
Collection and Characterization of

BCNET BGP Traffic

by

Sukhchandan Lally

B.Tech., Punjab Technical University, 2008

Thesis Submitted in Partial Fulfillment

of the Requirements for the Degree of

Master of Applied Science

in the

School of Engineering Science

Faculty of Applied Science

 Sukhchandan Lally 2012

SIMON FRASER UNIVERSITY

Summer 2012

All rights reserved.
However, in accordance with the Copyright Act of Canada, this work may

be reproduced, without authorization, under the conditions for
“Fair Dealing.” Therefore, limited reproduction of this work for the

purposes of private study, research, criticism, review and news reporting
is likely to be in accordance with the law, particularly if cited appropriately.

ii

Approval

Name: Sukhchandan Lally

Degree: Master of Applied Science

Title of Thesis: Collection and Characterization of BCNET BGP Traffic

Examining Committee:

Chair: Ash Parameswaran, Professor

Ljiljana Trajkovic
Senior Supervisor
Professor

Carlo Menon
Supervisor
Associate Professor

Lesley Shannon
Internal Examiner
Associate Professor
School of Engineering Science

Date Defended/Approved: May 25, 2012

iii

Partial Copyright Licence

iv

Abstract

Measuring and monitoring traffic in deployed communication networks is necessary for

effective network operations. Traffic analysis allows network operators to understand the

network user’s behavior and ensure quality of service (QoS). In this thesis, we describe

collection, extraction, and analysis of BGP traffic. Border Gateway Protocol (BGP) is an

Inter-Autonomous System routing protocol that operates over a reliable transport

protocol (TCP).

We collected real traffic from a real deployed network called BCNET. Collection of real

traffic was used in the process of extraction of BGP messages and their attributes. The

traffic was collected using special purpose hardware: Net Optics Director 7400, Ninjabox

5000, and the Endace DAG 5.2X card. Collected data were analyzed and compared

using the Wireshark, an open-source packet analyzer. Walrus, a visualization tool, was

used to visualize the graphs in three-dimensional space.

Keywords: Traffic collection; Autonomous System (AS); Border Gateway Protocol
(BGP); Wireshark

v

Dedication

To my husband and my family for all their love

and support

vi

Acknowledgements

I express my deepest gratitude to my senior supervisor, Professor Ljiljana Trajkovic for

accepting me in the Communication Networks Laboratory. I would like to thank her for

her constant support, guidance, insight, patience, and trust.

I would like to thank Prof. Lesley Shannon and Prof. Carlo Menon for serving on my

examining committee and Prof. Ash Parameswaran for chairing the thesis defense.

My sincere thanks to my colleagues in the Communication Networks Laboratory: Rajvir

Gill, Ravinder Paul, Tanjila Farah, Don Xu, Soroush Haeri, and Khaled Alutaibi for their

constructive suggestions and comments. I would like to thank Nabil Al-Rousan for

generating the C# code and letting me use a part of his code. I am also very grateful to

BCNET and the assistance provided by Mr. Toby Wong, the technician at BCNET who

made the collection of traffic traces possible.

I am blessed with such a wonderful family that stood by me with their love and prayers

all through the period of my graduate studies. Big thanks to my parents Harbahadur

Singh Lally and Gurpreet Lally, my siblings Harsandal Lally and Sartaj Lally, and last but

the most important my husband Gurneet Purewal for his constant encouragement and

support. I could not have made it without his moral, emotional, and intellectual support.

Thank you all for believing in me and encouraging me to pursue greater achievements.

http://www.sfu.ca/~kalutaib

vii

Table of Contents

Approval .. ii
Partial Copyright Licence ... iii
Abstract .. iv
Dedication ... v
Acknowledgements .. vi
Table of Contents .. vii
List of Tables .. ix
List of Figures.. x
List of Acronyms ..xiv

1. Introduction .. 1
1.1. Contributions .. 2
1.2. Thesis Outline .. 3
1.3. Related Work .. 3

2. Border Gateway Protocol ... 9
2.1. Routing ... 10
2.2. BGP Routing .. 10
2.3. BGP Overview .. 11
2.4. Autonomous Systems (ASes) ... 14

3. Data Collection ... 16
3.1. BCNET ... 16
3.2. BCNET Traffic .. 16
3.3. BCNET Packet Capture .. 17

4. Viewing the Collected Traffic ... 22
4.1. Wireshark – A Packet Analyzer .. 22
4.2. Analysis of BCNET Traffic Using Wireshark ... 23

4.2.1. BCNET Traffic Summary ... 23
4.2.2. BCNET Traffic Input-Output Graphs ... 24
4.2.3. BCNET Traffic Protocol Hierarchy ... 25
4.2.4. BCNET Network Endpoints ... 26
4.2.5. BCNET Traffic Service Response Time .. 26

5. BGP Attributes .. 28
5.1. AS_Path ... 29
5.2. Message Attribute .. 32
5.3. Origin Attribute ... 33
5.4. Next_Hop ... 38
5.5. Multiple_Exit_Discriminator .. 38
5.6. Local_Preference ... 38
5.7. Atomic_Aggregate .. 38
5.8. Aggregator ... 39

viii

5.9. TCP Round Trip Time ... 39
5.10. TCP Throughput ... 40
5.11. TCP Window Size .. 43
5.12. Anomalies .. 44
5.13. Clusters .. 45

6. BGP Update Attributes ... 47
6.1. Number of Announcements .. 50
6.2. Number of Withdrawals .. 52
6.3. Number of Announced Prefixes .. 54
6.4. Number of Withdrawn Prefixes ... 56
6.5. Average AS Path .. 58
6.6. Maximum AS Path .. 60
6.7. Average Unique AS Path .. 62
6.8. Duplicate BGP Announcements ... 64
6.9. Implicit Withdrawals .. 66
6.10. Duplicate BGP Withdrawals .. 68
6.11. Maximum AS Path Edit Distance .. 70
6.12. Average AS Path Edit Distance .. 72
6.13. Number of IGP Packets .. 75
6.14. Average Packet Size .. 77

7. Future Work .. 80

8. Conclusions .. 81

References ... 82

Appendices .. 87
Appendix A. C# Code for the extraction of attributes 88
Appendix B. C# Code for selecting the BGP attributes 93
Appendix C. MATLAB Code for generating the graphs 109

ix

 List of Tables

Table 1. Different types of BGP messages. ... 23

Table 2. Protocol Hierarchy of the Packets Captured. .. 25

Table 3. Statistics of the Captured TCP Endpoints. ... 26

Table 4. Statistics for Update Messages. ... 32

Table 5. Statistics for Keepalive Messages. ... 33

Table 6. Statistics for IGP Packets. .. 34

Table 7. Statistics for EGP Packets. .. 35

Table 8. Statistics for Incomplete Packets. .. 35

Table 9. Statistics for Sample TCP RTT. ... 40

Table 10. Statistics for Estimated TCP RTT. .. 40

Table 11. Extracted BGP Update Message Attributes. ... 48

Table 12. Statistics for Number of Announcements ... 52

Table 13. Statistics for Number of Withdrawals .. 54

Table 14. Statistics for Number of Announced Prefixes ... 56

Table 15. Statistics for Number of Withdrawn Prefixes. ... 58

Table 16. Statistics for Average AS Path. .. 60

Table 17. Statistics for Maximum AS Path ... 62

Table 18. Statistics for Average Unique AS Path ... 64

Table 19. Statistics for Duplicate BGP Announcements .. 66

Table 20. Statistics for Implicit Withdrawals ... 68

Table 21. Statistics for Duplicate BGP Withdrawals ... 70

Table 22. Statistics for Maximum AS Path Edit Distance ... 71

Table 23. Statistics for IGP Packets ... 75

x

List of Figures

Figure 1. Growth of the BGP Table - 1994 to Present [22]. ... 9

Figure 2. Snippet of Captured Data Showing Update and Keepalive Messages
using Wireshark. .. 13

Figure 3. AS Pool of Numbers Allocated by IANA. .. 15

Figure 4. Real Time Network Usage by BCNET Members, Collected on June 5,
2012 [28]. .. 17

Figure 5. BCNET, the British Columbia's Advanced Network. 18

Figure 6. Physical Overview of the BCNET Packet Capture [27]. 19

Figure 7. Net Optics Director Application Diagram [29]. .. 20

Figure 8. ENDACE Card is used for Network Monitoring and Analysis [34]. 21

Figure 9. Wireshark View of the Traffic Collected. ... 23

Figure 10. Summary of BCNET Traffic Collected over a Period of 48 hours. 24

Figure 11. Input-Output Graph of the Packets Captured. The x-axis: tick interval
= 1 s, 5 pixels/tick. The y-axis: unit = packets/tick, scale = 10. 25

Figure 12. Flow Graph of Collected Traffic. Shown are Time Stamps of
Correspondence Between BGP Peer Routers. .. 27

Figure 13. BGP Messages and their Path Attributes. .. 28

Figure 14. Network Traffic: AS 852. .. 30

Figure 15. Network Traffic: AS 13768. .. 30

Figure 16. Number of Connections AS 13678 has with other ASes............................... 31

Figure 17. Network Traffic: AS 6327. .. 31

Figure 18. Number of Connections for AS 6327 with other ASes. 32

Figure 19. Network Traffic: 210,414 IGP Packets were collected from December
20 to December 22, 2010. ... 34

Figure 20. Network Traffic: 822 EGP Packets were recognised in the time period
between December 20 and December 22, 2010. ... 35

Figure 21. Network Traffic: 33,932 Incomplete Packets. ... 36

xi

Figure 22. Distribution of BGP Origin Attributes. ... 36

Figure 23. An Example of Incomplete and IGP Origin Attribute [36]. 37

Figure 24. The Graph Shows the Distribution of the Origin Attribute (IGP, EGP,
and INCOMPLETE). .. 37

Figure 25. Network Traffic: Transmission Control Protocol RTT. 39

Figure 26. TCP Throughput of the BCNET Traffic Collected from December 20 to
December 22, 2010 had an Average of 177.1 packet/min. 41

Figure 27. TCP Congestion Control Algorithms. The Congestion Window Size is
Determined by the Congestion Control Algorithm and the Mechanism
Used to Indicate Congestion. ... 43

Figure 28. TCP Window Size of the BCNET Traffic for 200 Samples. 44

Figure 29. Walrus AS Topology Graph of the Collected BCNET Traffic. The
Clusters Correspond to AS 852 (Telus), AS 6327 (Shaw), and AS
13678 (Peer 1 Networks). .. 46

Figure 30. A Sample of Data Collected Using Wireshark. .. 49

Figure 31. Details of an Internet Protocol Packet. ... 49

Figure 32. Number of Announcements on October 2, 2011. ... 50

Figure 33. Number of Announcements on November 2, 2011. 51

Figure 34. Number of Announcements on December 2, 2011. 51

Figure 35. Number of Withdrawals on October 2, 2011. .. 53

Figure 36. Number of Withdrawals on November 2, 2011. .. 53

Figure 37. Number of Withdrawals on December 2, 2011. .. 54

Figure 38. Number of Announced Prefixes on October 2, 2011. 55

Figure 39. Number of Announced Prefixes on November 2, 2011................................. 55

Figure 40. Number of Announced Prefixes on December 2, 2011................................. 56

Figure 41. Number of Withdrawn Prefixes on October 2, 2011. 57

Figure 42. Number of Withdrawn Prefixes on November 2, 2011. 57

Figure 43. Number of Withdrawn Prefixes on December 2, 2011. 58

xii

Figure 44. Average AS Path on October 2, 2011. ... 59

Figure 45. Average AS Path on November 2, 2011. ... 59

Figure 46. Average AS Path on December 2, 2011. ... 60

Figure 47. Maximum AS Path on October 2, 2011. ... 61

Figure 48. Maximum AS Path on November 2, 2011. ... 61

Figure 49. Maximum AS Path on December 2, 2011. ... 62

Figure 50. Average Unique AS Path on October 2, 2011. ... 63

Figure 51. Average Unique AS Path on November 2, 2011. ... 63

Figure 52. Average Unique AS Path on December 2, 2011. ... 64

Figure 53. Duplicate BGP Announcements on October 2, 2011. 65

Figure 54. Duplicate BGP Announcements on November 2, 2011. 65

Figure 55. Duplicate BGP Announcements on December 2, 2011. 66

Figure 56. Implicit Withdrawals on October 2, 2011. ... 67

Figure 57. Implicit Withdrawals on November 2, 2011. ... 67

Figure 58. Implicit Withdrawals on December 2, 2011. ... 68

Figure 59. Duplicate BGP Withdrawals on October 2, 2011. ... 69

Figure 60. Duplicate BGP Withdrawals on November 2, 2011. 69

Figure 61. Duplicate BGP Withdrawals on December 2, 2011. 70

Figure 62. Maximum AS Path Edit Distance on October 2, 2011. 71

Figure 63. Maximum AS Path Edit Distance on November 2, 2011. 72

Figure 64. Maximum AS Path Edit Distance on December 2, 2011. 72

Figure 65. Average AS Path Edit Distance on October 2, 2011. 74

Figure 66. Average AS Path Edit Distance on November 2, 2011. 74

Figure 67. Average AS Path Edit Distance on December 2, 2011. 75

Figure 68. Number of IGP Packets on October 2, 2011. ... 76

xiii

Figure 69. Number of IGP Packets on November 2, 2011. ... 76

Figure 70. Number of IGP Packets on December 2, 2011. ... 77

Figure 71. Average Packet Size on October 2, 2011. ... 78

Figure 72. Average Packet Size on November 2, 2011. .. 78

Figure 73. Average Packet Size on December 2, 2011. .. 79

xiv

List of Acronyms

ACK

AfriNIC

AIMD

APNIC

ARIMA

ARIN

AS

ASCII

BGP

CAIDA

CANARIE

CDF

CDPD

ChinaSat

CIDR

CRM

DAG

DANTE

DSM

EComm

EGP

FIB

FIFO

FPGA

GVRD

IANA

IETF

IGP

IP

IPv4

IPv6

ISP

LACNIC

Acknowledgement

African Regional Internet Registry

Additive-Increase Multiplicative-Decrease

Asia Pacific Network Information Centre

Autoregressive Integrative Moving Average

American Registry for Internet Numbers

Autonomous System

American Standard Code for Information Interchange

Border Gateway Protocol

The Cooperative Association for Internet Data Analysis

Canada’s Advanced Research and Innovation Network

Cumulative Distribution Function

Cellular Digital Packet Data

China Telecommunications Broadcast Satellite Corporation

Classless Inter-Domain Routing

Customer Relationship Management

Data Acquisition and Generation

Delivery of Advanced Network Technology to Europe

Data Stream Manager

Emergency Communications for Southwest British Columbia

Exterior Gateway Protocol

Forwarding Information Base

First in First Out

Field Programmable Gate Array

Greater Vancouver Regional District

Internet Assigned Numbers Authority

Internet Engineering Task Force

Interior Gateway Protocol

Internet Protocol

Internet Protocol version 4

Internet Protocol version 6

Internet Service Provider

Latin American and Caribbean Internet Address Registry

http://www.google.ca/url?sa=t&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Fwww.iana.org%2F&ei=tYPRTe3MBtDciAL0m5mYBg&usg=AFQjCNEcHJdIiVpXDFxXik34bSjt60RIlA

xv

LIR

MED

MRT

NIR

NLRI

PCIx

PDF

PTT

RIB

RIP

RIPE

RIPE NCC

RIR

RTO

RTT

SARIMA

TAP

TCP

TTL

UDP

VLAN

Local Internet Registry

Multiple Exit Discriminator

Multi-threaded Routing Toolkit

National Internet Registry

Network Layer Reachability Information

Peripheral Component Interconnect Extended

Probability Density Function

Push to Talk

Routing Information Base

Routing Information Protocol

Réseaux IP Européens

Réseaux IP Européens Network Coordination Centre

Regional Internet Registries

Retransmission Timeout

Round Trip Time

Seasonal Autoregressive Integrative Moving Average

Test Access Point

Transmission Control Protocol

Time to Live

User Datagram Protocol

Virtual Local Area Network

1

1. Introduction

BCNET is British Columbia's advanced research and innovation network. It is a

dedicated, high-speed, fiber-optic network that spans the province of British Columbia,

Canada. Border Gateway Protocol (BGP) provides a set of mechanisms for supporting

classless inter-domain routing, a path vector protocol which enables the use of additional

address space within the network, in contrast to the current Internet Protocol (IP). It

maintains a table of IP addresses or prefixes that define network reachability among

Autonomous Systems (ASes). It supports any policy conforming to the “hop-by-hop”

paradigm [1].Among the routing protocols, BGP is the only protocol that deals with a

network of the size of the Internet and it may support multiple connections to distinct

routing fields. BGP is the routing protocol that exchanges routing information across the

Internet and makes it feasible for Internet Service Providers (ISPs) to connect to each

other and for users to connect to more than one ISP. BGP speakers are the BGP

routers. These routers communicate directly with each other and may be located within

the same or different ASes. The most important function of a BGP speaker is to

exchange network reachability information with other BGP systems. If the BGP speaker

communicates with a router that is within the same Autonomous System, it is known as

an Intra-Autonomous System. If the routers communicate with each other and are in

different Autonomous Systems, then it is known as an Inter-Autonomous System.

Traffic measurements in operational networks help understand traffic characteristics,

develop traffic models, and evaluate the performance of protocols and applications. BGP

analysis may be grouped into three categories: a) measurement and modeling studies,

b) studies of network-wide BGP dynamics, and c) troubleshooting and improving BGP

[2]. This project falls in the category of measuring BGP.

It is difficult to collect real traffic from real deployed network. We had a great

opportunity of collecting the traffic from BCNET for a period of 2 days in 2010, 2 weeks

in 2011, and then a month and a half in 2011. Collecting traffic from BCNET is an

2

ongoing project and we are continuing to collect the traffic until date. In this thesis, we

collected traffic from BGP routing tables. The data extracted from BCNET were in

American Standard Code for Information Interchange (ASCII) format. We used code

written in C# to parse the ASCII format and then extract BGP message attributes.

1.1. Contributions

In this thesis, we describe the collection of data from BCNET using special

purpose hardware. We cleaned, extracted, and then analyzed BGP traffic. We used

Wireshark to analyze the data and compared the data collected between: December 20,

2010 to December 22, 2010; October 1, 2011 to October 10, 2011; and October 24,

2011 to December 22, 2011. We used C# code to parse the BGP data and extract

numerical attributes. MATLAB was used to generate the graphs. BGP data extracted

from BCNET contains only update and keepalive messages. There were no notification

or open messages found in the collected data in December 2010, October 2011,

November 2011, and December 2011. In the collected BGP traffic data, 88% of the

messages were BGP update messages and the remaining were keepalive messages.

There were few keepalive attributes to be analyzed. Hence, in this thesis, we focused

our analysis on the update messages and their attributes..

It was difficult to extract any useful information and plot the graphs of different

attributes using Wireshark. Therefore, it was important to have a tool that could parse

the data and help in displaying the graphs. Hence, the C# code was written to extract

useful data and plot the numerical attributes of the BGP messages.

The data collected from BCNET may be used to improve existing routing

protocols such as BGP and eliminate the defects in BGP such as route flap damping

(RFD) [3] and improve the values used for the minimal route arrival interval (MRAI) [4].

Route flap damping (RFD) is the pattern of repeated withdrawal and re-announcement of

routes. MRAI is defined as the minimum time interval between sending two consecutive

update messages for the same destination. The collected local BCNET data may be

analyzed and compared with other publicly available datasets such as Route Views [5]

and Réseaux IP Européens (RIPE) [6].

3

1.2. Thesis Outline

The organization of the thesis is as follows: Chapter 2 begins with a brief introduction

to packet routing, an overview of BGP and BGP routing, and a description of

Autonomous Systems. In Chapter 3, we discuss the process of data collection. The

hardware used for BCNET data capture such as Endace card, Ninjabox 5000, and

Netoptics Director 7400 are discussed in detail in this chapter. The BCNET network,

BCNET traffic, and discussion on real time usage by BCNET members are also included

in this Chapter. In Chapter 4, we describe a tool for viewing collected traffic. In this

thesis, we chose a free source packet analyzer called Wireshark for this purpose.

Various features such as input-output graphs, protocol hierarchy, and service response

time are detailed in this Chapter. We analyze BGP attributes using MATLAB in Chapter

5 and TCP attributes in Chapter 6. Chapter 7 emphasizes the details of BGP update

attributes and the traffic collected on three randomly selected dates in October,

November, and December 2011. A short summary of experiences that we gained and

the future work is addressed in Chapter 7. We conclude the thesis with Chapter 8. C#

code for BGP data generation and MATLAB code are presented in the Appendices.

1.3. Related Work

Network traffic measurements are useful for network troubleshooting, workload

characterization, and network performance evaluation. Collection and analysis of traffic

has been an active research topic. Measuring and analyzing of network traces is

important in order to understand traffic, illustrate traffic, and develop new traffic models,

and improve network performance.

Ethernet LAN traffic is statistically self-similar and has serious implications for the

design, control, and analysis of high-speed and cell-based networks [7]. Data were

collected between August 1989 and February 1992 on several Ethernet LANs at the

Bellcore Moristown Research and Engineering Center to analyze the self-similarity trend.

The self-similarity of Ethernet LAN traffic is different from both conventional telephone

traffic and packet traffic. The self-similarity is defined by the Hurst parameter. Four sets

of traffic measurements of 20 and 40 consecutive hours of Ethernet traffic were

4

considered. The degree of self-similarity increased as the utilization of the Ethernet

increased and this was supported by self-similarity of the Ethernet traffic over a 24-hour

period. Interest in self-similar traffic was first stirred by the measurements of Ethernet

traffic at Bellcore [7].

 In order to demonstrate that wireless data traffic also shows long-range

dependent behavior it is important to study the impact of self-similarity on wireless data

networks [8]. Modeling and simulation of Cellular Digital Packet Data (CDPD) [9] network

was done to investigate the impact of traffic patterns on wireless data networks. The

data were collected from Telus Mobility, a commercial service provider and its CDPD

network located in downtown Vancouver. The traffic was collected from 14:56:37:56 to

15:24:46:88 on June 12, 1998. Long-range dependence is an important feature of self-

similar traffic. The long-range dependent behavior in this case was different from the

behaviour generated by traditional traffic models.

OPNET tool [10] was used to study the CDPD wireless networks. CDPD is a

standard protocol stack developed for mobile data networks. While it is similar to

Ethernet (IEEE 802.3), it differs from other protocols because it has wireless

transmission medium and collision detection mechanism. The results in this case

concluded that wireless data traffic had self-similar behavior, which was different from

traditional traffic models. Queuing delays generated from authentic traffic traces were

different from the queuing delay predicted by short-range dependent models. Hence, it is

important to study real data from real deployed network.

Analysis of data from China Telecommunications Broadcast Satellite Corporation

(ChinaSat) [11] dealt with analyzing the patterns and statistical properties of billing

records and tcpdump traces [12]. ChinaSat provides Internet access through DirecPC to

individual users, businesses, and Internet cafés in China. DirecPC is a satellite network

deployed by Hughes Network Systems. The daily and weekly traffic patterns and effect

of holidays were investigated using billing records. The volume of traffic on weekends

was lower than working weekdays. Two months of billings records collected from

DirecPC were analyzed. The downloaded traffic was larger than uploaded traffic. The

collected traffic only contained IP packets because it is one of the most used network

layer protocol. A large number of Routing Information Protocols (RIPs) were detected

5

but they were not analyzed as they were not related to DirecPC traffic in ChinaSat

network.

Wireshark and tcptrace were used to examine the traffic traces. Analysis of

tcpdump traces revealed traffic anomalies such as packets with invalid TCP flag

combinations, large number of connection closed, port scans, and anomalies in traffic

volume. Wavelets decomposition of data traffic may be used to identify traffic volume

anomalies. The download and upload traffic traces were very regular in both daily and

weekly cycles. The daily maxima occurred at 11 AM, 3 PM, and 7 PM while minimum

occurred at 7 AM. Analysis of tcpdump traces indicated that the major data transfers

were due to TCP. Some traffic anomalies were also detected. The performance of

commercial network may be improved using this analysis.

Analysis of public safety traffic dealt with distribution of call inter-arrival and call

holding times for multicast voice traffic on a transmission trunked mobile radio system

[13]. The traffic was collected from a deployed network called E-Comm [14]. It is an

emergency communications center that provides emergency services such as police,

fire, rescue, and ambulance in Greater Vancouver Regional District (GVRD) in

Southwest BC, Canada. Each call had a push-to-talk (PTT) event to activate the radio

transmitter and it ended with the release of the PTT key. The channel at each repeater

site is released when the PTT key is released. If there are no channels available, the

PTT request is located in a queue and served on a first-in–first-out (FIFO). The highest

priorities are reserved for emergencies.

Analysis of several busy periods on weekdays was done and two days of traffic

from the Vancouver system were examined in detail. All confidential information that

could identify specific user group was removed. The traffic analysis consisted of traces

from the Vancouver system that handled bulky traffic volumes and had capacity so that

blockage and queueing did not occur. The traffic patterns were observed for September,

October, and November 2001 over a seven-week period.

The traffic in a single coverage system was only considered. This removal of

mobility reduced the traffic to a function of a call-arrival process and a call-holding

process. The long-range dependence was investigated for the call inter-arrival and call

6

holding times by estimating the Hurst parameter. The analysis indicated that the call

holding times had a lognormal distribution. The analysis included the distributions of call

inter-arrival times, call holding times, probability density functions (PDF), and cumulative

distribution functions (CDF).

Analysis and mining of traffic data helps in determining traffic distribution, to

study user behavior patterns, and to predict future network traffic [15]. Analysis may

improve the network resources usage and quality of service. The data were collected

from E-Comm network. K-means algorithm was used to cluster and classify user groups

based on their calling patterns. The databases contained log tables recording all the

network activities. The data was analyzed from March 2003 to May 2003. All the fields in

the databases were not required for analysis. Therefore, the data were cleaned and the

fields of interest were taken into consideration. After the cleaning process, the records

were reduced to 19% of their original records.

The K-means algorithm was used to cluster the users according to their calling

patterns. The users were clustered in such a way that they had high similarities if they

were in the same cluster and very few similarities if they were in other clusters. The

number of clusters and the similarity function are two parameters used in determining

the clusters. Three main clusters were recognized in the traffic analyzed. The first cluster

had 17 talk groups (It represented the busiest calling group.), and the second cluster had

31 talk groups (It represented the callers with medium network usage.), and the third

cluster had 569 talk groups (The callers made approximately 16 calls per hour.).

Traffic was also predicted based on aggregate traffic using the autoregressive

integrative moving average (ARIMA) and seasonal ARIMA (SARIMA) models. The

ARIMA model was able to predict the uploaded traffic but not the downloaded traffic, due

to the traffic dynamics. E-Comm network consisted of both daily (24-hour) and weekly

(168-hour) cyclic patterns. The daily model assumes that traffic is relatively constant for

a weekday while the weekly model assumes there are variations in the traffic during the

week. Predicting traffic of Thursday based on Wednesday’s data is not as accurate as

predicting Thursday’s traffic based on traffic on previous Thursdays. The prediction of

traffic based on aggregate traffic assumed that the number of network users is constant

and they have a steady behavior pattern. The cluster based technique is used to predict

7

the network traffic in case the network expands. Another advantage of using cluster-

based prediction is that the number of users may vary but they may be grouped into one

of the existing clusters.

Power-laws might be used to estimate important parameters such as the

performance and analysis of protocols [16]. The information in this case was collected

from BGP routing tables. Three power-laws of the Internet topology were observed.

Many fascinating graph parameter relationships were observed. Power-laws helped

understanding different graph metrics. The parameters of the Internet may be predicted

using hypothesis and assumptions. They may be used to illustrate and differentiate

Internet graphs. Hence, power-laws are another way to study the Internet topology.

Power-laws have theoretical as well as practical applications.

The analysis of spectral properties of Internet topology is important [17]. The

Internet is a complex network and in order to understand it in depth we need to study its

spectral properties. Datasets from Route Views and RIPE collected from BGP routing

tables indicated the existence of power-laws. The Internet has been growing

exponentially over the years but the power-laws have not much changed. Spectral

analysis was employed to analyze Route View and RIPE so that clustering of AS nodes

could be studied. Eigenvalues are an important feature in order to study spectral

properties of the Internet. They demonstrate power-law properties. Various graphical

properties from Route Views and RIPE in 2003 and 2008 were examined. The Route

Views and RIPE BGP routing tables were collected from different ASes located in

different countries. Most of the Route Views ASes were in North America, whereas RIPE

consisted of ASes in Europe. RIPE datasets were collected from 16 different locations.

The datasets that were analyzed were collected at 00:00 am on July 31, 2003 and 00:00

am on July 31, 2008.

RIPE datasets showed properties similar to Route Views observed power-laws.

The second smallest and largest eigenvalues and their eigenvectors for both Route

Views and RIPE were examined. Route Views 2003 and RIPE 2003 datasets showed

similar clustering patterns and so did the Route Views 2008 and RIPE 2008 datasets.

Even though the Route Views and RIPE datasets were collected from different countries,

similar power-laws were present in both. While, many properties in Internet topology

8

have not changed over the years, the spectral analysis showed changes in both

connectivity and clustering of AS nodes.

Analyzing network traces is important in order to understand the Internet.

However, obtaining the traces is a difficult task [18]. Privacy issues and the operation of

the network are some of the issues concerned with obtaining the traces. However, many

traces are available to researchers on the web. A Google-based profiling tool known as

“unconstrained endpoint profiling” (UEP) approach was used for this purpose. The

method used information about the endpoints that was publicly-available on the web.

This approach may be used even when no packet traces are available or when network

traces are available, and sampled flow-level traces are available. Different regions in

Asia, South America, North America, and Europe were investigated to understand what

protocols and applications people use and which are the sites they access. The traffic

categories that were compared were P2P, chat, gaming, and browsing. The best way to

do so is by analyzing the network traces. Sampled data analysis creates problems in

anomaly detection algorithms and traffic classification tools. The endpoint profiling

approach may be used to predict application and protocol usage trends. It surpasses

modern classification tools when packet traces are available, and preserves high

classification means. It was the first-of-its-kind endpoint analysis that revealed

similarities and differences among these regions from where different traces were

collected.

Some of the other tools related to BGP data analysis are BGP monitoring system

(BGPmon) [19], BGP Data Analysis Project (BDAP) [20], and BGP-Inspect [21]. The

main aim of these projects is to collect BGP data, to monitor BGP updates and routing

tables, and to detect anomalies in the data. These tools are mainly designed to detect

the instabilities in the Internet routes.

9

2. Border Gateway Protocol

The standard inter-domain routing protocol in today’s Internet is Border Gateway

Protocol (BGP), defined in the RFC 1771. BGP is categorized as a path vector protocol,

a variant of distance vector protocol. It exchanges network reachability information

among BGP systems. It distributes route path information to peers and sends update

messages as routing tables change. The size of BGP tables has exponentially increased

since 1994, as shown in Figure 1, implying that timely analysis of BGP is important [22].

Figure 1. Growth of the BGP Table - 1994 to Present [22].

Analyzing the BGP routing tables is important. As the Internet is growing, the

number of entries in the BGP routing tables is increasing. Hence, the Internet address

space and capability of routing system is limited. Therefore, it is important to study the in

routing table entries [23]. The graph illustrates that the number of BGP routing table or

Routing Information Base (RIB) entries have increased from 50,000 in 1994 to

approximately 450,000 entries in 2011. Various reported research projects [3] – [18]

10

imply that traffic analysis is important for improving network performance, evaluating

protocols, detecting the anomalies.

2.1. Routing

The process of choosing paths through which network traffic is sent is known as

routing. It is performed in many different types of networks, such as electronic data

networks (Internet), telephone networks (circuit switching), and transportation networks.

There are five types of routing schemes based on their delivery method:

• Unicast: A message is delivered to a single specific node.

• Broadcast: A message is delivered to all nodes in the network.

• Multicast: A message is delivered to the nodes that are
interested in receiving the message.

• Anycast: A message is delivered to the node nearest to the source from a
group of nodes.

• Geocast: A message is delivered to a particular geographical area.

2.2. BGP Routing

BGP maintains routing tables, transmits routing updates, and bases routing decisions

on routing metrics. Each BGP router preserves a routing table that lists all viable paths

to a particular network. Routing information received from peer routers is maintained

until an incremental update is received and the router does not change the routing table.

BGP devices exchange routing information after preliminary data exchange and

incremental updates. When a router first connects to the network, all BGP routers

exchange their entire BGP routing tables. When the routing table changes, the router

sends the portion of its routing table that has changed to its neighbors. BGP routing

updates announce only the optimal path to a network and BGP routers do not send

regularly scheduled routing updates.

Every router maintains two groups of routes: Routing Information Base (RIB) and

Forwarding Information Base (FIB). The RIB consists of all the announced routes from

http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Computer_network
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/PSTN
http://en.wikipedia.org/wiki/Circuit_switching
http://en.wikipedia.org/wiki/Transport_network
http://en.wikipedia.org/wiki/Unicast
http://en.wikipedia.org/wiki/Broadcasting_(computing)
http://en.wikipedia.org/wiki/Multicast
http://en.wikipedia.org/wiki/Anycast
http://en.wikipedia.org/wiki/Geocast

11

the neighbor routers, whereas the FIB contains the best route to each destination,

calculated by the route-selection algorithm from the RIB. Since BGP does not support

multi-path routing, if several routes are considered as the best paths, a rule is applied to

select the one to be placed in FIB.

BGP uses a single routing metric to determine the best path to a given network.

The routing metric consists of a random integer that specifies the degree of preference

of a particular link. The BGP metric is usually assigned to each link by the network

supervisor. The value assigned to a link may be based on different criteria, including the

number of autonomous systems through which the path passes, stability, speed, delay,

or cost.

2.3. BGP Overview

Border Gateway Protocol (BGP) is a de facto Inter-Autonomous System (AS) [24]

routing protocol. An Autonomous System comprises groups of routers that are

administrated by a single administrator and use the Interior Gateway Protocol (IGP).

Each AS is responsible for carrying traffic to and from a set of customer IP addresses.

The Autonomous System numbers are used by various routing protocols. They are

assigned to the regional registries by the Internet Assigned Numbers Authority (IANA).

BGP operates over a Transmission Control Protocol (TCP) as a transport

protocol (port number 179). TCP has an advantage over User Datagram Protocol (UDP)

connections: BGP does not need to implement fragmentation, retransmission,

acknowledgment, and sequencing. BGP has the capability to support Classless Inter-

Domain Routing (CIDR) in order to reduce the size of the Internet routing tables. CIDR

allows routers to group routes together in order to minimize the number of routing

information carried by the core routers, which makes it a dominant Internet routing

protocol and allows the aggregation of routers. CIDR is also known as supernet as it

effectively allows multiple subnets to be grouped together for network routing. Internet

Protocol version 6 (IPv6) uses CIDR routing technology and CIDR notation in the same

way as Internet Protocol version 4 (IPv4). IPv6 was designed for fully classless

http://www.google.ca/url?sa=t&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Fwww.iana.org%2F&ei=tYPRTe3MBtDciAL0m5mYBg&usg=AFQjCNEcHJdIiVpXDFxXik34bSjt60RIlA
http://compnetworking.about.com/od/networkprotocolsip/g/bldef_ipv6.htm

12

addressing. In CIDR, all Internet blocks can be of random size and classless addressing

uses a variable number of bits for the network and host portions of the address.

BGP is a path-vector protocol that is commonly used for exchanging external AS

routing information and operates at the level of address blocks or AS prefixes. Each AS

prefix consists of a 32-bit address and a mask length. For example, 192.0.2.0/24

consists of addresses from 192.0.2.0 to 192.0.2.255 [25].

 BGP speakers that participate in a BGP session are called neighbors or

peers. The main function of BGP is to exchange reachability information among BGP

systems and this information is based on a set of metrics: policy decision, the shortest

AS-PATH, and the closest NEXT-HOP router.

BGP routers exchange routing information using four types of messages [12]:

• Open: After a TCP connection is established, each BGP peer sends an open
message to open an initial connection. This is the first message sent between
peers after the TCP connection is established.

• Update: The update message is used to transfer and update routing
information between BGP peers. As the routing table changes, incremental
updates are sent to peers using an update message. The update information
allows routers to construct network topology view that describes the
relationships between various ASes.

• Notification: The notification message is sent to all connected neighbors in
case of errors or unusual conditions. If a connection between the connected
routers has an error, a notification message announces the error and closes
the active connection between the routers.

• Keepalive: The keepalive message assists the BGP router to determine
whether or not the peers are reachable. BGP router sends a keepalive
message between peers occasionally in order to ensure the active connection
between them.

A snippet of captured data showing update and keepalive messages is shown in

Figure 2. We did not encounter any notification and open messages in traffic collected

from BCNET. Therefore, our focus was to analyze BGP update and keepalive message

attributes.

http://www.inetdaemon.com/tutorials/networking/lan/index.shtml

13

Figure 2. Snippet of Captured Data Showing Update and Keepalive Messages
using Wireshark.

14

2.4. Autonomous Systems (ASes)

The Internet is composed of a set of administrated networks, known as

Autonomous Systems (ASes). An AS is an association that manages its private

networks and provides Internet access to its hosts by being connected through other

ASes. Additionally, each AS has one or more unique IP prefixes, i.e., a range of IP

addresses, from which it assigns IP addresses to its hosts. ASes run an inter-domain

routing protocol called Border Gateway Routing Protocol (BGP) to exchange reachability

and dynamic information (link failures and availability) regarding their prefixes.

 The AS is a network or a group of networks with a common routing policy. For

example, an AS may consist of a university network, a business enterprise, or a

corporation network. A network within an AS uses a common IGP to route packets. BGP

information at each AS router is kept consistent by BGP update messages received from

BGP routers belonging to other ASes.

Until 2006, the AS numbers were defined as 16-bit integers and IANA allowed a

maximum of 65,536 allocations. Since November 2006, IANA has extended the ASN

field from 16 bits to 32 bits and hence the pool size has increased to 4,294,967,296

values. The IANA has designated AS numbers 64,512 through 65,534 to be used for

private purposes. The ASNs 0, 59,392–64,511, and 65,535 are reserved and should not

be used in any routing environment. The number of unique autonomous networks in the

routing system of the Internet exceeded 5,000 in 1999, 30,000 in late 2008, and 35,000

in 2010.

. Each AS is identified by a unique number known as Autonomous System

Number (ASN) assigned by the Internet Assigned Number Authority (IANA). According

to the global policy, IANA allocates the Internet Protocol addresses from the pool of

unallocated addresses to the Regional Internet Registries (RIR). An AS consists of a

range of IP addresses; the Internet Service Providers (ISPs) assign these IP addresses

to its users [26].

The Internet topology may be analyzed at router level and the Autonomous

System level. At inter-domain level or Autonomous System level, each AS domain is

represented as a node. The AS graph represents the connections between ASes and

15

these AS connections are the links between two nodes. Each AS is represented by an

ASN that ranges from 0 to 65,535.

The allocated pool of numbers is managed by the RIRs. The AS number blocks

allocated by IANA [25] are shown in Figure 3. 1,042 numbers are reserved for IETF and

3,056 numbers are for IANA pool. The sum of all these numbers sum is 65,536. ISPs

obtain IP addresses from a Local Internet Registry (LIR), National Internet Registry

(NIR), or from their RIR:

• African Regional Internet Registry (AfriNIC), Africa region.

• Asia Pacific Network Information Centre (APNIC), Asia Pacific region.

• American Registry for Internet Numbers (ARIN), North America region.

• Latin American and Caribbean Internet Address Registry (LACNIC), Latin
America and Caribbean Islands region.

• Réseaux IP Européens Network Coordination Centre (RIPE NCC), Europe,
Middle East, and Central Asia region.

Figure 3. AS Pool of Numbers Allocated by IANA.

16

3. Data Collection

The traffic data analyzed in this thesis were obtained from BCNET [27]. In this

Chapter, we introduce the architecture of BCNET and the special-purpose hardware that

was used for the traffic capture.

3.1. BCNET

The BCNET network facilitates high-definition videoconferencing, remote

research, virtual laboratories, distributed computing, distant learning, and large-scale

data transfers. The BCNET network is a high-speed fiber optic research network used to

transmit telephone signals, Internet communication, and cable television signals. This

network has been primarily installed for long-distance applications, where it may be used

to its full transmission capacity. The major Internet service providers in Vancouver,

Prince George, Victoria, Kelowna, and Kamloops are Bell, Shaw, and Telus.

 Network interconnections are accommodated by BCNET transit exchanges that

implement peering between associates and access data exchanges with local peering

and multi-homing services. The peering requires an exchange of routing information and

physical interconnection of networks through BGP routing protocol. The BCNET offsets

the increased Internet transit cost and improves network performance. Local peering

services are used to connect an organization at the BCNET Transit Exchange to move

data effectively and efficiently. Multi-homing establishes multiple Internet connections for

an organization at any of the five BCNET Transit Exchange locations.

3.2. BCNET Traffic

BCNET is associated with the network alliance Canada’s Advanced Research

and Innovation Network (CANARIE), which links Canada to the United States through

https://wiki.bc.net/atl-conf/display/Services/BCNET+Transit+Exchange+Locations

17

Internet and to Europe through Delivery of Advanced Network Technology to Europe

(DANTE). The BCNET traffic map, shown in Figure 4, displays the real-time network

usage by BCNET associates. Vancouver is connected to Prince George, Victoria, and

Kelowna through Kamloops. All these cities are then connected to their respective

transits. The arrows in the map show the traffic bound for CANARIE, the commercial

Internet (Transits), and peering traffic at the Seattle Internet Exchange (Seattle IX). The

numbers show the BCNET traffic load being exchanged between cities and their transits.

Figure 4. Real Time Network Usage by BCNET Members, Collected on June 5,
2012 [28].

3.3. BCNET Packet Capture

BCNET network is one of the most advanced, high-speed fiber-optic research

networks in the world. As the name suggests, it is a network in British Columbia (BC),

Canada that extends over 1,400 kilometers. It connects Calgary to Kamloops and

Kelowna, and extends through Vancouver to Prince George and Victoria. It offers up to

18

72 wavelengths of capacity at 10 Gbps. The network map of BCNET is shown in Figure

5.

Figure 5. BCNET, the British Columbia's Advanced Network.

BCNET is the hub of advanced telecommunication networks in British Columbia,

Canada that offers services to research and higher education institutions. This advanced

network offers unconstrained bandwidth to research and innovation centers making it

suitable to address the unique requirements of researchers [27]. It is used for

collaboration among researchers across institutions residing in British Columbia.

A physical overview map of the BCNET is shown in Figure 6. BCNET transits

have two service providers with 10 Gbps network links and one service provider with 1

Gbps network link. During the data collection from December 20, 2010 to December 22,

2010 two 10 Gbps transit service providers were Shaw Cable Systems and Telus

Advanced Communications and 1 Gbps transit service provider was Peer 1 Networks

Inc. These links are connected via two routers: BCNET Router 1 and BCNET Router 2.

They are placed in two separate physical rooms. Router 1 is connected via 10-Gig link

services while Router 2 connects both 10 Gbps and 1 Gbps providers. BCNET transit

19

exchange connects the participants and provides local peering and multi-homing

services to open and private data exchanges.

Figure 6. Physical Overview of the BCNET Packet Capture [27].

The optical Test Access Point (TAP) adjacent to BCNET routers in both

communication rooms shown in Figure 6 splits the signal into two distinct paths. The

signals splitting ratio from TAP may be modified. In the BCNET transit exchange, 30% of

the optical signal is directed to a Traffic Filtering Device while the remaining 70% is sent

to routers for processing.

The Data Capture Device (NinjaBox 5000) collects real-time data from the

BCNET Traffic Filtering Device, as shown in Figure 6. NinjaBox 5000 relies on the Linux

operating system to capture data at line rates using traditionally made network

monitoring. The NinjaBox 5000 comes preconfigured with Endace DAG monitoring

interface technology. Conventional capture systems cannot capture data at high rates

due to the overhead in processing the captured packets, which results in lost packets.

20

The Net Optics Director 7400 is the BCNET Traffic Filtering Device and is used

for traffic filtering. All three BCNET service provider links are connected to the device, as

shown in Figure 6. Captured data are filtered for a specific set of parameters by the

filtering device and then directed to the NinjaBox 5000. The filtering device operates as a

data-monitoring switch [29]. It directs traffic to monitoring tools such as NinjaBox 5000.

The Net Optics Director application diagram is shown in Figure 7.

Figure 7. Net Optics Director Application Diagram [29].

A data-monitoring switch (Director) provides access to traffic from network links.

It provides functionalities that include monitoring traffic from multiple links, regenerating

traffic to multiple tools, pre-filtering traffic to offload tools, and directing traffic according

to one-to-one and many-to-many port mappings. It assists organizations to use their

monitoring tools efficiently, to centralize traffic monitoring functions, and to share tools

and traffic access between groups [30].

The Endace Data Acquisition and Generation (DAG) 5.2X card, shown in Figure

8, resides inside the NinjaBox 5000. It captures and transmits traffic and has time-

stamping capability. Resolution of the Endace DAG time stamp is 10 ns. In contrast,

software-based captures such as Wireshark support only 1 μs resolution [31]. The fine

granularity of hardware-based captures ensures credibility, accuracy, and reliability of

21

measured BGP traffic and its subsequent analysis, characterization, and modeling [32],

[33].

Figure 8. ENDACE Card is used for Network Monitoring and Analysis [34].

Endace specializes in high-performance network monitoring and analysis. “DAG”

is a technology that combines hardware design using field programmable gate array

(FPGA) technology and software design based on a programmable chip [34]. It also

supports the Data Stream Manager (DSM) feature that allows discarding or routing

packets to a particular stream based on the packet contents, physical port, and the

output of load-balancing algorithms.

The DAG 5.2X card is a single-port Peripheral Component Interconnect

Extended (PCIx) card. The card provides capture and transmission of full duplex optical

10 Gbps Ethernet network data. It is capable of capturing, on average, Ethernet traffic of

6.9 Gbps.

22

4. Viewing the Collected Traffic

A tool was needed for tracking down networking problems and to learn more

about networking. For this purpose, Ethereal was released in July 1998. In 2006,

Ethereal emerged under a new name, Wireshark. It is one of the best publicly available

packet analyzers available today.

4.1. Wireshark – A Packet Analyzer

Wireshark is an open-source packet analyzer that captures network packet data

from a network interface and displays packets with detailed protocol information [31]. It is

a measuring tool used to examine the contents of a network cable. Wireshark provides

comprehensive statistics such as a summary of traffic collected, input/output graphs,

protocol hierarchy, and endpoints.

A view of the traffic collected using Wireshark is shown in Figure 9. It illustrates

the protocol structure for a randomly selected BGP update message, which contains

path attributes for the advertised Network Layer Reachability Information (NLRI). It

opens and saves captured packet data, imports and exports packet data from and to

other capture programs, filters and searches packets based on various criteria, colorizes

packet display based on filters, and creates various statistics.

Figure 9 illustrates frame number 298702 and the number of bytes captured on

this frame. As messages originate from multiple protocols, the frame shows Ethernet

protocol source and destination address, the source and destination addresses of IP,

source and destinations port numbers for TCP, and details of BGP. The update

message has a marker of 16 bytes and length of 74 bytes.

23

Figure 9. Wireshark View of the Traffic Collected.

Type 2 indicates that this message is an update message, type 1 indicates open

message, type 3 indicates notification message, and type 4 indicates keepalive

message. IGP is assigned to the origin attribute, AS_path attribute has a length of 17

bytes, next_hop is composed of 7 bytes, and NLRI has 8 bytes. The BGP messages and

their types are shown in Table 1.

Table 1. Different types of BGP messages.

Type Message

1 Open

2 Update

3 Notification

4 Keepalive

4.2. Analysis of BCNET Traffic Using Wireshark

The features defined below in this subsection are for the data collected from

December 20, 2010 to December 22, 2010.

4.2.1. BCNET Traffic Summary

A summary of BCNET traffic collected is shown in Figure 10. The timestamps

show when the first and the last packets were collected. There were 511,820 packets

collected over the period of 48 hours between December 20, 2010 and December 22,

24

2010. The figure illustrates the time when the first and the last packet were received, the

total time between the first and the last packet, the average number of packets captured,

and the total number of bytes captured. An example of summary statistics for a specific

filter for update and keepalive messages is shown in the displayed column.

Figure 10. Summary of BCNET Traffic Collected over a Period of 48 hours.

4.2.2. BCNET Traffic Input-Output Graphs

The traffic input-output graphs define up to five filters. The number of samples is

limited to 100,000. A sample graph for two filters bgp.type == 2 (update message) and

bgp.type == 4 (keepalive message) is shown in Figure 11.

The tick interval for x-axis may be chosen to be 0.001 s, 0.01 s, 0.1 s, 1 s, 10 s, 1

min or 10 min and the pixels/tick may be 1, 2, 5, or 10. In this figure the tick interval for

the x-axis: = 1 s and 5 pixels/tick. The unit for y-axis may be packets/tick, bytes/tick, or

bits/tick and the scale may be auto or logarithmic. We chose the y-axis: unit =

packets/tick and scale = 10.

25

Figure 11. Input-Output Graph of the Packets Captured. The x-axis: tick interval
= 1 s, 5 pixels/tick. The y-axis: unit = packets/tick, scale = 10.

4.2.3. BCNET Traffic Protocol Hierarchy

BCNET Traffic Protocol Hierarchy statistics of collected traffic are shown in

Table 2. Each entry (row) consists of the protocol’s name, the percentage of protocol

packets relative to total number of packets captured, the number of packets, and the

number of bytes. From 511,820 packets, 260,639 (50.9%) are BGP packets, 257,285

(50.3%) are TCP ACK packets, and 6,104 (1.2%) are piggyback ACKs. Packets

originate from multiple protocols. Therefore, a packet may be attributed to more than one

protocol. Protocol layers may consist of packets that do not contain any higher layer

protocol, and therefore, the sum of all higher layer packets may not add to the protocols

packet count. A single packet may be counted more than once if it is encapsulated by

multiple protocols.

Table 2. Protocol Hierarchy of the Packets Captured.

Protocol Packets% Packets Bytes

Ethernet/IP/TCP 100 511,820 98,292,937

BGP 50.92 260,639 79,628,747

26

4.2.4. BCNET Network Endpoints

BCNET network endpoints are the source and destination addresses of a

specified protocol layer. There were six BCNET transit exchanges (BGP peers) captured

in the data collection. The network endpoints for data collected in 48 hours between

December 20, 2010 and December 22, 2010 were 72.51.24.189, 72.51.24.190,

64.251.87.209, 64.251.87.210, 206.108.83.66, and 206.108.83.70. For each IP address

of a BGP peer, there were various TCP connection statistics such as the port number

and the number of packets transmitted and received, as shown in Table 3. The data is

exchanged between two addresses at a particular time and the number of bytes

transmitted at the source address is the same as the number of bytes received at the

destination address.

Table 3. Statistics of the Captured TCP Endpoints.

Address Port Packets Transmitted
Bytes

Received
Bytes

72.51.24.189 bgp 401,721 55,894,998 14,941,356

72.51.24.190 58268 401,721 14,941,356 55,894,998

64.251.87.209 bgp 70,069 12,426,684 2,569,605

64.251.87.210 62844 70,069 2,569,605 12,426,684

206.108.83.66 bgp 40,030 1,500,045 10,960,249

206.108.83.70 51899 40,030 10,960,249 1,500,045

4.2.5. BCNET Traffic Service Response Time

The traffic service response time is defined as the time between a request and

the corresponding response. The flow graph of the captured BGP peers traffic is shown

in Figure 12. It includes the source address, destination address, TCP port number, TCP

message (ACK), and type of the BGP message (open, update, notification or keepalive).

The flow graph shows the six BGP peers participating in the traffic exchange. At

time 0.000 s, an update message is sent from source address 72.51.24.189 to the

destination address 72.51.24.190 and the destination sends an acknowledgement back

to the source implying that it is ready for traffic exchange. An exchange of data happens

between only two BGP peers at a time. When the addresses 64.251.87.209 and

64.251.87.210 exchange data among themselves, there is no data exchanged between

72.51.24.189 and 72.51.24.190 or between 206.108.83.66 and 206.108.83.70. At 5.281

s, the destination address 72.51.24.190 sends a keepalive message to source address

27

72.51.24.189 to confirm that the link between the two is operating. When the destination

address receives the acknowledgement, it knows that the link is active and it resumes

the data exchange again.

Figure 12. Flow Graph of Collected Traffic. Shown are Time Stamps of
Correspondence Between BGP Peer Routers.

http://en.wikipedia.org/wiki/Data_link

28

5. BGP Attributes

A BGP attribute describes the characteristics of a particular prefix. They can be

either transitive or non-transitive. Some of the BGP attributes are mandatory, while

others are optional. The BGP and its attributes for the data collected from BCNET are

shown in Figure 13. The total path attribute length was 83 bytes in this particular packet

exchange. Some of the BGP attributes such as origin, AS_path, and next_hop are

shown. BGP characteristics of BCNET traffic are captured by applying Wireshark BGP

display filters in the InputOutput Graphs for the collected packets. Examples of display

filters are: bgp.type, bgp.next_hop, bgp.origin,bgp.local_pref, bgp.community_as,

bgp.as_path, and bgp.multi_exit_disc.

Figure 13. BGP Messages and their Path Attributes.

Clustering analysis and detection of anomalies are two important features that

may be used to improve network performance and the performance of the routing

protocols. The clustering analysis and anomalies are discussed in Sections 5.12 and

5.13 of this Chapter. Clustering analysis is a technique that identifies objects that have

similar properties or similar characteristics. It may be used for data analysis and is

29

considered a form of classification. There are many different types of clustering

technique that may be used for clustering objects. Clustering algorithms are broadly

classified into two types: hierarchical and non-hierarchical algorithms. Anomaly detection

refers to the problem of detecting patterns in data that do not match the expected

behavior. Anomalies may found in data due to malicious activity, network breakdown, or

system failure.

5.1. AS_Path

The AS_path attribute identifies the autonomous systems through which routing

information carried in the update message is passed. The AS_path is empty when the

first route is inserted in BGP. It describes the complete set of AS numbers passed in

order to reach any particular network. The AS_path includes numbers of all the

autonomous systems on the path between the source and the destination. It prevents

routing loops and applies policy decisions based on the presence of certain ASes. Each

AS path segment is represented by a triple tuple, which consists of <path segment type,

path segment length, and path segment value>. The AS_path attribute helps BGP to

determine the best path to route packets. There were three ASes recognized in the

BCNET traffic collection in the time period between December 20, 2010 and December

22, 2010 and those ASes were:

• AS 852 (Telus Advanced Communications)

• AS 6327 (Shaw Cable systems)

• AS 13768 (Peer 1 Networks Inc.).

An AS_path is a sequence of intermediate ASes between source and destination

routers that form a directed route for packets to travel. Neighboring ASes use BGP to

exchange update messages and to reach different AS prefixes. After each router makes

a new local decision based on the best route to a destination, it sends that route along

with distance metrics and path attributes to each of its peers. As the information travels

through the network, each router along the path prepends its unique AS number to a list

of ASes in the BGP message [35]. The network traffic for AS 852 and AS 13768 for a

time period of 48 hours is shown in Figure 14 and Figure 15, respectively.

30

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM
0

5

10

15

20

25

30

35

40

Time (h)

B
G

P
 A

S
 8

5
2

Figure 14. Network Traffic: AS 852.

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM Dec,22. 6:00PM
0

50

100

150

200

250

300

350

Time (h)

B
G

P
 A

S
 1

3
7
6

8

Figure 15. Network Traffic: AS 13768.

The mean of dataset is calculated as the sum of all the observed outcomes of the

sample divided by the total number of events. The mean of AS 13768 is 62.89. Median

is the middle score, defined as the average of the two middles if the number of outcomes

is even. It is 61 for AS 13768. The number with the highest frequency in an event is

called a mode. The mode of AS 13768 is 57 in the data collected between December 20

and December 22, 2010. The standard deviation illustrates how close the entire set of

data is to the average value. It is 17.03 for AS 13768. The range is 313. The total

 December 20 – December 22, 2011

 December 20 – December 22, 2011

31

number of packets is 512,672. The minimum and maximum values are 23 and 336,

respectively. The AS 13768 has 588 connections with other ASes, as shown in Figure

16. The network traffic for AS 852 is represented in Figure 16. It has 155 connections

with other ASes. The total number of packets is 511,820. The minimum and maximum

values are 79 and 645, respectively. The mean, median, and mode are 177.10, 172, and

162, respectively. The standard deviation and range are 35.69 and 566, respectively.

Figure 16. Number of Connections AS 13678 has with other ASes.

The network traffic for AS 6327 is shown in Figure 17. The total number of

packets is 30,653, and the minimum and the maximum values are 4 and 96,

respectively. The mean and mode are 10.61 and 10, respectively.

Dec,20. 12:00AMDec,20. 6:00PM Dec,21. 12:00AMDec,21. 6:00AM Dec,21. 12:00PMDec,21. 6:00PM Dec,22. 12:00AMDec,22. 6:00AM Dec,22. 12:00PM Dec,23. 12:00AM
0

10

20

30

40

50

60

70

80

90

100

Time (h)

B
G

P
 A

S
 6

3
2

7

Figure 17. Network Traffic: AS 6327.

Standard deviation is 17.03 and the range is 313. AS 6327 (Shaw cable systems)

has 683 connections with other ASes, as shown in Figure 18. The mean, median,

December 20 – December 22, 2011

32

standard deviation, and mode for AS 852, AS 6327, and AS 13678 were as expected.

We did not encounter any unexpected behavior.

Figure 18. Number of Connections for AS 6327 with other ASes.

5.2. Message Attribute

There are four types of BGP message attributes: open, update, keepalive, and

notification. 88% of the total messages were update messages and the remaining were

keepalive messages. Therefore, we discuss here update and keepalive messages only.

Update messages transfer routing information between BGP peers. The

information carried by the update packet may be used to construct a graph describing

the relationships between various ASes. An update message advertises a single feasible

route to a peer or withdraws multiple impossible routes from service. An update

message may simultaneously advertise a realistic route and withdraw multiple routes

from service. A total of 230,424 BGP update messages were identified between

December 20, 2010 and December 22, 2010. The statistics are shown in Table 4.

33

Table 4. Statistics for Update Messages.

Minimum 0 bits

Maximum 118 bits

Mean 11.7412 bits

Median 11 bits

Mode 10 bits

Standard deviation 7.1972 bits

Range 118 bits

A keepalive message is sent by one router to another to confirm that the link

between the two is operating and to prevent the link from being broken. If no reply is

received after a signal is sent, the link is assumed to be broken and future data is routed

via another path until the link is again available. The maximum time between two

keepalive messages should be one third of the hold time interval and they should not be

sent more frequently than one per second. When the BGP peer waits for the next

update message, it remains idle. Each BGP device maintains a hold timer to keep a

track of how long it has been on hold. The length of the hold timer is part of session

setup that is established using open messages. To ensure that the timer does not expire

when no update messages are sent for a long time, each peer periodically sends a

BGP keepalive message. Statistics for 30,462 keepalive messages are shown in Table

5. As expected, the keepalive messages comprise less than 12.5% of the total BGP

update messages.

Table 5. Statistics for Keepalive Messages.

Minimum 0 bits

Maximum 32 bits

Mean 0.2875 bits

Median 0 bits

Mode 0 bits

Standard deviation 1.4025 bits

Range 32 bits

5.3. Origin Attribute

The origin is a mandatory attribute that defines the origin of the path information.

Its value should not be changed by any other BGP speaker. The origin attribute may

assume one of three values: Interior Gateway Protocol (IGP), Exterior Gateway Protocol,

and Incomplete.

http://en.wikipedia.org/wiki/Data_link
http://en.wikipedia.org/wiki/Data_link

34

Interior Gateway Protocol (IGP) is a routing protocol used to exchange routing

information within an autonomous system. IGP is indicated by an “i” in the BGP table.

The network traffic for 210,414 IGP packets is shown in Figure 19.

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM Dec,22. 6:00PM
0

50

100

150

200

250

300

350

Time (h)

IG
P

 u
p

d
a

te
 m

e
s
s
a

g
e

Figure 19. Network Traffic: 210,414 IGP Packets were collected from December
20 to December 22, 2010.

The statistics for IGP packets in the time period between December 20, 2010

and December 22, 2010 are shown in Table 6. The IGP, EGP, and Incomplete account

for 85.82%, 0.003%, and 13.84%, of the total number of update messages, respectively.

Table 6. Statistics for IGP Packets.

Minimum 29 bits

Maximum 341 bits

Mean 72.8076 bits

Median 70 bits

Mode 66 bits

Standard Deviation 18.9766 bits

Range 312 bits

Exterior Gateway Protocol (EGP) is a routing protocol used to transport

information to other BGP-enabled systems in different autonomous systems. EGP is

indicated by an “e” in the BGP table. The total number of EGP packets is 822. The

network traffic is shown in Figure 20. The EGP became obsolete when the Internet

migrated from EGP to BGP [36]. The statistics for the EGP packets in the BGP traffic

collected are shown in Table 7.

December 20 – December 22, 2011

http://en.wikipedia.org/wiki/Routing_protocol
http://en.wikipedia.org/wiki/Autonomous_system_(Internet)
http://www.webopedia.com/TERM/P/protocol.html
http://www.webopedia.com/TERM/A/AS.html

35

Table 7. Statistics for EGP Packets.

Minimum 0 bits

Maximum 32 bits

Mean 0.2875 bits

Median 0 bits

Mode 0 bits

Standard Deviation 1.4025 bits

Range 32 bits

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM Dec,22. 6:00PM
0

5

10

15

20

25

30

35

Time (h)

E
G

P
 u

p
d

a
te

 m
e

s
s
a

g
e

Figure 20. Network Traffic: 822 EGP Packets were recognised in the time
period between December 20 and December 22, 2010.

When the network layer reachability information is learned by unfamiliar means

and the route is unknown the message is known as incomplete message. Incomplete is

indicated with “?” in the BGP table. Table 8 shows the statistics for incomplete packets.

There were 33,932 incomplete packets in this case and the network traffic is shown in

Figure 21.

Table 8. Statistics for Incomplete Packets.

Minimum 0 bits

Maximum 118 bits

Mean 11.7412 bits

Median 11 bits

Mode 10 bits

Standard Deviation 7.1972 bits

Range 118 bits

December 20 – December 22, 2011

36

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM Dec,22. 6:00PM
0

20

40

60

80

100

120

Time (h)

In
c
o

m
p

le
te

 u
p

d
a

te
 m

e
s
s
a

g
e

Figure 21. Network Traffic: 33,932 Incomplete Packets.

There were a total of 245,168 origin packets in the data collected over a period of

48 hours from December 20 to December 22, 2010. Out of the total number of origin

packets, 210,414 were IGP packets, 33,932 were incomplete packets, and 822 were

EGP packets, as shown in Figure 23.

Figure 22. Distribution of BGP Origin Attributes.

An example of a packet where origin attribute assumes value IGP and

incomplete values is shown in Figure 22. In this example, Router A reaches the address

170.10.20.1 through 300 i, where "300 i" means the next AS path is 300 and the origin of

the route is IGP. Router B also reaches the address 190.10.50.1 through i. This "i"

means that the entry is in the same AS and the origin is IGP [36]. Router C reaches

150.10.30.1 through 100 i and "100 i" means that the next AS is 100 and the origin is

 December 20 – December 22, 2011

37

IGP. Router C also reaches 190.10.0.0 through 100 ? and the "100 ?" means that the

next AS is 100 and that the origin is incomplete and comes from a fixed route.

Figure 23. An Example of Incomplete and IGP Origin Attribute [36].

The origin attribute is set when the route is first introduced to the BGP. If

information about an IP subnet is inserted using network command or via aggregation,

the origin attribute is set to IGP. IGP is a protocol for exchanging routing information

between hosts with routers within an AS. Figure 24 shows the distribution of the origin

path attributes (IGP, EGP, and incomplete).

Figure 24. The Graph Shows the Distribution of the Origin Attribute (IGP, EGP,
and INCOMPLETE).

http://searchcio-midmarket.techtarget.com/definition/host
http://searchnetworking.techtarget.com/definition/router

38

5.4. Next_Hop

The next_hop is another mandatory attribute that defines the router IP address

that should be used as the next hop to the destinations provided in the update message.

Generally, this attribute is chosen so that the shortest available path is taken. The

immediate next-hop address is determined by performing a recursive route lookup

operation for the IP address in the next_hop attribute. Recursive route lookup is the

second route lookup that is required in order to determine the exit path for traffic directed

towards the destination.

5.5. Multiple_Exit_Discriminator

The multiple_exit_discriminator is an optional attribute that is used on external

links to distinguish among multiple exit or entry points to the same neighboring

autonomous systems. A BGP speaker should implement a mechanism that allows the

attribute to be removed from a route. The absence of MED attribute implies that MED

value is zero.

5.6. Local_Preference

 The local_preference is a local attribute used in the route selection process. It is

included in all update messages that a BGP speaker sends to other internal neighbors.

A BGP speaker calculates the degree of preference for each external route based on the

locally-configured policy. It includes the degree of preference when advertising a route to

its internal peers. It defines the preferred route when multiple routes to the same

destination are available.

5.7. Atomic_Aggregate

When a BGP speaker aggregates several routes for the purpose of

advertisement to a particular peer, the AS_path of the aggregate route usually includes

an AS_set compiled from the set of ASes from which the aggregate was formed.

39

5.8. Aggregator

Aggregator is an optional transitive attribute that may be included in updates that

are formed by aggregation. It does not influence path selection and is used for

debugging purposes. This attribute contains the last AS number that formed the

aggregate route, followed by the IP address of the BGP speaker that formed this route.

5.9. TCP Round Trip Time

Round-trip time (RTT) is the length of the time that it takes for a signal to be sent

for an acknowledgment of that signal to be received. When a host transmits a TCP

packet to its peer, it should wait a certain time for an acknowledgment. If the reply does

not arrive within the expected period, the packet is assumed to have been lost and the

data are retransmitted. The time sufficient for a reply over an Ethernet cable should be

no more than a few microseconds. If the traffic flows over the wide-area Internet, a

second or two seconds are reasonable during peak utilization times. Network traffic for

Transmission Control Protocol RTT is shown in Figure 25.

Figure 25. Network Traffic: Transmission Control Protocol RTT.

RTT estimation is one of the most important performance parameters in a TCP

exchange, especially in the case of a large file transfer. All TCP implementations

eventually drop packets and retransmit them, no matter how good the quality of the link.

If the RTT estimate is too low, packets are retransmitted unnecessarily; if it is too high,

the connection may sit idle while the host waits for a timeout.

http://en.wikipedia.org/wiki/Time

40

The average RTT is approximately 11.7 ms. The RTT standard deviation is 7.19

ms and 2.75 ms for the sample and estimated RTT, respectively. Table 9 shows the

statistics for sample RTT while Table 10 shows statistics for estimated RTT.

Estimated RTT is a weighted average of the sample RTT values. It is calculated

as [37]:

EstimatedRTT = (1- α) · EstimatedRTT + α · SampleRTT.

The recommended value of α is 0.125.

Therefore, EstimatedRTT = 0.875 · EstimatedRTT + 0.125 · SampleRTT.

Table 9. Statistics for Sample TCP RTT.

Minimum (s) 0

Maximum (s) 118

Mean (s) 11.7412

Median (s) 11

Mode (s) 10

Standard Deviation (s) 7.1972

Range (s) 118

Table 10. Statistics for Estimated TCP RTT.

5.10. TCP Throughput

TCP considers two most important factors: TCP window size and the round trip

latency to transfer data. If the TCP window size and the round trip latency are known,

the maximum possible throughput of a data transfer between two hosts may be

calculated regardless of the bandwidth using the expression:

TCP-Window-Size-in-bits / Latency-in-seconds = Bits-per-second throughput.

Minimum (s) 4.9433

Maximum (s) 28.6384

Mean (s) 11.7506

Median (s) 11.3748

Mode (s) 4.9433

Standard Deviation (s) 2.7528

Range (s) 23.6951

41

Instantaneous throughput is the rate (bps) at which a host receives the packets.

If the packets consist of F bits and the transfer takes T seconds for the host to receive all

F bits, then the average throughput of the packets transfer is F/T bps. The TCP

throughput graph shown in Figure 26 illustrates that the average throughput of the

collected data is 177.1 packets/min and that the maximum throughput is 645

packets/min. Various factors such as link speed, propagation delay, window size, link

reliability, or congestion of network and intermediate devices affect the throughput of

TCP.

TCP is a connection-oriented service that guarantees reliable, in-order delivery of

data. TCP has two mechanisms: flow control mechanism and congestion-control

mechanism. The flow-control mechanism ensures that a sender does not overrun the

buffer at the receiver, while its congestion-control mechanism tries to prevent too much

data from being injected into the network. While the size of the flow-control window is

static, the size of the congestion window evolves over time according to the status of the

network [38].

Dec,20. 12:00PM Dec,20. 6:00PM Dec,21. 12:00AM Dec,21. 6:00AM Dec,21. 12:00PM Dec,21. 6:00PM Dec,22. 12:00AM Dec,22. 6:00AM Dec,22. 12:00PM Dec,23. 12:00AM
0

100

200

300

400

500

600

700

Time (h)

T
C

P
 t

h
ro

u
g

h
p

u
t

Figure 26. TCP Throughput of the BCNET Traffic Collected from December 20
to December 22, 2010 had an Average of 177.1 packet/min.

The TCP congestion mechanism controls its packet transmission rate by

changing the window size in response to network congestion. A TCP sender additively

increases its rate when it identifies that the end-to-end path is congestion-free. It

multiplicatively decreases its rate when it detects that the path is congested. TCP

congestion control is also referred as additive-increase, multiplicative-decrease (AIMD)

algorithm because of its additive and multiplicative nature [39].

December 20 – December 22, 2011

42

The four phases of congestion control algorithms are slow start, congestion

avoidance, fast retransmit, and fast recovery, as shown in Figure 27. Congestion control

algorithms use two TCP variables, the congestion window size (cwnd) and the receiver’s

advertised window (rwnd). These variables control the amount of data that may be

transmitted in the network.

The slow start threshold (ssthresh) determines when to use the slow start or

congestion avoidance algorithm. After the three-way handshake is complete, the cwnd is

equal to initial window (IW).

 IW = min (4 × SMSS, max (2 × SMSS, 4380 bytes)).

where SMSS is sender maximum segment size.

A TCP sender triggers fast retransmit and fast recovery algorithms when it

detects three duplicate ACKs that indicate congestion. In fast retransmit, a TCP sender

retransmits data without waiting for the retransmission timeout (RTO) timer to expire and

ssthresh is assigned a new value as:

ssthresh = cwnd/2.

In fast recovery, a TCP sender adjusts the cwnd for all segments buffered by a TCP

receiver:

 cwnd = ssthresh + 3 × SMSS.

During RTO period, the ssthresh value is set to:

 ssthresh = max (flightsize / 2, 2 × SMSS).

where flightsize is the size of outstanding data in the network.

43

cwnd 2 x ssthresh

cwnd = cwnd + SMSS

cwnd

ssthresh1

cwnd

ssthresh1

ssthresh1

ssthresh2

C
o

n
g

e
s
ti
o

n
 w

in
d
o

w
 s

iz
e

ssthresh = max (flightsize, 2 x SMSS)

cwnd = ssthresh + 3 x SMSS

SS CA CA SSRTO

Time

RTO: retransmission time-out

SMSS: sender maximum segment size

flightsize: total outstanding data in the network

SS: slow start

CA: congestion avoidance

FR: fast retransmit and fast recovery

FR





Figure 27. TCP Congestion Control Algorithms. The Congestion Window Size
is Determined by the Congestion Control Algorithm and the
Mechanism Used to Indicate Congestion.

5.11. TCP Window Size

The amount of data that a host may accept without the acknowledgement from

the sender is known as the TCP window size. If the sender has not received an

acknowledgement for the first packet it sent, it will stop and wait; if this wait exceeds a

certain time limit, it may even retransmit. This is how TCP achieves reliable data

transmission. TCP transmits data up to the window size before waiting for the

acknowledgements. However, the full bandwidth of the network may not always get

used. The TCP window size for 200 samples of data from December 20, 2010 to

December 22, 2010 is shown in Figure 28.

http://en.wikipedia.org/wiki/Data_(computing)
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Packet_(information_technology)
http://en.wikipedia.org/wiki/Retransmission_(data_networks)
http://en.wikipedia.org/wiki/Data_transmission
http://en.wikipedia.org/wiki/Data_transmission

44

Dec,20. 12:00PM Dec,21. 12:00AM Dec,21. 12:00PM Dec,22. 12:00AM Dec,22. 12:00PM Dec,23. 06:00PM
0

100

200

300

400

500

600

700

Time (h)

T
C

P
 w

in
d

o
w

 s
iz

e

Figure 28. TCP Window Size of the BCNET Traffic for 200 Samples.

5.12. Anomalies

The BGP update message may contain anomalies. It is important to detect and

eliminate these anomalies. They may arise both as a result of errors by network

operators or malicious attacks. Such incidents include routing loops, policy violations,

and incorrect export of routes between neighboring ASes, origin violations and address

space hijacks, false announcements claiming non-existent connectivity, or private AS

announcements. Anomalies may be either path anomalies or announcement anomalies.

The unexpected events that occur in AS path attribute are called path anomalies, while

the anomalies that occur in update or withdrawal message are called announcement

anomalies. There are various methods to detect anomalies. Any suspicious activity may

be categorized as an anomaly.

The selected attributes in the data collected on December 20, 2011 were

categorized into volume attributes and AS path attributes. 65% of the selected attributes

were volume attributes. Hence, they were more relevant to the anomaly class than the

AS-path attributes, which confirmed the enormous effect of BGP anomalies on the

volume of the BGP announcements. The prolonged spikes in the number of BGP update

messages are due to the routing instability and affect the inter-domain routing. Self-

similarity and long-range dependence have been observed and estimated in various

types of network data traffic such as LAN, WAN, and WWW. BGP routing updates also

exhibit self-similarity when compared to traditional data traffic. Forwarding instable

 December 20 – December 22, 2011

45

routes may cause packet losses and delays in the routing convergence. Hence,

detecting anomalies is an important aspect of BGP update messages.

Detecting anomalous BGP-route advertisements is essential for improving the

security and robustness of the Internet’s inter-domain-routing system [40]. Anomalies

such as Slammer [41], Nimda [42], and Code Red I [43] affect performance of the

Internet Border Gateway Protocol (BGP). Statistical and machine-learning techniques

may be used to classify and detect BGP anomalies [44], [45]. Detection of anomalies

may further be used for classification.

5.13. Clusters

In the telecommunication industry, clustering techniques may be used to identify

traffic patterns, detect fraudulent activities, and discover users’ mobility patterns.

Clustering analysis is used to determine hidden patterns and relationships in data sets.

Clustering is defined as the task of assigning a set of objects to groups called clusters so

that the objects in the same cluster are more similar (in one way or the other) to each

other than to objects in the other clusters. The different types of clustering techniques

are hierarchical clustering, k-means clustering, and DBSCAN.

We recognized three clusters in the data collected between December 20, 2010

and December 22, 2010. The three clusters of ASes correspond to the three BCNET

transit service providers Telus Advanced Communications (AS 852), Shaw

Communications (AS 6327), and Peer 1 Network Inc. (AS 13768).

The Cooperative Association for Internet Data Analysis (CAIDA) [46] searches

hands-on and educational features of the Internet to examine the Internet infrastructure,

performance, usage, and its growth. It encourages an environment in which data can be

obtained, analyzed, and shared to improve the Internet. The figure is generated using

CAIDA [47] tools. The Walrus 3D hyperbolic display [48] of the BCNET AS topology is

shown in Figure 29. Clusters consist of 683, 588, and 155 AS nodes, respectively, as

shown in the figure.

46

Figure 29. Walrus AS Topology Graph of the Collected BCNET Traffic. The
Clusters Correspond to AS 852 (Telus), AS 6327 (Shaw), and AS
13678 (Peer 1 Networks).

The graph consists of 982 nodes, 981 tree-links, and 441 non tree-links. It is

created using the value of the BGP AS path attribute in BGP update messages. The AS

path attribute is generated by the Best Path Selection algorithm and contains a list of

ASes. The graph links reflect a policy relationship between BCNET transit providers and

do not necessarily indicate the actual data traffic flow.

47

6. BGP Update Attributes

We extracted from the BGP update messages several attributes described in this

section. We used a C# code (in Appendix A and B) to preprocess the readable Multi-

threaded Routing Toolkit (MRT) files. Internet Engineering Task Force (IETF) designed

the MRT file format to export routing protocol messages, state changes, and routing

information base contents. We extracted numerical attributes from BGP traffic and used

MATLAB (Appendix C) to generate various graphs.

 The C# code performed the basic function of parsing the attributes from the BGP

update messages. It separated the update messages received from various peers into

different datasets and then parsed these datasets to obtain the attributes. The attributes

were computed for one-minute intervals within 24-hour time period.

We chose data collected on October 2, November 2, and December 2, 2011 and

compared different attributes to emphasize data extraction and data collection. The

number of announcements and withdrawals exchanged by neighboring peers were an

important feature that occurred during instability periods. The attributes were categorized

as volume (number of BGP announcements) and AS-path (maximum edit distance)

attributes. The extracted BGP update message attributes are shown in Table 11.The

extracted attributes are categorized into two: volume (number of BGP announcements)

and AS-path (maximum edit distance) attributes. There were 37 attributes extracted.

However, we considered only first 14 attributes. Since the attributes 14 to 33 were

calculated using the most frequent values for the maximum edit distance and the

maximum AS path length. These values may be used in detecting worms. A number of

EGP packets may be present in the case of worms in the traffic traces. Since there were

no worms detected on October 2, 2011, November 2, 2011, and December 2, 2011,

there were no EGP packets detected.

48

Table 11. Extracted BGP Update Message Attributes.

Attribute Definition Category

1 Number of announcements volume

2 Number of withdrawals volume

3 Number of announced NLRI prefixes volume

4 Number of withdrawn NLRI prefixes volume

5 Average AS path length AS-path

6 Maximum AS path length AS-path

7 Average unique AS path length AS-path

8 Number of duplicate announcements volume

9 Number of duplicate withdrawals Volume

10 Number of implicit withdrawals Volume

11 Average edit distance AS-path

12 Maximum edit distance AS-path

13 Inter-arrival time volume

14-24 Maximum edit distance=n (7,...17) AS-path

24-33 Maximum AS path length=n (7,...16) AS-path

34 Number of IGP packets volume

35 Number of EGP packets volume

36 Number of incomplete packets volume

37 Packet size volume

A sample of data captured on October 2, 2011 using Wireshark is shown in

Figure 30. Details of various fields are shown, such as the frame number 81109, the

frame length 775 bytes, and its arrival time on October 2, 2011 18:18:48.729369000

Pacific Daylight Time. The protocols shown in this particular frame are Ethernet, 802.1Q

Virtual Local Area Network (VLAN), IP, TCP, and BGP. The source and destination for

Ethernet protocol are Cisco and Juniper routers, respectively. The IP source address is

216.6.50.9 and IP destination address is 216.6.50.10. The source port and destination

port of TCP are BGP (I79) and 53209, respectively. In this case, the BGP message is an

update message and has a marker of 16 bytes and length of 82 bytes. The path

attributes are: Origin is IGP, AS_path is 6453 3356 11666 (17 bytes), Next_hop is

216.6.50.9, and NLRI size is of 12 bytes.

The details for one of the IP packets are shown in Figure 31. The first line shows

the source and the destination addresses of the IPv4 packet. Time to live (TTL) is an 8-

bit field. In the IPv4 header, TTL is the 9th octet of 20 and in the IPv6 header, it is the 8th

octet of 40. The maximum value of a TTL field may be 255, which is the maximum value

of a single octet. In this particular case, TTL=1.

http://en.wikipedia.org/wiki/IPv4_header
http://en.wikipedia.org/wiki/Octet_(computing)
http://en.wikipedia.org/wiki/IPv6_header

49

Figure 30. A Sample of Data Collected Using Wireshark.

Figure 31. Details of an Internet Protocol Packet.

50

6.1. Number of Announcements

BGP announcements are the number of routes that are available for delivery of

data from source to the destination. A set of path attributes should be described for

number of BGP announcements. BGP update messages are sent to every BGP router

for which a session has been established having a BGP announcement or a BGP

withdrawal. If, according to the route attributes, the received route is better than the

current route, the received route replaces the existing route for the same destination in

the FIB. Otherwise, the received route is only added to the RIB. The number of

announcements on October 2, 2011 shown in Figure 32 is below 20. The minimum and

maximum values were 1 and 16, respectively. The mean of announcements on October

2, 2011 was 4.72 packets.

0 500 1000 1500
0

10

20

30

40

50

60

October 2, 2011

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

m
e

n
ts

Time (s)

Figure 32. Number of Announcements on October 2, 2011.

The number of announcements on November 2, 2011 had a range of 51 packets

as illustrated in Figure 33. The mean of announcements was 3.84 packets over the 24-

hour period. The number of announcements had a range of only 15 packets compared

to the range of 51 packets on November 2, 2011. However, the mean in the first case is

greater than the mean of announcements of November 2, 2011.

http://www.tcpipguide.com/free/t_BGPPathAttributesandAlgorithmOverview.htm

51

0 500 1000 1500
0

10

20

30

40

50

60

November 2, 2011

Time (s)

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

m
e

n
ts

Figure 33. Number of Announcements on November 2, 2011.

The mean of announcements on December 2, 2011 and on October 2, 2011 are

comparable. The statistics of number of announcements on October 2, 2011, November

2, 2011, and December 2, 2011 is shown in Table 12. However, the standard deviation

on November 2, 2011 and December 2, 2011 are comparable. The range varies from 16

to 51 packets on the three chosen dates.

0 500 1000 1500
0

10

20

30

40

50

60

December 2, 2011

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

m
e

n
ts

Time (s)

Figure 34. Number of Announcements on December 2, 2011.

52

Table 12. Statistics for Number of Announcements.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 1 0 0

Maximum 16 51 34

Mean 4.72 3.84 4.36

Median 4 3 4

Mode 4 1 4

Standard Deviation 1.88 3.56 3.41

Range 15 51 34

6.2. Number of Withdrawals

 The number of routes that are no longer reachable are called the number of

BGP withdrawals. An update message may advertise only one route but several routes

may be withdrawn. A BGP withdrawal requires simply the address of the network for

which the route is being removed. The route is withdrawn from the RIB and if it is in the

FIB, the route is removed and the route-selection algorithm chooses a new best route to

that destination from the routes available in the RIB. NLRIs that have the same BGP

attributes are encapsulated and sent to the BGP routers in one BGP packet [45]. Hence,

one BGP packet may contain more than one announced or withdrawal NLRI prefix.

We notice a very small mean of only 1.11 packets in the number of withdrawals

on October 2, 2011 throughout the 24-hour period, as shown in Figure 35. The number

of withdrawals is related to the number of announcements. There were a few

announcements on October 2, 2011. Hence, there were few withdrawals in the same

time period. On November 2, 2011, the maximum value of withdrawals was 50 packets,

as shown in Figure 36.

53

0 500 1000 1500
0

10

20

30

40

50

60

October 2, 2011

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
a

ls

Time (s)

Figure 35. Number of Withdrawals on October 2, 2011.

0 500 1000 1500
0

10

20

30

40

50

60

November 2, 2011

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
a

ls

Time (s)

Figure 36. Number of Withdrawals on November 2, 2011.

 The number of withdrawals on December 2, 2011 is shown in Figure 37. The

mean of the number of announcements on November 2, 2011 and December 2, 2011

were approximately equal and the mean on October 2, 2011 was very small. This

implies that a larger number of update messages was exchanged on November 2, 2011

and December 2, 2011 compared to October 2, 2011. The statistics for number of

withdrawals on the three chosen dates is shown in Table 13.

54

0 500 1000 1500
0

10

20

30

40

50

60

December 2, 2011

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
a

ls

Time (s)

Figure 37. Number of Withdrawals on December 2, 2011.

Table 13. Statistics for Number of Withdrawals.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 1

Maximum 4 50 26

Mean 1.11 8.23 8.74

Median 1 8 8

Mode 2 8 8

Standard Deviation 0.88 3.54 3.16

Range 4 50 25

6.3. Number of Announced Prefixes

BGP announces an IP prefix if a matching entry is found in the IP routing table.

The number of announced prefixes on October 2, 2011 is shown Figure 38. To advertise

a classless prefix, the prefix and the mask in the BGP routing process need to be

configured. The number of announced prefixes represents the number of update

Network Layer Reachability Information (NLRIs). The number of announced prefixes on

November 2, 2011 is shown in Figure 39.

55

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

October 2, 2011

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

d
 p

re
fi
x
e

s

Time (s)

Figure 38. Number of Announced Prefixes on October 2, 2011.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

November 2, 2011

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

d
 p

re
fi
x
e

s

Time (s)

Figure 39. Number of Announced Prefixes on November 2, 2011.

 The mean of announced prefixes was highest on October 2, 2011 when

compared to mean of announced prefixes on November 2, 2011 and December 2, 2011.

The number of announced prefixes on December is shown in Figure 40. The statistics

for announced prefixes on the three chosen dates is shown in Table 14. The mean,

median, mode, and standard deviation in all the three cases are distinct and are not

comparable.

56

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

December 2, 2011

N
u

m
b

e
r

o
f
a

n
n

o
u

n
c
e

d
 p

re
fi
x
e

s

Time (s)

Figure 40. Number of Announced Prefixes on December 2, 2011.

Table 14. Statistics for Number of Announced Prefixes.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 1 0 1

Maximum 1051 1233 26

Mean 37.82 20.72 8.74

Median 1 5 8

Mode 2 1 8

Standard Deviation 5.14 3.54 3.16

Range 1050 1233 25

6.4. Number of Withdrawn Prefixes

The number of prefixes that have been withdrawn over a period of time is known

as the number of withdrawn prefixes. Additional information such as associated path

attributes (AS Path) is not necessary for the routes being withdrawn. The number of

withdrawn prefixes on October 2, 2011 is shown in Figure 41. The number of withdrawn

prefixes on November 2, 2011 had a range of 1,335 as illustrated in Figure 42. A peak of

1,335 withdrawn prefixes was noticed on November 2, 2011, which was unusual.

57

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

October 2, 2011

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
n

 p
re

fi
x
e

s

Time (s)

Figure 41. Number of Withdrawn Prefixes on October 2, 2011.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

November 2, 2011

Time (s)

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
n

 p
re

fi
x
e

s

Figure 42. Number of Withdrawn Prefixes on November 2, 2011.

The number of withdrawn prefixes on December 2, 2011 is shown in Figure 43.

The mean value of the number of withdrawn prefixes during this 24-hour period was

31.24 packets. Due to a short time interval of 24 hours, we were not able to detect any

anomalies in this case. The mean of withdrawn prefixes on November 2, 2011 and

December 2, 2011 are close to each other and therefore, are comparable. The mean of

withdrawn prefixes on October 2, 2011 is very low. The statistics for withdrawn prefixes

is shown in Table 15.

58

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

December 2, 2011

N
u

m
b

e
r

o
f
w

it
h

d
ra

w
n

 p
re

fi
x
e

s

Time (s)

Figure 43. Number of Withdrawn Prefixes on December 2, 2011.

Table 15. Statistics for Withdrawn Prefixes.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 2

Maximum 74 1335 571

Mean 5.93 28.35 31.24

Range 74 1335 569

6.5. Average AS Path

The average AS path is the average number of AS peers in the AS_path attribute of

the BGP message. It is calculated from the packet flow and a unique pair of ASes to

calculate the correlation between data flow and AS path length [49], [50]. The average

AS path length is one of the factors that can be used to measure the interconnectedness

of networks across the global Internet. The average AS path on October 2, 2011 and

November 2, 2011 are shown in Figure 44 and Figure 45, respectively.

.

59

0 500 1000 1500
2

4

6

8

10

12

14

16

18

October 2, 2011

A
v
e

ra
g

e
 A

S
 p

a
th

Time (s)

Figure 44. Average AS Path on October 2, 2011.

0 500 1000 1500
2

4

6

8

10

12

14

16

18

November 2, 2011

A
v
e

ra
g

e
 A

S
 p

a
th

Time (s)

Figure 45. Average AS Path on November 2, 2011.

Average AS path had a range of 15 packets, as shown in Figure 46. The AS path

length had a maximum value on December 2, 2011 and this may be due to the

unavailability of shorter stable paths which should be preferred under normal

circumstances. The statistics for average AS path on October 2, 2011, November 2,

2011, and December 2, 2011 are shown in Table 16.

60

0 500 1000 1500
2

4

6

8

10

12

14

16

18

December 2, 2011

A
v
e

ra
g

e
 A

S
 p

a
th

Time (s)

Figure 46. Average AS Path on December 2, 2011.

Table 16. Statistics for Average AS Path.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 3 2 2

Maximum 9 15 17

Mean 5.93 28.35 31.24

Range 6 13 15

6.6. Maximum AS Path

The maximum number of AS peers during a one minute interval of BGP update

messages is known as the maximum AS path. The BGP maximum AS (maxas-limit)

length router configuration command is used to limit the maximum length of AS path. It

reduces the impact of oversized AS-path attributes to the operation of a network. It had a

range of 16 packets, as shown in Figure 47.

The mean of the maximum AS path in this particular case is 5.63 packets which

is comparatively low compared to the mean of maximum AS path on October 2, 2011.

The greater length of the AS_path attribute implies that the packet is routed via a longer

path to the destination, which causes the observed long routing delays during BGP

61

anomalies [34]. The maximum value of maximum AS path on November 2, 2011 is

shown in Figure 48.

0 500 1000 1500
0

5

10

15

20

25

30

October 2, 2011

Time (s)

M
a

x
im

u
m

 A
S

 p
a

th

Figure 47. Maximum AS Path on October 2, 2011.

0 500 1000 1500
0

5

10

15

20

25

30

November 2, 2011

 Time (s)

M
a

x
im

u
m

 A
S

 p
a

th

Figure 48. Maximum AS Path on November 2, 2011.

The maximum AS path had maximum value of 26 packets on December 2, 2011,

as shown in Figure 49. The mean in this case was 6.11 packets, which is close to mean

of the maximum AS path on October 2, 2011. The statistics for maximum AS path on

October 2, 2011, November 2, 2011, and December 2, 2011 are shown in Table 17.

62

0 500 1000 1500
0

5

10

15

20

25

30

December 2, 2011

M
a

x
im

u
m

 A
S

 p
a

th

Time (s)

Figure 49. Maximum AS Path on December 2, 2011.

Table 17. Statistics for Maximum AS Path.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 1 0 0

Maximum 17 23 26

Mean 6.49 5.63 6.11

Median 7 5 5

Mode 7 4 4

Standard Deviation 2.07 3.62 3.74

Range 16 23 26

6.7. Average Unique AS Path

The average unique AS path is the same as the average AS path length except

that it considers the unique AS-path attributes during a one-minute period. The minimum

and maximum values of average unique AS path on October 2, 2011 are shown in

Figure 50. The average unique AS paths on November 2, 2011 is shown in Figure 51.

63

0 500 1000 1500

2

4

6

8

10

12

14

16

18

October 2, 2011

Time (s)

A
v
e

ra
g

e
 u

n
iq

u
e

 A
S

 p
a

th

Figure 50. Average Unique AS Path on October 2, 2011.

.

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

November 2, 2011

A
v
e

ra
g

e
 u

n
iq

u
e

 A
S

 p
a

th

Time (s)

Figure 51. Average Unique AS Path on November 2, 2011.

The maximum values of unique AS path on November 2, 2011 and December 2,

2011 are comparable whereas, the maximum value of unique AS path is much lower.

The graph depicting maximum and minimum values of unique AS paths is shown in

Figure 52. The statistics of average unique AS path on the three selected dates is shown

in Table 18.

64

0 500 1000 1500
0

2

4

6

8

10

12

14

16

18

December 2, 2011

A
v
e

ra
g

e
 u

n
iq

u
e

 A
S

 p
a

th

Time (s)

Figure 52. Average Unique AS Path on December 2, 2011.

Table 18. Statistics for Average Unique AS Path.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 1 1 1

Maximum 8 15 17

Range 7 14 16

6.8. Duplicate BGP Announcements

A duplicate BGP announcement is an announcement that is identical to the last

seen announcement for the same NLRI prefix and there is no change in either the AS-

path or in any of the transitive route attributes. The duplicate announcements or

withdrawals are responsible for the majority of router processing loads during their

busiest times [51]. The duplicate BGP announcements on October 2, 2011 are shown in

Figure 53. The mean of duplicate BGP announcements was 23.48 packets in this case,

which is much lower than the mean of duplicate BGP announcements on November 2,

2011.

The minimum and maximum values of duplicate BGP announcements on

November 2, 2011 are shown in Figure 54. The mean of duplicate BGP announcements

65

in this particular case was 38.35 packets. On November 2, 2011 a maximum of 1,524

duplicate BGP announcements were noticed, this was unexpected compared to the

duplicate BGP announcements throughout the 24-hour period. This may be due to link

failures or routes that are no longer available.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

October 2, 2011

D
u

p
lic

a
te

 B
G

P
 a

n
n

o
u

n
c
e

m
e

n
ts

Time (s)

Figure 53. Duplicate BGP Announcements on October 2, 2011.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

November 2, 2011

D
u

p
lic

a
te

 B
G

P
 a

n
n

o
u

n
c
e

m
e

n
ts

Time (s)

Figure 54. Duplicate BGP Announcements on November 2, 2011.

The maximum value on December 2, 2011 was 828 packets, which is much

lower than the maximum values on October 2, 2011 and November 2, 2011, as shown in

Figure 55. The mean in this particular case was 25.58 packets which is low compared to

66

the mean on November 2, 2011 but close to mean on October 2, 2011. Table 19 shows

the statistics for duplicate BGP announcements on the three chosen dates.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

December 2, 2011

Time (s)

D
u

p
lic

a
te

 B
G

P
 a

n
n

o
u

n
c
e

m
e

n
ts

Figure 55. Duplicate BGP Announcements on December 2, 2011.

Table 19. Statistics for Duplicate BGP Announcements.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 0

Maximum 1497 1524 828

Mean 23.48 38.35 25.58

Median 6 31 10

Mode 1 2 5

Standard Deviation 82.91 56.6 61.24

Range 1497 1524 828

6.9. Implicit Withdrawals

The number of times that a prefix has been withdrawn and re-advertised is called

implicit withdrawal. This number is smaller than the total number of prefixes sent in that

particular case. A BGP update message that re-announces a previously announced

prefix with a different AS_path is considered to have implicitly withdrawn the earlier path

[22]. The maximum value of implicit withdrawals on October 2, 2011 was 522 packets,

as shown in Figure 56.

67

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

October 2, 2011

Time (s)

Im
p

lic
it
 w

it
h

d
ra

w
a

ls

Figure 56. Implicit Withdrawals on October 2, 2011.

The implicit withdrawals had a maximum value of 1,542 packets on November 2,

2011, as shown in Figure 57. The mean of implicit withdrawals in this case was 8.49

packets, which is very high compared to the mean of implicit withdrawals on October 2,

2011.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

November 2, 2011

Im
p

lic
it
 w

it
h

d
ra

w
a

ls

Time (s)

Figure 57. Implicit Withdrawals on November 2, 2011.

The maximum value of implicit withdrawals on December 2, 2011 was 925

packets, as shown in Figure 58, which was very low compared to the maximum value on

November 2, 2011. The statistics of implicit withdrawals on the three chosen dates are

shown in Table 20. The mean of implicit withdrawals on November 2, 2011 and

68

December 2, 2011 are closer to each other than the mean of implicit withdrawals on

October 2, 2011.

0 500 1000 1500
0

200

400

600

800

1000

1200

1400

1600

December 2, 2011

Im
p

lic
it
 w

it
h

d
ra

w
a

ls

Time (s)

Figure 58. Implicit Withdrawals on December 2, 2011.

Table 20. Statistics for Implicit Withdrawals.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 1

Maximum 522 1542 925

Mean 5.6 8.49 10.49

Standard Deviation 18.89 23.62 56.47

Range 522 1542 924

6.10. Duplicate BGP Withdrawals

A BGP withdrawal for a prefix sent by a router is a “duplicate” if all the attributes

in the withdrawal are the same as the most recent previous withdrawal for prefix sent by

router and both the update and the previous update belong to the same BGP session.

The maximum value of duplicate BGP withdrawal on October 2, 2011 was 74 packets,

as shown in Figure 59. The mean of the number of withdrawals on October 2, 2011 was

very low. Hence, the mean of the duplicate BGP withdrawals is also very low.

69

0 500 1000 1500
0

500

1000

1500

2000

2500

October 2, 2011

D
u

p
lic

a
te

 B
G

P
 w

it
h

d
ra

w
a

ls

Time (s)

Figure 59. Duplicate BGP Withdrawals on October 2, 2011.

The duplicate BGP withdrawals had a maximum value of 1,701 packets on

November 2, 2011, as shown in Figure 60, which is very high compared to the maximum

value of duplicate BGP withdrawals on October 2, 2011. The duplicate BGP withdrawals

on December 2, 2011 are shown in Figure 61.

0 500 1000 1500
0

500

1000

1500

2000

2500

November 2, 2011

D
u

p
lic

a
te

 B
G

P
 w

it
h

d
ra

w
a

ls

Time (s)

Figure 60. Duplicate BGP Withdrawals on November 2, 2011.

70

0 500 1000 1500
0

500

1000

1500

2000

2500

December 2, 2011

D
u

p
lic

a
te

 B
G

P
 w

th
d

ra
w

a
ls

Time (s)

Figure 61. Duplicate BGP Withdrawals on December 2, 2011.

The mean of duplicate BGP withdrawals on October 2, 2011 is very low as

compared to the mean on November 2, 2011 and December 2, 2011, which implies that

there were very few duplicate BGP withdrawals found on October 2, 2011. The mean of

duplicate BGP withdrawals is largest on December 2, 2011, which shows that additional

duplicate BGP withdrawals were detected during this 24-hour period. Table 21 shows

the statistics for duplicate BGP withdrawals on October 2, 2011, November 2, 2011, and

December 2, 2011.

Table 21. Statistics for Duplicate BGP Withdrawals.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 2

Maximum 74 1701 2145

Mean 5.14 39.49 49.45

Median 2 25 30

Standard Deviation 8.26 69.53 100.4

Range 74 1701 2143

6.11. Maximum AS Path Edit Distance

The edit distance between two AS path attributes is defined as the minimum

number of insertions, deletions, and substitutions that need to be executed to match the

71

attributes. The value of the edit distance feature was extracted by computing the edit

distance among the AS path attributes at each time interval [52]. The maximum value of

maximum AS path edit distance on October 2, 2011 was 11 packets, as shown in Figure

62.

0 500 1000 1500
0

2

4

6

8

10

12

October 2, 2011

M
a

x
im

u
m

 e
d

it
 d

is
ta

n
c
e

Time (s)

Figure 62. Maximum AS Path Edit Distance on October 2, 2011.

 The maximum values of maximum AS path edit distance on November 2, 2011

and December 2, 2011 were 11 packets, as shown in Figure 63 and Figure 64. The

mean of the maximum AS path edit distance on the three dates was very close to each

other. The maximum value was the same in these three cases. The statistics for

maximum AS path edit distance on October 2, 2011, November 2, 2011, and December

2, 2011 are shown in Table 22.

Table 22. Statistics for Maximum AS Path Edit Distance.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 0 0 0

Maximum 11 11 11

Mean 3.25 2.82 3.08

Median 3 4 4

Standard Deviation 1.53 2.34 2.25

Range 11 11 924

72

0 500 1000 1500
0

2

4

6

8

10

12

November 2, 2011

M
a

x
im

u
m

 e
d

it
 d

is
ta

n
c
e

Time (s)

Figure 63. Maximum AS Path Edit Distance on November 2, 2011.

0 500 1000 1500
0

2

4

6

8

10

12

December 2, 2011

M
a

x
im

u
m

 e
d

it
 d

is
ta

n
c
e

Time (s)

Figure 64. Maximum AS Path Edit Distance on December 2, 2011.

6.12. Average AS Path Edit Distance

The value of edit distance attribute was extracted by computing the edit distance

among the AS path attributes during a one-minute time interval [32]. The Levenshtein

distance is used for measuring the difference between two sequences. The term ‘edit

distance’ is often used to refer particularly to Levenshtein distance [53], [54]. For

http://en.wikipedia.org/wiki/String_metric
http://en.wikipedia.org/wiki/Edit_distance
http://en.wikipedia.org/wiki/Edit_distance

73

example, the Levenshtein distance between "home" and "gone" is 2: two edits change

one into the other and there is no way of doing it with fewer than two edits:

• home → gome (substitution of 'g' for 'h')

• gome → gone (substitution of 'n' for 'm').

The edit distance is computed by finding the sequence of string edit operations.

The number of insertions, deletions, or substitutions needed to convert one string to

other is known as the edit distance between those two strings. The C# code for

computing edit distance between two AS paths is given in Appendix B.

To compute the Levenshtein distance, reserve a matrix to hold the Levenshtein

distances between all prefixes of the first string and all prefixes of the second and then

compute the values in the matrix and in the end find the distance between the two full

strings as the last value computed.

The Levenshtein distance between two strings a, b is given by lev a,b (|a|,|b|)

 where

leva,b(i,j) = .

The first element in the minimum corresponds to insertion (from a to b), the second to

deletion, and the third to substitution.

 The maximum and minimum values of average AS path edit distance on October

2, 2011, November 2, 2011, and December 2, 2011 were the same, as shown in

Figure 65, Figure 66, and Figure 67. The mean of the average AS path edit distance

on these three dates were 2, 1, and 1 packet, respectively.

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Prefix_(computer_science)

74

0 500 1000 1500
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

9

October 2, 2011

A
v
e

ra
g

e
 e

d
it
 d

is
ta

n
c
e

Time (s)

Figure 65. Average AS Path Edit Distance on October 2, 2011.

0 500 1000 1500
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

9

November 2, 2011

A
v
e

ra
g

e
 e

d
it
 d

is
ta

n
c
e

Time (s)

Figure 66. Average AS Path Edit Distance on November 2, 2011.

75

0 500 1000 1500
-2.5

-2

-1.5

-1

-0.5

0

0.5
x 10

9

December 2, 2011

A
v
e

ra
g

e
 e

d
it
 d

is
ta

n
c
e

Time (s)

Figure 67. Average AS Path Edit Distance on December 2, 2011.

6.13. Number of IGP Packets

The number of routing protocols that are used to exchange routing information

within an AS is called the number of IGP packets. The interior gateway protocols can be

divided into two categories: a) distance-vector routing protocol and b) link-state routing

protocol. The minimum and the maximum values of number of IGP packets on October

2, 2011 were 1 and 16 packets, respectively, as shown in Figure 68. The number of IGP

packets on October 2, 2011 had a very low mean of 4.74.

The maximum and the minimum values of the number of IGP packets on

December 2, 2011 were 156 and 31, respectively, as shown in Figure 70. The statistics

of IGP packets on October 2, 2011, November 2, 2011, and December 2, 2011 are

shown in Table 23.

Table 23. Statistics for IGP Packets.

 Oct 2, 2011 Nov 2, 2011 Dec 2, 2011

Minimum 1 1 31

Maximum 16 139 156

Mean 4.74 56.92 57.19

Median 4 56 56

Mode 4 60 52

Standard Deviation 1.9 11.65 11.03

Range 15 126 125

http://en.wikipedia.org/wiki/Distance-vector_routing_protocol
http://en.wikipedia.org/wiki/Link-state_routing_protocol
http://en.wikipedia.org/wiki/Link-state_routing_protocol

76

0 500 1000 1500
0

20

40

60

80

100

120

140

160

October 2, 2011

N
u

m
b

e
r

o
f
IG

P
 p

a
c
k
e

ts

Time (s)

Figure 68. Number of IGP Packets on October 2, 2011.

0 500 1000 1500
0

20

40

60

80

100

120

140

160

November 2, 2011

N
u

m
b

e
r

o
f
IG

P
 p

a
c
k
e

ts

Time (s)

Figure 69. Number of IGP Packets on November 2, 2011.

77

0 500 1000 1500
20

40

60

80

100

120

140

160

December 2, 2011

N
u

m
b

e
r

o
f
IG

P
 p

a
c
k
e

ts

Time (s)

Figure 70. Number of IGP Packets on December 2, 2011.

6.14. Average Packet Size

The average packet size is calculated as the size of the packets divided by the

total number of packets. The periodic stream of average packet size on October 2, 2011

over a long period of time has a “clothesline” phenomenon [2], as shown in Figure 71.

This may be due to route flapping [3]. A route “flaps” when it exhibits routing oscillations.

RFD mechanisms are employed by the BGP to prevent persistent routing oscillations

caused by network instabilities such as router configuration errors, transient data link

failures, and software defects [55].

The mode in case of October 2, 2011 was very low compared to mode of

average packet size on November 2, 2011 and December 2, 2011. The mean of

average packet size on November 2, 2011 and December 2, 2011 was 5,087 and 8,351

packets, respectively, as shown in Figure 72 and Figure 73.

78

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

4

October 2, 2011

Time (s)

A
v
e

ra
g

e
 p

a
c
k
e

t
s
iz

e

Figure 71. Average Packet Size on October 2, 2011.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

4

November 2, 2011

A
v
e

ra
g

e
 p

a
c
k
e

t
s
iz

e

Time (s)

Figure 72. Average Packet Size on November 2, 2011.

79

.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3
x 10

4

December 2, 2011

A
v
e

ra
g

e
 p

a
c
k
e

t
s
iz

e

Time (s)

Figure 73. Average Packet Size on December 2, 2011.

80

7. Future Work

Future work may involve performance analysis of the BGP protocol and its

dependence on various algorithms and parameters such as route flap damping and

minimal route advertisement interval. Conditions such as worm attacks, link outages,

and router failure lead to route fluctuations that affect the quality of service of the

Internet. Therefore, it is necessary to detect and limit the routing instabilities or

anomalies [25]. The data collected from BCNET may be compared to datasets publicly

available from repositories such as Route Views and RIPE.

The extracted attributes may be clustered based on the similarities in their

properties. There are many types of clustering techniques such as k-means, hierarchical

clustering, and DBSCAN. Tools such as RapidMiner [56] and Weka [57] may be used for

this purpose. Formal verification of BGP specification validates whether or not a specific

set of requirements is satisfied. In recent years, the probabilistic behavior of BGP has

been explored. A probabilistic model-checking approach may be used to analyze the

safety of a BGP policy and the BGP convergence time using Probabilistic Computation

Tree Logic (PCTL) [58].

The features extracted using C# code may be used to detect and classify BGP

anomalies such as IP prefix hijack, worms, mis-configurations, and electricity failures

that affect the global internet BGP routing. Statistical and machine learning techniques

may be used to classify and detect BGP anomalies. These anomalies can be detected

by various techniques such as BGP lens [59], Support Vector Machines (SVMs) [60],

and Hidden Markov Models (HMMs) [61] and then classified accordingly.

81

8. Conclusions

In this thesis, we collected BCNET BGP traffic traces. We provided details of the

special purpose hardware used for data collection. The main objective of this project was

to extract some useful data from the raw data and examine to further improve the routing

protocol. This was the first step in analyzing data with free software tools such as

Wireshark packet analyzer and Walrus visualization tool. The testbed and BCNET

measurements were described.

We observed different types of BGP messages and considered BGP update

messages for the purpose of analysis. We used a tool written in C# to parse and extract

the desired attributes. Update messages consisted of announcement and withdrawal

messages for NLRI prefixes. We considered different attributes on three dates and

compared them. These attributes included number of announcements, number of

withdrawals, number of announced NLRI prefixes, number of withdrawn NLRI prefixes,

average AS path length, maximum AS path length, average unique AS path length,

number of duplicate announcements, number of duplicate withdrawals, number of

implicit withdrawals, average edit distance, maximum edit distance, number of EGP

packets, and packet size.

There was only one transit provider (Tata) recognized for the data collected in

October, November, and December 2011. There should be at least three transit

providers. However, since BCNET was in a period of transition to convert all 1-Gig

service providers to 10-Gig service providers therefore, we had only one service provider

during that period. The BCNET data points collected between December 20 and

December 22, 2010 contained no anomalies. We used Wireshark to import and export

data packets and we analyzed the data and created various statistics. One disadvantage

of using Wireshark was that we could not detect the problems if there are any but it

might warn us about possible problems.

82

References

[1] Y. Rekhter, T. Li, and S. Hares, “A border gateway protocol 4 (BGP-4),” IETF
 RFC 1771.

[2] B. A. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos, “BGP-
 lens: Patterns and anomalies in Internet routing updates,” in Proc. ACM SIGKDD
 International Conference on Knowledge Discovery and Data Mining, Paris,
 France, June 2009, pp. 1315–1324.

[3] W. Shen and Lj. Trajkovic, “BGP route flap damping algorithms,” in Proc.
 SPECTS 2005, Philadelphia, PA, July 2005, pp. 488–495.

[4] N. Laskovic and Lj. Trajkovic, “BGP with an adaptive minimal route
 advertisement interval,” in Proc. 25th IEEE Int. Performance, Computing, and
 Communications Conference, Phoenix, AZ, April 2006, pp. 135–142.

[5] BGP datasets [Online]. Available: http://archive.routeviews.org.

[6] Reseaux IP Europeens [Online]. Available: http://www.ripe.net/ris.

[7] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On the self-similar
 nature of Ethernet traffic (extended version),” in Proc. IEEE/ACM Trans.
 Networking, vol. 2, pp. 1–15, February 1994.

[8] M. Jiang, M. Nikolic, S. Hardy, and Lj. Trajkovic, “Impact of self-similarity on
 wireless network performance,” in Proc. IEEE Int. Conf. on Communications, ICC
 2001, Helsinki, Finland, June 2001, pp. 477–481.

[9] J. Agosta and T. Russell, CDPD: Cellular Digital Packet Data Standards and
 Technology. Reading, MA: McGrawHill, 1996.

[10] I. Katzela, Modeling and Simulating Communication Networks: A Hands-On
 Approach Using OPNET. Upper Saddle River, NJ: Prentice Hall, 1999.

[11] Chinasat [Online]: Available: http://en.wikipedia.org/wiki/Chinasat.

[12] S. Lau and Lj. Trajkovic, “Analysis of traffic data from a hybrid satellite-terrestrial
 network,” in Proc. The Fourth Int. Conf. on Quality of Service in Heterogeneous
 Wired/Wireless Networks (QShine 2007), Vancouver, BC, Canada, August
 2007.

http://www.ensc.sfu.ca/~ljilja/papers/spects2005_steve.pdf
http://www.ensc.sfu.ca/~ljilja/papers/ipccc2006_nenad.pdf
http://www.ensc.sfu.ca/~ljilja/papers/ipccc2006_nenad.pdf
http://www.ensc.sfu.ca/~ljilja/papers/icc2001.pdf
http://www.ensc.sfu.ca/~ljilja/papers/icc2001.pdf
http://en.wikipedia.org/wiki/Chinasat
http://www.ensc.sfu.ca/~ljilja/papers/Qshine2007_lau_trajkovic_final_edited.pdf
http://www.ensc.sfu.ca/~ljilja/papers/Qshine2007_lau_trajkovic_final_edited.pdf

83

[13] D. Sharp, N. Cackov, N. Laskovic, Q. Shao, and Lj. Trajkovic, “Analysis of public
 safety traffic on trunked land mobile radio systems,” IEEE J. Select. Areas
 Commun., vol. 22, no. 7, pp. 1197–1205, September 2004.

[14] E-Comm: Emergency Communications for Southwest British Columbia [Online].
 Available: http://www.ecomm.bc.ca.

[15] B. Vujicic, H. Chen, and Lj. Trajkovic, “Prediction of traffic in a public safety
 network,” in Proc. IEEE Int. Symp. Circuits and Systems, Kos, Greece, May
 2006, pp. 2637–2640.

[16] G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos “Power-laws and the
 AS-level Internet topology,” IEEE/ACM Trans. Networking, vol.11, no. 4, pp.
 514–524, August 2003.

[17] L. Subedi and Lj. Trajkovic, “Spectral analysis of Internet topology graphs,”
 in Proc. IEEE Int. Symp. Circuits and Systems, Paris, France, June 2010, pp.
 1803–1806.

[18] I. Trestian, S. Ranjan, A. Kuzmanovic, and A. Nucci, “Googling the Internet:
 profiling internet endpoints via the world wide web,” IEEE/ACM Transactions
 on Networking vol. 18, no. 2, pp. 666–679, April 2010.

[19] BGP monitoring and analyzer tool: BGPmon [Online].
 Available: http://www.bgpmon.net.

[20] BGP Data Analysis Project: BDAP [Online].
 Available: http://web2.clarkson.edu/projects/itl/HOWTOS/bgpAnalysis/.

[21] D. Blazakis, M. Karir, and J.S. Baras, “BGP-Inspect: Extracting information from
 raw BGP data,” in Proc. IEEE/IFIP Network Operations and Management
 Symposium, Vancouver, BC, Canada, April 2006.

[22] BGP Routing Table Analysis [Online]. Available:
 http://www.potaroo.net/tools/asns/.

 [23] G. Huston, “Analyzing the Internet's BGP routing table,” The Internet Protocol
Journal, vol. 4, no. 1, March 2001, http://www.potaroo.net/papers/2001-3-
bgptable/4-1-bgp.pdf.

 [24] Autonomous System Numbers [Online]. Available:
 http://www.iana.org/assignments/as-numbers.

[25] A. Elmokashfi, A. Kvalbein, and C. Dovrolis, “On the scalability of BGP: the role
 of topology growth,” IEEE Journal on Selected Areas in Communications,
 Special issue: Internet Routing Scalability, October 2010, pp.1250–1261.

[26] RFC 1771 [Online]. Available: http://www.rfc-editor.org/rfc/rfc1771.txt.

[27] BCNET [Online]. Available: http://www.bc.net.

http://www.ensc.sfu.ca/~ljilja/papers/JSAC1568913816Final.pdf
http://www.ensc.sfu.ca/~ljilja/papers/JSAC1568913816Final.pdf
http://www.ensc.sfu.ca/~ljilja/papers/iscas2006_bozidar.pdf
http://www.ensc.sfu.ca/~ljilja/papers/iscas2006_bozidar.pdf
http://www.ensc.sfu.ca/~ljilja/papers/iscas2010.pdf
http://web2.clarkson.edu/projects/itl/HOWTOS/bgpAnalysis/
http://www.potaroo.net/tools/asns/
http://www.iana.org/assignments/as-numbers
http://www.cc.gatech.edu/~dovrolis/Papers/ahmed-bgp-scalability-jsac.pdf
http://www.cc.gatech.edu/~dovrolis/Papers/ahmed-bgp-scalability-jsac.pdf
http://www.bc.net/

84

[28] BCNET Traffic Map [Online].
 Available: https://www.bc.net/atlconf/display/Network/BCNET+Traffic+Map.

[29] Data Monitoring Switch [Online].
 Available: http://www.netoptics.com/products/director.

[30] S. Lally, T. Farah, R. Gill, R. Paul, N. Al-Rousan, and Lj. Trajkovic, “Collection
 and characterization of BCNET BGP traffic,” in Proc. 2011 IEEE Pacific Rim
 Conference on Communications, Computers and Signal Processing, Victoria,
 BC, Canada, August 2011, pp. 830–835.

[31] Wireshark [Online]. Available: http://www.wireshark.org.

[32] Wireshark User's Guide [Online]. Available:
 http://www.wireshark.org/docs/wsug_html_chunked/ChAdvTimestamps.html.

[33] OpenFabrics Alliance Archive [Online]. Available:
 http://www.openfabrics.org/archives/spring2008sonoma/Wednesday/Endace-
 Wednesday.ppt.

[34] Welcome to DAG [Online]. Available: http://www.endace.com.

[35] D. L. Mills, “Exterior Gateway Protocol formal specification,” IETF RFC 904.

[36] BGP Case Studies [Online]. Available:
 http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a008
 00c95bb.shtml.

[37] V. Paxson and M. Allman, “Computing TCP's retransmission timer,” IETF RFC
 2988.

[38] W. Feng and P. Tinnakornsrisuphap, “The adverse impact of the TCP
 congestion-control mechanism in heterogeneous computing systems,” in Proc.
 The International Conference on Parallel Processing, Toronto, Canada, August
 2000, pp. 299–306.

[39] J. F. Kurose and K. W. Ross, “Transport layer,” in Computer Networking: A Top-
 down Approach, 4th ed, New York: Pearson International, 2007, pp. 307–308.

[40] J. Zhang, J. Rexford, and J. Feigenbaum, “Learning-based anomaly detection in
 BGP updates,” in Proc. ACM SIGCOMM Workshop on Mining Network Data,
 Philadelphia, PA, USA, August 2005, pp. 219–220.

[41] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver,
 “Inside the Slammer worm,” IEEE Security and Privacy, vol. 1, no. 4, pp. 33–39
 July 2003.

[42] A. Machie, J. Roculan, R. Russell, and M. V. Velzen, “Nimda worm analysis,”
 Tech. Rep., Incident Analysis, Security Focus, September 2001.

http://www.ensc.sfu.ca/~ljilja/papers/PACRIM_2011_submitted.pdf
http://www.ensc.sfu.ca/~ljilja/papers/PACRIM_2011_submitted.pdf
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a008%0b%20%20%20%20%20%20%20%2000c95bb.shtml
http://www.cisco.com/en/US/tech/tk365/technologies_tech_note09186a008%0b%20%20%20%20%20%20%20%2000c95bb.shtml

85

[43] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the spread
 and victims of an Internet worm,” in Proc. 2nd ACM SIGCOMM Internet
 Measurement Workshop, Marseille, France, November 2002, pp. 273–284.

[44] N. Al-Rousan and Lj. Trajkovic, “Comparison of machine learning models for
 classification of BGP anomalies,” in Proc. HPSR 2012, Belgrade, Serbia, June
 2012, pp. 103-108.

[45] N. Al-Rousan, S. Haeri, and Lj. Trajkovic, “Feature selection for classification of
 BGP anomalies using Bayesian models,” in Proc. ICMLC 2012, Xi'an, China,
 July 2012.

[46] Cooperative Association for Internet Data Analysis [Online].
 Available: http://www.caida.org.

[47] Walrus - Graph Visualization Tool [Online]. Available:
 http://www.caida.org/tools/visualization/walrus.

[48] T. Farah, S. Lally, R. Gill, N. Al-Rousan, R. Paul, D. Xu, and Lj. Trajkovic,
 “Collection of BCNET BGP traffic,” in Proc. 23rd International Teletraffic
 Congress, San Francisco, CA, USA, September 2011, pp. 322–323.

[49] D. Meyer, “BGP communities for data collection,” RFC 4384, IETF, 2006
 [Online]. Available: http://www.ietf.org/rfc/rfc4384.txt.

[50] S. Deshpande, M. Thottan, T. K. Ho, and B. Sikdar, “An online mechanism for
 BGP instability detection and analysis,” IEEE Trans. Computers, vol. 58, no. 11,
 pp. 1470–1484, November 2009.

[51] L. Wang, X. Zhao, D. Pei, R. Bush, D. Massey, A. Mankin, S. F. Wu, and L.
 Zhang, “Observation and analysis of BGP behavior under stress,” in Proc. 2nd
 ACM SIGCOMM Workshop on Internet Measurement, New York, NY, USA,
 2002, pp. 183–195.

[52] J. Park, D. Jen, M. Lad, S. Amante, D. McPherson, and L. Zhang, “Investigating
 occurrence of duplicate updates in BGP announcements,” in Proc. Passive and
 Active Measurement, Zurich, Switzerland, April 2010, pp. 11–20.

[53] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions and
 reversals,” in Soviet Physics Doklady, Technical Report 8, 1966, pp. 707–710.

[54] R. A. Wagner and M. J. Fisher, “The string-to-string correction problem,” Journal
 of the ACM, vol. 21, no. 1, pp. 168–173, January 1974.

[55] C. Labovitz, R. Wattenhofer, S. Venkatachary, and A. Ahuja, “The impact of
 Internet policy and topology on delayed routing convergence,” in Proc. IEEE
 INFOCOM, Anchorage, Alaska, April 2001, pp. 537–546.

http://www.caida.org/publications/papers/2002/codered/codered.pdf
http://www.caida.org/publications/papers/2002/codered/codered.pdf
http://www.ensc.sfu.ca/~ljilja/papers/ICMLC_2012_final.pdf
http://www.ensc.sfu.ca/~ljilja/papers/ICMLC_2012_final.pdf
http://www.caida.org/tools/visualization/walrus/
http://www.ensc.sfu.ca/~ljilja/papers/ITC_2011_poster_paper.pdf

86

[56] D. Hunyadi, “Rapid Miner E-Commerce,” in Proc. 12th WSEAS International
 Conference on Automatic Control, Modelling and Simulation, Catania, Italy, May
 2010, pp. 316–321.

 [57] G. Holmes, A. Donkin, and I. H. Witten, “WEKA: a machine learning
workbench,” in Proc. 2nd Australian and New Zealand Conference on Intelligent
Information Systems , Brisbane, Australia, December 1994, pp. 357–361.

[58] S. Haeri, D. Kresic, and Lj. Trajkovic, “Probabilistic verification of BGP
 convergence,” in Proc. IEEE International Conference on Network Protocols,
 ICNP 2011, Vancouver, BC, Canada, October 2011, pp. 127-128 (students
 poster session paper).

[59] B. A. Prakash, N. Valler, D. Andersen, M. Faloutsos, and C. Faloutsos, “BGP-
 lens: patterns and anomalies in Internet routing updates,” in Proc. ACM
 SIGKDD, Paris, France, July 2009, pp. 1315–1324.

[60] J. A. K. Suykens and J. Vandewalle, “Least squares support vector machine
 classifiers,” Neural Processing Letters, vol. 9, no. 3, pp. 293–300, February
 1999.

[61] L. R. Rabiner and B. H. Juang, “An introduction to hidden Markov models,” IEEE
 ASSP Magazine, vol. 3, no. 1, pp. 4–16, January 1986.

http://www.ensc.sfu.ca/~ljilja/papers/ICNP2011_final.pdf
http://www.ensc.sfu.ca/~ljilja/papers/ICNP2011_final.pdf

87

Appendices

88

Appendix A.

C# Code for the extraction of attributes

The C# code was used to extract the BGP update features such as number of
announcements, number of withdrawals, and average edit distance.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace ConsoleApplication1
{
 class pins
 {
 int Count; // Counter of BGP messages in each pins matches 1 minute
 period of time
 int Count_as; // Counter of BGP messages that have an AS path
 attribute in it to compute Average AS path (Announcement messages
 only)
 int Count_unique_as; // Counter of BGP messages that have a unique
 AS_path attribute in it to compute the Average AS path member
 variable (Announcement messages only)
 DateTime Time; // Time of the pin during the day
 int NumberOfannouncedPrefixes; // Total number of the announced
 prefixes for each 1 minute period of time
 int NumberOfWithdrawnsPrefixes; // Total number of withdrawn prefixes
 for each 1 minute period of time
 int NumberOfAnnouncments; // Total number of BGP update messages that
 announce NLRIs
 int NumberOfWithdrawals; // Total number of BGP update messages that
 withdraw NLRIs
 int NumberOfUpdates; // Total number of BGP update messages that
 announce or withdraw NLRIs

 double AvgAsPath; // Average AS path length of all the packets for
 each 1 minute period of time
 double MaxAsPath; // Maximum AS path length of all the packets for
 each 1 minute period of time
 double MaxUniqueAsPath;// Maximum AS path length of all the packets
 for each 1 minute period of time that has a unique AS path. It is
 the same as MaxAsPath
 double AvgUniqueAsPath; // Average AS path length of all the packets
 for each 1 minute period of time that has a unique AS path
 List<string> Unique_AS_Path = new List<string>(); // List of all unique
 AS paths in 1 minute period of time

 // Calculate duplicates messages
 int DuplicateBGPAnnouncements; // Number of duplicate BGP announcement
 messages

89

 List<bgp_updates> PinsBGPUpdates = new List<bgp_updates>();
 int DuplicateBGPWithdrawls; // Number of duplicate BGP withdrawal
 messages
 int NADA;// Number of BGP messages that have new announcements but
 different attributes
 int ImplicitWithdrawals; // Number of BGP messages that were announced
 before and are again announced again with different AS path

 // Edit Distance
 int MaximumAsPathEditDistnace; // Maximum edit distance for the AS
 path attribute
 int AverageAsPathEditDistnace; // Average edit distance for the AS
 path attribute
 int MinimumAsPathEditDistnace; // Minimum edit distance for the AS
 path attribute

 // Origin
 int NumberOfIGP; // Number of IGP BGP packets for each 1 minute period
 of time
 int NumberOfEGP; // Number of EGP BGP packets for each 1 minute period
 of time
 int NumberOfIncomplete; // Number of incomplete BGP packets for each 1
 minute period of time

 // Open + Keepalive + Notification
 int NumberOfOPENMessages; // Number of open messages for each 1 minute
 period of time
 int NumberOfKeepAliveMessages; // Number of keepalive messages for
 each 1 minute period of time
 int NumberOfUPDATEMessages; // Number of update messages for
 each 1 minute period of time. It is also used as counter for number
 of messages
 int NumberOfNOTIFICATIONMessages; Number of notification messages for
 each 1 minute period of time

 // Average size
 int AvgSize; // Average packet size in bytes

 // Properties
 public int count
 {
 get { return Count; }
 set { Count = value; }
 }

 public int AVGSize
 {
 get { return AvgSize; }
 set { AvgSize = value; }
 }
 public int numberOfOPENMessages
 {
 get { return NumberOfOPENMessages; }
 set { NumberOfOPENMessages = value; }

90

 }
 public int numberOfKeepAliveMessages
 {
 get { return NumberOfKeepAliveMessages; }
 set { NumberOfKeepAliveMessages = value; }
 }
 public int numberOfUPDATEMessages
 {
 get { return NumberOfUPDATEMessages; }
 set { NumberOfUPDATEMessages = value; }
 }
 public int numberOfNOTIFICATIONMessages
 {
 get { return NumberOfNOTIFICATIONMessages; }
 set { NumberOfNOTIFICATIONMessages = value; }
 }

 public int numberOfIGP
 {
 get { return NumberOfIGP; }
 set { NumberOfIGP = value; }
 }
 public int numberOfEGP
 {
 get { return NumberOfEGP; }
 set { NumberOfEGP = value; }
 }
 public int numberOfIncomplete
 {
 get { return NumberOfIncomplete; }
 set { NumberOfIncomplete = value; }
 }

 public int minimumAsPathEditDistance
 {
 get { return MinimumAsPathEditDistnace; }
 set { MinimumAsPathEditDistnace = value; }
 }
 public int averageAsPathEditDistnace
 {
 get { return AverageAsPathEditDistnace; }
 set { AverageAsPathEditDistnace = value; }
 }

 public int maximumAsPathEditDistnace
 {
 get { return MaximumAsPathEditDistnace; }
 set { MaximumAsPathEditDistnace = value; }
 }

 public int duplicateBGPWithdrawls
 {
 get { return DuplicateBGPWithdrawls; }
 set { DuplicateBGPWithdrawls = value; }
 }
 public int nADA

91

 {
 get { return NADA; }
 set { NADA = value; }
 }
 public int implicitWithdrawals
 {
 get { return ImplicitWithdrawals; }
 set { ImplicitWithdrawals = value; }
 }

 public List<bgp_updates> pinsBGPUpdates
 {
 get { return PinsBGPUpdates; }
 set { PinsBGPUpdates = value; }
 }

 public int duplicateBGPAnnouncements
 {
 get { return DuplicateBGPAnnouncements; }
 set { DuplicateBGPAnnouncements = value; }
 }

 public int count_as
 {
 get { return Count_as; }
 set { Count_as = value; }
 }
 public int count_unique_as
 {
 get { return Count_unique_as; }
 set { Count_unique_as = value; }
 }
 public DateTime time
 {
 get { return Time; }
 set { Time = value; }
 }

 public int NumberOfAnnouncedPrefixes
 {
 get { return NumberOfannouncedPrefixes; }
 set { NumberOfannouncedPrefixes = value; }
 }
 public int NumberOfwithdrawnsPrefixes
 {
 get { return NumberOfWithdrawnsPrefixes; }
 set { NumberOfWithdrawnsPrefixes = value; }
 }
 public int NumberofAnnouncments
 {
 get { return NumberOfAnnouncments; }
 set { NumberOfAnnouncments = value; }
 }

92

 public int NumberofWithdrawals
 {
 get { return NumberOfWithdrawals; }
 set { NumberOfWithdrawals = value; }
 }
 public int NumberofUpdates
 {
 get { return NumberOfUpdates; }
 set { NumberOfUpdates = value; }
 }

 public double AvgASPath
 {
 get { return AvgAsPath; }
 set { AvgAsPath = value; }
 }
 public double MaxASPath
 {
 get { return MaxAsPath; }
 set { MaxAsPath = value; }
 }
 public double maxUniqueASPath
 {
 get { return MaxUniqueAsPath; }
 set { MaxUniqueAsPath = value; }
 }
 public double AvgUniqueASPath
 {
 get { return AvgUniqueAsPath; }
 set { AvgUniqueAsPath = value; }
 }

 public List<string> unique_AS_Path
 {
 get { return Unique_AS_Path; }
 set { Unique_AS_Path = value; }
 }
}

93

Appendix B.

C# Code for selecting the BGP attributes

This section contains the C# code used to parse ASCII files and extract desired
attributes from BCNET BGP data.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.IO;
using System.Text.RegularExpressions;

namespace ConsoleApplication1
{
 class Program // The main class that contains static main methods
 {
 static void Main(string[] args) // The argument list that the user might
 provide to the main
 {

 List<pins> PINS = new List<pins>();
 List<bgp_updates> BGP_UPDATES = new List<bgp_updates>();

 {
 List<string> Bgp_Messages_text = new List<string>(); // This block
 is to get rid ofBgp messages text variable
 // Main loop
 // Parse the input file to bgp_update object so all the BGP
 update messages will be extracted

 StreamReader streamReader = new StreamReader(args[0]);
 string text = "";
 String line;
 bool ParsingFlag = false;
 bool ProcessingFlag = false;

 // Parsing the loop
 while ((line = streamReader.ReadLine()) != null)
 {

 if (line.Contains("Time") == true || ParsingFlag == true)
 {
 // Termination of the loop
 if (line == "")
 {
 ParsingFlag = false; // Set the parsing flag to OFF
 ProcessingFlag = true; // Set the processing flag to
 ON
 }

94

 else //parsing
 {
 ParsingFlag = true; // Set the parsing flag to ON
 text += line + "\n";
 }

 }

 if (ProcessingFlag == true)
 {
 // Ignore Open and Keepalive messages
 if (text.Contains("Parameter") == false &&
 text.Contains("Keepalive")==false &&
 text.Contains("Open")==false &&
 text.Contains("State")==false)
 {

 bgp_updates item = new bgp_updates();
 string[] temp_array = text.Split(new string[] { "\n" },
 StringSplitOptions.None);

 // Get the time
 temp_array[0] = temp_array[0].Trim();
 int Years = (int.Parse((temp_array[0].Split(' ')
 [1])));
 int Months = (int.Parse((temp array [0].Split (' ')
 [2])));
 int Days = (int.Parse((temp_array[0].Split(' ')
 [3])));

 int Hours = (int.Parse((temp_array[0].Split(' ')
 [4].Split(':')[0])));
 int Minutes = (int.Parse((temp_array[0].Split(' ')
 [4].Split(':')[1])));
 int Seconds = (int.Parse((temp_array[0].Split(' ')
 [4].Split(':')[2])));
 DateTime date1 = new DateTime(Years, Months, Days,
 Hours, Minutes, Seconds);
 item.date = date1;

 item.sIZE = 0;
 foreach (string temp in temp_array)
 {
 if (temp.Contains("AS_PATH")
 item.as_path = temp.Split (':')[1].Trim();

 if (temp.Contains("ORIGIN")
 item.origin = temp.Split (':')[1].Trim();

 if (temp.Contains("PACKET TYPE")
 item.type = temp.Split (':')[1].Trim();

95

 if (temp.Contains("FROM")
 item.from = temp.Split (':')[1].Trim();

 if (temp.Contains("TO"))
 item.to = temp.Split (':')[1].Trim();

 if (temp.Contains("NEXT_HOP"))
 item.Next_Hop = temp.Split (':')[1].Trim();

 if (temp.Contains("ANNOUNCED"))
 item.announced.Add((temp.Split (':')[1].
 Trim()).Split('/')[0]);

 if (temp.Contains("WITHDRAWN"))
 item.withdrawn.Add((temp.Split (':')[1].
 Trim()).Split('/')[0]);

 if (temp.Contains("ORIGIN"))
 item.origin.Add((temp.Split (':')[1].
 Trim()).Split('/')[0]);

 if (temp.Contains("COMMUNITIES"))
 {
 string[] stringSeparators = new string[] {
 "COMMUNITIES:"};
 item.COMMUNITY_ATTRIBUTTES = temp.Split(
 stringSeparators, StringSplitOptions.
 None)[1].Trim() ;
 }

 //for getting KEEPALIVE + UPDATE+ OPEN+ NOTIFICATION
 if (temp.Contains("BGP"))
 {
 string[] stringSeparators = new string[] {"TYPE:"};
 item.type = temp.Split(stringSeparators,
 StringSplitOptions.None)[1].Trim();
 }

 item.size += temp.Length;

 }//end of for loop

 BGP_UPDATES.Add(item);
 Console.WriteLine("1: "+"BGP Update msg date" + item.date +
 "."+BGP_UPDATES.Count +" Have been parsed.");
 }// end of if statement

 text = "";//reset next BGP message
 ProcessingFlag = false; // Set the processing flag to OFF
 }

96

 }
 //continue
 streamReader.Close();

 }// Get rid of the Bgp_Messages_text

 int CounterOfParsedMessages = 0 ;
 bool flag_doitonce = true;// Enable the searching for one count
 of attributes

 // Big processing loop to compute attributes
 foreach (bgp_updates x in BGP_UPDATES)
 {
 pins item = new pins();//Will be added later to PINS[]

 item.time = x.date;
 // First minute
 if(x.date.Second==59 && x.date.Hour==22 && x.date.Minute==12)
 item.time = x.date;
 if (PINS.Count == 0)
 {
 PINS.Add(item);
 // Any new attributes may be added here:
 if (x.Announced.Count != 0)
 {
 PINS[0].NumberofAnnouncments += 1;
 PINS[0].NumberOfAnnouncedPrefixes += x.Announced.Count;
 PINS[0].NumberofUpdates += 1;
 }
 if (x.WITHDRAWN.Count != 0)
 {
 PINS[0].NumberofWithdrawals += 1;
 PINS[0].NumberOfwithdrawnsPrefixes += x.WITHDRAWn.Count;
 PINS[0].NumberofUpdates += 1;
 }

 // AS PATH
 if (x.as_path != null)
 {
 PINS[0].AvgASPath = x.as_path.Split(' ').Length;
 PINS[0].count_as = 1;
 PINS[0].MaxASPath = x.as_path.Split(' ').Length; ;
 PINS[0].AvgUniqueASPath = x.as_path.Split(' ').Length;
 PINS[0].maxUniqueASPath = x.as_path.Split(' ').Length;
 // PINS[0].implicitWithdrawals = 1;// will be solved later
 }
 else
 {
 PINS[0].AvgASPath = 0;
 PINS[0].MaxASPath = 0;
 PINS[0].AvgUniqueASPath = 0;
 PINS[0].maxUniqueASPath = 0;
 }

 // ORIGIN

97

 if (x.origin == "EGP")
 PINS[0].numberOfEGP = 1;
 else if (x.origin == "Incomplete")
 PINS[0].numberOfIncomplete = 1;
 else
 PINS[0].numberOfIGP = 1;

 // Type
 if (x.type == "UPDATE")
 PINS[0].numberOfUPDATEMessages = 1;
 else if (x.type == "KEEPALIVE")
 PINS[0].numberOfKeepAliveMessages = 1;
 else if (x.type == "NOTIFICATION")
 PINS[0].numberOfNOTIFICATIONMessages = 1;
 else if (x.type == "OPEN")
 PINS[0].numberOfOPENMessages = 1;

 //Size
 PINS[0].AVGSize = x.sIZE;

 // BGP Announcement Types
 // nothing!
 PINS[0].pinsBGPUpdates.Add(x);

 PINS[0].count = 1;

 }
 // Other minutes
 else if (PINS[PINS.Count - 1].time.Hour == item.time.Hour &&
 PINS[PINS.Count - 1].time.Minute == item.time.Minute)
 { // Any new attributes may be added here

 if (x.Announced.Count != 0)
 {
 PINS[PINS.Count - 1].NumberofAnnouncments += 1;
 PINS[PINS.Count - 1].NumberOfAnnouncedPrefixes += x.Announced.Count;
 PINS[PINS.Count - 1].NumberofUpdates += 1;
 }
 if (x.WITHDRAWn.Count != 0)
 {
 PINS[PINS.Count - 1].NumberofWithdrawals += 1;
 PINS[PINS.Count - 1].NumberOfwithdrawnsPrefixes += x.WITHDRAWn.Count;
 PINS[PINS.Count - 1].NumberofUpdates += 1;
 }

 // AS PATH
 if (x.as_path != null)
 {
 PINS[PINS.Count - 1].AvgASPath += x.as_path.Split(' ').Length;
 PINS[PINS.Count - 1].count_as += 1;
 if (x.as_path.Split(' ').Length > PINS[PINS.Count - 1].MaxASPath)
 PINS[PINS.Count - 1].MaxASPath = x.as_path.Split(' ').Length;
 }
 // Unique AS PATH
 if (x.as_path != null)

98

 {
 // Solve for the first item
 if (PINS[PINS.Count - 1].unique_AS_Path.Count == 0)
 {
 PINS[PINS.Count - 1].unique_AS_Path.Add(x.as_path);
 PINS[PINS.Count - 1].count_unique_as += 1;
 }
 else
 // For other items
 { // Check if the AS PATH is not there
 if (PINS[PINS.Count 1].unique_AS_Path.Contains(x.as_path) == false)
 {
 PINS[PINS.Count - 1].unique_AS_Path.Add(x.as_path);
 PINS[PINS.Count - 1].count_unique_as += 1;
 }

 // Maximum unique AS path
 if (PINS[PINS.Count - 1].unique_AS_Path[PINS[PINS.Count -
 1].unique_AS_Path.Count - 1].Split(' ').Length > PINS[PINS.Count -
 1].maxUniqueASPath)
 PINS[PINS.Count - 1].maxUniqueASPath = x.as_path.Split(' ').Length;

 }

 }
 // Duplicate BGP packets
 PINS[PINS.Count - 1].pinsBGPUpdates.Add(x);

 // ORIGIN
 if (x.origin == "EGP")
 PINS[PINS.Count - 1].numberOfEGP += 1;
 else if (x.origin == "INCOMPLETE")
 PINS[PINS.Count - 1].numberOfIncomplete += 1;
 else
 PINS[PINS.Count - 1].numberOfIGP += 1;
 // Extract the TYPE of duplicate BGP packets
 if (x.type == "UPDATE")
 PINS[PINS.Count - 1].numberOfUPDATEMessages += 1;
 else if (x.type == "KEEPALIVE")
 PINS[PINS.Count - 1].numberOfKeepAliveMessages += 1;
 else if (x.type == "NOTIFICATION")
 PINS[PINS.Count - 1].numberOfNOTIFICATIONMessages += 1;
 else if (x.type == "OPEN")
 PINS[PINS.Count - 1].numberOfOPENMessages += 1;

 // Size
 PINS[PINS.Count - 1].AVGSize += x.sIZE;
 PINS[PINS.Count - 1].count += 1;

 }
 else if (PINS[0].time.Hour == item.time.Hour &&PINS[0].time.Minute
 == item.time.Minute) // For those BGP messages that come late and
 belong to the first attribute

 {// Any new attribute may be added here:

99

 if (x.Announced.Count != 0)
 {
 PINS[0].NumberofAnnouncments += 1;
 PINS[0].NumberOfAnnouncedPrefixes += x.Announced.Count;
 PINS[0].NumberofUpdates += 1;
 }
 if (x.WITHDRAWN.Count != 0)
 {
 PINS[0].NumberofWithdrawals += 1;
 PINS[0].NumberOfwithdrawnsPrefixes += x.WITHDRAWn.Count;
 PINS[0].NumberofUpdates += 1;
 }

 // AS PATH
 if (x.as_path != null)
 {
 PINS[0].AvgASPath += x.as_path.Split(' ').Length;
 PINS[0].count_as += 1;
 if (x.as_path.Split(' ').Length > PINS[0].MaxASPath)
 PINS[0].MaxASPath = x.as_path.Split(' ').Length;
 }
 // Unique AS PATH
 if (x.as_path != null)
 {
 // Solve for the first item
 if (PINS[0].unique_AS_Path.Count == 0)
 {
 PINS[0].unique_AS_Path.Add(x.as_path);
 PINS[0].count_unique_as += 1;
 }
 else// For other items
 { // Check if the AS PATH is not there
 if (PINS[0].unique_AS_Path.Contains(x.as_path) ==
 false)
 {
 PINS[0].unique_AS_Path.Add(x.as_path);
 PINS[0].count_unique_as += 1;
 }

 // MaxUniqueAsPath
 if
 (PINS[0].unique_AS_Path[PINS[0].unique_AS_Path.Count -
 1].Split(' ').Length > PINS[0].maxUniqueASPath)
 PINS[0].maxUniqueASPath = x.as_path.Split(' ').Length;

 }
 }

 // ORIGIN
 if (x.origin == "EGP")
 PINS[0].numberOfEGP += 1;
 else if (x.origin == "Incomplete")
 PINS[0].numberOfIncomplete += 1;
 else
 PINS[0].numberOfIGP += 1;

100

 // TYPE of ORIGIN attribute
 if (x.type == "UPDATE")
 PINS[0].numberOfUPDATEMessages = 1;
 else if (x.type == "KEEPALIVE")
 PINS[0].numberOfKeepAliveMessages += 1;
 else if (x.type == "NOTIFICATION")
 PINS[0].numberOfNOTIFICATIONMessages += 1;
 else if (x.type == "OPEN")
 PINS[0].numberOfOPENMessages += 1;

 // Calculate size of the packet
 PINS[0].AVGSize += x.sIZE;
 PINS[PINS.Count - 1].count += 1;

 }
 else// Go forward to next pin
 {
 // Iniliaze the first pin as pin zero just in case there are
 no other pins
 PINS.Add(item);

 // Move to the last else
 // if (PINS.Count > 2)
 // if (PINS[PINS.Count -1].count == 1) //for those pins which
 have just one packet
 //{
 // flag_doitonce = false;//disable searching for the previous
 pin
 // PINS.Add(item);
 // Any new attributes may be added here:
 if (x.Announced.Count != 0)
 {
 PINS[PINS.Count - 1].NumberofAnnouncments = 1;
 PINS[PINS.Count - 1].NumberOfAnnouncedPrefixes = 1;
 // PINS[PINS.Count - 1].NumberofUpdates = 1;
 }
 if (x.WITHDRAWN.Count != 0)
 {
 PINS[PINS.Count - 1].NumberofWithdrawals = 1;
 PINS[PINS.Count - 1].NumberOfwithdrawnsPrefixes = 1;
 // PINS[PINS.Count - 1].NumberofUpdates = 1;
 }

 // AS PATH
 if (x.as_path != null)
 {

 PINS[PINS.Count - 1].AvgASPath = x.as_path.Split(' ').Length;
 PINS[PINS.Count - 1].count_as = 1;
 PINS[PINS.Count - 1].count_unique_as = 1;
 // PINS[PINS.Count - 1].implicitWithdrawals = 1;
 // will be solved later
 PINS[PINS.Count - 1].MaxASPath = 1;
 PINS[PINS.Count - 1].AvgUniqueASPath = 1;

101

 PINS[PINS.Count - 1].maxUniqueASPath = 1;
 }
 //else
 //{
 // PINS[PINS.Count - 1].AvgASPath = x.as_path.Split('
 ').Length;
 // PINS[PINS.Count - 1].MaxASPath = 1;
 // PINS[PINS.Count - 1].AvgUniqueASPath = 1;
 // PINS[PINS.Count - 1].maxUniqueASPath = 1;
 //}

 // ORIGIN
 if (x.origin == "EGP")
 PINS[PINS.Count - 1].numberOfEGP = 1;
 else if (x.origin == "Incomplete")
 PINS[PINS.Count - 1].numberOfIncomplete = 1;
 else
 PINS[PINS.Count - 1].numberOfIGP = 1;

 // TYPE
 if (x.type == "UPDATE")
 PINS[PINS.Count - 1].numberOfUPDATEMessages = 1;
 else if (x.type == "KEEPALIVE")
 PINS[PINS.Count - 1].numberOfKeepAliveMessages = 1;
 else if (x.type == "NOTIFICATION")
 PINS[PINS.Count - 1].numberOfNOTIFICATIONMessages = 1;
 else if (x.type == "OPEN")
 PINS[PINS.Count - 1].numberOfOPENMessages = 1;

 // Size
 PINS[PINS.Count - 1].AVGSize = 1;
 PINS[PINS.Count - 1].count = 1;

 }

 //Logging //"PINS.Count ="+PINS.Count +
 Console.WriteLine("2: "+" x.date =" + x.date + " i=" +
 CounterOfParsedMessages +" have been processed.");
 CounterOfParsedMessages++;

 }

 // Compute Duplicate BGP packets

 int counterOfProcessedMessages = 0;
 foreach (pins pin in PINS)//for all the pins
 {
 for (int i = 0; i < pin.pinsBGPUpdates.Count; i++) //take 1 pin
 {
 // for (int j = pin.pinsBGPUpdates.Count - 1 - i; j <
 pin.pinsBGPUpdates.Count; j++) //cross
 for (int j =0; j <=i; j++) //cross new
 {
 foreach (string plapla in pin.pinsBGPUpdates[i].Announced)
 if (pin.pinsBGPUpdates[j].Announced.Contains(plapla))

102

 {

 if (pin.pinsBGPUpdates[j].as_path ==
 pin.pinsBGPUpdates[i].as_path)// Duplicate
 {
 pin.duplicateBGPAnnouncements += 1;
 }
 else if (pin.pinsBGPUpdates[j].as_path !=
 pin.pinsBGPUpdates[i].as_path) // Implicit Withdrawal
 {
 pin.implicitWithdrawals += 1;
 }

 }

 // Check for duplicate Withdrawals
 foreach (string plapla in pin.pinsBGPUpdates[i].WITHDRAWn)
 if (pin.pinsBGPUpdates[j].WITHDRAWN.Contains(plapla))
 {
 pin.duplicateBGPWithdrawls += 1;
 }
 }
 }
 CounterOfProcessedMessages++;
 Console.WriteLine("3: "+"Duplicate for pin number: " +
 CounterOfProcessedMessages+" is bieng prcoessed.
 ("+ pin.count_as+" bgp msgs)");
 }

// Calculate the Average AS path length
 for (int i = 0; i < PINS.Count; i++)
 {
 // Fix AS_PATH sum
 // PINS[i].AvgASPath = Math.Round(PINS[i].AvgASPath / PINS[i].count);
 PINS[i].AvgASPath = Math.Ceiling((PINS[i].AvgASPath /
 PINS[i].count_as));//*100 to make it obvious between the
 AvgUniqueASPath and AvgASPath

 // Fix Unique AS-PATH count + sum
 foreach (string temp in PINS[i].unique_AS_Path)
 {
 PINS[i].AvgUniqueASPath += temp.Split(' ').Length;
 }
 PINS[i].AvgUniqueASPath =
 Math.Ceiling((PINS[i].AvgUniqueASPath /
 PINS[i].count_unique_as));
 if(PINS[i].count!=0)
 PINS[i].AVGSize =(int)(Math.Ceiling((PINS[i].AVGSize /
 PINS[i].count)*1.0));
 }

 // Compute the Max Edit distance
 int NumberOfEditDistanceCalculatedPins = 1 ;
 foreach (pins temp in PINS)
 {

103

 // Get all the as-path from each packet
 List<string> to_send = new List<string>();
 foreach (bgp_updates x1 in temp.pinsBGPUpdates)
 if (x1.as_path != null && to_send.Contains(x1.as_path) ==
 false)
 {
 // Get all unique ASs so it won’t be the same as max as path length
 HashSet<string> items = new HashSet<string>(x1.as_path.Split(' '));
 // to_send.Add(x1.as_path);
 to_send.Add(String.Join(" ",items.ToArray()));
 }

 Console.WriteLine("4: "+"Computing Edit Distance for pin= " +
 counter + ", that contains= " + temp.count_as + " bgp msgs.");
 int[] output = MaxEditDistnace(to_send);
 temp.maximumAsPathEditDistnace = output[0];
 temp.averageAsPathEditDistnace = output[1];
 temp.minimumAsPathEditDistnace = output[2];
 counter++;
 }

 // Writing to the stdout

 // TextWriter tw = new StreamWriter("date_test_bcnet.txt");
 // TextWriter tw2 = new StreamWriter("date_test_bcnet.txt"
 +"_attributeextraction");
 TextWriter streamtwriter1 = new StreamWriter(args[1]);
 TextWriter streamwriter2 = new StreamWriter(args[1]+"_attribute
 selection");
 for (int i = 0; i < PINS.Count; i++)
 {
 string SecondToPrint;
 if (PINS[i].time.Second < 10)
 SecondToPrint = "0" + PINS[i].time.Second.ToString();
 else
 SecondToPrint = PINS[i].time.Second.ToString();

 string MinuteToPrint;
 if (PINS[i].time.Minute < 10)
 MinuteToPrint = "0" + PINS[i].time.Minute.ToString();
 else
 MinuteToPrint = PINS[i].time.Minute.ToString();

 string HourToPrint;
 if (PINS[i].time.Hour < 10)
 HourToPrint = "0" + PINS[i].time.Hour.ToString();
 else
 HourToPrint = PINS[i].time.Hour.ToString();

 string output18 = ((Math.Round(PINS[i].MaxASPath) == 11) ? "1" : "0");
 string output19 = ((Math.Round(PINS[i].MaxASPath) == 12) ? "1" : "0");
 string output20 = ((Math.Round(PINS[i].MaxASPath) == 13) ? "1" : "0");
 string output21 = ((Math.Round(PINS[i].MaxASPath) == 14) ? "1" : "0");
 string output22 = ((Math.Round(PINS[i].MaxASPath) == 15) ? "1" : "0");

104

 string output23 = ((Math.Round(PINS[i].MaxASPath) == 16) ? "1" : "0");
 string output24 = ((Math.Round(PINS[i].MaxASPath) == 17) ? "1" : "0");
 string output25 = ((Math.Round(PINS[i].MaxASPath) == 18) ? "1" : "0");
 string output26 = ((Math.Round(PINS[i].MaxASPath) == 19) ? "1" : "0");
 string output27 = ((Math.Round(PINS[i].MaxASPath) == 20) ? "1" : "0");

string output28 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 7) ?
"1" : "0");
string output29 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 8) ?
"1" : "0");
string output30 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 9) ?
"1" : "0");
 string output31 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 10) ?
"1" : "0");
 string output32 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 11) ?
"1" : "0");
 string output33 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 12) ?
"1" : "0");
 string output34 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 13) ?
"1" : "0");
 string output35 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 14) ?
"1" : "0");
 string output36 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 15) ?
"1" : "0");
 string output37 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 16) ?
"1" : "0");
//string output38 = ((Math.Round(PINS[i].maximumAsPathEditDistnace * 1.0) == 17) ?
"1" : "0"); // gives all zeros

 // Text Format
 Console.WriteLine(
 HourToPrint + MinuteToPrint + " " +//1
 HourToPrint +" " +//2
 MinuteToPrint +" "+ //3
 SecondToPrint+" "+ //4
 PINS[i].NumberofAnnouncments + " " +//5
 PINS[i].NumberofWithdrawals + " " +//6
 // PINS[i].NumberofUpdates + " " + //7
 PINS[i].NumberOfAnnouncedPrefixes + " " +//7
 PINS[i].NumberOfwithdrawnsPrefixes + " " +//8
 PINS[i].AvgASPath + " " +//9
 PINS[i].MaxASPath + " " +//10
 PINS[i].AvgUniqueASPath + " " +//11
 PINS[i].duplicateBGPAnnouncements + " " + //12
 PINS[i].implicitWithdrawals + " " +//13
 PINS[i].duplicateBGPWithdrawls + " " +//14
 PINS[i].maximumAsPathEditDistnace + " " +//15
 ((1 / (60.0 / Math.Ceiling(PINS[i].pinsBGPUpdates.Count *
 1.0))).ToString() + "000").Substring(0, 3) + " " +//16 //4.3
 //wrong
 // PINS[i].maximumAsPathEditDistnace + " " + //18
 PINS[i].averageAsPathEditDistnace + " " +//17

 output18 +" "+//18

105

 output19 +" "+//19
 output20 +" "+//20
 output21 +" "+//21
 output22 +" "+//22
 output23 +" "+//23
 output24 +" "+//24
 output25 +" "+//25
 output26 +" "+//26
 output27 +" "+//27

 output28 +" "+//28
 output29 +" "+//29
 output30 +" "+//30
 output31 +" "+//31
 output32 +" "+//32
 output33 +" "+//33
 output34 +" "+//34
 output35 +" "+//35
 output36 +" "+//36
 output37 + " " +//37

 PINS[i].numberOfIGP + " " + //38
 PINS[i].numberOfEGP + " " + //39
 PINS[i].numberOfIncomplete +" "+ //40

 //PINS[i].numberOfUPDATEMessages + " " + //41
 //PINS[i].numberOfOPENMessages + " " + //42
 //PINS[i].numberOfNOTIFICATIONMessages + " " + //43
 //PINS[i].numberOfKeepAliveMessages + " "+//44

 PINS[i].AVGSize//45 //41

); //17

 // For matlab
 tw.WriteLine(
 HourToPrint + MinuteToPrint + " " //1
 + HourToPrint + " " +//2
 MinuteToPrint + " " + //3
 SecondToPrint + " " +//4
 PINS[i].NumberofAnnouncments + " " + //5
 PINS[i].NumberofWithdrawals + " " + //6
 PINS[i].NumberOfAnnouncedPrefixes + " " + //7
 PINS[i].NumberOfwithdrawnsPrefixes + " " +//8
 PINS[i].AvgASPath + " " +//9
 PINS[i].MaxASPath + " " +//10
 PINS[i].AvgUniqueASPath + " " +//11
 PINS[i].duplicateBGPAnnouncements + " " + //12
 PINS[i].implicitWithdrawals + " " +//13
 PINS[i].duplicateBGPWithdrawls + " " +//14
 PINS[i].maximumAsPathEditDistnace + " " +//15
 ((1 / (60.0 / Math.Ceiling(PINS[i].pinsBGPUpdates.Count *
1.0))).ToString() + "000").Substring(0, 3) + " " +//16 //4.3

106

 PINS[i].averageAsPathEditDistnace +" "+//17
PINS[i].numberOfIGP + " " + //38

 PINS[i].numberOfEGP + " " + //39
 PINS[i].numberOfIncomplete +" " +//40

 //PINS[i].numberOfUPDATEMessages + " " + //41
 //PINS[i].numberOfOPENMessages + " " + //42
 usually zereos are neglected
 //PINS[i].numberOfNOTIFICATIONMessages + " " + //43
 usually zeros are neglected
 //PINS[i].numberOfKeepAliveMessages + " " +//44
 usually zeros are neglected

 PINS[i].AVGSize//45 //41
);

 //For attributes selection
 if (i <= 800)
 tw2.Write("-1 ");
 else
 tw2.Write("1 ");

 tw2.WriteLine(
 "1:" +
 PINS[i].NumberofAnnouncments + " 2:" + //1
 PINS[i].NumberofWithdrawals + " 3:" + //2
 PINS[i].NumberOfAnnouncedPrefixes + " 4:" + //3
 PINS[i].NumberOfwithdrawnsPrefixes + " 5:" +//4
 PINS[i].AvgASPath + " 6:" +//5
 PINS[i].MaxASPath + " 7:" +//6
 PINS[i].AvgUniqueASPath + " 8:" +//7
 PINS[i].duplicateBGPAnnouncements + " 9:" + //8
 PINS[i].implicitWithdrawals + " 10:" +//9
 PINS[i].duplicateBGPWithdrawls + " 11:" +//10
 PINS[i].maximumAsPathEditDistnace + " 12:" +//11
 ((1 / (60.0 / Math.Ceiling(PINS[i].pinsBGPUpdates.Count *
1.0))).ToString()+"000").Substring(0,3) + " 13:" +//12
 PINS[i].averageAsPathEditDistnace+" 14:"+//13

 PINS[i].numberOfIGP + " 35:" + //34
 PINS[i].numberOfEGP + " 36:" + //35
 PINS[i].numberOfIncomplete + " 37:" + //36

 //PINS[i].numberOfUPDATEMessages + " 38:" + //37
 //PINS[i].numberOfOPENMessages + " 39:" + //38
 //PINS[i].numberOfNOTIFICATIONMessages + " 40:" + //39
 //PINS[i].numberOfKeepAliveMessages + " 41:" + //40

 PINS[i].AVGSize//41 //37
);
 }

 streamwriter1.Close();
 streamwriter2.Close();

107

 }//end of main

/// <summary>
/// This function is used to compute the Maximum Edit distance from a collection
 of edit distances
/// </summary>
/// <parameter name="a">It is a list of edit distances </parameter>
/// <returns></returns>
public static int [] MaxEditDistance (List<string> a)
 {
 int max = 0;
 int min = 1000;
 int sum = 0;

// break AS path to a list of strings
List<string[]> AsPathList = new List<string[] >() ;
foreach (string x in a)
{
 AsPathList.Add(x.Split((' ');
}
for (int i=0; i < a.Count; i++)
{
 // for (int j = a.Count – 1 – i; j < a.Count; j++) // wrong
 for (int j =0; j <= i; j++)
 {
 int current = Editdistance(AsPathlist[i], AsPathList[j]);
 sum += current;
 if (current > max))
 max = current;
 if (current < min && i != j) // Avoid zero distance
 min = current;
 // if (current = 0 && i != j) // should not have this value
 // Console. Writeline("Real Zero");

 }
 }
 int [] temp = new int [3];
 temp[0] = max;
 temp[1] = (int)(Math.Ceiling((sum * 1.0)/ (a.Count * a.Count)));
 temp[2] = min;

 // return MeshMatrix.Cast<int>().Max() ;
 return temp ;
 }

/// <summary>
/// This function is used to compute the Edit distance between two AS paths
/// </summary>
/// <parameter name="a"> The first AS path</parameter>
/// <parameter name="a"> The second AS path</parameter>
/// <returns>It returns an integer with the value if the edit distance
 </returns>
public static int Editdistance(string[] a, string [] b)
{
 // for all i and j, d[i,j] will hold the Levenshtein distance between
 // the first i characters of s and the first j characters of t;

108

 // note that d has (m+1)x(n+1) values
 // declare int d[0...m, 0...n]
 int [,] EditDistanceArray = new int[a.Length + 1, b.Length + 1];
 // for i from 0 to m
// d [i,0] := i // the distance of any first string to an empty second string
// for j from 0 to n
// d [0,j] := j // the distance o f any second string to an empty first string

 for (int i = 0 ; i < a.Length + 1 ; i++)
 EditDistanceArray [i,0] = i ;
 for (int j = 0 ; j < b.Length + 1 ; j++)
 EditDistanceArray [0,j] = j ;

 for (int i = 1 ; i <= a.Length ; i++)
{
 for (int j = 1 ; j <= b.Length ; j++)
 {
 // if (a[i] == b[j] && i == 0 && j == 0)
 // EditDistanceArray [i ,j] = 0 ;
if (a[i - 1] == b [j - 1])
 EditDistanceArray [i,j] = EditDistanceArray [i - 1,j - 1] ;
else
 EditDistanceArray [i ,j] = Math.Min(
 EditDistanceArray [i -1,j] + 1,
 Math .Min(
 EditDistanceArray [i,j - 1] + 1 ,
 EditDistanceArray [i - 1,j - 1] + 1)
);
 }
}

// return d [m,n]
return EditDistanceArray [a.Length,b.Length] ;

 }
 }
 }

109

Appendix C.

MATLAB Code for generating the graphs

This section contains the sample MATLAB code used to create the graphs after the
desired BGP update attributes were extracted. It imports the datasets so that results and
graphs may be printed.

clear;

clc;

close all;

addpath('C:\Users\lally\Desktop\BGP_thesis\C#code');

addpath('../../matlab');

% Import the datasets

updates0x2E20030123_rcc4 = importdata('nov2results.txt');

% Add a breakpoint after the dataset you wished to import has been imported

updates0x2E20030124_rcc4 = importdata('updates.20030124_rcc4.out');

updates0x2E20030125_rcc4 = importdata('updates.20030125_rcc4.out');

updates0x2E20030126_rcc4 = importdata('updates.20030126_rcc4.out');

updates0x2E20030127_rcc4 = importdata('updates.20030127_rcc4.out');

updates0x2E20010916_rcc4 = importdata('updates.20010916_rcc4.out');

updates0x2E20010917_rcc4 = importdata('updates.20010917_rcc4.out');

updates0x2E20010918_rcc4 = importdata('updates.20010918_rcc4.out');

updates0x2E20010919_rcc4 = importdata('updates.20010919_rcc4.out');

updates0x2E20010920_rcc4 = importdata('updates.20010920_rcc4.out');

updates0x2E20010712_rcc4 = importdata('updates.20010712_rcc4.out');

updates0x2E20010713_rcc4 = importdata('updates.20010713_rcc4.out');

updates0x2E20010714_rcc4 = importdata('updates.20010714_rcc4.out');

updates0x2E20010715_rcc4 = importdata('updates.20010715_rcc4.out');

updates0x2E20010716_rcc4 = importdata('updates.20010716_rcc4.out');

updates0x2E20010717_rcc4 = importdata('updates.20010717_rcc4.out');

updates0x2E20010718_rcc4 = importdata('updates.20010718_rcc4.out');

110

updates0x2E20010719_rcc4 = importdata('updates.20010719_rcc4.out');

updates0x2E20010720_rcc4 = importdata('updates.20010720_rcc4.out');

updates0x2E20010721_rcc4 = importdata('updates.20010721_rcc4.out');

