
COMPLEXITY OF APPROXIMATING #CSPS

by

Amir Hedayaty

B.Sc., Shahid Beheshti University, 2005

M.Sc., Sharif University of Technology, 2008

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the

School of Computing Science

Faculty of Applied Sciences

c© Amir Hedayaty 2012

SIMON FRASER UNIVERSITY

Fall 2012

All rights reserved.

However, in accordance with the Copyright Act of Canada, this work may be

reproduced without authorization, under the conditions for “Fair Dealing.”

Therefore, limited reproduction of this work for the purposes of private study,

research, criticism, review and news reporting is likely to be

in accordance with the law, particularly if cited appropriately.

APPROVAL

Name: Amir Hedayaty

Degree: Master of Science

Title of thesis: Complexity of Approximating #CSPs

Examining Committee: Dr. David Mitchell

Chair

Dr. Pavol Hell, Professor, Computing Science

Simon Fraser University

Senior Supervisor

Dr. Funda Ergun, Associate Professor, Computing

Science

Simon Fraser University

Supervisor

Dr. Valentine Kabanets, Associate Professor, Com-

puting Science

Simon Fraser University

SFU Examiner

Date Approved: October 30th 2012

ii

Abstract

Constraint satisfactions is a framework to express combinatorial problems. #CSP is the

problem of finding the number of solutions for a constraint satisfaction problem instance.

In this work, we study complexity of approximately solving the #CSP. We provide several

techniques for approximation preserving reductions among counting problems. Most of this

work focuses on reduction to #BIS, the problem of finding the number of independent sets

in a bipartite graph.

We prove that approximately solving #CSP(Γ) over relations which we call monotone,

is not harder than #BIS. We also prove that approximately solving #Hom(H) for reflexive

oriented graphs is not easier than #BIS. Finally, we investigate monotone reflexive graphs.

Keywords: #CSP, Approximation, AP-reduction, FPRAS

iii

Acknowledgments

First of all, I want to thank my family for always supporting me even from far far away. I

feel so lucky to be raised them. I am very grateful to have Dr. Hell as my senior-supervisor.

I do not know how to thank him for his supervision, support, help, and patience. This thesis

would have been is it is today without his dedication. I do not also know how to thank my

dear friends which have been really supportive in my hardest days away from home. I also

thank my previous supervisor Dr. Bulatov for his contributions in this work and introducing

the area to me.

iv

Contents

Approval ii

Abstract iii

Acknowledgments iv

Contents v

List of Figures vii

1 Introduction 1

1.1 Thesis Organization . 2

2 CSP and #CSP 3

2.1 Applications of #CSP . 6

3 Reductions and Complexity of Counting 13

3.1 Clones . 14

3.2 Exact Counting . 16

3.3 Weak Co-clones . 19

4 Approximate Counting 21

4.1 Polynomial Time Solvable Problems . 23

4.2 Problems Hard To Approximate . 26

4.3 Problems AP-interreducible With #BIS . 29

4.4 Other Difficult Problems . 32

v

5 Techniques for AP-Reductions 34

5.1 Connected graphs . 34

5.2 Linear Transformations . 35

5.3 Projection . 37

5.4 Pinning . 38

5.5 Maximization . 40

6 Results on Complexity of #BIS 43

6.1 Monotone Relations . 43

6.2 Bipartite Monotone Graphs . 45

6.3 Reflexive Oriented Graphs . 46

7 Monotone Reflexive Graphs 52

7.1 Generating monotone graphs . 58

8 Conclusion and Future Work 65

8.1 Conclusion . 65

8.2 Future Work . 67

Bibliography 68

vi

List of Figures

2.1 Graph G used in Example 2.0.3 . 5

2.2 Graph m and H used in Example 2.1.1 . 7

4.1 Graph G used in Example 4.1.1 . 24

4.2 Wrench graphs Family . 27

4.3 Particle-WR-Configs . 29

4.4 Several graphs AP-interreducible with #BIS 30

6.1 A reflexive oriented graph . 46

6.2 A reflexive oriented graph H such that k(H) = 2 46

6.3 A polar graph . 47

7.1 Interval graph G1, intervals I1, and non-interval graph G2 53

7.2 Proper interval graph G2 and intervals I2 . 54

7.3 Graph H1 . 58

7.4 Graph H2 . 62

7.5 Graphs G′, Gr, and G . 64

8.1 Example graphs for which complexity of the #Hom(H) is unknown 66

vii

Chapter 1

Introduction

Constraint Satisfaction is a powerful framework to express many combinatorial problems.

The Constraint Satisfaction Problem (CSP) is the problem of deciding if it is possible to

assign values to some variables such that given constraints are satisfied. #CSP is the

problem of finding the number of possible assignments for a set of constraints.

Many computational problems in mathematics, economics, and statistical mechanics

can be expressed by #CSP. Graph homomorphism, sampling, and partition functions are

among notions in mathematics that are closely related to #CSP. Computation of partition

function plays a key role in dealing with problems involving Ising and Potts models. These

models are commonly used in statistical mechanics and game theory.

In real world applications, there are many problems that are not efficiently solvable;

however, usually an approximate solution is satisfactory for them. In order to find out which

problems can be dealt with efficiently, we classify them by complexity of approximately

solving them.

Generally solving the #CSP is a hard problem, however if we restrict the #CSP to a

set of relations Γ, which is denoted by #CSP(Γ), depending on the Γ the complexity of the

problem may vary. In this work we study the complexity of finding approximate solutions for

the problem #CSP(Γ). We will introduce some of methods that can be used to approximate

counting problems.

Bulatov [2] has proved a dichotomy for complexity of the problem #CSP(Γ). This

dichotomy implies that for some Γ, the problem #CSP(Γ) can be solved in polynomial time

and for the rest if one of them can be solved in polynomial time all of them can be solved

in polynomial time. Feder and Vardi [19] have conjectured that #CSP(Γ) also exhibits of

1

CHAPTER 1. INTRODUCTION 2

dichotomy of this sort. This conjecture has motivated many researchers [6, 7, 36]. With

respect to approximation, more complexity classes are expected for the problem #CSP(Γ).

The problem of finding the number of 2-Colorings of a graph can be solved in polynomial

time. There is the problem of finding the number of independent sets in a bipartite graph

often referred as #BIS. The problem of finding the number of independent sets in a general

graphs often referred as the #IS is among a set of problems which if one of them can

be approximately solved in polynomial time then for all Γ, the problem #CSP(Γ) can be

approximately solved in polynomial time. Goldberg et al. [15] have proved that for Boolean

Γ, there are three complexity classes for #CSP(Γ). These three classes are: problems

that can be approximately solved in polynomial time, such as finding the number of 2-

Colorings in a graph; problems as hard as the problem #BIS; and problems that are hard

to approximate, such as the problem #IS.

In this work, we introduce some useful techniques to find approximation preserving

reductions among counting problems. We will introduce monotone relations and show that

the problem #CSP(Γ) over these families of relation is not harder that the problem #BIS.

We will also show that the problem #CSP(Γ) for reflexive oriented graphs is at least as

hard as the problem #BIS. We will also investigate reflexive monotone graphs.

1.1 Thesis Organization

In Chapter 2 we formally define CSP and #CSP and their applications. In Chapter 3 we

define reductions for counting problems and mention major results on complexity of the

problem #CSP(Γ). In Chapter 4 we define approximation preserving reductions and the

known classes for approximated counting. We mention several problems from each class;

we also mention several methods used for approximate counting problems. In Chapter 5 we

introduce our own methods used for approximation preserving reductions. In Chapter 6 we

mention our results on the complexity of approximating the problem #BIS. In Chapter 7

we investigate reflexive monotone graphs.

Chapter 2

CSP and #CSP

The Constraint Satisfaction Problem (CSP) is the problem of deciding if it is possible to

assign values to some variables such that given constraints are satisfied. #CSP is the

problem of finding the number of possible assignments for a set of constraints. Consider the

following example:

Example 2.0.1 (3-Coloring). The problem 3-Coloring is the problem of coloring ver-

tices of the input graph G with colors {r, g, b} such that no two adjacent vertices are colored

the same color. This problem can be formulated with a set of constraints as follows. Let

V = {v1, v2, . . . , vn} be a set of variables where each variable corresponds to a vertex of the

input graph G. The goal is to find a function f : V → {r, g, b} such that for each edge (u, v)

of G, f(u) 6= f(v) holds.

In the above example, the CSP is the problem of deciding if there is a function satisfying

all the given constraints. #CSP is the problem of finding the number of such functions.

Note that any CSP can then be expressed as deciding if the answer for #CSP with the same

set of constraints is greater zero.

Let D be a set of elements; any subset of Dk is a relation of arity k with domain D.

A constraint language with domain D is a set of relations with domain D. In this work

domains and relations are always finite.

A CSP instance P with constraint language Γ is a tuple (D,V, C) where:

• D is a set of values which is the domain of Γ,

• V is a set of variables,

3

CHAPTER 2. CSP AND #CSP 4

• C is a collection of constraints where each constraint consists of a scope %, which is a

tuple of variables from V and a relation R from Γ of the same arity as %. A constraint

is represented as 〈R, %〉.

An assignment for P is a function ϕ from V to D. The assignment ϕ is satisfying if the

scope of each constraint is mapped to a tuple of the corresponding relation.

Definition 2.0.2 (CSP(Γ)). For a fixed constraint language Γ, CSP(Γ) is the problem of

deciding whether a CSP instance P with constraint language Γ has a satisfying assignment.

For a constraint language Γ that consists of only a single relation R, we use CSP(R)

instead of CSP(Γ) for simplicity.

Example 2.0.3 (3-Coloring). We continue with the problem 3-Coloring from Exam-

ple 2.0.1. Let G be the input graph for the problem 3-Coloring. One way to formulate

problem 3-Coloring using a CSP(Γ) is as follows. Let D = {r, g, b} be the domain and

NEQrgb, the binary dis-equality relation on domain D, consists of all tuples from D2 except

the ones whose elements are equal, that is

NEQrgb = {(r, g), (r, b), (g, r), (g, b), (b, r), (b, g)}

Let ϕ be an assignment which is a function from vertices of G to D. For each edge (u, v)

of G ϕ(u) 6= ϕ(v) holds which is equivalent to NEQrgb(u, v).

Let G be the graph in Figure 2.1. The instance of CSP for 3-Coloring on G is as

follows. The set of variables is the set of vertices of G, and for each edge of G a constraint

with relation NEQrgb is placed.

P = (D = {1, 2, 3}, V = {v1, v2, v3, v4, v5},

C = {〈(v1, v2), NEQrgb〉, 〈(v2, v3), NEQrgb〉, 〈(v3, v4), NEQrgb〉,

〈(v4, v5), NEQrgb〉, 〈(v5, v1), NEQrgb〉, 〈(v2, v3), NEQrgb〉})

Example 2.0.4 (3-SAT). The problem of deciding if there exists a truth assignment for a

given Boolean CNF (Conjunctive Normal Form) formula where each clause contains exactly

3 literals is called 3-SAT.

Let Γ1 = {R1, R2, . . . , R8} be a constraint language where:

• R1 = {(x, y, z) | x, y, z ∈ {T, F}, x ∨ y ∨ z = T},

CHAPTER 2. CSP AND #CSP 5

G

v3

v2 v5

v4

v1

Figure 2.1: Graph G used in Example 2.0.3

• R2 = {(x, y, z) | x, y, z ∈ {T, F}, x̄ ∨ y ∨ z = T},

• R3 = {(x, y, z) | x, y, z ∈ {T, F}, x ∨ ȳ ∨ z = T},

• R4 = {(x, y, z) | x, y, z ∈ {T, F}, x ∨ y ∨ z̄ = T},

• R5 = {(x, y, z) | x, y, z ∈ {T, F}, x̄ ∨ ȳ ∨ z = T},

• R6 = {(x, y, z) | x, y, z ∈ {T, F}, x̄ ∨ y ∨ z̄ = T},

• R7 = {(x, y, z) | x, y, z ∈ {T, F}, x ∨ ȳ ∨ z̄ = T},

• R8 = {(x, y, z) | x, y, z ∈ {T, F}, x̄ ∨ ȳ ∨ z̄ = T}

Every clause in a 3-SAT instance can be expressed by a constraint using an Ri and

vice-versa. Hence, there is a one-to-one correspondence between constraints in a CSP(Γ1)

instance and a 3-SAT instance. Hence, the problems CSP(Γ1) and the 3-SAT are the same.

Another type of problems defined by constraint satisfaction are counting problems which

involve finding the number of solutions for a CSP instance. The number of solutions of a CSP

instance can be used to express many computational problems such as partition functions

which are mentioned in Section 2.1.

Definition 2.0.5 (#CSP(Γ)). For a constraint language Γ, #CSP(Γ) is the problem of find-

ing the number of satisfying assignments for a given CSP instance with Γ as the constraint

language.

Here are two examples of counting problems which can be expressed as #CSP(Γ) for

some constraint language Γ.

CHAPTER 2. CSP AND #CSP 6

Example 2.0.6 (#3-Coloring). We continue with the NEQrgb relation from Exam-

ple 2.0.3. The problem of finding the number of 3-Colorings of a given graph denoted by

#3-Coloring, can be expressed as the problem #CSP(NEQrgb).

Example 2.0.7. The problem of finding the number of satisfying truth assignments for a

given Boolean CNF (Conjunctive Normal Form) formula where each clause contains exactly

3 literals is called #3-SAT.

It is easy to see that with the constraint language Γ1 from Example 2.0.4 the problems

#3-SAT and the #CSP(Γ1) are the same.

2.1 Applications of #CSP

In this section we will show several applications of #CSP and how computational problems

can be formulated with #CSP. First, we will describe a graph homomorphism problem

which can be viewed as a special case of CSP; next, we will relate the number of homo-

morphisms between two graphs to the graph isomorphism problem. We will also describe

partition functions and give examples of partition functions in two common models in sta-

tistical physics.

Graph Homomorphism

Let G and H be two graphs. A homomorphism from G to H is a mapping h of vertices of

G to vertices of H such that for every edge (u, v) of G, (h(u), h(v)) is an edge of H. If there

is homomorphism from G to H we shall write G→ H, and G 6→ H means that there is no

homomorphism from G to H.

Example 2.1.1. Let G and H be the graphs shown in Figure 2.2. The mapping h defined

as h(a) = 1, h(b) = 2, h(c) = 3, h(d) = 1 is not a homomorphism because (a, d) is mapped to

(1, 1) which is not an edge of H but the mapping h′ defined as h′(a) = 1, h′(b) = 2, h′(c) =

1, h′(d) = 2 is a homomorphism because all the edges of G are mapped to edges of H. Note

that a homomorphism is not necessarily surjective.

Definition 2.1.2 (Hom(H)). For a fixed graph H, Hom(H) is the problem of deciding

whether a given graph G is homomorphic to H.

CHAPTER 2. CSP AND #CSP 7

1

32
G H

dc

ab

Figure 2.2: Graph m and H used in Example 2.1.1

Example 2.1.3 (3-Coloring). We continue with the problem 3-Coloring from Exam-

ple 2.0.1; however, in this example we express it as a graph homomorphism problem. As

usual we denote the complete graph on k vertices by Kk. For all complete graphs, (u, v) is

an edge of Kk if an only if u 6= v. This shows that Hom(Kk) is the same as the problem

k-coloring. As a special case, #Hom(K3) is the same as problem #3-Coloring.

Let NoRB-3-Coloring be the problem 3-Coloring with an additional restriction

that the vertices colored blue are not allowed to be connected to the vertices colored red. In

order to formulate this problem with graph homomorphisms, obtain H from K3 as follows.

Label the vertices with {r, g, b}. Delete the edge between r and b. The problem Hom(H)

is the same as the problem N0RB-3-Coloring. This example illustrates that the graph

homomorphism problem generalizes the graph coloring problem. This is why the problem

Hom(H) is also called the problem H-Coloring. More details and examples on graph

homomorphism can be found in the book [25] by Hell and Nešetřil.

Observation 2.1.4. Let G and H be two graphs. If H contains a loop (reflexive vertex)

then G→ H. If G is bipartite then G→ H if and only if H is has at least one edge. If H

is bipartite then G→ H if and only if G is bipartite.

Observation 2.1.4 shows that if the graph H has a loop or is bipartite, the problem

Hom(H) is easy; however, for other graphs the problem is of higher complexity.

Theorem 2.1.5 (Hell and Nešetřil 1990 [24]). For an undirected graph H, the problem

Hom(H) is polynomial time solvable if H contains a loop or H is bipartite; otherwise, it is

NP-complete.

Definition 2.1.6 (#Hom(H)). For a fixed graph H, #Hom(H) is the problem of finding

the number of homomorphisms from a given input graph G to H.

CHAPTER 2. CSP AND #CSP 8

Dyer and Greenhill proved the following dichotomy for the problem #Hom(H).

Theorem 2.1.7 (Dyer and Greenhill 2000 [16]). For a graph H, if each component of H is

either a reflexive complete graph or a irreflexive complete bipartite graph then the problem

#Hom(H) is polynomial time solvable; otherwise, it is #P-complete.

Hom(H) and #Hom(H) are special cases of CSP(Γ) and #CSP(Γ), respectively. In

both cases, Γ consists of a single binary relation which is the edge set of H with vertex set

of H as the domain. Hence, we may use Hom and #Hom instead of the corresponding CSP

and #CSP, respectively.

Lovász Vectors

The number of homomorphisms from G to H is denoted by hom(G,H); this function can

be used to define the Lovász vector which is used to characterize graphs. Lovasz [32] proved

that two graphs H1 and H2 are isomorphic if and only if for any graph G, hom(G,H1) =

hom(G,H2). For an enumeration of all non-isomorphic graphs (G1, G2, . . .), the Lovasz

vector of a graph H is the infinite sequence consisting of the number of homomorphisms

from graphs in the sequence to H, i.e., (hom(G1, H),hom(G2, H), . . .). In other words

Lovasz’s theorem indicates two graphs are isomorphic if and only if they have the same

Lovasz vector.

Sampling

In this section, we use the model from [30] for definition of classes of problems. Let Σ be

the finite alphabet used to encode input and output of a problem. We can express the

assignment of a solution to an instance with a relation R ⊆ Σ∗ × Σ∗.

A uniform sampling problem is a problem that for an instance x, generates a uniformly

random solution y such that (x, y) ∈ R. An almost uniform sampling is a problem that for

an instance x, generates a random solution y such that (x, y) ∈ R and for any other y′ that

(x, y′) ∈ R the probabilities of choosing y and y′ are approximately the same. Jerrum et

al. [30] explained that for practical purposes, it is impossible to distinguish almost uniform

sampling from uniform sampling by experiments running in polynomial time. Hence, we

may use them interchangeably in this work.

In this model a counting problem is a problem that for an instance x, finds |{y | (x, y) ∈

CHAPTER 2. CSP AND #CSP 9

R}| and an approximate counting problem is a problem that for an instance x, approximately

finds |{y | (x, y) ∈ R}|.
Intuitively, a relation is said to be self-reducible if solutions for an instance can be

expressed in terms of solutions for a number of smaller instances of the same relation.

Many of the relation such as the relation between a graph and a matching in that graph

and relation between CNF (Conjunctive Normal Form) or DNF (Disjunctive Normal Form)

formula and a satisfying truth assignment of that formula are self-reducible.

Theorem 2.1.8 (Jerrum et al. 1986 [30]). For any self-reducible relation R, the almost

uniform sampling problem and the approximate counting problem have the same complexity.

Here we provide a very informal proof for the problem of finding the number of truth

assignment for a CNF. The general idea of the proof for Theorem 2.1.8 is the same. Let C

be a CNF. For a variable x used in C, let Cx denote the CNF derived from C if x is assigned

true; analogously, let Cx̄ denote the CNF derived from C if x is assigned false. Clearly, the

number of solutions for C is the sum of the number of solutions for Cx and the number of

solutions for Cx̄.

In order to generate an almost uniform solution for C using an approximate counter,

we first approximately find the number of solutions for Cx and Cx̄. Next, we assign true

or false to x with probability proportional to number of solutions for C and Cx̄. Then, we

continue with Cx or Cx̄ regarding the choice in previous step.

In order to solve approximate counting using an almost uniform generator, we first

generate some number of random solutions. The number of solution we generate depends

on the expected approximation ratio and the number of variables. Let p(x) be the ratio

of the number of solutions where x is true to the total number of generated solutions;

analogously, let p(x̄) be the ratio of number of solutions where x is false to the total number

of generated solutions. Without loss of generality, suppose that p(x) ≥ p(x̄). By recursion,

estimate the number of solutions for Cx. Finally, estimate the number of solutions for C by

p(x) and the estimation for the number of solutions for Cx.

CHAPTER 2. CSP AND #CSP 10

Partition Functions

Let H be a graph.VH . For a weight function w : VH ∪ EH → R, the weight of the homo-

morphism h is defined as

w(h) =
∏

uv∈EG

w(h(u)h(v))
∏
v∈VG

w(h(v))

The partition function ZH(G,w) is the sum of the weights for all the homomorphisms:

ZH(G,w) =
∑

h:G→H
w(h)

Note that hom(G,H) = ZH(G,w) if w(v) = w(e) = 1 for all v, e ∈ H and w(e) = 0 for

all e 6∈ H. The problem H-Partition is defined follows.

Instance: A graph G and a weight function w

Output: The value of partition function ZH(G,w)

Given a weight function and the partition function, the Gibbs distribution on homomor-

phisms from G to H is the distribution that each homomorphism h has a probability

πH,G,w(h) =
w(h)

ZH(G,w)

The problem H-GibbsSample is defined as:

Instance: A graph G

Output: An H-coloring of G chosen from distribution πH,G,w

Dyer et al. [14] have proved that if H-GibbsSample can be approximately sampled in

polynomial time then H-Partition can also be approximated by a randomized algorithm

in polynomial time.

Statistical Mechanics

Statistical Mechanics is a branch of physics that applies probability theory to predict the

behaviour of a system at a given temperature. Usually there is a complex system consisting

of many microscopic elements. A state or configuration σ is an assignment of parameters of

the microscopic elements. The Hamiltonian H(σ) is the energy of the system in state σ. Let

CHAPTER 2. CSP AND #CSP 11

β be the inverse (one over) temperature. The Partition Function at a given temperature is

defined as

Z =
∑
σ

e−βH(σ)

Given a model of the system and the temperature, many of the important properties of

the system such as the free energy, the entropy, the specific heat, and the location of phase

transition can be evaluate using the the partition function.

One of the commonly used models in Statistical Mechanics is the Ising model. In the

Ising mode, the system is defined by a graph G(V,E). Each edge of the graph (u, v) ∈ E
has an interaction strength Ju,v. Each vertex has an associated local external magnetic field

lv. A configuration of the system is an assignment σ : V → {−1,+1} of vertices of G to

spins. Each configuration is associated with energy:

H(σ) = −
∑

(u,v)∈E

Ju,v · σ(u) · σ(v)−
∑
v∈V

lv · σ(v)

and the partition function for the Ising model is:

Z(G, β, J, l) =
∑

σ:V→{−1,+1}

e−βH(σ)

=
∑

σ:V→{−1,+1}

∏
(u,v)∈E

eβJu,vσ(u)σ(v)
∏
v∈V

eβlvσ(v)

To avoid exponentials in the notation, let λu,v = e2βJu,v and µv = e2βlv . The partition

function will be:

Z(G,λ, µ) =
∑

σ:V→{−1,+1}

∏
(u,v)∈E

λ
1
2
σ(u)σ(v)

u,v

∏
v∈V

µ
1
2
σ(v)

v

=
∏

(u,v)∈E

λ
− 1

2
u,v

∏
v∈V

µ
− 1

2
v

∑
σ:V→{−1,+1}

∏
(u,v)∈E

λ
1
2

+ 1
2
σ(u)σ(v)

u,v

∏
v∈V :

µ
1
2

+ 1
2
σ(v)

v

=
∏

(u,v)∈E

λ
− 1

2
u,v

∏
v∈V

µ
− 1

2
v

∑
σ:V→{−1,+1}

∏
(u,v)∈E
σ(u)=σ(v)

λu,v
∏

v∈V :σ(v)=+1

µv

The system is ferromagnetic if each interaction energy Ju,v is non-negative; which implies

for all u, v in V , we have λu,v ≥ 1. A system is consistent if either for all v, µv ≥ 1 or for

all v, µv ≤ 1. We will mention results on complexity of these cases in Chapter 4.

CHAPTER 2. CSP AND #CSP 12

The Potts model generalizes the Ising model to q possible spins. In the Potts model

there is an underlying graph G(V,E) and each configuration is an assignment σ : V →
{1, 2, . . . , q}. Each edge of the graph (u, v) ∈ E has an interaction strength Ju,v and each

vertex v at state c is associated with an external field hv,c. The energy of a configuration σ

is:

H(σ) = −
∑

(u,v)∈E

Ju,vχ(σ(u), σ(v))−
∑
v∈V

hv,σ(v)

where

χ(s, s′) =

+1, s = s′

−1, otherwise

As before, let λu,v = e2βJu,v and µu,c = eβhv,c . The partition function for the Potts model

is:

Z(G,λ, µ) =
∏

(u,v)∈E

λ
− 1

2
u,v

∑
σ:V→{1,2,...,q}

∏
(u,v)∈E:σ(u)=σ(v)

λu,v
∏
v∈V

µv,σ(v)

Problems of computing partition functions in the Ising and Potts models can be reduced

to a #CSP(Γ) for some constraint language Γ. In Chapter 4, we will mention results

involving reductions from problems of computing partition functions in the Ising and Potts

models to problem #CSP(Γ).

Chapter 3

Reductions and Complexity of

Counting

In this chapter, we will mention several complexity classes for computational functions. We

will define clones and polymorphisms and specify how they are related to the complexity

of the problem CSP(Γ). We will mention the major results on the complexity of prob-

lem #CSP(Γ). We will also define partial clones and specify how they are related to the

complexity of the problem #CSP(Γ).

Two important classes of functions we are interested in are FP and #P. FP is the class

of functions that are computable in polynomial time by a deterministic Turing machine and

#P is the class of function that can be expressed as the number of accepting paths of a

non-deterministic polynomial time Turing machine.

Let f, g : Σ∗ → N be two functions. A parsimonious reduction from f to g is a polynomial

time computable function σ : Σ∗ → Σ∗ such that f(x) = g(σ(x)) holds. A Turing reduction

from f to g is an polynomial time algorithm that computes f using an oracle of g.

Definition 3.0.9 (#P-Completeness). A problem f is #P-complete if it is a member of

#P and every problem in #P is Turing reducible to f in polynomial time.

Consider the problems SAT and #SAT defined as follows. Note that the problems SAT

and the #SAT are generalizations of the problems 3-SAT and the #3-SAT mentioned in

Examples 2.0.4 and 2.0.7.

Name: SAT

Instance: A CNF formula ϕ

13

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 14

Output: Existence of a truth assignment that satisfies ϕ

Name: #SAT

Instance: A CNF formula ϕ

Output: The number of truth assignments that satisfy ϕ

In the same way that Cook [8] proved that SAT is NP-complete, Valiant [37] showed

that #SAT is #P-complete. The proof is easy; Valiant observed that the Cook’s reduction

from a non-deterministic Turing machine to a SAT instance is a parsimonious reduction;

hence, it works for counting problems, as well.

3.1 Clones

In instances of CSP, constraints can be expressed either explicitly or implicitly by interac-

tions of other constraints. Consider the following example.

Example 3.1.1. Let NEQ01 = {(0, 1), (1, 0)} be a binary relation over the set {0, 1}.
Consider the following instance of CSP(NEQ01) :

P = (D = {0, 1}, V = {x, y, z}, C = {〈NEQ01, (x, z)〉, 〈NEQ01(y, z)〉}

There is no explicit constraint with scope (x, y); however, there is the implicit constraint

〈EQV01, (x, y)〉 where EQV01 = {(0, 0), (1, 1)}.

Definition 3.1.2 (pp-definition). Let Γ be a constraint language with domain D and let

R be a relation with the same domain. Relation R is said to be primitive positive (pp)-

definable by Γ if R can be expressed as a predicate using relations from Γ, the relation EQVD

which is the binary equality relation over D, conjunctions, and existential quantification.

Example 3.1.3. Let Γ be a constraint language with domain D = {a, b, c}, consisting

of a single relation R = {(a, a, a), (b, b, b), (a, b, a), (a, b, c)}. Relations R1 = {a, b}, R2 =

{(a, a), (b, b), (a, b)}, and R3 = {(a, a, a), (a, a, c), (b, b, b)} are pp-definable by Γ as follows:

R1(x) = ∃z.R(x, x, z)

R2(x, y) = ∃z.R(x, y, z)

R3(x, y, z) = ∃s, t.R(x, t, z) ∧R(z, s, y)

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 15

The notion of pp-definition is equivalent to elementary operators used in [34, 1, 31], and

strict implementations used in [10, 15].

A set of relations closed under pp-definition is called a co-clone. For a constraint language

Γ, 〈〈Γ〉〉 is the the least co-clone containing Γ, also called the co-clone generated by Γ.

A function f is said to be a projection function if f(x1, . . . , xl) = xl for some l. A set

of functions is said to be a clone if it contains all projection functions and is closed under

superpositions (compositions). For a set of functions C, 〈〈C〉〉 is the least clone containing

C also called the clone generated by C.

A Galois connection between sets A and B is a pair of functions σ : 2A → 2B and

τ : 2B → 2A which maintain antitony, that is, for every X,X ′ ⊆ A and every Y, Y ′ ⊆ B we

have

X ⊆ X ′ =⇒ σ(X) ⊇ σ(X ′)

Y ⊆ Y ′ =⇒ τ(Y) ⊇ τ(Y ′)

and extensivity, that is, for every X ⊆ A and every Y ⊆ B we have

X ⊆ τ(σ(X))

Y ⊆ σ(τ(Y))

Let R be a relation over domain D and f : Dn → D a function of arity n over the same

domain. Function f preserves R or is a polymorphism of R if for any n tuples a1,a2, . . . ,an

in R, the tuple f(a1,a2, . . . ,an) obtained by component-wise application of f , is in R. The

relation R in this case is said to be invariant with respect to f . The set of all functions

preserving a constraint language Γ is denoted by Pol(Γ), the set of all relations invariant

with respect to a set of functions C is denoted by Inv(C).

Functions Inv and Pol satisfy antitony and extensivity; hence, they form a Galois

connection between the sets of functions and the set of relations, namely, we have the

following theorem.

Theorem 3.1.4 (Geiger [21], Romov et al. [1]). For any constraint language Γ and any set

of functions C, we have Inv(Pol(Γ)) = 〈〈Γ〉〉 and Pol(Inv(C)) = 〈〈C〉〉 .

Remark. Since the Pol and Inv functions form a Galois connection, for any constraint

language Γ and any set of functions C, Pol(Γ) and Inv(C) are co-clones and clones, re-

spectively.

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 16

Corollary 3.1.5. Let Γ and Γ′ be two constraint languages with the same domain. If

Pol(Γ) ⊆ Pol(Γ′) then every relation from Γ′ is pp-definable in Γ.

Theorem 3.1.6 (Jeavons et al. 1997 [26]). For a constraint language Γ and a relation R

with the same domain, if R is pp-definable in Γ then CSP(Γ) is polynomial-time equivalent

to CSP(Γ ∪ {R}).

In order to reduce CSP(Γ∪{R}) to CSP(Γ), for each instance P = (D,V,C) of CSP(Γ∪
{R}), create an instance P ′ = (D,V ′, C ′) of CSP(Γ) as follows. Include all variables of V

in V ′. For all relations R′ in Γ, include constraints 〈R′, %〉 from C in C ′. For all constraints

〈R, %〉 in C, we use ψ the pp-definition of R in Γ to replace R in P ′; for each existential

quantifier in ψ, add the quantified variables to V ′; for each EQVD(x, y) relation in ψ, replace

all occurrences of y with x; the rest of ψ consists of conjunction of clauses in the form R′(%)

where R′ is a relation in Γ and % is a scope of variables from V ′; for each clause R′(%) in ψ,

add a constraint 〈R′, %〉 to C ′. For each satisfying assignment ϕ of P ′, the restriction of ϕ

to V is a satisfying assignment for P, and for each satisfying assignment ϕ of P, there is at

least one extension of ϕ to V ′ which is a satisfying assignment for P ′.
Note that this reduction preserves the existence of an satisfying assignment but does not

necessarily preserve the number of satisfying assignments.

Corollary 3.1.7. For any Γ′ a finite subset of 〈〈Γ〉〉, the problem CSP(Γ′) is polynomial

time reducible to the problem CSP(Γ); consequently, the complexity of the problem CSP(Γ)

only depends on the Pol(Γ).

Conjecture 3.1.8 (Feder and Vardi 1998 [19]). For any constraint language Γ, CSP(Γ) is

either polynomial time solvable or NP-complete.

Bulatov and Valeriote [7] have a survey of results on the relation between complexity

of CSP(Γ) and Pol(Γ). There are more results in [6, 36]; however, the CSP dichotomy still

remains an open problem.

3.2 Exact Counting

In the previous section we mentioned the relation between polymorphisms and complexity

of the problem CSP(Γ); in this section we will establish a similar connection between poly-

morphisms and complexity of #CSP(Γ) and mention results on the complexity of #CSP(Γ).

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 17

Consider the following problem:

Name: #2-Coloring

Instance: A graph G

Output: The number of 2-Colorings of G

The problem #2-Coloring can be solved in polynomial time as follows. For an input

graph G, if G is not bipartite then the answer will be 0; otherwise, if G is connected then

the answer will be 2 and if G is not connected there are 2 choices for each component; hence,

if G has m connected component the answer will be 2m.

The problem #2-Coloring can be expressed as #CSP(NEQ01), where NEQ01 is the

inequality relation over a two element set, that is, NEQ01 = {(0, 1), (1, 0)}. The problem

#2-Coloring is easy to solve because the NEQ relation belongs to a family of relations

called affine relations. A relation is affine if it is expressible by a system of linear equations

over a finite field. The relation NEQ01 is an affine relation because NEQ01 = {(x, y) |
x⊕ y ≡ 1 (mod 2)}.

Example 3.2.1. Relation R defined as R = {(0, 1), (1, 0), (2, 2)} is affine because it can be

expressed as {(x, y) | x⊕ y ≡ 1 (mod 3)}.

For any affine relation R, the problem #CSP(R) can be solved in polynomial time as

follows. If the system of linear equations is inconsistent then there is no solutions; otherwise,

there are km solutions where m is the dimension of the solution space of the system of linear

equations and k is the size of the finite field used to express R.

The simplest type of constraint languages are those over a domain of size two. They

are usually referred to as Boolean constraint languages. #CSP(Γ) for Boolean Γ is often

referred as Boolean #CSP(Γ). Creignou and Hermann proved a dichotomy for the Boolean

problem #CSP(Γ).

Theorem 3.2.2 (Creignou and Hermann 1996 [9]). For a Boolean constraint language Γ,

if Γ is affine then #CSP(Γ) is polynomial time solvable; otherwise, it is #P-complete.

Previously, we mentioned the dichotomy theorem for complexity of #CSP in Section 2.1.

Theorem 3.2.3 (Dyer and Greenhill 2000 [16]). For a graph H, if each component of

H is a complete reflexive graph or a complete irreflexive bipartite graph then the problem

#Hom(H) is polynomial time solvable; otherwise, it is #P-complete.

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 18

Creignou and Hermann [9] proved that a Boolean constraint language Γ is affine if and

only if every relation R in Γ is closed under the function f(x, y, z) = x⊕y⊕z. It is also easy

to see that a graph G is complete reflexive if and only if the edge set of G is closed under

any polymorphism. Similarly, a bipartite graph G is complete if and only if the orientation

of edges of G from one part to other part is closed under any polymorphism.

Hence, polymorphisms can also express criteria used in both theorems. This suggests

that Pol(Γ) can express the complexity of the problem #CSP(Γ). Suppose Γ1 and Γ2 are two

constraint languages such that every relation in Γ2 is pp-definable in Γ1; the pp-definition

suggests a reduction from CSP(Γ2) to CSP(Γ1). However, this reduction is not usable for

counting problems. Bulatov and Dalmau provided a reduction that relates the complexity

of the problem #CSP(Γ) to Pol(Γ).

Theorem 3.2.4 (Bulatov, Dalmau 2007 [3]). For a constraint language Γ and a relation R

with the same domain, if R is pp-definable in Γ then #CSP(Γ) is polynomial-time equivalent

to #CSP(Γ ∪ {R}).

This theorem is analogous to Theorem 3.1.6. In the same manner Jeavons’s theorem

links complexity of CSP(Γ) to clones, this theorem links complexity of #CSP(Γ) to clones,

as well. This connection led to a dichotomy for the problem #CSP(Γ).

Let Γ be a constraint language with domain D and let R be a k-ary relation on D pp-

definable in Γ. A congruence of R is a 2k-ary relation Q on D which is also pp-definable in

Γ and satisfying the following conditions: (a) Q can be viewed as a binary relation on R,

i.e., Q ⊆ R2; (b) Q viewed as a binary relation on R is an equivalence relation.

Now, let Q,Q1, Q2 be congruences of R such that Q ⊆ Q1, Q2. Let A1, . . . , Am and

B1, . . . , Bn be the equivalence classes of Q1 and Q2, respectively. M(R;Q1, Q2;Q) denotes

an m× n matrix where Mij is the number of Q-classes in Ai ∩Bj .
A constraint language Γ is said to be congruence singular if for any pp-definable relation

R in Γ and any congruences Q,Q1, Q2 of R with Q ⊆ Q1, Q2, the row rank of matrix

M(R;Q1, Q2;Q) equals the number of classes of the smallest equivalence relation containing

both Q1 and Q2.

Theorem 3.2.5 (Bulatov 2008 [2]). For a constraint language Γ, the problem #CSP(Γ) is

polynomial time solvable if Γ is congruence singular; otherwise, it is #P-complete.

Bulatov proved a dichotomy for all Γ but the decidability of being congruence singular

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 19

remained open until Dyer and Richerby [17] proved that being congruence singular can be

verified in polynomial time.

Theorem 3.2.6 (Dyer and Richerby 2010 [17]). For a constraint language Γ, checking if Γ

is congruence singular is in NP.

3.3 Weak Co-clones

In the previous section, we showed that the complexity of the problems CSP(Γ) and #CSP(Γ)

depends on Pol(Γ). However, it seems unlikely that a similar relation occurs for approx-

imating #CSP(Γ); in fact, pp-definitions with existential quantifiers allowed, as in Defini-

tion 3.1.2, do not guarantee a reduction suitable for approximation.

For a domain D, any set of relations closed under conjunctions and containing EQVD,

the binary equality relation over D, is a weak co-clone. For a constraint language Γ, 〈Γ〉 is

the least weak co-clone containing Γ, also called the weak co-clone generated by Γ.

For a partial function f on the domain D, the set of all tuples from Dn on which

f is defined is called the domain of f and denoted by dom(f). A set of partial func-

tions C is said to be down-closed if for every function f in C, C contains any function

f ′ such that dom(f ′) ⊆ dom(f) and f ′(a1, a2, . . . , an) = f ′(a1, a2, . . . , an) for every tuple

(a1, a2, . . . , an) ∈ dom(f ′). A down-closed set of partial functions, containing all projections

and closed under superpositions is called a partial clone.

Let R be a relation with domain D and f : Dn → D be a partial function of arity

n over the same domain. Function f is a partial polymorphism for R, if for any n tuples

a1,a2, . . . ,an in R if (a1,a2, . . . ,an) ∈ dom(f) then f(a1,a2, . . . ,an) is also in R. Relation

R in this case is said to be invariant with respect to f . The set of all partial polymorphisms

of a constraint language Γ is denoted by pPol(Γ) and the set of all relations invariant under

a set of partial functions C is denoted by Inv(C). Note that the Inv function for partial

functions is an extension of the Inv function for total functions.

Theorem 3.3.1 (Creignou et al. [10]). Let Γ1,Γ2 be two sets of relations over the same

domain; if Γ2 is a finite subset of 〈Γ1〉 then #CSP(Γ2) is parsimoniously reducible to

#CSP(Γ1).

Fleischer and Rosenberg [20] proved that for any constraint language Γ and any set

of functions C, we have Inv(pPol(Γ)) = 〈Γ〉 and pPol(Inv(C)) = 〈C〉. On the other

CHAPTER 3. REDUCTIONS AND COMPLEXITY OF COUNTING 20

hand, pPol and Inv functions maintain extensivity and antitony; hence, they form Galois

connection between sets of relations and partial functions. Due to properties of Galois

connections, for any constraint language Γ and any set of functions C, the sets Inv(C) and

pPol(Γ) are a weak co-clone and a partial clone, respectively.

Chapter 4

Approximate Counting

In this chapter we formally define the complexity class which is considered as the efficient

computational model for counting problems. We define AP-reductions and give a classifi-

cation of computational problems with respect to AP-reductions. We use the definition of

FPRAS from [13].

A randomized approximation scheme (RAS) for a function f : Σ∗ → N is a probabilistic

algorithm that for an input (x, ε) ∈ Σ∗× (0, 1) where x is an instance of f and ε is the error

tolerance, produces an integer random variable z such that

Pr

(∣∣∣∣z − f(x)

f(x)

∣∣∣∣ ≤ ε) ≥ 3

4
.

A randomized approximation scheme is said to be fully polynomial if it runs in time

poly(|x|, 1
ε). The phrase “fully polynomial randomized approximation scheme” is usually

abbreviated to FPRAS . The complexity class FPRAS is referred to problems which have

FPRAS.

Note that there is no significance in the constant 3
4 in the definition, other than being in

(1
2 , 1) interval. Jerrum et al. [30] proved that any success probability greater than 1

2 can be

improved to 1− δ for any desired δ by O(log δ−1) trials of algorithm and taking the median

of the results.

APX is another complexity class that is regarded as an efficient computational model

for optimization problems. For a function f : Σ∗ → N and a constant factor α, f has

an α-APX if there is an algorithm that takes x ∈ Σ∗ as an input and in time poly(|x|)
produces an integer z such that 1

α ≤
z

f(x) ≤ α. In the same manner, poly-APX and log-

APX are algorithms that given an input x, in time poly(|x|) find a solution z such that

21

CHAPTER 4. APPROXIMATE COUNTING 22

1
|x|c ≤

z
f(x) ≤ |x|

c for some constant c and 1
log |x| ≤

z
f(x) ≤ log |x|, respectively. There are no

results on #CSP(Γ) with APX schemas. With the next lemma, I explain why APX schemas

are not used for problem #CSP(Γ) .

Lemma 4.0.2. For a constraint language Γ, if there is a poly-APX for the problem #CSP(Γ)

then there is an FPRAS it, as well.

Proof. Let Alg be an algorithm and T be a polynomial function such that for any instance

P = (D,V, C) of #CSP(Γ), we have

1

T (|P|)
≤ Alg(P)

#P
≤ T (|P|).

Choose k a sufficiently large number whose value will be determined later. Let P ′ =

(D,V ′, C′) be k copies of P as

V ′ = {xi | 1 ≤ i ≤ k, x ∈ V }

and

C′ = {〈(xil1 , . . . , x
i
lt), R〉 | 1 ≤ i ≤ k, 〈(xl1 , . . . , xlt), R〉 ∈ C}.

By multiplication principle, #P ′ = #Pk; k
√
Alg(P ′) is an (1 + ε)-approximation for P if

1 + ε > k
√
T (|P| · k). For that, it is sufficient for k to be greater than 1

ε · log T (|P| · k). Since

the function T is polynomial in |P|, k is also polynomially bounded by |P| and 1
ε .

Definition 4.0.3 (AP-reduction). For any two functions f and g, an approximation-

preserving reduction(AP-reduction for short) from f to g is a probabilistic algorithm Alg

which uses a solver Alg′ for g and for any input (x, ε) ∈ Σ∗× (0, 1) where x is an instance of

f and ε is an error tolerance, produces an integer random variable z satisfying the following

conditions:

• Alg′ takes an input in the form (w, δ) ∈ Σ∗ × (0, 1) where w is an instance of g and δ

is the error tolerance,

• if Alg′ meets the specification for being a RAS for g then Alg meets the specifications

for being a RAS for f ,

• Alg runs in polynomial time in terms of |x| and 1
ε

CHAPTER 4. APPROXIMATE COUNTING 23

If an approximation-preserving reduction from f to g exists we write f ≤AP g and say f

is AP-reducible to g. If f ≤AP g and g ≤AP f then we say that f and g are AP-interreducible

and write f ≡AP g.

In this chapter we will study three major classes of counting problem with respect to

complexity of approximate counting. We will study some of the important counting problem

in FPRAS in Section 4.1, the problems that are hard to approximate in Section 4.2, and

the problem #BIS and problems AP-interreducible with it in Section 4.3. In Section 4.4,

we will mention some problems that not known to fit in this classification.

4.1 Polynomial Time Solvable Problems

Few non-trivial combinatorial problems involving counting can be solved in polynomial

time. Some of these problems are reducible to determinant such as the problem of finding

the number of spanning trees of a graph and the problem of finding the number of perfect

matchings in a planar graph. Bulatov [2] showed that the problem #CSP(Γ) is polynomial

time solvable for congruence singular relations Γ and otherwise it is #P-complete. In this

section we show several examples of counting problems for which an approximate solution

can be obtained in polynomial time.

There are some artificial examples of problem #CSP(Γ) that can be approximated in

polynomial time.

Example 4.1.1. For the graph H shown in Figure 4.1, we show that the problem #Hom(H)

is in FPRAS. Suppose the input is (G, ε) where G is a connected graph with n vertices and

ε is the error tolerance. We know that 4n ≤ hom(G,H) ≤ 4n + 3n. For ε ≥ (3
4)n, take 4n as

an approximation, the error ratio will be

hom(G,H)− 4n

hom(G,H)
≤ 3n

hom(G,H)
≤ (

3

4
)n ≤ ε

For ε < (3
4)n, we have 1

ε > (4
3)n; hence, (1

ε)
log 4

3
3
> 3n; consequently, 3n is polynomial in

terms of 1
ε ; which means the number of 3-colorings of G can be evaluated in poly(n, 1

ε) time.

Note that hom(G,H) is 4n plus the number of 3-colorings of G.

The construction in Example 4.1.1 shows that for any graph G, there exists a graph H

such that G is an induced subgraph of H and the problem #Hom(H) is in FPRAS. In other

CHAPTER 4. APPROXIMATE COUNTING 24

Figure 4.1: Graph G used in Example 4.1.1

words, although G is an induced subgraph of H, approximating the problem #Hom(H) may

be easier than approximating the problem #Hom(G).

Another interesting counting problem which can be approximated in polynomial time is

the problem #DNF-SAT defined as

Instance: A Boolean DNF (Disjunctive Normal Form) formula ϕ

Output: The number of satisfying assignments for ϕ

There are different algorithms to solve this problem. Luby and Veličkovic [33] provided

a deterministic algorithm for approximating the probability of a random assignment being

satisfying. Madras et al. [35] provided a Monte-Carlo algorithm for this problem. Jerrum

et al. [30] provided an algorithm,depicted in Algorithm 1, for sampling the problem DNF-

SAT.

Algorithm 1 An algorithm for sampling DNF-SAT

while true do
Select a clause C randomly with probability proportional to the size of the clause
Select an assignment A satisfying C uniformly at random
Let N be the number of clauses satisfied by A
With probability 1

N : output A and halt
end while

Since the problem #DNF-SAT is self-reducible, Theorem 2.1.8 implies that Algorithm 1

can be used to find an approximate solution for DNF-SAT.

Other common method used to approximate counting problems is using the Markov

chain Monte-Carlo algorithms. Consider the following problems:

Name: #Match

Instance: A graph G

Output: The number of matchings in G

CHAPTER 4. APPROXIMATE COUNTING 25

Name: #LowDegree-k-Coloring

Instance: A graph G such that 2∆(G) + 1 ≤ k, where ∆(G) is the maximum degree in G

Output: The number of proper k-Colorings of G

Jerrum and Sinclair [29] used Markov chain Monte-Carlo method to approximate the

problem #Match; Jerrum [27] used the same method to approximate the problem #LowDegree-

k-Coloring for graphs with bounded degree. We give a brief description of the Markov

chain Monte Carlo method and show how these two problems are solved using this method.

The Markov chain Monte Carlo method solves a sampling problem as follows.

a Markov chain is finite automaton in which the transition between the states are labeled

with probabilities of transition between the states. Xt is used to denote the state of the

automaton at step t. Consider a Markov chain with state space Ω and stationary distribution

π. Intuitively, a Markov chain is said to be ergodic if regardless of the initial state, the

probability distribution over Ω asymptotically converges to π. In order to sample, start

from an arbitrary state in Ω; simulate the Markov chain for T steps; finally output the final

step. The number T should be chosen sufficiently large so that after T steps, the distribution

of state is arbitrarily close to the desired distribution π. The number of steps required for

the algorithm to become close enough to π is called the mixing time. Loosely, if the mixing

time for a Markov chain is polynomial in terms of the size of the input and the desired

approximation ratio, then the Markov chain is rapidly mixing .

The problem #LowDegree-k-Coloring is solved as follows. Let G be the input graph

with n vertices and m edges. Consider a sequence of subgraphs of G such that Gm = G

and Gi is obtained from Gi+1 by removing an arbitrary edge. For any graph G, let Ωk(G)

denote the set of k-colorings of G. The general idea is using the following formula to estimate

|Ωk(G)|:

|Ωk(G)| = |Ωk(Gm)|
|Ωk(Gm−1)|

× |Ωk(Gm−1)|
|Ωk(Gm−2)|

× · · · × |Ωk(G1)|
|Ωk(G0)|

× |Ωk(G0)|

Trivially, |Ωk(G0)| = kn. All that remains is estimating the ratios %i defined as

%i =
|Ωk(Gi)|
|Ωk(Gi−1)|

for all values of i in the range 1 ≤ i ≤ m.

CHAPTER 4. APPROXIMATE COUNTING 26

Let M(Gi, k) denote a Markov chain whose state space is Ωk(Gi). The transition prob-

abilities from the state Xt are modeled as

i) choose a vertex v and a color c uniformly at random

ii) recolor the vertex v with the color c; if the resulting coloring X ′ is proper then let

Xt+1 = X ′; otherwise, let Xt+1 = Xt.

Jerrum [27] showed that for k ≥ ∆(G) + 2, the M(Gi, k) is ergodic and rapidly mixing

with a uniform stationary distribution. For X ∈ Ωk(Gi−1), let Zi(X) be 1 if X ∈ Ωk(Gi);

otherwise, 0. Jerum also proved that by a high probability the expected value of Zi(X) over

polynomial number of samples is an acceptable estimation for %i.

The general idea to solve the problem #Match is similar. Jerrum and Sinclair [29]

solved a weighted version of the problem #Match which is called the problem Monomer-

Dimer in statistical physics. It is defined as follows.

Name: Monomer-Dimer

Instance: A graph G and a positive real number λ

Output: The partition function ZG(λ) which is the sum of λ|M | for all matchings M of G

Note that ZG(1) is the number of matchings in G and ZG(0) = 1 because for the empty

matching M , limλ→0+ λ
|M | = 1. The technique used to solve this problem is the same as the

problem #LowDegree-k-Coloring; however, instead of removing edges from the graph,

the sequence is obtained by reducing the value of λ. We will not go through details about

this algorithm.

We defined the Ising model in Section 2.1. Jerrum and Sinclair [28] have proved that

there exists an FPRAS for the problem of computing the partition function in Ising model

if the model is consistent.

4.2 Problems Hard To Approximate

In this section we study the set of counting problems that are the hardest problems in #P

for the complexity of approximation. In other words every problem in #P is AP-reducible

to them. Existence of an FPRAS for any of these problems implies NP = RP where a

problem is in RP if there is a randomized algorithm that runs in polynomial time and if the

CHAPTER 4. APPROXIMATE COUNTING 27

answer is NO always rejects and if the answer is YES accepts with probability of at least 3
4 .

The following theorem points us to the first set of problems in this complexity class.

Theorem 4.2.1 (Goldberg et al. [12]). For any NP-complete decision problem, the corre-

sponding counting problem is complete for #P with respect to AP-reducibility.

Corollary 4.2.2. #SAT, #3-SAT, and #3-Coloring are complete for #P with respect

to AP-reducibility.

Another important problem AP-interreducible with the problem #SAT is the problem

#IS defined as:

Instance: A graph G

Output: The number of independent sets in G

The decision problem IS is a trivial problem; every graph has at least an empty indepen-

dent set. However, the counting problem #IS is proved to be AP-interreducible with the

problem #SAT by Goldberg et al.[12]. Finding AP-reductions from many problems from

the problem #IS is more straightforward than finding reductions from the problems that

the decision version is NP-complete.

a b

(a) Wr0

a b

c1

(b) Wr1

a b

c1 c2

(c) Wr2

a b

c1

c3

c2

(d) Wr3

Figure 4.2: Wrench graphs Family

CHAPTER 4. APPROXIMATE COUNTING 28

Example 4.2.3. Consider the binary relations OR and NAND on domain {0, 1} defined as

OR = {(0, 1), (1, 0), (1, 1)} and NAND = {(0, 0), (0, 1), (1, 0)}. For an instance G = (V,E)

of the problem #IS, consider an instance P = ({0, 1}, V, C) of the problem #CSP(OR)

where

C = {〈(x, y),OR〉 | xy ∈ E}.

Every independent set I in G, corresponds to an assignment ϕ for P where ϕ(x) = 0 if x ∈ I
and ϕ(x) = 1 if x /∈ I. Similarly, the problem #IS can be expressed by the #CSP(NAND)

as well; hence, the problems #CSP(OR) and #CSP(NAND) are both AP-interreducible

with the problem #SAT.

Although the problem 2-SAT (the decision problem) is polynomial time solvable, the

problem #2-SAT can express #CSP(OR) and #CSP(NAND); hence, the problem #2-SAT

is also AP-interreducible with the problem #SAT.

Example 4.2.4 (#Wrench-Col). The Wrench graphs family are denoted by Wrq =

(Vq, Eq) where Vq = {a, b, c1, c2, . . . , cq} and Eq = {{a, b}, {b, b}}∪{{b, ci}, {ci, ci} : 1 ≤ i ≤ q}.
Graphs Wr0, Wr1, Wr2, and Wr3 are shown in Figure 4.2. The problem #Hom(Wrq) is

referred to as the problem #q-Wrench-Col. Goldberg et al. [12] proved that for q 6= 2,

the problem#q-Wrench-Col is AP-interreducible with the problem #SAT.

Example 4.2.5 (#q-Particle-WR-Configs). For q ≥ 1, homomorphisms to S∗q where S∗q

is a q-leaf star with loops at all the q+ 1 vertices are configuration in the q-particle Widom-

Rowlinson model. The problem #q-Particle-WR-Configs is defined as the problem

#Hom(S∗q). Graphs S∗1 , S∗2 , S∗3 , and S∗4 are shown in Figure 4.3.

The problem #Hom(S∗1) is polynomial time solvable. We will consider the problems

#Hom(S∗2) and #Hom(S∗3) later; Goldberg et al. [12] have proved that for q ≥ 4, the

problem #Hom(S∗q) is AP-interreducible with the problem #SAT.

We defined the Ising and Potts models in Section 2.1. Jerrum and Sinclair [28] showed

that the problem of computing the partition function in Ising model is AP-interreducible

with the #SAT problem if the model is not consistent.

Jerrum and Goldberg [22] showed that the problem of computing the partition function

in Potts model with more that two states is AP-interreducible with the #SAT problem.

They also showed that the problem of computing the partition function in Ising model is

AP-interreducible with the problem #SAT if the model is not ferromagnetic.

CHAPTER 4. APPROXIMATE COUNTING 29

(a) S∗1 (b) S∗2

(c) S∗3 (d) S∗4

Figure 4.3: Particle-WR-Configs

4.3 Problems AP-interreducible With #BIS

The proof used in [12] to show that the #SAT problem is AP-reducible to the problem #IS

does not work if the input for the problem #IS is limited to bipartite graphs. The version

of the problem #IS with input limited to bipartite graphs is called the problem #BIS and

is defined as follows:

Instance: A bipartite graph G

Output: The number of independent sets in G

Note that by Theorem 3.2.3 exactly solving the problem #BIS is #P-complete. Gold-

berg et al. [12] proved that the following problems are AP-interreducible with #BIS.

Name: #DownSets

Instance: A partial order (P,�)

Output: The number of down-sets in P

In a partial order P = (X,�), a down-set (also called lower-set) is a set D such that for

every x ∈ D if there exist y � x then y ∈ D, as well. Note that the number of down-sets in

a partial order equals the number of anti-chains in the same partial order.

Name: #1P1N-SAT

Instance: A Boolean CNF formula ϕ with clauses of size one, or size two such that there

is one negative and one positive literal per clause

CHAPTER 4. APPROXIMATE COUNTING 30

(a) ~P ∗2 (b) P4 (c) Oriented P4

(d) ~P ∗3

· · ·
(e) P ∗k

Figure 4.4: Several graphs AP-interreducible with #BIS

Output: The number of satisfying assignments of ϕ

For many graphs, the problem #Hom(H) is also AP-interreducible with the problem

#BIS. For example, the problem #Hom(H) is AP-interreducible with the problem #BIS

if H is any of the graphs ~P ∗2 , P4, ~P4, ~P ∗3 , or P ∗k (k ≥ 3), which are shown in Figure 4.4.

There are also problems from statistical physics that are AP-interreducible with the

problem #BIS. The Ising model is described in Section 2.1. The problems #2-Wrench-

Coloring and #2-Particles-WR-Configs are described in Examples 4.2.4 and 4.2.5,

respectively.

Name: Ferromagnetic Ising

Instance: A graph G, inverse temperature β, interaction strengths J such that Ju,v > 0,

local external magnetic field l

Output: The partition function Z(G, β, J, l)

Name: #2-Wrench-Coloring

Instance: A graph G

Output: The number of homomorphisms from G to WR2

Name: #2-Particles-WR-Configs

Instance: A graph G

Output: The number of homomorphisms from G to S∗2

CHAPTER 4. APPROXIMATE COUNTING 31

Goldberg and Jerrum [22] proved that the problem Ferromagnetic Ising is AP-

interreducible with the problem #BIS and Goldberg et al. [12] proved that the problems

#2-Wrench-Coloring and the #2-Particles-WR-Configs are AP-interreducible with

the problem #BIS.

Here we prove that the two characterizing problems in this class, i.e., #BIS and #DownSets,

are AP-interreducible.

Lemma 4.3.1. #DownSets ≤AP #BIS.

We use the proof from [13]. We denote the number of down-sets in a partial order P by

#DS(P) and the number of independent sets in a graph G by #IS(G).

Proof. Let P = (X = [n],�) be an instance of the problem #DownSets. Let B = (U, V,E)

be a bipartite graph defined as follows. For i in X, let Ui and Vi be a collection of disjoints

sets of size 2n. Then, take U =
⋃

1≤i≤n Ui, V =
⋃

1≤i≤n Vi, and

E = {uv | u ∈ Ui ∧ v ∈ Vj ∧ i � j}.

An independent set I in B is said to be full if for all 1 ≤ i ≤ n the set I ∩ (Ui ∪ Vi) is

nonempty. Every full independent set I in B corresponds to the down-setD = {i | I∩Vi 6= ∅}
in P . In the same manner, every down-set D in P gives exactly (22n− 1)n full independent

sets in B. Note that 22n − 1 is the number of nonempty subsets of Ui ∩ Vi.
On the other hand the number of non-full independent sets in B is less than 3n(22n −

1)n−1. Thus, for n ≥ 5 we have

#DS(P) =

⌊
#IS(P)

(22n − 1)n

⌋
.

Lemma 4.3.2. #BIS ≤AP #DownSets.

The proof used in [13] involves reduction to several other problem. Here we present our

own proof which is the special case of Theorems we will be using in Chapter 6.

Proof. Let B = (U, V,E) be a bipartite graph. We will create a partial order P = (X,�)

such that #IS(B) = #DS(P). Take X = U ∪ V and u � v if and only if uv ∈ E. We claim

that for every down-set D in P , I = (U ∩D) ∪ (V −D) is an independent set and for any

independent set I in B the set D = (U ∩ I) ∪ (V − I) is a down-set in P .

CHAPTER 4. APPROXIMATE COUNTING 32

Let D be a down-set in P . Since U ∩D and V −D are subsets of U and V respectively,

they are both independent sets. There is no edge from V to U and since D is a DownSet

all the neighbors of U ∩ D rely in V ∩ D and none of them are in V − D; hence, the set

I = (U∩D)∪(V −D) is an independent set in B. On the other hand, let I be an independent

set in B. There is no out-going edge from any vertex in V and since I is an independent

set out-neighbors of U ∩ I are limited to V − I; hence, the set D = (U ∩ I) ∪ (V − I) is a

down-set in P .

Hence, we have a parsimonious reduction from the problem #BIS to the problem

#DownSets.

4.4 Other Difficult Problems

Goldberg et al. [15] proved an approximation trichotomy for the Boolean problem #CSP(Γ).

A Boolean relation R is monotone if R is closed under ∧ and ∨ operators; a Boolean

constraint languages Γ is monotone if every relation in Γ is monotone.

Theorem 4.4.1 (Dyer, Goldberg, Jerrum, 2007 [15]). For a constraint language Γ, if Γ

is affine then #CSP(Γ) is polynomial time solvable; otherwise, if Γ is monotone then it is

AP-interreducible to the problem #BIS; otherwise, it is AP-interreducible with the problem

#SAT.

Despite the approximation trichotomy for the Boolean problem #CSP(Γ), the non-

Boolean problem #CSP(Γ) seems to have more complexity classes. So far, our knowledge

on complexity classes of the problem #CSP(Γ) is very limited. We are not aware if the

approximation complexity classes for this problem are finite or even countable. We know a

few problems that are only proven to be harder than the problem #BIS [12] and currently,

we have no knowledge on how hard these problems are.

Here are some of these problems. #3-Particles-WR-Configs was introduced in Ex-

ample 4.2.5.

Name: #3-Particles-WR-Configs

Instance: A graph G

Output: The number of homomorphisms from G to Wr3

Name: #Bipartite q-Coloring for q ≥ 3

Instance: A bipartite graph G

CHAPTER 4. APPROXIMATE COUNTING 33

Output: The number of q-Colorings of G

Chapter 5

Techniques for AP-Reductions

In this chapter we provide a number of lemmas which can be used for obtaining AP-

reductions. These results have been communicated in [4], [5]. First, we show that we

can limit the input problem to connected structures. Next, we show that AP-reductions are

possible when solutions for the two problems are related by a linear transformation. Next,

we introduce a technique called pinning , which can be also used to derive AP-reductions.

Finally, we introduce max-definability, which is our best tool for deriving AP-reductions.

Some of these techniques will be used in subsequent chapters.

5.1 Connected graphs

First, we show that by restricting the input to connected structures the complexity of

#CSP(Γ) does not change. We extend the definition of connectedness from graphs to

general structures.

Let P = (D,V, C) be an instance of #CSP(Γ). Let H(P) be a graph with the vertex set

V , that contains an edge uv if and only if u and v appear in the same scope for a constraint

in C. We say an instance P is connected if the graph H(P) is connected. Let #CSPc(Γ)

denote the problem #CSP(Γ) limited to connected instances.

Lemma 5.1.1. For any constraint language Γ the problem #CSP(Γ) is AP-interreducible

with #CSPc(Γ).

Proof. The reduction of #CSPc(Γ) to #CSP(Γ) is trivial. Now, let P be an instance of

#CSP(Γ), and let P1, . . . ,Pr be its connected components. Take ε > 0 and set δ = ε
2r .

34

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 35

Given an instance (P, ε), our reduction calls the algorithm for #CSPc(Γ) on instances

(P1, δ), . . . , (Pr, δ) and get outputs N = N1 · · ·Nr, where Ni is the answer given by the

oracle on (Pi, δ).
We claim that the above reduction is an AP-reduction. First of all, observe that it is

polynomial time, and the instances it produces satisfy the conditions of AP-reductions. It

remains to show that if the oracle approximates the solutions with relative error δ then the

reduction provides approximation within ε.

Since we can assume ε is small, we have (1−δ)r ≥ 1−2rδ = 1−ε and (1+δ)r ≤ 1+2rδ =

1 + ε. If the actual solutions to P,P1, . . . ,Pr are N ′, N ′1, . . . , N
′
r, then we obviously have

N ′ = N ′1 · · ·N ′r. The rest of the proof goes as follows.∣∣∣N ′i−Ni

Ni

∣∣∣ ≤ δ∣∣∣N ′iNi
− 1
∣∣∣ ≤ δ

1− δ ≤ N ′i
Ni

≤ 1 + δ

(1− δ)r ≤ N ′1·N ′2···N ′r
N1·N2···Nr

≤ (1 + δ)r

1− ε ≤ N ′

N ≤ 1 + ε∣∣∣N ′N − 1
∣∣∣ ≤ ε∣∣∣N ′−NN

∣∣∣ ≤ ε.

Hence, in the later proofs we can restrict the input structures to connected structures.

5.2 Linear Transformations

Next, we show that if the solutions of #CSP(Γ) and #CSP(Γ′) are linearly related on all

inputs, then they are AP-interreducible.

Lemma 5.2.1. Let ϕ be a polynomial time computable function that maps every instance

of a counting problem A to an instance of a counting problem problem B in such a way

that there are constants d > 0 and c (not necessarily positive) such that for any A-instance

P, we have #P = d ·#ϕ(P) + c. If every instance of A has at least one solution (in case

c < 0), or every instance of B has at least one solution (in case c > 0), then there is an

AP-reduction from A to B.

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 36

Proof. The AP-reduction works as follows. On an instance P of A and ε > 0 it makes

an oracle call (ϕ(P), δ) to B, where δ = ε
p for c > 0, p = 1 otherwise, p = 1

−c/d and if

the oracle’s reply is N , it returns dN + c. Clearly the algorithm make polynomially many

steps and oracle calls, and the oracle request is of the correct form. Thus, it suffices to

show that if the oracle’s solution is within relative error of δ then the algorithm gives an

1 + ε-approximation of #P.

Let the exact and approximation solutions for ϕ(P) be N ′ and N , respectively; then

the exact and approximation solutions for P are dN ′ + c and dN + c, respectively. Since

P > 0, we can assume that dN + c, dN ′ + c,N,N ′ > 0. With the choice of p, it is trivial

that dN
dN+c ≤ p. Thus we have dN

dN+cδ ≤ ε. All we need to show is that if
∣∣∣N−N ′N

∣∣∣ < δ holds

then
∣∣∣dN−dN ′dN+c

∣∣∣ < ε holds as well. This is seen as follows:

dN

dN + c
δ ≤ ε

1 +
dN

dN + c
δ ≤ 1 + ε

dN(1 + δ) + c

dN + c
≤ ε.

The inequality ε ≤ dN(1−δ)+c
dN+c is similar. Combining these with the assumption that 1− δ ≤

N ′

N ≤ 1 + δ, we get 1− ε ≤ dN ′+c
dN+c ≤ 1 + ε. We continue with the proof as follows:

1− ε ≤ dN ′ + c

dN + c
≤ 1 + ε∣∣∣∣1 +

dN ′ + c

dN + c

∣∣∣∣ ≤ ε∣∣∣∣dN − dN ′dN + c

∣∣∣∣ ≤ ε.

This completes the proof.

Lemma 5.2.2. Let ϕ be a polynomial time computable function that maps every instance

of a counting problem A to an instance of a counting problem problem B in such a way that

there is a constant m > 0 such that for any A-instance P we have #P = (#ϕ(P))m. Then

there is an AP-reduction from A to B.

Proof. The AP-reduction works as follows: on an instance P of A and ε > 0 it makes an

oracle call (ϕ(P), δ) to B, where δ = ε
m , and and if the oracle’s reply is N , it returns Nm.

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 37

Clearly the algorithm make polynomially many steps and oracle calls, and the oracle request

is of the correct form. Thus, it suffices to show that if the oracle’s solution is within relative

error of δ then the algorithm gives an 1 + ε-approximation of #P.

Let the exact and approximation solutions for ϕ(P) be N ′ and N , respectively; then the

exact and approximation solutions for P are N ′m and Nm, respectively. All we need to show

is that if
∣∣∣N−N ′N

∣∣∣ < δ holds then
∣∣∣Nm−N ′m

Nm

∣∣∣ < ε holds as well. Without loss of generality we

assume N > N ′, and proceed as follows:

|N −N ′|
N

≤ δ

N ′

N
≤ 1 + δ

N ′m

Nm
≤ (1 + δ)m

N ′m

Nm
≤ 1 +m · δ

N ′m

Nm
≤ 1 + ε

Nm −N ′m

Nm
≤ ε.

The inequality ε ≤ N ′m−Nm

Nm is similar. This completes the proof.

5.3 Projection

Let R be a k-ary relation and S = {i1, . . . , il} ⊆ {1, . . . , k}. By πSR we denote the pro-

jection of R onto the set S of its coordinate positions, that is, the relation {(ai1 , . . . , ail) |
(a1, . . . , ak) ∈ R}. Observe that πSR is pp-definable in R by quantifying away all coordinate

positions of R except for those in S. Although existential quantification is not known to

give rise to AP-reducible problems, in some cases it does.

Lemma 5.3.1. Let Γ be a constraint language over the domain D and let R be some k-ary

relation in Γ. If there is a set S ⊂ D such that |πSR| = |R| then #CSP(Γ ∪ {πSR}) ≤AP
#CSP(Γ).

Proof. The AP-reduction is constructed as follows: Given an instance P = (D,V, C) of

#CSP(Γ ∪ {πSR}), we define an instance P ′ = (D,V ′, C′) of #CSP (Γ) with the same

number of solutions. Let l = |S|. V ′ includes all the variables of V and C′ includes all

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 38

constraints from C except for those with πSR. For each constraint C = 〈πSR, (v1, . . . , vl)〉
in C we include a new constraint C ′ = 〈R, (w1, . . . , wk)〉 in C′, where wi = vij if i ∈ S and

i = ij , otherwise a fresh variable.

Clearly, the restriction of any solution of P ′ onto V is a solution of P. Furthermore, the

condition |πSR| = |R| implies that any solution of P can be extended to a solution of P ′ in

a unique way.

5.4 Pinning

Theorem 3.3.1 implies that if relation R can be expressed as conjunctions of relations from

Γ, #CSP(Γ ∪ {R}) ≤AP #CSP(Γ). The conditions for this theorem, even for parsimo-

nious reductions, are too strict. In the rest of this chapter we provide several more lenient

conditions.

The ability to tie certain CSP variables to specific values in hardness proofs is pinning .

This idea was introduced by Creignou and Hermann [9]. The idea is also used in many other

proofs [3, 16, 15, 10]. Pinning can be viewed as showing that for a constraint language Γ

and a set S, #CSP(Γ ∪ {S}) ≤AP #CSP(Γ) holds.

Lemma 5.4.1 (Pinning and reflexive elements). Let Γ be a set of relations on a set D,

and let for a certain subset S ⊂ D there be a relation R such that x ∈ S if and only if

(x, x, . . . , x) ∈ R. If such a relation R exists in Γ then #CSP(Γ ∪ {S}) ≤AP #CSP(Γ).

Proof. S can be viewed as a unary relation and can be expressed as a predicate ϕ(x) =

R(x, x, . . . , x). By Theorem 3.3.1 #CSP(Γ ∪ {S}) ≤AP #CSP(Γ).

Next lemma generalizes the Pinning Lemma from [15]. This lemma allows one to add

an extra unary relation to the constraint language. The proof of Lemma 5.4.2 also follows

closely the proof in [15].

Lemma 5.4.2 (Extended Pinning). Let Γ be a constraint language over the set D of size

k, and let for a certain subset S ⊂ D there be an l-ary relation R ∈ Γ and a coordinate

position j, 1 ≤ j ≤ l, such that for any a ∈ S the relation R has more tuples a with a[j] = a

than tuples b with b[j] /∈ S. Then #CSP (Γ ∪ {S}) ≤AP #CSP (Γ).

Proof. Fix an l-ary relation R ∈ Γ, and a coordinate position j such that R and j satisfy

the conditions of the lemma. Let also w be the minimal (over elements a ∈ S) number of

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 39

tuples a such that a[j] = a, and let w′ be the number of tuples b with a[j] /∈ S. By the

conditions of the lemma w′ < w.

Consider an instance P = (D,V, C) of #CSP(Γ ∪ {S}) with n variables. Let NS be the

set of variables which occur in the scope of constraints of C with relation S. Set nS = |NS |
and m = d n+2

lg w
w′
e. Construct an instance P ′ = (D,V ′, C′) of #CSP (Γ) as follows:

• V ′ includes all variables from V , and also, for each variable x ∈ NS , any u ∈
{1, 2, . . . ,m}, and any v ∈ {0, 1, . . . , k} − {j} a fresh variable xu,v.

• C′ includes all constraints from C other than those involving S.

• For each constraint C = 〈S, (x)〉 from C include m constraints whose relation is R,

variable x occupies the jth position in the scope, and the variable xu,v is in the vth

position of the uth constraint.

Now any solution of P can be extended in at least wmnS ways to a solutions of P ′,
provided all variables from NS take values from S. On the other hand, every assignment

that does not satisfy this condition can be extended in at most wm(nS−1)w′m ways. There

exist no more than kn such solutions. Therefore if N and N ′ denote the number of solutions

to P and P ′, respectively, then

N · wmnS ≤ N ′ ≤ NwmnS + knwm(ns−1)w′m.

So, for a properly chosen m,

N ≤ N ′

wmnS
≤ N +

1

4
,

By Lemma 5.2.1 the linear transformations preserve AP-reduction and this completes the

proof.

Example 5.4.3. Let R = {(1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (3, 1), (3, 4)} be a relation

over domain D = {1, 2, 3, 4} and let S = {1, 2}.
The number of tuples (1, x) ∈ R is 3, the number of tuples (2, x) ∈ R is also 3; however,

the number of tuple (x, y) ∈ R where x ∈ {3, 4} is 2 which less than 3. By Lemma 5.4.2,

#CSP({R, S}) is AP-reducible to #CSP({R}).
As an application, we can now use this fact to deduce

#IS ≤AP #CSP({R}).

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 40

We first show that #IS≤AP#CSP({R,S}). For any input graph G = (V,E) for the problem

#IS, take P = ({1, 2, 3, 4}, V, C) as an instance of #CSP({R,S}) where

C = {〈R, (x, y)〉 | xy ∈ E} ∪ {〈S, (x)〉 | x ∈ V }.

Let ϕ be a solution of P. For any vertex x ∈ V , ϕ(x) ∈ {1, 2}. Thus, for any edge xy in G,

(ϕ(x), ϕ(y)) ∈ {(1, 2), (2, 1), (2, 2)}. Hence, there is a one-to-one correspondence between s

independent sets G and solutions of P. Thus,

#IS ≤AP #CSP({R,S}) ≤AP #CSP({R})

5.5 Maximization

Maximization is a powerful tool to prove hardness results among many problems #CSP(Γ).

We believe this technique may play a role in proving a classification theorem for the ap-

proximability of the problems #CSP(Γ).

Definition 5.5.1 (Max-implementation). Let Γ be a set of relations over the domain D,

and R be an n-ary relation over the same domain. Let P be in an instance of #CSP (Γ)

over the set of variables consisting of V = Vx ∪ Vy, where Vx = {x1, x2, . . . , xn} and Vy =

{y1, y2, . . . , ym}. For any assignment ϕ : Vx → D, let #ϕ be the number of assignments

ψ : Vy → D such that ϕ ∪ ψ satisfy P. Let M be the maximum value of #ϕ among all

assignments of Vx. The instance P is said to be a max-implementation of R if a tuple ϕ is

in R if and only if #ϕ = M .

If R has a max-implementation over Γ, we say it is max-implementable by Γ.

Example 5.5.2. Let P = ({1, 2, 3}, {x1, x2, y1, y2, y3}, C) be an instance of #CSP(Γ). Sup-

pose the numbers of solutions of P for each possible assignment of x1, x2 are according to

the Table 5.1. Here, the maximum possible value for the solutions, M in the definition, is

7. Let R be the set of values for x1, x2 such that the number of solutions of P is 7, that is

R = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 3)}.

Here, P is a max-implementation of the relation R by the constraint language Γ.

Theorem 5.5.3 (Maximization). Let Γ be a set of relations over the domain D, and R be

an n-ary relation on the same domain. If R is max-implementable by Γ then #CSP(Γ ∪
{R})≤AP#CSP(Γ).

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 41

x1 1 1 1 2 2 2 3 3 3
x2 1 2 3 1 2 3 1 2 3

#P 7 7 7 5 7 7 4 3 7

Table 5.1: Number of solutions of P for each possible assignment of x1, x2

Proof. Let P be a max-implementation of R (see Definition 5.5.1), For any instance P1 =

(D,V1, C1) of #CSP(Γ∪R) we construct in instance P2 = (D,V2, C2) of #CSP(Γ) as follows:

• Choose a sufficiently large integer m (to be determined later)

• Let C1, C2, . . . , Cl ∈ C be constraints from P1 involving R, say Ci = 〈%i, R〉. Set

V2 = V1
⋃l
i=1(V i

1 ∪· · ·V i
m), where each V i

j is a separate copy of Vy from Definition 5.5.1.

• Let C be the set of constraints of P. Set C2 = (C1−{C1, . . . , Cl})∪
⋃l
i=1(Ci1 ∪ · · ·Cim),

where each Cij is a copy of C defined as follows. For each 〈%,Q〉 ∈ C, we include 〈%ij , Q〉
into Cij where %ij is obtained from % by replacing every variable from Vy with its copy

from V i
j .

Now, it can be easily seen that every solution of P1 can be extended to a solution of P2

in M lm ways. Observe that sometimes the restriction of a solution ψ of P2 to V1 is not

a solution of P1. Indeed, it may happen that although ψ satisfies every copy of Cij , its

restriction to %ij does not belong to R; however, this restriction does not have sufficiently

many extensions to solutions of P1. On the other hand, any assignment to V1 that is not

a solution to P1 can be extended to a solution of P2 in at most (M − 1)m ·M (l−1)m ways.

Hence,

M lm ·#P1 ≤ #P2 ≤M lm ·#P1 + |V ||D| · (M − 1)m ·M (l−1)m.

The we output bNc, where N = #P2/M
lm.

CHAPTER 5. TECHNIQUES FOR AP-REDUCTIONS 42

We want to choose m large enough such that the following holds.

|V ||D| ·
(
M − 1

M

)m
≤ 1

log(|V ||D|) + log

((
1− 1

M

)m)
≤ 0

|D| · log |V |+m · log

(
1− 1

M

)
≤ 0

|D| · log |V | ≤ m · − log

(
1− 1

M

)
|D| · log |V |
− log

(
1− 1

M

) ≤ m.

For any 0 < x < 1 we have log(1− x) > x; hence,

|D| · log |V |
− log

(
1− 1

M

) ≤M · |D| · log |V |

This implies for m ≥M · |D| · log |V |, we have #P = bNc.

As an example of the applications of the theorem we mention a corollary bellow.

Let R be a relation of arity l over D. For x ∈ D, we denote by sR,i(x) the number of

tuples in R in which x is in position i.

Corollary 5.5.4. If there exists a set S ⊆ D and real numbers a1, a2, . . . , al,M , such that

for every x ∈ S we have
l∑

i=1

ai · sR,i(x) = M,

and for every x 6∈ S we have
l∑

i=1

ai · sR,i(x) < M,

then #CSP ({R,S}) ≤AP #CSP (R).

Chapter 6

Results on Complexity of #BIS

In this chapter and the next one, after discussing general results on #CSP(Γ) over monotone

Γ, we use #BIS as a yardstick to classify some #Hom(H) as “not too hard” or “not too

easy”. We first show that for monotone relations, there is an AP-reduction from the problem

#CSP(Γ) to the problem #BIS. Then, we show that there is an AP-reduction from the

problem #BIS to the problem #Hom(H) if H is a reflexive oriented graph.

For constraint languages consisting of a binary relation, the problem #CSP(Γ) is the

same as the problem #Hom(H); hence, we use them interchangeably depending on the on

the context.

6.1 Monotone Relations

In this section, we extend the definition of monotone constraint languages defined in [15]

from Boolean domains to general domains and show that for any monotone relation Γ there

is an AP-reduction from the problem #CSP(Γ) to the problem #BIS.

Definition 6.1.1 (Distributive Lattice). A distributive lattice L = (X,∧,∨) is a set X with

a pair of binary operators ∧ and ∨ on X that are

• idempotent: x ∧ x = x and x ∨ x = x,

• commutative: x ∧ y = y ∧ x and x ∨ y = y ∨ x,

• associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,

• absorptive: x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x,

43

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 44

• distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Definition 6.1.2 (Monotone relation). Let Γ be a constraint language over the domain D;

Γ is monotone if there exists distributive lattice order L = (D,∧,∨) such that every relation

in Γ is closed under operations ∨ and ∧.

Theorem 6.1.3 is based on an unpublished manuscript by Hedayaty and Bulatov(2009).

Theorem 6.1.3. Let Γ be a constraint language over a domain D, if Γ is monotone then

#CSP(Γ) ≤AP#BIS.

Proof. We reduce the #CSP(Γ) from the general domain to Boolean domain. The proof

is easy. Let Γ be a monotone constraint language with distributive lattice L = (D,∧,∨.

By the Birkhoff’s Representation Theorem, every finite distributive lattice is isomorphic to

a lattice ordered Boolean vector space of dimension k. Denote the isomorphism functions

by cube : D → {0, 1}k and cube−1 : {0, 1}k → D. The definition of the cube function is

extended to tuples, as cube(x1, . . . , xl) = (cube(x1), . . . , cube(xl)). The definition of cube is

further extended to relations as cube(R) = {cube(%) | % ∈ R}.
Take Γ′ = {cube(R) | R ∈ Γ}. The functions cube and cube−1 form a bijection between

the solutions for any CSP(Γ) instance and the corresponding CSP(Γ′) instance. Hence, there

is a parsimonious reduction between the problem #CSP(Γ) and the problem #CSP(Γ′).

Now, we prove that Γ′ is monotone. For any relation R′ ∈ Γ′ we have

x ∈ R⇔ cube(x) ∈ R′

We show that for any two tuples x,y ∈ R′ we have x ∨ y,x ∧ y ∈ R′. Namely,

x,y ∈ R′

cube−1(x), cube−1(y) ∈ R

cube−1(x) ∨ cube−1(y) ∈ R

cube(cube−1(x) ∧ cube−1(y)) ∈ R′

x ∧ y ∈ R′

Similarly x∨y ∈ R′. Γ′ is monotone and by Theorem 4.4.1, we have #CSP(Γ′)≤AP #BIS.

Consequently, #CSP(Γ) ≤AP #BIS.

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 45

6.2 Bipartite Monotone Graphs

In this part, we extend the results from the previous section to bipartite graphs and define

monotone bipartite graphs.

Theorem 6.2.1 (Bipartite Orientation). Let H be a bipartite graph and let A and B be

an arbitrary bipartitions of H. For H ′ the directed graph obtained from H by orienting the

edges from A to B, we have #Hom(H) ≤AP#Hom(H ′).

Proof. Let G be an input graph for the problem #Hom(H). If G is not bipartite then

hom(G,H) = 0. Restrict G to bipartite graphs also restrict G to connected graphs by

Lemma 5.1.1. Let X and Y be bipartition of G and let G1 and G2 be the graphs obtained

from G by orienting all edges from X to Y and from Y to X, receptively. We claim

that hom(G,H) = hom(G1, H
′) + hom(G2, H

′). Every homomorphism from G to H has

to either map all the vertices in X to A and all the vertices in Y to B or vice-versa. The

homomorphisms that map X to A and Y to B are exactly the same as homomorphisms from

G1 to H ′ and similarly the homomorphisms that map Y to A and X to B are exactly the

same as homomorphisms from G2 to H ′. This implies that #Hom(H) ≤AP #Hom(H ′).

Typically bipartite graphs are not monotone; however, with the latter orientation we

can extend the definition of monotone graphs to bipartite graphs. we may get monotone

graph.

Definition 6.2.2 (Bipartite Monotone Graphs). Let H be a bipartite graph and let A and

B be an arbitrary bipartitions of H. Let H ′ be the directed graph obtained from H by

orienting the edges from A to B. The graph H is said to be monotone if H ′ is monotone.

Note that, the choice for bipartition of H is not significant for H ′ being monotone or

not.

Theorem 6.2.3 (Bipartite Monotone Graphs). For any bipartite monotone graph H, we

have #Hom(H) ≤AP#BIS.

Proof. For any bipartite monotone graph H, by Theorem 6.2.1 there is a directed monotone

graph H ′ such that #Hom(H) ≤AP#Hom(H ′). By Theorem 6.1.3, #Hom(H ′) ≤AP#BIS.

Thus, #Hom(H) ≤AP#BIS.

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 46

6.3 Reflexive Oriented Graphs

An oriented graph is a digraph such that if uv and vu are edges then u = v. In this section,

we show that for any reflexive oriented graph H, we have #BIS≤AP#Hom(H).

Figure 6.1: A reflexive oriented graph

Let NH(a, b) be the set of vertices that are both in out-neighbours of a and in-neighbours

of b. Note that if H is reflexive and (a, b) ∈ E(H), both a and b are in NH(a, b). Let Ha,b

be the subgraph of H induced by NH(a, b). Magnitude of H represented as k(H) is defined

as max
(a,b)∈E(H)

{|NH(a, b)|}.

Figure 6.2: A reflexive oriented graph H such that k(H) = 2

Lemma 6.3.1. For any reflexive oriented graph H, if k(H) = 2 then #Hom(H) ≥AP
#BIS.

Proof. Let H be a a reflexive oriented graph such that k(H) = 2. We reduce the problem

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 47

#DownSets to the problem #Hom(H). For a given partial order P = (V,�), let G =

(V,E) be a reflexive oriented graph graph in which uvis an edge if and only if a � b. Take

G′ = (V ′, E′) where V ′ = V ∪ {u, v} and E′ = E ∪ {(u, v)} ∪ {(u, x), (x, v) | x ∈ V }.
For any homomorphism h : G′ → H, if h(u) = h(v) = s, then h(x) = s for all x ∈ V ;

otherwise, (h(u), h(v)) ∈ E(H) and for all x ∈ V , we have either h(x) = h(u) or h(x) = h(v);

thus, h corresponds to a downset in P = (V,�).

The number of homomorphisms with h(u) = h(v) is equal to |V (H)| and the number of

homomorphisms with h(u) 6= h(v) is equal to |E(H)| times the number of downsets in P ,

because k(H) = 2. Note, we denote by hom(G,H) the number of homomorphisms from G

to H and by #DS(P) the number of downsets in P . Hence,

hom(G′, H) = |V (H)|+ |E(H)| ·#DS(P).

In other words

#DS(P) =
hom(G′, H)− |V (H)|

|E(H)|
.

By Lemma 5.2.1 we have #Hom(H) ≥AP #DownSets.

Definition 6.3.2 (Polar Graph). Let H be a reflexive oriented graph. We say H is polar

if there are vertices a, b ∈ V (H), such that (a, x), (x, b) ∈ E(H) for all vertices x ∈ V (H)

(including a and b).

Note that for a polar graph H, we have NH(a, b) = V (H) and k(H) = |V (H)|.

b

a

Figure 6.3: A polar graph

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 48

Lemma 6.3.3. For any reflexive oriented graph H that k(H) > 2, there is a reflexive

oriented graph H ′ such that each connected component of H ′ is a polar graph, k(H) = k(H ′),

and #Hom(H) ≥AP #Hom(H ′).

Proof. Take the graphH ′ as union ofHa,b for all (a, b) ∈ E(H), and not that k(Ha,b) = k(H).

Note also that, each component of H ′ is Ha,b for some a and b; thus, each component of H ′

is a polar graph. We show that #Hom(H ′) ≤AP#Hom(H).

Let G = (V,E) be the input graph for the problem #Hom(H ′) and let Y be a set of

t fresh vertices (the value of t will be determined later). Take graph G′ = (V ′, E′) where

V ′ = V ∪ Y ∪ {u, v} and E′ = E ∪ {(u, v)} ∪ {(u, x), (x, v) | x ∈ V ∪ Y }.
Consider any homomorphism h : G′ → H. For any a, b ∈ V (H) that h(u) = a and

h(v) = b, we have (a, b) ∈ E(H); also for any vertex x in V or Y , since (u, x) and (x, v)

are edges in G′, x has to be mapped to NH(a, b). Note that any vertex in Y can be freely

mapped to any vertex in NH(a, b); however, mapping of the vertices of V should preserve

the edges of G. Thus, we have

hom(G′, H) =
∑

(a,b)∈E(H)

|NH(a, b)|t · hom(G,Ha,b)

=
∑

(a,b)∈E(H)
k(Ha,b)=k(H)

kt(H) · hom(G,Ha,b) +
∑

(a,b)∈E(H)
k(Ha,b)<k(H)

kt(Ha,b) · hom(G,Ha,b)

Divide both sides of the formula by kt(H). We have

#Hom(G′, H)

kt(H)
=

∑
(a,b)∈E(H)
k(Ha,b)=k(H)

hom(G,Ha,b) +
∑

(a,b)∈E(H)
k(Ha,b)<k(H)

(
k(Ha,b)

k(H)

)t
· hom(G,Ha,b)

#Hom(G′, H)

kt(H)
= hom(G,H ′) +

∑
(a,b)∈E(H)
k(Ha,b)<k(H)

(
k(Ha,b)

k(H)

)t
· hom(G,Ha,b)

Let n = |V | and let m = |V (H)|. We have
k(Ha,b)
k(H) ≤

m−1
m , E(H) ≤ n2, and hom(G,Ha,b) ≤

nm. We can simplify the formulas as (m−1
m)t ≈ e

−t
m , nm = em logn, and n2 = e2 logn. For

t > (m2 + 2m) log n, the second part of the summation is less the 1. Thus, by Lemma 5.2.1

#Hom(H) ≥AP#Hom(H ′).

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 49

Lemma 6.3.4. Let H be a reflexive oriented graph such that each connected component

of H is a polar graph. There is connected component H ′ of H, such that #Hom(H ′)

≤AP#Hom(H).

Proof. There are two cases:

First case, all connected components of H are isomorphic. Let H ′ be a connected

component of H and m be the number of connected components of H. For any graph G as

input for the problem #Hom(H), hom(G,H) = homm(G,H ′). By Lemma 5.2.2, #Hom(H)

≥AP#Hom(H ′).

Second case, there are two connected components of H, H1 and H2 that are not iso-

morphic. By Lovász’s Theorem, there is a connected graph Z such that hom(Z,H1) 6=
hom(Z,H2). Let Z1, . . . , Zt be t separate copies of Z, where t is a large number to be

determined later. Take the graph G = (V ′, E′) where V ′ = V ∪ V (Z1)∪ · · · ∪ V (Zt)∪ {u, v}
and E′ = E ∪ {(u, v)} ∪ {(u, x), (x, v) | x ∈ V ∪ Z1 ∪ · · · ∪ Zt} ∪ E(Z1) ∪ · · · ∪ E(Zt). Take

q = max
(a,b)∈E(H)

hom(Z,Ha,b)

also take

H ′ =
⋃

(a,b)∈E(H)
hom(G,Ha,b)=q

Ha,b

Consider all homomorphisms h : G′ → H. For any a, b ∈ V (H) that h(u) = a and

h(v) = b, we have (a, b) ∈ E(H). For any vertex x in V or Zi, since (u, x) and (x, v) are

edges in G′, x has to be mapped to NH(a, b). Thus, we have

hom(G′, H) =
∑

(a,b)∈E(H)

hom(G,Ha,b) · homt(Z,Ha,b)

=
∑

(a,b)∈E(H)
hom(Z,Ha,b)=q

hom(G,Ha,b) · qt +
∑

(a,b)∈E(H)
hom(Z,Ha,b)<q

hom(G,Ha,b) · homt(Z,Ha,b)

= hom(G,H ′) · qt +
∑

(a,b)∈E(H)
hom(Z,Ha,b)<q

hom(G,Ha,b) · homt(Z,Ha,b).

Divide both sides by qt, and let n = |V | and m = k(H). We have

hom(G′, H)

qt
= hom(G,H ′) +

∑
(a,b)∈E(H)

hom(Z,Ha,b)<q

hom(G,Ha,b) · homt(Z,Ha,b) · (
1

q
)t.

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 50

The second part of right hand side can be bounded as

∑
(a,b)∈E(H)

hom(Z,Ha,b)<q

hom(G,Ha,b) · homt(Z,Ha,b) · (
1

q
)t ≤ n2 · nm ·

(
q − 1

q

)t

≈ e2 logn · em logn · e−
t
q .

For t > q · (m+ 2) log n, it is less then one; hence, we have hom(G,H ′) = hom(G′,H)
qt . By

Lemma 5.2.1, we have #Hom(H) ≥AP #Hom(H ′).

H ′ is a subgraph of H, with k(H ′) = k(H) and connected components of H ′ are proper

subsets of components of H. After considering the cases multiple times, H ′ will consist of

only a single component.

Using Lemmas 6.3.4 and 6.3.3 we show that we can reduce the k(H) function without

making the problem easier.

Lemma 6.3.5. Let H be a reflexive oriented graph, if k(H) > 2, then there is a reflexive

oriented graph H ′ such that k(H ′) < k(H) and #Hom(H) ≥AP #Hom(H ′).

Proof. By Lemma 6.3.3, there is a reflexive oriented graph H1 such that every component

of H1 is a polar graph, k(H1) = k(H), and #Hom(H1) ≤AP#Hom(H).

By Lemma 6.3.4, there is a connected component H2 of H1 such that, k(H2) = k(H1)

and #Hom(H2) ≤AP#Hom(H1).

Consider the graph H2 as relation R over the domain D. R is a polar relation, so there

is an element a ∈ D such that for all x ∈ D we have R(a, x). Let S = D \ {a}. We have

R(x, a) implies x = a and for any y ∈ S, we have R(a, y), R(y, y). Thus, by Lemma 5.4.2,

#CSP({R,S}) ≤AP#CSP(R).

For H ′ = H2 − a, k(H ′) < k(H) and

#Hom(H ′) ≤AP #CSP ({R,S}) ≤AP #CSP (R) ≤AP #Hom(H2) ≤AP #Hom(H).

Theorem 6.3.6. For every non-empty reflexive oriented graph H, #Hom(H) ≥AP#BIS.

CHAPTER 6. RESULTS ON COMPLEXITY OF #BIS 51

Proof. By contradiction, consider a reflexive oriented graph H with minimum k(H) such

that the problem #Hom(H) is not AP-reducible to the problem #BIS. By Lemma 6.3.1,

k(H) > 2. By Lemma 6.3.5, there exists a reflexive oriented graph H ′ such that #Hom(H ′)

≤AP#Hom(H) and k(H) < k(H ′). This contradicts with H having the minimum k(H).

Chapter 7

Monotone Reflexive Graphs

Here we discuss a class of reflexive graphs H for which the problem of approximating

#Hom(H) is not harder than the problem #BIS. In Chapter 6, we showed that for mono-

tone relations and monotone bipartite graphs the problem #Hom(H) is AP-reducible to

the problem #BIS. In this chapter, we will investigate monotone reflexive graphs; although

the arguments are analogous for bipartite graphs we will not cover bipartite graphs here.

The notation u ∼ v indicates there is an edge between vertices u and v; the notation u 6∼ v
indicates there is not an edge between vertices u and v.

Interval graphs and proper interval graphs are two interesting families of reflexive graphs

that play a key role in complexity of list homomorphism and minimum cost homomorphism

problems. We are interested in these two families because of their connection with monotone

graphs. An interval graph is defined as follows:

Definition 7.0.7. A graph G = (V,E) is said be to an interval graph if G can be represented

by a family of closed intervals such that each vertex v ∈ V corresponds to an interval Iv

and u ∼ v if and only if the intervals Iu and Iv intersect.

The graph G1 in Figure 7.1(a), called claw, is an interval graph and I1 in Figure 7.1(b)

is a possible family of intervals representing G1. The graph G2 in Figure 7.1(c) is not an

interval graph. In order to show that G2 is not an interval graph, suppose {Ia, Ib, Ic, Id} is

a family of intervals representing G2. Without loss of generality, suppose Ia is the interval

with the smallest starting point. Since a 6∼ d, Id must appear after Ia. Since b ∼ a, b ∼ d,

c ∼ a, and c ∼ d, Ib and Ic must both intersect Ia and Id; for that, they must both include

the interval between Ia and Id; this implies that b ∼ c which is a contradiction.

52

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 53

a

d

b c

(a) G1

a

b dc

(b) I1

a

b c

d

(c) G2

Figure 7.1: Interval graph G1, intervals I1, and non-interval graph G2

One of the problems that relate homomorphisms to interval graphs is the list homomor-

phism problem. The list homomorphism problem is defined as follows:

Definition 7.0.8 (L-Hom). Let H be a fixed graph. Given an input graph G, and for

each vertex v of G, a list L(v) ⊆ V (H), the list homomorphism problem for H, denoted

as L-Hom(H), is the problem of deciding whether or not there exists a homomorphism

h : G→ H such that for each vertex v of G we have h(v) ∈ L(v).

Theorem 7.0.9 shows a connection between the list homomorphism problem and interval

graphs.

Theorem 7.0.9 (Feder and Hell 1996 [18]). For any fixed reflexive graph H, the problem

L-Hom(H) is polynomial time solvable if H is an interval graph, and otherwise it is NP-

complete.

In addition to interval graphs, we shall also focus on proper interval graphs. Proper

interval graphs are defined as follows:

Definition 7.0.10. A graph G = (V,E) is said be to a proper interval graph if G can be

represented by a family of closed intervals such that each vertex v ∈ V corresponds to an

interval Iv, we have Iu 6⊆ Iv for any two vertices such that u 6= v, and u ∼ v if and only if

the intervals Iu and Iv intersect.

The graph G3 in Figure 7.2(a) is a proper interval graph and I2 in Figure 7.2(b) is

a possible set of intervals representing G3. The graph G1 in Figure 7.1(a) is not a proper

interval graph. In order to show thatG1 is not a proper interval graph, suppose {Ia, Ib, Ic, Id}

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 54

a b c d

(a) G3

c

d

a

b

(b) I2

Figure 7.2: Proper interval graph G2 and intervals I2

is a family of intervals representing G1. Intervals Ib, Ic, and Id must intersect Ia and not

intersect each other; two of them can intersect Ia in the beginning and the end of Ia, the

third interval can not intersect Ia without intersecting the other two; hence, we have a

contradiction.

One of the problems that relate homomorphisms to proper interval graphs is the min-

imum cost homomorphism problem. The minimum cost homomorphism problem is an

optimization problem defined as follows:

Definition 7.0.11 (MinHom). Let H be a fixed graph. Given an input graph G and

a cost function c : V (G) × V (H) → R+ the min-cost homomorphism problem, denoted as

MinHom(H), is the problem of finding a homomorphism h : G→ H such that
∑

v∈G c(v, h(v))

is minimized.

The value c(u, v) represents the cost of assigning the vertex u of G to the vertex v of

H. Theorem 7.0.12 shows a connection between the min-cost homomorphism problem and

proper interval graphs.

Theorem 7.0.12 (Gutin et al. 2008 [23]). For any fixed reflexive graph H, the problem

MinHom(H) is polynomial time solvable if H is a proper interval graph, and otherwise it is

NP-complete.

We repeat the definition of monotone relations from Chapter 6 for reflexive graphs.

Before monotone graphs, we repeat the definition of distributive lattice from Chapter 6.

Definition 7.0.13 (Distributive Lattice). A distributive lattice L = (X,∧,∨) is set X with

a pair of binary operators ∧ and ∨ on X that are:

• idempotent: x ∧ x = x and x ∨ x = x,

• commutative: x ∧ y = y ∧ x and x ∨ y = y ∨ x,

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 55

• associative: x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,

• absorptive: x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x,

• distributive: x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) and x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

A lattice L = (X,∧,∨) can be viewed as a partial order P = (X,�);

a ∧ b � a, b,� a ∨ b

⊥ and > denote the smallest and largest elements in L, respectively; in other words:

x � ⊥ ⇒ x = ⊥

> � x⇒ x = >

alternately,

a ∧ ⊥ = ⊥, a ∨ ⊥ = a

a ∨ > = a, a ∨ > = >

a cover is a pair (a, b) such that a 6= b and:

a � x � b⇒ a = x or b = x

A cover graph of a partial order is a directed graph such that there is an edge from a to b

if (a, b) is a cover in the partial order.

Definition 7.0.14 (Monotone reflexive graph). Let G = (V,E) be a reflexive graph; G is

monotone if there exists distributive lattice L = (V,∧,∨) such that when a ∼ b and c ∼ d,

we have (a ∧ c) ∼ (b ∧ d) and (a ∨ c) ∼ (b ∨ d).

Let G = (V,E) be a graph and let L = (V,∧,∨) be a distributive lattice; for any two

edges e1 = ab, e2 = cd ∈ E, we denote by e1 ∧ e2 the vertex pair (a∧ c)(b∧ d) and by e1 ∨ e2

the vertex pair (a∨ c)(b∨ d). Note that e1 ∧ e2 and e1 ∨ e2 are edges of G if G is monotone.

We also provide an alternate characterization for interval and proper interval graphs.

These characterizations show a relation between proper interval graphs and monotone rela-

tions. A total order is a partial order � such that for every a, b either a � b or b � a holds.

For every total order, we can define ∧ and ∨ operators as:

a � b⇒ a ∧ b = a, a ∨ b = b

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 56

A function f that f(x1, x2, . . . , xk) ∈ {x1, x2, . . . , xk} is called a conservative function.

Hence, the conservative operators ∧ and ∨ represent a total order.

The following two results are reformulations of known characterizations of interval graphs

and proper interval graphs in [23, 25].

Theorem 7.0.15. A reflexive graph G = (V,E) is an interval graph if and only if there

exists a total order T = (V,∧,∨) such that when a ∼ b and c ∼ d, we have (a∧ c) ∼ (b∧ d).

Proof. Let G = (V,E) be a graph and let T = (V,∧,∨) be a total order such that when

a ∼ b and c ∼ d, we have (a∧ c) ∼ (b∧ d). We show that G is an interval graph. For x ∈ V ,

let o(x) = |{y|y � x}|.
Take I as follows:

Iv = [o(v),max
y∼v
{o(y)}]

Let a, b ∈ V such that a � b. If a ∼ b, we have

o(a) ≤ o(b)⇒ o(b) ∈ [o(a), o(b)] ⊆ Ia ⇒ Ia ∩ Ib 6= ∅

and if Ia ∩ Ib 6= ∅, we have

o(a) ≤ o(b)⇒ ∃x : a ∼ x, o(b) ≤ o(x)⇒ b ∼ b, a ∼ x⇒ (a ∧ b) ∼ (b ∼ x)⇒ a ∼ b.

Hence, I represent G.

Now, let G = (V,E) be a graph and let I be a family of intervals such that each vertex

v ∈ V corresponds to an interval Iv and u ∼ v if and only if the intervals Iu and Iv intersect.

We show that there is a total order T = (V,∧,∨) such that when a ∼ b and c ∼ d, we have

(a ∧ c) ∼ (b ∧ d).

Take a � b if Ia starts before Ib or if Ia and Ib start together and Ia ends after Ib. Let

a, b, c, d ∈ V such that a ∼ b, c ∼ d holds. Without loss of generality assume a � b, c � d,

and a � c. If b � d, we have

a ∧ c = a, b ∧ d = b, a ∼ b⇒ (a ∧ c) ∼ (b ∧ d).

If d � b, then

o(a) ≤ o(c) ≤ o(d), o(d) ≤ o(b), Ia ∩ Ib 6= ∅ ⇒ a ∼ d;

and

a ∧ c = a, b ∧ d = d, a ∼ d⇒ (a ∧ c) ∼ (b ∧ d).

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 57

Theorem 7.0.16. A reflexive graph G = (V,E) is a proper interval graph if and only if there

exists a total order T = (V,∧,∨) such that when a ∼ b and c ∼ d, we have (a ∧ c) ∼ (b ∧ d)

and (a ∨ c) ∼ (b ∨ d).

Since a total order is a distributive lattice, we have the following fact:

Corollary 7.0.17. Every reflexive proper interval graph is a monotone graph.

Theorems 7.0.15 and 7.0.16 indicate similarities between monotone graphs and (proper)

interval graphs. However, monotone graphs are not equal to (proper) interval graphs.

Example 7.0.18. The graph G1 in Figure 7.1(a) is an interval graph; however, we show

that G1 is not a monotone graph. Suppose that G1 is monotone. If > = a, then

a ∼ b, c ∼ a⇒ (a ∧ c) ∼ (b ∧ a)⇒ c ∼ b.

Analogously, if ⊥ = a, then b ∼ c. Hence, a can not be > to ⊥. Without loss of generality

suppose > = b and ⊥ = c; if a � d

a ∼ b, d ∼ a⇒ (a ∨ d) ∼ (b ∨ a)⇒ d ∼ b.

Analogously, if d � a, the d ∼ c. The last possible case is a ∧ d = c and a ∨ d = b. In this

case

a ∼ d, d ∼ d⇒ (a ∧ d) ∼ (d ∧ d)⇒ c ∼ d.

Hence, G1 is not monotone.

Now consider the graph H1 in Figure 7.3; H1 is not a proper interval graph since the

vertices a, b, c, and d form a claw; H1 is not an interval graph either since the vertices e,

f , g, and h induce a subgraph isomorphic to the graph G2 from Figure 7.1(c); however, in

Example 7.1.10, we show that H1 is a monotone graph.

For any (proper) interval graph H, each induced subgraph of H is a (proper) interval

graph. However, some monotone graph have induced subgraphs that are not monotone. In

Example 7.0.18, we show that H1 is a monotone graph while G1 and G2, induced subgraphs

of H1, are not monotone.

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 58

b
d

h
g

f

i

a

c

e

Figure 7.3: Graph H1

7.1 Generating monotone graphs

In this section, we provide several ways to generate monotone reflexive graphs. We attempt

to provide an algorithm to generate all reflexive monotone graphs; however, there exist

monotone graphs that can not be generated by the our algorithm, we provide an example

of such graphs. This section is based on an unpublished manuscript by P. Hell and M.

Siggers (2009). In this work, I have modified the statements of the Lemmas and provided

alternating proofs to be more consistent with rest of the thesis. The ideas for the proofs are

mostly the same.

By Corollary 7.0.17, every proper interval graph is a monotone graph. Hence, proper

interval graphs can be used as a basis to generate monotone graphs. We first show that in

order to find out if a graph is monotone, we can investigate individual connected components.

Lemma 7.1.1. A reflexive graph G is monotone if and only if each connected component

of G is monotone.

Proof. LetG be a graph with connected componentsG1, G2, . . . , Gk; if eachGi is a monotone

graph with lattice Li, then G is monotone with any lattice L based on the union of the Lis,

with an arbitrary total ordering between the Lis. For any two edges e1 and e2 from the

same component, by hypothesis e1 ∧ e2 and e1 ∨ e2 are edges of the same component. For

any two edge e1 and e2 from different components, e1 ∧ e2 and e1 ∨ e2 are both loops and

since G is reflexive, they are edges of G.

Let G = (V,E) be a monotone graph with lattice L = (V,∧,∨) and connected compo-

nents G1, G2, . . . , Gk; we show that each Gi is a monotone graph. Before that, we show that

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 59

each Gi is closed under L. In other words, we have

x, y ∈ Gi ⇒ x ∧ y, x ∨ y ∈ Gi.

Let x, y ∈ Gi; since x, y are in the same connected component of G, there is a path

P = v0 = x, v1, v2, . . . , vk = y from x to y in G. Let v′0 = v0 and v′j = v′j−1 ∧ vj .

v′0 ∼ v′0, v0 ∼ v1 ⇒ (v′0 ∧ v0) ∼ (v′0 ∧ v1)⇒ v′0 ∼ v′1;

by induction we have

v′j ∼ v′j−1, vj+1 ∼ vj ⇒ (v′j ∧ vj+1) ∼ (v′j−1 ∧ vj)⇒ v′j+1 ∼ v′j .

This shows that there is a vertex z′ = v′k+1 in Gi such that x, y � z′. Let z = a∧b; if z′ ≺ z,
then there is some j such that v′j ≺ z ≺ v′j+1 and

v′j ∼ v′j+1, z ∼ z ⇒ (v′j ∧ z) ∼ (v′j+1 ∧ z)⇒ z ∼ v′j+1 ⇒ z ∈ Gi.

Hence, Gi is closed under the operator ∧; similarly, Gi is also closed under the operator

∨. For any two edges e1, e2 ∈ Gi, we have e1 ∧ e2 ∈ Gi and e1 ∨ e2 ∈ Gi; hence, Gi is a

monotone graph.

Lemma 7.1.1 indicates that any monotone graph can be generated from its connected

components. From here, all the monotone graphs are assumed to be connected and reflexive,

unless explicitly specified.

Lemma 7.1.2. Let G be a monotone graph with lattice L. For every vertex v, there is

descending path from v to ⊥.

Proof. Since G is connected, there a path u0 = u, u1, u2, . . . , uk = ⊥ from u to ⊥ in G. Let

u′0 = u0 and u′i = ui ∧ u′i−1. Since G is reflexive, u ∼ u⇒ u′0 ∼ u′0. Moreover,

u′0 ∼ u′0, u0 ∼ u1 ⇒ u′0 ∼ u′1

and by induction we have

u′i−1 ∼ u′i, ui ∼ ui+1 ⇒ u′i ∼ u′i+1.

This implies that W = u′0 = u, u′1, . . . , u
′
k = ⊥ is a descending walk from u to ⊥. The walk

W may contain loops (but no other cycles because W is descending); by removing the loops,

we get a descending path from u to ⊥.

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 60

Corollary 7.1.3. Let G = (V,E) be a monotone graph with lattice L = (V,�); For every

element u 6= ⊥, there is an element x � u such that u ∼ x.

Lemma 7.1.4. Let G be a monotone graph with lattice L, then every cover of L is an edge

of G.

Proof. Let a, b be a cover in L such that a � b.

a 6= b, a � b⇒ b 6= ⊥ ⇒ ∃x � b : b ∼ x

If x = a, the proof is complete; otherwise, since (a, b) is a cover, we have x � a.

b ∼ x, a ∼ a⇒ (b ∨ a) ∼ (x ∨ a)⇒ b ∼ a

Corollary 7.1.5. Let G = (V,E) be a monotone graph with lattice L = (V,�). For every

pair of vertices u, v such that u � v, there is descending path from v to u in G.

Lemma 7.1.6. Let G be a monotone graph and let a, b, c, and d be vertices of G such that

b∧ c = d and b∨ c = a; if b ∼ d, c ∼ d or a ∼ b, a ∼ c, all edges between a, b, c, d are present

in G.

Proof. If b ∼ d, c ∼ d we have

b ∼ d, c ∼ d⇒ (b ∨ c) ∼ (d ∨ d)⇒ a ∼ d

b ∼ d, d ∼ c⇒ (b ∨ d) ∼ (d ∨ c)⇒ b ∼ c

b ∼ c, c ∼ d⇒ (b ∨ c) ∼ (c ∨ d)⇒ a ∼ c

b ∼ c, d ∼ b⇒ (b ∨ d) ∼ (c ∨ b)⇒ b ∼ a.

Analogously, if a ∼ b, a ∼ c, all the edges above must be present in G.

Next, we show that monotone graphs are closed under Cartesian product. The Cartesian

product on graphs is defined as follows:

Definition 7.1.7 (Cartesian product of graphs). For graphs G1 = (V1, E1) and G2 =

(V2, E2),the graph G = G1 ×G2 is the Cartesian product of G1 and G2 if G = (V,E) such

that V = V1×V2 and (u1, u2) ∼ (v1, v2) in E if and only if u1 ∼ v1 in E1 and u2 ∼ v2 in E2.

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 61

We need the Cartesian product of lattices, as well; since lattices are partial orders we

simply define the Cartesian product for partial orders.

Definition 7.1.8 (Cartesian product of partial orders). For partial orders P1 = (X1,�)

and P2 = (X2,�), the partial order P = P1 × P2 is the Cartesian product of P1 and P2

if P = (X,�) such that X = X1 × X2 and (x1, x2) � (y1, y2) if and only if x1 � y1 and

x2 � y2.

Remark. Let L1 = (X1,∧,∨) and L2 = (X2,∧,∨) be two lattices. For x1, y1 ∈ X1 and

x2, y2 ∈ X2, we have

(x1, x2) ∧ (y1, y2) = (x1 ∧ y1, x2 ∧ y2)

and

(x1, x2) ∨ (y1, y2) = (x1 ∨ y1, x2 ∨ y2).

Lemma 7.1.9 will show that we can generate monotone graphs from products of other

monotone graphs.

Lemma 7.1.9. For any monotone graphs G1 and G2, the product G1 ×G2 is a monotone

graph.

Proof. For any two edges e = (u1, u2)(v1, v2) and e′ = (u′1, u
′
2)(v′1, v

′
2) of G1 ×G2, the edges

u1v1 and u′1v
′
1 are edges of G1 and edges u2v2 and u′2v

′
2 are edges of G2. Since G1 and G2

are monotone,

e1 = u1v1 ∧ u′1v′1

and

e2 = u2v2 ∧ u′2v′2

are edges of G1 and G2, respectively. Then

e ∧ e′ = ((u1, u2) ∧ (u′1, u
′
2))((v1, v2) ∧ (v′1, v

′
2))

= (u1 ∧ u′1, u2 ∧ u′2)(v1 ∧ v′1, v2 ∧ v′2)

= (u1 ∧ u′1)(v1 ∧ v′1)× (u2 ∧ u′2)(v2 ∧ v′2)

= e1 × e2

∈ G1 ×G2.

Analogously, e ∨ e′ is also an edge of G1 ×G2. Hence, G1 ×G2 is a monotone graph.

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 62

a

b

c

Figure 7.4: Graph H2

Example 7.1.10. The graph H2 in Figure 7.4 is a proper interval graph because it is

closed under the operators ∧ and ∨ defined by the order a � b � c. By Corollary 7.0.17,

every proper interval graph is monotone; hence, H2 is a monotone graph. The graph H1 in

Figure 7.3 is H2 ×H2; thus, H1 is a monotone graph.

Another operation that preserves monotonicity is retraction. Retraction is defined as

follow.

Definition 7.1.11 (Retraction). Let H be a subgraph of G; a retraction of G to H is a

homomorphism r : G→ H such that for every v ∈ V (H) we have r(v) = v.

When there is a retraction of H to G, equivalently we say H is a retract of G, and G

retracts to H. Note that, a retraction of G is an induced subgraph of G. Now, we show

that retractions preserve monotone relations.

Lemma 7.1.12. Let G be a monotone graph; for any retraction r over G, the graph r(G)

is monotone.

Proof. Let G = (V,E) be a monotone graph with lattice L = (V,∧,∨) and let r be a

retraction from G to H = (U,E′). We claim H is monotone with lattice M = (U,∧M ,∨M)

where ∧M and ∨M are defined as:

u ∧M v = r(u ∧ v)

u ∨M v = r(u ∨ v)

For any two edges u1 ∼ v1 and u2 ∼ v2 in H, we have u1 ∧M u2 = r(u1 ∧ u2) and v1 ∧M
v2 = r(v1 ∧ v2); since G is monotone, (u1 ∧ u2) ∼ (v1 ∧ v2) in G; since r is a retraction,

r(u1 ∧ u2) ∼ r(v1 ∧ v2) in H.

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 63

So far we presented several ways in which we can generate monotone graphs. Algorithm 2

combines them to generate more monotone graphs.

Algorithm 2 Generating monotone relations

1. Take m proper interval graphs G1, G2, . . . , Gm.

2. Let G′ = G1 ×G2 × · · ·Gm.

3. Use a retraction r : G′ → Gr to generate Gr

4. Output Gr.

By the Lemmas 7.1.9 and 7.1.17, Algorithm 2 generates a monotone graph.

Corollary 7.1.13. Every retract of a product of proper interval graphs is a monotone graph.

Corollary 7.1.14. If H is a retract of a product of proper interval graphs then

#Hom(H) ≤AP#BIS.

Next, we try to find out if Algorithm 2 generates all monotone graphs.

We define more parameters for partial orders. The length l(P) of a partial order P is

the length of a maximum chain in the partial order. The width w(P) of a partial order P

is the size of a maximum antichain the partial order. Note that a proper interval graph is

a monotone graph with a lattice of width 1.

We will use the Theorem of Duffus and Rival to decompose a distributive lattice into a

product of chains.

Theorem 7.1.15 (Duffus and Rival 1983 [11]). Let L be a sub-lattice of a distributive lattice

L′ with l(L) = l(L′). Then the cover graph of L is a retract of the cover graph of L′.

Corollary 7.1.16. Every lattice of width m is a result of a retraction of a product of m

chains.

Lemma 7.1.17. Let G be a monotone graph with lattice L. For a retraction r of the cover

graph of L, we have that r(G) is a monotone graph.

Proof. Let G = (V,E) be a monotone graph with lattice L = (V,∧,∨) and let r be a

retraction from L to M = (U,∧,∨). Take H as the subgraph of G induced by U . We claim

that H is a monotone graph with lattice M . For every two vertices x, y ∈ U , x∧y, x∨y ∈ U ,

CHAPTER 7. MONOTONE REFLEXIVE GRAPHS 64

(a) G′ (b) Gr (c) G

Figure 7.5: Graphs G′, Gr, and G

because M is a lattice. For every two edges e1 and e2 of H, e1 ∧ e2, e1 ∨ e2 ∈ G, because G

is monotone and e1 ∧ e2, e1 ∨ e2 ∈ H, because H is an induced subgraph of G.

Now, we want generate a given monotone graph G with lattice L, using Algorithm 2.

Let m be the width of the L. Take m chains C1, C2, . . . , Cm of the l(L). Let Gi be a proper

interval graph with total order Ci. Let L′ be the product of the Cis and let G′ be the

product of Gis.

By Theorem 7.1.15, there is a retraction r from the cover graph of L′ to the cover graph

of L. Apply the retraction r over G′ and generate Gr = r(G′). It would be very nice if Gr

was isomorphic with G. Unfortunately, G is a subset of Gr.

For some graphs Gr, removing some of the edges from Gr results a connected monotone

graph with the same lattice as Gr. For example, consider the graph G′ in Figure 7.5(a). By

applying a retraction, we get the graph Gr in Figure 7.5(b). The graph G in Figure 7.5(c)

is also a monotone graph with the same lattice as Gr. Thus, Algorithm 2 can not generate

G.

The only remaining challenge is given Gr and L, finding the set of edges E1 of Gr such

that Gr − E is connected and monotone with lattice L.

Chapter 8

Conclusion and Future Work

8.1 Conclusion

We formally defined the problem #CSP(Γ), mentioned some of its applications; mentioned

the major results on complexity of the problem #CSP(Γ). We defined the class FPRAS

which is considered the efficient computational model for finding approximate solutions

for counting problems. We mentioned FPRAS algorithms for several problems such as

simple #CSP(Γ), #DNF-SAT,#Match, and #LowDegree-k-Coloring. The problem

#DNF-SAT is solved by sampling and the problems #Match and #LowDegree-k-

Coloring are solved by Markov chain Monte-Carlo method.

We defined AP-reductions which are used to classify approximation counting problems.

We introduced the problem #BIS and the class of the problems AP-interreducible with

the problem #BIS. We mentioned several well-known examples of this class such as the

problems #DownSets and #1P1N-SAT. Computation of the partition function for the

Ising model, where the model is ferromagnetic, also belongs to this class.

We also mentioned that some of the problems are hard to approximate. There are

no polynomial time approximation algorithm for any of the problems in this class, unless

RP = NP . Note that although according to current knowledge these problems are not

efficiently solvable, approximating these problems is still easier than exactly solving them.

Some of the well known problems in this class are the problems #2-SAT, #3-SAT, #SAT,

#IS, and #3-Coloring. Computation of the partition function for the Ising model, where

the model is anti-ferromagnetic, also belongs to this class.

We showed that by limiting the input for the problems #CSP(Γ) to connected structures,

65

CHAPTER 8. CONCLUSION AND FUTURE WORK 66

(a) N5 (b) M5 (c) C6

Figure 8.1: Example graphs for which complexity of the #Hom(H) is unknown

the problems do not become easier. We showed that if there is linear transformation between

the number of solutions for two counting problems and both problems always have solutions,

then those two problems are AP-interreducible. We generalized the pinning theorem from

[15].

We introduced the maximization technique for AP-reductions. The sets of relations

closed under maximization form sets of relations similar to relational clones.

We extended the notion of monotone relations from Boolean domains to general do-

mains. We proved that for any monotone constraint language Γ, the problem #CSP(Γ)

is AP-reducible to the problem #BIS. We also extended the notion of monotone rela-

tions to bipartite graphs and proved that for any monotone bipartite graph H, the problem

#Hom(H) is also AP-reducible to to the problem #BIS.

We proved that for any reflexive oriented graph H, the problem #BIS is AP-reducible to

the problem #Hom(H). Despite these results, finding a necessary and sufficient condition

for Γ such that the problem #CSP(Γ) is AP-interreducible with the problem #BIS remains

open.

We investigated monotone reflexive graphs. We proved that a retract of a product of

proper interval graphs is a monotone graph.

We expect that there exists a trichotomy for the problem #CSP(Γ) over 3-element sets

similar to the trichotomy for the problem #CSP(Γ) over 2-element sets. However, the

common belief is that there is no such a trichotomy in general for the problem #CSP(Γ).

For example, consider the graphs N5, M5, and C6 shown in Figure 8.1. The problems

CHAPTER 8. CONCLUSION AND FUTURE WORK 67

#Hom(N5), #Hom(M5), and #Hom(C6) are harder than the problem #BIS; however,

they are not expected to be as hard as the problem #SAT.

8.2 Future Work

We studied the complexity of approximately solving the problem #CSP(Γ) for maximal

partial clones on 3-element sets [5], we also studied complexity of approximately solving

the problem #Hom(H) for graphs with 3 vertices. However, in both categories, there are

several problems whose complexity of approximately solving them is still unknown.

Jerrum et al. [30] proved that with a SAT oracle, there is FPRAS for any problem in

#P. With the recent growth of practical usage of SAT-solvers, this theorem potentially

provides a practical approach to approximately solve the problem #CSP(Γ).

The Markov chain Monte-Carlo method is used approximately solve several counting

problems. This method may approximately solve the problem #CSP(Γ) for some Γ.

We defined the monotone constraint languages as the constraint languages that are

closed under the meet and join operators of a distributive lattice. N5 and M5, shown in

Figure 8.1, appear on non-distributive lattices. Proving that the problems #Hom(N5) and

#Hom(M5) are AP-reducible to the problem #BIS may extend our result to constraint

languages closed under meet and join operators of a general lattice.

We proved that for any reflexive oriented graph H, the problem #BIS is AP-reducible

to the problem #Hom(H). We can also prove that for some oriented graph with possible

loop, the problem #BIS is AP-reducible to the problem #Hom(H). We believe for a more

general family of digraphs with possible loops, the problem #BIS is AP-reducible to the

problem #Hom(H).

Bibliography

[1] V. G. Bodnarchuk, L. A. Kaluzhnin, V. N. Kotov, and B. A. Romov. Galois
theory for Post algebras. I. Cybernetics and Systems Analysis, 5:243–252, 1969.
10.1007/BF01070906.

[2] Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. In
ICALP (1), pages 646–661, 2008.

[3] Andrei A. Bulatov and Vı́ctor Dalmau. Towards a dichotomy theorem for the counting
constraint satisfaction problem. Inf. Comput., 205(5):651–678, 2007.

[4] Andrei A. Bulatov and Amir Hedayaty. Counting predicates, subset surjective func-
tions, and counting csps. In ISMVL, pages 331–336, 2012.

[5] Andrei A. Bulatov and Amir Hedayaty. Counting problems and clones of functions.
Multiple-Valued Logic and Soft Computing, 18(2):117–138, 2012.

[6] Andrei A. Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complexity of
constraints using finite algebras. SIAM journal on computing., 34(3):720–742, April
2005.

[7] Andrei A. Bulatov and Matthew Valeriote. Recent results on the algebraic approach
to the CSP. In Complexity of Constraints, pages 68–92, 2008.

[8] Stephen A. Cook. The complexity of theorem proving procedures. In Proceedings of
the Third Annual ACM Symposium, pages 151–158, New York, 1971. ACM.

[9] Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting
problems. Inf. Comput., 125(1):1–12, 1996.

[10] Nadia Creignou, Sanjeev Khanna, and Madhu Sudan. Complexity Classifications of
Boolean Constraint Satisfaction Problems. SIAM, Philadephia, PA, 2001.

[11] Dwight Duffus and Ivan Rival. Graphs orientable as distributive lattices. Proceedings
of the American Mathematical Society, 88(2):pp. 197–200, 1983.

[12] Martin E. Dyer, Leslie A. Goldberg, Catherine S. Greenhill, and Mark Jerrum. On
the relative complexity of approximate counting problems. In Klaus Jansen and Samir

68

BIBLIOGRAPHY 69

Khuller, editors, Approximation Algorithms for Combinatorial Optimization, volume
1913 of LNCS, pages 557–570. Springer Berlin / Heidelberg, 2000. 10.1007/3-540-
44436-X 12.

[13] Martin E. Dyer, Leslie A. Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500,
2003.

[14] Martin E. Dyer, Leslie A. Goldberg, and Mark Jerrum. Counting and sampling H-
colourings. Inf. Comput., 189:1–16, February 2004.

[15] Martin E. Dyer, Leslie A. Goldberg, and Mark Jerrum. An approximation trichotomy
for Boolean #CSP. J. Comput. Syst. Sci., 76:267–277, May 2010.

[16] Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homo-
morphisms. In Proceedings of the eleventh annual ACM-SIAM symposium on Discrete
algorithms, SODA ’00, pages 246–255, Philadelphia, PA, USA, 2000. Society for Indus-
trial and Applied Mathematics.

[17] Martin E. Dyer and David Richerby. On the complexity of #CSP. In STOC, pages
725–734, 2010.

[18] Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. J. Comb. Theory,
Ser. B, 72(2):236–250, 1998.

[19] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic
snp and constraint satisfaction: A study through datalog and group theory. SIAM J.
Comput., 28(1):57–104, 1998.

[20] Isidore Fleischer and Ivo G. Rosenberg. The Galois connection between partial functions
and relations. Pacific J. Math, 79(1):93–97, 1978.

[21] David Geiger. Closed Systems of Functions and Predicates. Pacific Journal of Mathe-
matics, 27:95–100, 1968.

[22] Leslie A. Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combinatorics, Probability and Computing, 16(01):43–61, August 2007.

[23] Gregory Gutin, Pavol Hell, Arash Rafiey, and Anders Yeo. A dichotomy for minimum
cost graph homomorphisms. Eur. J. Comb., 29(4):900–911, 2008.

[24] Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory,
Ser. B, 48(1):92–110, 1990.

[25] Pavol Hell and Jaroslav Nešetřil. Graphs and homomorphisms. Oxford lecture series
in mathematics and its applications. Oxford University Press, 2004.

BIBLIOGRAPHY 70

[26] Peter Jeavons, David A. Cohen, and Marc Gyssens. Closure properties of constraints.
J. ACM, 44(4):527–548, 1997.

[27] Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a
low-degree graph. Random Struct. Algorithms, 7:157–165, September 1995.

[28] Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the
Ising model. SIAM Journal on Computing, 22:1087–1116, 1993.

[29] Mark Jerrum and Alistair Sinclair. The Markov chain Monte Carlo method: an ap-
proach to approximate counting and integration. In Approximation Algorithms for
NP-hard Problems, pages 482–520. PWS Publishing, 1996.

[30] Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of com-
binatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169–188,
1986.

[31] Dietlinde Lau. Function Algebras on Finite Sets: Basic Course on Many-Valued Logic
and Clone Theory (Springer Monographs in Mathematics). Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2006.

[32] László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-4):321–
328, 1967.

[33] Michael Luby and Boban Veličkovic. On deterministic approximation of dnf. In Pro-
ceedings of the twenty-third annual ACM symposium on Theory of computing, STOC
’91, pages 430–438, New York, NY, USA, 1991. ACM.

[34] Emil L. Post. The two-valued iterative systems of mathematical logic, volume 5 of
Annals Mathematical Studies. Princeton University Press, 1941.

[35] Neal Madras Richard M. Karp, Michael Luby. Monte-Carlo approximation algorithms
for enumeration problems. Journal of Algorithms, 10(3):429–448, 1989.

[36] Matthew Valeriote. A subalgebra intersection property for congruence distributive
varieties. Canad. J. Math., 61:451–464, 2009.

[37] Leslie G. Valiant. The Complexity of Enumeration and Reliability Problems. SIAM
Journal on Computing, 8(3):410–421, 1979.

