence to HyperMoVal is that we use several di↵erent quality metrics in order to judge the

goodness of the parameter settings. These quality measures are the basis of our exploration

and simplifies the user interface immensely. In HyperMoVal, coloured contour-plots, rep-

resenting the model estimation, are overlaid over scatterplots representing the measured

data. Furthermore, their sensitivity analysis is very di↵erent in that it focuses on dimen-

sional graphs by varying exactly one parameter and one local neighbourhood around a single

high-dimensional parameter combination. This has been improved with the Piringer et al.’s

current work [6].
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2.2.1 Statistics

Our technique was born out of the work by Box and Wilson [8] in 1951. Their method

is to fit gradually more and more complex estimating models to a complex function. One

well-established area of research in statistics employing this idea is known as DACE - the

Design and Analysis of Computer Experiments. For a good introduction we refer the reader

to the book by Santner, Williams, and Notz [47]. The particular model we are using has

been well described by Jones, Schonlau, and Welch [27]. It has been successfully employed

in a variety of computer experiments such as an ocean circulation model [19], a hazard-e↵ect

model for volcano eruption prediction [4], and an arctic sea ice simulation [13]. However,

the typical approach by statisticians is to fit the Gaussian process model and then evaluate

the results of a variance decomposition. Two approaches to this method are discussed by

Schonlau and Welch [49] and Oakley and O’Hagan [40]. Our approach is to provide insight

by viewing and interactively exploring the full response space.

2.2.2 Automatic Parameter Tuning in Image Segmentation

A number of papers have looked into methods of automatically finding optimal parameter

settings for image segmentation algorithms. Kumar and Hebert [30] applied a pseudo-

likelihood technique to estimate the parameters of a conditional random field algorithm.

Szummer, Kohli, and Hoiem [53] applied Graph Cuts to do maximum margin e�cient learn-

ing of the segmentation parameters. Mcintosh and Hamarneh [35] optimized a non-convex

energy function to find the optimal parameters. They later extended their technique using a

constrained convex energy function to avoid sensitivity to the initial parameter settings [36].

In these methods, automatic parameter learning was constrained to a particular form of a

segmentation technique (e.g. conditional random field or deformable model) and could not

handle general algorithms as our method does. In addition, the common goal in these algo-

rithms is to learn the parameters so that the ground truth emerges as the optimal solution.

This is achieved by optimizing yet another energy function. Therefore, these techniques

optimize for one particular quality measure only. In contrast, our tool provides a way to

examine multiple complex responses simultaneously.

General methods for exploring parameter spaces have also been proposed. For example,

Jones, Schonlau, and Welsh [27] propose an “expected gain” measurement which finds areas

of the response surface likely to contain an optimum point. One can sequentially sample
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where this measurement is maximal to find the most likely optimal point. Bartz-Beilstein,

Lasarczyk, and Preuss [3] places the Jones, Schonlau, and Welsh work into a framework

called “Sequential Parameter Optimization.” Hutter et al. [24] extend this method to ac-

count for the running time of the simulation, allowing it to operate e�ciently within a time

budget. None of these methods, however, account for optimizing more than one objective

measurement at once.

Everingham, Muller, and Thomas [17] acknowledges the issue with using a single objec-

tive measurement to measure an algorithm’s performance. They used a genetic algorithm-

based method for automatically finding the Pareto front of a suite of objective measure-

ments. However, they do not evaluate how to incorporate this Pareto front into choosing

optimal parameter settings. They also do not examine the sensitivity of the objective mea-

surements. Incorporating the uncertainty from the Gaussian process model with a method

like this warrants further study for automatically building up the Pareto front.

2.3 Gaussian Process Model

The core idea of our approach is to take the known segmentation results for particular

parameter combinations and evaluate a number of quality metrics for these segmentations.

The values from each quality metric are also known as the response. Knowing the responses

at discrete values, we build an emulating model for each set of responses that allows us

to interpolate from the known values and to estimate the quality metric at all places of

the parameter space, even though we have not yet computed the actual segmentation at

these places. The continuous function is often referred to as the response surface and the

prediction at new parameter combinations is known as inference in statistics.

In our work, we particularly employ aGaussian process model for computing the response

surface. We will only be able to briefly summarize the essential ideas here and refer the

reader for details to the excellent treatment by Jones, Schonlau, and Welch [27] or Santner,

Williams, and Notz [47].

The Gaussian process model is a well-known technique in statistics. It assumes that

the response surface is governed by some unknown random function Y (x). What “random”

means in this case is that we are not making any assumptions about the path of the function

as long as it travels through the sample points. We are assuming that the distribution of

these functions is multi-variate normal with some mean and covariance structure, however.
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The covariance structure dictates the second-order behaviour of the functions. This ap-

proach allows us to estimate confidence intervals on the estimated response function [46].

The Gaussian process model interpolates a response value at an arbitrary point from known

sample points (often called design points). One important assumption is that since we

are running deterministic codes, a given input configuration will always produce the same

output. Therefore, we don’t need to model the measurement error. There is still random

error from a statistical standpoint but it is in the form of estimation error from the known

sample points to the continuous function. However, we don’t know it ahead of time before

we actually compute the segmentation and quality measure at that point. In that sense, the

model of a random function Y (x) encapsulates the uncertainty we have about a particular

predicted response value that we have not yet computed. Hence, this uncertainty will be

zero at the design points themselves.

2.3.1 Building the Model

In its most general form the model assumes that the response value at a particular parameter

combination x is governed by some sort of average response function plus a deviation which

is a weighted average of the response from all known sample points:

Y (x) =
kX

i=1

fi(x)�i + ✏(x). (2.3)

The first term,
Pk

i=1 fi(x)�i, is the regression term and the second term, ✏(x), is the

error term. The various basis functions fi(x) can be any continuous function (often low-

order polynomials) of the input variable x. While the choice of regression functions is often

not further restricted, a common choice is to simply select the constant function only, which

captures the mean behaviour, µ, of the response surface. We then allow the error term to

capture any deviations o↵ the mean. This may seem overly restrictive but it turns out that

allowing the modelling to occur in the covariance structure of the error term, the restriction

of the regression to the mean only does not inhibit the power of the method [47].

Assuming n design points, the error term relies on the fact, that our confidence in our

estimation decreases as we move farther away from the design sites. The error at the design

sites is assumed to be zero representing complete confidence in the output of a computer

model. An alternative way to put this is that the error at an unsampled arbitrary location

xnew is correlated with the design sites by some n-dimensional function c(xnew,X) where X



CHAPTER 2. TUNER 20

is an n⇥ d matrix representing all the design sites at which we have taken samples. Again,

there are a number of choices for this correlation function but a popular and e↵ective one

is the Gaussian correlation function which, for a d dimensional input, is

c(xi, xj) =
dY

k=1

e✓k(x
i
k�xj

k)
2
. (2.4)

Each of the ✓k factors in the above equation are known either as correlation parameters

or hyperparameters. These hyperparameters are modelled through an appropriately chosen

likelihood function (which properly predicts the measured responses):

f(~✓,X) =
1

(2⇡�2)n/2|R|

1/2
e


� (y�1µ)0R�1(y�1µ)

2�2

�

(2.5)

where ~✓ = ✓1, ✓2, . . . , ✓d. R is the n ⇥ n correlation matrix with entries ri,j = c(xi, xj)

(Eq. 2.4), representing the correlation between design sites xi and xj taking into account

the correlation parameters ~✓. The sample mean and variance are denoted by µ and �2

respectively.

The typical way to determine these hyperparameters is by maximizing this likelihood

function (Eq. 2.5). This can be done numerically through an optimization procedure such

as Simulated Annealing or Newton’s Method. In practice this optimization converges very

quickly. In our test cases this process only took a few seconds for 8 factors and up to 250

design sites.

2.3.2 Prediction

Once we have the correlation matrixR computed we can predict the response at an arbitrary

point. It works out that the best linear unbiased predictor of Y (x) is

Ŷ (xnew) = µ̂+ c(xnew,X)R�1(Y � µ̂1), (2.6)

where Y is a vector of length n of the response values for each design site. We can find

closed form solutions for µ̂ and �̂2, the values for the mean and variance of the response

surface given our correlation matrix. These are given by

µ̂ =
10R�1

Y

10R�11
(2.7)
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and

�̂2 =
(Y � µ̂1)0R�1(Y � µ̂1)

n
(2.8)

The Gaussian process model is a statistical extension of traditional interpolation schemes,

which allows the assignment of an uncertainty to the predicted value. There is no restriction

to the type of basis function used, hence, spline models work just as well. It works out that

the squared error in prediction, Z2(x) is

Z2(xnew) = �̂2(1� c(xnew,X)0R�1c(xnew,X)). (2.9)

This measure reveals the confidence of the model in making a prediction at a particular

point [27].

2.3.3 Next Sample Point

The squared error measure by itself is helpful if we’re looking for building up an emulator for

the full response surface. But, if we are simply looking for a optimum and we just sample

in locations where the uncertainty is high we will sample in a number of spots that will

never lead to a optimal value. Since we are interested in design points that optimize our

quality measures, it would be far better to combine our current estimate at a location with

the uncertainty and use that as a guide. We should sample in areas with high estimated

response and high uncertainty.

There have been several attempts at picking the next sample point algorithmically.

These methods all attempt to combine areas of high response and high uncertainty in order

to find the best place at which to take more samples. We use the method outlined in Jones,

Schonlau, and Welch [27] due to its ease of implementation and explanation to the user. It is

very important to make sure the user can understand what the meaning is behind what the

application is displaying (and it can be di�cult to explain the reasoning behind a complex

statistical model).

Instead of just taking the predicted point, Ŷ (xnew), as a known scalar we assume that

the prediction at that point is the mean of a normal distribution with standard deviation

equal to the standard error of the predictor; Z(x) of (Eq. 2.9). With this assumption the

expected improvement at a particular point, I(x), works out to be (note that E and I in
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this formula are not related to (Eq. 2.1) and (Eq. 2.2))

E[I(xnew)] = (fopt � Ŷ )�

 
fopt � Ŷ

Z(xnew)

!
+ Z(xnew)�

 
fopt � Ŷ

Z(xnew)

!
, (2.10)

where �(·) and �(·) are the cumulative normal and normal probability density functions re-

spectively and fopt is the current best response value. The first term, (fopt� Ŷ )�
⇣

fopt�Ŷ
Z(xnew)

⌘
,

finds locations that are estimated to be better than the current optimum. Due to the cor-

relation structure these will tend to be points close to the currently known optimum value.

The second term, Z(xnew)�
⇣

fopt�Ŷ
Z(xnew)

⌘
, finds areas where the level of uncertainty is high

enough that we may have an optimal value despite the estimated value. These two terms

tend to trade o↵ during analysis, so a number of sample points will be selected around the

currently known optimal value and then a number in areas of very high uncertainty.

2.4 Walkthrough

Here we present our system, Tuner. Tuner is designed to guide the user through the full

pipeline of tuning the parameters of a segmentation algorithm. This takes them from

selecting an initial sampling strategy, to finding regions of interest, to further examining

these regions of interest by placing and evaluating additional samples in these regions.

The overall pipeline for the analysis is shown in Fig. 2.1. This is basically a more

concrete version of the conceptual analysis pipeline presented in Fig. 1.1. The overarching

idea is to start with a sparse initial sampling of the parameter space then building a more

accurate model through an iterative procedure of identifying regions of interest and refining

with additional samples. In this manner the user is able to identify regions that meet their

criteria.

Tuner is responsible for generating the points at which to take samples. These are the

sample points shown in Fig. 2.1. These are passed to the segmentation algorithm which

assigns one or more scalar values indicating the “goodness” of segmentation. Once these

design points are passed back to Tuner we build an interpolation model in the form of a

Gaussian process model and use that model to drive the interface.

The only requirement that we impose on the segmentation code (whose inputs are being

sampled) is that it can be run in the background (i.e. non-interactively). We link to the

segmentation code by means of a user-specified shell script. The contract for the shell
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Figure 2.1: An overview of the workflow in Tuner. The user starts (a) by taking an initial
sampling of the space. This generates a set of sample points (b) at which we want to
compute segmentations. These points are passed o↵ to the segmenter (c) and design points
— the segmented images — are generated (d). The segmented images are compared against
a ground truth image (e) in order to generate scalar responses (f). We then estimate the
full response space (g) and display it to the user such that they can explore it (h). At any
time the user can generate additional sample points in order to build up a more accurate
model (i).

script is that it must take a reference to a file containing sample points generated by our

program and write out the classified points into a file specified by Tuner. This keeps Tuner

independent of any particular algorithm or platform.

2.4.1 Initial Sampling

In order to facilitate a systematic initial sampling of the parameter space we provide a

workflow to place these initial samples. When the user creates a new project they are

presented with the initial sampling dialog, shown in Fig. 2.2(b). Getting a dense initial

sampling of the parameter space is critical for gaining a good overall estimation of the

response surface, so ideally we would add as many sample points as possible. On the other

hand, each sample point we add requires a run of the simulation which can take anywhere

from a few minutes to a number of hours. This puts an upper-limit on the number of sample

points we can evaluate in a given time. If we make no assumptions about how to weight
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(a) (b)

Figure 2.2: a) Marking out an 8D hyperbox in order to place additional samples. The sliders
below the box control the extent of the box centred at the current point. Adding samples
brings up the sampling interface b) which uses a SPloM preview of sample point locations.
The user enters the desired number of sample points and the sampling strategy and the
SPloM automatically updates. The “Run” button runs the sample points directly through
Tuner.

the various parameters than a uniform sampling method is often best. Perhaps the most

obvious way to sample the parameter space would be to lay out a large number of samples

per dimension in a Cartesian grid. However, the combination of high dimensionality of

the inputs and the expense of running one sample point make this strategy prohibitively

expensive if we want a dense sampling of the input space. A Cartesian grid with just

6 samples per dimension in an 8-dimensional space will yield a Cartesian grid with 68,

or about 1.6 million, sample points. If each simulation takes 30 seconds then the total

evaluation time would be around 14,000 hours. To get evaluation time down to a day would

require a cluster with over 500 CPUs.

Therefore, we want to minimize the number of runs of the segmentation code while get-

ting a good overall idea of the response manifold. As an alternative we provide the user

two alternative uniform sampling strategies: Latin Hypercube sampling [37] and random

sampling. Both of these strategies place an exact number of samples in the parameter

space. This allows the user to accurately interpret the running time. The Latin Hypercube
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in particular aims to spread sample points evenly across the range of each parameter sep-

arately [47] without the exponential increase in sample points that would occur with the

Cartesian grid.

We show the generated sample points in a scatterplot matrix. This provides the user with

a general idea of how well the number of sample points they have chosen fill the sampling

space. Another advantage of these strategies is that both of these sampling strategies run

in interactive time. When the user changes the number of sample points in the dialog they

immediately see the updates in the SPloM.

Clicking on the run button begins the sampling process. Tuner monitors the state of the

sampling and provides a progress bar to show feedback. Once sampling is complete Tuner

automatically builds the Gaussian process model for each non-input field found.

2.4.2 Project Viewer

View Controls

Histograms

Response View

Pareto Panel

Plot Controls

Figure 2.3: The main interaction window in Tuner. The Response View is a slice-based view
of the response surface. The Pareto Panel shows the tradeo↵s between the two selected
response values. The View Controls and Plot Controls adjust the type of plot shown and
the current parameter settings. The user can also mark out a region for sampling here. The
Histograms show estimated histograms for each of the response variables. We have linked
these views in order to facilitate the evaluation of various trade o↵ points.

Once the Gaussian process models are built the user is presented with the Project Viewer
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window, shown in Fig. 2.3. This is the primary interface for interaction with the response

surface. The main sections of this interface are the Pareto Panel, the Response View, the

Controls, and the Histograms. These views are designed to support the tasks of analyzing

the trade o↵ of up to two response variables, finding optimum parameter settings, and

brushing and refining regions of interest.

A typical workflow with this view begins with the Pareto Panel, shown in the upper

left of Fig. 2.3. The user selects a favourable output combination. They then explore the

area around that known trade o↵ point and mark out a region in which to place samples.

The user then runs these sample points through the external segmentation algorithm. The

Gaussian process model automatically rebuilds and the updated view is presented to the

user.

2.4.2.1 Pareto Panel

Pareto analysis is an established term in statistical data analysis. It refers to the fact,

that when optimizing multiple objectives, not all objectives can be optimized. The so-called

Pareto Front are all points in parameter space where at least one objective cannot be further

improved, given that all other objectives remain fixed.

The Pareto Panel, shown in Fig. 2.3 gives the user an overview of the combination of

known response values. This view shows a scatterplot of the sampled response values for

the selected pair of response dimensions. The optimal trade o↵ between pairs of response

values is not clearly defined. Some tasks may place a heavy weight on one particular re-

sponse dimension, e↵ectively performing a 1D optimization while other tasks may weight all

response dimensions equally. Finding these optimal trade o↵ points by navigating through

the input parameter space is akin to finding a needle in a haystack.

This is an interactive tool in the sense that clicking on a particular dot in the scatter-

plot will set the slices to the parameters backing that dot. Thus the user can start their

exploration at a known trade o↵ point and then explore the surrounding area. We found

that the users were quickly able to reason about which response to prioritize over another

using this view.
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(a) (b) (c)
Figure 2.4: The three types of plots in our system. a) Shows the response value itself. Here
darker regions indicate higher response. b) Shows the uncertainty in estimation. Here darker
regions indicate higher uncertainty. c) Shows the expected gain from additional sampling.
Darker colours here are areas of higher expected gain.

2.4.2.2 Response View

The Response View is the main portal for interaction with the estimated response surfaces.

The plots shown are analogous to a scatterplot matrix. However, instead of scatterplots

for each pair of dimensions we are showing 2D slices as was suggested in HyperSlice [58].

This is a very familiar interface for our users as slice-based views are common in medical

image visualization. There are two methods for interaction with these plots. One is by

clicking and dragging in the plots themselves. This changes the slices accordingly. We also

provide slider controls to change the slice and range filters to change the zoom level under

the “Controls” tab in the “Plot Controls” section shown in Fig. 2.3.

This view allows us to show and visually compare up to two response dimensions at a

time thereby performing the multi-objective analysis task. The first response variable is

shown in the lower left matrix and the second response value is shown in the upper right

matrix. We use di↵erent colour maps for the di↵erent response values in order to visually

distinguish them. Di↵erent response variables are distinguished through di↵erent hues using

quantitative colour maps from Colorbrewer [21].

We provide three di↵erent plot types of the data to the user. An example image of each

is shown in Fig. 2.4. Each of these plot types support a di↵erent task that the users want

to perform. Response shows the estimated response value at any given point. This is a

realization of (Eq. 2.6). This view supports finding regions of high-quality segmentation.

Error shows the standard deviation (Eq. 2.9) reported by the estimation model. Here, areas
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of high error are essentially gaps in our sampling. By placing sample points in these gap

regions the analyst is able to build up a more accurate model across the entire input space.

A model built up in this way is ideal for conducting a global sensitivity analysis. The third

plot shows the expected gain in the maximum from sampling at that location. This expected

gain measurement is a realization of (Eq. 2.10). By placing sample points in areas of high

expected gain the user builds up a more accurate model in areas with a high likelihood of

finding an optimum value. This supports the optimization task.

In practice we found that the error plots were not as useful as the gain plots. One

possible explanation for this is that the error plots indicate areas of global uncertainty. This

error value does not account for the fact that it may be guiding the user towards areas

where the response is known to be low. However, the gain plots are taking into account the

current best known sample point as well as the uncertainty. This is better suited to our

optimization task since we will not spend as much time placing samples in areas where we

do not expect to find any sort of optimal value.

(a) (b) (c)

Figure 2.5: An example of the interactive colorbar filter. In (a) no filter is set so the
colormap is applied to all response values. In (b) a low filter value is set so only areas of
the response surface below this low value are greyed out. The colormap is compressed on
the remaining values. In (c) we are filtering out all but the highest values, which guides the
user towards areas in the parameter space containing only the highest values.

The colour maps are interactive. The user can filter out response values that are of no

interest by compressing the colour map. Fig. 2.5 shows the colormap filter at three di↵erent

settings, none, low, and high levels of filtering for (a), (b), and (c) respectively. This allows
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the user to better distinguish interesting from uninteresting areas. Since we are searching

for optimal values, the filtering of the colormap needs to constrain the range in only one

direction. Filtered values are mapped to a neutral gray colour in order to visually distinguish

them from the unfiltered values.

2.4.2.3 Controls

In the Plot Controls section (Fig. 2.6) we placed the controls that a↵ect the user’s exploration

and refinement of the response surface in a tab panel. The “Info” tab shows the user the

details. This includes the numerical values of all input parameters and output values for the

specified focus point. It can also include an image slice of the corresponding segmentation.

The focus point is also indicated with a crosshair in each plot. The “Local” tab contains a

slider for each dimension. These sliders specify the size of the region of interest which can

be used as a bounding box for placing additional samples or simply as a reference. This tab

also contains a table listing the number of sample points in the current region as well as the

gradient with respect to each input parameter. This gradient is computed as the change

in response value from the current focus point to the edges of the region of interest and

is displayed in the table shown at the bottom of Fig. 2.6(b). The “Controls” tab contains

controls that allow the user to adjust what slice they are viewing, the zoom level, and which

response variables to view. The user is also allowed to save particular points they find

interesting as a type of bookmark by pressing the “H” key at any time. The “History” tab

contains a table of these saved points, one per row. The user can click on a row in that

table and that will take them back to that point.

In the View Controls section (Fig. 2.7) we provide controls that only a↵ect the view in

the Response View. The plot types are changed with radio button controls. In addition, we

provide controls to show and hide the currently selected region of interest and a control to

show a line from the current slice to the nearest sample point. This shows users where the

sample points are in the parameter space. However, neither of our users used this feature

in their analysis.

2.4.2.4 Histograms

The response histograms, shown in Fig. 2.8, are designed to give the user an idea about

the distribution of response values. We show one histogram per response dimension. To
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(a) Info

(b) Local

(c) Controls

(d) History

Figure 2.6: The four sections of the Plot Controls section of Tuner’s interface. “Info,”
(a), displays information about the currently selected focus point. “Local,” (b), displays
statistics about the current region of interest. The sliders control the size of the hyperbox
defining the region of interest (see Sec. 2.4.3). “Controls,” (c), is an alternative interface to
select the current focus point in the form of sliders as well as zoom controls which control
the range of each parameter to display. “History,” (d), displays a list of saved locations the
user found and selected.
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(a) (b) (c)

Figure 2.7: a) Controls to change what view of the response surface we are looking at. The
user may also select whether to show the region of interest glyph (b) or a line drawn from
the current focus point to the closest sample point (c).

generate these histograms we take a dense sampling of the estimated response values from

the Gaussian process model.

We also use an arrow glyph in the x-axis of each histogram to show where the current

slice lies in the range of outputs. This lets the user see at a glance how close the currently

selected point lies in relation to all response dimensions, not only the ones shown in the

Pareto Panel. The histograms can be individually hidden so that unimportant response

dimensions will not clutter the interface.

2.4.3 Regions of Interest

Once the user has identified regions of interest via the response view or one of the two

error views their next task is to place additional sample points in this region in so as to

further refine the shape of these regions. Remember that we only took a few samples spread

throughout the full high-dimensional parameter space. It is very likely that there are some

regions that require a denser sampling.

The “gain” plots are well-suited to this task, an example of which is shown in Fig. 2.9(a).

In this particular plot areas where the expected gain is high are represented in dark green.

An advantage of using this scalar gain value for the plots is that we can utilize the same

navigational interface used for finding high response to find good areas in which to take

additional samples. The expected gain measure is just treated as an additional albeit always

available goal function. The user does not have to learn two workflows and switching between
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Figure 2.8: Histograms showing the distribution of response values. We show one histogram
for each response variable.

sampling and response surface maximization is instantaneous.

In order to mark out a region of interest we provide the user with a set of radius sliders

located under the “Local” tab in the controls section. An example of this is shown in

Fig. 2.2(a). These allow the user to mark out a hyperbox centred at the current slice over

the current region of interest. The user then clicks on the “Add Samples” button on that

control panel which opens up a dialog that presents an interface that is identical to the

initial sampling dialog, Fig. 2.2(b). The interaction here is also identical: the user selects

the number of sample points to place in the region and a sampling strategy and the dialog

provides a preview of the locations of the sample points in a SPloM. When the user clicks

on the run button in this case the project window is closed and the user is presented with

a progress bar indicating the status of the sampling. Once the sampling has finished the

Project Viewer window reopens and the user may examine their refined regions.

2.4.4 Task Solutions

We conclude the walkthrough of Tuner explaining how our solutions correspond to the tasks

laid out in Sec. 2.1.4.

Exploring the full parameter space: We use slice-based navigation in order to

explore the full parameter space. In addition, we allow the user to click on a plot in order to

snap to that location. In order to allow the user to filter out uninteresting regions we provide



CHAPTER 2. TUNER 33

(a) (b)
Figure 2.9: a) An example expected gain plot from our system. Note the area of high
gain around minCorrelation 0.2 and similThreshold 0.175. b) The corresponding response
value for the gain plot. Note that the most gain is achieved around the location of highest
response.

zoom functionality in each dimension. We also allow the user to compress the colormap of

either response value. Specific details about a particular point are displayed as a table to

the user (details-on-demand).

Finding optimal parameter settings: Through the use of the Pareto Panel, identified

in Fig. 2.3, the user is able to understand and select a trade-o↵ point to explore in further

detail. Using the expected gain plots to find areas with high expected gain around this

location, the user takes additional samples in order to find the optimum value.

Assessing the sensitivity of a parameter region: As the user changes a particular

parameter value all plots dependent on it change interactively. At first this may seem to

be confusing for the user since so many elements are changing simultaneously. However,

what the user is able to very quickly grasp is how much each plot is changing as they move

through a particular dimension. The change causes their attention to automatically move

to the plot that is changing the most. In fact, we found that this interactive method was

preferred over looking at static slices and deciphering the e↵ect from those.

Simultaneous exploration of multiple quality measures: We show the two re-

sponse surfaces in linked views thereby showing both quality measures simultaneously. The
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user is able to visualize di↵erent parameter settings and their e↵ects on both quality mea-

sures without having to change views. We also provide a tradeo↵ plot for known sample

points in the form of a scatterplot allowing the user to select a desired Pareto point as a

starting location.

2.5 Implementation

Tuner is written in the Scala1 programming language using APIs provided by the Processing

library2 and OpenGL. For the Gaussian process model and Latin Hypercube generator we

are using packages for the R3 environment, mlegp and lhs respectively. The link between

Scala and R is provided by the JRI Java library. The axes labels were determined using the

algorithm and code described in Talbot, Lin, and Hanrahan [54]. The Tuner application

and source code itself is publicly available at http://www.tomtorsneyweir.com/tuner.

2.6 Case Studies

Our users were PhD students whose research involves the development of novel image seg-

mentation techniques.

2.6.1 Brain Dynamic PET Study

In dynamic PET imaging, a series of 2D images are reconstructed from listmode data

obtained by Gamma coincidence detectors. Kinetic modelling is the process of applying

mathematical models to analyze the temporal tracer activity in order to extract clinically

or experimentally relevant information. An extension of the algorithm by Saad et al. [45] is

being developed by adding more energy terms to make the segmentation more robust. The

goal is to segment 2D+Time PET images into six functional regions: background, skull,

grey matter, white matter, cerebellum, and putamen. We used images from Saad et al. [45].

The proposed probabilistic algorithm is controlled by eight parameters: ↵1 represents

the weight of an image fidelity term, ↵2 represents the weight of a random walker based

spatial regularization term [20], ↵3 represents the weight of a shape prior term, ↵4 represents

1http://www.scala-lang.org
2http://processing.org
3http://cran.r-project.org

http://www.tomtorsneyweir.com/tuner
http://www.scala-lang.org
http://processing.org
http://cran.r-project.org
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(d)(c)(a)

(h)(g)(f)(e)

(b)

Figure 2.10: Brain dynamic PET study images. a) The last time step slice (highest signal-
to-noise ratio) of the synthetic dPET data blurred with a Gaussian kernel (i.e. introduces
partial volume e↵ect) with noise level 5�, b) with noise level 10�, c) the ground truth
segmentation, d-h) represent multiple segmentations with di↵erent parameter configurations
showing the need for carefully fine-tuning the algorithm parameters.

the weight of an intensity prior term, ↵5 represents the weight of a non-negativity constraint

over the segmentation probability field, ↵6 represents the weight of a non-negativity con-

straint over the recovered regional TACs, ↵7 represents the weight of a prior term over the

recovered regional time activity curves (TACs) using a set of templated TACs, � represents

a parameter that impacts how similar two nodes are that are connected through edges which

is common in graph-based approaches [20]. Two main quality measures have been calculated

for the putamen structure, the dark brown object in Fig. 2.10(c): the Dice metric [16] that

measures the quality of the recovered shape and the glucose metabolic rate recovery error

that measures the error in recovering the physiological parameter under investigation.

Fig. 2.10(a) and Fig. 2.10(b) show the last dPET time step with noise levels 5� and

10� respectively. Here, � is used to scale the unit variance of the random noise generator

to the scale of the synthetic TAC intensity at each time step [45]. We show the last time

step as it has the highest signal-to-noise ratio (SNR), as is typical in dPET (the preceding

time frames are even noisier). Fig. 2.10(c) shows the ground truth image that we hope

to obtain. Fig. 2.10(d)-Fig. 2.10(h) show multiple segmentations with di↵erent parameter

configurations demonstrating the need for fine-tuning the algorithm parameters to obtain

suitable results.

Fig. 2.11 shows the exploration stages for the dPET parameter space using Tuner. We
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(a) (b) (c)

(d) (e) (f)

Figure 2.11: Parameter exploration of the dPET parameter space. a) Dice metric versus the
glucose metabolic recovery error Pareto Panel that corresponds to 50 samples. b) slice plot
matrix that corresponds to the initial parameter configuration of point b. The bottom-right
corner shows the corresponding segmented image. c) Note that the response value is not
very sensitive to �, ↵4, and ↵5 parameters but ↵6 must be set above 0.6 in order to get a
good segmentation. d) shows the slice plot matrix of higher noise level 10� e) expected gain
plot suggesting more needed samples especially in the regions of ↵4 and ↵5. f) 250 samples
slice plot matrix.

first ran an experiment with 50 di↵erent parameter configurations sampled using a Latin

Hypercube method. The first goal is to obtain a parameter configuration with low glucose

metabolic recovery error and high Dice metric for the putamen structure. In order to choose

a starting point for our exploration, we examine the Pareto Panel showing the Dice metric

versus the glucose metabolic recovery error Fig. 2.11(a). Examining the preview image at

point a, shown in Fig. 2.11(a), represents a low error value with moderate Dice value but

the corresponding image shows a salt-and-pepper like noise in the segmented image. Point

b represents moderate error with high Dice value and a better segmented image. Hence,

we choose the parameter configuration corresponding to point b as a starting configuration.

Fig. 2.11(b) shows the slice plot matrix corresponding to the initial parameter configuration

of point b. It shows the possibility of obtaining lower recovery error in the ↵7 vs. ↵3 plot and

better Dice in the ↵2 vs. ↵1 plot. The bottom-right corner shows the respective segmented
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image. Fig. 2.11(c) shows the selection of the optimal ↵1, ↵2, ↵3, and ↵7. It also shows that

↵6 � 0.7 is a stable region in terms of the Dice coe�cient. For ↵4, ↵5, and �, the Dice plot

shows larger stable regions.

To examine the performance with higher noise levels, Fig. 2.11(d) examines the slice plot

with additive noise of variance 10�. It shows that there is shrinkage in the stable region in

the Dice plot for � suggesting a good range to be 0.6  �  0.8 but still not a definitive

answer yet for ↵4 and ↵5. Fig. 2.11(e) shows the expected gain plot, which suggests adding

more samples for this higher noise level especially in the ↵4 and ↵5 ranges. Fig. 2.11(f)

shows a 250 sample experiment for the 10� noise level. It shows that lower values of ↵4

give higher Dice values. However, it still shows wide stable region for ↵5 suggesting that

neither the Dice value nor the error metric are sensitive to the change of ↵5. This has to

be related to the fact that other spatial regularization parameters prevent the segmentation

probability matrix to contain negative values which ↵5 controls directly. The final parameter

configuration yields a Dice value of 0.806 and error value of 0.064.

We have applied the same values to 11 datasets accounting for inter-subject anatomical

variability. We find a mean Dice value of 0.754 with standard deviation of 0.084 and a

mean error value of 0.0641 with standard deviation of 0.000078. This shows that the pa-

rameter settings picked from wider stable regions in the parameter space lead to reasonable

segmentations for images from the same population [35].

2.6.2 Microtubule Extraction from Electron Microscopy Tomograms

We used Tuner to determine the best parameter settings for a biological segmentation al-

gorithm designed to extract microtubule centerlines from Electron Microscopy Tomograms.

The aim of this segmentation is to give reasonable measures for the density of microtubules

in the specimen. Microtubules constitute a part of the cell cytoskeleton and are subject

to extensive study in biological research due to their important role in sca↵olding and cell

division.

The segmentation algorithm proceeds by first enhancing the centerlines of the micro-

tubules in the tomograms by computing normalized cross-correlation with an idealized cylin-

der [33, 61]. In the second step the geometry of the centerlines is reconstructed using a

simple iterative greedy traversal in the enhanced volume. The tracing algorithm has three

parameters: a threshold, minCorrelation, determining where to search for microtubules

in the volume (MC), a model parameter, orientation, penalizing strong curvature of the
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traced lines (OW ), and a second threshold, similThreshold, that determines when to stop

the tracing of one line (ST ). The outputs of this algorithm are polygonal lines representing

microtubules in the volume.

Finding a good parameter set by visual inspection is nearly impossible since the micro-

tubule network can be very dense, containing between 500 and 2000 lines. Many datasets

(30 � 100) have to be processed as well. Thus we aim to find common parameter settings

yielding good results on few test data sets and apply the found parameters to the remaining

data. The assumption is that a parameter set exists that yields reasonable results for all

data. Hence, we need to assure that the selected test data sets represent quite well the

variety of the complete set. Likewise, if no stable parameter range for this test set can be

found, we can conclude that it is impossible to use the automatic segmentation algorithm

with one parameter setting for all datasets.

To find suitable parameters, we created sets of microtubule centerlines manually (the

ground truth) for the test data and compare the automatically computed centerlines to

these. The measurement we use is similar to the one utilized by Cole et al. [15] and results

in numerical measures Precision and Recall which measure the estimated error rate in the

algorithmic segmentation. Note that using Precision and Recall as measures requires that

the ground truth segmentation is complete, since missing lines would result in a low Precision

even for a perfect automatic segmentation. Previous work [64], albeit from a di↵erent

domain, leads us to believe that setting the Precision in our case to above 0.9 and Recall to

above 0.8 will yield trustworthy results.

Tuning parameters according to these constraints is time consuming, since ST , OW ,

and MC depend on each other. Before Tuner, we investigated the e↵ects of the various

parameter settings by fixing two of the three parameters and then varying the third. We

then plotted Recall over Precision [15]. In the resulting plot the best parameter choice can

be found where the curve is closest to one for both Precision and Recall. A stable range of

parameters can be found when plotting Precision/Recall over the parameter, but only with

the other parameters fixed. Because of the interdependence of the parameters, this tuning

is an iterative process. Tuning by hand can take days to weeks. Adding another model

parameter to the tracing increases the complexity even further, since checking the e↵ect of

the new parameter would require to compare its e↵ect against all three other parameters.

Using Tuner, we estimated our parameters independently on three di↵erent data sets

with varying acquisition quality (referred to as DTHQ, DTMQ and STLQ). For each data
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set we started with 50 samples on a Latin Hypercube within our three-dimensional parameter

space. The number of samples was constrained by the fact that each segmentation took on

average ten minutes. Hence, 50 samples took almost 9 hours to compute.

Using the Pareto Panel we first navigated to a sample point near or in the quality

constraint. We filtered out all values for Precision and Recall below the constraint using

the interactive colormap and drew a box marking ranges of parameters that lay within

the unfiltered area, thus fulfilling the constraint. In order to mark out the full region, we

iteratively moved the centre point of the found box to points nearby to search for areas

where a larger box could be drawn and resized the box. We refined with 20 new sample

points. This procedure was repeated for the two other test data.

(a) (b) (c)
Figure 2.12: Final parameter ranges for the three test datasets. Gray boxes enclose the areas
chosen as final ranges for minCorrelation (MC), similThrehold (ST ) and orientation (OW )
fulfilling both Recall and Precision constraint for a) DTHQ, b) DTMQ and c) STLQ.

Table 2.1: Resulting parameter ranges for the microtubule segmentation algorithm satisfying
the quality constraint.

min MC max MC min ST max ST min OW max OW
DTHQ 0.256 0.37 0.168 0.28 0 1
DTMQ 0.26 0.348 0.197 0.247 0.307 0.702
STLQ 0.278 0.36 0.179 0.235 0.142 0.93

min/max 0.278 0.348 0.197 0.235 0.307 0.702

For each of the three data sets we again searched for valid ranges in the same manner

using the refined samples, but this time precisely fulfilling the constraint. Fig. 2.12 shows

the resulting choices for each of the data sets. Grey boxes mark the finally chosen ranges.

Table 2.1 lists the final ranges for each parameter and data set. A parameter set that fulfills
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the constraint for all the datasets must lie inside the intersection of these ranges. The

intersection is given in the last line of Table 2.1.

The resulting parameter choices correspond to what we measured by using the above

described Precision/Recall plots. However, it was an order of magnitude faster. Moving the

slider of one parameter can be considered the same operation as creating a Precision/Recall

plot as mentioned above. With Tuner, instead of having to recompute additional values, a

simple move of the slider is su�cient. This reduced the work of days to a couple of hours.



Chapter 3

Rendering complexity

In this chapter we analyze the rendering complexity of Tuner’s HyperSlice [58] view.

3.1 Motivation

Many scientific studies investigate the relationship between several explanatory variables

(input) and a system response variable (output), thereby leading to multi-dimensional data

sets. Such data can result from explorations of the parameter space of an image segmentation

algorithm where the inputs control aspects of the segmentation like regularization parameter.

In this case, the output is actually a segmented image but these segmented images can

be scored against a ground truth image to produce numerical output. Another possible

source are computer simulations, possibly comparing runs under di↵erent model parameter

configurations. The common model representation of all these data sets is a continuous

input domain and ranges, or outputs, which have been sampled.

A key step towards learning about mechanisms that are present in a computational model

or laws that govern natural phenomena is to study how changes in the input variables a↵ect

the output variable. There are numerical methods for investigating this. Local derivative

computation and sensitivity indices are two such approaches towards this goal. However,

these derived computations have to be set up carefully to yield meaningful results. Multi-

dimensional visualization techniques provide a more versatile approach and enable direct

human inspection of relationships among variables or data dimensions.

Two common interaction methods for this direct inspection are filtering points using

a range query [52], as in a filtered scatterplot, and changing the location of the view or

41
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focus point, as in the HyperSlice [58] method. Both these methods involve interactively

changing the filters or focus points to comprehend the data. For the visualization to be

e↵ective it is important to maintain interactive frame rates so that we do not cause a

cognitive disconnect [51]. Arguments about what exact response time makes a visualization

interactive vary. However, somewhere between a minimum of 10fps to 60fps are typically

deemed acceptable.

In order to prevent this disconnect it would be ideal to know if the number of points

in the dataset or the dimensionality of data will overwhelm the graphics capabilities of the

user’s machine and produce choppy results. Hence, the main aim is predicting the rendering

time of a multi-dimensional visualization system. This will guide the user in understanding

the complexity and the need to choose the number of sample (data) points carefully, either

by o↵ering to sub-sample the dataset, or by guiding the range query.

In order to be able to predict the rendering time we must come up with a predictive func-

tion for the rendering time based on the size of the multi-dimensional dataset. This function

must be adapted to each user’s hardware platform so we require a universal methodology

that can be run on each user’s environment to make accurate predictions.

(a) (b)

Figure 3.1: The two available rendering methods available in Tuner. (a) shows the Hyper-
Slice method, while (b) shows the filtered scatterplot.

We select two rendering methods used in Tuner: a filtered scatterplot, representing in-

teractive filtering, and the HyperSlice method with Gaussian kernel regression, representing

interactive viewpoint selection. These are shown in Fig. 3.1. We then describe a methodol-

ogy to derive and fit a function of the dimensionality, d, the number of data points, N , and
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the local search distance, r, to predict the total rendering time for each of the two methods.

The contributions of this analysis are:

• We present a data-driven methodology to predict rendering time for two multi-dimensional

scalar field visualization techniques;

• We evaluate this formula against unseen data and a separate architecture to validate

its correctness;

• We give a theoretical analysis of the rendering complexity;

• We study this prediction formula to demonstrate implications for the practitioner.

3.2 Rendering algorithm

We consider two visualization methods that produce localized views of multi-dimensional

data. HyperSlice is a representative of a continuous reconstruction of the data for rendering,

whereas a filtered SPloM shows the data as points. The data is given as a finite set X of

N = |X| points inside the d-dimensional unit cube C = [0, 1]d.

Both algorithms are based on a table or matrix arrangement of
�
d
2

�
axis aligned slice

views through the data cube C. The bi-variate views in each row/column map the same

data dimension (or variable) to their vertical/horizontal axis, respectively. Whether the

visualization is based on discrete views — as in the filtered SPloM provided by the Prosection

Matrix [57] (filtered scatterplot in the following) or continuous methods (HyperSlice [58])

— only the data points that impact this local view actually need to be rendered to the

screen. This amounts to a filtering or selection of visible points around the axis aligned

slices intersecting at the focus position ~v 2 C. The viewing region V (~v) around all slices

can be used as a visibility test for each data point, yielding a subset ofN 0 = |X\V (~v)| visible

points. The shape of V di↵ers depending on the method and will receive more discussion

in Sec. 3.3.3. This filter-view abstraction leads to a simple algorithm for both rendering

methods:

Implementation:

In order to be able to process millions of points in real-time, we will have to map this

simple algorithm onto the GPU. However, there are several design decisions to consider.
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Algorithm 1 High-level rendering algorithm

Input: viewpoint ~v
Output:

�
d
2

�
slices or slabs

1: Determine all visible points X 0 = V (~v) \X
2: Render each of the

�
d
2

�
bi-variate views

For our basic algorithm (Algorithm 1) we need to recompute the set of all visible points

V \X each time we change the viewpoint ~v. This can either be done on the GPU or on the

CPU. In order to leverage the extreme degree of parallelism o↵ered by the GPU we use its

programmable vertex shader to perform the filtering.

If we render a filtered scatterplot, we simply have to ignore all coordinates of the d-

dimensional points, that are not part of the relevant 2D subplot and compute the appropriate

screen transform for these points. In the case of a HyperSlice subplot, we will need to

compute the distance of the d-dimensional point to the current 2D slice. If this distance

is smaller than the size of the radial reconstruction kernel, we would need to render a

2D slice through this reconstruction kernel. Borrowing an idea from GPU-based splatting

algorithms [39], we store a template exponential distribution in the GPU texture, that is

then projected onto a quad. However, since these splat-like slices have di↵erent distances

from each subplot they a↵ect the subplot by di↵erent amounts depending on the distance.

Therefore, we need to scale the intensity value of the texture by its distance to the slice.

This leads to the more detailed algorithm:

In our vertex shader implementation we filter the points as well as compute the sliced

splat size. Each d-dimensional point is stored in a texture, where the N rows are all the

points and the d columns are the coordinates. For each of the
�
d
2

�
subplots we issue a draw

command, that draws all N 0 visible points.

One of the main bottlenecks in the rendering pipeline is transferring vertex data from

CPU memory to GPU memory. This is due to the vastly slower speed of the bus compared

to the GPU. We simply do not want the GPU waiting for pixel data. The best way to

address this, as specified by Xue and Crawfis [62], is to store vertex data in display lists on

the GPU. Then, before calling a draw command, we transfer all data needed to render the

group of slices to the GPU. Hence, we store all N d-dimensional data points on the GPU.

Memory of current GPUs is now large enough that we can easily store millions of points

in 10 dimensions directly on the card. Storage does not tend to be the bottleneck of our
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Algorithm 2 The full algorithm

Input: viewpoint ~v, maximum distance r
Output:

�
d
2

�
slices or slabs

1: for all
�
d
2

�
subplots Si do # filtering

2: for all points p 2 N in the texture bu↵er do
3: extract the 2D point location p2D within Si

4: for all remaining d� 2 dimensions pd�2 do
5: dist dist(pd�2, Si)
6: if dist < r then # rendering
7: transform p2D into screen coordinates p̂2D
8: compute the splat width w =

p
r2 � dist2

9: send 2D points (p̂2D(x)± w, p̂2D(y)± w) to the fragment shader
10: else
11: send a degenerate triangle to the fragment shader
12: end if
13: end for
14: end for
15: end for

multi-dimensional data analysis.

In the case we draw a filtered scatterplot, the distance measure used in step 5 of Algo-

rithm 2 above simply computes the maximum distance over all the dimensions. Further, in

this case, we do not have to perform any texture mapping (steps 8 and 9), since we draw a

single point.

In the case we draw the HyperSlice matrix, for each point, we create a vertex bu↵er

list, that consists of two integers – one for the point index into the texture, and one integer

specifying the corner of the quad to be drawn. Hence, for each quad we issue four points,

each with the same point identifier. While we have tried to only issue one integer for one

quad and to create the four vertices needed for a quad in the geometry shader, we saw its

performance decrease.

3.3 Complexity analysis

We now turn to a formulation for the expected total running time to draw N points in d

dimensions within a slice distance of r. Our complexity analysis is based on the fact that

both our rendering algorithms can be decomposed into a pipeline with filtering and drawing

steps. We also assume that our points are uniformly distributed in our data space as this is
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how Tuner samples the parameter space. While our regression technique is primarily data-

driven having a strong theoretical base for the rendering behaviour allows our model to be

more general as well as letting us assign interpretable meaning to the various regression

parameters. The rendering algorithm we propose consists of two separate stages. The first

stage is a filtering step where we determine which points in space will a↵ect which plots.

The second stage draws the points either as point primitives or as quads. Because resources

on the GPU are shared between these filtering and drawing stages, the total rendering time,

ttotal, is the greater of the time for the two stages

ttotal = max (tfilter, trender) (3.1)

3.3.1 Filtering

In the filtering step (steps 5 and 6 of Algorithm 2) we must take each data point and

compute its distance to each plot in order to determine if it is worth the e↵ort to actually

draw the quad. For each sample point and for each slice, we compute the distance from the

sample point to the slice. If the distance is less than r we must draw it.

Since we have subplots for each pair of dimensions there are
�
d
2

�
subplots in total. There-

fore, given our architecture-dependent time to filter a single point against a single plot, tf ,

the total filtering time, tfilter, is

tfilter = tf

✓
d

2

◆
N (3.2)

3.3.2 Rendering

During the rendering step, we only need to process a fraction of the pointsN , that are visible.

We call this fraction N 0. In the case of HyperSlice the rendering time is significant. Besides

having to determine the size of the quad to be rendered in lines 8 and 9 of Algorithm 2, the

actual rendering time depends on the number of pixels covered by the quad [29]. We show

an example of the HyperSlice technique being employed by Tuner [55] for an 8-dimensional

example in Fig. 3.2. The varying quad sizes display as darker areas in the figure. Because

of this, our formulation for the rendering time in the HyperSlice method must include the

quad size for each point rendered, qi, and the time to render each pixel in a quad, tH,

trender = tH

N 0X

i=1

qi. (3.3)
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Figure 3.2: Screenshot of Tuner [55] demonstrating the HyperSlice [58] method for render-
ing an 8-dimensional parameter space using Gaussian kernel reconstruction on an image
segmentation dataset. formulation driving the rendering cost for a single slice.

In the case of a filtered scatterplot, we are essentially doing point rendering, and steps 8

and 9 of Algorithm 2 do not need to be executed. Hence, we spend a constant amount of

time per point drawn, tP, and our rendering time in this case would amount to

trender = tPN
0. (3.4)

Putting (Eq. 3.1) together with (Eq. 3.2), (Eq. 3.3), and (Eq. 3.4) gives us the total

rendering time or

tPtotal = max

✓
tf

✓
d

2

◆
N, tPN

0
◆

(3.5)

tHtotal = max

 
tf

✓
d

2

◆
N, tH

N 0X

i=1

qi

!
(3.6)

where tPtotal denotes the complexity of rendering for the filtered scatterplot and tHtotal denotes

the complexity of rendering for HyperSlice.

3.3.3 Expected total time

(Eq. 3.5) and (Eq. 3.6) give us the total running time for a particular configuration of N

points in d dimensions and for a particular viewpoint ~v. However, we are interested in how
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well the rendering algorithm performs under many di↵erent configurations. Hence, a much

more useful measurement is the average time to draw the HyperSlice or filtered scatterplot

view over all possible point configurations and all possible slice positions. In order to

compute this, the expected rendering time E[tmtotal], where m 2 {H,P}, is an integral over

all point configurations and viewpoints ~v in the unit cube [0, 1]d:

E[tmtotal] = max

✓
tf

✓
d

2

◆
N, tmEm[N 0]Em[Q]

◆
(3.7)

where tm is the time to draw a single fragment using either the HyperSlice method or the

scatterplot, Em[N 0] is the expected number of points within a distance of r from all 2D

slices of the subplot matrix and Em[Q] is the expected size of a quad drawn. Em[N 0] can

be further decomposed into
�
d
2

�
NEm(r, d), where Em(r, d) is the expected percentage of

points within distance r from a single 2D slice in d dimensions. For a uniform distribution

of points, this essentially amounts to the volume of a slab of thickness r. The value of

Em[Q] depends on the rendering method used. For the filtered scatterplot method this is a

constant as each point drawn results in a dot of constant size. For the HyperSlice technique

this quantity depends on the size of the spherical reconstruction kernel which depends on

r and d. We denote this quantity EQ(r, d). It should be pointed out that di↵erent ways

to measure distance amount to di↵erent types of viewing slabs that are of di↵erent shape

and can greatly vary in volume. A discussion of this e↵ect for di↵erently normed spheres

is provided in Bergner [7, § 2.1], where the two examples that apply to our setting are

p = 2 and p = 1 for the spherical and box kernels respectively. The derivation of the

expected count Em(r, d), performed in Appendix A, considers the volume of the filtering

sphere around all points clamped against the bounds of the data set. For the HyperSlice

technique we also need to take into account the expected size of the quad in which we are

texturing as well.

In summary, these are
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EP(r, d) =
�
2r � r2

�d�2
(3.8)

EH(r, d) =
n�1X

i=1

(�1)i
✓
n

i

◆"
2i+1⇡

(n�i)/2
rn+i

�((n� i)/2)

iY

k=0

1

n+ i� 2k

#

+ (�1)n
r2n

n!
+

⇡
n
2 rn

�(n2 + 1)
(3.9)

EQ(r, d) =
1

EH(r, d)

 
n�1X

i=1

(�1)i
✓
n

i

◆
4⇡(n�i)/2rn+i+2

�
�
n+i
2 + 2

�

�

n�1X

i=1

(�1)i
✓
n

i

◆
3⇡(n�i+1)/2rn+i+3

�((n+ i+ 5)/2)

+
n�1X

i=1

(�1)i
✓
n

i

◆
2⇡(n�i)/2rn+i+4

�
�
n+i
2 + 3

�

+
2(�1)nr2n+2

(n+ 1)!

�

3(�1)nr2n+3p⇡

2�((2n+ 5)/2)

+
(�1)nr2n+4

(n+ 2)!

+
4⇡n/2rn+2

�(n/2 + 2)

�

3⇡(n+1)/2rn+3

�((n+ 5)/2)

+
2⇡n/2rn+4

�(n/2 + 3)

!
(3.10)

where,

n = d� 2

Here EP(r, d) is the expected count for the filtered scatterplot method, EH(r, d) is the

expected count for the HyperSlice method, and EQ(r, d) is the expected quad size given that

we need to draw a point for the HyperSlice method. For the filtered scatterplot method

EQ(r, d) = 1.
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3.4 Calibration

The values tf , tP, and tH in (Eq. 3.5) and (Eq. 3.6) are dependent on a particular hardware.

Hence, we engage in an empirical stage to determine these values for a particular rendering

environment.

The architectural design of a GPU is somewhat opaque. Therefore, it is impossible to

argue from first-principles how to set tf , tP, and tH for a particular GPU. We calibrate these

parameters by doing a regression analysis on empirical results obtained from examining

the time to render a frame for various values of d, N , and r. While the values we derive

are specific to two di↵erent architectures in our lab the method we present is applicable

elsewhere. We should be able to fit these parameters by properly sampling E and running

a regression on the empirical results.

In order to calibrate (Eq. 3.1) we note that the first argument of the max function

represents the number of points we need to filter which is constant with respect to the

kernel size, r, while the second argument, the drawing time, monotonically increases with

respect to r. The filtering time dominates for small values of r while the drawing time

dominates for larger values of r. Therefore, there will be a point in terms of number of

fragments drawn, that we designate a, at which point the dominant term will change from

the first to the second. In order to fit this behaviour we used a piece-wise regression model

which changes behaviour according to the value of a {0, 1} indicator function Ia(Q) where

Q is the total number of fragments drawn. This function returns 0 if Q < a and 1 if Q > a.

Therefore, we can form the regression formula as:

trender = Ia(Q)

✓
N

✓
d

2

◆
tf

◆
+ (1� Ia(Q))tmQ (3.11)

This formula contains three parameters: tf (the time to filter one sample point), tm (the

time to draw one fragment), and a (the crossover point). However, since trender must be

continuous we can define a as intersection point of the two segments:

atm = N

✓
d

2

◆
tf

a =
N
�
d
2

�
tf

tm
(3.12)
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This serves to reduce the number of parameters we need to fit to tf and tm.

We fit the remaining two parameters using a genetic algorithm optimizing on the mean

squared error of prediction against empirical timing results. The issue with using a more

common gradient descent method is that the gradient depends on how we set the cuto↵

point, a.

3.4.1 Sampling E

For each dimension, we would like to ensure, that we have a good spread of values of E.

Hence, we must choose di↵erent values of r for each d.

Given a desired range of percentages for E(r, d), we can numerically invert this formula,

given d and hence, obtain a range of radii r. In order to obtain a sensible range of values for

E(r, d) we could choose a particular dimension as a baseline and vary radii in that dimension

to come up with a reasonable range of E(r, d).

The last remaining issue is that for each setting of d, N , and r we must generate enough

iterations such that the average number of points a↵ecting the slices, N 0, converges to the

theoretical expected value, E[N 0]. We also need to be careful to vary both the distribution

of points in the parameter space as well as the viewpoint many times. In our case we found

that about 100 frames, where each frame is a change of viewpoint, and 3 sample point

distributions for a total of 300 timing measures were necessary for good convergence.

3.5 Results

All tests were performed on two di↵erent machine configurations. Our Config A is a CentOS

6 Linux machine using an NVIDIA 8800 GTX GPU with 4GB of RAM and a dual Intel

Xeon 3.2 GHz CPU. Config B is a 2012 Apple MacBook Pro “Retina” display with 8GB of

RAM, a 2.3 GHz Intel Core i7 CPU, and using an NVIDIA GeForce GT 650M GPU. All

code was run using the native OpenGL 3.2 driver and GLSL v1.5 for the shading language.

In our experiments, we constrain our analysis to low-dimensional spaces, i.e. dimensions

d between 3 and 8. We determine a reasonable range of percentage values for E(r, d) by

computing E(r, 3) in three-dimensional space by changing the spherical radii of influence

between 0.05 to 0.5. Further, given a particular d, N , and r, we distribute N points

uniformly 3 times and pick 100 di↵erent viewpoints v for each point distribution at random.
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All timing information is recorded using the internal GPU timer (GL TIMESTAMP

objects) provided by the OpenGL 3.2 spec. The advantage of using this timer over the

CPU timer are twofold. This timer has nanosecond resolution so we can see much more fine

grained e↵ects on rendering time. This timer also tells us exactly how long the command

stream takes to process on the GPU. It avoids any time needed to synchronize the CPU

and GPU as well as the e↵ects of any outside processes running on the machine.

3.5.1 Filtered scatterplot

The filtered scatterplot algorithm is characterized as a two-stage process. The filtering step

where we decide which data points to draw on which sub-window in the scatterplot matrix

and the drawing step where we draw a point on the screen. In order to get the best estimate

of both the filtering and drawing time we estimate the filtering time separately.

We began by examining the rendering time as a function of the number of fragments

drawn. Since each point in the filtered scatterplot creates a constant number of fragments

there is, we would expect, a direct relationship between the number of points drawn and

the rendering time. These times are shown in Fig. 3.3. Unfortunately, the MacOSX timer

doesn’t seem to be as consistent as the Linux timer so there is much more variance in

the times. We visually examined Fig. 3.3 which shows that the drawing time has a clear

linear dependence with respect to the number of fragments drawn. The parameters for each

dimension, d, are recorded in Table 3.1.

3.5.1.1 Final model

If we then apply these estimates of filter and draw time to (Eq. 3.5) and expand out as in

(Eq. 3.11), the full form of our prediction model, conditional on the dimension, d, is

tPtotal(d,N, r) = max

✓
tf (d)

✓
d

2

◆
N, tP(d)N

0
◆

(3.13)

= Ia(d)(Q)

✓
tf (d)

✓
d

2

◆
N

◆
+
�
1� Ia(d)(Q)

� �
tP(d)N

0� (3.14)

where tf (d), tP(d), and Ia(d) are the parameters we fit, shown in Table 3.1.
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(a) Config A (b) Config B

Figure 3.3: The measured time, in seconds, to render the data points in the filtered scat-
terplot method. The “spray” in (b) is due to the MacOSX timer not giving as consistent
results as the Linux timer.

3.5.2 HyperSlice

Like the filtered scatterplot matrix algorithm, the HyperSlice [58] algorithm is also charac-

terized as a two-stage process with filtering and drawing steps. The filtering step determines

which data points to draw on which sub-window in the HyperSlice matrix. Unlike the fil-

tered scatterplot, the drawing step draws a two-dimensional slice of the multidimensional

spherical kernel around each data point. Here, the time to render a single data point is

much more complex as they are not simply points of a constant size. The size of the data

point on the slice reflects its distance from the currently selected focus point. On the GPU,

each pixel drawn incurs a cost as we must compute the influence of the Gaussian kernel.

Therefore, we must take into account the number of pixels being drawn on screen as well as

the number of data points.

We again plot the rendering time as a function of number of fragments drawn in Fig. 3.4

for di↵erent values of N , d, and r. What is readily apparent, particularly at higher values

of d, is that if the number of pixels being drawn is low enough then the total rendering time

is always the same. At a certain point the rendering time switches to a linear function of
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Table 3.1: Calibration parameters for the filtered scatterplot rendering method. tf is the
time to filter one data point on one plot, tP is the time to draw a point in the scatterplot on
screen, and a is the number of fragments below which the filtering time dominates rendering
and above which the rendering time dominates. In the table we show a/N rather than just
a as a varies for each value of N (see (Eq. 3.12)). Since a is dependent on d, N , tf , and tP
we show a/N rather than a as tf and tP are represented in nanoseconds.

d tf tP a/N

C
on

fi
g
A

3 6.02 207888.7 2.90e-5
4 4.24 212139.7 2.00e-5
5 2.36 217296.9 1.09e-5
6 2.51 219502.9 1.14e-5
7 2.23 221441.1 1.01e-5
8 1.78 235488.5 7.57e-6

C
on

fi
g
B

3 9.94 174246.0 5.71e-5
4 7.31 116814.3 6.26e-5
5 6.81 101208.4 6.73e-5
6 7.29 91795.4 7.95e-5
7 9.58 99564.7 9.63e-5
8 9.79 105331.0 9.30e-5

the number of fragments. The flat section represents the filtering time. This is constant

because we must always process the N points whether or not they are drawn. At this point

the filtering time is so dominant that we do not see any timing e↵ects from drawing. The

switch in behaviour occurs when the number of pixels being drawn exceeds the rendering

time.

As in the filtered scatterplot method, we fit each dimension separately. In particular,

the value of tf is a↵ected by our distance computation which is implemented using SIMD

instructions. On the GPU the largest SIMD size is 4-wide so when we move past 4 dimensions

we must use additional SIMD registers in the computation. This a↵ects the value of tf ,

particularly as d gets high. The results of our fitting is shown in Table 3.2.

3.5.2.1 Final model

If we then apply these estimates of filter and draw time to (Eq. 3.6) and expand out as in

(Eq. 3.11), the full form of our prediction model, conditional on the dimension, d, is



CHAPTER 3. RENDERING COMPLEXITY 55

(a) Config A (b) Config B

Figure 3.4: Scatterplots of the time to render using the HyperSlice method. The colours
represent di↵erent values for the number of sample points. The hockey stick shape is due
to whether the filtering time or drawing time is dominant. Again, the “spray” in (b) is due
to the MacOSX timer not giving as consistent results as the Linux timer.

tHtotal(d,N, r) = max

✓
tf (d)

✓
d

2

◆
N, tH(d)E[N 0]E[Q]

◆

= max

✓
tf (d)

✓
d

2

◆
N, tH(d)EH(d, r)EQ(d, r)

◆

tHtotal(d,N, r) = Ia(d)(Q)

✓
tf (d)

✓
d

2

◆
N

◆

+ (1� Ia(d)(Q)) (tH(d)EH(d, r)EQ(d, r)) (3.15)

where tf (d), tH(d), and Ia(d) are the parameters we fit, shown in Table 3.2.

3.6 Accuracy

To test our fitted formula, we compared our predicted running time against new timing

data. We tested the e↵ect on rendering time for dimensions ranging from 3 to 8 and points

of powers of 2 from 210 to 220. In order to allow comparison across dimensions we selected
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Table 3.2: Calibration parameters for the spherical kernel rendering method. tf is the time
to filter one data point on one plot, tH is the time to draw a sliced point on screen, and a
is the number of fragments below which the filtering time dominates rendering and above
which the rendering time dominates. In the table we show a/N rather than just a as a
varies for each value of N (see (Eq. 3.12)). tf and tH are represented in nanoseconds.

d tf tH a/N

C
on

fi
g
A

3 9.99 183482.5 5.44e-5
4 7.62 186951.7 4.08e-5
5 7.77 194896.2 3.98e-5
6 7.76 196103.6 3.96e-5
7 7.74 204933.5 3.78e-5
8 7.75 220038.7 3.52e-5

C
on

fi
g
B

3 9.99 77340.2 0.00013
4 9.94 76569.5 0.00013
5 9.98 79230.0 0.00013
6 9.95 81443.2 0.00012
7 9.99 84184.4 0.00012
8 9.86 86870.3 0.00011

r separately for each dimension such that the volume of the d-sphere is constant across

dimensions. We used a range of volumes from 0.1 to 1.0 using an increment of 0.1. For each

combination of dimension, number of points, and distance threshold we placed the points

in the parameter space randomly and uniformly.

We ran each combination three times changing the distribution of points each time. For

each distribution of points we allowed the focus point to change by a random direction and

amount. The time to render that we report includes the time to first filter which points are

required and then to draw the scatterplot points. It is an average value over the number of

runs.

3.6.1 Filtered scatterplot

In order to properly evaluate the quality of our fit we examined the residual values between

our estimated drawing time and empirical results. We show the absolute as well as relative

error in Fig. 3.5 and Fig. 3.6 respectively. We see that overall the prediction is quite good.

Furthermore, we are estimating the running time for new data so our estimation is accurate

in a purely predictive scenario.
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Figure 3.5: Histograms showing the predicted value (Eq. 3.13) minus the empirical value
for the filtered scatterplot method. The lines are coloured by dimension, d. The empirical
data were run using di↵erent values for r than used in the training data so the overall error
rates here are representative of the predictive ability.

3.6.2 HyperSlice

As with the filtered scatterplot, we compared our predicted running time against new timing

data using the same experimental conditions. We do this in order to test new values of r. We

then compared the predicted rendering time against the empirically recorded ones. Fig. 3.7

and Fig. 3.8 show the absolute and relative errors for prediction using the HyperSlice method

and Gaussian kernel regression respectively.

Many of the largest relative errors occur for the smallest total rendering times so any

miscalculation will result in a large relative error. The actual di↵erence, shown in Fig. 3.7,

has a strong spike at 0 indicating that most of our predictions are o↵ by a very small amount.

3.7 Application of methodology

While (Eq. 3.13) and (Eq. 3.15) are certainly of theoretical interest, the question we answer

in this section is what insights translate into good rules of thumb for a practitioner. Thus,



CHAPTER 3. RENDERING COMPLEXITY 58

0

10

20

-4
0

-2
0 0 20

relative error (%)

co
un
t

d
3
4
5
6
7
8

(a) Config A

0

5

10

15

-5
0 0 50

relative error (%)
co
un
t

d
3
4
5
6
7
8

(b) Config B

Figure 3.6: Histograms showing relative error rates for the filtered scatterplot method com-
paring predictions using (Eq. 3.13) to empirical results. The lines are coloured by dimension,
d. The empirical data were run using di↵erent values for r than used in the training data
so the overall error rates here are representative of the predictive ability.

we present two di↵erent applications of these formulas, an examination of how many points

we can draw in interactive time as well as a prototypical system that selects sample points

based on the desired level of interactivity. All figures in this section use the calibration

parameters for Configuration A.

3.7.1 Interactive framerates

It is insightful to study a plot of these two formulas, which can be observed in Fig. 3.9(a)

(for a filtered scatterplot – (Eq. 3.13)) and Fig. 3.9(b) (for HyperSlice – (Eq. 3.15)). First,

it is typically hard to reason about a particular radius r in higher dimensions. Therefore,

in all of the figures in this section, we chose to use the volume of the slice slab as an index

instead. In other words, we show all the results for volumes between 0.05 and 1, where a

volume of 1 basically means that the slab (filtered scatterplot) or sphere (HyperSlice) has

the same size as the unit cube. However, since it doesn’t have the same shape (in the case of

the spherical kernel) or might not be positioned at the centre of the unit cube, this doesn’t
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Figure 3.7: Histograms showing the predicted value (Eq. 3.15) minus the empirical value
for the HyperSlice Gaussian kernel technique. The lines are coloured by dimension, d. The
empirical data were run using di↵erent values for r than used in the training data so the
overall error rates here are representative of the predictive ability.

mean that all N points in the unit cube will be visible in that slab or sphere.

For Fig. 3.9(a) and Fig. 3.9(b) we have set N = 1, i.e. they are showing the rendering

time per point (on average). It is important to note that the rendering time increases

with volume. It is worth noting that, while the HyperSlice technique is overall slower,

the HyperSlice technique gets faster as d grows while the rendering time of the filtered

scatterplot method increases as d increases.

While rendering times are interesting, the more practical question is rather, how many

points can be rendered in real-time? For this, we present the inverse of Fig. 3.9(a) in

Fig. 3.10(a) and the inverse in Fig. 3.9(b) in Fig. 3.10(b). This is a plot that gives insight

into the expected performance of rendering algorithms. As one may expect, we must use

fewer sample points as the kernel size increases if we want to stay at the 30fps bound. What

is surprising is how much smoother the drop-o↵ is with the spherical kernels (Fig. 3.10(b))

than with the box kernels (Fig. 3.10(a)). There is also an interesting comparison between the

volume of the unit box and the unit sphere. As dimensionality d increases, the d-dimensional

volume of a d-sphere is generally decreasing while the volume of a unit box stays constant.
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Figure 3.8: Histograms relative error rates for the HyperSlice Gaussian kernel reconstruction
method comparing predictions using (Eq. 3.15) to empirical results. The lines are coloured
by dimension, d. The empirical data were run using di↵erent values for r than used in the
training data so the overall error rates here are representative of the predictive ability.

Consequently we can see that in Fig. 3.10(b) the number of points we can render in 30fps

actually goes up as dimensionality increases.

3.7.2 Sampling dialog

As was mentioned in Sec. 3.1, there are a number of ways to apply our prediction method-

ology in a practical visualization system. We show one prototypical scenario in Fig. 3.11.

This is a dialog box for the Tuner system, introduced in Chapter 2. The task is to enter the

number of sample points to take from the simulation. The dialog is driven by (Eq. 3.13) and

(Eq. 3.15). When the user changes the number of samples directly (A), the dialog computes

the expected frame rate and displays that to the user in (B). As an alternative method, the

user may value interactivity highly and consequently select the number of sample points

to take by entering the desired frame rate (B) and letting the system select the number of

samples.
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Figure 3.9: Average render time per sample point (a) for a filtered scatterplot and (b) for
the HyperSlice technique.

3.7.3 Reconstruction quality

Another important question involves the trade-o↵ between accurately representing our data

set and the e�ciency of rendering. In terms of accuracy, one may be comfortable if a certain

number, k, of the sample points are guaranteed to participate in each sub-plot of the filtered

scatterplot. Likewise, for the HyperSlice technique we would like to ensure that a minimum

number, k, of points contributes to each pixel of the reconstructed continuous function. If

the kernel volume, V , is small then we will need many more sample points in order to get

a certain level of k than if V was large. This leads to a formulation for the relationship

between the kernel volume (and consequently r), the number of sample points, and k,

V =
k

N
. (3.16)
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Figure 3.10: Average number of points that can be rendered in 30 frames per second (a) for
a filtered scatterplot and (b) for the HyperSlice technique.

This is a density measure for the number of sample points appearing on each plot. In

Fig. 3.12(a) and Fig. 3.12(b) we show contours for 1, 5, 10, 20, and 30 frames per second.

Fig. 3.12(a) shows contours for the filtered scatterplot technique and Fig. 3.12(b) shows

contours for the HyperSlice technique. The contours are flat because k is low enough that

the filtering time is always dominating the prediction of rendering time. We are simply not

drawing enough points on screen for the drawing time to make a di↵erence.

In Fig. 3.13(a) and Fig. 3.13(b) we zoom out to show values of k from 0 to 2000 and again

show contours for 1, 5, 10, 20, and 30 frames per second. Here we can see the point where

k is large enough that the drawing time begins to come into play. This can be seen in the

plots as the point where the slope of the contour line changes. For example, in Fig. 3.13(a),

for the 30 frames per second contour we can see the change once k > 550. These figures
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Figure 3.11: A prototypical example use case for our prediction formulas, (Eq. 3.13) and
(Eq. 3.15). The user is either able to enter the number of sample points directly in field (a)
and the system displays the expected fps in (b) or enter the desired fps directly in (b) and
the system calculates the number of points.

also indicate that N is a much stronger determinant of the rendering time than k.
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Figure 3.12: Contour lines showing the trade-o↵ between the number of points used in the
reconstruction, k, and the total number of sample points, N , (a) for a filtered scatterplot
and (b) for the HyperSlice technique. We show contour lines for frame rates equal to 1, 5,
10, 20, and 30 frames per second. These do not vary with k because it is low enough that
the filtering time always dominates the rendering time.
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Figure 3.13: Contour lines showing the trade-o↵ between the number of points used in the
reconstruction, k, and the total number of sample points, N , (a) for a filtered scatterplot
and (b) for the HyperSlice technique. We show contour lines for frame rates equal to 1, 5,
10, 20, and 30 frames per second. Note that we require that thousands of points participate
in the reconstruction before k begins to be a factor in the rendering time.
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Conclusion

In Chapter 2 we demonstrated Tuner, a tool designed to assist developers of segmentation

algorithms with finding “good” parameter settings for a wide variety of algorithms. We be-

gan by introducing four tasks that are vital to segmentation algorithm developers: exploring

the full parameter space, finding optimal parameter settings, assessing the sensitivity of a

parameter region, and simultaneous exploration of multiple quality measures. We demon-

strated how our technique of building a statistical model from a sparse sampling, iterative

improvement, and high dimensional visualization allow the user to perform these tasks. By

using this tool they are able to replace a tedious and manual process with a principled and

systematic approach that allows them a much greater understanding of the e↵ect of a pa-

rameter on their algorithm. Both our users only spent some hours on the exploration of the

parameter space using Tuner before becoming confident on particular optimal parameter

regions. Both users had used days and weeks on the same task before Tuner was made

available to them.

While the primary users of Tuner to this point have been image segmentation researchers,

Tuner itself is a much more general tool capable of guiding exploration and optimization on

any application with one or high dimensional scalar fields. A tool like this will only improve

the more users we have. Consequently, in the future we hope to deploy it to scientists in a

diverse set of fields.

In Chapter 3 we presented a prediction formula capable of accurately estimating the

rendering time necessary to render uniformly distributed data in a high-dimensional param-

eter space. We calibrated this estimation formula for rendering algorithms designed to take

advantage of many features of a modern GPU. We then showed two application examples

66



CHAPTER 4. CONCLUSION 67

of this methodology.

We also do not consider the case where the kernels are anisotropic and data are not

uniformly distributed. This is in fact the way Tuner’s kernels are set up. We would extend

our analysis to evaluate these e↵ects.

With this prediction method integrated into Tuner with a suitable subsampling method

the application could maintain the important interactive frame rates while still allowing users

to see details. In addition, for very local analysis one could do the continuous reconstruction

and then switch to a discrete, scatterplot matrix view when the predicted frame rate drops

below a threshold. Additionally, with this prediction formula one may actually use the

predicted running time as one of the parameters in picking a kernel bandwidth. The e↵ect

on the estimation quality of the Gaussian process model is not immediately apparent and

warrants further study.

The further development of both these lines of research as well as incorporating ad-

ditional ideas from sampling theory, multi-objective optimization, and user-centred design

will allow us to build a full tool guiding a researcher through the entire analysis pipeline.

They will use the computer for repetitive tasks and large-scale computation (which the com-

puter is good at) while the user will be responsible for final decision making and assigning

preferences.
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tion task performance with 2D, 3D, and combination displays. IEEE Transactions on
Visualization and Computer Graphics, 12(1):2–13, January 2006.

[57] Lisa Tweedie and Robert Spence. The Prosection Matrix: A tool to support the inter-
active exploration of statistical models and data. Computational Statistics, 13(1):65–76,
1998.

[58] Jarke J. van Wijk and Robert van Liere. Hyperslice: Visualization of scalar functions
of many variables. In Proceedings of the 4th Conference on Visualization ’93, pages
119–125, 1993.

[59] Matthew O. Ward. XmdvTool: Integrating multiple methods for visualizing multi-
variate data. In Proceedings of the Conference on Visualization ’94, pages 326–333,
October 1994.

[60] Jürgen Waser, Raphael Fuchs, Hrvoje Ribicić, Benjamin Schindler, Günther Blöschl,
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Appendix A

The expected volume inside a

parameter space

A.1 Meaning of Em(r, d)

In this appendix, we are assuming a d-dimensional centred unit cube1 [�0.5, 0.5]d with

coordinate axis x1, x2, . . . , xd. Without loss of generality, we will specify a 2D slice by

a (d � 2)-dimensional (focus) point s and are assuming, that the additional coordinates

(d� 1, d) are the unspecified slice coordinates.

As explained in Sec. 3.3.3, Em(r, d) is the expected percentage of points within distance

r from a single 2D slice in d dimensions. In the case of a uniform point distribution, this

essentially measures the volume of a slab with thickness 2r around the slice. The extent of

this volume in dimensions (d� 1, d) is simply one, since we are examining a d-dimensional

unit cube. Hence, the volume of this slab is simply the (d � 2)-dimensional volume V (s)

around the (d� 2)-dimensional point s multiplied by one for each direction (d� 1) and d:

V (s) = 1 · 1 ·

Z

[�0.5,0.5]d�2

Br(s� x)dx (A.1)

where, Br is the constant (d� 2)-ball with radius r:

Br(x) =

(
1 if ||x|| < r

0 otherwise

1Note, that in Tuner we had specified a non-centred unit cube [0, 1]d. However, the centring doesn’t
impact the result, but is mathematically easier to deal with.
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Here we should note, that the shape of the ball Br depends on the distance metric we

are using. If this distance metric is the Euclidean norm, we essentially are dealing with the

HyperSlice technique. If, instead, we are dealing with the infinity-norm, we are dealing with

the filtered scatterplot technique.

Considering the (d� 2)-dimensional centred unit box ⇧(x), we can express (Eq. A.1) as

a convolution:

V (s) =

Z

[�0.5,0.5]d�2

Br(s� x)dx

=

Z

[�1,1]d�2

⇧(x)Br(s� x)dx

= ⇧ ⇤Br(s)

Since Em(r, d) is the average volume over all possible slice positions within the (d� 2)-

dimensional unit cube, we conclude:

Em(r, d) =

Z

[�0.5,0.5]d�2

V (s)ds

=

Z

[�1,1]d�2

⇧(0� s)⇧ ⇤Br(s)ds

Em(r, d) = ⇧ ⇤⇧ ⇤Br(0)

The beauty of this last expression is, that it is a convolution of three di↵erent piecewise-

constant (the constant being one) functions evaluated at zero. This allows us to reinterpret

this expression as an integral of the convolution of two these functions over the domain of

the third function:

Em(r, d) =

Z

Br

T (x)dx (A.2)

where T (x) = ⇧ ⇤ ⇧(x) is the convolution of two unit-cubes or the (d � 2)-dimensional

triangle function2. Hence, in the positive orthant, we can write:

T+(x) =
d�2Y

i=1

min(0, (1� xi))

where x = (x1, x2, ..., xn) and, in general, f+(x) shall denote the positive orthant of some

function f(x).

2Also known as the tensor-product of the linear B-spline or the (d� 2)-linear interpolator
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In the remainder of this appendix we will evaluate the integral in (Eq. A.2) for the two

cases of a filtered scatterplot and the HyperSlice techniques. Since this is an integral in a

(d� 2)-dimensional space, we will, for brevity, be using n = (d� 2) in the remainder of this

appendix.

A.2 The filtered scatterplot

In the case of a filtered scatterplot, the distance metric is an L1 metric, i.e. we check each

coordinate separately and require that the maximum distance in each component is smaller

than our threshold r. This creates an n-dimensional cube of side length 2r around the

n-dimensional point s, specifying the location of our focus point. (Eq. A.2) is now simple

to evaluate. Due to the symmetry of the triangle function T (x) the integral in each orthant

is identical, and we can write:

EP (r, d) = 2n
Z

B+
r

T+(x)dx

= 2n
Z

B+
r

nY

i=1

min(0, (1� xi))dx

= 2n
nY

i=1

Z min(1,r)

0
(1� xi)dxi

which leads to:

EP (r, d) =

(
rn(2� r)n if r < 1

1 otherwise

A.3 The HyperSlice case

In the case of the HyperSlice the analysis is very similar, except, that the distance metric is

replaced with the L2 norm and instead the volume Br is an n-dimensional sphere of radius

r. Hence, (Eq. A.2) becomes:

EH(r, d) = 2n
Z

B+
r

T+(x)dx (A.3)

We will solve this integral with the help of Polar coordinates.
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A.3.1 Polar coordinates in n dimensions

Expressing x = (x1, x2, ..., xn) in polar coordinates ' = (R,�1,�2, . . . ,�n�1) can be done

as follows:

x1 = R cos(�1)

x2 = R sin(�1) cos(�2)

x3 = R sin(�1) sin(�2) cos(�3)

...

xn�1 = R sin(�1) · · · sin(�n�2) cos(�n�1)

xn = R sin(�1) · · · sin(�n�2) sin(�n�1)

where �i 2 [0,⇡] for i = 1, . . . , n� 2 and �n�1 2 [0, 2⇡].

The Jacobian, needed to properly substitute the integration variables in (Eq. A.3), of

the transformation from spatial coordinates x to polar coordinates ' can be computed as

follows:

dx

d'
= Rn�1

n�1Y

i=1

sinn�1�i(�i) (A.4)

dx = Rn�1dR
n�1Y

i=1

sinn�1�i(�i)d�i (A.5)

A.3.2 Derivation

In this section, we will assume that our radius r never grows above one. This is a reasonable

assumption, which holds for the experiments performed in our paper. We can now simplify

(Eq. A.3) as follows:

EH(r, d) = 2n
Z

B+
r

nY

i=1

min(0, (1� xi))dx (A.6)

= 2n
Z

B+
r

nY

i=1

(1� xi)dx (A.7)

= 2n
Z

B+
r

nX

i=0

(�1)iti(x)dx (A.8)

= 2n
nX

i=0

(�1)i
Z

B+
r

ti(x)dx (A.9)
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where ti(x) is the sum of all products of i distinct coordinates. I.e.

t0(x) = 1

t1(x) =
nX

j=1

xj

t2(x) =
nX

j,k=1;j 6=k

xjxk

...

Because of symmetry in the first orthant around any axis xi = xj of the hypersphere,

we have:
Z

B+
r

xjxkdx =

Z

B+
r

x1xkdx =

Z

B+
r

x1x2dx

which holds for any product of arbitrary terms. Hence, we can simplify (Eq. A.9) in the

following way:

EH(r, d) = 2n
nX

i=0

(�1)i
Z

B+
r

ti(x)dx

= 2n
nX

i=1

(�1)i
✓
n

i

◆Z

B+
r

iY

k=1

xkdx+ 2n
Z

B+
r

dx

= 2n
nX

i=1

(�1)i
✓
n

i

◆
Ai +B

B is, of course, the volume of an n-dimensional sphere of radius r:

B = 2n
Z

B+
r

dx =

Z

Br

dx =
⇡

n
2 rn

�(n2 + 1)

We are left to compute the product integrals Ai, for which we use polar coordinates. For
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i < n, we have (using (Eq. A.5)):

Ai =

Z

B+
r

iY

k=1

xkdx (A.10)

=

Z

'

+

iY

k=1

xk(')R
n�1dR

n�1Y

j=1

sinn�1�j(�j)d�j (A.11)

=

Z

'

+

Ri
iY

k=1

cos(�k) sin
i�k(�k)R

n�1dR
n�1Y

j=1

sinn�1�j(�j)d�j (A.12)

=

Z

'

+

Rn+i�1dR
iY

k=1

cos(�k) sin
i�k(�k)

n�1Y

j=1

sinn�1�j(�j)d�j (A.13)

=

Z

'

+

Rn+i�1dR
iY

k=1

cos(�k) sin
n�1+i�2k(�k)

n�1Y

j=i+1

sinn�1�j(�j)d�j (A.14)

= AR
i

iY

k=1

Ac
i,k

n�1Y

j=i+1

As
i,j (A.15)

where

AR
i =

Z r

0
Rn+i�1dR

Ac
i,k =

Z ⇡/2

0
cos(�k) sin

n�1+i�2k(�k)

As
i,j =

Z ⇡/2

0
sinn�1�j(�j)d�j

where we used the fact that the proper positive orthant integration bounds by '

+ = [0, R]⇥

[0,⇡/2]n�1.

Solving for these three types of integrals yields:

AR
i =

Z r

0
Rn+i�1dr =

1

n+ i
rn+i

Ac
i,k =

Z ⇡/2

0
cos(�k) sin

n�1+i�2k(�k)

=
1

n+ i� 2k
sinn+i�2k(�k)

���
⇡/2

0

=
1

n+ i� 2k
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as well as

As
i,j =

Z ⇡/2

0
sinn�1�j(�j)d�j

= � cos(�j)F1(0.5, (j � n+ 2)/2, 1.5, cos2(�j))
��⇡/2
0

= F1(0.5, (j � n+ 2)/2, 1.5, 1)

=
�(3/2)�((n� j)/2)

�(1)�(0.5 + (n� j)/2)

=

p

⇡

2

�((n� j)/2)

�((n� j + 1)/2)

where F1 is the hypergeometric function. Putting this all together (for i < n) into (Eq. A.15),

we get:

Ai = AR
i

iY

k=1

Ac
i,k

n�1Y

j=i+1

As
i,j (A.16)

=
1

n+ i
rn+i

iY

k=1

1

n+ i� 2k

n�1Y

j=i+1

p

⇡

2

�((n� j)/2)

�((n� j + 1)/2)
(A.17)

= rn+i
iY

k=0

1

n+ i� 2k

p

⇡n�1�i

2n�1�i

�(1/2)

�((n� i)/2)
(A.18)

= rn+i

p

⇡n�1�i

2n�1�i

p

⇡

�((n� i)/2)

iY

k=0

1

n+ i� 2k
(A.19)

=

p

⇡n�i

2n�1�i

rn+i

�((n� i)/2)

iY

k=0

1

n+ i� 2k
(A.20)
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Now, solving for An, we have:

An =

Z

B+

nY

k=1

xkdx

=

Z

'

+

nY

k=1

xk(')R
n�1dR

n�1Y

j=1

sinn�1�j(�j)d�j

=

Z

'

+

Rn
n�1Y

k=1

cos(�k) sin
n�k(�k)R

n�1dR
n�1Y

j=1

sinn�1�j(�j)d�j

=

Z

'

+

R2n�1dR
n�1Y

k=1

cos(�k) sin
n�k(�k)

n�1Y

j=1

sinn�1�j(�j)d�j

=

Z

'

+

R2n�1dR
n�1Y

k=1

cos(�k) sin
2n�1�2k(�k)d�k

=

Z r

0
R2n�1dR

n�1Y

k=1

Z ⇡/2

0
cos(�k) sin

2n�1�2k(�k)d�k

= AR
n

n�1Y

k=1

Ac
n,k

=
1

2n
R2n

n�1Y

k=1

1

2n� 2k

= 2�nR2n
n�1Y

k=0

1

n� k

=
2�n

n!
R2n

Finally, we can put everything together:

EH(r, d) = 2n
nX

i=1

(�1)i
✓
n

i

◆
Ai +B

= 2n
n�1X

i=1

(�1)i
✓
n

i

◆
Ai + (�2)nAn +B

= 2n
n�1X

i=1

(�1)i
✓
n

i

◆"
p

⇡n�i

2n�1�i

rn+i

�((n� i)/2)

iY

k=0

1

n+ i� 2k

#
+ (�2)n

2�n

n!
r2n +B

=
n�1X

i=1

(�1)i
✓
n

i

◆"
2i+1⇡

(n�i)/2
rn+i

�((n� i)/2)

iY

k=0

1

n+ i� 2k

#
+ (�1)n

r2n

n!
+

⇡
n
2 rn

�(n2 + 1)
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A.4 Derivation of EQ(r, d)

With our formulation for the expected number of points appearing on a slice, EH(r, d), we

now turn to the derivation of the expected number of fragments that need to be drawn per

point on a slice, EQ(r, d). We will compute this in two stages. First we derive the expected

size of the quad each point will create on the slice given that the point is a certain distance,

t, from the slice. Even though each point drawn leaves a circular splat, we still must process

it as a quad since the GPU does not support circle primitives. We then average this value

over all possible values of t. For convenience, in the derivation below we drop the functional

notation, EH(r, d) in favour of the more compact E[q].

A.4.1 Expected quad size

Given that we need to draw a particular data point, the question is how large an impact in

terms of number of fragments does it make on the 2D slice. As the distance from a sample

point to the slice, t, increases the size of the quad, q, decreases. This is due to the slice

passing through a smaller area of the hyperspherical kernel surrounding the data point.

Fig. A.1a shows the relationship between t and the half-length of one of the sides of the

quad u. In Fig. A.1a, (as usual) r is the maximum search distance.

Therefore, u is related to t through u =
p

r2 � t2 and the maximum size of the quad is

4u2. However, the quad size is not always 4u2. If the centre of the quad gets within u of

the edge of the slice then the quad will be clipped and it will be smaller than 4u2. This

“maximum size” area is the inner square in Fig. A.1b. We can formulate the expected quad

size as a function of u: E[q](u). To find E[q](u) we must integrate the quad size given a

location on the slice (x, y) over all possible positions,

E[q](u) =

Z 1

x=0

Z 1

y=0
q(x, y, u) dy dx

Note that there are three regions on the slice a point may fall in, the probability of the

point falling into each region is a direct result of the area of each region:

• corner: where the quad size ranges from u2 to 4u2 with probability P = 4u2

• side: where the quad size ranges from 2u2 to 4u2 with probability P = 4u(1� 2u)
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ur

t

(a)

1 
- 2
u 1 - 2u

u

u

1

1

(b)

Figure A.1: (a) A 2D cross-section of a hypersphere of radius r representing the spherical
kernel centred around a particular sample point. The slice we are viewing intersects the
kernel at a distance, t, away. This creates an impression of side length 2u = 2

p

r2 � t2 on
the slice. We need to draw a quad on screen for this impression. (b) shows the possible
regions on the slice (the outer square) in which the centre of the sample point lies. If the
sample point does not lie in the centre region then some of the quad will be clipped by the
edges of the screen and we will not have to render as many fragments.

• centre: where the quad size is 4u2 with probability P = (1� 2u)2

Therefore, our formulation for E[q](u) can be split into 3 integrals:

E[q](u) = 4

Z u

x=0

Z u

y=0
(x+ u)(y + u) dy dx

+ 4

Z 1�u

x=u

Z u

y=0
(2u)(y + u) dy dx

+

Z 1�u

x=u

Z 1�u

y=u
4u2 dy dx

= 4A+ 4B + C

Where A, B, and C are the corner, side, and centre cases respectively. We solve each

integral individually,
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A =

Z u

x=0

Z u

y=0
(x+ u)(y + u) dy dx

=

Z u

x=0
(x+ u)

Z u

y=0
(y + u) dy dx

=

Z u

x=0
(x+ u)

✓
y2

2
+ uy

����
u

0

◆
dx

=

Z u

x=0
(x+ u)

✓
3u2

2

◆
dx

=
3u2

2

✓
x2

2
+ xu

����
u

0

◆

A =
9u4

4

B =

Z 1�u

x=u

Z u

y=0
(2u)(y + u) dy dx

=

Z 1�u

x=u
(2u)

Z u

y=0
(y + u) dy dx

= 2u

Z 1�u

x=u

✓
y2

2
+ yu

����
u

0

◆
dx

= 2u

Z 1�u

x=u

✓
u2

2
+ u2

◆

= 2u(1� u� u)
3u2

2

= 2u(1� 2u)
3u2

2

= (2u� 4u2)
3u2

2

B = 3u3 � 6u4



APPENDIX A. THE EXPECTED VOLUME INSIDE A PARAMETER SPACE 85

C =

Z 1�u

x=u

Z 1�u

y=u
4u2 dy dx

= (1� u� u)(1� u� u)(4u2)

= (1� 2u)(1� 2u)(4u2)

= (1� 4u+ 4u2)(4u2)

C = 4u2 � 16u3 + 16u4

Substituting A, B, and C back into the formula we get,

E[q](u) = 4A+ 4B + C

= 4
9u4

4
+ 4(3u3 � 6u4) + (4u2 � 16u3 + 16u4)

= 9u4 + 12u3 � 24u4 + 4u2 � 16u3 + 16u4

E[q](u) = 4u2 � 4u3 + u4

A.4.2 Expected quad size

Now we can turn to a formulation of E[q] which is the expected quad size over all 0  t  r.

We also need to take into account the likelihood of a point lying at a particular value of t,

which we denote Pt. Here Pt =
EH(t,d)
EH(r,d) .

E[q] =

Z r

0
E[q](u)Pt dt

There are 2 cases we need to consider, the d = 3 case and the d > 3 case.

A.4.2.1 d = 3 case

When d = 3 all points lie on a line extending on either side of the slice. Since all distances

are equally likely in this case, we can simply integrate E[q](u) over all t.
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E[q] =

Z r

0
E[q](u)Pt dt

=

Z r

0
(4u2 � 4u3 + u4) dt

=

Z r

0
4(
p
r2 � t2)2 � 4(

p
r2 � t2)3 + (

p
r2 � t2)4 dt

To make things easier to integrate we substitute t with spherical coordinates:

t = r sin ✓

dt = r cos ✓ d✓
p
r2 � t2 = r cos ✓

which leads to
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E[q] =

Z ⇡/2

0

�
4(r cos ✓)2 � 4(r cos ✓)3 + (r cos ✓)4

�
r cos ✓ d✓

=

Z ⇡/2

0
4r3 cos3 ✓ � 4r4 cos4 ✓ + r5 cos5 ✓ d✓

=

Z ⇡/2

0
4r3 cos3 ✓d✓ �

Z ⇡/2

0
4r4 cos4 ✓d✓ +

Z ⇡/2

0
r5 cos5 ✓ d✓

= 4r3
 
cos2 ✓ sin ✓

3
+

2

3

Z ⇡/2

0
cos ✓d✓

!�����

⇡/2

0

� 4r4
 
cos3 ✓ sin ✓

4
+

3

4

Z ⇡/2

0
cos2 ✓d✓

!�����

⇡/2

0

+ r5
 
cos4 ✓ sin ✓

5
+

4

5

Z ⇡/2

0
cos3 ✓d✓

!�����

⇡/2

0

= 4r3
✓
cos2 ✓ sin ✓

3
+

2

3
sin ✓

◆����
⇡/2

0

� 4r4
✓
cos3 ✓ sin ✓

4
+

3

4

✓
✓

2
+

1

4
sin 2✓

◆◆����
⇡/2

0

+ r5
 
cos4 ✓ sin ✓

5
+

4

5

Z ⇡/2

0
cos3 ✓d✓

!�����

⇡/2

0

= 4r3
✓
2

3

◆
� 4r4

✓
3⇡

16

◆
+ r5

✓
4

5

2

3

◆

E[q] =
8r3

3
�

3⇡r4

4
+

8r5

15

A.4.2.2 d > 3 case

When d > 3, the points at distance t lie along the surface of a hyperball. Again, to find

E[q] we need to find the average of E[q](t) over all 0  t  r, which means,
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E[q] =

Z r

0
E[q](t)Pt dt

=

Z r

0

⇣
4(
p
r2 � t2)2 � 4(

p
r2 � t2)3 + (

p
r2 � t2)4

⌘ EH(t, d)

EH(r, d)
dt

=
1

EH(r, d)

Z r

0

⇣
4(
p

r2 � t2)2 � 4(
p
r2 � t2)3 + (

p
r2 � t2)4

⌘
EH(t, d) dt

=
1

EH(r, d)

Z r

0

⇣
4(
p

r2 � t2)2 � 4(
p
r2 � t2)3 + (

p
r2 � t2)4

⌘

 
n�1X

i=1

(�1)i
✓
n

i

◆
2i+1tn+i�1⇡(n�i)/2

�((n� i)/2)

iY

k=1

1

n+ i� 2k

+
(�1)nt2n�1

(n� 1)!
+

n⇡n/2tn�1

�(n/2 + 1)

!
dt

Just to simplify the writing a bit we can replace the non-t parts of the formula by

Ki = (�1)i
✓
n

i

◆
2i+1⇡(n�i)/2

�((n� i)/2)

iY

k=1

1

n+ i� 2k

Kn =
(�1)n

(n� 1)!

Cn =
⇡n/2

�(n/2 + 1)

Then we get,

E[q] =
1

EH(r, d)

Z r

0

⇣
4(
p
r2 � t2)2 � 4(

p
r2 � t2)3 + (

p
r2 � t2)4

⌘

 
n�1X

i=1

Kit
n+i�1 +Knt

2n�1 + nCnt
n�1

!
dt

We can also remove the square roots by substituting in for t,

t = r sin(✓)

dt = r cos(✓) d✓
p
r2 � t2 =

p
r2 � (r sin(✓))2

= r cos(✓)
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Then we get,

=
1

EH(r, d)

Z ⇡/2

0

�
4(r cos(✓))2 � 4(r cos(✓))3 + (r cos(✓))4

�

 
n�1X

i=1

Ki(r sin(✓))
n+i�1

+Kn(r sin(✓))
2n�1

+ nCn(r sin(✓))
n�1
�
r cos(✓) d✓

=
1

EH(r, d)

Z ⇡/2

0

�
4r2 cos2(✓)� 4r3 cos3(✓) + r4 cos4(✓)

�

 
n�1X

i=1

Kir
n+i�1 sinn+i�1(✓)

+Knr
2n�1 sin2n�1(✓)

+ nCnr
n�1 sinn�1(✓)

�
r cos(✓) d✓

=
1

EH(r, d)

Z ⇡/2

0

�
4r3 cos3(✓)� 4r4 cos4(✓) + r5 cos5(✓)

�

 
n�1X

i=1

Kir
n+i�1 sinn+i�1(✓)

+Knr
2n�1 sin2n�1(✓)

+ nCnr
n�1 sinn�1(✓)

�
d✓
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=
1

EH(r, d)

Z ⇡/2

0

n�1X

i=1

4Kir
n+i+2 cos3(✓) sinn+i�1(✓)

�

n�1X

i=1

4Kir
n+i+3 cos4(✓) sinn+i�1(✓)

+
n�1X

i=1

Kir
n+i+4 cos5(✓) sinn+i�1(✓)

+ 4Knr
2n+2 cos3(✓) sin2n�1(✓)

� 4Knr
2n+3 cos4(✓) sin2n�1(✓)

+Knr
2n+4 cos5(✓) sin2n�1(✓)

+ 4nCnr
n+2 cos3(✓) sinn�1(✓)

� 4nCnr
n+3 cos4(✓) sinn�1(✓)

+ nCnr
n+4 cos5(✓) sinn�1(✓) d✓

=
1

EH(r, d)

 Z ⇡/2

0

n�1X

i=1

4Kir
n+i+2 cos3(✓) sinn+i�1(✓) d✓

�

Z ⇡/2

0

n�1X

i=1

4Kir
n+i+3 cos4(✓) sinn+i�1(✓) d✓

+

Z ⇡/2

0

n�1X

i=1

Kir
n+i+4 cos5(✓) sinn+i�1(✓) d✓

+

Z ⇡/2

0
4Knr

2n+2 cos3(✓) sin2n�1(✓) d✓

�

Z ⇡/2

0
4Knr

2n+3 cos4(✓) sin2n�1(✓) d✓

+

Z ⇡/2

0
Knr

2n+4 cos5(✓) sin2n�1(✓) d✓

+

Z ⇡/2

0
4nCnr

n+2 cos3(✓) sinn�1(✓) d✓

�

Z ⇡/2

0
4nCnr

n+3 cos4(✓) sinn�1(✓) d✓

+

Z ⇡/2

0
nCnr

n+4 cos5(✓) sinn�1(✓) d✓
�
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=
1

EH(r, d)

 
n�1X

i=1

4Kir
n+i+2

Z ⇡/2

0
cos3(✓) sinn+i�1(✓) d✓

�

n�1X

i=1

4Kir
n+i+3

Z ⇡/2

0
cos4(✓) sinn+i�1(✓) d✓

+
n�1X

i=1

Kir
n+i+4

Z ⇡/2

0
cos5(✓) sinn+i�1(✓) d✓

+ 4Knr
2n+2

Z ⇡/2

0
cos3(✓) sin2n�1(✓) d✓

� 4Knr
2n+3

Z ⇡/2

0
cos4(✓) sin2n�1(✓) d✓

+Knr
2n+4

Z ⇡/2

0
cos5(✓) sin2n�1(✓) d✓

+ 4nCnr
n+2

Z ⇡/2

0
cos3(✓) sinn�1(✓) d✓

� 4nCnr
n+3

Z ⇡/2

0
cos4(✓) sinn�1(✓) d✓

+nCnr
n+4

Z ⇡/2

0
cos5(✓) sinn�1(✓) d✓

!

Here note that we can apply the following trigonometric identities:

Z
cosn(✓) sinm(✓) d✓ =

sinm+1(✓) cosn�1(✓)

m+ n
+

n� 1

m+ n

Z
cosn�2(✓) sinm(✓) d✓

Z ⇡/2

0
sinm(✓) d✓ = � cos(✓)F1

✓
1

2
,
1�m

2
,
3

2
, cos2(✓)

◆����
⇡/2

0

= 0 + F1

✓
1

2
,
1�m

2
,
3

2
, 1

◆

=

p

⇡�
�
m+1
2

�

2�
�
m
2 + 1

�

There are really 3 di↵erent types of integrals representing the power on the cos(✓) term.

They are,



APPENDIX A. THE EXPECTED VOLUME INSIDE A PARAMETER SPACE 92

I1(m) =

Z ⇡/2

0
cos3(✓) sinm(✓) d✓

=
sinm+1(✓) cos2(✓)

m+ 3

����
⇡/2

0

+
2

m+ 3

Z ⇡/2

0
cos(✓) sinm(✓) d✓

= 0 +
2

m+ 3

sinm+1(✓)

m+ 1

����
⇡/2

0

=
2

m+ 3

✓
1

m+ 1
� 0

◆

I1(m) =
2

(m+ 1)(m+ 3)

I2(m) =

Z ⇡/2

0
cos4(✓) sinm(✓) d✓

=
sinm+1(✓) cos3(✓)

m+ 4

����
⇡/2

0

+
3

m+ 4

Z ⇡/2

0
cos2(✓) sinm(✓) d✓

= 0 +
3

m+ 4

"
sinm+1(✓) cos(✓)

m+ 2

����
⇡/2

0

+
1

m+ 2

Z ⇡/2

0
sinm(✓) d✓

#

=
3

m+ 4


0 +

1

m+ 2

p

⇡�((m+ 1)/2)

2�(m/2 + 1)

�

I2(m) =
3
p

⇡

2(m+ 2)(m+ 4)

�((m+ 1)/2)

�(m/2 + 1)

I3(m) =

Z ⇡/2

0
cos5(✓) sinm(✓) d✓

=
sinm+1(✓) cos4(✓)

m+ 5

����
⇡/2

0

+
4

m+ 5

Z ⇡/2

0
cos3(✓) sinm(✓) d✓

= 0 +
4

m+ 5

Z ⇡/2

0
cos3(✓) sinm(✓) d✓

=
4

m+ 5
I1(m)

=
4

m+ 5

2

(m+ 1)(m+ 3)

I3(m) =
8

(m+ 1)(m+ 3)(m+ 5)

We can substitute these in,
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=
1

EH(r, d)

 
n�1X

i=1

4Kir
n+i+2I1(n+ i� 1)

�

n�1X

i=1

4Kir
n+i+3I2(n+ i� 1)

+
n�1X

i=1

Kir
n+i+4I3(n+ i� 1)

+ 4Knr
2n+2I1(2n� 1)

� 4Knr
2n+3I2(2n� 1)

+Knr
2n+4I3(2n� 1)

+ 4nCnr
n+2I1(n� 1)

� 4nCnr
n+3I2(n� 1)

+ nCnr
n+4I3(n� 1)

�

=
1

EH(r, d)

 
n�1X

i=1

4Kir
n+i+2 2

(n+ i)(n+ i+ 2)

�

n�1X

i=1

4Kir
n+i+3 3

p

⇡

2(n+ i+ 1)(n+ i+ 3)

�((n+ i)/2)

�((n+ i� 1)/2 + 1)

+
n�1X

i=1

Kir
n+i+4 8

(n+ i)(n+ i+ 2)(n+ i+ 4)

+ 4Knr
2n+2 2

(2n)(2n+ 2)

� 4Knr
2n+3 3

p

⇡

2(2n+ 1)(2n+ 3)

�((2n)/2)

�((2n� 1)/2 + 1)

+Knr
2n+4 8

(2n)(2n+ 2)(2n+ 4)

+ 4nCnr
n+2 2

(n)(n+ 2)

� 4nCnr
n+3 3

p

⇡

2(n+ 1)(n+ 3)

�(n/2)

�((n� 1)/2 + 1)

+ nCnr
n+4 8

(n)(n+ 2)(n+ 4)

◆
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=
1

EH(r, d)

 
n�1X

i=1

4(�1)i
✓
n

i

◆
2i+1⇡(n�i)/2rn+i+2

�((n� i)/2)

2

(n+ i)(n+ i+ 2)

iY

k=1

1

n+ i� 2k

�

n�1X

i=1

4(�1)i
✓
n

i

◆
2i+1⇡(n�i)/2rn+i+3

�((n� i)/2)

3
p

⇡

2(n+ i+ 1)(n+ i+ 3)

�((n+ i)/2)

�((n+ i� 1)/2 + 1)

iY

k=1

1

n+ i� 2k

+
n�1X

i=1

(�1)i
✓
n

i

◆
2i+1⇡(n�i)/2rn+i+4

�((n� i)/2)

8

(n+ i)(n+ i+ 2)(n+ i+ 4)

iY

k=1

1

n+ i� 2k

+ 4
(�1)nr2n+2

(n� 1)!

2

(2n)(2n+ 2)

� 4
(�1)nr2n+3

(n� 1)!

3
p

⇡

2(2n+ 1)(2n+ 3)

�((2n)/2)

�((2n� 1)/2 + 1)

+
(�1)nr2n+4

(n� 1)!

8

(2n)(2n+ 2)(2n+ 4)

+ 4
n⇡n/2rn+2

�(n/2 + 1)

2

(n)(n+ 2)

� 4
n⇡n/2rn+3

�(n/2 + 1)

3
p

⇡

2(n+ 1)(n+ 3)

�(n/2)

�((n� 1)/2 + 1)

+
n⇡n/2rn+4

�(n/2 + 1)

8

(n)(n+ 2)(n+ 4)

!
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=
1

EH(r, d)

 
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+2

(n+ i)(n+ i+ 2)�((n� i)/2)

iY

k=1

1

n+ i� 2k

� 3
n�1X

i=1

(�1)i
✓
n

i

◆
2i+2⇡(n�i+1)/2rn+i+3

(n+ i+ 1)(n+ i+ 3)�((n� i)/2)

�((n+ i)/2)

�((n+ i� 1)/2 + 1)

iY

k=1

1

n+ i� 2k

+
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+4

(n+ i)(n+ i+ 2)(n+ i+ 4)�((n� i)/2)

iY

k=1

1

n+ i� 2k

+
(�1)nr2n+2

(n� 1)!

2

n(n+ 1)

�

(�1)nr2n+3

(n� 1)!

6
p

⇡

(2n+ 1)(2n+ 3)

�(n)

�((2n� 1)/2 + 1)

+
(�1)nr2n+4

(n� 1)!

1

n(n+ 1)(n+ 2)

+
n⇡n/2rn+2

�(n/2 + 1)

8

n(n+ 2)

�

n⇡n/2rn+3

�(n/2 + 1)

6
p

⇡

(n+ 1)(n+ 3)

�(n/2)

�((n� 1)/2 + 1)

+
n⇡n/2rn+4

�(n/2 + 1)

8

n(n+ 2)(n+ 4)

!
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=
1

EH(r, d)

 
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+2

(n+ i)(n+ i+ 2)�((n� i)/2)

iY

k=1

1

n+ i� 2k

� 3
n�1X

i=1

(�1)i
✓
n

i

◆
2i+2⇡(n�i+1)/2rn+i+3

(n+ i+ 1)(n+ i+ 3)�((n� i)/2)

�((n+ i)/2)

�((n+ i� 1)/2 + 1)

iY

k=1

1

n+ i� 2k

+
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+4

(n+ i)(n+ i+ 2)(n+ i+ 4)�((n� i)/2)

iY

k=1

1

n+ i� 2k

+ 2
(�1)nr2n+2

(n+ 1)!

� 6
(�1)nr2n+3p⇡

(2n+ 1)(2n+ 3)�((2n� 1)/2 + 1)

+
(�1)nr2n+4

(n+ 2)!

+
8n⇡n/2rn+2

n(n+ 2)�(n/2 + 1)

�

6n⇡(n+1)/2rn+3

(n+ 1)(n+ 3)n

2

�((n� 1)/2 + 1)

+
8⇡n/2rn+4

(n+ 2)(n+ 4)�(n/2 + 1)

!
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=
1

EH(r, d)

 
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+2

(n+ i)(n+ i+ 2)�((n� i)/2)

iY

k=1

1

n+ i� 2k

� 3
n�1X

i=1

(�1)i
✓
n

i

◆
2i+2⇡(n�i+1)/2rn+i+3

(n+ i+ 1)(n+ i+ 3)�((n� i)/2)

�((n+ i)/2)

�((n+ i� 1)/2 + 1)

iY

k=1

1

n+ i� 2k

+
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+4

(n+ i)(n+ i+ 2)(n+ i+ 4)�((n� i)/2)

iY

k=1

1

n+ i� 2k

+ 2
(�1)nr2n+2

(n+ 1)!

� 6
(�1)nr2n+3p⇡

(2n+ 1)(2n+ 3)�((2n� 1)/2 + 1)

+
(�1)nr2n+4

(n+ 2)!

+
8⇡n/2rn+2

(n+ 2)�(n/2 + 1)

�

12⇡(n+1)/2rn+3

(n+ 1)(n+ 3)�((n� 1)/2 + 1)

+
8⇡n/2rn+4

(n+ 2)(n+ 4)�(n/2 + 1)

!
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E[q] =
1

EH(r, d)

 
n�1X

i=1

(�1)i
✓
n

i

◆
2i+4⇡(n�i)/2rn+i+2

�((n� i)/2)

iY

k=�1

1

n+ i� 2k

� 3
n�1X

i=1
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This yields the final form for E[q] for the d > 3 case. However, we can simplify this
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If we substitute this into the E[q] formula we get,
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Which gives us our final result for E[q] for a given dimension, d, and kernel radius r.

Written out as a function of r and d, this is EQ(r, d) which is the notation used in Chapter 3.
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