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Abstract

Visual Recognition is a central problem in computer vision, and it has numerous potential

applications in many different fields, such as robotics, human computer interaction, and

entertainment.

In this dissertation, we propose two discriminative latent variable models for handling

challenging visual recognition problems. In particular, we use latent variables to capture

and model various prior knowledge in the training data. In the first model, we address the

problem of recognizing human actions from still images. We jointly consider both poses and

actions in a unified framework, and treat human poses as latent variables. The learning

of this model follows the framework of latent SVM. Secondly, we propose another latent

variable model to address the problem of automated tag learning on YouTube videos. In

particular, we address the semantic variations (sub-tags) of the videos which have the same

tag. In the model, each video is assumed to be associated with a sub-tag label, and we

treat this sub-tag label as latent information. This model is trained using a latent learning

framework based on LogitBoost, which jointly considers both the latent sub-tag label and

the tag label.

Moreover, we propose a novel discriminative latent learning framework, kernel latent

SVM, which combines the benefit of latent SVM and kernel methods. The framework of

kernel latent SVM is general enough to be applied in many applications of visual recogni-

tion. It is also able to handle complex latent variables with interdependent structures using

composite kernels.
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Chapter 1

Introduction

Recognition is a central problem in computer vision, and its goal is to learn visual categories

and then recognize the new instances from those categories. For example, visual recognition

seeks the answers to questions such as “Is this a car?” or “What is this object?”. Typical

visual recognition tasks include image classification, object detection and classification, hu-

man action recognition, etc. Fig. 1.1 illustrates a few examples of visual recognition tasks. A

working visual recognition system can have numerous applications in many different fields.

For example, face detection has been integrated into many digital cameras to enhance the

autofocus. As one of the dominant technologies in biometrics, face recognition has been

applied not only in many security systems, but also in the digital photo organizers such as

Picasa1 and iPhoto2. The technology of human pose estimation using Kinect sensors [71] is

another good example, which achieves a great success in human computer interaction and

turns the concept of the controller-free game console into reality. Besides, visual recognition

algorithms also play an important role in many image search and video retrieval systems.

The success of visual recognition systems builds on advanced techniques in the machine

learning literature, such as AdaBoost, Support Vector Machine (SVM), and Random Forest.

Most of these learning approaches for addressing the recognition problems follow the same

pipeline which consists of two major steps. First, we need to collect a set of training examples

(e.g. images or videos) of given categories. Depending on the details of different applications,

each training example needs to be associated with a certain type of label. The second step

1http://picasa.google.com
2http://www.apple.com/ilife/iphoto

1



CHAPTER 1. INTRODUCTION 2

(a) Object Detection

Airplane Horse Walking Running 
(b) Object Classification (c) Human Action Recognition

Figure 1.1: Examples of visual recognition tasks. The goal of object detection is to localize
the instances of a particular object in the image, while object classification is only required
to predict whether an instance of an object is present in the image. The goal of human
action recognition is to identify the actions performed by the person in the image or the
video.

is to learn a model from the training set that can make predictions for the category labels of

new examples. The first step of the above pipeline is also known as a process of preparing

the training set, which requires manually labeling the training images/videos. For a specific

task, e.g. training a car classifier, it may involve different levels of human supervision. For

example, as shown in the left image of Fig. 1.2, in a weakly supervised setting, the car image

is associated with a category label “car”. This labeling is rather “weak” since it lacks a lot

of useful information such as the exact location of the car, the viewpoint (e.g. side-view or

front-view), the color or the shape of the car. Whereas “strong” supervision would mark

the bounding box or the contour of the car, and even provide a list of descriptive keywords

(i.e. attributes) about the image. While the strong labels tend to be more informative and

less ambiguous, they are also very expensive to obtain, especially when we have thousands

of images. Moreover, developing a system which can combine different types of labeling

and maximize the benefits of such strong supervision is also challenging. Therefore, when

designing a method for visual recognition, one must consider the trade-offs between the cost

of manual labeling and the advantages that it can bring to the learning process.

Thanks to powerful image search engines from Google and Microsoft, a large scale image
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Levels of Supervision 
Weak Strong 

•  Car •  Car 
•  Red 
•  Sideview 
•  Chevrolet 
•  Racetrack   

•  Car 
•  Red 
•  Sideview  

Figure 1.2: Illustration of different levels of human supervision involved in the training of a
car classifier.

dataset can be easily collected using keyword search on the Web. However, even after

the pruning process by the dataset creators or Amazon Mechanical Turk3, there are still

significant intra-category variations and many noisy samples. Typical examples of such

datasets are ImageNet [16] and 80 Million TinyImages [78], both of which consist of millions

of images and thousands of categories. However, the images are only weakly labeled by the

category name without further detailed annotations.

In the literature, one possible approach for addressing weakly labeled data is to introduce

latent variables into the training, and treat the missing labels as latent variables. Latent

variables refer to the variable that are not directly observed but can be inferred from other

observed variables. Latent variables have been widely used in many generative probabilistic

models such as latent topic models and hidden Markov models. The constellation model [28]

is one of the successful generative models using latent variables for addressing the problem

of object classification. However, latent variables are less explored in discriminative models.

Note that it is still a debatable topic in the machine learning community whether generative

or discriminative models are superior. But in practice, discriminative approaches tend to

produce better performance for most recognition problems. There is some recent work

which explores the use of latent variables in discriminative models. Quattoni et al. [62]

include latent variables in conditional random fields and propose the hidden Conditional

3https://www.mturk.com/mturk/welcome
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Random Fields (hCRF). Another representative work is the latent SVM which extends the

SVM framework for handling latent variables. It is proposed by Felzenszwalb et al. [26]

for training a deformable part model (DPM) and achieves excellent performance in object

detection.

In this dissertation, we mainly follow the framework of latent SVM, and focus on the

learning of discriminative latent variable models for a variety of visual recognition problems.

We not only adopt latent variable models for dealing with weakly labeled data, but also

generalize them to address the problems of recognition with auxiliary labels. In contrast to

weakly labeled data, the training data in those problems is associated with certain additional

information. For example, in Chapter 4, we consider the task of human action recognition

from still images, and each training image is associated with additional human pose labeling.

In this case, the main task is human action recognition, and human poses are considered as

auxiliary labels.

The major contributions of this dissertation can be briefly summarized as two discrim-

inative latent variable models and one general latent learning framework: 1) We propose

a latent variable model for the problem of action recognition from still images that jointly

learns the actions and poses in a unified framework; 2) We propose the kernel latent SVM

framework which combines the benefits of latent SVM and kernel methods; 3) We propose

another latent variable model for addressing the semantic variations of YouTube videos, and

we evaluate this model on a very large-scale dataset consisting of over 50 million YouTube

videos.

1.1 Dissertation Overview

The rest of this dissertation is organized as follows:

Chapter 2 reviews one of the most representative discriminative latent learning frame-

works – latent SVM [26]. In the literature, latent SVM has been used to address a variety

of challenging problems in visual recognition. The work presented in this dissertation is

also mainly based on the latent SVM. In Chapter 2, we first introduce the general formula-

tions of latent SVM, then review its two most related models, hidden Conditional Random

Fields (hCRF) and MI-SVM in Multiple Instance Learning (MIL).

Chapter 3 reviews a few representative approaches using latent SVM. We mainly cover

three sub-fields of visual recognition in this chapter: object detection, object classification,
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and human activity recognition.

Chapter 4 proposes a discriminative latent variable model for addressing the problem of

human action recognition from still images. In this model, we treat the pose of the person in

the image as latent variables that will help with recognition. Different from other work that

learns separate systems for pose estimation and action recognition, then combines them in

an ad-hoc fashion, our model is trained in an integrated fashion that jointly considers poses

and actions in a unified framework using latent SVM. This work has been published in [95]

at IEEE Conference in Computer Vision and Pattern Recognition (CVPR) 2010.

Chapter 5 presents kernel latent SVM – a new learning framework that combines the

benefits of latent SVM and kernel methods. We develop an iterative training algorithm to

learn the model parameters, and demonstrate the effectiveness of kernel latent SVM using

three different applications in visual recognition. Our framework is very general and it can

be applied to solve a wide range of applications in computer vision. This work has been

accepted to The Neural Information Processing Systems Conference (NIPS) 2012 [96].

Chapter 6 focuses on the problem of content-based automated tag learning on YouTube

videos. We propose another latent variable model for addressing the semantic variations (sub-

tags) of the videos which have the same tag. In this model, each video is assumed to be

associated with a sub-tag label, and we treat this sub-tag label as latent information. This

model is trained by a novel latent learning framework based on LogitBoost, which jointly

considers both the latent sub-tag label and the tag label. We use cowatch information to

initialize the learning process. This work has been published in [94] at IEEE Conference in

Computer Vision and Pattern Recognition (CVPR) 2011.

Chapter 7 concludes this dissertation and discusses the future work.



Chapter 2

Previous Work: Latent SVM

Latent Support Vector Machine (latent SVM ) is one of the most representative discrimi-

native latent learning frameworks. It inherits the advantages of max-margin learning from

SVM, and includes latent variables in the learning process. Due to its elegance and flexibility,

latent SVM has been successfully applied to many visual recognition problems, and latent

variables are defined in a variety of ways. Before reviewing these applications in Chapter 3,

we first introduce the formulation of latent SVM in Section 2.1. We consider structured

latent variables and assume there are certain dependencies among the latent variables of a

training example. As in other learning algorithms with latent variables, latent SVM is a

non-convex problem. We review three commonly used training algorithms of latent SVM

in Section 2.2. Lastly, we compare latent SVM with other discriminative latent learning

frameworks such as hCRF and MI-SVM in Section 2.3.

2.1 Formulation

We assume a data instance is in the form of (x,h, y), where x is the observed variable and

y is the class label. h is the latent variable that is associated with each instance x. For

example, say we want to learn a “car” model from a set of positive images containing cars

and a set of negative images without cars. We know there is a car somewhere in a positive

image, but we do not know its exact location. In this case, h can be used to represent the

unobserved location of the car in the image.

We consider structured latent variables and define h as a vector, i.e. h = (z1, z2, ..),

where zi is the i-th component of h and takes its value from a discrete set H of possible

6
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labels (i.e. zi ∈ H). For structured latent variables, it is assumed that there are certain

dependencies between some pairs of (zi, zj). We can use an undirected graph G = (V, E) to

capture the structure of latent variables, where a vertex i ∈ V corresponds to the label zi,

and an edge (i, j) ∈ E corresponds to the dependency between zi and zj . In the original

latent SVM work [26], only binary classification is considered, i.e. y ∈ {+1,−1}. Wang

and Mori [91] extend latent SVM to multi-class classification. Yu and Joachims [97] further

extend it to a more general formulation with structured output. In this chapter, we review

the formulation of latent SVM under the multi-class classification setting, i.e. y ∈ Y and

Y is a set of discrete class labels. As in other discriminative learning frameworks, we are

interested in learning a discriminative function fw : X × Y → R over an instance x and

its class label y, where fw is parameterized by w. During testing, we can predict the class

label y∗ of an input instance as: y∗ = arg maxy∈Y fw(x, y). The scoring function fw(x, y)

is assumed to take the following form:

fw(x, y) = max
h

w>Φ(x,h, y), (2.1)

where Φ(x,h, y) is a feature vector depending on the instance x, the latent variable h, and

the class label y. The maximizing over h in Eq. 2.1 has a very appealing interpretation.

For example, in the above “car model” example, the optimal h∗ for the image x (i.e. h∗ =

arg maxh w>Φ(x,h, y)) will be the exact location of the car in the image under an ideal

situation. One alternative way to define the scoring function fw(x, y) is summing over h

instead of maximizing over h. Summing over h corresponds the marginalization rule in

probabilistic models. We will compare these two approaches in Section 2.3.2.

Depending on different applications, the model formulation w>Φ(x,h, y) can be defined

in different ways. However, in general, given that latent variable h is constrained by an

undirected graph G = (V, E), w>Φ(x,h, y) usually consists of unary terms and pairwise

terms. Here, we give an example form of w>Φ(x,h, y) as follows:

w>Φ(x,h, y) =
∑
j∈V

w>1 φ1(x, zj , y) +
∑

(i,j)∈E

w>2 φ2(zi, zj , y) (2.2)

We emphasize that the form of w>Φ(x,h, y) is not limited to Eq. 2.2. It can be very flexible

as long as there exists an efficient inference algorithm for Eq. 2.1.



CHAPTER 2. PREVIOUS WORK: LATENT SVM 8

2.2 Learning

Given a set of N training examples {xi, yi}Ni=1, our goal is to learn the model parameter w

that can be used to assign the class label y to an unseen instance x. Note again that each

training instance is associated with the latent variable hi. Similar to classical SVMs, the

optimization in latent SVM is a quadratic program [91] as follows:

min
w,ξ

1

2
||w||2 + C

∑
i

ξi

s.t. fw(xi, y)− fw(xi, yi) ≤ ξi − 1, ∀i, ∀y 6= yi

ξi ≥ 0, ∀i, (2.3)

where {ξi} are the slack variables for handling soft margins, and C is the trade-off param-

eter. By replacing fw(x, y) with maxh w>Φ(x,h, y), we obtain the following optimization

problem:

min
w,ξ

1

2
||w||2 + C

∑
i

ξi

s.t. max
h

w>Φ(xi,h, y)−max
h′

w>Φ(xi,h
′, yi) ≤ ξi −∆(y, yi), ∀i, ∀y

ξi ≥ 0, ∀i

where, ∆(y, yi) =

{
1 if y 6= yi

0 otherwise
(2.4)

In the formulation, since the maximum of a set of convex functions is convex, the first

component in the constraint (i.e. maxh w>Φ(xi,h, y)) is convex w.r.t. w. However, the

second component (i.e. −maxh′ w>Φ(xi,h
′, yi)) is concave because of the negative sign.

Therefore, the learning problem presented in Eq. 2.4 is a non-convex optimization problem.

Unlike other non-convex problems, latent SVM has a nice property of semi-convexity. If we

fix the latent variable h′ to a single choice for the instance pair of (xi, yi), the optimization

problem of Eq. 2.4 becomes convex. In Section 2.2.1 and Section 2.2.2, we will introduce

two general approaches of solving the optimization problem of Eq. 2.4. Although neither of

these two approaches would guarantee a global minimum or a good local minimum, both of

them ensure convergence.

2.2.1 Concave-Convex Procedure

The semi-convexity property of the latent SVM allows an intuitive iterative algorithm that

alternates between inferring latent variable h′ for the instance of (xi, yi) and optimizing the
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model parameter w. These two major steps are summarized as follows:

1. Holding w, ξ fixed, compute the optimal latent variable h′ for every instance pair of

(xi, yi) :

hi,yi = arg max
h′

w>Φ(xi,h
′, yi) (2.5)

2. Holding hi,yi fixed, compute the optimal w, ξ as follows:

min
w,ξ

1

2
||w||2 + C

∑
i

ξi

s.t. max
h

w>Φ(xi,h, y)−w>Φ(xi,hi,yi , yi) ≤ ξi −∆(y, yi), ∀i, ∀y

ξi ≥ 0, ∀i (2.6)

If h takes its value from a discrete set, Eq. 2.5 can be solved by simply enumerating all

possible values of h. However, if latent variables are structured (i.e. h = (z1, z2, ..., zM )),

the complexity of this naive enumerating approach is O(MK) when zi takes its value from a

discrete set of K possible choices (i.e. zi ∈ H and |H| = K). This is obviously too expensive.

Fortunately, in most of approaches using latent SVM, the structured latent variables are

assumed to form a tree and then there exist efficient inference algorithms for solving Eq. 2.5,

such as dynamic programming.

As we discussed earlier, if holding hi,yi fixed, the optimization problem in Eq. 2.6 is a

convex quadratic program. Since it is not in a standard form of multi-class SVMs, we cannot

solve it by off-the-shelf SVM solvers (e.g. LibSVM [11] or SVMLight [38]). Wang and Mori

[91] develop a solver for Eq. 2.6 based on the cutting-plane method and decomposed dual

optimization.

Interestingly, Yu and Joachims [97] show that this iterative algorithm is essentially a

concave-convex procedure algorithm. It is shown in [98] that the CCCP algorithm is guar-

anteed to decrease the value of the objective function in each iteration and converge to a

local minimum. For simplicity, we will refer to this iterative algorithm as CCCP in the

following discussion.

2.2.2 Non-Convex Cutting Plane Training

The learning problem in Eq. 2.4 can also be solved by a non-convex cutting plane algorithm

in [19], which is an extension of the popular convex cutting plane algorithm [39] for learning
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structural SVM [1]. Due to its ease of use, this algorithm has been adopted in several

different applications of latent SVM [95, 90].

First, we write Eq. 2.4 as the following unconstrained formulation:

w∗ = arg min
w

1

2
||w||2 + C

∑
i

Ri(w) where,

Ri(w) = max
y

(
∆(y, yi) + max

h
w>Φ(xi,h, y)

)
−max

h′
w>Φ(xi,h

′, yi) (2.7)

The learning algorithm in [19] aims to iteratively build an increasingly accurate piecewise

quadratic approximation of Eq. 2.4 based on the “sub-gradient”1 ∂w (
∑

iRi(w)) [19]. The

key issue is how to compute the sub-gradient ∂w (
∑

iRi(w)). Since

∂w

(∑
i

Ri(w)

)
=
∑
i

∂wRi(w), (2.8)

all we need to do is to figure out how to compute ∂wRi(w). We define:

(y∗,h∗) = arg max
y,h

∆(y, yi) + wTΦ(xi,h, y) (2.9)

ĥ′ = arg max
h′

wTΦ(xi,h
′, yi) (2.10)

It can be shown that ∂wRi(w) can be calculated as

∂wRi(w) = Φ(xi,h
∗, y∗)− Φ(xi, ĥ′, yi) (2.11)

The computing of the subgradient ∂wRi(w) involves solving two inference problems in

Eq. 2.9 and Eq. 2.10. This is similar to the CCCP learning algorithm (Section 2.2.1) which

also requires the solving of inference problems over latent variable h.

2.2.3 Self-paced Learning

The learning of latent SVM is sensitive to initialization and often gets stuck in a bad local

optimum. This is a common problem for most non-convex optimization algorithms. In

practice, to avoid bad local optima, one needs to run the learning algorithm many times

with different initializations, and then choose the model parameters which produce the

best performance on a validation set. However, this scheme is computationally expensive.

1We follow the notation of “sub-gradient” in [19]. It is used to compute the cutting plane which is a
“local” lower-bound of the non-convex objective function.
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To addresses these issues, Kumar et al. [42] propose a self-paced learning algorithm for the

training of latent SVM. This algorithm is inspired by human learning. For example, children

are first taught with simple and easy concepts, and then the hard ones. Similarly, in self-

paced learning, training examples are grouped into “easy” examples and “hard” examples.

An example is an “easy” one if its correct output can be predicted easily, i.e. it has a higher

decision score (above some threshold). Self-paced learning of latent SVM can be considered

as a variant of the CCCP learning algorithm in Section 2.2.1. In self-paced learning, the

step 2 (Eq. 2.6) is slightly modified and is only performed on the “easy” examples. During

the iterations, by adjusting the threshold, more examples will be considered as “easy” and

introduced into the training until the entire training set is used. Kumar et al. [42] have

demonstrated that this self-paced learning algorithm outperforms the CCCP algorithm on

several visual recognition applications. Similar idea has been adopted in [99] which adds

training data incrementally at each iteration.

2.3 Related Models

There are many approaches in the literature which are related to the latent SVM. For

example, there is a line of work on using latent topic models for visual recognition based

on “bag-of-words” representation, such as pLSA [34], LDA [6], etc. The latent topic models

are generative and probabilistic so they are very different to the latent SVM. In this section,

instead of going through all the learning frameworks with latent variables, we focus on the

two most related work to latent SVM: Multiple Instance Learning (MIL) [2] and hidden

Conditional Random Fields (hCRF) [62].

2.3.1 Multiple Instance Learning

In the setting of Multiple Instance Learning (MIL), the training examples come in as “bags”.

There is at least one example that is positive in a positive bag, while in a negative bag all

examples must be negative. It has many applications in visual recognition, such as object

detection [84], object tracking [4], etc. Similar to latent SVM, an appealing characteristic

of MIL is that the “multiple instance” setting fits with most of visual recognition problems

using weakly labeled data. For example, the “car model” example we used in Section 2.1

can also be interpreted as a MIL problem. A positive “car” image is a positive bag which

consists of a number of image regions, among which there is at least one region that contains
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a car. Note again that the ground-truth locations of the cars are not provided on the training

images. A negative “car” image is a negative bag which does not contain any car region.

A number of researchers have modified classical discriminative learning approaches to

perform MIL. Viola et al. [84] propose MILBoost which is an extension of AnyBoost frame-

work for MIL problem. Andrews et al. [2] formulate MIL as a max-margin problem and

propose the MI-SVM. In MI-SVM, the decision score for a positive bag is defined as the

maximum score of the instances in this bag, and the goal of MI-SVM is to maximize the

margin between bags instead of instances. The formulation of MI-SVM is defined as follows:

min
w,b,ξ

1

2
||w||2 + C

∑
I

ξI

s.t. ∀I, YI max
i∈I

(w>xi + b) ≥ 1− ξI , ξI ≥ 0 (2.12)

where YI denotes the label for the I-th bag, and xi denotes the i-th instance in the bag I.

Note that this formulation of MI-SVM is for binary classification so that YI ∈ {+1,−1}. It is

interesting to notice that Eq. 2.12 is very similar to the original latent SVM formulation [26].

Indeed, as noted in [26], the latent SVM formulation in [26] is equivalent to the MI-SVM.

However, we believe latent variables in latent SVM are much easier to be defined than the

“bag-instance” setting in MIL. Moreover, latent variables can be very flexible and have richer

representations. For example, in visual recognition, latent variables are often structured (e.g.

a tree structure), which are difficult to be formulated in the MIL setting.

2.3.2 hCRF

Quattoni et al. [62] propose the hidden Conditional Random Fields (hCRF) for object

recognition. hCRF is a discriminative probabilistic model and it extends the Conditional

Random Fields (CRF) model by incorporating hidden variables. Note that the term “hidden

variable” in hCRF is equivalent to the “latent variable” in latent SVM. Both of them refer

to the variables which are not observed during training. As a discriminative model, hCRF

models the conditional distribution p(y|x) directly which can be expressed as follows:

p(y|x; θ) =
∑
h

p(y,h|x; θ) =

∑
h exp(Φ(y,h,x; θ))∑

y′,h exp(Φ(y′,h,x; θ))
(2.13)

where θ are the model parameters, and Φ(y,h,x; θ) is the potential function parameterized

by θ. The potential function in hCRF is defined in a similar way to the one in latent SVM,
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and it consists of both unary terms and binary terms if the latent variable h is constrained

by a graph E .

The model parameters θ can be learned by minimizing the following objective function,

which is equivalent to maximizing the conditional log likelihood:

L(θ) = −
∑
i

log p(yi|xi; θ) +
||θ||2

2σ2
(2.14)

= −
∑
i

log
∑
h

exp(Φ(yi,h,xi; θ)) +
∑
i

log
∑
y′,h

exp(Φ(y′,h,xi; θ)) +
||θ||2

2σ2
, (2.15)

where ||θ||
2

2σ2 is the log of the Gaussian prior, i.e. p(θ) v exp( 1
2σ2 ||θ||2). The first term in

Eq. 2.15 is concave and the other two terms are convex. So, similar to latent SVM, the

optimization problem in Eq. 2.15 is not convex. In [62], Quattoni et al. use the gradient

descent approach to find its locally optimal solutions.

Both hCRF and latent SVM are discriminative models with latent variables. As noted

in [91], we can think of multi-class SVM as a “max-margin” version of hCRF. Wang and

Mori discuss the connections between hCRF and latent SVM in [91]. First, the training

criteria of latent SVM and hCRF are different. The goal of latent SVM is to maximize

the margin but hCRF is to maximize the conditional log likelihood. Besides, the most

major difference between these two approaches lies in their different ways of incorporating

the latent variables. In hCRF, due to its probabilistic nature, the rule of summing over

h is adopted (as shown in Eq. 2.13). In contrast, latent SVM requires the maximizing

over h (as shown in Eq. 2.1). It is discussed in [91] that in practice, maximizing over h is

more suitable for visual recognition problems. The intuition behind the summing over h

(Eq. 2.13) is that the learning algorithm would push the probability of incorrect labeling

of h close to zeros and thus the probability of correct labeling of h will contribute more

to p(y|x; θ). However, this is rather an ideal situation. In practice, for an example x, the

choices of its latent variables can be exponentially large, among which only a small number

of choices are “correct” ones. Then, the summing over p(y,h|x; θ) may still be dominated

by the incorrect h’s, which is obviously not desirable.

2.4 Summary

In this chapter, we have provided an overview of latent SVM. Here, we summarize a few

key characteristics of latent SVM as follows:
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• Latent SVM is not convex. A proper initialization is necessary for achieving good

performance. Alternatively, one can use some learning tricks, e.g. self-paced learning.

• Latent SVM is essentially a variant formulation of MI-SVM in multiple instance learn-

ing (MIL). However, defining latent variables for most computer vision problems using

weakly labeled data is much more natural than converting them to MIL problems.

• A multi-class latent SVM can be considered as a max-margin version of hCRF. The

maximizing over h in latent SVM is more suitable for most visual recognition appli-

cations than summing over h.



Chapter 3

Previous Work: Latent SVM in

Visual Recognition

In this chapter, we review the approaches in the literature which adopt the latent SVM

framework for addressing challenging problems in visual recognition. Although these ap-

proaches follow the same learning framework, they can be differentiated by 1) the semantic

meaning of latent variables; and 2) the model formulation (i.e. w>Φ(x,h, y)). We will focus

on these two aspects and review a few representative approaches using latent SVM. We

mainly cover three sub-fields of visual recognition: objection detection (Section 3.1), object

classification (Section 3.2), and human activity recognition (Section 3.3). We emphasize

that latent SVM is not limited to these three applications, and it has been used in a variety

of applications, which will be briefly summarized in Section 3.4.

3.1 Object Detection

Object detection is one of the most challenging problems in computer vision. The goal of

object detection is to answer the question of “where are the instances of a particular object

in the image (if any)?”. Object detection has a wide range of applications in the real world.

One successful example is face detection which can be considered as a special case of object

detection. Although to a certain extent, face detection is a “solved” problem, the detection

of generic objects (e.g. person, car, bicycle, dog, etc.) remains challenging. In this section,

we first summarize the challenges of detecting objects. We emphasize that most of these

15
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(a) Shape variations (b) Suboptimal labeling (c) Viewpoint variation

Figure 3.1: Figure (a) is from [86]. Figure (b) and (c) are from PASCAL VOC Challenges
[21].

challenges also exist in other applications, such as object classification and human action

recognition.

Shape variation: One of the major challenges of object detection is the significant

variations in appearance, which include not only illumination and viewpoint variations, but

also non-rigid deformations in the shape of the object. For example, people in the pictures

are often in very different postures (Fig. 3.1(a)). The linear models (e.g. HOG feature +

linear SVM [14]) cannot effectively capture these variations, and they usually only work well

when a person is in an upright posture. To handle the variations in the shape of objects, one

popular approach is to model the deformable configuration of object parts using pictorial

structures [27]. However, it requires the detailed labeling of object parts, which is not

available for most object detection tasks.

Suboptimal labeling: In the setting of object detection, images are only manually

labeled with bounding boxes which cover the objects of interest. Although these bounding

boxes are treated as “ground-truth”, they are usually suboptimal. For example, as shown

in Fig. 3.1(b), the bounding boxes correctly locate the two persons in the image, but clearly

the persons in the bounding boxes are not well aligned. It is believed that suboptimal

labeling can result in inferior training, and an alignment preprocessing is often necessary.

For example, in most face detection/recognition systems, it is a common strategy to first

pre-process the face images and align the faces by eye positions.

Viewpoint variations: At present, the general goal of object detection is detecting

objects from static 2D images. The projection process of an object from a 3D world to a

2D image plane often results in appearance variations. Compared with the shape variation,

the variations caused by the viewpoints or the object poses are much more significant. For
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example, as shown in Fig. 3.1(c), the front-view car looks very different from the side-

view car. This type of variation can be easily addressed if we have the annotations of the

viewpoints or the objects’ poses in 3D. A successful example is the multi-view face detection

system [50] which trains a separate detector for each specified head pose (e.g. frontal face,

profile face, etc.). However, for the detection of generic objects, it is difficult to collect

accurate annotations of viewpoints or objects’ 3D poses.

So far we have summarized three major challenges of object detection. In fact, all

these challenges are not independent from each other and they are rather coupled together.

For example, the viewpoint variations would lead to more challenging shape variations or

occlusions. Having more complete and elaborate annotations can greatly help us address

these challenges, but again it will be difficult and expensive to collect such annotations. In

the following sections, we will discuss the literature which adopts the latent SVM to deal

with these challenges.

3.1.1 Latent Parts

Felzenszwalb et al. [26] propose a deformable part model (DPM) for object detection. This

model achieves the top performance on the PASCAL VOC object detection competition [21]

and it has been widely adopted. The DPM builds on the Histogram of Oriented Gradi-

ent (HOG) features [14]. Given a set of training images annotated with bounding boxes

around each object instance, the training of DPM is a typical binary classification prob-

lem. For example, for training a “car” detector, the image regions containing the cars are

the positive examples, while other image regions without cars are the negative examples.

As we discussed earlier, the bounding boxes provided along with the training set are often

not optimal. Therefore, the locations of the optimal bounding boxes are treated as latent

variables. Moreover, to address the shape variations, a star-structured pictorial structure

model is used in DPM. Unlike other approaches using the pictorial structure, the locations

of object parts in DPM are considered as latent, and they will be implicitly inferred during

learning.

More formally, the latent variable for an object is defined as h = (z0, z1..., zn), where z0

denotes the location of the optimal bounding box. (z1, ..., zn) denote the locations of the n

parts. It is assumed that latent variable h is constrained by a star structure where z0 is the

root. Note that here, for ease of understanding, we modify the notations in [26], and try to

make them consistent with the ones in Chapter 2. The potential function w>Φ(x,h, y) is
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Figure 3.2: The red bounding boxes illustrate the detection results of a deformable part
model trained for person. The small blue bounding boxes show the latent part locations
obtained by inference (Eq. 2.5). This model consists of a root template (a), and a set of
part templates (b). (c) visualizes a spatial model for the location of each part relative to
the root. These figures are from [26].

defined as follows:

w>Φ(x,h, y) = w>0 φ(x, z0) +
n∑
i=1

w>i φ(x, zi) +
n∑
i=1

diφd(zi, z0) + b, (3.1)

where b is the bias term. φ(x, zi) represents the features extracted from location zi for the

i-th part. φd(zi, z0) models the relative displacement of the i-th part with respect to the

root z0. The model parameters w are simply the concatenation of the parameters in all the

factors, i.e. w = (w0, w1, ..., wn, d1, ..., dn, b). The training of DPM is performed by latent

SVM and it is solved by the CCCP algorithm described in Section 2.2.1. Because of the star

structure, the inference of the latent variable h (Eq. 2.5) can be efficiently computed using

dynamic programming and generalized distance transforms (min-convolutions). Example

detection results and a part model trained for person detection are visualized in Fig. 3.2.

In DPM, the star structure of latent variables can be considered as a 2-layer structure

including a root node and several part nodes. Zhu et al. [99] extend it to a 3-layer structure.

In this “deep structure” model, the first layer is the root node (i.e. the optimal bounding

box). The second layer consists of 9 child nodes (i.e. parts) in a 3 × 3 grid layout. Each

node in the second layer is associated with 4 child nodes (i.e. parts) from the third layers.

They demonstrate the performance of DPM can be improved by simply adding an extra

layer in the structure of latent variables. To accelerate the training, an incremental concave-

convex procedure (iCCP) is proposed in [99] which adds training data incrementally at each
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iteration and thus reduces the training cost.

3.1.2 Latent Viewpoint

In [26], Felzenswalb et al. use mixture models to address the large viewpoint variations. In

their experiments, each mixture model consists of only two components, and each compo-

nent corresponds to a viewpoint. Gu and Ren [31] demonstrate that the mixture model

representation in DPM is able to handle a large number of components (viewpoints). There

is an interesting interpretation of mixture models by latent variables. In [31], each object

instance is associated with a viewpoint label h, where h ∈ H and H is the set of all possible

viewpoints. Note that different from the structured latent variables we introduced in Chap-

ter 2, here the latent variable is a simple discrete value. The potential function w>Φ(x, h, y)

is defined as follows:

w>Φ(x, h, y) =
∑
a∈H

1a(h) · w>a φ(x, y) (3.2)

where 1a(h) is an indicator that takes the value 1 if h = a, and 0 otherwise. φ(x, y)

represents the HOG feature extracted from the example x. Similar to [26], Gu and Ren [31]

choose the CCCP algorithm to train the latent SVM models. Note that the latent variable

h in [31] is a discrete value, so the inference of the latent variable is performed by simply

enumerating every choice in the set of H.

In the setting of latent SVM, the viewpoints are considered as latent information. How-

ever, in the real world, it might be provided on training data (e.g. 3DObject dataset [66]).

Gu and Ren [31] also extend the framework of latent SVM to address the following two sce-

narios: 1) h is observed (i.e. ground-truth viewpoint labeling is provided); 2) h is partially

observed (i.e. a subset of training examples has ground-truth viewpoint labeling). It demon-

strates the flexibility of latent SVM framework for handling the problem of recognizing with

auxiliary labels (e.g. viewpoints).

3.2 Object Classification

The goal of object classification is to predict whether an instance of a particular object

class exists in the image. It is interesting to notice that if object detection is solved, object

classification is solved. For example, if we know there is a car in the right-upper corner



CHAPTER 3. PREVIOUS WORK: LATENT SVM IN VISUAL RECOGNITION 20

of the image, then this image definitely contains a car. However, given the challenges we

list in Section 3.1, object detection is still a largely unsolved problem, so it is questionable

whether the output of any object detection algorithm is reliable enough to be directly

used for object classification. Because of the special relationship between detection and

classification, object classification faces the same challenges as object detection. At present,

most successful object classification methods are still “global” methods based on the bag-

of-features (BOF) extracted from the whole image [21]. This is mainly because the BOF is

robust to appearance variations and incorporates scene contextual information.

In this section, we will review two interesting systems for classifying objects with latent

variables. We emphasize that the latent variables in these two systems are semantically

meaningful. In [33], the locations of objects in the image are considered as latent variables,

while in [90] latent variables are the object attributes. It has been experimentally demon-

strated that the performance of object classification is improved by using latent variables.

3.2.1 Latent Cropping

As we discussed earlier, most of object classification approaches are “global” approaches

based on the bag-of-feature representation and treat each image region equally important.

However, consider the bicycle image in Fig. 3.3(a). The bicycle takes only a small portion of

the image. Although the “road” in the image may provide a certain amount of contextual

information, the “grass” seems irrelevant to the bicycle. Therefore, it is counterintuitive to

include all image regions in the training of an object classification model and treat them

equally important.

To address this issue, one possible approach is to first localize the most discriminative

(or salient) region on the image, then perform object classification on this region instead of

the whole image. However, this approach is rather difficult. For example, it is not clear what

type of region would be discriminative enough for the purpose of object classification. There

is no ground-truth labeling of these discriminative regions either. Instead, Bilen et al. [33]

propose to treat the location of the most discriminative region on each image as a latent

variable. This latent variable essentially specifies a cropping operation which determines a

bounding box covering the most discriminative region on the image. The latent variable h

is defined as the location of the discriminative region on the image, and the feature vector

Φ(x,h, y) is the BOF extracted from the image region h. During testing, the inference of h

is performed by enumerating all possible regions on the image x.
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Figure 3.3: The visualization of latent crop examples. These figures are from [33].

Fig. 3.3 shows examples of the learned latent variables (i.e. the location of the most

discriminative region). We can see that all discriminative regions cover the target objects

and a bounding box can include more than one object.

3.2.2 Latent Attribute

The goal of object classification is also known as object naming (e.g. “Is this an image of

a dog or cat?”). Recently, there is a trend in visual recognition which shifts the goal of

recognition from naming to describing. In the task of “object describing”, each image is

not only assigned with an object class, but also a list of attributes. Object attributes are

in line with human intuition about describing an object. Typical attributes can be color

(e.g. “red”), shape (e.g. “round”), materials (e.g. “furry”), etc. There is an interesting

question arising: “can attributes help recognition?”. Farhadi et al. [24] propose a two-stage

classification process by first training a number of attribute classifiers, then using their

outputs to classify objects. They show that the learning of attributes can help categorize

objects, especially when only a few training examples are available.

In the two-stage classification framework of [24], the learning of object attributes and

classes are treated as two separate learning problems. One limitation of this approach is that

the learning of object attributes is not directly tied to the end goal of object classification,

and thus the output of the attribute prediction might not be reliable. Wang and Mori [90]

introduce a discriminative model which jointly learns object attributes and classes. In

particular, they characterize the problem as a recognition problem with auxiliary labels, and

treat the attributes as auxiliary labels. The training data consists of both ground-truth

object class labels and attribute labels. But testing images do not have the ground-truth

attribute labels. The end goal of the learning system is object classification, so the loss

functions are only defined over the class label y. This model is trained in the framework of
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latent SVM. To ensure the consistency between training and testing, the auxiliary attribute

labels on the training examples are treated as latent variables, so that the learning algorithm

would not “overly trust” the attribute information which is missing during testing.

More formally, the attributes of an object are denoted as h = (z1, z2, ..., zK), where

zk ∈ {0, 1} indicates whether the k-th attribute presents in the image. For example, if the k-

th attribute is “red”, zk = 1 means this object is “red”, while zk = 0 means it is not. Similar

to other discriminative frameworks with latent variables, there are certain dependencies

(e.g. co-occurrence) between some pairs of attributes (zj , zk), which are captured by an

undirected graph G = (V, E). This graph is named as “attribute relation graph”, and an

example graph is shown in Fig. 3.4. The w>Φ(x,h, y) is defined as follows:

w>Φ(x,h, y) = w>y φ(x) +
∑
j∈V

w>zjϕ(x) +
∑
j∈V

w>y,zjω(x) +
∑

(j,k)∈E

w>j,kψ(zj , zk) +
∑
j∈V

νy,zj(3.3)

Now we briefly describe each potential function in Eq. 3.3. First, w>y φ(x) is a standard

linear model for object classification without considering attributes. Both
∑

j∈V w
>
zjϕ(x)

and
∑

j∈V w
>
y,zjω(x) are linear models trained to predict the label (0 or 1) of j-th attribute

for the image x. The only difference is that the latter one is the class-specific attribute

model and its parameters wy,zj can be considered as a template for the j-th attribute to

take the label zj if the object class is y. The third potential function
∑

(j,k)∈E w
>
j,kψ(zj , zk)

measures the dependencies between the j-th and the k-th attributes, and νy,zj captures the

compatibility between object class y and the j-th attribute zj . Although this model (Eq. 3.3)

is rather complicated, it successfully integrates image features x, the latent attribute labels

h, and the object class label y in a unified framework which outperforms the two-stage

framework in [24].

This paper [90] shares the same motivation as our work that will be presented in Chapter

4, that is to learn a unified framework for the recognition problems with auxiliary labels.

In Chapter 4, we address the problem of human action recognition and consider the human

poses as the auxiliary labels.

3.3 Human Activity Recognition

Human activity recognition is one of the most popular topics in visual recognition. A lot

of work has been done in recognizing human activity either from still images or from video

sequences. Much work focuses on recognizing actions performed by a single person. In
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Figure 3.4: Visualization of an attribute relation graph. An edge on the graph represents a
strong co-occurrence relationship. This figure is from [90].

recent years, recognizing and analyzing group activities are increasingly attracting more

attention. In general, the goal of human activity recognition is to classify an image or a

video sequence into one of several pre-defined categories based on the actions performed by

the people in the image or the video. Activity recognition is also a very challenging problem.

One of the major challenges is the intra-class variation in action. For example, for the same

“walking” action, different people may perform it very differently (e.g. with different strides

or speed). A successful human activity recognition system also need to cope with other

challenges, such as viewpoint variation, occlusion, and clutter background.

In this section, we will review two approaches addressing human activity recognition

using latent variables. One approach [91] focuses on recognizing actions performed by

a single person, and the other one [45] focuses on group activity recognition. In both

approaches, it is assumed the image frame has been pre-processed so the persons in the

image have been localized.

3.3.1 Latent Patch

In visual recognition, the major feature representations include global template, bag-of-

words, and part-based models. Inspired by [26], Wang and Mori [91] propose a principled

approach to combine the global template features and the part model using latent SVM.

The high-level overview of this model is illustrated in Fig. 3.5(a). Different to the pictorial

structure model in [26], the part model in [91] is based on the local patches and it models

the human action as a flexible constellation of parts conditioned on the appearances of local
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(a)

(b) (c)

Figure 3.5: (a) illustrates the high-level motivation of the model in [91] which is to represent
a human action by a large scale template feature (e.g. optical flow feature) and a set of
local “parts”. (b) is the graphical illustration of the model used in [91]. (c) visualizes the
latent patches learned during training. Patches are colored based on their part labels. These
figures are from [91].

patches. In the model, each local patch is assigned with a “part label” which indicates

certain motion patterns of this patch. For example, the patches on the “jumping” person

are often assigned with the “part labels” corresponding to the “moving down” or “moving

up” patterns. The “part labels” of the patches are treated as latent information.

The training example is assumed to take the form of x = (s0, s1, ..., sm), where s0 is the

motion feature extracted from the whole frame, si is the feature vector extracted from the

i-th patch. Each example is associated with a vector of latent variables h = (h1, h2, .., hm),

where hi denotes the “part label” of the i-th patch and it takes a discrete value from a setH of

possible “part labels”(i.e. hi ∈ H). Again, (h1, h2, .., hm) forms a tree structure G = (V, E),
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which is obtained by running a minimum spanning tree (MST) algorithm over the patches.

The model is graphically illustrated in Fig. 3.5. The potential function w>Φ(x,h, y) is

defined as follow:

w>Φ(x,h, y) = w>0 φ0(y, s0) +
∑
j∈V

w>1 φ1(sj , hj) +
∑
j∈V

w>2 φx(hj , y) +
∑

(j,k)∈E

w>3 φ3(hj , hk, y)(3.4)

w>0 φ0(y, s0) is the root model which models the compatibility of the global feature s0

extracted from the whole frame and the class label y. The second potential function∑
j∈V w

>
1 φ1(sj , hj) captures the compatibility between latent part label hj and the local

feature sj on the j-th patch.
∑

j∈V w
>
2 φx(hj , y) measures the compatibility of the class

label y and the latent part label hj , and
∑

(j,k)∈E w
>
3 φ3(hj , hk, y) models the dependencies

between part labels hj and hk.

3.3.2 Latent Interaction

Lan et al. [45] focus on recognizing the activities of a group of people. It is believed that the

action of an individual in a group is rarely performed in isolation. There are often strong

correlations between the actions of the people in the same group. For example, the activity

of “queueing” involves a group of people, and the persons in this group usually perform the

same action, i.e. standing and facing to the same direction. In [45], Lan et al. propose a

discriminative framework using latent SVM, which jointly models the group activity, the

individual person actions, and the person-person interactions.

Assuming there are in total m persons found in the image I, the feature extracted

from image I is in the form of x = (x0, x1, .., xm), where xi is the feature vector extracted

from the i-th person. The collective actions of all the persons in the image are denoted as

h = (h1, h2, .., hm), and hi is the action label of the i-th person. Moreover, it is assumed

that the persons in the same group are interacted so that there are dependencies between

the pair of actions (hj , hk). An undirected graph G = (V, E) is used to capture the structure

of the action labels (h1, h2, ..., hm). Fig. 3.6 shows the graphical representation of the model.

Comparing Fig. 3.6 with Fig. 3.5, one may notice that the model and notations in [45] are

very similar the ones in [91], except that the h in [45] are the action labels of the individuals

in the image rather than the part labels. However, there is a significant difference. In [91],

h are considered as latent and the graph G (i.e. a tree structure generated by MST) is

predefined. But here, the action labels h are assumed to be provided on the training images
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(a) (b)

Figure 3.6: Graphical illustrations of the model used in [45]. The dashed lines indicate that
the structure of latent variables is latent. These figures are from [45].

so that they are not latent during training. Instead, the structure (i.e. G) of action labels

is treated as a latent variable. This is one of the major contributions of [45]. By treating

the G as a latent variable, the person-person interaction becomes adaptive and it achieves

better performance than a fixed graph.

Given a set of N training examples {(xi,hi, y)}Ni=1 ,the model parameters can be learned

by solving the following latent SVM formulation:

min
w,ξ≥0,G

1

2
||w||2 + C

∑
i

ξi

s.t. max
Gy

max
h

w>Φ(xi,h, y;Gy)−max
Gyi

w>Φ(xi,hi, yi;Gyi) ≤ ξi −∆(y, yi), ∀i, ∀y

(3.5)

where w>Φ(xi,hi, yi;Gyi) denotes a potential function in which the action labels hi are

constrained by a particular graph Gyi . Lan et al. [45] shows that Eq. 3.5 can be solved using

the non-convex cutting plane training algorithm described in Section 2.2.2.

As mentioned earlier, in the setting of [45], the action labels h are observed during

training. However, this auxiliary labeling is not provided on the new testing image. This

is a very common scenario since the algorithms are usually expected to be fully automatic

during testing without using any manual labeling. Therefore, for a new testing image, we

need infer both the action labels h and their structure Gy:

fw(x, y) = max
Gy

max
h

w>Φ(xi,h, y;Gy) (3.6)
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A coordinate ascent style algorithm is proposed in [45] for solving the optimization problem

in Eq. 3.6 by alternating between the inference of h and the inference of Gy.
Lastly, we emphasize that the learning approach in [45] is very different from most of

the previous work using latent structured models. It does not predefine any structure for

the hidden layer but rather treats it as a latent variable. Again, this learning approach

demonstrates the flexibility of the latent SVM framework.

3.4 Other work

In the above three sections, we have reviewed the details of a few interesting approaches

which use latent SVM to address the challenging problems in visual recognition. In this

section, we will briefly go through other work which follows the same latent SVM framework,

but defines different latent variables.

In object detection, to handle the occlusion and truncation on the object instances,

Vedaldi and Zisserman [82] assign a binary latent variable h on each HOG cell. For example,

hj = 1 means that the j-th cell of the HOG descriptor is visible, and hj = 0 means this cell

is either occluded or truncated. Pandey and Lazebnik [59] directly apply the deformable

part models [26] in both scene recognition and weakly supervised object localization. For

the weakly supervised object location, it is assumed that the ground-truth bounding-box

labeling is not provided on the training set, and it is then treated as the latent variable. A

similar part-based model is proposed by Parizi et al. [60]. They represent each scene image

as a set of region models (i.e. “parts”), and each image patch is associated with a latent

region label.

In human activity recognition, Niebles et al. [54] consider an activity video as a composi-

tion of several shorter video segments which represent simpler actions. The displacements of

these video segments are the latent variables and they are assumed to form a chain structure.

Liu et al. [51] introduce the concept of attribute to human action recognition. They use a

similar model as [90] and treat the attribute labels as latent variables. Vahdat et al. [81]

focus on recognizing the interactions between two persons, and each action is modeled as a

sequence of 5 key poses. Both the displacements of key poses in the videos and the choices

of key poses (i.e. “which key pose we should use to represent the action at a certain time?”)

are treated as latent variables.

Wang and Mori [88] develop a discriminative latent model for image tagging. Unlike
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many previous work where latent variables are a vector of discrete labels, the latent variables

in [88] is a matching matrix which maps the image regions to their corresponding tags.

Kumar et al. [44] address the semantic image segmentation which aims to assign each pixel

a class label (e.g. “road”, “tree”, etc.). It is assumed in [44] that only bounding boxes or

image-level labels are provided on the training images, and the pixel-wise segmentations

are treated as latent variables. In [44], the self-paced learning algorithm (described in

Section 2.2.3) is used for training the latent SVM. Wang et al. [85] address the problem of

indoor scene understanding from a single image, and they focus on recovering the layouts of

major faces (e.g. floor, ceiling and walls). Except these major faces, most indoor scenes also

contain many cluttered objects (e.g. furniture and decorations). The layouts of these clutters

are treated as latent variables. Sharma et al. [70] address a series of image classification

problems using latent SVM, and treat the saliency maps of the images as latent variables.

Their approach is motivated by the observations that different areas (e.g. patches) on the

image do not contribute equally for image classification.

3.5 Summary

In this chapter, we show that latent SVM has been used to address various visual recognition

problems, such as object detection, object classification, human action recognition, and

image segmentation. The latent variables in those approaches are defined in a variety of

forms and have different semantic meanings. Here, we summarize the latent variables in the

literature as the following three types:

1. Missing labels. As we mentioned earlier, the latent variable model can formulate

the missing labels as latent variables, and thus address the intra-category variations

arising in the weakly labeled data. For example, in this chapter, we show that latent

variables have been used to model the locations of object parts [26] and the viewpoints

of objects [31] for the task of object detection. Those labels are missing from the

training data and thus treated as latent variables.

2. Auxiliary labels. This form of latent variables is associated with a class of problems

– recognition with auxiliary labels. For example, [90] and [51] address the problems

of object classification and action recognition respectively, but both of them treat

the attributes as auxiliary labels. In their problem setting, the auxiliary labels are
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observed during training but remain latent during testing. The focus of this line of

work is to develop unified systems that jointly consider the target category label (e.g.

object class or action class) and the auxiliary label (e.g. attributes).

3. Hidden structure. This is best exemplified by [45] as we discussed in Section 3.3.2.

Instead of predefining the structure of the middle-layer representation (i.e. the in-

teractions between the individual persons), the structure itself is treated as latent

information which will be automatically inferred during the learning process.



Chapter 4

Action Recognition with Latent

Pose

In this chapter, we address the problem of recognizing human actions from still images.

In particular, we consider the figure-centric representation. The images are preprocessed

so that the person is localized in the center of the image. Our training data consists of

images with ground-truth action labels (e.g. “walking”, “running”, “sitting”, etc.) and pose

annotations (i.e. the joint positions of human body). Our goal is to train a model which can

predict the action label of the testing image, for which ground-truth pose annotations are

not provided. Different from other work that learns separate systems for pose estimation

and action recognition, then combines them in an ad-hoc fashion, we propose a novel latent

variable model that jointly considers the human actions and poses. This model is trained in

an integrated fashion using latent SVM, and the learning objective is designed to directly

exploit the pose information for action recognition.

The rest of this chapter is organized as follows. We first give an overview of our approach

in Section 4.1. We describe the human pose representation – an action-specific variant of the

“poselet” [9] in Section 4.2. The model formulation and the learning algorithm are described

in Section 4.3 and Section 4.4 respectively. Section 4.5 presents the experimental results

which demonstrate that by inferring the latent poses, the results of action recognition can

be improved. Section 4.6 concludes this chapter.

30
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4.1 Overview

Consider the two images shown in Fig. 4.1 (left). Even though only still images are given, we

as humans can still perceive the actions (walking, playing golf) conveyed by those images.

The primary goal of this work is to recognize actions from still images. In still images, the

information about the action label of an image mainly comes from the pose, i.e. the config-

uration of body parts, of the person in the image. However, not all body parts are equally

important for differentiating various actions. Consider the poses shown in Fig. 4.1 (middle).

The configurations of torso, head and legs are quite similar for both walking and playing

golf. The main difference for these two actions in terms of the pose is the configuration of

the arms. For example, “playing golf” seems to have very distinctive V-shaped arms, while

“walking” seems to have two arms hanging on the side. A standard pose estimator tries

to find the correct locations of all the body parts. The novelty of our work is that we do

not need to correctly infer complete pose configuration in order to do action recognition. In

the example of “walking” versus “playing golf”, as long as we get correct locations of the

arms, we can correctly recognize the action, even if the locations of other body parts are

incorrect. The challenge is how to learn a system that is aware of the importance of differ-

ent body parts, so it can focus on the arms when trying to differentiate between “walking”

and “playing golf”. We introduce a novel model that jointly learns poses and actions in a

principled framework.

Human action recognition is an extremely important and active research area in com-

puter vision, due to its wide range of applications, e.g. surveillance, entertainment, human-

computer interaction, image and video search, etc. Space constraints do not allow an ex-

tensive review of the field, but a comprehensive survey is available in [30]. Most of the work

in this field focuses on recognizing actions from videos [47, 56, 68] using motion cues, and

a significant amount of progress has been made in the past few years. Action recognition

from still images, on the other hand, has not been widely studied. We believe analyzing

actions from still images is important. Progress made here can be directly applied to videos.

There are also applications that directly require understanding still images of human actions,

e.g. news/sports image retrieval and analysis.

Not surprisingly, recognizing human actions from still images is considerably more chal-

lenging than video sequences. In videos, the motion cue provides a rich source of information

for differentiating various actions. But in still images, the only information we can rely on
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Figure 4.1: Illustration of our proposed approach. Our goal is to infer the action label of a
still image. We treat the pose of the person in the image as “latent variables” in our system.
The “pose” is learned in a way that is directly tied to action classification.

is the shape (or the pose) of the person in an image. Previous work mainly focuses on

building good representations for shapes and poses of people in images. Wang et al. [86]

cluster different human poses using distances calculated from deformable shape matching.

Thurau and Hlaváč [76] represent actions using histograms of pose primitives computed by

non-negative matrix factorization. Ikizler et al. [36] recognize actions using a descriptor

based on histograms of oriented rectangles. Ikizler-Cinbis et al. [37] learn actions from web

images using HOG descriptors [14]. A limitation of these approaches is that they all assume

an image representation based on global templates, i.e. an image is represented by a feature

descriptor extracted from the whole image. This representation has been made popular

due to its success in pedestrian detection, in particular the work on histogram of oriented

gradient (HOG) by Dalal and Triggs [14]. This representation might be appropriate for

pedestrian detection, since most pedestrians are upright. So it might be helpful to represent

all the pedestrians using a global template. But when it comes to action recognition, global

templates are not flexible enough to represent the huge amount of variations for an action.
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For example, consider the images of the “playing golf” action in Fig. 4.4. It is hard to imag-

ine that a single global template can capture all the pose variations of this action. Recently,

Felzenszwalb et al. [25] show that part-based representations can better capture the pose

variations of an object, hence outperform global template representations. In our approach,

we operationalize on the same intuition and demonstrate that part-based representations

are useful for action recognition in still images as well. A major difference of our work from

[25] is that we have ground-truth labeling of the pose on the training data, i.e. our “parts”

are semantically meaningful.

Another important goal of our approach is to bridge the gap between human action

recognition and human pose estimation. Those are two closely related research problems.

If we can reliably estimate the pose of a person, we can use this information to recognize

the action. However, in the literature, they are typically touted as two separate research

problems and there has been only very little work on combining them together. There is

some work on trying to combine these two problems in a cascade way, e.g. by building an

action recognition system on top of the output of a pose estimation system. For example,

Ramanan and Forsyth [64] annotate and synthesize human actions in 3D by track people in

2D and match the track to an annotated motion capture dataset. Their work uses videos

rather than still images, but the general idea is similar. Ferrari et al. [29] retrieve TV shots

containing a particular 2D human pose by first estimating the human pose, then searching

shots based on a feature vector extracted from the pose. But it has been difficult to establish

the value of pose estimation for action recognition in this cascade manner, mainly because

pose estimation is still a largely unsolved problem. It is questionable whether the output of

any pose estimation algorithm is reliable enough to be directly used for action recognition.

In this chapter, we propose a novel way of combining action recognition and pose esti-

mation together to achieve the end goal of action recognition. Our work is different from

previous work in two perspectives. First, instead of representing the human pose as the

configuration of kinematic body parts [63], e.g. upper-limb, lower-limb, head, etc, we choose

to use an exemplar-based pose representation, “poselet”. This notation of “poselet” is first

proposed in [9] and used to denote a set of patches with similar 3D pose configuration. For

the purpose of action recognition, we further restrict those patches not only to have similar

configuration, but also from the same action class. Second, as illustrated by the diagram

in Fig. 4.2 (top), previous work typically treats pose estimation and action recognition as

two separate learning problems, and uses the output of a pose estimation algorithm as the
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Figure 4.2: Difference between previous work and ours. (Top) Previous work typically
approaches pose estimation and action recognition as two separate problems, and uses the
output of the former as the input to the latter. (Bottom) We treat pose estimation and
action recognition as an single problem, and learn everything in an integrated framework.

input of an action recognition system [29, 36]. As pointed out earlier, the problem with

this approach is that the output of the pose estimation is typically not reliable. Instead, as

illustrated by the diagram in Fig. 4.2 (bottom), we treat pose estimation and action recog-

nition as two components of a single learning problem, and jointly learn the whole system

in an integrated manner. But our learning objective is designed in a way that allows pose

information to help action classification.

The high-level idea of our proposed approach can be seen from Fig. 4.1. Our goal is

to infer the action label of a still image. We treat the pose of the person as intermediate

information useful for recognizing the action. But instead of trying to infer the pose correctly

using a pose estimation algorithm, we treat the pose as latent variables in the whole system.

Compared with previous work on exploiting pose for recognition [64, 29], the “pose” in our

system is learned in a way that is directly tied to our end goal of action classification.

4.2 Pose Representation

In our model, we treat human pose as latent information and use it to assist the task of action

recognition. Since we do not aim to obtain good pose estimation results in the end, the latent

pose in our approach is not restricted to any specific type of pose representation. Because our

focus is action recognition, we decide to choose a coarse exemplar-based pose representation.

It is an action-specific variant of the “poselet” proposed in [9]. In this chapter, we use the

notation of “poselet” to refer to a set of patches not only with similar pose configuration,
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but also from the same action class. Fig. 4.3 illustrates the four poselets of a walking image.

As we can see, the poselet normally covers more than one semantically meaningful part in

terms of limbs and thus it is distinct from the background. So, the detection of poselets is

more reliable than limb detection, especially with cluttered backgrounds.

In [9], a dataset is built where the joint positions of each human image are labeled in 3D

space via a 2D-3D lifting procedure. We simply annotate the joint positions of human body

in the 2D image space, as shown in Fig. 4.4. From the pose annotation, we can easily collect

a set of patches with similar pose configuration. Based on the intuition that action-specific

parts contain more discriminative information, we decide to select the poselets per action.

For example, we would like to select a number of poselets from running-legs, or walking

arms. The procedure of poselet selection for a particular action (e.g. running) is as follows:

1. We first divide the human pose annotation of the running images into four parts, legs,

left-arm, right-arm, and upper-body; 2. We cluster the joints on each part into several

clusters based their normalized x and y coordinates; 3. We remove clusters with very few

examples; 4. Based on the pose clusters, we crop the corresponding patches from the images

and form a set of poselets for the running action. Representative poselets from the running

action are shown in Fig. 4.5. As we can see, among each poselet the appearance of each

patch looks different, but they have very similar semantic meaning. As pointed in [9], this

is also one advantage of using poselets. We repeat this process for other actions and obtain

90 poselets in total in the end.

In order to detect the presence of each poselet, we train a classifier for each poselet. We

use the standard linear SVM and the histograms of oriented gradients feature proposed by

Dalal and Triggs [14]. The positive examples are the patches from each poselet cluster. The

negative examples are randomly selected from images which have the different action label

to the positive examples. For example, when we train the classifier for one of “running-legs”

poselets, we select the negative examples from all other action categories except for the

running action. The learned running poselet templates are visualized in the last column in

Fig. 4.5.

4.3 Model Formulation

Let I be an image containing a person. We consider a figure-centric representation where

I only contains one person centered in the middle of the image. This representation can
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Figure 4.3: Visualization of the poselets for a walking image. Ground-truth skeleton is
overlayed on image. Examples of poselets for each part are shown.

(a) (b)

(c) (d) (e)

Figure 4.4: Sample images of the still image action dataset [37], and the ground truth pose
annotation. The locations of 14 joints have been annotated on each action image. (a)
Running; (b) Walking; (c) Playing Golf; (d) Sitting; (e) Dancing.
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Figure 4.5: Examples of poselets for each part from the running action. Each row corre-
sponds to one poselet. The last column is the visualization of the filters for each poselet
learned from SVM + HOG.
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Figure 4.6: The four part star structured model. We divide the pose into four parts: legs,
left-arm, right-arm, and upper-body.

be obtained from a standard pedestrian detection system. Let Y be the action label of the

person, and L be the pose of the person. We denote L as L = (l0, l1, ..., lK−1), where K is

the number of parts. In our model, we choose K = 4 corresponding to upper-body, legs, left-

arm, and right-arm. The configuration of the k-th part lk is represented as lk = (xk, yk, zk),

where (xk, yk) indicates the (x, y) locations of the k-th part in the image, and zk ∈ Zk is

the index of the chosen poselet for the k-th part. We have used Zk to denote the poselet set

corresponding to the part k. In our model, we use |Zk| as 26, 20, 20, 24 for the four parts:

legs, left-arm, right-arm, and upper-body, based on our clustering results.

Similar to the standard pictorial structure models [27, 63] in human pose estimation, we

use an undirected graph G = (V, E) to constrain the configuration of the pose L. Usually the

kinematic tree of the human body is used. A vertex j ∈ V corresponds to the configuration

lj of the j-th part, and an edge (j, k) ∈ E indicates the dependency between two connected

parts lj and lk. In this work, we use a simple four part star structured model, as shown in

Fig. 4.6. The upper-body part is the root node of G and other parts are connected to the

root node. We emphasize that our algorithm is not limited to the four part star structure

and can be easily generalized to other types of tree structures.

Our training data consists of images with ground-truth labels of their action classes and

poses (i.e. (x, y) location of each part and its chosen poselet). The ground-truth poselet of

a part is obtained by tracing back the poselet cluster membership of this part. Given a set

of N training examples {(I(n), L(n), Y (n))}Nn=1, our goal is to learn a model that can be used

to assign the class label Y to an unseen test image I. Note that during testing, we do not

know the ground-truth pose L of the test image I.
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We are interested in learning a discriminative function H : I × Y → R over an image I

and its class label Y , where H is parameterized by Θ. During testing, we can predict the

class label Y ∗ of an input image I as:

Y ∗ = arg max
Y ∈Y

H(I, Y ; Θ) (4.1)

We assume H(I, Y ; Θ) takes the following form:

H(I, Y ; Θ) = max
L

ΘTΨ(I, L, Y ) (4.2)

where Ψ(I, L, Y ) is a feature vector depending on the image I, its pose configuration L and

its class label Y . We define ΘTΨ(I, L, Y ) as follows:

ΘTΨ(I, L, Y ) =
∑
j∈V

αTj φ(I, lj , Y ) +
∑

(i,j)∈E

βTjkψ(lj , lk, Y ) + ηTω(l0, Y ) + γTϕ(I, Y ) (4.3)

The model parameters Θ are simply the concatenation of the parameters in all the

factors, i.e. Θ = {αj : j ∈ V} ∪ {βj,k : (j, k) ∈ E} ∪ {γ}. The details of the potential

functions in Eq. 4.3 are described below.

Part appearance potential αTj φ(I, lj , Y ): This potential function models the com-

patibility between the action class label Y , the configuration lj = (xj , yj , zj) of the j-th

part, and the appearance of the image patch extracted from the location (xj , yj). It is

parameterized as:

αTj φ(I, lj , Y ) =
∑
a∈Y

∑
b∈Zj

αTjab · 1a(Y ) · 1b(zj) · f(I(lj)) (4.4)

where 1a(X) is an indicator that takes the value 1 if X = a, and 0 otherwise. We use

f(I(lj)) to denote the feature vector extracted from the patch defined by lj = (xj , yj , zj)

in the image I. The poselet set for the j-th part is denoted as Zj . The parameter αjab

represents a template for the j-th part if the action label is a and the chosen poselet for the

j-th part is b.

Instead of keeping f(I(lj)) as a high dimensional vector, we simply use the output of a

SVM classifier trained on a particular poselet as the single feature. We append a constant 1

to f(I(lj)) to learn a model with a bias term. In other words, let fab(I(lj)) be the score of

the SVM trained with action a and poselet b. Then the parameterization can be re-written

as:

αTj φ(I, lj , Y ) =
∑
a∈Y

∑
b∈Zj

αTjab · 1a(Y ) · 1b(zj) · [fab(I(lj)); 1] (4.5)
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This trick greatly speeds up our learning algorithm. Similar tricks are used in [17].

Pairwise potential βTjkψ(lj , lk, Y ): This potential function represents the dependency

between the j-th and the k-th part, for a given class label Y . Similar to [63], we use discrete

binning to model the spatial relations between parts. We define this potential function as

βTjkψ(lj , lk, Y ) =
∑
a∈Y

βTjka · bin(lj − lk) · 1a(Y ) (4.6)

where bin(lj − lk) is a feature vector that bins the relative location of the j-th part with

respect to the k-th part according to the (x, y) component of lj and lk. Hence bin(lj − lk)
is a sparse vector of all zeros with a single one for the occupied bin. Here βjka is a model

parameter that favors certain relative bins for the j-th part with respect to the k-th part

for the action class label a.

Root location potential ηTω(l0, Y ): This potential function models the compatibility

between the action class label Y and the root location. Here l0 denotes the configuration of

the “root” part, i.e. upper-body in our case. It is parameterized as:

ηTω(l0, Y ) =
∑
a∈Y

ηTa · bin(l0) · 1a(Y ) (4.7)

We discretize the image grid into h×w spatial bins, and ω(l0) is a length h×w sparse vector

of all zeros with a single one for the spatial bin occupied by the root part. The parameter

ηa favors certain bins (possibly those in the middle of the image) for the location of the

root part for the action label a. For example, for the running and walking actions, the root

part may appear in the upper-middle part of the image with high probability, while for the

sitting or playing golf action, the root part may appear in the center-middle or lower-middle

part of the image. This potential function deals with different root locations for different

actions. It also allows us to handle the unreliability caused by the human detection system.

Global action potential γTϕ(I, Y ): This potential function represents a global tem-

plate model for action recognition from still images without considering the pose configura-

tion. It is parameterized as follows:

γTϕ(I, Y ) =
∑
a∈Y

γTa · 1a(Y ) · f(I) (4.8)

where f(I) is a feature vector extracted from the whole image I. The parameter γa is a

template for the action class a. This potential function measures the compatibility between

the model parameter γ and the combination of image observation f(I) and its class label
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Y . Similar to the part appearance model, we represent f(I) as a vector of outputs of a

multi-class SVM classifier.

4.4 Learning and Inference

We now describe how to infer the action label Y given the model parameters Θ (Sec. 4.4.1),

and how to learn the model parameters from a set of training data (Section 4.4.2)

4.4.1 Inference

Given the model parameters and a test image I, we can enumerate all the possible action

labels Y ∈ Y and predict the action label Y ∗ of I according to Eq. 4.1. For a fixed Y , we

need to solve an inference problem of finding the best pose Lbest as follows:

Lbest = arg max
L

ΘTΨ(I, L, Y )

= arg max
L

(∑
j∈V

αTj φ(I, lj , Y ) +
∑

(i,j)∈E

βTjkψ(lj , lk, Y ) + ηTω(l0, Y )
)

(4.9)

Note for a fixed Y , the global action potential function is a constant and has nothing to do

with the pose L, so we omit it from above equation. Since we assume a star model on L,

the inference problem in Eq. 4.9 can be efficiently solved via dynamic programming.

4.4.2 Learning

Now we describe how to train the model parameters Θ fromN training examples {In, Ln, Y n}Nn=1.

If we assume the pose L is unobserved on the training data, we can learn Θ using the latent

SVM formulation [25, 87] as follows:

min
Θ,ξn≥0

ΘTΘ + C
∑
n

ξn

s.t. max
L

ΘTΨ(In, L, Y n)︸ ︷︷ ︸
H(In,Y n;Θ)

−max
L

Θ>Ψ(In, L, Y )︸ ︷︷ ︸
H(In,Y ;Θ)

≥ ∆(Y, Y n)− ξn, ∀n, ∀Y ∈ Y (4.10)

where ∆(Y, Y n) is a function measuring the loss incurred by classifying the example In to

be Y , while the true class label is Y n. We use the 0-1 loss defined as follows:

∆(Y, Y n) =

{
1 if Y 6= Y n

0 otherwise
(4.11)
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The constraint in Eq. 4.10 specifies the following intuition. For the n-th training example,

we want the score H(In, Y ; Θ) = arg maxL ΘTΨ(In, L, Y ) to be high when Y is the true

class label, i.e. Y = Y n. In particular, we want the score H(In, Y n; Θ) to be higher than

the score associated with any hypothesized class label H(In, Y ; Θ) by 1 if Y 6= Y n.

Now since L is observed on training data, one possible way to learn Θ is to plug-in the

ground-truth pose in Eq. 4.10, i.e. optimize the following problem:

min
Θ,ξn≥0

ΘTΘ + C
∑
n

ξn

s.t. ΘTΨ(In, Ln, Y n)−max
L

Θ>Ψ(In, L, Y )

≥ ∆(Y, Y n)− ξn, ∀n, ∀Y ∈ Y (4.12)

Our initial attempt of using Eq. 4.12 suggests it does not perform as well as Eq. 4.10.

We believe it is because the learning objective in Eq. 4.12 assumes that we will have access

to the correct pose estimation at run-time. This is unrealistic. On the other hand, the

learning objective in Eq. 4.10 mimics the situation at run-time, when we are faced with a

new image without the ground-truth pose. So we will use the formulation in Eq. 4.10 from

now on. But we would like to point out that Eq. 4.10 does not ignore the ground-truth

pose information on the training data. That information has been implicitly built into the

features which are represented as outputs of SVM classifiers. Those SVM classifiers are

learned using the ground-truth information of the pose on the training data.

The training problem in Eq. 4.10 can be solved by the non-convex cutting plane algorithm

in [19], which is an extension of the popular convex cutting plane algorithm [39] for learning

structural SVM [1]. We briefly outline the algorithm here.

Consider the following unconstrained formulation which is equivalent to Eq. 4.10:

Θ = arg min
Θ

ΘTΘ + C
∑
n

Rn(Θ) where

Rn(Θ) = max
Y

(∆(Y, Y n) +H(In, Y ; Θ))−H(In, Y n; Θ) (4.13)

In a nutshell, the learning algorithm in [19] iteratively builds an increasingly accurate

piecewise quadratic approximation of Eq. 4.13 based on the subgradient ∂Θ (
∑

nRn(Θ)). It

can be shown that the subgradient ∂Θ (
∑

nRn(Θ)) is related to the most-violated constraint

of Eq. 4.10. So in essence, the algorithm iteratively adds the most-violated constraint of

Eq. 4.10 and solves a piecewise quadratic approximation at each iteration. It has been
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proved that only a small number of constraints are needed in order to achieve an reasonably

accurate approximation to the original problem [1].

Now the key issue is how to compute the subgradient ∂Θ (
∑

nRn(Θ)). Since

∂Θ

(∑
n

Rn(Θ)

)
=
∑
n

∂ΘRn(Θ) (4.14)

all we need to do it to figure out how to compute ∂ΘRn(Θ). Let us define:

(Y ∗, L∗) = arg max
Y,L

∆(Y, Y n) + ΘTΨ(In, L, Y ) (4.15)

L̂ = arg max
L

ΘTΨ(In, L, Y n) (4.16)

Then, it can be shown that ∂ΘRn(Θ) can be calculated as

∂ΘRn(Θ) = Ψ(In, L∗, Y ∗)−Ψ(In, L̂, Y n) (4.17)

4.4.3 Computational Complexity

The learning algorithm of our model is an iterative method. The computation of each it-

eration is dominated by the calculation of the subgradient ∂Θ (
∑

nRn(Θ)). In particular,

it involves solving two inference problems in Eq. 4.15 and Eq. 4.16 for each training ex-

ample. The inference on arg maxY is easy, since the number of possible choices of Y is

small (e.g. |Y| = 5 in our case). So we can simply enumerate all possible Y ∈ Y with the

complexity O(|Y|).
As mentioned in Section 4.4.1, because we assume the pose L is constrained by a star

structure, the inference on arg maxL (Eq. 4.9 and Eq. 4.16) can be efficiently solved via dy-

namic programming. Consider the situation that we have K body parts in the model. Each

body part is associated with Z poselets, and it can be displaced on M possible locations in

the image. The computational complexity of the inference on arg maxL is O(KZ2M2). The

efficiency of this inference problem can be further improved using the generalized distance

transform [27]. In our experiments, we set M as a relatively small value, e.g. the size of

relative location binning bin(lj − lk) is only 32 × 15, so we are able to solve the inference

problems efficiently even without using the generalized distance transform. The inference

for a fixed Y on an image only takes 0.015s by our MATLAB/MEX implementation.

In each iteration of our learning algorithm, we need to solve the inference problem (Eq. 4.15

and Eq. 4.16) for every training example, so the model might take a very long time to train
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when we have a large-scale training set. To further improve the training efficiency, we can

easily parallelize the computing of inferences over a number of CPUs, and each CPU takes

care of a subset of training examples.

4.5 Experiments

We first test our algorithm on the still image action dataset collected by Ikizler-Cinbis et

al. [37]. This dataset consists of still images from five action categories: running, walking,

playing golf, sitting, and dancing. The images of this dataset are downloaded from the

Internet. So there are a lot of pose variations and cluttered backgrounds in the dataset. In

total, there are 2458 images in the dataset. We further increase the size and pose variability

of the dataset by mirror-flipping all the images. Most of actions in the dataset do not have

axial symmetry. For example, running-to-left and running-to-right appear very different

in the image. So mirror-flipping makes the dataset more diverse. We manually annotate

the pose with 14 joints on the human body on all the images in the dataset, as shown in

Fig. 4.4. We select 1/3 of the images from each action category to form the training set, and

the rest of the images are used for testing. We also ensure the testing set does not contain

the mirror-flipped version of any training image. Since we focus on action classification

rather than human detection, we simply normalize each image into the same size and put

the human figure in the center of the image, based on the pose annotation information.

At the training stage, we create 90 poselets in total from the training set following

the method described in Section 4.2. For each poselet, we train an SVM classifier based

on the HOG descriptors extracted from image patches at the ground-truth locations of

the corresponding poselet in the training set. Examples of trained templates for running

poselets are visualized in the last column of Fig. 4.5. We compare our approach with a

multi-classification SVM with HOG descriptors as the baseline. Note that the outputs of

this baseline are also used to model the global action potential function in our approach.

The confusion matrices of the baseline and our method on the testing set are shown in

Fig. 4.7 (a),(b). Table 4.1 summarizes the comparison between our result and the baseline.

Since the testing set is imbalanced, e.g. the number of running examples are more than

twice of the playing-golf and sitting examples, we report both overall and mean per class

accuracies. For both overall and mean per class accuracies, our method outperforms the

baseline.
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(a) (b)

Figure 4.7: Confusion matrices of the classification results on the still image action dataset:
(a) baseline (b) our approach. Horizontal rows are ground truths, and vertical columns are
predictions.

We also apply our trained model on a Youtube video dataset originally collected by

Niebles et al. [55]1. Ikizler-Cinbis et al. [37] have annotated 11 videos of this dataset. The

action of each human figure on each frame has been annotated by one of the five action

categories. The bounding box information of the human figure returned by a standard

human detection algorithm is also provided by Ikizler-Cinbis et al. [37]. In total, there

are 777 human figures. We normalize each human figure into the same size based on the

bounding box information and then run our model, which is trained from the still image

dataset. To show the generalization power of our method, we use exactly the same model

learned from our previous experiment on the still image action dataset without any re-

training on the Youtube dataset. The confusion matrix of our method is given in Fig. 4.8.

Table 4.2 shows the comparison of our method with the baseline SVM classifier on HOG

features trained from the same training set. Our method performs much better in terms

of both overall and mean per-class accuracies. Our results are lower than the best results

without temporal smoothing reported in [37]. This is likely because the method in [37] uses

an additional step of perturbing the bounding box on the training set to account for the

errors of human localization. If we use the same trick in our method, the performance will

probably improve as well.

1http://vision.stanford.edu/projects/extractingPeople.html



CHAPTER 4. ACTION RECOGNITION WITH LATENT POSE 46

Figure 4.8: Confusion matrix of the classification results of our approach on the Youtube
dataset. Horizontal rows are ground truths, and vertical columns are predictions.

method overall mean per-class

Baseline 56.45 52.46
Our approach 61.07 62.09

Table 4.1: Results on the still image action dataset. We report both overall and mean per
class accuracies due to the class imbalance.

method overall mean per-class

Baseline 46.98 40.52
Our approach 50.58 46.73

[37] (MultiSVM) 59.35 N/A
[37] (Best) 63.61 N/A

Table 4.2: Results on the Youtube dataset. We report both overall and mean per class
accuracies due to the class imbalance.
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4.5.1 Visualization of Latent Pose

We can also visualize the latent poses learned by our model. But first, we need to point out

that our model is trained for action classification, not pose estimation. We simply treat the

pose as latent information in the model that can help solve the action classification task.

Since our model is not directly optimized for pose estimation, we do not expect to get pose

estimation results that are “good” in the usual sense. When measuring the performance

of a pose estimation, people typically examine how closely the localized body parts (torso,

arm, legs, etc) match the ground-truth locations of the parts in the image. But since our

final goal is action classification, we are not aiming to correctly localize the body parts, but

rather focus on localizing the body parts that are useful for action classification.

Fig. 4.9 shows the visualization of the latent poses superimposed on the original images.

For the k-th part with lk = (xk, yk, zk), we place the chosen poselet zk at the location (xk, yk)

in the image. The skeleton used for a particular poselet is obtained from the cluster center

of the joint locations of the corresponding poselet. In terms of pose estimation in the usual

sense, those results are not accurate. However, we can make several interesting observations.

In the “sitting” action, our model almost always correctly localizes the legs. In particular,

it mostly chooses the poselet that corresponds to the “A” shaped-legs (e.g. first two images

in the fourth row) or the triangle-shaped legs (e.g. the third image in the fourth row). It

turns out the legs of a person are extremely distinctive for the “sitting” action. So our

model “learns” to focus on localizing the legs for the sitting action, in particular, our model

learns that the “A” shaped-legs and the triangle-shaped legs are most discriminative for the

sitting action. For the sitting action, the localized arms are far from their correct locations.

From the standard pose estimation point of view, this is considered as a failure case. But

for our application, this is fine since we are not aiming to correctly localize all the parts.

Our model will learn not to use the localizations of the arms to recognize the sitting action.

Another example is the “walking” action (the images in the second row). For this action,

our model almost always correctly localizes the arms hanging on the two sides of the torso,

even on the bad examples. This is because “hanging arms” is a very distinctive poselet for

the walking action. So our model learns to focus on this particular part for walking, without

getting distracted by other parts.
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Figure 4.9: Example visualizations of the latent poses on test images. For each action, we
manually select some good estimation examples and bad examples. The action for each row
(from top) is running, walking, palying golf, sitting and dancing respectively.
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4.6 Summary

We have presented a model that integrates action recognition and pose estimation. The main

novelty of our model is that although we consider these two problems together, our end goal

is action recognition, and we treat the pose information as latent variables in the model.

The pose is directly learned in a way that is tied to action recognition. This is very different

from other work that learns a pose estimation system separately, then uses the output of the

pose estimation to train an action recognition system. Our experimental results demonstrate

that by inferring the latent pose, we can improve the final action recognition results.



Chapter 5

Kernel Latent SVM

In previous chapters, we show that latent SVM (LSVM) is a class of powerful tools that have

been successfully applied to many applications in computer vision. However, a limitation of

latent SVM is that it relies on linear models (i.e. w>Φ(x,h, y)). For many computer vision

tasks, linear models are suboptimal and nonlinear models learned with kernels typically

perform much better. Therefore it is desirable to develop the kernel version of latent SVM.

Latent SVM and kernel methods represent two different, yet complementary approaches

for learning classification models that are more expressive than linear classifiers. They both

have their own advantages and limitations. The latent variables in latent SVM can often

have some intuitive and semantic meanings. As a result, it is usually easy to adapt latent

SVM to capture various prior knowledge about the training data in various applications.

Examples of latent variables in the literature include part locations in object detection [26],

subcategories in video annotation [94], object localization in image classification [42], etc.

However, latent SVM is essentially a parametric model. So the capacity of these types of

models is limited by the parametric form. In contrast, kernel methods are non-parametric

models. The model complexity is implicitly determined by the number of support vectors.

Since the number of support vectors can vary depending on the training data, kernel methods

can adapt their model complexity to fit the data.

In this chapter, we propose kernel latent SVM (KLSVM) – a new learning framework

that combines latent SVMs and kernel methods. As a result, KLSVM has the benefits of

both approaches. On one hand, the latent variables in KLSVM can be something intuitive

and semantically meaningful. On the other hand, KLSVM is nonparametric in nature, since

the decision boundary is defined implicitly by support vectors. We demonstrate KLSVM

50
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on three applications in visual recognition: 1) object classification with latent localization;

2) object classification with latent subcategories; 3) recognition of object interactions.

The rest of this chapter is organized as follows. First, we review the binary latent

SVM and derive its dual form with fixed latent variable h in Section 5.1. The formulation of

KLSVM and an iterative training algorithm are described in Section 5.2. Section 5.3 presents

the experimental results of KLSVM on three different visual recognition applications, and

Section 5.4 concludes this chapter.

5.1 Preliminaries

In this section, we introduce some background on latent SVM and on the dual form of SVMs

used for deriving kernel SVMs. Our proposed model in Section 5.2 will build upon these

two ideas.

5.1.1 Binary Latent SVM

In Chapter 2, we introduce the general formulation of latent SVM for the multi-class clas-

sification, which follow the form of multi-class SVM proposed by Crammer and Singer [13].

In this chapter, we consider binary classification for simplicity, i.e. y ∈ {+1,−1}. Note that

multi-class classification can be easily converted to binary classification, e.g. using one-vs-all

or one-vs-one strategy. Here, we briefly review the binary latent SVM.

In binary latent SVM, a data instance is assumed in the form of (x, h, y), where x is

the observed variable and y is the class label. Each instance is also associated with a latent

variable h. Again, we adopt the example of learning a “car” model from a set of positive

images containing cars and a set of negative images without cars. We know there is a car

somewhere in a positive image, but we do not know its exact location. In this case, h can be

used to represent the unobserved location of the car in the image. To simplify the notation,

we also assume the latent variable h takes its value from a discrete set of labels h ∈ H.

However, our formulation is general. We will show how to deal with more complex h in

Section 5.2.2 and in one of the experiments (Section 5.3.3).

In latent SVM, the scoring function of sample x is defined as fw(x) = maxh w>φ(x, h),

where φ(x, h) is the feature vector defined for the pair of (x, h). More formally, we are given

M positive samples {xi}Mi=1, and N negative samples {xj}M+N
j=M+1. The learning of binary
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latent SVM needs to solve the following quadratic program:

min
w,ξ

1

2
||w||2 + C1

∑
i

ξi + C2

∑
j,h

ξj,h (5.1a)

s.t. max
hi

w>φ(xi, hi) ≥ 1− ξi, ∀i ∈ {1, 2, ...,M}, (5.1b)

−w>φ(xj , h) ≥ 1− ξj,h ∀j ∈ {M + 1,M + 2, ...,M +N}, ∀h ∈ H (5.1c)

ξi ≥ 0, ξj,h ≥ 0 ∀i, ∀j, ∀h ∈ H (5.1d)

Similar to standard SVMs, {ξi} and {ξj,h} are the slack variables for handling soft margins.

The first constraint (i.e. Eq. 5.1b) is imposed on the positive examples, while the second

constraint (i.e. Eq. 5.1c) corresponds to the negative examples. Since we assume h’s are not

observed on negative images, we need to enumerate all possible values for h’s in Eq. 5.1c.

Intuitively, this means every image patch from a negative image (i.e. non-car image) is not

a car. Because of the latent variables, latent SVM is essentially a non-convex optimization

problem. However, the learning problem in Eq. 5.1 becomes convex once the latent variable

h is fixed for positive examples. We can solve this problem by an iterative algorithm that

alternates between inferring h on positive examples and optimizing the model parameter w.

5.1.2 Dual form with fixed h on positive examples

Due to its nature of non-convexity, it is not straightforward to derive the dual form for the

latent SVM. Therefore, as a starting point, we first consider a simpler scenario assuming

h is fixed on the positive training examples. As previously mentioned, the latent SVM

is then relaxed to a convex problem with this assumption. Note that we will relax this

assumption in Sec. 5.2. In the above “car model” example, this means that we have the

ground-truth bounding boxes of the cars in each image. The form of the positive samples

become {xi, hi}Mi=1. After fixing the h on positive examples, the quadratic program in Eq. 5.1

changes to the following formulation:

P(w∗) = min
w,ξ

1

2
||w||2 + C1

∑
i

ξi + C2

∑
j,h

ξj,h (5.2a)

s.t. w>φ(xi, hi) ≥ 1− ξi, ∀i ∈ {1, 2, ...,M}, (5.2b)

−w>φ(xj , h) ≥ 1− ξj,h ∀j ∈ {M + 1,M + 2, ...,M +N}, ∀h ∈ H (5.2c)

ξi ≥ 0, ξj,h ≥ 0 ∀i, ∀j, ∀h ∈ H (5.2d)
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It is easy to show that Eq. 5.2 is convex. Similar to the dual form of standard SVMs,

we can derive the dual form of Eq. 5.2 as follows:

D(α∗, β∗) = max
α,β

∑
i

αi +
∑
j

∑
h

βj,h −
1

2
||
∑
i

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)||2 (5.3a)

s.t. 0 ≤ αi ≤ C1, ∀i; 0 ≤ βj,h ≤ C2, ∀j, ∀h ∈ H (5.3b)

The optimal primal parameters w∗ for Eq. 5.2 and the optimal dual parameters (α∗, β∗) for

Eq. 5.3 are related as follows:

w∗ =
∑
i

α∗iφ(xi, hi)−
∑
j

∑
h

β∗j,hφ(xj , h) (5.4)

Let us define λ to be the concatenations of {αi : ∀i} and {βj,h : ∀j,∀h ∈ H}, so |λ| =

M +N ×|H|. Let Ψ be a |λ|×D matrix where D is the dimension of φ(x, h). Ψ is obtained

by stacking together {φ(xi, hi) : ∀i} and {−φ(xj , h) : ∀j,∀h ∈ H}. We also define Q = ΨΨ>

and 1 to be a vector of all 1’s. Then Eq. 5.3a can be rewritten as (we omit the linear

constraints on λ for simplicity):

max
λ

λ> · 1− 1

2
λ>Qλ (5.5)

The advantage of working with the dual form in Eq. 5.5 is that it only involves a so-

called kernel matrix Q. Each entry of Q is a dot-product of two vectors in the form of

φ(x, h)>φ(x′, h′). We can replace the dot-product with any other kernel functions in the

form of k(φ(x, h), φ(x′, h′)) to get nonlinear classifiers [10]. The scoring function for the

testing images xnew can be kernelized as follows:

f(xnew) = max
hnew

∑
i

α∗i k(φ(xi, hi), φ(xnew, hnew))−
∑
j

∑
h

β∗j,hk(φ(xj , h), φ(xnew, hnew))

 .(5.6)

Another important, yet often overlooked fact is that the optimal values of the two

quadratic programs in Eqs. 5.2 and 5.3 have some specific meanings. They correspond to

the inverse of the (soft) margin of the resultant SVM classifier [46, 93]:

P(w∗) = D(α∗, β∗) =
1

SVM (soft) margin
. (5.7)

In the next section, we will exploit this fact to develop the kernel latent support vector

machines.
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5.2 Learning

Now we assume the variables {hi}Mi=1 on the positive training examples are unobserved. If

the scoring function used for classification is in the form of f(x) = maxh w>φ(x, h), we can

use the LSVM formulation [26, 97] to learn the model parameters w. As mentioned earlier,

the limitation of LSVM is the linearity assumption of w>φ(x, h). In this section, we propose

kernel latent SVM (KLSVM) – a new latent variable learning method that only requires a

kernel function K(x, h,x′, h′) between a pair of (x, h) and (x′, h′).

Note that when {hi}Mi=1 are observed on the positive training examples, we can plug them

in Eq. 5.3 to learn a nonlinear kernelized decision function that separates the positive and

negative examples. When {hi}Mi=1 are latent, an intuitive thing to do is to find the labeling

of {hi}Mi=1 so that when we plug them in and solve for Eq. 5.3, the resultant nonlinear

decision function separates the two classes as widely as possible. In other words, we look

for a set of {h∗i } which can further maximize the SVM margin (equivalent to minimizing

D(α∗, β∗)). The same intuition was previously used to develop the max-margin clustering

method in [93]. Using this intuition, we write the optimal function value of the dual form

as D(α∗, β∗, {hi}) since now it implicitly depends on the labeling {hi}. We can jointly find

the labeling {hi} and solve for (α∗, β∗) by the following optimization problem:

min
{hi}
D(α∗, β∗, {hi}) (5.8a)

= min
{hi}

max
α,β

∑
i

αi +
∑
j

∑
h

βj,h −
1

2
||
∑
i

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)||2 (5.8b)

s.t. 0 ≤ αi ≤ C1, ∀i; 0 ≤ βj,h ≤ C2, ∀j, ∀h ∈ H (5.8c)

The most straightforward way of solving Eq. 5.8 is to optimize D(α∗, β∗, {hi}) for every

possible combinations of values for {hi}, and then take the minimum. When hi takes its

value from a discrete set of K possible choices (i.e. |H| = K), this naive approach needs

to solve MK quadratic programs. This is obviously too expensive. Instead, we use the

following iterative algorithm to solve Eq. 5.8 .

• Fix α and β, compute the optimal {hi}∗ by

{hi}∗ = arg max
{hi}

1

2
||
∑
i

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)||2 (5.9)
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• Fix {hi}, compute the optimal (α∗, β∗) by

(α∗, β∗) = arg max
α,β

∑
i

αi +
∑
j

∑
h

βj,h −
1

2
||
∑
i

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)||2


(5.10)

The optimization problem in Eq. 5.10 is a quadratic program similar to that of a standard

dual SVM. As a result, Eq. 5.10 can be kernelized as Eq. 5.5 and solved using standard dual

solver in regular SVMs, and its complexity is estimated to be quadratic in the number of

training examples [8]. In Sec. 5.2.1, we describe how to kernelize and solve the optimization

problem in Eq. 5.9.

5.2.1 Optimization over {hi}

The complexity of a simple enumeration approach for solving Eq. 5.9 is again O(MK),

which is clearly too expensive for practical purposes. Instead, we solve it iteratively using

an algorithm similar to co-ordinate ascent. Within an iteration, we choose one positive

training example t. We update ht while fixing hi for all i 6= t. The optimal h∗t can be

computed as follows:

h∗t = arg max
ht

||αtφ(xt, ht) +
∑
i:i 6=t

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)||2 (5.11a)

⇔ arg max
ht

||αtφ(xt, ht)||2 + 2

∑
i:i 6=t

αiφ(xi, hi)−
∑
j

∑
h

βj,hφ(xj , h)

> αtφ(xt, ht)(5.11b)

By replacing the dot-product φ(x, h)>φ(x′, h′) with a kernel function k(φ(x, h), φ(x′, h′)),

we obtain the kernerlized version of Eq. 5.11(b) as follows

h∗t = arg max
ht

αtαtk(φ(xt, ht), φ(xt, ht)) + 2
∑
i:i 6=t

αiαtk(φ(xi, hi), φ(xt, ht))

−2
∑
j

∑
h

βj,hαtk(φ(xj , h), φ(xt, ht)) (5.12)

It is interesting to notice that if the t-th example is not a support vector (i.e. αt = 0), the

function value of Eq. 5.12 will be zero regardless of the value of ht. This means in KLSVM

we can improve the training efficiency by only performing Eq. 5.12 on positive examples
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corresponding to support vectors. For other positive examples (non-support vectors), we

can simply set their latent variables the same as the previous iteration. Note that in LSVM,

the inference during training needs to be performed on every positive example. For discrete

latent variables, the complexity of the optimization problem over {hi} in KLSVM is only

O(SpK), where Sp is the number of positive support vectors and K is the number of possible

choices of latent variables (i.e. |H| = K).

Connection to LSVM: When a linear kernel is used, the inference problem (Eq. 5.11)

has a very interesting connection to LSVM in [26]. Recall that for linear kernels, the model

parameters w and dual variables (α, β) are related by Eq. 5.4. Then Eq. 5.11 becomes:

h∗t = arg max
ht

||αtφ(xt, ht)||2 + 2
(
w − αtφ(xt, h

old
t )
)>

αtφ(xt, ht) (5.13a)

⇔ arg max
ht

αtw
>φ(xt, ht) +

1

2
α2
t ||φ(xt, ht)||2 − α2

tφ(xt, h
old
t )>φ(xt, ht) (5.13b)

where hold
t is the value of latent variable of the t-th example in the previous iteration. Let us

consider the situation when αt 6= 0 and the feature vector φ(x, h) is l2 normalized, which is

commonly used in computer vision. In this case, α2
tφ(xt, ht)

>φ(xt, ht) is a constant, and we

have φ(xt, h
old
t )>φ(xt, h

old
t ) > φ(xt, h

old
t )>φ(xt, ht) if ht 6= hold

t . Then Eq. 5.13 is equivalent

to:

h∗t = arg max
ht

w>φ(xt, ht)− αtφ(xt, h
old
t )>φ(xt, ht) (5.14)

Eq. 5.14 is very similar to the inference problem in LSVM, i.e., h∗t = arg maxht w>φ(xt, ht),

but with an extra term αtφ(xt, h
old
t )>φ(xt, ht) which penalizes the choice of ht for being the

same value as previous iteration hold
t . This has a very appealing intuitive interpretation. If

the t-th positive example is a support vector, the latent variable hold from previous iteration

causes this example to lie very close to (or even on the wrong side) the decision boundary, i.e.

the example is not well-separated. During the current iteration, the second term in Eq. 5.14

penalizes hold to be chosen again since we already know the example will not be well-

separated if we choose hold again. The amount of penalty depends on the magnitudes of αt

and φ(xt, h
old
t )>φ(xt, ht). We can interpret αt as how “bad” holdt is, and φ(xt, h

old
t )>φ(xt, ht)

as how close ht is to holdt . Eq. 5.14 penalizes the new h∗t to be “close” to “bad” holdt .
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5.2.2 Composite Kernels

So far we have assumed that the latent variable h takes its value from a discrete set of labels.

Given a pair of (x, h) and (x′, h′), the types of kernel function k(x, h; x′, h′) we can choose

from are still limited to a handful of standard kernels (e.g. Gaussian, RBF, HIK, etc). In this

section, we consider more interesting cases where h involves some complex structures. This

will give us two important benefits. First of all, it allows us to exploit structural information

in the latent variables. This is in analog to structured output learning (e.g. [75, 79]). More

importantly, it gives us more flexibility to construct new kernel functions by composing from

simple kernels.

Before we proceed, let us first motivate the composite kernel with an example application.

Suppose we want to detect some complex person-object interaction (e.g. “person riding a

bike”) in an image. One possible solution is to detect persons and bikes in an image, then

combine the results by taking into account of their relationship (i.e. “riding”). Imagine we

already have kernel functions corresponding to some components (e.g. person, bike) of the

interaction. In the following, we will show how to compose a new kernel for the “person

riding a bike” classifier from those components.

We denote the latent variable using ~h to emphasize that now it is a vector instead of

a single discrete value. We denote it as ~h = (z1, z2, ...), where zu is the u-th component

of ~h and takes its value from a discrete set of possible labels. For the structured latent

variable, it is assumed that there are certain dependencies between some pairs of (zu, zv).

We can use an undirected graph G = (V, E) to capture the structure of the latent variable,

where a vertex u ∈ V corresponds to the label zu, and an edge (u, v) ∈ E corresponds to the

dependency between zu and zv. As a concrete example, consider the “person riding a bike”

recognition problem. The latent variable in this case has two components ~h = (zperson, zbike)

corresponding to the location of person and bike, respectively. On the training data, we

have access to the ground-truth bounding box of “person riding a bike” as a whole, but not

the exact location of “person” or “bike” within the bounding box. So ~h is latent in this

application. The edge connecting zperson and zbike captures the relationship (e.g. “riding

on”, “next to”, etc.) between these two objects.

Suppose we already have kernel functions corresponding to the vertices and edges in the

graph, we can then define the composite kernel as the summation of the kernels over all the
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vertices and edges.

K(Φ(x,~h),Φ(x′,~h′)) =
∑
u∈V

ku(φ(x, zu), φ(x′, z′u)) +
∑

(u,v)∈E

kuv(ψ(x, zu, zv), ψ(x′, z′u, z
′
v))

(5.15)

It is also possible for Eq. 5.15 to include kernels defined on higher-order cliques in the

graph, as long as we have some pre-defined kernel functions for them.

5.3 Experiments

We evaluate KLSVM in three different applications of visual recognition. Each application

has a different type of latent variables. For these applications, we will show that KLSVM

outperforms both the linear LSVM [26] and the regular kernel SVM. Note that we implement

the learning of linear LSVM by ourselves using the same iterative algorithm as the one in [26].

5.3.1 Object Classification with Latent Localization

Problem and Dataset: We consider object classification with image-level supervision.

Our training data only have image-level labels indicating the presence/absence of each ob-

ject category in an image. The exact object location in the image is not provided and is

considered as the latent variable h in our formulation. We define the feature vector φ(x, h)

as the HOG feature extracted from the image at location h. During testing, the inference

of h is performed by enumerating all possible locations of the image.

We evaluate our algorithm on the mammal dataset [42] which consists of 6 mammal

categories. There are about 45 images per category. For each category, we use half of the

images for training and the remaining half for testing. We assume the object size is the

same for the images of the same category, which is a reasonable assumption for this dataset.

This dataset was used to evaluate the linear LSVM in [42].

Results: We compare our algorithm with linear LSVM. To demonstrate the benefit of

using latent variables, we also compare with two simple baselines using linear and kernel

SVMs based on bag-of-features (BOF) extracted from the whole image (i.e. without latent

variables). For both baselines, we aggregate the quantized HOG features densely sampled

from the whole image. Then, the features are fed into the standard linear SVM and kernel

SVM respectively. We use the histogram intersection kernel (HIK) [53] since it has been
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proved to be successful for vision applications, and efficient learning/inference algorithms

exist for this kernel.

We run the experiments for five rounds. In each round, we randomly split the images

from each category into training and testing sets. For both linear LSVM and KLSVM, we

initialize the latent variable at the center location of each image and we set C1 = C2 = 1.

For both algorithms, we use one-versus-one classification scheme. we use HIK in KLSVM.

We use both linear dot-product kernel and HIK in KLSVM. Table 5.1 summarizes the mean

and standard deviations of the classification accuracies over five rounds of experiments.

Fig. 5.1 shows examples of how the latent variables change on some training images during

the learning of the KLSVM (using HIK). For each training image, the location of the object

(latent variable h) is initialized to the center of the image. After the learning algorithm

terminates, the latent variables accurately locate the objects.

Across all experiments, both linear LSVM and KLSVM achieve significantly better re-

sults than approaches using BOF features from the whole image. This is intuitively rea-

sonable since most of images on this dataset share very similar scenes. So BOF feature

without latent variables cannot capture the subtle differences between each category. Ta-

ble 5.1 shows that both KLSVM with linear kernel and KLSVM with HIK significantly

outperform linear LSVM. Furthermore, we find out that in the learning of linear LSVM,

the latent variables (i.e. object location) on positive images barely move from their initial

positions during iterations. But in KLSVM (for both linear kernel and HIK), the latent

variables are usually able to locate the objects in first a few iterations, as shown in Fig. 5.1.

This would suggest that KLSVM is better at avoiding the bad local minimum. Note that

the learning algorithm of KLSVM with linear kernel is very similar to the linear LSVM.

The difference is that KLSVM with linear kernel uses Eq. 5.13 for the inference, while linear

LSVM uses h∗t = arg maxht w>φ(xt, ht). In Section 5.2.1, we show that Eq. 5.13 contains

an extra penalty term which penalizes the choice of ht for being the same value as previous

iteration. Therefore, we believe this penalty term is a key factor in KLSVM for avoiding

the bad local minimum and achieving better performance in this task. Table 5.1 also shows

that the KLSVM using linear kernel achieves the similar performance to the KLSVM using

HIK. We believe it is reasonable since the mammal dataset is relatively simple and small

(only 45 images per category). If the objects in the image can be localized accurately, it is

possible that the benefits of using HIK are not well demonstrated on such a small dataset.
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Figure 5.1: Visualization of how the latent variable (i.e. object location) changes during
the learning. The red bounding box corresponds to the initial object location. The blue
bounding box corresponds to the object location after the learning.

Method linear SVM kernel SVM linear LSVM KLSVM (linear) KLSVM (HIK)
Acc (%) 45.57± 4.23 50.53± 6.53 75.07± 4.18 84.80± 5.37 84.49± 3.63

Table 5.1: Results on the mammal dataset. We show the mean/std of classification accura-
cies over five rounds of experiments.

5.3.2 Object Classification with Latent Subcategory

Problem and Dataset: Our second application is also on object classification. But here

we consider a different type of latent variable. Objects within a category usually have a lot

of intra-class variations. For example, consider the images for the “bird” category shown

in the left column of Fig. 5.2. Even though they are examples of the same category, they

still exhibit very large appearance variations. It is usually very difficult to learn a single

“bird” model that captures all those variations. One way to handle the intra-class variation

is to split the “bird” category into several subcategories. Examples within a subcategory

will be more visually similar than across all subcategories. Here we use the latent variable

h to indicate the subcategory an image belongs to. If a training image belongs to the class

c, its subcategory label h takes value from a set Hc of subcategory labels corresponding to

the c-th class. Note that subcategories are latent on the training data, so they may or may

not have semantic meanings.

The feature vector φ(x, h) is defined as a sparse vector whose feature dimension is |Hc|
times of the dimension of φ(x), where φ(x) is the HOG descriptor extracted from the image x.
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In the experiments, we set |Hc| = 3 for all c’s. Then we can define φ(x, h = 1) = (φ(x); 0; 0),

φ(x, h = 2) = (0;φ(x); 0), and so on. Similar models have been proposed to address

the viewpoint changing in object detection [31] and semantic variations in YouTube video

tagging [94].

We use the CIFAR10 [41] dataset in our experiment. It consists of images from ten

classes including airplane, automobile, bird, cat, etc. The training set has been divided into

five batches and each batch contains 10000 images. There are in total 10000 test images.

Results: Again we compare with three baselines: linear LSVM, non-latent linear SVM,

non-latent kernel SVM. We use HIK in the non-latent kernel SVM, and we use both linear

dot-product kernel and HIK in KLSVM. For non-latent approaches, we simply feed feature

vector φ(x) to SVMs without using any latent variable.

We run the experiments in five folds. Each fold use a different training batch but

the same testing batch. We set C1 = C2 = 0.01 for all the experiments and initialize

the subcategory labels of training images by k-means clustering. Table 5.2 summarizes

the results. Again, KLSVM outperforms other baseline approaches. It is interesting to

note that both linear LSVM and KLSVM outperform their non-latent counterparts, which

demonstrates the effectiveness of using latent subcategories in object classification. However,

the KLSVM using linear kernel does not outperform the linear LSVM. This result seems to

be in contradiction to what we have observed in Section 5.3.1. We believe it is because the

number of subcategories is too small, e.g. |Hc| = 3. For example, for the t-th example, if

the value of its latent variable in previous iteration equals to 1, i.e. holdt = 1, which causes

this example to lie very close to the decision boundary, the penalty term (see Eq. 5.14)

will reward the choice of ht in current iteration for being either 2 or 3. However, since

there are only two choices for ht, it is possible that ht = 2 or ht = 3 might not be the

optimal choice for the t-th example. As noted in [18], the number of subcategories is an

important parameter in the latent subcategory learning, and it may significantly influence

the classification performance. Therefore, we believe that the performance of KLSVM would

be further improved if we set the number of subcategories to a larger value. We visualize

examples of the correctly classified testing images from the “bird” and “boat” categories in

Fig. 5.2. Images on the same row are assigned the same subcategory labels. We can see

that visually similar images are automatically grouped into the same subcategory.
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(a)

(b)

Figure 5.2: Visualization of some testing examples from the “bird” (a) and “boat” (b)
categories. Each row corresponds to a subcategory. We can see that visually similar images
are grouped into the same subcategory.

Method linear SVM linear LSVM kernel SVM (HIK) KLSVM (linear) KLSVM (HIK)
Acc (%) 50.69± 0.38 53.13± 0.63 52.98± 0.22 52.0± 0.53 55.17± 0.27

Table 5.2: Results on CIFAR10 Dataset. We show the mean/std of classification accuracies
over five folds of experiments. Each fold uses a different batch of the training data.
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5.3.3 Recognition of Object Interaction

Problem and Dataset: Finally, we consider an application where the latent variable is

more complex and requires the composite kernel introduced in Sec. 5.2.2. We would like

to recognize complex interactions between two objects (also called “visual phrases” [65]) in

static images. We build a dataset consisting of four object interaction classes, i.e. “person

riding a bicycle”, “person next to a bicycle”, “person next to a car” and “bicycle next

to a car” based on the visual phrase dataset in [65]. Each class contains 86∼116 images.

Each image is only associated with one of the four object interaction label. There is no

ground-truth bounding box information for each object. We use 40 images from each class

for training and the rest for testing.

Our approach: We treat the locations of objects as latent variables. For example,

when learning the model for “person riding a bicycle”, we treat the locations of “person”

and “bicycle” as latent variables. In this example, each image is associated with latent

variables ~h = (z1, z2), where z1 denotes the location of the “person” and z2 denotes the

location of the “bicycle”. To reduce the search space of inference, we first apply off-the-shelf

“person” and “bicycle” detectors [26] on each image. For each object, we generate five

candidate bounding boxes which form a set Zi, i.e. |Z1| = |Z2| = 5 and zi ∈ Zi. Then, the

inference of ~h is performed by enumerating 25 combinations of z1 and z2. We also assume

there are certain dependencies between the pair of (z1, z2). Then the kernel between two

images can be defined as follows:

K(Φ(x,~h),Φ(x′,~h′)) =
∑

u={1,2}

ku
(
φ(x, zu), φ(x′, z′u)

)
+ kp

(
ψ(z1, z2), ψ(z′1, z

′
2)
)

(5.16)

We define φ(x, zu) as the bag-of-features (BOF) extracted from the bounding box zu in the

image x. For each bounding box, we split the region uniformly into four equal quadrants.

Then we compute the bag-of-features for each quadrant by aggregating quantized HOG fea-

tures. The final feature vector is the concatenation of these four bag-of-features histograms.

This feature representation is similar to the spatial pyramid feature representation. In our

experiment, we choose HIK for ku(·). The kernel kp(·) captures the spatial relationship

between z1 and z2 such as above, below, overlapping, next-to, near, and far. Here ψ(z1, z2)

is a sparse binary vector and its k-th element is set to 1 if the corresponding k-th relation is

satisfied between bounding boxes z1 and z2. Note that kp(·) does not depend on the images.

Similar representation has been used in [17]. We define kp(·) as a simple linear kernel.
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Method BOF + linear SVM BOF + kernel SVM linear LSVM KLSVM

Acc(%) 42.92 58.46 46.33± 1.4 66.42± 0.99

Table 5.3: Results on object interaction dataset. For the approaches using latent variables,
we show the mean/std of classification accuracies over five folds of experiments.

Results: We compare with the simple BOF + linear SVM, and BOF + kernel SVM

approaches. These two baselines use the same BOF feature representation as our approach

except that the features are extracted from the whole image. We choose the HIK in the

kernel SVM. Note that this is a strong baseline since [15] has shown that a similar pyramid

feature representation with kernel SVM achieves top performances on the task of person-

object interaction recognition. The other baseline is the standard linear LSVM, in which we

build the feature vector φ(x, h) by simply concatenating both unary features and pairwise

features, i.e. φ(x, h) = [φ(x, z1);φ(x, z2);ψ(z1, z2)]. Again, we set C1 = C2 = 1 for all

experiments. We run the experiments for five rounds for approaches using latent variables.

In each round, we randomly initialize the choices of z1 and z2. Table 5.3 summarizes the

results. The kernel latent SVM that uses HIK for ku(·) achieves the best performance.

Fig. 5.3 shows examples of how the latent variables change on some training images

during the learning of the KLSVM. For each training image, both latent variables z1 and

z2 are randomly initialized to one of five candidate bounding boxes. As we can see, the

initial bounding boxes can accurately locate the target objects but their spatial relations

are different to ground-truth labels. After learning algorithm terminates, the latent variables

not only locate the target objects, but more importantly they also capture the correct spatial

relationship between objects.

5.4 Summary

We have proposed kernel latent SVM – a new learning framework that combines the ben-

efits of LSVM and kernel methods. Our learning framework is very general. The latent

variables can not only be a single discrete value, but also be more complex values with in-

terdependent structures. Our experimental results on three different applications in visual

recognition demonstrate that KLSVM outperforms using LSVM or using kernel methods



CHAPTER 5. KERNEL LATENT SVM 65

(a)

(b)

Figure 5.3: Visualization of how latent variables (i.e. object locations) change during the
learning. The top image is from the “person riding a bicycle” category, and the bottom
image is from the “person next to a car” category. Yellow bounding boxes corresponds to
the initial object locations. The blue bounding boxes correspond to the object locations
after the learning.
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alone. We believe our work will open the possibility of constructing more powerful and ex-

pressive prediction models for visual recognition. As future work, we plan to further inves-

tigate applications of this framework. We would also like to develop new learning/inference

algorithms that allow us to handle more complex forms of latent variables.



Chapter 6

Video Tagging with Latent Sub-tag

In this chapter, we consider the problem of content-based automated tag learning. In

particular, we address semantic variations (sub-tags) of the tag using the latent variable

model. Each video in the training set is assumed to be associated with a sub-tag label, and

we treat this sub-tag label as latent information. A latent learning framework based on

LogitBoost is proposed, which jointly considers both the tag label and the latent sub-tag

label. The latent sub-tag information is exploited in our framework to assist the learning of

our end goal, i.e. tag prediction.

The rest of this chapter is organized as follows. An overview of our approach is provided

in Section 6.1, followed by a brief review of “tag” related work in Section 6.2. We give

the model formulation in Section 6.3, and the learning algrithm in Section 6.4. The details

of the video features are introduced in Section 6.5. Lastly, the experimental results on a

large-scale testing video set are presented in Section 6.6. Section 6.7 concludes this chapter.

6.1 Overview

On the Internet, the term “tag” refers to keywords assigned to an article, image, or video.

With the rapid development of social sharing websites (i.e. Flickr, Picasa, and YouTube),

the tags help organize, browse and search relevant items within these massive multimedia

collections. In this chapter, we are particularly interested in the problem of content-based

automated tag learning/prediction. Given a video, an automated tag learning/prediction

system would be able to predict the tags associated to the video based on its content. Such

a system would ensure that videos are properly tagged, and therefore enforce uniformity in

67



CHAPTER 6. VIDEO TAGGING WITH LATENT SUB-TAG 68

Figure 6.1: For the rather specific tag “transformers”, the videos of this tag have large
variations in video types and contexts. Those videos can be roughly grouped as video
games, two different types of animations, toys, and movies. We use the notation “sub-tags”
to refer to those semantic variants and treat them as latent information in our learning
framework.

tagging. Uniformity is useful since users tend to not tag every possible aspect of the media,

leading to a large number of undertagged objects. Having a uniform, automated tagging

system would allow users to specify queries based on the known tag vocabulary and have

an increased confidence that the results retrieved should be consistent, and more complete

than otherwise possible, while allowing currently undertagged media to be considered for

retrieval. Another application of the tag learning could be verifying that the users have

typed a specific tag with the intent of annotating the video as opposed to simply spamming

the index of the search engine.

Our work is under a similar framework to [3]. We generate a set of tags by counting the

unique user-supplied tags and n-grams in the title for each video on YouTube. For each given

tag, a classifier model is trained over a positive training set containing the videos (20K-

100K) whose user-provided metadata text contains the given tag. The negative training set

is sampled randomly from videos which do not contain the tag in their metadata. In this
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way, both of the tag set and the training data are automatically generated from the online

video corpora. In particular, since the tag set is generated from user-provided title/tags, the

tags can better reflect the overall user tagging behaviors compared to a manually pre-defined

tag set. In the tag set, we observe that some tags are too general (e.g. “video”, “music”,

“youtube”), and some others are too specific (e.g. the name of the video uploader). Those

tags do not contain any useful information. Therefore we discard those tags which are either

too frequent or too infrequent.

After examining the remaining tags, we observe that for most of tags, there is a large

variation within the videos which have such a tag, though those tags are rather specific.

Interestingly, for a particular tag, the variation of its associated videos is not trivial, and

those videos can be clustered into a few groups which may have some semantic meanings.

For example, as shown in Fig. 6.1, the videos with tag “transformers” consists of “video

games”, “animations”, “toys” and “movies”. Although all those videos contain the tag

“transformers”, the video types and contexts are different. Another example is the tag

“bike”, which is a simple object. As shown in Fig. 6.2, the “bike” videos may consist of

videos about “mountain bike”, “falling from bike”, “pocket bike”, and “motorbike”. The

variations among “bike” videos include scene variation (mountain vs. road), object variation

(bicycle vs. motorbike vs. pocket bike), and event variation (falling from bike vs. riding a

bike). In the context of video analysis, we suspect that off-the-shelf classifiers cannot handle

these non-trivial variations.

In this work, we use the notation of sub-tag to refer to the semantic variants of the

given tag label. In particular, for a given tag, we define a sub-tag as a group of videos

which not only have such a tag, but also share the same theme which is usually semantically

interpretable. We propose a novel framework that can jointly learn both tag label and

its sub-tag labels in a unified framework. We believe introducing the sub-tag label to the

learning process will help to capture more of the variations of the tag, thereby improving

the quality of the final classifier.

Sub-tags are conceptually related to a hierarchy in which the parent tag would have a

general meaning and the child sub-tag is more specific. However, unlike such hierarchies

(e.g. ImageNet or WordNet), the sub-tag does not necessarily need to be related by a

relationship which can be expressed in terms of rigid ontology. Besides, it is very difficult

and costly to define (or name) the sub-tag set for all possible tag labels, especially for the

YouTube videos. Naming sub-tags requires a comprehensive knowledge of video types, and
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user behaviors on YouTube. Moreover, in a dynamic video collection, more and more new

tags may be invented and become popular, while the meanings of existing tags may vary as

well.

The main contributions of the work presented in this chapter are two-fold. First, instead

of explicitly defining or naming the sub-tags, we propose to treat sub-tags as latent infor-

mation and use it to assist the task of tag learning. Inspired by latent SVM [26], we propose

a novel latent learning framework based on LogitBoost, which jointly considers both the

latent sub-tag label and the tag label. In LogitBoost, we use decision stumps as the weak

learner, which introduce the non-linearity into the model and also allow us to handle com-

plex feature vectors that consist of different feature types. To deal with the noisy samples in

our training data, we use a bootstrapping scheme which can be naturally combined into our

learning framework. In each iteration, the model is only trained on a training subset that

contains “trustworthy” positive samples. Secondly, likewise to other non-convex learning

problems, a proper initialization of the latent sub-tag label is very crucial to our learning

framework. We propose to use the cowatch-based clustering scheme for initialization. The

similarity between two videos is measured by cowatch statistics. Conceptually, if two videos

are watched one after the other in a short period of time (cowatched), they are usually

related and likely to be similar. However, our learning framework is general, and it is not

limited to this type of initialization scheme.

6.2 Related Work

In the computer vision literature, we can roughly categorize the “tag”-related work into two

lines: (1) leveraging the tagged image/video content on the Internet to improve the perfor-

mance of learning-based image or object recognition systems; (2) content-based image/video

tag prediction.

With the help of image search engines and photo hosting websites, researchers built more

and more computer vision datasets by downloading images or videos, e.g. ImageNet [16],

and 80 Million Tiny Images [78]. To decrease the label noise, additional human annotations

are employed in most datasets to prune out the noisy samples. It is interesting to note that

in [78], a reasonable recognition performance is obtained despite the high labeling noise.

Fan et al. [22] also show that more effective classifiers can be obtained after pruning out the

noisy tags by an image clustering approach based on both visual and tagging similarities



CHAPTER 6. VIDEO TAGGING WITH LATENT SUB-TAG 71

between images. Hwang and Grauman [35] assume that the prominence of an object in an

image can be revealed by its order of mention in the tag list. They show that leveraging

the information of tag ordering can improve the performance of object detection. In our

approach, we also train our tag models on the videos collected from YouTube. For simplicity,

we train a model for each tag and ignore the structure information among tags.

Recently, there has been an increased interest in automated image/video tagging. A

variety of methods are proposed for image tagging, e.g. kernel canonical correlation anal-

ysis [74], hierarchical generative models [49], latent SVM [89], etc. There is also a lot of

research work about video tagging (e.g. [73]), and the proposed methods have been evalu-

ated on the TRECVID dataset for the task of semantic indexing. A list of papers can be

found in [57]. A few systems are built for the automated YouTube video tagging based on

video content. Ulges et al. [80] predict the conceptual tags for the keyframes of the video by

the combination of three different classifiers. Toderici et al. [77] and Aradhye et al. [3] learn

the tags of a video using AdaBoost based on both video and audio features. Our work is

based on [77, 3], but we are more interested in the problem of semantic variations (sub-tags)

in the YouTube videos that share the same tag. A latent learning framework is proposed to

address this issue and we treat sub-tag labels as latent variables in our system.

6.3 Model Formulation

Given a tag label z and a training set T which consists of N training samples T =

{(V n, yn)}Nn=1, our goal is to learn a scoring function for the tag label z: fz(V ), which

can return a confidence score of z being assigned to the video V . y ∈ {+1,−1} takes value 1

if the video V has the tag label z, and −1 otherwise. In our model, each video is associated

with a sub-tag label h, where h ∈ Hz and Hz is the set of sub-tags for the original tag z.

We treat h as latent information since we do not have sub-tag labels during training. We

assume the scoring function takes the following form:

fz(V ) = max
h∈Hz

Ψ(V, h;Fz);

Ψ(V, h;Fz) =
∑
b∈Hz

1b(h) · Fb(V ), (6.1)

where 1b(h) is an indicator that takes the value 1 if h = b, and 0 otherwise. Fb(·) is a

LogitBoost [67] classifier learned from the training samples which share the same sub-tag
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label h = b. We denote Fz as a set of LogitBoost classifiers for the tag z, i.e. Fz = {Fb :

b ∈ Hz}. The details concerning training Fz will be discussed in Section 6.4.

Given Fz and a testing video V , we need to solve an inference problem of finding the

best sub-tag label h∗ as follows:

h∗ = arg max
h∈Hz

Ψ(V, h;Fz). (6.2)

This inference problem can be easily solved by enumerating all the possible sub-tag labels

h ∈ Hz. We are more interested in improving the performance of video classification at tag

level, though we do obtain the sub-tag label h∗ as a by-product for each testing video.

6.4 Learning

Different from other learning algorithms with structured output, we simply assume each tag

label is independent of each other and we train a model for each tag label. The optimal F∗z
could be learned as follows:

F∗z = arg min
Fz

N∑
n

l(yn, max
h∈Hz

Ψ(V n, h;Fz)), (6.3)

where l(·) is the loss function. We use the convex logistic loss l(y,Ψ) = log(1+exp(−2yΨ))

in our learning algorithm. Similar to the latent SVM [26], this problem is not convex but we

could use an iterative algorithm to solve it by alternating the estimation of latent variable

h and the optimization of Fz. This iterative procedure can be summarized as follows:

1. Holding Fz fixed, compute the latent variable hn for each training sample as follows:

hn = arg max
h∈Hz

Ψ(V, h;Fz); (6.4)

2. Holding hn fixed, optimize Fz by solving the following problem:

F∗z = arg min
Fz

N∑
n

l(yn,Ψ(V n, hn;Fz)). (6.5)

Eq. 6.4 can be easily solved by enumerating all possible h ∈ Hz. Note that in Eq. 6.5, the

latent variable h has been fixed to a single choice. Fz is a set of classifiers Fz = {Fb : b ∈ Hz}.



CHAPTER 6. VIDEO TAGGING WITH LATENT SUB-TAG 73

The optimization problem in Eq. 6.5 can be written as

L = min
Fz

∑
b∈Hz

∑
n:hn=b

l(yn,Ψ(V n, hn;Fz))

=
∑
b∈Hz

min
Fb

∑
n:hn=b

l(yn, Fb(V
n)). (6.6)

Then, Eq. 6.5 can be solved by minimizing L(Fb) =
∑

n:hn=b l(y
n, Fb(V

n)) ∀b ∈ Hz
independently. In practice, this can be simply achieved by a regular LogitBoost solver

which learns a classifier Fb(·) over the training samples whose latent sub-tag label hn = b,

i.e. {(V n, yn)}n:hn=b.

6.4.1 Implementation Details

LogitBoost: The implementation of LogitBoost used in the optimization of Fz uses decision

stumps as the weak learner. This allows it to handle complex feature vectors that consist of

different feature categories, and also introduce the non-linearity to our model. However, one

disadvantage of this boosting algorithm is that it takes a long time to train. It is particularly

undesirable if we use boosting in an iterative training algorithm. To address this issue, in

the training of Fb(·), we first run a linear SVM to filter out the feature dimensions that are

assigned small weights. In other words, we use linear SVM as a feature selection step to

select a subset of discriminative features. Then LogitBoost will be only used on this subset

of features. This trick can significantly speed up the training process. Similar tricks are also

introduced in [32]. To further improve the efficiency, for each LogitBoost classifier, we use

only 256 decision stumps as weak learners.

Reweighting of classifiers: Due to the above feature selection trick and the early

stopping scheme (only 256 stumps), the learned LogitBoost classifiers may have not con-

verged. For the same testing example, it is possible that a well converged classifier will

output a higher decision score than a classifier which has not converged, though both classi-

fiers would classify this example as positive. This may cause problems when estimating the

latent variable (Eq. 6.4), since we need to compare the decision scores from different Logit-

Boost classifiers. To address this issue, we train a linear SVM to calibrate the decision scores

from different classifiers with respect to the hinge-loss l(yn,xn) = max(0, 1 − yn(wTxn)),

where xn is the feature vector of V n and w is the model parameters. xn is represented as

a sparse vector, and |xn| = |Hz|. If the latent variable of V n is equal to b, then the b-th

element in xn is equal to the decision score Fb(V
n), and the rest of the elements are all 0.
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The linear SVM is trained over all pairs of (V n, yn) in the training set. After the training,

the scoring function in Eq. 6.4 can be re-written as Ψ(V, h;Fz) =
∑

b∈Hz
wb · 1b(h) · Fb(V ),

where wb is the b-th element in w. This calibration step is motivated by the mixture-model

representation in [26]. The intuition is to re-weight each classifier based on its discriminative

ability over the tag label y.

Bootstrapping: In this work, the tag labels of the training samples are extracted from

user-provided meta-data, such as the video title, and user-provided tags. These tag labels

are often irrelevant to the video content. In particular, we observe that the “hard” positive

examples during learning are usually the videos with noisy training labels. Including those

noisy video examples will likely deteriorate the learning performance. Instead, we would

like to “remove” those positive samples that have the lowest decision scores and thus more

likely to be outliers. In our learning algorithm, we maintain a set of training samples S
that is a subset of the entire training set T , i.e., S ⊂ T . In each iteration of our learning

algorithm, instead of using all training samples, we optimize the model Fz only on the

training subset S which contains the most “trustworthy” positive examples. Since we have

a very large number of negative samples (100K) that is difficult to fit into the memory, in

each iteration, we only include the “hard” negative samples into the training subset S.

Learning procedure: First, we initialize the training set S and the latent variable

hn of each training sample in S (Section 6.4.3). Based on the latent sub-tag label, we can

denote S = ∪b∈HzSb, where Sb contains the training samples that have the sub-tag label b.

Then, we repeat the following steps for a fixed number of iterations.

1. Train a LogitBoost classifier Fb(·) for each sub-tag label b ∈ Hz over the training

subset Sb, then obtaining the model Fz = {Fb : b ∈ Hz}. We train a linear SVM to

re-weight those classifiers;

2. Holding Fz fixed, compute the latent variable for every training sample in the entire

training set T by Eq. 6.4. The decision score of each sample can be computed as

sn = Ψ(V n, hn;Fz). Similarly, we denote T = ∪b∈HzTb, where Tb contains the training

samples which have the sub-tag label b;

3. Update the training subset S = ∪b∈HzSb, which we can rewrite as Sb = Sposb ∪ Snegb ,

where superscripts denote positive and negative subsets respectively. We re-construct

Sposb by using the top k samples in T posb with the largest decision scores. Similarly,
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we re-construct Snegb by using the top k samples (hard negatives) from T negb . k is a

predefined parameter;

In step 3, due to the fact that the dimension of our features is relatively large, in order to

feed every training sample into the memory in step 1, we tune the parameter k so that the

size |S| ≤ 20K and we incrementally increase the size of S during the iterative learning

process.

The learning procedure described above is an algorithmic bootstrapping approach for

generating a clean positive training set. We run this procedure for a fixed number of

iterations in the absence of convergence guarantees, but find it effective experimentally.

With the help of the training subset S, our approach learns Fz on a training subset which

contains the most “trustworthy” positive samples and thus it is likely more tolerant to label

noise.

6.4.2 Computational Complexity

In our iterative learning algorithm, the complexity of each iteration involves the following

three major factors: (1) the training of linear SVM for feature selection; (2) the training

of LogitBoost classifiers; and (3) the computing of the latent variable for every training

example.

For the training of linear SVM, we use the LIBLINEAR [23] package with the complexity

of O(NT ), where N is the number of training examples and T is the number of feature

dimensions. LIBLINEAR can achieve fast convergence and it is very efficient for training

large-scale problems. In contrast, the training of LogitBoost is computational expensive.

Traditional techniques for training a boosting classifier usually run in O(MNT logN), where

M is the number of selected weak classifiers. In our implementation, by using a caching

strategy proposed by Wu et al. [92], we are able to reduce the training time to O(MNT ),

with a pre-calculation of time O(NT logN). Lastly, the complexity of inferring the latent

variable for one training example is only O(M). But since we have 20K - 100K training

examples for each tag, the overall computation needed for computing latent variables is also

very expensive. In our implementation, we parallelize the computing of latent variables over

a number of CPUs, and each CPU takes a subset of training examples.



CHAPTER 6. VIDEO TAGGING WITH LATENT SUB-TAG 76

6.4.3 Initialization by Cowatch Features

For a non-convex problem, the initialization is usually very important. In this chapter, we

treat the sub-tag label of a video as latent information. Intuitively, we would like to assign

the same sub-tag label to the videos which are not just visually similar but also have a very

strong semantic similarity. In our approach, we use video cowatch statistics [5] for the sub-

tag initialization. Cowatch statistics are generated by measuring the occurrence frequency

of two videos in the same viewing session. In other words, if two videos are watched one after

the other by users, there will be a high cowatch connection between them. Note that it is

common that users will watch similar videos in a short period of time (i.e. a viewing session).

Cowatch statistics is a reliable tool to measure the video similarity since it combines the

votes from millions of users. We believe the feature obtained from cowatch statistics is also

a helpful cue to disambiguate different sub-tags. For example, users are more likely to watch

a “mountain bike” video followed by another “mountain bike” video, and less likely followed

by a “pocket bike” video.

The procedure of using cowatch statistics for initialization is summarized as follows:

Step 1: From the positive training set of the tag label z, we randomly sample N seed videos

with the tag z. In our experiments, we set N = 3000. We generate a cowatch video list Cnl

for each sampled video. We remove from Cnl the videos that do not contain the tag label

z. Then, we combine those cowatch lists as a video set Cs = ∪Nn=1C
n
l . Each video can be

represented as a sparse vector vn, and |vn| = |Cs|. The value of i-th element in vn is 1 if

the corresponding i-th video of Cs also exists in Cnl , and 0 otherwise.

Step 2: The cowatch lists of similar videos are likely to overlap. To generate the initial

sub-tag label set, we simply cluster the set {vn}Nn=1 into K clusters using k-means. The

distance between sparse feature vectors is computed by using the L1 distance. Clusters with

too few samples will be discarded and we obtain K ′ ≤ K clusters in the end. Then, we

merge the cowatch video list Cnl of each sampled video to its corresponding cluster. The

video set Cs is generated by combining the cowatch lists of N randomly sampled videos. It

is possible that for some videos in Cs, they may appear in only one of the N co-watch lists.

Those videos are more likely to be irrelevant to the tag label z, so we remove those videos

from the K ′ clusters.

Step 3: We can build the sub-tag set for tag z as Hz = {0, ...,K ′ − 1}. For the purposes

of initialization, we use the cluster label of each video as its initial sub-tag label hn. Note
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Figure 6.2: The sub-tag initialization results for the “bike” tag. In total, we generate four
sub-tags: “mountain bike”, “falling from bike”, “pocket bike”, and “motorbike”. Note that
our algorithm only cluster the candidate videos into four clusters and we manually assign a
meaningful word label to each cluster.

that the generation of this sub-tag set is an unsupervised process. Our algorithm cannot

automatically assign a semantic meaningful label to each sub-tag. Then, the videos from

cluster b will form the initial training subset Sposb , and we randomly sample a large number

of negative samples to form the Snegb , for all b ∈ Hz.
The example initialization results for the tag label “bike” are depicted in Fig. 6.2. Each

initialization cluster has a very unique semantic meaning. Note that the cowatch feature is

only used for initialization purpose. It is also possible to consider the cowatch feature as

a part of the video feature in our learning algorithm. However, the reliability of cowatch

information depends on view counts of the video. In practice, most of testing videos would

be the newly-uploaded videos, which have no viewing history.

6.5 Features

In order to tackle the problem of tag/concept/action learning many researchers [73, 20, 80, 7]

have decided to use solely visual features. In the spirit of [77], we decide to use auditory
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features in addition to visual features. We believe that audio gives an important cue in video

analysis, especially for tag prediction. The audio features contribute to detect concepts

that are very difficult to define visually, e.g. cat versus dog. Cats and dogs not only appear

in similar contexts, but they are also very hard to disambiguate by only visual features.

However, a dog’s bark sound may help us distinguish between a dog video and a cat video.

We extract a variety of features from each video, which allow to capture various aspects

of the video. The features can be categorized into three groups: frame features, motion

features, and auditory features. For each type of feature, we use the standard bag-of-word

representation. Each feature will be represented as a histogram by vector quantizing the

feature descriptors. The histogram is normalized so that the sum of all the bin values is

1. The final feature vector of each video is the concatenation of the histograms from each

feature. Its dimension is fixed for videos with different length, and the maximum number

of non-zero dimensions for a video is 12439.

Frame features: This group of features consists of the histograms of oriented gradi-

ents (HOG) feature, color histogram, texton, and a face counter. For the HOG feature,

at each frame pixel location, we extract a 1800-dimensional feature descriptor, which is the

concatenation of HOG [14] in a 10× 10 surrounding window. The raw descriptors are then

collected into a bag-of-words representation by quantizing them using a randomized decision

tree similar to [72]. In addition, we also compute a Hue-Saturation color histogram [48] and

a Texton histogram [58] for every frame. Lastly, we run a face detector [83] over every frame

and count the number of faces in each frame. This simple face counter provides an easy way

to discriminate between videos containing human faces and those which do not. Note that

all those frame-based features are represented as histograms, which are further pooled over

the entire video using mean-pooling.

Motion features: In order to compute motion features we employ the cuboid interest point

detector [20]. We extract spatio-temporal volumes around all the detected interest points.

From each cuboid we extract two types of descriptors: (1) We concatenate the normalized

pixel values to a vector and apply PCA to reduce the dimensionality to 256. (2) We first

split each slice of the cuboid into 2× 2 cells. Then, we concatenate all HOG descriptors of

cells in the cuboid to a vector. Similarly, PCA is applied to reduce the dimensionality to

256. Both descriptors are further quantized using their corresponding codebooks.

Auditory features: We choose two widely-used audio features in addition to visual

features: mel-frequency cepstral coefficients (MFCC) [12] and stabilized auditory images



CHAPTER 6. VIDEO TAGGING WITH LATENT SUB-TAG 79

(SAI) [52].

6.6 Experiments

We evaluate our method on a large-scale video dataset which consists of about 50 mil-

lion YouTube videos. We only use a very small portion for training, and remaining videos

are used for testing. For ease of evaluation, we arbitrarily selected 15 tags: “bike”, “boat”,

“card”, “dog”, “explosion”, “flower”, “helicopter”, “horse”, “kitchen”, “mountain”, “protest”,

“robot”, “running”, “stadium”, “transformers”. In terms of categories, this tag set contains

“animals”, “objects”, “actions”, “scenes”, and “events”. For each tag, we consider a set of

20K-100K videos which contains the given tag as the potential positive training set, and

we randomly select around 100K videos as the negative training set. The rest of videos

are used for testing. For each tag, we create a sub-tag set following the method described

in Section 6.4.3. For illustration purposes, we summarize the sub-tag set of each tag in

Table 6.1 and manually assign a semantic word to each sub-tag.

6.6.1 Evaluation Measures

For every given tag, we train a classifier model, which we apply on each video in the testing

set (none of the videos in this set were used during training). A decision score is computed

for each video using Eq. 6.1. If we had the ground-truth tag label of the 50 million testing

videos, we could use the decision scores to compute the ROC or precision-recall curves.

However, it is tremendously costly to accurately annotate that many videos, even when

using low-cost online crowdsourced marketplaces (e.g. Amazon’s Mechanical Turk). An

alternative way is to randomly sample a relatively small number of testing videos then

manually annotate those videos and only use them in the evaluation. We argue that this

scheme is not fair, because the randomly sampled set would either be too small to fairly

represent all the video categories on YouTube, or it would be too large to be practical.

To evaluate our approach, we choose the precision at K (precision@K) measure, which

has been widely adopted in information retrieval. In practice, video retrieval and ranking

are also important applications of automated video tagging system. For each tag, we first

apply the trained model onto whole testing set (50M). We rank the videos in the testing set

by their decision scores. Then, we only annotate the videos with top K decision scores. The

precision at K is computed as precision@K = |{relevant videos}|/K. In this way, for each
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Tag Sub-tags

bike mountain bike, falling from bike, pocket bike, mo-
torbike

boat building a boat, jet boat, boat accident

card Card Captor Sakura (animation), card collection,
making a greeting card, card trick

dog dog1, dog2, dog3, dog4

explosion bomb explosion, explosion2, building implosion

flower paper flower (howto), flower (plant), flower3

helicopter remote controlled (RC) helicopter1, RC helicopter2,
helicopter crash, military helicopter

horse horse jumping, horse reining, horse3

kitchen kitchen remodeling, kitchen2, cooking show

mountain mountain creek, mountain biking, mountain driving,
mountain climbing

protest riot police, protest in Iran, protest3, protest in Thai-
land

robot industry robot, robot2, Super Robot Wars (video
game)

running free running, running tips, running back (football
skill)

stadium soccer stadium, football stadium, baseball stadium

transformers video game, animation1, animation2, movie, toy

Table 6.1: The summary of the sub-tag labels for the 15 tags used in our experiments.
Note that our algorithm cannot assign the semantic meaning label to each sub-tag. For the
purpose of illustration, we manually assign a word label to each sub-tag by summarizing the
video clusters obtained from cowatch initialization. For some sub-tags which are difficult to
assign a meaningful word label, we simply use the cluster number to represent them.
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tag, the evaluation only requires the annotations of K videos. We choose K = 1000, giving

us 15, 000 videos to annotate. Compared to 50 million videos, this number is negligible

but it is far more acceptable in terms of annotation cost. This measurement is particularly

suitable for the situation in which the testing set is dynamic, as in the case in which new

videos are added to the collection over time. For each update of the testing set, we only

need to annotate the new videos that appear in the top-K rank list.

6.6.2 Results

We compare our method to the video tag learning approach described in [77]. In order to

make the comparison fair, we use the exactly the same features (Section 6.5) for both the

baseline and our method. The average precision@1000 of the baseline is 57.36%, and our

method is 84.14%. We observed an improvement of 46% on the average precision@1000.

Fig. 6.3 shows the precision at K curves of both our method and the baseline. As we can see,

our method significantly outperforms the baseline on 12 tags, and we achieve similar results

on the tags “dog”, “horse”, and “stadium”. Both our method and the baseline achieve very

good performance on the tags of “stadium” and “horse”. Most of “dog” videos uploaded to

YouTube are usually shot from consumer level hand-held cameras. These videos have very

limited variation, and thus our method performs similarly to the baseline on this tag. After

manually examining the cowatch initialization results, as shown in Table 6.1, the sub-tags

of “dog” do not have any semantic meaning. This observation demonstrates a limitation of

our approach: our approach can barely improve the performance for the unambiguous tags.

This is what we expect since for the unambiguous tags, the latent sub-tag information has

little semantic meaning and thus its contribution is very limited.

As shown in Table 6.1, most of sub-tag sets generated from cowatch initialization are

semantically meaningful. One interesting question is whether the iterative process of our

algorithm really contribute to the performance improvement. To answer this question, we

compare our approach with a method that is only trained on the initial training subset

obtained by the cowatch initialization. This method essentially only runs the first step

of our learning procedure (Section 6.4.1) once. Due to the cost of annotation, we only

run this experiment on two tags: “transformers” and “bike”. For comparison purposes, we

compute precision@1000 as shown in Table 6.2. We can see that our method outperforms the

method using only initial training subset. This is reasonable because in the initial training

subset, the latent sub-tags are generated from the cowatch information and are not tied
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Figure 6.3: Precision at K curves for both baseline and our method on the 50 million
YouTube video dataset. We incremental increase K from 100 to 1000.
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Tag Baseline Initialization only Our approach

transformers 50.2% 33.1% 79.4%
bike 74.8% 87.4% 92.5%

Table 6.2: Precision@1000 for tags “transformers” and “bike”. We compare our method to
the baseline, and a method that runs the first step of our learning procedure once.

with our end goal of tag learning. Interestingly, on the “transformers”, the method using

only initialization is worse than the baseline. We believe it is due to the high complexity of

the “transformers” videos, and the initialization of the sub-tag set cannot properly capture

the variance of the “transformers” tag.

Given a tag label z and a testing video, besides a decision score of tag z being assigned

to the testing video, we can also infer the sub-tag label for the testing video by Eq. 6.2.

We visualize the testing videos with top scores from each sub-tag in Figs. 6.4,6.5. Two

interesting observations can be made. In Fig. 6.4 ( “transformers”), some videos under sub-

tag h0 (video game) are classified as h4 (movie). In the cowatch initialization of tag “bike”,

most videos of sub-tag h2 are about “pocket bike”. However, as shown in Fig. 6.5, the testing

videos under sub-tag h2 are mostly “motorbike”. Those videos seem to be “misclassified”

with respect to sub-tag label, but they are all related videos to the tag label “bike”, which

is exactly what we expect. As we pointed out in Section 6.3, the latent sub-tag label is only

a by-product of our model. Our model is only optimized for tag-level classification, so we do

not aim to obtain good sub-tag level classification results. Therefore, although some video

do not have an “accurate” sub-tag label, they are assigned the correct tag labels. Note that

the “misclassified” and “accurate” are determined by comparing the testing videos with

initialization results. Sub-tag information is latent so we cannot measure the performance

of sub-tag level classification.

6.7 Summary

We have studied the problem of semantic variations in the videos which share the same tag.

We have named those semantic variants as sub-tags, which were treated as latent variables

and used to assist the task of tag learning. A general latent learning framework was proposed

to jointly model the tag label and its related latent sub-tags. We have presented a clustering

approach based on cowatch information to initialize the latent sub-tag labels in our learning
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(a) h0 (video game)

(b) h1 (animation1) (c) h2 (animation2)

(d) h3 (toy) (e) h4 (movie)

Figure 6.4: Visualizations of the sub-tag labels of the testing videos for tag “transformers”.

(a) h0 (mountain bike) (b) h1 (falling from bike)

(c) h2 (pocket bike) (d) h3 (motorbike)

Figure 6.5: Visualizations of the sub-tag labels of the testing videos for tag “bike”.
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framework. By running experiments on the testing set which consists of about 50 million

YouTube videos, we have demonstrated that our approach significantly outperformed the

baselines, with an improvement of over 46% on the average precision@1000.



Chapter 7

Conclusion and Future Work

In this dissertation, we have presented two discriminative latent variable models and one

general latent learning framework for addressing a series of challenging problems in visual

recognition. A common theme of the proposed approaches in this dissertation is that they

all involve learning with latent variables. In the first model, we jointly consider human

actions and poses in a unified system, and treat human poses as latent variables. In the

second model, we address the semantic variations of YouTube videos and consider the sub-

tag label as latent information. Moreover, we propose a novel latent learning framework –

kernel latent SVM which combines the benefits of latent SVM and kernel methods. The

proposed approaches demonstrate the flexibility and effectiveness of discriminative latent

variable models for addressing a variety of problems in computer vision.

We believe the work presented in this dissertation will lead to many interesting directions

for future research. We will briefly highlight two directions for future research as follows.

Convex Relaxation: One limitation of latent SVM is the non-convexity. Although

there are three different algorithms available (Chapter 2) for training the latent SVM, all of

them can only find a local optimum and they are sensitive to initialization due to the non-

convex nature of latent SVM. There is also no theoretical guarantee that a local optimum

can produce good recognition performance. Moreover, in each iteration of those algorithms,

inference of the latent variable is required for each positive training example. Thus, the

training of latent SVM is usually much slower than its non-latent counterpart.

One possible direction is convex relaxation which aims to relax a non-convex optimiza-

tion problem to a convex one and then solve it using standard quadratic program solvers.

86
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Quadrianto et al. [61] propose a convex relaxation algorithm for a mixture of regression mod-

els. Joulin and Bach [40] propose a simple and general framework to solve a series of weakly

supervised learning problems by convex relaxation, such as multiple instance learning and

discriminative clustering. Those algorithms could be good starting points for solving latent

SVM through convex relaxation.

Loss Function with Latent Variables: In latent variable models, the training in-

stance is often in the form of (x,h, y). The loss functions in latent variable models only

depend on the class label y without considering the latent variable h. For example, in the

multi-class latent SVM we presented in Chapter 2, the loss function is the standard 0/1 loss,

i.e. ∆(yi, y) = 1[yi 6=y]. Therefore, the inferring of latent variables on testing examples might

not be accurate. We believe it will limit the applicability of latent variable models to the

situations where accurate predictions of latent variables on testing examples are required.

One interesting direction for dealing with this issue is to include the latent variables in

the loss function, e.g. changing the form of loss function to ∆(yi,hi, y,h). However, due to

the fact that the latent variables are not observed during training, this modification will not

be trivial. Kumar et al. [43] approach this problem by introducing a conditional distribution

to model the uncertainty of latent variables in the loss function. Similar motivations are

also adopted by Shapovalova et al. [69] and they add an additional loss function to ensure

the pairwise similarity of latent variables across the training set. We believe these two

approaches are good starting points for considering latent variables in the loss functions.

Latent variable models are a class of powerful tools and we believe they will open the

possibility of constructing more powerful and expressive approaches for visual recognition.
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